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ABSTRACT  
   
When analyzing longitudinal data it is essential to account both for the correlation 

inherent from the repeated measures of the responses as well as the correlation realized 

on account of the feedback created between the responses at a particular time and the 

predictors at other times. A generalized method of moments (GMM) for estimating the 

coefficients in longitudinal data is presented. The appropriate and valid estimating 

equations associated with the time-dependent covariates are identified, thus providing 

substantial gains in efficiency over generalized estimating equations (GEE) with the 

independent working correlation. Identifying the estimating equations for computation is 

of utmost importance. This paper provides a technique for identifying the relevant 

estimating equations through a general method of moments. I develop an approach that 

makes use of all the valid estimating equations necessary with each time-dependent and 

time-independent covariate. Moreover, my approach does not assume that feedback is 

always present over time, or present at the same degree. I fit the GMM correlated logistic 

regression model in SAS with PROC IML. I examine two datasets for illustrative 

purposes. I look at rehospitalization in a Medicare database. I revisit data regarding the 

relationship between the body mass index and future morbidity among children in the 

Philippines. These datasets allow us to compare my results with some earlier methods of 

analyses. 



  ii 

ACKNOWLEDGMENTS  
   

I would like to thank my committee members, Dr. Mark Reiser and Dr. Ming-Hung 

(Jason) Kao, for their excellent instruction in my coursework, their contributions to my 

thesis, and their support throughout my education at Arizona State University.  

In particular I would like to express my greatest gratitude to my advisor, Dr. Jeffrey 

Wilson, for his time, his patience, his guidance and his support. This thesis would never 

have been written if not for his guidance. He is more than an advisor to me. I cannot 

thank him enough for everything he has done for me.   



  iii 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ..................................................................................................... iv  

CHAPTER 

1    INTRODUCTION .................................................................................. 1  

Generalized Method of Moments ..........................................................1  

Making Use of Valid Estimating Equations ...........................................2  

2    LONGITUDINAL MODELS .................................................................. 3  

Longitudinal Studies............................................................................3  

Generalized Linear Models ..................................................................4 

Generalized Estimating Equations.........................................................4 

Generalized Method of Moments ..........................................................6 

3    IDENTIFYING VALID EQUATIONS ..................................................... 8  

Three-Type Classification ....................................................................8  

Ungrouped Estimating Equation Models  ............................................. 12 

Distribution of Bivariate Correlation  .................................................. 15  

GMM Estimator  ............................................................................... 16  

4    ILLUSTRATIVE EXAMPLES ..............................................................  19  

Modeling Probability of Rehospitalization ........................................... 19  

Modeling Mean Morbidity ................................................................. 22 

Results of Number of Estimating Equations in BMI.............................. 24 

5    CONCLUSIONS ..................................................................................  26  

REFERENCES  .......................................................................................................  27 

APPENDIX  

A      SAS CODE USING PROC IML FOR MEDICARE DATA  ..................  29  



  iv 

APPENDIX                                                                                                                         Page  

B      SAS CODE USING PROC IML FOR PHILIPPINE DATA  ..................  37  

 
 

  



  v 

 
LIST OF TABLES 

Table Page 

1.       Correlation Tests for Estimating Equations with Medicare Data .................. 20 

2.       Comparison of GEE and GMM with the Extended Method for Medicare Data  

.........................................................................................................  21 

3.       Correlation Tests for Estimating Equations with Philippine Data ...............  22 

4.       Comparison of GEE, GMM with the Three-Type Method and GMM with the 

Extended Method for Philippine Data...................................................  23 

5.       Change in P-Values as Estimating Equations Increase for BMI  .................  24 

6.       Change in Estimates and Standard Errors as the Estimating Equations 

Allowed for BMI Decrease .................................................................  25 



  1 

CHAPTER 1 

INTRODUCTION 

GENERALIZED METHOD OF MOMENTS 

In the analysis of marginal models for longitudinal continuous data,
 
Lai and Small (2007) 

use a generalized method of moments (GMM) approach, which makes optimal use of the 

information provided by time-dependent covariates, when obtaining estimates. In their 

approach, the time-dependent covariates are classified into one of three types: I, II, and 

III. The time-independent covariate is treated as type III. Each type of covariate requires 

a different set of estimating equations to be used in finding the corresponding 

coefficient’s estimate. They compare their estimates to the generalized estimating 

equations (GEE) with the independent working correlation structure. They find that  their 

GMM approach provides substantial gains in efficiency over the GEE if the covariates 

are type I or type II, and still remain consistent and comparable in efficiency when the 

covariates are type III. Thus, it is clear through omission or inclusion of estimating 

equations that the conclusions we make about covariates affecting our responses over 

time can vary.  

However, I present a method somewhat different from Lai and Small (2007) and for 

binary data though I show how it is applicable to other types of data. I postulate that there 

are more than three types of covariates. I argue that there can be theoretically more than 

three types of covariates and as such I present an extended method that will best describe 

the covariates before I proceed to model the binary outcomes. Communications with Dr. 

Small has confirmed that there can be other classifications. I compare my results with 

existing methods for classification.  
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MAKING USE OF VALID ESTIMATING EQUATIONS 

This paper concentrates on using valid and appropriate estimating equations for time-

dependent covariates while determining their impact on the responses over time. In 

particular, I provide a method to choose valid equations in determining the effect of time-

dependent covariates on binary responses. I provide some insights into fitting models 

without having to classify the covariates as belonging to a particular type. In particular, I 

fit logistic regression models with time-dependent covariates using GMM estimates in 

SAS with PROC IML. I also provide the necessary steps if one decides to fit a continuous 

response.  

Lai and Small (2007) look at conditional normal models and compute the necessary 

results in R; I look at binary models and conduct my computations in SAS with PROC 

IML. In addition, the GMM models are compared under conditions where we allow 

certain covariates to have estimating equations not valid in method of moments 

procedures. Chapter 2 reviews longitudinal models in light of the class of generalized 

linear models (GLM), the class of GEE models with independent working correlation, 

and the class of GMM models for binary responses. A new method for choosing valid 

equations is presented and discussed in Chapter 3. For illustrative and comparative 

purposes, I analyze binary data pertaining to rehospitalization and revisit data pertaining 

to predicting morbidity among children in the Bukidnon region in the Philippines. I fit 

GMM models in SAS with PROC IML in Chapter 4.  Some conclusions are made in 

Chapter 5. 
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CHAPTER 2 

LONGITUDINAL MODELS 

LONGITUDINAL STUDIES 

Longitudinal studies address among other things, how each unit changes over time; and 

what determines the differences among units in their change over time. Longitudinal data 

often contain repeated measurements of units at multiple time points. Such correlated 

observations are commonly encountered in studies in healthcare, polling, marketing and 

other types of behavioral research.  

One major advantage of a longitudinal study is its capacity to separate change over time 

within unit and differences among units (Diggle, Heagerty, Liang and Zeger, 2002). 

However, when dealing with longitudinal data not only do the response variables change 

over time, but the predictors or covariates can also change over time. Thus the treatment 

of time-dependent covariates in the analysis of longitudinal data allows strong statistical 

inferences about dynamic relationships and provides more efficient estimators than can 

be obtained using cross-sectional data (Hedeker and Gibbons, 2006).  

