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ABSTRACT  
   

 Aqueous solutions of temperature-responsive copolymers based on N-

isopropylacrylamide (NIPAAm) hold promise for medical applications because 

they can be delivered as liquids and quickly form gels in the body without organic 

solvents or chemical reaction. However, their gelation is often followed by phase-

separation and shrinking. Gel shrinking and water loss is a major limitation to 

using NIPAAm-based gels for nearly any biomedical application.  

 In this work, a graft copolymer design was used to synthesize polymers 

which combine the convenient injectability of poly(NIPAAm) with gel water 

content controlled by hydrophilic side-chain grafts based on Jeffamine® M-1000 

acrylamide (JAAm). The first segment of this work describes the synthesis and 

characterization of poly(NIPAAm-co-JAAm) copolymers which demonstrates 

controlled swelling that is nearly independent of LCST. 

 The graft copolymer design was then used to produce a degradable 

antimicrobial-eluting gel for prevention of prosthetic joint infection. The 

resorbable graft copolymer gels were shown to have three unique characteristics 

which demonstrate their suitability for this application. First, antimicrobial release 

is sustained and complete within 1 week. Second, the gels behave like viscoelastic 

fluids, enabling complete surface coverage of an implant without disrupting 

fixation or movement. Finally, the gels degrade rapidly within 1-6 weeks, which 

may enable their use in interfaces where bone healing takes place. 

 Graft copolymer hydrogels were also developed which undergo Michael 

addition in situ with poly(ethylene glycol) diacrylate to form elastic gels for 
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endovascular embolization of saccular aneurysms. Inclusion of JAAm grafts led 

to weaker physical crosslinking and faster, more complete chemical crosslinking. 

JAAm grafts prolonged the delivery window of the system from 30 seconds to 

220 seconds, provided improved gel swelling, and resulted in stronger, more 

elastic gels within 30 minutes after delivery.  
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Chapter 1: INTRODUCTION 

 

1.1. Introduction to In Situ Forming Hydrogels  

 Due to their high water content and mechanical resemblance to natural 

tissues, hydrogels show promising biocompatibility and potential for medical 

applications.1 Injectable hydrogel formulations are particularly attractive due to 

their minimally invasive delivery procedure, providing reduced healing time, 

reduced scarring, decreased risk of infection, and ease of delivery compared to 

surgically implanted materials.2 Injectable hydrogels are also useful for 

applications where complete surface coverage or complete filling of a space are 

required. Examples of how these materials might be used include injectable 

matrices to restore cardiac function following an infarct,3 thin protective barriers 

which conform to irregular physiological geometries,4,5 or as sustained release 

drug-eluting matrices.6,7 

 Hydrogels are classically defined as three-dimensional, water-swollen 

materials formed as a result of physical or chemical crosslinking.1 There are a 

variety of mechanisms used to make hydrogel systems injectable. The most 

common mechanism is the formation of physical or chemical crosslinks between 

polymer molecules during or subsequent to injection. In the absence of 

crosslinking, a water-soluble polymer will dilute in the body over time following 

injection. Physical crosslinking occurs in some injectable hydrogels in response to 

a change in an environmental condition such as temperature, pH, or ionic 

strength. Chemical crosslinking between soluble or liquid precursor materials in 
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situ can be achieved through a variety of chemical processes including enzymatic, 

photoirradiation, and self-reactive reactions. 

 

1.2. Prevention of Prosthetic Joint Infection 

 

1.2.1. Total Joint Arthroplasty  

 Arthroplasty is the surgical repair of a joint conducted to relieve joint pain. 

Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are among the 

most common surgical procedures in orthopaedics.8 Approximately 1 million of 

these two procedures combined are performed annually in the United States—a 

number that is expected to grow to over 4 million by 2030.9  Both of these 

procedures involve the total replacement of a joint with prosthetic components.  

 In THA, a cup is placed into the acetabulum and a femoral prosthesis, 

sometimes called a stem, is inserted into the femur. The femoral prosthesis is 

made of metal and consists of a ball end (similar to the femoral head) and a 

tapered distal portion which is press-fit into the femur. Fixation of the femoral 

prosthesis can be cemented or cementless—in cemented fixation, poly(methyl 

methacrylate) bone cement is used to fix the implant in place. Cementless fixation 

relies initially on press-fitting of the implant into the bone and subsequent 

osseointegration of the nearby bone onto the implant surface.10 The vast majority 

of THAs in the United States are performed using cementless fixation for both the 

acetabular and femoral components,10 whereas cemented fixation is more popular 

in Europe.11  



  3 

 In total knee arthroplasty, prosthetic components are placed at the distal 

end of the femur and proximal end of the tibia.12 Cemented fixation is commonly 

performed.12,13 The femoral component has a rounded shape to simulate the distal 

end of the femur, allowing for the rolling and gliding motion of a normal knee. 

