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ABSTRACT  
   

This study investigates the fabrication and mechanical properties of semi-

continuous, hemp fiber reinforced thermoset composites. This research 

determines if off-the-shelf refined woven hemp fabric is suitable as composite 

reinforcement using resin pre-impregnated method. Industrial hemp was chosen 

for its low cost, low resource input as a crop, supply chain from raw product to 

refined textile and biodegradability potential. Detail is placed on specimen 

fabrication considerations. Lab testing of tension and compression is conducted 

and optimization considerations are examined. The resulting composite is limited 

in mechanical properties as tested. This research shows it is possible to use woven 

hemp reinforcement in pre-impregnated processed composites, but optimization 

in mechanical properties is required to make the process commercially practical 

outside niche markets.  
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CHAPTER 1 

INTRODUCTION 

Natural fibers such as hemp have been used for thousands of years for 

their high strength and multiuse characteristics (Herer, 2010). Since the advent of 

engineered materials in composites, natural fibers have for the most part been left 

in the past as reinforcements. This is due to the higher performance characteristics 

of materials such as carbon and aramid. Natural fibers have more comparable 

properties to glass in high volume applications (ASM International, 2001). In 

structural applications where high strength and light weight are absolutely 

necessary, engineered fibers have no natural equivalent. These applications are 

generally the cutting edge of composite technology in aerospace, astrospace and 

high end sporting equipment. Archetypes like aircraft, yachts, exotic cars and 

rockets, are driven by performance alone where issues like material cost and 

sustainability have little bearing.  

In an effort to lower production cost and provide more consistent results in 

finished products, processes like resin transfer molding (RTM) and prepreging 

have become standard in component production (Dorworth, Gardiner, Mellema, 

2009). These advanced methods of composite production offer faster means of 

fabrication with reliable repeatability in finished part mechanical properties. 

Though they are developed for traditional reinforcement, natural fiber composites 

could benefit of the prepreg technique. 

For the general consumer market, composites are still considered higher 

end. The automotive industry has for years relied on plastics as a lower cost, 



  2 

lower weight alternative to metals in non-structural components. As the push for 

better fuel economy in vehicles continues, lighter, stronger and less costly 

materials have to be developed. In this and many other markets, consumer 

demand for more environmentally responsible products has risen. 

Statement of Purpose  

Compared to traditional raw materials, hemp is less costly to produce and 

more environmentally sustainable than its performance driven counterparts. The 

purpose of this research is to determine if hemp, a natural organic fiber is a 

suitable replacement for composite reinforcement using the prepreg method. This 

study is a preliminary investigation into the potential shortcomings in processing 

and performance of semi-continuous hemp fiber reinforced thermoset composites. 

Mechanical properties were tested in a lab setting.     

Scope 

As with any relatively untested material, non-structural parts are the most 

logical initial intended use, until optimized, tested and certified for a given 

application. The mechanical properties of hemp can be assumed as less than 

engineered materials. With this, one can derive it is safer to avoid the intent of 

structural applications, at least in the interim.   

More and more industries are integrating composite materials. Sporting 

goods, construction, automotive and marine industries are the intended benefactor 

of this study, as less stringent standards on material need to be met.   

Industries like aviation employ composite materials often, however, they 

are heavily regulated with regard to structural fidelity, processing and material 
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traceability. This is the case for certified, manufacturer built aircraft. 

Experimental aircraft, a separate classification by Federal Aviation 

Administration (FAA) standards, does not adhere to such high standards, leaving 

room for new materials to be developed and implemented. It is important to 

realize that the builders of experimental aircraft should understand the limits and 

nature of a given material and that they are responsible for testing to determine 

the level of its use. This study is intended to be a starting point in the possibility 

of use in non-structural applications.  

General Theory 

Fiber composite reinforcements break down into two categories, 

continuous and non-continuous fibers. In a simplified telling, non-continuous are 

generally glass fibers (fiberglass) and are most commonly used in boat 

manufacturing (Mazumdar, 2002). Traditionally, short cut strands of fiber are wet 

out with resin and cured. Continuous fiber is coated in resin and cured in a similar 

process as fiberglass, however, the long woven strands transfer load more 

efficiently than non-continuous. 