The generalized linear models (GLM) are inappropriate in analyzing longitudinal data 

due to the clustering, which results in non-independence thereby leading to 

overdispersion. The presence of such overdispersion or extravariation when fitting 

marginal regression models has shown to be best modeled through the use of GEE (Liang 

and Zeger, 1986; Zeger and Liang, 1986). However, when fitting GLM and GEE models 

it is assumed that the covariates are time-independent. Thus, neither the GLM nor GEE 

models takes the inherent correlation into account due to the fact that the covariates are 

time-dependent.    
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GENERALIZED LINEAR MODELS 

Nelder and Wedderburn (1972), through the recognition of the “nice” properties of the 

normal distribution, present a wider class of distributions, the exponential family of 

distributions. For such cases they extend the numerical methods to estimate the vector of 

parameters   from the linear model to the situation where there is some non-linear 

function        , where   is the link function, a monotone, twice-differentiable 

function,   is the mean vector for the response vector   and   are the data matrix of 

explanatory variables (McCullagh and Nelder, 1989).  These models have now been 

further generalized to situations where the functions may be estimated numerically; and 

such is the case with generalized additive models (Hastie and Tibshirani, 1990).  

However, my interest is in correlated observations measured over time with or without 

feedback. 

GENERALIZED ESTIMATING EQUATIONS  

The analyses of longitudinal data with marginal models, and more generally, of correlated 

response data have received considerable attention in Zeger and Liang (1992) among 

others. Marginal models are appropriate when inferences about the population average 

are our primary interest (Diggle et al. , 2002) or when we require the expectation of the 

response variable to be a function of current covariates in order to make future 

applications of the results (Pepe and Anderson, 1994). 

For unit  , let                
  be a         vector of outcomes associated with matrix 

    

         
   

         
    where at time   the row vector,                     and for the 

    covariate the column vector                    
 
 such that        ; and   

     . The observation times and correlation matrix may differ from subject to subject, 

but the structure for the form of the correlation matrix among the   observations,       
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for the      subject, is fully specified by  . A valuable feature of modeling correlation 

with the GEE approach is that it accounts for the         parameter vector  ,    . Liang 

and Zeger (1986) show that when        , the GEE estimating equations can be 

simplified to the score functions as from a likelihood analysis that assumes independence 

among repeated observations from a subject. The GEE estimates for   are consistent 

regardless of the choice of working correlation structure for time-independent covariates, 

although a correct specification of the working correlation structure does enhance 

efficiency. Further, the GEE method allows the user to specify any working correlation 

structure for a subject’s outcomes     such that its variance 

        
   

       
   

 , 

where    is a diagonal matrix representing the variance under the assumption of 

independence. Thus the generalized estimating equations over   subjects 

       
      

  
 
 

  
               

   , 

from which the parameter estimates are obtained. Liang and Zeger (1986) establish that 

the vector    that satisfies         is asymptotically unbiased in the sense that 

          
          , under suitable regularity conditions. Diggle et al. (2002) 

show that the  GEE approach is usually satisfactory when the data consist of short, 

essentially complete, sequences of measurements observed at a common set of times on 

many experimental units, and a conservative selection in the choice of a working 

correlation matrix.  

However, consistency may not hold for arbitrary working correlation structures if the 

covariates are time-dependent (Pepe and Anderson, 1994). Dobson (2002) argues that it is 

necessary to choose a correlation structure likely to reflect the relationships between the 

observations. In any case the correlation parameters are usually not of particular interest 



  6 

and are often seen as nuisance parameters, although they must be included in the model 

to obtain consistent estimates of the vector   of parameters and their standard errors. 

Nevertheless, it has been shown that when there are time-dependent covariates, GMM is 

an alternative and an even better choice. 

GENERALIZED METHOD OF MOMENTS  

When time-dependent covariates are present GMM provides more efficient estimators 

than using the GEE estimators based on the independent working correlation under 

certain conditions (Lai and Small, 2007). However, they show through a simulation study 

that when there are time-dependent covariates, some of the estimating equations 

combined by the GEE method with an arbitrary working correlation structure are not 

valid. They maintain that the GEE approach with time-independent covariates is an 

attractive approach as it provides consistent estimates under all correlation structures for 

subjects’ repeated measurements.  More so the GEE estimates with time-independent 

covariates produce efficient estimates if the working correlation structure is correctly 

specified and remain consistent as well as providing correct standard errors if the 

working correlation structure is incorrectly specified.  

In particular, when there are time-dependent covariates, Hu (1993) and Pepe and 

Anderson (1994) have pointed out that the consistency of GEEs is not assured with 

arbitrary working correlation structures unless a key assumption is satisfied. However, 

the consistency is assured regardless of the validity of the key assumption if a subject’s 

repeated measurements are independent (the independent working correlation) is 

employed. Pepe and Anderson (1994) suggest the use of the independent working 

correlation when using GEE with time-dependent covariates as a “safe” choice of 

analysis.  
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In this paper first I fit binary models with GMM estimates using PROC IML in SAS. I 

also consider a continuous response situation.  I present a procedure of first identifying 

the estimating equations associated with each time-dependent covariate. Further I define 

a GMM estimate      that uses all valid estimating equations. I look at bivariate 

correlations to determine the equations to use regarding each covariate. I show that 

incorrectly specifying the type of covariate may result in significant changes in the 

standard errors and thereby lead to erroneous conclusions. Therefore, I opt for entering 

the valid estimating equations rather than designating a covariate of a certain type (i.e. a 

set of estimating equations). I fit logistic regression models and normal regression models 

with different types of time-dependent covariates.  
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CHAPTER 3 

IDENTIFYING VALID EQUATIONS 

In this chapter, I consider GMM estimators that take advantage of the appropriate and 

valid estimating equations to produce consistent and more efficient estimators as opposed 

to the class of GEE estimators.  In order to obtain such GMM estimates, we need to know 

which of these estimating equations, also called moment conditions, are valid. I recall the 

procedures of Lai and Small (2007) and then present an extended approach. In so doing 

my procedures are based on an examination of each of the estimating equations for      

THREE-TYPE CLASSIFICATION   

Suppose that we have repeated observations taken over   times on   subjects with   

covariates such that              for subjects        ; for covariates        ; and 

times        ;  where      denotes the observation for subject   at time  , whose 

marginal distribution given the time-varying vector      of covariates follows a 

generalized linear model. We assume that observations     and     are independent 

whenever     but not necessarily when     and     . To obtain GMM estimates, we 

need to make use of the estimating equations (Fitzmaurice, 1995; Zeger, Liang and Albert, 

1988)                  

   
       

   
               , (1) 

for appropriately chosen  ,  , and  , where        denotes expectation of     based on the 

vector of covariate values,      where   is the vector of parameters in the systematic 

component that describes the marginal distribution of     . However, for certain types of 

time-dependent covariates, there are valid estimating equations available that are not 

exploited or considered by the usual GEE estimators. The assumption that the marginal 

distribution of     given      ensures that equation (1) holds for     , and obviously 
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holds for all   and   when      does not vary with time. In such a case we would use the 

GEE method. However, when     and       varies with time, this is not the case. A 

sufficient condition for equation (1) to hold is                                 (Lai and 

Small, 2007). When this equation fails, it is typically for one or both of the reasons; there 

is a time-series effect which causes early covariate vectors      to affect the expectations 

of later observations    , or early responses     have an effect on later covariate vectors 

    , which means that knowing the value of      gives us some information about the 

value of     .  