The tibial component consists of a flat metal plate with a stem that is inserted into 

the tibia for fixation. A wear-resistant polyethylene surface is also included to 

reduce the generation of wear debris.14–17 

 Infection following total joint arthroplasty imposes a considerable 

financial burden both on patients and our national healthcare system, and it 

significantly reduces patient quality of life.18 Though only 1.5-2.5% of primary 

operations are estimated to result in prosthetic joint infection (PJI),19 this amounts 

to thousands of cases annually. Management of infected arthroplasty in the US 

typically involves resection of the implant, thorough irrigation and debridement of 

the infected area, implantation of an antibiotic-loaded spacer, and—in a separate 

procedure—re-implantation of a new implant.20–22 This approach is called a two-

stage revision. The overall cost associated with a single infection is substantial, 

with estimates ranging from $70,000-$114,000 per case in today's dollars.23–25  

 Orthopaedic implant infections are caused by organisms adhering to 

implant surfaces and then forming a biofilm, producing an established 

infection.26,27 Microbes (bacteria, fungi, yeast) in biofilm are resistant to the 

antimicrobial concentrations that can be achieved safely by systemic delivery. 

They also elicit little to no immune response. The antimicrobial concentrations 

required to kill bacteria in biofilm can be 100-1000 times greater than those which 
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kill planktonic (free floating in fluid) bacteria.28–30 Such concentrations can only 

be safely achieved by local delivery. 

 There is an opportunity to reduce overall costs and improve patient care by 

taking measures during surgery which reliably prevent infection from arising. The 

current standard of care for prevention of orthopaedic implant infections is 

systemic delivery of antimicrobials for 24 hours starting an hour before surgery, 

strict sterile technique to minimize intra-operative contamination, meticulous 

surgical technique to minimize soft tissue injury, and optimization of the patient’s 

immune function before surgery. Unfortunately, this does not eliminate all 

contamination at surgery or completely prevent bacteria from adhering to implant 

surfaces. In the best possible situation, the infection rate may be less than 1 in 

1000, but suboptimal circumstances usually exist, resulting in higher infection 

rates.31–33  

 

 1.2.2. Antimicrobial-Loaded Cements 

 Antimicrobial-loaded bone cement (ALBC) is currently the only option 

available to deliver antimicrobials directly to the surface of an implant. Some 

improvement in infection rates has been shown with ALBC in large retrospective 

analyses.34,35 However, ALBC is not compatible with cementless fixation which is 

common in THA. In TKA, although cemented fixation is common, the ALBC 

remains almost completely entrapped under the implant, affording very limited 

delivery of antimicrobial to the surgical wound and articulating implant surfaces.  

Furthermore, when ALBC is used for implant fixation, the dose must be limited to 
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prevent the cement from becoming too weak.36,37 The dose of antimicrobials in 

ALBC for prophylactic use is typically 0.5–2 grams of antimicrobial powder per 

batch of cement. These preparations render the antimicrobial highly entrapped 

such that a small fraction (<20%) of the drug is released within several weeks.38,39 

There also is concern that long term, subtherapeutic antimicrobial delivery from 

ALBC may give rise to resistant organisms.40  

 Other hard materials like calcium phosphate cement (CPC) are unsuitable 

because they provide rapid drug release,41 inadequate mechanical properties for 

fixation (4-37 MPa for CPC42 vs. 80-90 MPa for low dose ALBC), and do not 

match bone healing rates in their resorption.43 The design of these materials 

presents an inherent tradeoff between mechanical strength and drug delivery—to 

be structurally supportive, they must have low porosity, which is in direct 

opposition to efficient delivery of water-soluble antimicrobials. 

 

 1.2.3. Antimicrobial Surface Coatings 

 Though none are yet approved for use, there are active efforts toward 

developing antimicrobial surface coatings for prosthetic joint components. 

Several major challenges exist for the use of antimicrobial-loaded polymeric 

surface coatings on prosthetic joints. In particular, femoral prostheses indicated 

for cementless fixation are placed under high stress when hammered into the 

femur to obtain a press-fit, and the volume available for a coating between an 

implant and the nearby bone is very small. In a knee, there is a significant amount 

of load and shear on the prosthetic components such that  hard surface coatings 
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would be prone to generate wear debris. Modifying the surface of an implant can 

change the ability of the bone to achieve good osseointegration with the implant.44 

 A drug-eluting coating must allow for healing, carry and deliver a 

therapeutic dose of antimicrobial in a controlled fashion, and maintain good 

surface contact with the prosthesis after implantation. Surface treatments which 

anchor antimicrobials to a surface typically originate from a silane or other 

surface-bound reactive molecule,45,46 meaning that small scratches on the implant 

can create crevasses prone to bacterial adherence and growth. 

 Materials in currently FDA-approved products are poorly suited to use in a 

total joint arthroplasty. Biodegradable hydrophobic polyesters such as PLGA have 

moderate mechanical strength which may disrupt fixation and slow degradation 

times exceeding the healing time of bone.47–49 Alternatively, hydrophilic 

crosslinked gels such as those based on poly(ethylene glycol) (PEG) tend to 

release a high fraction of drug quickly.50 These and other devices, such as those 

based on gelatin,51 tend to form a weak yet solid implant—upon experiencing the 

forces associated with implantation of a hip stem, these materials would break 

into many pieces rather than continuously coat an implant.  