Most natural fibers are generally short. Among them, coconut husk has 

been used for centuries for its tough fibers. In today’s market, it is well suited as a 

common material for environmentally friendly doormats but not much for 

composite reinforcement (www.williamkempf.com). From known history to the 

advent of nylon, hemp made up at least 70% of cordage, rope, twine, canvas, ship 

sails and cloth (Herer, 2010). Flax, jute and sisal were also used and still utilized 
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in the production of natural based twine. Though considered in this study, they are 

again short and not as well refined.  

The best readily available, refined natural fiber suitable for composites is 

hemp. Raw bark fibers are generally five to ten feet in length. These long strands 

are refined into shorter individual fibers and twisted together to make yarn. The 

yarn used in textiles is continuous, however, since the yarn is made of shorter 

discontinuous fibers, the term semi-continuous is used. 

Hemp has proven its utility historically. It has favorable cost and 

sustainability attributes for markets showing increasing demand for 

environmentally friendly goods. Given its higher degree of refinement as a natural 

material, it lends itself to be applied to advanced composite manufacturing 

techniques. This research examines that possibility.           
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CHAPTER 2 

LITERATURE REVIEW 

Natural fibers have limited testing in a lab setting. Most papers are based 

on raw or unrefined fibers. Comparatively, there is very little mechanical property 

information on the refined material compared to metals or even traditional 

composite reinforcements. Moreover, much research has been conducted outside 

of journals and academia as proprietary information or that of hobbyist projects 

making details much harder to attain. General industry and historical information 

is available.        

Industry 

 Hemp and other natural materials have been used in industry in conceptual 

designs and some production. The following are some notable examples of 

successful uses in consumer and even high end products.   

On August 14, 1941, automaker Henry Ford unveiled an automobile with 

outer bodywork comprised of short strand hemp and flax among other natural 

materials. It was Ford’s intention to create sustainable processes and materials. 

His ideas have, in some circles, regained popularity. 

(http://hempcar.org/ford.shtml)  

Among the more recent developments, 2007 brought the advent of semi-

continuous fiber hemp into surfboard manufacturing by Chad “Kainanu” Jackson. 

With his line of boards he coined the term “fibergrassing” 

(www.hempsurfboards.com/)  
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In 2008, sports car maker Lotus reveled the Eco Elise. This auto used 

short strand hemp in its body panels. Curb weight is more than 22Kg. (50Lbs.) 

lighter than that of the standard version of Elise. 

(http://www.lotuscars.com/engineering/en/eco-elise)   

Flexform Technologies, a U.S. based innovator, has been providing 

formed short fiber panels to the automotive industry since 1999. These bio-

composite parts are found in vehicles by GM, Ford, Mercedes Benz, Nissan and 

Honda. Products for commercial aerospace are showing promise as the 

technology is already in use in the manufacture of certified private aircraft. 

(http://www.flexformtech.com/Auto/Applications/) 

Most recently, in a press release by U.K. based Amber Composites, 

announcements were made for a commercially available, woven flax based 

prepreg material. This product was developed with Composites Evolution, a 

supplier of sustainable materials. The material offers the performance 

characteristics of glass fibers with lower weight and the convenience of prepreg 

layup processing. (http://www.ambercomposites.com/news)       

Academic 

 In an overview of academic research, examination of hemp and other 

natural fibers have taken place on raw type fibers. One of the benefits of hemp is 

that it is more developed as a textile. In woven form, it is more comparative with 

respect to manufacturability to traditional reinforcement; however, 

characterization of the raw fiber and process methods was necessary in 

determining the constraints of hemp utilized in pre-impregnated composites.      
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Research has been centered in the area of natural based composites by the 

Affordable Composites from Renewable Sources (ACRES) group at the 

University of Delaware. Investigating not only natural fiber reinforcements but 

developing plant oil based rigid polymers as a matrix. By using RTM processed 

flax and hemp, focus was placed on sizing chemistry and matrix / fiber interface. 

The brittle nature of the fibers was exposed, however, the general mechanical 

properties were shown to have promise (Williams, Wool, 2000).      

Impact resistance is low among common natural fiber composites. Studies 

on hemp show relatively weak resistance when using sheet-molding-compound 

(SMC) method (Müssig, Schmehl, Von Buttlar, Schönfeld, Arndt, 2006). This 

was determined in the manufacture and testing of hemp based body panels for 

busses. A separate study was performed on a hybrid of fiberglass and plant fibers. 