To identify valid moment conditions, Lai and Small (2007) introduce the notion of 

classification of time-dependent covariates into types I, II, or III.  The     covariate is said 

to be type I if equation (1) holds for all   and  . An obvious situation in which this occurs 

(for all covariates) is when the     are all independent. Another relatively straightforward 

case is when the differences between individuals' observations can be modeled via the 

introduction of random effects covariates into the generalized linear model. Type I 

covariates plausibly satisfy a condition that their outcomes are independent of past and 

future outcomes of the response. A sufficient condition for covariate      in a linear model 

to be type I is that 

                                             , 

so that      satisfies 

   
 
        

   
                , 

for all            . In my analysis there will be      estimating equations valid for 

each type I covariate.  

The     covariate is said to be type II if equation (1) holds whenever     , but fails to 

hold for some     . This is the case in many, although not all, time-series models. If the 
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expectation of     depends directly on previous values of    , which causes the underlying 

previous factors      at time   to affect the expected value of     at time at time  ,    , 

then a covariate will be type II. This occurs, for instance, in a linear model with 

autoregressive responses. Although not all time-series models result in type II covariates, 

it is the time-series nature of the data that would lead us to suspect that equation (1) 

might fail for    . Type II covariates plausibly satisfy a condition that their future 

outcomes are independent of previous outcomes of the response, i.e. there is no feed-back 

from the response process to the covariate process. A sufficient condition for a covariate 

     in a linear model to be type II is that  

                                                     , 

so that      satisfies 

   
 
        

   
                , 

for all     ,        . In my analysis there will be  
      

 
  estimating equations valid 

for each type II covariate.  

It is not straightforward to distinguish between types I and II covariates. Obviously, if the 

observations are independent or if the dependence between observations is due to a 

random-effects-type error term, as in the linear model                  where     and 

   are independent with zero mean and constant variance, the covariates will be type I.  A 

random effects model will not generally apply when   indexes time. But the GMM 

approach could be used to analyze clustered outcomes with covariates differing within 

clusters whether or not   indexes time, and if not, a random effects model and all-type I 

covariates might make sense. 

The      covariate is said to be type III if equation (1) fails to hold for any    . This will 

not occur if the      are deterministic or are determined by a random process exogenous to 
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the    . However, it can occur if the      have a random distribution that is not 

independent of previous values of    ; that is, if there is some feedback loop or common 

response to an omitted variable.  A covariate      is said to be type III if it is not type II, i.e. 

   
 
        

   
                , 

for some      . In my analysis there will be   estimating equations valid for each type 

III covariate. 

The easiest decision to make on the basis of an expert's prior knowledge of the field is 

whether we should suspect that a covariate is type III.  A deterministic or exogenous 

covariate cannot be type III. The only time we should be concerned that a covariate might 

be type III is when it changes randomly and we suspect that its distribution may depend 

on past values of the response. There are a number of real-world situations in which we 

would expect some covariates to be type III. In finance, for instance, we would expect a 

firm's stock performance to depend on its bond rating, so a marginal regression model of 

stock price would probably include the bond rating as a covariate. But the firm's bond 

rating will also depend on the past performance of its stock, creating feedback. Similar 

situations occur in health data, where many measurable variables are interrelated. An 

individual's likelihood of developing heart problems, for instance, depends heavily on the 

amount of exercise the individual gets. But individuals with poor heart health are less 

likely to exercise adequately, which, in turn, is likely to further worsen their heart health. 

Pan and Connett (2002) develop a predictive mean-squared error approach for choosing 

among the class of usual GEE estimators when there are time-dependent covariates. Lai 

and Small (2007) provide a test which is useful when a researcher has a strong prior 

belief that the moment conditions are all valid and is using the test to see whether there is 

any evidence in the data against this belief. When a researcher has more uncertainty 
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about the validity of some of the moment conditions the predictive mean-square error 

approach is useful. They argue that unless there are substantive reasons to think that a 

time-dependent covariate is type I or type II, we assume that it is type III. If there are 

substantive reasons to think that a covariate is type I (or type II), then test the null 

hypothesis that it is type I (or type II) versus the alternative that it is type III and, if the 

test is not rejected, we use the moment conditions in our GMM estimator. The GMM 

moment selection estimator gains efficiency for type I and type II covariates compared 

with GEEs with the independent working correlation when our hypothesis that a 

covariate is type I or type II is correct.   

UNGROUPED ESTIMATING EQUATION MODELS 

Lalonde and Wilson (2010) suggest that the challenge with the test for classification is 

that it requires us to test all of the moment conditions at once, and with    time-varying 

covariates, we are faced with     possible choices of moment conditions. It is unrealistic 

to compare all of them, both because this requires a lot of computation and because of the 

usual problem with multiple comparison testing. They propose that since we do not 

expect that type I covariates will, in practice, coexist with other covariate types, then first 

test all of the covariates being type I against some other default choice. Alternatively we 

could ignore the possibility of type I at first and, as Lai and Small (2007) suggest, use 

expert advice and hypothesis tests to find the best model in terms of just type II and type 

III, and then test the all type I model against this. This has the advantage of being 

conservative, but it has the disadvantage that, if everything is type I, a lot of time was 

invested unnecessarily. Further testing all-type I against an expert-advice-based default 

choice of type II for everything that we think will not display feedback and type III for 

anything that we think might. This might be the best option in practice.  
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Further, Lalonde and Wilson (2010) suggest testing all type I against all type II. In 

practice this may be questionable, because if some are type II, then we are doing a 

goodness-of-fit test for two wrong models, and we are in doubt to be certain that we can 

expect the test to reject the “least desirable” model.  We could also test all type I versus 

all type III. This test should provide useful results since the type III estimating equations 

will be appropriate for all covariates. However, one may wonder what will be the 

detrimental effect on the power of our test. If such is the case we would wind up rejecting 

the type I hypothesis too often. In this paper, I forgo these approaches and present a 

method based on correlation to determine the valid estimating equations. 

I posit that in the classification of covariates based on Lai and Small (2007) there are 

other possible cases or types. For example we may refer to a type IV covariate. This 

would be in direct contrast to type II but completes the possible groupings. Thus, I 

classify a time-dependent covariate      as being type IV if the future responses are not 

affected by the previous covariate process. There is no feed-back from the covariate 

process to the response process. A sufficient condition for a covariate      in a linear 

model to be type IV is that 
 

                                                   , 

so that      satisfies 

   
 
        

   
                , 

for all     ,        . In my analysis there will be 
      

 
 estimating equations valid 

for each type IV covariate.  These approaches (type I, type II, type III, and type IV) 

consider the grouping of the estimating equations in an effort to determine valid 

estimating equations by group. These do not consider cases when the feedback may be 

immediate but later ineffective. Thus I take a different approach. 
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I consider the        estimating equations to determine cases where 

   
 
        

   
                . 

I take all cases of     as the base set of   estimating equations that must be considered. 

I then examine simultaneously the        estimating equations associated with     to 

determine which are valid. Consider for each time t the example the model: 

                                    , (2) 

where     is the probability that        Let    denote the residual at time t, estimates of 

the estimator   .  Let         be the estimate for the correlation between the errors at   and 

the covariate at  ,       . We know by design          when     but not necessarily 

when        I posit that when          for     then the corresponding estimating 

equation is valid. Thus I conduct a test for the correlation and ignore the equation when 

the correlations were significant. I justify my approach and assume  

                      , 

so that 

                                                             , 

and 

    
        

   
             

   
        

   
                 

        

   
               

   
        

   
                 

By definition,  
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So 

     
        

   
                      

        

   
                . 