 Thus the major obstacle to a viable approach using local antimicrobial 

delivery to protect to the entire surface of a total joint against infection is the lack 

of a suitable drug delivery system. There is no available material which can 

conform to the surface of an implant, protect effectively against biofilm, avoid the 

generation of wear debris, and allow for osseointegration. 
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1.3. Cerebral Aneurysm Embolization 

 

 1.3.1. Cerebral Aneurysms 

 An aneurysm is a bulge in a weakened blood vessel wall. While 

aneurysms can develop in vessels throughout the body, cerebral aneurysms are 

especially dangerous due to the risk of subarachnoid hemorrhage upon aneurysm 

rupture. Large autopsy series have shown that cerebral aneurysms are present in 

1-6% of the population, but most remain asymptomatic and small.52 Cerebral 

aneurysms form in the arteries at the base of the brain called the Circle of Willis. 

However, only about 1 in 10,000 people experience aneurysmal subarachnoid 

hemorrhage. Patients who have already had one hemorrhage have an increased 

likelihood of development of new aneurysms.53 As a result, this patient group is 

targeted for preventative treatment to prevent any aneurysms they may develop 

from bursting.54 

 Prior to the early 1990s, aneurysms were most commonly treated using 

microsurgical clipping.55,56 This technique first requires a craniotomy to access 

the aneurysm, after which a neurosurgeon uses a device to “pinch off” the 

aneurysm neck. This technique is effective but has fallen out of favor due to its 

invasiveness. When better endovascular tools were developed, such as flow-

directed catheters and balloon remodeling techniques, embolization arose as 

another option for aneurysm treatment.57,58 Embolization refers to the placement 

of a material into an aneurysm in order to reduce blood flow into an aneurysm and 

prevent the aneurysm from rupturing.  



  8 

 1.3.2. Endovascular Coiling 

 Platinum coils are the standard of care in endovascular embolization of 

aneurysms today.55 Coils are the standard of care for endovascular aneurysm 

treatment, but lead to poor recanalization rates (>25%) in large or wide-neck 

aneurysms.59–61 Failure is most often attributed to the low volume fraction that the 

coils occupy within the aneurysm, relying on clot formation to occlude the entire 

volume rather than the coils themselves.62–64 Placing a coil into an aneurysm 

increases the amount of force required to place the next coil, thus increasing the 

risk of accidentally puncturing the aneurysm while placing coils.65 Even in the 

best case scenario, coil embolization has only been shown to fill about 50% of the 

total aneurysm volume.63,66–69 However, the aneurysm filling percent attained by 

coil placement is directly related to the re-bleeding rate, indicating that the body’s 

response will not completely suffice to block aneurysms if they are not initially 

filled to a certain degree.62,70 While coil embolization is a widely used 

endovascular technique for treating intracranial aneurysms, some new hydrogel-

coated coil designs are being developed to address some of the drawbacks of bare 

platinum coils to achieve better volumetric filling,66,71–73 accelerate thrombus 

formation74–76 or structurally support the coils.77,78 However, there is a lack of 

well-designed trials demonstrating evidence in favor of these newer coil 

systems.79 
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 1.3.3. Liquid Embolics 

 Materials that form in situ from liquid precursors have the potential to fill 

aneurysms more completely than endovascular coils, making them an attractive 

option.80–86 Poly(ethylene-co-vinyl alcohol) polymer dissolved in DMSO and 

marketed under the trade name Onyx® (eV3 Neurovascular; Irvine, CA), is the 

only liquid embolic device currently approved by the FDA (as a Humanitarian 

Use Device in 2007) “for the treatment of intracranial, saccular, sidewall 

aneurysms that present with a wide neck (≥ 4mm) or with a dome-to-neck ratio < 

2 that are not amenable to treatment with surgical clipping.” The polymer utilizes 

a solvent exchange process in which the DMSO is gradually replaced by blood in 

the aneurysm, rendering the polymer insoluble.87–91 While studies have supported 

Onyx’s potential as an embolic agent for aneurysm treatment,81 solvent exchange 

systems have inherent limitations. First, the polymer must be delivered in DMSO, 

an organic solvent. As the polymer is delivered, it is released into the body. 

DMSO has been linked to angiotoxicity and vasospasm when injected too 

quickly.89,92,93 As a result, Onyx® must be delivered very slowly, requiring 

repeated steps allowing for the DMSO to gradually leave the aneurysm site and be 

replaced by water. Delivery can take over an hour to complete,81 which is 

undesirable and leads some surgeons to not use the product. Prolonged use or 

oscillating on-off use of balloon occlusion during the procedure also increases the 

risk of vascular damage.81  

 Other water-borne systems based on in situ physical85 or chemical83,86 

crosslinking have also been reported in the literature but none have yet been 
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successfully translated to clinical use. For example, the ability of alginate to form 

a gel in the presence of calcium-rich solutions was evaluated for embolization 

using a dual-lumen microcatheter.94 These hydrogels form very quickly once the 

precursor solutions are mixed in situ, resulting in the polymer forming a string-

like shape upon delivery. Despite this and alginate gels being relatively soft, 

successful embolization was observed in eight swine,95 however these materials 

have not been reported on recently. Lightly crosslinked temperature-responsive 

polymer gels have also been used, with partial recanalization observed in swine at 