Varying ratios of glass to natural fiber were subjected to impacts. The results 

showed that impact resistance properties could be manipulated by hybriding 

reinforcement (Santulli, 2007).   

A conceptual design of a pressure vessel was created in 2003. A practical 

application based on the awareness of sustainability, a vessel was produced by 

means of filament winding process. It was intended as a substitute to higher 

priced imported materials. By using locally available products, jute and natural 

rubber latex were the chosen materials. Feasibility was examined in the 

Vietnamese market and showed it to be competitive, economical and improved 

sustainability (Rijswijk, Koussios, Bergsma, 2003).   
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Thermo degradation of hemp and other natural fibers were studied. 

Among the fibers tested, it was found that hemp withstood the highest range of 

temperature, up to 105°C (221°F). This study also examined fiber modification, 

where various surface treatments were applied and the resulting composite was 

tested. Bleaching was found to slightly increase tensile strength (Sgriccia, 2008). 

There were similar findings on fiber treatment increasing tensile strength and 

thermo degradation temperatures in hemp / polyethylene composites  

(Aghedo, 2007).   

A related study was conducted with thermo-mechanical testing in 2009. 

With raw hemp fibers in a thermoplastic matrix, layers were created using film 

stacking method and cured at 180°C (356°F) using a heated press. Samples were 

subjected to tension until failure. It was found that the mechanical properties were 

lower than the reviewed literature. By a closer look at the microstructure, 

inconsistencies in diameter were found along the length of fiber. It was not clear 

if the higher temperature augmented the inconsistencies (Placet, 2009).   

McGill University’s Steven Phillips constructed and tested six prototype 

ukuleles made with flax fiber in 2009. By utilizing a closed mold with a pressure 

bladder and hand lay-up method, results of mechanical testing indicated the 

material and production method met criteria for use in production of musical 

instruments (Phillips, 2009).  

Testing Overview  

 The appropriate testing methods were reviewed. The standard for testing 

composites in this research is set by the American Society of Testing and 



  9 

Materials (ASTM). Among the myriad of tests used to analyze material 

properties, the most applicable were tensile and compression at zero degree fiber 

orientation, ASTM D3039 and ASTM D3410 respectively. Both tests were 

specifically designed for polymer matrix composite materials. (www.astm.org)  

These studies identify key properties of hemp. They illustrate successful 

use of various advanced manufacturing techniques like sheet molding, RTM, 

filament winding and closed mold technology. They examine thermoset, 

thermoplastic and bio based matrices. They identify the affects of heat and fiber 

treatment as well as mixing dissimilar fibers to improve impact resistance. The 

properties studied in the above research exhibit hemps high potential for use in 

prepreg processing.        
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CHAPTER 3 

METHODOLOGY 

Hemp was chosen as the ideal reinforcement for several reasons. It is 

highly renewable and low-input. Industrial hemp as a crop grows rapidly. It has 

been harvested after as little as 72 days to maximize fiber quality (Bennett, Snell, 

Wright, 2006). As a crop, it is more sustainable to produce on large and small 

scales with little fertilizer consumption and provides natural weed control in fields 

(Bennett, Snell, Wright, 2006).  

The fiber is refined into yarn. It is then woven into fabric just as the 

majority of other textiles. This process can take place using existing textile 

equipment with little, if any, adjustment or modification. The most opportune 

aspect is that hemp has an already well-developed worldwide supply chain from 

raw to refined material.  

Reinforcement 

Being that the available woven hemp textiles were not intended for 

composites, some careful consideration went into material choice. The yarns that 

make up the weaves are spun tightly. This leads to an uneven resin wet out. The 

cylindrical shape of the yarn does not allow the matrix to consistently penetrate to 

the fibers on the inside of the yarns. Additionally, the potential for moisture 

absorption under this condition can safely be assumed. To minimize this problem, 

the material would need a smaller diameter yarn.  

The available weaves also presented problems, as they are apparel and 

upholstery based. Fabric styles typically found at arts and crafts retailers, tightly 
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woven linens, muslins and canvas are garment type fabrics and not ideal for use 

as composites. A plain weave was the only sufficient option. 

As the reviewed literature indicated, a prior bleaching of the material 

could be advantageous. It is common among textile suppliers to offer pre-

bleached materials for apparel manufacturers to aid in dyeing. The process 

referred to as half-bleach, lightens the dark brown color of hemp to a crisp white 

color using hydrogen peroxide. Lighter weight hemp fabrics, generally fewer than 

five ounces per yard, usually undergo this process.    