Since in the logistic regression case 

  
        

   
                                                     , 

we need to examine                                            to check the validity 

of   
        

   
                . Thus, our investigation includes the correlation 

between the residuals from the logistic regression based on all the covariates at time t 

with the weighted particular covariate at time s. I postulate that testing for this correlation 

is sufficient to determine the valid estimating equations. 

Since in the normal regression case 

  
        

   
                                   , 

we need to examine                         to check the validity of each estimating 

equation. Thus, our investigation includes the correlation between the residuals from the 

normal regression based on all the covariates at time t with the particular covariate at 

time s.  

DISTRIBUTION OF BIVARIATE CORRELATION 

To determine whether or not the correlation is significant we need to obtain the 

asymptotic distribution of residuals at time t and past or future covariates. Suppose 
 

        for          represent independent, identically distributed bivariate random 
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values with mean       and variance such that    
    
    

 . Denote the sample 

correlation between            by  

     
                
 
   

           
 
   

         
 
   

 
     
 
   

     
 
   

   
  

   

 . 

Assume all fourth moments exist and are finite; denoted by 

             
       

            , 

for      . Applying the multivariate central limit theorem and multivariate delta 

method gives the limiting distribution as 

            
 
                      

   
 

 
               , 

where     has as an estimate  

     
 

 
                   

    
 

 
   

   
  

   , 

 for      . Under the assumption of normality, a variance-stabilizing transformation 

gives Fisher’s Z-transformation: 

  

 
    

        

        
     

       

       
  

 
       . 

GMM ESTIMATOR 

Once we have identified the set of valid equation we need to obtain the estimate for the 

coefficient. For subject  , let                 be a       vector of outcomes associated 

with matrix     

         
   

         
    where at time   the row vector,                       

and for the     covariate the column vector                      such that        ; 

and        . Arrange    such that the     column of    is the intercept term, a       

vector consisting of value 1, and the last     columns are indicator variables for the set 

of times.  
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Let             be the       vector of parameters. The optimal GMM estimator        

minimizes a quadratic objective function   
      where    is a         vector consists 

of all valid moment conditions, and    is a         weight matrix, where    denotes the 

total number of valid moment conditions.  

Let     be a       matrix that specifies valid moment conditions for the     covariate. 

Elements in     take two values only: 0 and 1. If the element in row  , column   of     

takes value 1, it indicates that the moment condition 

   
 
        

   
                , 

is valid for the     covariate. Reshape     into a           row vector for         and 

concatenate the rows for all covariates to form       , a           matrix. The number of 

1’s in        represents the total number of valid moment conditions, denoted by   . 

Let    be a        vector containing the computed value of all valid moment condition 

for subject  , as a function of initial value   . The elements in    takes the form 

        

   
              such that the element in row  , column   of      takes value 1. 

Empirically the        vector    is computed by 

 

 
   

 
    

 

 
 

        

   
             

 
   . 

The         weight matrix    is computed by  
 

 
     

  
    

  

.  

The GMM estimator       is the argument to minimize the quadratic objective function 

      
                , 

              
      

                . 

The asymptotic variance of       is computed by  

  
 

 
 

      

  

 
    

 

      
 

 
 

      

  

 
     

  

, 
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evaluated at        . 

In the case of logistic regression, the elements in    take the form 

        

   
                                                 , 

where  

        
           

             
 , 

such that the element in row  , column   of     takes value 1.  

For the        matrix  
      

  
  

      

   
   

      

   
 , the        column vector  

      

   
, for 

       , for logistic regression can be computed by  

   
       
   

              

   

                                                                           

In the case of normal regression, the elements in    take the form 

        

   
                               , 

such that the element in row  , column   of     takes value 1.  

For the        matrix  
      

  
  

      

   
   

      

   
 , the        column vector  

      

   
, for 

       , for normal regression can be computed by  

   
       

   
              

   
           . 
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CHAPTER 4 

ILLUSTRATIVE EXAMPLES 

MODELING PROBABILITY OF REHOSPITALIZATION  

Medicare is a social insurance program administered by the United States government, 

providing health insurance coverage to people who are aged 65 and over, or who meet 

other special criteria. Medicare currently pays for all rehospitalizations, except those in 

which patients are rehospitalized within 24 hours after discharge for the same condition 

for which they had initially been hospitalized (Jencks, Williams and Coleman, 2009). 

I use data from the Arizona State Inpatient Database (SID). This dataset contains patient 

information from Arizona hospital discharges for 3-year period from 2003 through 2005. 

This dataset contains information of those who were admitted to a hospital exactly 4 

times. There were 1625 patients in the dataset with complete information; each has three 

observations indicating three different times to rehospitalizations. I classify those who 

returned to the hospital within 30-days as one opposed to zero for those who did not. My 

list of chosen covariates is initiated by the findings of Jencks et al. (2009) and includes 

multitude of diseases (NDX), number of procedures (NPR), length of stay (LOS), 

coronary atherosclerosis (DX101) and time dummies (T2 and T3). 

In fitting a logistic regression model for the probability of rehospitalization I include the 

effects of the covariates due to the time varying aspect. I use the GEE model and the 

GMM model with the extended method as presented in Chapter 3. In the GMM model 

with the extended method I first determine the type of each covariate through a logistic 

model.  

The results are summarized in Table 1. In this table we have the correlations, p-values 

based on the asymptotic distribution of correlations and the validity of estimating 

equations for each covariate, NDX, NPR, LOS and DX101. In the logistic regression case 

http://en.wikipedia.org/wiki/Social_insurance
http://en.wikipedia.org/wiki/United_States_government
http://en.wikipedia.org/wiki/Health_insurance
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Table 1 

Correlation Tests for Estimating Equations with Medicare Data 

 
NDX NPR 

CO RRELATIO N  TIME1 TIME 2   TIME 3  TIME 1 TIME 2   TIME 3 

RSD1 0.005 -0.010 -0.099 0.004 -0.029 0.018 

RSD2 0.035 0.002 0.049 0.004 0.000 -0.012 

RSD3 0.008 0.005 0.012 -0.039 0.006 0.006 

P-VALUE 

      
RSD1 0.849 0.714 0.000 0.886 0.228 0.447 

RSD2 0.147 0.943 0.030 0.878 0.999 0.615 

RSD3 0.755 0.847 0.624 0.148 0.817 0.815 

VALIDITY 

      
RSD1 1 1 0 1 1 1 

RSD2 1 1 0 1 1 1 

RSD3 1 1 1 1 1 1 

 
LOS  DX101 

CO RRELATIO N  TIME 1 TIME 2   TIME 3  TIME 1 TIME 2   TIME 3 

RSD1 0.028 0.087 0.026 0.000 0.062 0.051 

RSD2 0.040 0.017 0.125 -0.015 -0.002 -0.012 

RSD3 0.058 0.069 0.032 -0.032 0.009 -0.001 

P-VALUE 

      
RSD1 0.249 0.000 0.331 0.991 0.010 0.015 

RSD2 0.102 0.473 0.000 0.603 0.937 0.572 

RSD3 0.014 0.004 0.231 0.269 0.721 0.957 

VALIDITY 

      
RSD1 1 0 1 1 0 0 

RSD2 1 1 0 1 1 1 

RSD3 0 0 1 1 1 1 

 

we need to examine                           to check the validity of estimating 

equations for each covariate. A small p-value suggests that the estimating equation 

   
                                      fails to hold for the     covariate for 

the particular combination of s and t. First we need to fit logistic regression based on all 

the covariates (except time indicators) for each time and obtain the predicted probability 
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    for t=1,2,3. For NDX, we examine the correlations between the residuals from the 

logistic regression at time t, i.e.      , t =1,2,3, denoted by rsd, and             , 

the weighted covariate NDX at time s, s=1,2,3. The small p-value for the correlation 

when t=1, s=3 suggests that the estimating equation for t=1, s=3 should not be included, 

corresponding to value 0 for validity. Likewise, for NDX we should not include the 

estimating equation for t=2, s=3 either. Thus we have the rest 7 estimating equations for 

NDX, corresponding to value 1 for validity. Similarly we can use all of the equations for 

NPR. For LOS we leave out the equations for t=1, s=2; t=2, s=3; t=3, s=1; and t=3, s=2. 