2 weeks unless used in combination with a second device such a flow-diverting 

stent.85 These gels were elastic, but very weak (G’ < 1000 Pa) and required a 

cooling jacket to inject, hindering the delivery of the gel and adding cost to the 

procedure. Recently, a chemical gelling system based on poly(propylene glycol) 

diacrylate and a thiol-based crosslinker were demonstrated as a water-borne 

polymer gel for embolization.83 Despite promising in vitro data demonstrating 

these gels’ very high strength and easy delivery, complete aneurysm filling or 

overfilling led to fatal outcomes in swine.84 While the high strength of a liquid 

embolic is good for retention of the gel within the aneurysm, it also may enable 

the gel’s swelling to distend or rupture the aneurysm. This device’s prospects may 

be limited given that a relatively minor misuse could bring severe risk to the 

patient. 
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1.4. Introduction to Temperature-Responsive Polymers 

Some temperature-responsive polymers hold promise for biomedical applications 

because they are soluble in water at ambient (or slightly cooler) temperatures and 

then precipitate to form a gel when heated to body temperature. These 

temperature-responsive polymers can be delivered into the body as a liquid and 

allow for fast gelation in situ without requiring organic solvents or chemical 

reaction. Fast gelation might be important for example in order to keep the 

polymer from diluting in the surrounding media or to limit the burst release of 

drugs loaded into the gelling solution. Such polymers are said to have a lower 

critical solution temperature, or LCST, the temperature above which a polymer 

becomes insoluble.  

 

1.4.1. N-isopropylacrylamide-based Polymers  

Among temperature-responsive polymers, polymers of N-substituted acrylamides 

are desirable because they exhibit an LCST transition over a narrow temperature 

range in aqueous solution96 and their properties can be easily modified by 

copolymerization with vinyl/acrylic comonomers. Poly(N-isopropylacrylamide) 

(poly(NIPAAm)) is by far the most commonly investigated, as it has a convenient 

LCST of about 30°C which can be further controlled by the content and 

composition of additional comonomers.97,98 Relative to multiblock copolymers 

having an LCST,99 an advantage of using poly(NIPAAm) is that the LCST is 

relatively insensitive to a number of design parameters, such as molecular 

weight,100,101 concentration,101 crosslinking,102 pH,103 and ionic strength,104 and so 
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a wide range of gel properties is attainable by adjusting these parameters. 

However, the LCST is very sensitive to the hydrophilicity of other comonomers. 

Hydrophilic comonomers such as acrylic acid (AAc) can increase the LCST by as 

much as 12°C per wt%.105 The high sensitivity of LCST to hydrophilic groups 

limits the amount that can be copolymerized with NIPAAm while retaining an 

LCST lower than body temperature. 

 

1.4.2. Copolymer Architecture 

 Polymers are molecules consisting of one or more repeat units connected 

in a particular arrangement. It is well known that using different individual repeat 

units lead to vastly different material properties. For example, polystyrene, 

polyethylene, PEG, poly(NIPAAm), polypropylene, nylon, etc. have different 

properties which lead to their suitability for various uses. It is slightly more subtle 

but still true that the arrangement of the repeat units, also called the polymer 

architecture, can also be controlled to provide new, different, and potentially 

useful properties. Polymers can be made to be linear, branched, crosslinked, 

block, star-shaped, comb, graft, or dendrimers.106 As an example, poly(NIPAAm) 

crosslinked gels containing graft chains of poly(NIPAAm) were shown to 

undergo much faster deswelling than gels which did not contain side chains.107 A 

more obvious example is that if a given linear polymer is water-soluble, a 

crosslinked architecture will yield a swollen, solid gel. 

 Copolymers can be made by combining multiple types of repeat units. 

Copolymers can exhibit:  
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 1. New properties not shared with homopolymers of either of its repeat 

 units; 

 2. Intermediate (blended) properties compared to those derived from each 

 repeat unit;  

 3. Combined properties while more completely retaining properties 

 derived from each repeat unit separately. 

  The way that properties of repeat units combine in a copolymer depends 

on the copolymer’s architecture. Block copolymers can result in completely new 

properties. For example, multiblock copolymers of poly(ethylene glycol) with 

either poly(propylene glycol) or poly(lactic acid) can have LCST behavior, 

though none of the respective homopolymers do. These copolymers can act as 

surfactants or form micelles because their hydrophilic and hydrophobic repeat 

units are separated into distinct blocks. 

 Random copolymers tend to have a blend of the properties expected from 

their repeat units. Consider the copolymerization of NIPAAm with acrylic acid 

(AAc). Poly(AAc) is a hydrophilic, water-soluble polymer at neutral pH. 

Poly(NIPAAm) is hydrophilic below its LCST and hydrophobic above its LCST. 

When NIPAAm and AAc are randomly copolymerized, LCST increases linearly 

with AAc content.98,105 In this system, LCST is very sensitive to AAc content—

just 2 mol% of AAc is enough to increase the LCST by approximately 10°C. If 

enough AAc is added,  the LCST can cease to exist altogether (or increase to 

above the boiling point of water), as the hydrophilicity of AAc dominates the 

temperature-responsiveness of poly(NIPAAm). Obtaining a blend of properties in 
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the case of poly(NIPAAm) is undesirable for medical applications—nearly all 

comonomers broaden and change the average temperature of the LCST transition. 

Random copolymerization can also lead to unique behavior (such as the faster 

degradation and lower crystallinity of lactic and glycolic acid random copolymers 

relative to a homopolymer of either)108 but it is not well-suited to lead to retention 

of the properties of multiple comonomers. 