Since the majority of this material is manufactured in China and typical 

uses do not require certifications, very little information is available on 

traceability. There is currently no quality control or testing done at the factory that 

would assure consistent product properties for any uses beyond that of apparel 

and upholstery. To minimize this issue, all samples in this study were produced 

from the same run of material; however, this variable will have to be considered 

in future study. Specifications of the material chosen for this study are seen on 

Table 1.   

Table 1: Chosen Reinforcement Specifications 

Item Number CT-L4 
Fabric Blend 100% Hemp 
Weight 5.3 Ounce Per yard 
Weave Plain 54 x 54 threads per square inch (TPI) 
Yarn 24 Numeral metric (Nm) 
Processes Half bleached  
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Figure 1: CT-L4 Hemp Fabric  
 

Matrix 
The matrix, just as the reinforcement, required careful consideration, 

however, the advantage was availability. Prepreg epoxy resin systems were 

originally designed for use in composites. It was not a matter of retrofitting a 

material for a process, as it was for the reinforcement. Cure temperature was the 

main driving factor. A lower temperature was better as per reviewed literature, to 

maintain the strength properties of the fiber. The lowest cure temperature resin 

available was 83°C (180°F). The next issue was compatibility with the natural 

fibers. Patz Materials and Technology provided a toughened prepreg epoxy resin 

system. Testing was conducted to assure matrix / fiber compatibility. This was 

necessary as the exact chemical formula for their matrix is proprietary and 

confidential. There were no assumptions made. The matrix properties are 

displayed in Table 2.    
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Table 2: Matrix Properties for Compatibility Testing 

Item Number PMT F-1 
Process  Sheet film  
Weight  75 Grams per square meter (gsm) 

 

Preliminary Testing 

 Testing for compatibility used the film stacking technique with sheets of 

uncured resin manually placed onto the reinforcement. Sheet film of PMT F-1 

epoxy resin was provided. Six pieces of CT-L4 weave were cut at roughly 50mm 

(2”) in width and 100mm (4”) in length at 0°. The sheet film was placed between 

the layers under vacuum pressure and cured at the specified temperature and cycle 

seen in Table 3. The resulting sample indicated the fiber required at least twice 

the volume of matrix. A new sample was produced doubling the film amount 

between the layers. This sample was favorable. The adhesion of the layers was 

satisfactory and there was no visual indication of negative reaction between the 

matrix and fiber. The PMT F-1 was, at this level, compatible. A panel was 

manufactured with properties displayed in Table 3 for use in mechanical testing in 

tension and compression.    

Table 3: Properties of Mechanical Testing Panel 

Material CT-L4 pre-impregnated with PMT F-1 epoxy resin 
Cure time 4 hour @ 83°C (180°F)  
Vacuum Pressure - 22.0 Pounds per Square Inch (PSI) 
Layup Six layers @ 0° 
Average thickness 1.905mm (0.075 in) 
Length x Width 330mm x 330mm (13”x13”) 
Fiber volume fraction 49.4% 
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Figure 2: Mechanical Testing Panel 

Tensile Testing 
 

Following the ASTM D3039 standard, six samples were cut from the 

panel with the geometry found in Figure 2. Gripping surface geometry is found in 

Table 4 and detailed in dark gray shading in Figure 3. Testing was conducted on a 

MTS biaxial torsion machine (Figure 4) with samples labeled T1 though T6 seen 

in Table 4. Tabbing was not necessary due to the consistent failure area. Aramis 

digital image correlation system (version 6.02-6) was used in testing on samples 

for a more accurate measure of failure strain.           
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Table 4: Tensile Test Setup 

Sample labels T1, T2, T3, T4, T5, T6 
Testing condition Room temperature 
Tabbing None 
Sample geometry 25.4mm x 304.8mm x 1.905mm (1” x 12” x .075”) 
Gripping surface 25.4mm x 57.15mm (1” x 2.25”) 
Gripping pressure 2100 Lbs 
Sample T6 Test Load to 90% of failure, unload, load to failure 
Sample T6 load rate 166 Pounds per minute 
  

 

Figure 3: Tensile Sample Geometry T1-T6 
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Figure 4: Tensile Sample in Machine 

With successful results of samples T1 through T5, the last sample was 

loaded to roughly 90% of the average failure of the previous five tests. T6 was 

brought back down to zero load then reloaded to failure.    