For DX101 we leave out the estimating equations for t=1, s=2 and t=1, s=3.  

I fit the logistic regression model with the covariates NDX, NPR, LOS, and DX101 in 

addition to time dummies T2 and T3. The GEE results along with the GMM results using 

the extended method are given in Table 2. The GEE model ignores the time varying 

among the responses and the covariates while the GMM model do not ignore. Both 

models show that NDX, LOS, and time have an impact on probability of rehospitalization. 

Unlike the GEE model, the GMM model finds that NPR had some significance of an 

impact on the probability of rehospitalization.  

Table 2 

Comparison of GEE and GMM with the extended method for Medicare Data 

 
GEE GMM 

PARAMETER  EST P-VALUE EST P-VALUE 

INTERCEPT -0.3675 0.0035 -0.4076 0.0009 

NDX 0.0648 <.0001 0.0642 0.0000 

NPR -0.0306 0.11 -0.0315 0.0922 

LOS 0.0344 <.0001 0.0396 0.0000 

DX101 -0.1143 0.2224 -0.0517 0.5776 

T2 -0.3876 <.0001 -0.3840 0.0000 

T3 -0.2412 0.0005 -0.2686 0.0001 
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MODELING MEAN MORBIDITY  

As an illustrative example for non-binary response data with the extended method of 

fitting GMM, I choose to revisit the data analyzed by Lai and Small (2007). They 

consider a dataset that was collected by the International Food Policy Research Institute 

in the Bukidnon Province in the Philippines and focus on quantifying the association 

between body mass index (BMI) and morbidity four months into the future. Data were 

collected at four time points, separated by 4-month intervals (Bhargava, 1994). There 

were 370 children with three observations. The predictors are BMI, age, gender, and time 

dummies. Following Lai and Small (2007), I model the sickness intensity measured by 

adding the duration of sicknesses and  taking  a  logistic  transformation  of  the  

proportion  of  time for  which  a child  is sick (with a continuity correction for extreme 

values; Cox, 1970). I fit the GEE model with the independent correlation structure, the 

GMM model with Lai and Small’s three-type classification, and the GMM model with 

the extended method proposed in this paper but adjusted for non-binary data.   

Table 3 

Correlation Tests for Estimating Equations with Philippine Data 

 
BMI AGE 

CO RRELATIO N  TIME1 TIME 2   TIME 3  TIME1 TIME 2   TIME 3 

RSD1 0.000  -0.042 0.023  0  0.003  0.002  

RSD2 -0.067  0.000  -0.104  0.001  0  0.000  

RSD3 -0.036  0.022  0.000  0.001  -0.001  0  

P-VALUE 
      

RSD1 1.000  0.551 0.732  1  0.962  0.964  

RSD2 0.159  1.000  0.037  0.991  1  1.000  

RSD3 0.444  0.663  1.000  0.980  0.986  1  

VALIDITY 
      

RSD1 1 1 1 1 1 1 

RSD2 1 1 0 1 1 1 

RSD3 1 1 1 1 1 1 
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Table 3 provides the correlation tests and the selection of estimating equations in the use 

of the extended method. Recall that in the normal regression case we examine 

                 to check the validity of estimating equations for each covariate. A 

small p-value suggests that the estimating equation    
                   fails to 

hold for the     covariate for the particular combination of s and t. First we need to fit 

normal regression based on all the covariates (except time indicators) for each time and 

obtaine the predicted value     for t=1,2,3. For BMI, we examine the correlations 

between the residuals from the normal regression at time t, i.e.      , t =1,2,3, denoted 

by rsd, and     , the covariate at time s, s=1,2,3. The small p-value for the correlation 

when t=2, s=3 suggests that estimating equation for t=2, s=3 should not be included, 

corresponding to value 0 for validity. We can use the rest 8 estimating equations for BMI, 

corresponding to value 1 for validity. Similarly we have all of the equations valid for age 

and gender.  

Table 4 

Comparison of GEE, GMM with the Three-Type Method and GMM with the Extended 

Method for Philippine Data 

  
GEE 

GMM 

LAI AND SMALL EXTENDED  

EST P TYPE EST P TYPE EST P 

INTERCEPT -0.972 0.215 III -0.888 0.178 All -0.625 0.326 

BMI -0.062 0.176 II -0.072 0.061 
Exclude 

(s=3, t=2) 
-0.087 0.019 

AGE -0.013 0.000 I -0.012 0.000 All -0.012 0.000 

GENDER  0.145 0.183 III 0.087 0.387 All 0.073 0.464 

T2 -0.28 0.012 I -0.277 0.007 All -0.272 0.008 

T3  0.024 0.847 I -0.018 0.876 All -0.034 0.772 

 
Table 4 provides the results of modeling the mean sickness intensity using GEE, GMM 

with Lai and Small’s three-type method, and GMM with the extended method. The GEE 
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model which ignores the correlations on account of time varying covariates gives age and 

period 2 as significant. I use the results in Lai and Small (2007) and classify age as type I 

(that means all the equations are used) and BMI as type II (that means the estimating 

equations for s=1, t=2; s=1, t=3; and s=2, t=3 are omitted). The GMM model with Lai 

and Small’s classification gives age and period 2 as significant and BMI as marginally 

insignificant. The GMM model with the extended method gives age, BMI, and period 2 

as significant.  

In this case Lai and Small’s method relies on more estimating equations than the GEE 

method but two less than the extended method. However, those extra set of equations are 

enough to have BMI shown to be significant with the extended method but not with Lai 

and Small’s method and the GEE method (Table 5). 

Table 5 

Change in P-Values as Estimating Equations Increase for BMI 

 
GEE 

GMM 

LAI & SMALL EXTENDED  

BMI 3 6 8 

P-VALUE 0.176 0.061 0.019 

 

Results of Number of Estimating Equations in BMI  

Although this is not a simulation study I examined the effects of the increasing number of 

estimating equations when estimating the time-varying covariate, BMI on the mean 

sickness intensity for Filipino children. This was undertaken to get a sense of the penalty 

involved when estimating equations are left out. In Table 6 I provide the estimates and 

the standard errors for the effect of BMI while controlling for age and gender. In this 

study I used all the estimating equations for age and gender. The standard error seems to 

get larger as fewer equations are allowed. We see that when all equations are considered 

BMI gave an estimate of -0.0715 with standard error equal to 0.0367, while when we 
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only allow the same cases as GEE we get an estimate of -0.0972 with a standard error of 

0.0418.  