 Graft and block copolymers tend to retain the properties of each type of 

repeat unit more separately. Chen and Hoffman demonstrated that a graft 

copolymer consisting of poly(NIPAAm) grafts on a main chain of poly(AAc) has 

an LCST identical to that of poly(NIPAAm) and identical pH response to that of 

poly(AAc).109 This finding demonstrated that the LCST of a copolymer with 

NIPAAm in particular is not a function of the weight fraction of a comonomer. 

Instead, an improved explanation is that the LCST is related to the uninterrupted 

chain length of NIPAAm repeat units,110 such that in a block or graft copolymer, 

the LCST is almost identical to that of poly(NIPAAm) homopolymer. As a 

general rule, a block of repeat unit A contributes the properties of poly(A) when 

incorporated within a copolymer architecture and likewise for B. A graft or block 

copolymer of A and B would thus retain some properties of poly(A) and some of 

poly(B). However, despite work having been done using graft copolymers of 

poly(NIPAAm) and hydrophilic polymers,109,111–113 none have captured the 

appropriate ratios, molecular weights, and concentrations necessary to form a 

hydrogel. 
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1.5. Temperature-Responsive Graft  Copolymers with Controlled Water Content 

  A major limitation of NIPAAm-based hydrogels for nearly any 

biomedical application is that the gels tend to exhibit substantial shrinking and 

solvent loss (syneresis) when heated above the LCST.97,107,114–117 Previous 

strategies for controlling gel swelling have led to undesirable properties, including 

large LCST increase with a small swelling effect,105,110,118 limited 

deliverability,119,120 or leaching of high molecular weight byproducts.121 

 

1.5.1. Graft Copolymer Design 

 Rapid water loss and shrinking of poly(NIPAAm) gels is a major 

limitation to their viability as materials for medical applications in drug delivery 

and embolization. Thus, the overall goal of this work was to develop a novel 

copolymer platform in which the water content of poly(NIPAAm)-based gels 

could be controlled independently of other properties such as LCST, 

deliverability, or degradability. Previously reported materials have required 

tradeoffs where the component used to control swelling has also reduced or 

eliminated the benefits of using poly(NIPAAm) 

 Put another way, the goal was to develop materials which combine the 

injectable nature of poly(NIPAAm) with the hydrophilicity of PEG. Such a 

system would overcome the inherent limitation of poly(NIPAAm) related to its 

shrinking upon gelation. The hypothesis as the basis for this design was that 

polymer LCST is related to mol% content of comonomers with NIPAAm, but gel 

swelling is related to wt%. Therefore, a design was used which uses a comonomer 
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with NIPAAm with a disproportionately higher wt% relative to mol%--i.e., a high 

molecular weight comonomer. For this reason, a graft copolymer design was 

pursued. 

 The graft copolymers consisted of a main chain rich in NIPAAm repeat 

units, with hydrophilic side-chain grafts based on Jeffamine® M-1000 (Huntsman 

Corp., The Woodlands, TX, USA) to control the swelling and hydrophilicity of 

the polymer. Jeffamine® M-1000 is a random copolymer of ethylene oxide (EO) 

and propylene oxide (PO) in a 19:3 EO:PO ratio and approximately 1000 Da 

molecular weight. Jeffamine® M-1000 was chosen as the hydrophilic graft (as 

opposed to a PEG diacrylate or other hydrophilic polymer) for the following 

reasons: 

 1. It forms a stable linkage to the main polymer chain. Because Jeffamine® 

M-1000 has an amine end, it allows for an amide linkage between the 

main chain and the graft. Thus the swelling control over the material does 

not change as a function of time and does not introduce a confounding 

effect of degradation due to the graft component. The grafts themselves 

are also hydrolytically stable. 

 2. It is not a crosslinker. Crosslinking of NIPAAm chains yields materials 

which are gels both below and above the transition temperature. Because 

the resulting polymer is not chemically crosslinked, it has improved 

flexibility in its delivery properties by virtue of the material being liquid 

below the LCST. This also allows for conversion from gel to sol in a 

resorbable polymer formulation.122–124 
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 3. It is easy to synthesize the graft copolymer. Because Jeffamine® M-

1000 can be incorporated using a simple two-step chemistry—first, by 

acryloylation with acryloyl chloride, and second, by radical 

copolymerization with NIPAAm. Such a synthesis scheme allows for good 

yields and is reproducible. 

 4. It is inexpensive. Heterobifunctional PEG of similar molecular weight 

can cost $300 per gram or more for research grade material, whereas 

Jeffamine® M-1000 is mass produced and costs under $20 per kg. A lower 

cost of materials enables a wider range of potential applications and also 

improves the potential of these copolymers to be commercialized so long 

as the material properties are appropriate. 

 

1.5.2. Experimental Approach 

 The first segment of this work (as reported in Chapter 4) was to synthesize 

and characterize graft copolymers of NIPAAm and Jeffamine® M-1000 

acrylamide (JAAm). Characterizing the effects of JAAm and molecular weight on 

LCST, gel swelling, gel strength, and drug elution were emphasized. This data 

was intended to provide proof-of-principle that a graft copolymer design can lead 

to NIPAAm-based polymers where gel swelling can be tuned nearly 

independently of LCST. In the following segments of this work, the novel graft 

copolymer design was utilized to develop polymers for drug delivery (Chapter 5) 

and endovascular embolization (Chapter 6).  
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 To develop an injectable and resorbable material for controlled drug 

delivery, a third co-monomer was included which causes an increase in LCST 

over time as a result of hydrolysis, leading to dissolution of the polymer. The 

degradation time and elution of antimicrobials were evaluated as a function of 

polymer JAAm content and compared to that of clinically used antibiotic-loaded 

bone cement. The goal of this work was to develop a candidate material with 

appropriate properties as a local drug-eluting material for prevention of prosthetic 

joint infection following total joint arthroplasty. 