Compression Testing 
 

Three sets of sample geometry were cut from the panel. Given the difficult 

nature of compression testing per the ASTM D3410 standard, it was unclear 

which geometry and clamping method would achieve the best result with samples 

of 1.905mm (.075”) thickness. Sample geometry and clamping surface details are 

found in Figures 5,6 and 7.  Testing was conducted with Instron model #5985 

(Figure 8) and MTS Bionix (Figure 10) universal testing machines. Details of test 
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setup are found in Table 5. Aramis digital image correlation system (version 6.02-

6) was again used for a more accurate measure of failure strain.         

Table 5:Compresion Test Setup 
 

Samples labels C1, C2, C3, C4, C5 
Testing Condition Room temperature 
Tabbing None 
Sample geometries  

C1 5.4mm x 127mm 1.905mm  (1” x 5” x .075”) 
C2, C3, C4 5.4mm x 105.41mm 1.905mm  (1” x 4.150” x .075”) 

C5 5.4mm x 57.15mm x 1.905mm  (1” x 2.25” x .075”) 
Clamp style  

C1, C2, C3, C4 Wedge (Procedure B) 
C5 Hydraulic 

Gripping surfaces  
C1, C2, C3, C4 25.4mm x 50.8mm (1” x 2.25”) 

C5 25.4mm x 25.4mm (1” x 1”) 
Feed Rate 0.0635mm Per Minute / 0.025 Inches per minute (IPM) 
 

 

Figure 5: Compression Sample Geometry C1 
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Figure 6: Compression Sample Geometry C2 – C4 

 

Figure 7: Compression Sample Geometry C5 
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Figure 8: Compression Sample C1 Being Loaded Into Fixture 

 

Figure 9: Compression Sample C2 in Fixture 
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Figure 10: Compression Sample C5 Hydraulic Clamping  

Fiber Volume Fraction 

Thermal and chemical methods for determining resin content could not be 

used on these samples. The hemp material degrades at lower temperatures than 

the matrix, so it cannot be burned off; likewise, the hemp is not as resistant to 

chemical matrix removal as carbon or glass fibers. Both methods destroy the 

hemp reinforcement. The fiber volume fraction was determined by pre-weighing 

the material before the panel was manufactured.   

The methods set forth are based on the compromise between properties 

found in reviewed literature and the available material. Confirming matrix and 
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fiber compatibility with preliminary testing enabled a panel to be manufactured 

and tested.  
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CHAPTER 4 

DATA ANALYSIS 

Tensile Testing Results 

All samples failed in a consistent manner, as seen in Table 6 and 7, at or 

near the middle. Results for T1 through T5 had a range of 20.3 Kg (44.8 Lbs). T6 

was loaded to 294.8 Kg (650 Lbs). When reloaded, it failed curiously at 362.5 Kg 

(799.1 Lbs). This was 22.2 Kg (49 Lbs.) higher than the failure of the highest 

sample in the T1 through T5 group.   

Table 6: Tensile Testing Results T1 – T5 

Sample Failure 
Mode 

Cross 
Sectional 
Area 

Failure 
Stress 
(ksi) 

Failure 
Strain  
% 

Stiffness 
(ksi) 

Poisson’s 
Ratio 

T1 LGM 0.07878 9.514 2.32 9.112 0.178 
T2 LGM    0.0804 8.857 - - - 
T3 LGM  0.07448 9.444 1.89 8.812 0.192 
T4 LGM    0.0808 8.804 - - - 
T5 LGM    0.0808 8.909 2.32 9.390 0.186 

 

Table 7: Tensile Testing Results T6 

Sample Failure 
Mode 

Cross 
Sectional 
area 

Failure 
Stress 
(ksi) 

Failure 
Strain 
% 

Stiffness 
(ksi) 

Poisson’s 
Ratio 

T6 LGM 0.07722 10.597 2.88 8.571 0.1845 
 

Compression Testing Results 

 Achieving a consistent result proved to be a challenge. Of all the 

specimens tested, C2 was only sample that failed in a way that provided reliable 

data as seen in Table 8. The samples were too weak at 1.905mm (.075”) 

thickness, to fail in a manner that displayed the true strength of the material. 
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Buckling repeatedly occurred even on samples with 3.81mm (0.150”) gauge area, 

see Figure 9. Hydraulic clamping in Figure 10, afforded no distinct advantage on 

sample C5. The tight geometry presented complications with the aramis system, 

as the visible area was too small for the optics to capture.         