Table 6 

Change in Estimates and Standard Errors as the Estimating Equations Allowed for 

BMI Decrease  

SET EQ UATIO NS BMI STDERR  AGE STDERR  GENDER  STDERR  

I               -0.0715 0.0367 -0.0110 0.0031 0.0810 0.1000 

II                   -0.0802 0.0368 -0.0116 0.0031 0.0740 0.0999 

III                   -0.1019 0.0386 -0.0123 0.0031 0.0537 0.1004 

IV                   -0.1000 0.0386 -0.0126 0.0031 0.0530 0.1004 

V                  -0.1026 0.0386 -0.0129 0.0032 0.0449 0.1006 

VI                  -0.1017 0.0392 -0.0129 0.0032 0.0426 0.1013 

VII                   -0.0972 0.0418 -0.0127 0.0033 0.0433 0.1013 
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CHAPTER 5 

CONCLUSIONS 

Researchers are aware that in the analysis of repeated measures binary data the 

correlation present on account of the repeated measures in the responses must be 

addressed. However, until recent times the dependency also present in the covariates that 

change over time due to factors other than the natural growth have been ignored. Thus the 

modeling of repeated measures data must address two sets of correlation inherent; one 

due to the responses and the other due to the covariates. While the generalized method of 

moments is an improved choice over GEE with independent working correlation, it is not 

at present available in statistical software packages such as SAS, or SPSS though can be 

done in R (Lalonde and Wilson, 2010). However, I provide a procedure in SAS through 

PROC IML as I compare to existing methods. 

I develope a new approach to marginal models for time-dependent covariates both for 

binary and non-binary responses. Unlike Lai and Small (2007)’s approach of classifying 

variables into three types I take a different approach. The advantage of my approach is 

that I do not assume any feedback will be consistent or significant over time. As such I 

postulate that there is an advantage to my approach when the period followed are longer 

as one would expect associations to change as time increases. I use a correlation 

technique to determine which estimating equation should be considered valid.  
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APPENDIX A  

SAS CODE USING PROC IML FOR MEDICARE DATA  
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/*########################################## 

* read data and create time dummies; 

############################################*/ 

 

libname perm 'c:\SAS\perm';  

data mydata; set perm.Medicare;  

if time=1 then t1=1; else t1=0; 

if time=2 then t2=1; else t2=0; 

if time=3 then t3=1; else t3=0; 

run; 

 

/*########################################## 

* obtain residuals from by-time regression; 

############################################*/ 

 

title ' pooled logistic by time'; 

proc sort data=mydata out=mydatasorted;  

by time; run; 

proc logistic data=mydatasorted noprint;  

by time; 

model biRadmit (event='1') =NDX NPR LOS DX101 / aggregate 

scale=none;  

output out=outpool3 p=mu xbeta=xb RESCHI=rsdpsn 

RESDEV=rsddev; 

run; 

data outpool3; set outpool3; 

wt = mu*(1-mu); 

rsdraw = biRadmit-mu;  
run; 

/*######################################## 

* examine corr by PROC IML; 

##########################################*/ 

PROC SORT DATA=outpool3 OUT=outpool3 ; 

  BY PNUM_R time; RUN; 

proc iml; 

use outpool3; * ## change ####; 

read all VARIABLES {wt NDX NPR LOS DX101 t2 t3 PNUM_R time} 

into Zmat;    * ## change ####; 

read all var {rsdraw} into rsd; 

close outpool3; 

 

N=1625;T =3;  * ## change ####; 

 

start rho(a,rsd) global(N,T); 

abm = j(N,2*T,.); 

abm[,1:T] = shape(rsd,N); 

abm[,T+1:2*T] = shape(a,N); 

corr = corr(abm);   

rho = corr[1:T,T+1:2*T];   

return(rho); 
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finish rho; 

 

start stddev(a,rsd) global(N,T); 

bm = shape(rsd,N);    
bdev = bm-j(N,1,1)*bm[:,];  

bdev2 = bdev#bdev;       

am = shape(a,N);    
adev = am-j(N,1,1)*am[:,];   

adev2 = adev#adev;       

stddev = sqrt( (1/N)*t(bdev2)*adev2 );    

return(stddev); 

finish stddev; 

 

start stdzn(x); 

N = nrow(x); 

y = x-x[:,]; 

vcv = (1/(N-1))*t(y)*y; 

v = diag(vcv); 

sinv = diag(sqrt(1/vcv)); 

x2 = y*sinv; 

return(x2); 

finish stdzn; 

 

print 'Corr Examination to Medicare Data'; 

 

print 'wt*NDX'; 

x1 = Zmat[,1]#Zmat[,2];   

x2 = stdzn(x1); 

rsd2 = stdzn(rsd); 

r2 = rho(x2,rsd2); s2 = stddev(x2,rsd2);  

z2 = sqrt(N)*(r2/s2); 

p2 = 2*(1-cdf('normal',abs(z2)));      

print r2, s2, z2, p2; 

 

print 'wt*NPR'; 

x1 = Zmat[,1]#Zmat[,3];    

x2 = stdzn(x1); 

rsd2 = stdzn(rsd); 

r2 = rho(x2,rsd2); s2 = stddev(x2,rsd2);  

z2 = sqrt(N)*(r2/s2); 

p2 = 2*(1-cdf('normal',abs(z2)));      

print r2, s2, z2, p2; 

 

print 'wt*LOS'; 

x1 = Zmat[,1]#Zmat[,4];   

x2 = stdzn(x1); 

rsd2 = stdzn(rsd); 

r2 = rho(x2,rsd2); s2 = stddev(x2,rsd2);  

z2 = sqrt(N)*(r2/s2); 
p2 = 2*(1-cdf('normal',abs(z2)));    
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print r2, s2, z2, p2; 

 

 

print 'wt*DX101'; 
x1 = Zmat[,1]#Zmat[,5];   

x2 = stdzn(x1); 

rsd2 = stdzn(rsd); 

r2 = rho(x2,rsd2); s2 = stddev(x2,rsd2);  

z2 = sqrt(N)*(r2/s2); 

p2 = 2*(1-cdf('normal',abs(z2)));      

print r2, s2, z2, p2; 

 

 /*##################################################### 
Obtain GEE Results Based on the Independent Correlation  

Structure to Serve as Initial Values 

#######################################################*/ 

proc genmod data=mydata descend;   * to model Prob(y=1); 

      class PNUM_R time; 

      model biRadmit=NDX NPR LOS DX101 t2 t3 / dist=bin ; 

      repeated subject=PNUM_R /within=time corr=indep corrw; 

   output out=GEEout xbeta=xb RESRAW = rraw; 
run; 

 

 

 

/*##################################################### 

Obtain GMM Estimates 

#######################################################*/ 

proc sort data=mydata; 

by PNUM_R time; run; 

 

proc iml;    

use mydata;     * ## change variable list ####; 

read all VARIABLES {NDX NPR LOS DX101 } into Zmat;   

read all var {biRadmit} into yvec;                                                

close mydata; 

print '2SGMM with Extended Method to Medicare Data of 

Binary Y'; 

 

N=1625; * number of observations;  * ## change ####;       

Pn=7;   * number of parameters to estimate; * ## change ###; 

* Intercept   NDX      NPR     LOS    DX101   time2     

time3;     