 For use in embolization, side groups available for in situ crosslinking were 

added, and gels were prepared by mixing with a second precursor solution 

containing a reactive crosslinker. Physical crosslinking is intended in these gels to 

stop them from diluting in the surrounding media whereas subsequent chemical 

crosslinking causes the gel to become stronger and more elastic. Gels containing 

various JAAm content were characterized with emphasis on their rheological 

properties relevant to their ability to be delivered in an endovascular procedure 

and their stability after crosslinking.  
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Chapter 2: INJECTABLE HYDROGELS FOR DRUG DELIVERY 

APPLICATIONS 

 

2.1. Introduction  

 Injectable hydrogels are often engineered to function as carriers that 

provide controlled drug release.7,125–128 Injectable hydrogels can also be easily 

delivered into sites that are difficult or infeasible to access surgically. These 

formulations are typically designed to provide prolonged activity from a single 

administration, reducing risks associated with patient compliance. Because the 

size and shape of an injectable hydrogel is determined by its local environment,129 

good interfacial contact is usually achieved between the hydrogel and the nearby 

tissue,130 allowing for drug to elute directly into the local tissue and, in some 

cases, facilitating healing. Further, injectable and degradable materials allow for 

easy delivery of additional doses to the same site. 

 Some drawbacks exist for using injectable hydrogels for drug delivery. 

Most hydrogels are too weak to be load-bearing, and some (physical gels, in 

particular) are prone to plastic deformation in response to stress due to their 

viscoelastic character. Insoluble drugs can become heterogeneously distributed 

within the gels, leading to sample-to-sample variability of drug release rates. The 

greatest drawback is typically that drug release from hydrogels suffers from either 

a rapid initial burst release of drug followed by sustained release, or rapid release 

of drug altogether.125 Burst release is a primary concern for injectable 
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formulations because slow gelation in situ can lead to loss of drug before the gel 

fully forms. Changes in gel volume after gelation can also cause rapid release. 

 Though the ideal properties of the hydrogel depend heavily on the 

application for which it is intended, there is a basic set of properties that are 

advantageous for drug delivery.6,131 Desirable hydrogel properties for drug 

delivery include: 

 i) Low/medium viscosity of the solution prior to injection. 

 ii) Fast gelation which minimizes the initial burst release of drug. 

 iii) High water content and good biocompatibility. 

 iv) Compatibility with a wide variety of drugs (low molecular weight, 

proteins, nucleic acids). 

 v) Efficient drug loading. 

 vi) Maintenance of volume and interfacial contact with tissue after 

gelation. 

 vii) Control of drug release rate over a range of time frames. 

 viii) Long (>3 month) shelf life. 

 ix) Easy to purify and sterilize. 

 x) Degradability into low molecular weight, soluble byproducts either by 

hydrolysis or enzymatic degradation. 

 xi) Suitable drug release profile (i.e. cumulative release vs. time) for the 

application. 
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2.2. Temperature-Responsive Hydrogels 

 

2.2.1. N-isopropylacrylamide-Based Hydrogels 

Typically, poly(NIPAAm) gels tend to undergo a high degree of syneresis (i.e. 

shrinking and separation from solvent) upon gelation, which can result in high 

burst release, particularly of hydrophilic drugs. Another disadvantage of 

poly(NIPAAm) homopolymer for drug delivery is its lack of degradability, and 

therefore additional comonomers must be included to make the gel degradable. 

 For a copolymer containing NIPAAm to form an injectable hydrogel, it 

must initially have an LCST below body temperature. Before injection below the 

LCST, this polymer is soluble in an aqueous solution. Then, upon injection (body 

temperature > LCST), this polymer precipitates and forms a hydrogel if the 

polymer concentration is sufficient. The release rate from physical (i.e. not 

crosslinked) gels is inversely proportional to the gel’s viscosity in the absence of 

intermolecular interactions between the polymer and the drug.125,132 For a 

formulation to be degradable based on hydrolysis122,133–136 or enzymatic 

degradation137 of side chains, the LCST must increase to above body temperature 

upon hydrolysis or enzymatic degradation and the polymer must not be 

sufficiently chemically crosslinked to remain as a solid below the LCST so that 

the polymer re-dissolves.  In these types of materials, the LCST starts below the 

body temperature to make the material injectable, but becomes resorbed after the 

LCST increases to above body temperature. The use of dynamic LCST polymers 

based on NIPAAm was first demonstrated by Neradovic et al.133 using 
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hydrolyzable poly(NIPAAm-co-hydroxyethylmethacrylate (HEMA)-

monolactide), though these materials did not have a final LCST above body 

temperature. Similar materials were subsequently developed by Lee and 

Vernon136 using poly(NIPAAm-co-AAc-co-HEMA-lactide) and Ma et al.135 using 

poly(NIPAAm-co-lactide methacrylate-co-HEMA) which exhibited LCST 

increase to above body temperature upon hydrolysis. In the former case, the 

degradation was rapid (2-8 days) due to increased hydration of the polymer chains 

owing to the hydrophilicity of acrylic acid (AAc), whereas Ma et al. reported 

much longer degradation times of about 200 days due to grafting of the lactide 

side group onto methacrylic acid, leading to a much more hydrophobic material. 