Table 8: Compression Testing Results C1 – C5 

Sample Failure 
Mode 

Cross 
Sectional 
area 

Failure 
Stress 
(ksi) 

C1 EGM 0.07867  7.086 
C2 TGM 0.07952 12.664 
C3 EGM 0.08136 15.516 
C4 EGM 0.07848 15.013 
C5 EGM 0.06840 15.451 

 

 Problems occurred limiting the reliability of the data. The properties that 

were found are likened to that of wood. Results are slightly higher than Douglas 

Fur pine. The tests show limited performance of the material in comparison to 

traditional engineered reinforcement, but it does not negate the use of pre-

impregnated hemp processing.     
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CHAPTER 5 

CONCLUSION 

 This study shows that it is possible to use woven hemp reinforcement in 

pre-impregnated processed composites, though, the end product is very limited in 

regard to its mechanical properties as tested. Logic dictates the process is too 

costly and involved to justify it with low properties. This is not to say that 

applications do not necessarily exist, but more importantly, it does not mean there 

is no room for optimization. It is essential to note that the materials used in this 

experiment were off-the-shelf and never intended for composites. Improvements 

can be made through optimization in specific areas. 

Optimization 

 The process for manufacturing hemp yarn starts with aligning loose fibers 

that are then spun to create the yarn. It is in this step that other fibers can be 

introduced, creating a hybrid yarn at any given mix ratio. Hemp textiles are 

currently available in varying blends of cotton, silk, flax and other natural and 

synthetic fibers. Reviewed literature showed flax fibers have higher degree of 

impact resistance. The addition of flax fibers may improve the properties of the 

resulting fabric ergo composite. Nearly any ratio of recycled, natural or synthetic 

fibers can be introduced in this process to tailor fit a given application.  

The use of plain weave for the test panel had no negative effect as it was 

completely flat and drape was of little concern. Real world parts with more 

complex geometry will encounter unfavorable issues. The current off-the-shelf 

hemp textiles are woven too tightly to allow for compound curves. This will 
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promote wrinkling, buckling and bridging that will compromise the integrity of 

the part. Composite style weaves need to be implemented for this material to be 

practical. 

Given the process and feasibility focus of this study, issues like matrix 

adhesion to fibers and fiber treatment were assumed acceptable by preliminary 

testing, visual inspection and literature review only. No chemical modifications 

were made to either the matrix or fiber beyond what was market available. Since 

the hemp pre-impregnating process has been shown to be feasible under these 

conditions, more confidence can be placed in research to optimize the matrix / 

fiber interface.  

It is also important to overcome the issue of uneven matrix absorption into 

the yarns that make up the fabric. This study utilized lighter fabric, with smaller 

diameter yarn to compensate for this issue. Air voids and dry pockets within the 

yarns compromise transfer of load from the matrix to the fibers. This will 

increasingly occur as the diameter of the yarn in the fabric gets larger. As the 

matrix may not be designed for the more absorbent hemp, problems could occur 

due to a myriad of concerns like the flow rate, ramp up in the curing cycle or 

other thermo variables combined with tightly spun yarn. More research and 

testing could be advantageous in matrix impregnation. 

On the part of the hemp textile manufacturer, implementing quality 

control and product tracability is paramount to become a certified material. 

Current woven hemp textiles are not intended for composites, but as the material 

is implemented as a legitimate reinforcement, it will need to meet industry 
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standards. More research most be done to justify the investment to certify this 

material.        

Recyclability and biodegradability have been a major shortcoming of 

composites. With the increasing implementation of composites in consumer goods 

and a more environmentally aware consumer, sustainability, from material 

acquisition through end of use, will become a paramount social responsibility and 

economic necessity. Hemp and other natural fibers as reinforcement show a high 

degree of potential for end of use biodegradability and compost. Matched with 

bio-based matrices, the resulting composite part could lesson the extent of 

negative environmental and finite resource impact  

        Industry has shown that natural fibers were successful historically 

and are still very much relevant in the contemporary age. This material can meet 

the needs of many industries and do so in a more environmentally sustainable 

way. This study finds advanced processes like pre-impregnated hemp composites 

can be implemented, but they require optimization to augment mechanical 

properties. 
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