*GEE  results as starting values; * ## change ####;      

beta0 = {-0.3675  0.0648  -0.0306 0.0344 -0.1143 -0.3876 

-0.2412};                       

 

nr = nrow(Zmat);     

nc = ncol(Zmat);     

int = j(nr,1,1); 
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Xmat =j(nr,nc+3,.);  

Xmat[,1]=int; Xmat[,2:nc+1]=Zmat; 

in = j(N,1,1); 

tm2 = {0,1,0}; D2 = in@tm2;  

tm3 = {0,0,1}; D3 = in@tm3;  

Xmat[,nc+2]=D2; Xmat[,nc+3]=D3; 

 
Tn=3; * number of periods per observation; * ## change ####; 

 

* Intercept   NDX      NPR     LOS    DX101   time2     

time3; 

J={1,2,3,4,5,6,7}; * Type specification using raw residuals;                 

* ## change ####; 

 

/*intercept * mu(1-mu) = */   * ## change ####; 
T1 = {1 1 0, 

       0 1 0, 

  1 1 1}; 

 

/*NDX * mu(1-mu) = */ 

T2 = {1 1 0 , 

      1 1 0 , 

      1 1 1 }; 

 

/*NPR * mu(1-mu) = */ 
T3 = {1 1 1, 

      1 1 1, 

      1 1 1}; 

 

/*LOS * mu(1-mu) = */ 
T4 = {1 0 1, 

      1 1 0, 

      0 0 1}; 

 

/*DX101 * mu(1-mu) = */ 

T5 = {1 0 0, 

      1 1 1, 

      1 1 1}; 

 

/*t2 * mu(1-mu) = */ 

T6 = {0 1 0, 

      0 1 0, 

      0 1 0}; 

 

/*t3 * mu(1-mu) = */ 

T7 = {0 0 0, 

      0 0 0, 

      0 0 1}; 

 
T0 = {1 0 0, 
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      0 1 0, 

      0 0 1}; 

 

Tshape = j(Pn,Tn*Tn,.); 

neq = j(Pn,1,0); 

 

do p =1 to Pn; 

  if J[p]=1 then Tshape[p,] = shape(T1,1); 

    else if  J[p]=2 then Tshape[p,] = shape(T2,1); 

    else if J[p]=3 then Tshape[p,] = shape(T3,1); 

      else if J[p]=4 then Tshape[p,] = shape(T4,1);  

      else if J[p]=5 then Tshape[p,] = shape(T5,1);  

      else if J[p]=6 then Tshape[p,] = 

shape(T6,1);  

         else if J[p]=7 then Tshape[p,] = 

shape(T7,1);  

         else Tshape[p,] = shape(T0,1);  

    neq[p] = ncol(loc(Tshape[p,]^=0));   

end; 

 

* nloc containing the starting/end positions of reg eq's 

brought by each covariate  ; 

nloc = j(1,Pn+1,0);           

do p =1 to Pn; 

  nloc[p+1] = sum(neq[1:p]);  

end; 

nv = sum(neq);   

 

Wn = I(nv);                * initial weight matrix; 

S = j(nv,nv,0);            * to compute covariance mtx ; 

 

start TSGMM(beta) 

global(Pn,Tn,N,Xmat,yvec,nv,Tshape,nloc,Wn,S);       

Gn = j(nv,1,0);           * to collect valid mmt conditions;    

S = j(nv,nv,0);            * to compute covariance mtx ; 

eq = j(nv,N,0);            

 

do i = 1 to N;                  

  x = Xmat[(i-1)*Tn+1:i*Tn,];   

  y = yvec[(i-1)*Tn+1:i*Tn];    

  mu = exp(x*t(beta)) / ( 1+exp(x*t(beta)) ); 

  Rsd = y - mu;                  

  do p = 1 to Pn; 

    D = x[,p]#mu#(1- mu);         

    Eqmtx = Rsd*t(D); 

    eq[nloc[p]+1:nloc[p+1],i] = Eqmtx[loc(Tshape[p,]^=0)];    

  end; 

  S = S + eq[,i]*t(eq[,i]);  

end;      

Gn = eq[,:];               
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f = t(Gn)*Wn*Gn;               * the objective fn to be 

minimized;  

return(f); 

finish TSGMM; 

 

tc = {2000 2000}; optn = {0 2};               

  call NLPNRA(rc, xres,"TSGMM", beta0,optn, , tc);          

  beta0 = xres;    

  Wn = ginv(S/N); 

      

  call NLPNRA(rc, xres,"TSGMM", beta0,optn, , tc);          

  beta = xres;  

  Wn = ginv(S/N);                          

 

* ASYM VAR; 
DG = j(nv,Pn,.);     

do k = 1 to Pn; 

  DGi = j(nv,N,0);            

  do i = 1 to N;                

    x = Xmat[(i-1)*Tn+1:i*Tn,];    

    y = yvec[(i-1)*Tn+1:i*Tn];    

    mu = exp(x*t(beta)) / ( 1+exp(x*t(beta)) ); 

    Rsd = y - mu;                 
    Dk =  x[,k]#mu#(1- mu);         

 Dkz =  x[,k]#(1- 2*mu);         

    do p = 1 to Pn; 

      Dp = x[,p]#mu#(1- mu);        

      Dkzp = Dkz#Dp;                  

   DGmtx = Rsd*t(Dkzp)-Dk*t(Dp); 

      DGi[nloc[p]+1:nloc[p+1],i] = 

DGmtx[loc(Tshape[p,]^=0)];    

    end; 

  end; 

  DG[,k]= DGi[,:];     

end;    

 
AsymVar = (1/N)*ginv(t(DG)*Wn*DG);    

AVvec = vecdiag(AsymVar); 

StdDev = sqrt(AVvec); 

 

zvalue = t(beta)/StdDev; 

pvalue = 2*(1-cdf('normal',abs(zvalue))); 

 
Outmtx = j(Pn,4,.); 

Outtitle={'Estimate'  'StdDev'  'Zvalue'  'Pvalue'}; 

Outmtx[,1]=t(beta); 

Outmtx[,2]=StdDev; 

Outmtx[,3]=zvalue; 

Outmtx[,4]=pvalue; 

print Outtitle; 



  36 

print Outmtx; 

 
quit; 
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APPENDIX B  

SAS CODE USING PROC IML FOR PHILIPPINE DATA  
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/*########################################## 

* read data and create time dummies; 

############################################*/ 

libname perm 'c:\SAS\perm';  
data mydata; set perm.Philipppine;  

if time=1 then t1=1; else t1=0; 

if time=2 then t2=1; else t2=0; 

if time=3 then t3=1; else t3=0; 

run; 

 

/*########################################## 

* obtain residuals from by-time regression; 

############################################*/ 

title ' regression by time'; 

proc sort data=mydata out=mydatasorted;  

by time; run; 

proc reg data=mydatasorted noprint;  

by time; 

model y = bmi age gender; 

output out=outpool3 p=pred r=rsd; * outpool3 is sorted by 

time; 

run;                           

 

/*######################################## 

* examine corr by PROC IML; 

##########################################*/ 

PROC SORT DATA=outpool3 OUT=outpool3 ; 

  BY childid time; RUN; 

proc iml; 

use outpool3;    * ## change ####; 

read all VARIABLES {bmi age gender t2 t3 childid time} into 

Zmat;    

* ## change ####; 

read all var {rsd} into rsd; 

close outpool3; 

 
N=370;T =3;      * ## change ####; 