However, these materials also underwent rapid deswelling over the course of 2-6 

hr and had an equilibrium water content under 50%,135 likely rendering them 

unsuitable for delivery of hydrophilic drugs that will partition into the water phase 

as it leaves the hydrogel system during syneresis.  

 Alternatively, copolymers of NIPAAm containing hydrolyzable dimethyl-

γ-butyrolactone acrylate (DBLA) were shown by Cui et al. to exhibit 

degradability without the loss of low molecular weight byproducts.122 Copolymers 

containing NIPAAm, DBLA, and AAc were subsequently shown to have 

favorable biocompatibility in vivo.123 Li et al. used similar copolymers of 

NIPAAm, DBLA, AAc, and HEMA-poly(trimethylene carbonate) (HEMA-

PTMC) to deliver the protein superoxide dismutase.124 The release profile was 

highly dependent on the protein loading. Gels physically mixed with collagen at 

high protein loading (4 mg/mL) exhibited nearly constant protein release over a 
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period of 3 weeks; however, all gels with low protein loading (2 mg/mL) showed 

fast release over the first day and almost no release thereafter. 

 Another method allowing for gel degradation is crosslinking NIPAAm-

based polymer chains with degradable crosslinkers such as poly(lactic acid),138 

dextran,138,139 or peptide sequences140,121—however, in this approach, unless the 

LCST of the individual polymer chains increases to above body temperature, the 

poly(NIPAAm) portions will remain permanently insoluble at the injection site. In 

order to be injectable, crosslinked materials must have a very low crosslink 

density, as they will otherwise form solid, swollen hydrogels below the transition 

temperature. 

 As a poly(NIPAAm)-based gel is heated above its LCST, a homogeneous 

polymer-rich phase (i.e. the gel) separates from a fraction of the original solvent 

and then tends toward an equilibrium.141 Usually, solutions are formulated at <30 

wt% and deswell such that the final polymer concentration in the gel is about 

50%,115,118,105,142 so a significant fraction of water is lost during gelation. Rapid 

deswelling and syneresis (i.e. loss of the initially entrapped aqueous liquid) has 

been shown to be associated with fast drug release upon heating above the LCST 

of NIPAAm-based physical gels.116,143,144 

 A promising and yet rarely used method for controlling drug release from 

these materials may be the copolymerization a drug derivative as a hydrolyzable 

side group. Such a strategy was reported by Shah et al. using N-

hydroxysuccinimide as a model drug in the polymer-drug conjugate 

poly(NIPAAm-co-N-acryloxysuccinimide).145 These materials have the advantage 
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of releasing drug in concert with the rate of degradation of the bond linking the 

drug to the polymer backbone, and degradation leaves an acid group on the 

polymer backbone, raising the LCST and allowing for dissolution of the polymer. 

However, this strategy is only compatible with certain drugs (those containing 

hydroxyl groups). 

 Dual-responsive polymers sensitive to both temperature and pH have been 

developed by copolymerizing NIPAAm with either AAc109 or pH-sensitive 

substituted acrylates such as 2-(dimethylamino)ethyl methacrylate 

(DMAEMA).146 In terms of drug delivery, it is convenient to have a pH-induced 

transition at 37°C that occurs over the neutral range of pH around 5.0-7.4.103 

Using propylacrylic acid as a second monomer having pKa near 6.0, Garbern et 

al. reported prolonged release of active VEGF up to 4 weeks at pH 5.0 and for 

between 1-4 days at pH 7.4, despite the polymer being soluble.147 Such prolonged 

release at low pH may have been due to the high content of propylacrylic acid (17 

mol%) affecting the overall properties of the polymer in its protonated (insoluble) 

state. The somewhat prolonged release at neutral pH despite the polymer being 

soluble was attributed to electrostatic affinity between the VEGF (isoelectric point 

pI = 8.5) and the negatively-charged polymer. 

 

2.2.2. Block Copolymer Hydrogels 

 Solutions of block copolymers with alternating hydrophilicity (usually 

ABA triblock or alternating multi-block copolymers) have LCST in aqueous 

solution which is dependent on block length, composition, and polymer 
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concentration. Typically relatively high polymer concentrations (>10 wt%) are 

required for these materials to exhibit LCST behavior, though exceptions do 

exist.148 These materials often have a central hydrophobic block such as 

poly(propylene oxide) (PPO) or poly(lactide-co-glycolide) (PLGA) and 

hydrophilic blocks which are almost always comprised of PEG (also called PEO 

for poly(ethylene oxide)). The LCST of these materials is thought to be due to 

increased hydrophobicity of the hydrophobic segment upon heating, leading to 

micellar aggregation.149,150 

 Much of the early work on this family of polymers was based on PEO-

PPO-PEO block copolymers such as the Pluronics made by BASF,149–154 but these 

are non-degradable, mechanically weak, and tend to be highly permeable to 

drugs.57 The first degradable block copolymer hydrogels with LCST behavior for 

drug delivery were reported by Jeong et al., who used poly(L-lactic acid) (PLLA) 

as the hydrophobic central block.155 Unlike poly(NIPAAm)-based systems, these 

polymers are backbone degradable and become soluble after a single ester is 

hydrolyzed. These gels were shown to release FITC-dextran (20 kDa) over at 

least 12 days with very low initial burst release. Increasing the polymer 

concentration from 25 to 35 wt% led to a more constant-release profile in vitro.155 