 

start rho(a,rsd) global(N,T); 

abm = j(N,2*T,.); 

abm[,1:T] = shape(rsd,N); 

abm[,T+1:2*T] = shape(a,N); 

corr = corr(abm);    
rho = corr[1:T,T+1:2*T];   

return(rho); 

finish rho; 

 

start stddev(a,rsd) global(N,T); 

bm = shape(rsd,N);     
bdev = bm-j(N,1,1)*bm[:,];   
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bdev2 = bdev#bdev;       

am = shape(a,N);   
adev = am-j(N,1,1)*am[:,];   

adev2 = adev#adev;       
stddev = sqrt( (1/N)*t(bdev2)*adev2 );    

return(stddev); 

finish stddev; 

 

start stdzn(x); 

N = nrow(x); 

y = x-x[:,]; 

vcv = (1/(N-1))*t(y)*y; 

v = diag(vcv); 

sinv = diag(sqrt(1/vcv)); 

x2 = y*sinv; 

return(x2); 

finish stdzn; 

  

print 'Corr Examination to Philippine Data'; 

 

print 'bmi'; 

x1 = Zmat[,1];  * bmi; 

x2 = stdzn(x1); 

rsd2 = stdzn(rsd); 

r2 = rho(x2,rsd2); s2 = stddev(x2,rsd2);  

z2 = sqrt(N)*(r2/s2); 

p2 = 2*(1-cdf('normal',abs(z2))); 

print r2, s2, z2, p2; 

 

print 'age'; 
x1 = Zmat[,2];  * age; 

x2 = stdzn(x1); 

rsd2 = stdzn(rsd); 

r2 = rho(x2,rsd2); s2 = stddev(x2,rsd2);  

z2 = sqrt(N)*(r2/s2); 

p2 = 2*(1-cdf('normal',abs(z2))); 

print r2, s2, z2, p2; 

quit; 

 

/*##################################################### 

Obtain GEE Results Based on the Independent Correlation  

Structure to Serve as Initial Values 

#######################################################*/ 
proc genmod data=mydata;        class childid time; 

      model y = bmi age gender t2 t3 / dist=normal 

link=identity ;     

      repeated subject=childid /within=time corr=indep 

corrw;   

   output out=GEEout pred = yhat xbeta=xb RESRAW = rraw; 
run; 
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/*##################################################### 

Obtain GMM Estimates 

#######################################################*/ 

proc sort data=mydata; 

by childid time; run; 

 

proc iml;    

use mydata;   * ## change variable list ####; 

read all VARIABLES {bmi age gender } into Zmat;   

read all var {y} into yvec; 

close mydata; 

print '2SGMM with Extended Method to Philippine Data of 

Continuous Y'; 

 

N=370;   * number of individuals; 

Pn=6;    * number of parameters to estimate; * ## change 

###; 

       * Intercept  bmi      age        gender      time2      

time3 ; 

beta0 = {-0.3173 -0.1006 -0.0136  0.1542  -0.2760  -

0.0092 };    

 

nr = nrow(Zmat);    

nc = ncol(Zmat);    

int = j(nr,1,1); 

 
Xmat =j(nr,nc+3,.);  

Xmat[,1]=int; Xmat[,2:nc+1]=Zmat; 

        

in = j(N,1,1); 

tm2 = {0,1,0}; D2 = in@tm2;  

tm3 = {0,0,1}; D3 = in@tm3;  

Xmat[,nc+2]=D2; Xmat[,nc+3]=D3; 

 
Tn=3;  * number of periods per observation; ## change ####; 

 * Intercept  bmi age  gender t2 t3 ;    
J = {1,2,1,1,1,1};   * ext_class bmi 8eq  CORRECT; 

 

 

T0 = {1 0 0, 

      0 1 0,  

      0 0 1}; 

 

T1 ={1 1 1, 

     1 1 1, 

     1 1 1}; 

 
T2 = {1 1 1, 
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      1 1 0, 

      1 1 1}; 

   * ## change ####; 

 
Tshape = j(Pn,Tn*Tn,.); 

neq = j(Pn,1,0); 

 
do p =1 to Pn; 

  if J[p]=1 then Tshape[p,] = shape(T1,1); 

    else if  J[p]=2 then Tshape[p,] = shape(T2,1); 

       else Tshape[p,] = shape(T0,1);  

    neq[p] = ncol(loc(Tshape[p,]^=0));  / 

end;    * ## change ####; 

 

* nloc containing the starting/end positions of reg eq's 

brought by each covariate  ; 

nloc = j(1,Pn+1,0);           

do p =1 to Pn; 

  nloc[p+1] = sum(neq[1:p]); 

end; 

nv = sum(neq); 

 

Wn = I(nv);                 * initial weight matrix ; 
S = j(nv,nv,0);          * to compute covariance mtx ; 

 

start TSGMM(beta) 

global(Pn,Tn,N,Xmat,yvec,nv,Tshape,nloc,Wn,S);       

Gn = j(nv,1,0);            * to collect valid mmt 

conditions;   

S = j(nv,nv,0);          * to compute covariance mtx ; 

eq = j(nv,N,0);              

 

do i = 1 to N;                

  x = Xmat[(i-1)*Tn+1:i*Tn,];   

  y = yvec[(i-1)*Tn+1:i*Tn];    

  mu =x*t(beta);       

  Rsd = y - mu;                 

  do p = 1 to Pn; 

    Eqmtx = Rsd*t(x[,p]);      

    eq[nloc[p]+1:nloc[p+1],i] = Eqmtx[loc(Tshape[p,]^=0)];    

  end; 

  S = S + eq[,i]*t(eq[,i]);  

end;      

Gn = eq[,:];                 

f = t(Gn)*Wn*Gn;           * the objective fn to be 

minimized;  

return(f); 

finish TSGMM; 

 
tc = {2000 2000}; optn = {0 2};               
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  call NLPNRA(rc, xres,"TSGMM", beta0,optn, , tc);          

  beta0 = xres;                                   

  Wn = ginv(S/N);                                  

 

  call NLPNRA(rc, xres,"TSGMM", beta0,optn, , tc);            

  beta = xres;                                   

  Wn = ginv(S/N);                                 

 

* ASYM VAR; 

DG = j(nv,Pn,.);      

do k = 1 to Pn; 

  DGi = j(nv,N,0);                 

do i = 1 to N;              

x = Xmat[(i-1)*Tn+1:i*Tn,]; 

do p = 1 to Pn; 

   DGmtx = -x[,k]* t(x[,p]);                    

      DGi[nloc[p]+1:nloc[p+1],i] = 

DGmtx[loc(Tshape[p,]^=0)];    

    end; 

  end; 

  DG[,k]= DGi[,:];      

end;    

 
AsymVar = (1/N)*ginv(t(DG)*Wn*DG);     

AVvec = vecdiag(AsymVar); 

StdDev = sqrt(AVvec); 

 

zvalue = t(beta)/StdDev; 
pvalue = 2*(1-cdf('normal',abs(zvalue))); 

 
Outmtx = j(Pn,4,.); 

Outtitle={'Estimate'  'StdDev'  'Zvalue'  'Pvalue'}; 

Outmtx[,1]=t(beta); 

Outmtx[,2]=StdDev; 

Outmtx[,3]=zvalue; 

Outmtx[,4]=pvalue; 

print Outtitle; 

print Outmtx; 

 

quit; 

 