Similar materials of PEG-PLGA-PEG (500-2810-500) were shown to have 

convenient LCST below body temperature above about 16 wt%.156 These 

materials released the hydrophilic low molecular weight drug ketoprofen mostly 

over the first 3-5 days in vitro, with very low release thereafter. The release rate 

was not tunable over a wide time frame, with similar release observed from 20%, 
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25% and 33% gels. Using the same copolymers, the hydrophobic drug 

spironolactone was released in an S-shaped release profile, with the first part 

being due to diffusion over about 4 days, followed by almost no release for the 

next 10 days, and then accelerating release thereafter for the next 35 days due to 

degradation of the gels. Much work over the last decade has utilized this block 

copolymer design with various degradable hydrophobic groups and various 

architectures, such as PEG-PTMC diblocks,157 poly(caprolactone) (PCL) 

groups,158,159 modified Pluronics,160–162 enzyme-degradable poly(amino acid)s,163 

and even hydrophobic segments of poly(NIPAAm),164,165 which give rise to a 

sharp gelation temperature based on the LCST of the NIPAAm chains. 

 For drug release, block copolymer hydrogels are rather flexible in terms of 

the types of drugs that can be loaded. A formulation of PLGA-PEG-PLGA 

developed under the name ReGel® showed nearly linear in vitro release of 

paclitaxel over 50 days with about 20% initial burst release over the first day at 23 

wt% concentration.166 Similar gels showed first-order release of various proteins 

over 1-2 weeks. The difference in release among these can be explained by the 

fact that hydrophobic drugs are relatively immobile due to poor solubility and 

hence exhibit partition-controlled release, whereas hydrophilic drugs (either small 

molecules or proteins) tend to release more quickly and in a first-order profile 

based on diffusion. Partition-controlled release refers to the phenomena that 

hydrophobic drugs preferentially dissolve (partition) in the hydrophobic polymer 

phase and only slowly diffuse into the water phase and thus become released due 

to their low water solubility. The release of the protein GLP-1 was slowed from 
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about 2 days to 15 days and made nearly linear by complexing the drug with zinc, 

thereby reducing its solubility while preserving its activity.167 Injection of the 

ReGel® into diabetic rats led to reduced blood glucose levels for 15 days post-

injection. A similar system using cationic poly(β-amino ester) (PAE) as the 

outside blocks of a PAE-PCL-PEG-PCL-PAE pentablock copolymer resulted in 

electrostatic retention of insulin and a linear release profile for up to 20 days in 

vitro, with sustained insulin concentrations provided in vivo for up to 18 days.168 

Still, this class of materials tends to release hydrophilic drugs very quickly. For 

example, Gong et al. reported PEG-PCL-PEG gels which released the hydrophilic 

model drug VB12 completely over about 24 hr, with high burst and incomplete 

release of both bovine serum albumin (BSA) and the hydrophobic model drug 

honokiol after 14 days (about 20% cumulative release), though it is worth noting 

that the release was not measured throughout the 50 day degradation of the 

gels.169 Tang and Singh synthesized 11 variants of mPEG-PLGA-mPEG and 

reported release of lysozyme over 20 days at the longest from very high 

concentration (40 wt%) gels.170 

 Block copolymer hydrogels can be made to respond to both temperature 

and pH. Determan et al. modified Pluronic F127 with end blocks of poly(2-

diethylaminoethyl-methyl methacrylate), having pKa near 7.5.171 They showed 

linear release of lysozyme over about 4 days at pH 7.0 and slightly slower release, 

projected to last about 6 days, at pH 8.0. Pluronic®  P104-based gels with acid-

sensitive acetal linkages were reported by Garripelli et al.172 They reported release 

of FITC-dextran (40 kDa) over 2 days at pH 5.0, 9 days at pH 6.5, and about 30 
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days with an S-shaped release profile at pH 7.4. Such pH-dependent release might 

be useful in terms of releasing drugs more quickly in response to local acidic 

conditions. 

 

2.2.3. Hybrid Temperature-Responsive Materials 

 Natural and natural/synthetic hybrid temperature-responsive materials 

which thicken or gel upon warming to body temperature have been reported, 

usually with the goal of prolonging release using high molecular weight natural 

polymers or for combining the advantages of high biocompatibility and 

degradability of natural materials with the control over composition and 

properties of synthetic materials.  

 Aqueous solutions of chitosan in the presence of glycerophosphate salts 

can undergo gelation upon heating at neutral pH.173  Gelation time is affected by 

salt concentration, temperature, degree of deacetylation, and slightly by drug 

loading.174 These materials were shown to release paclitaxel in vitro at a rate 

which was dependent on the drug loading, with 40% cumulative release in 30 

days when loaded at 64 mg/mL.175 When evaluated in vivo in a subcutaneous 

tumor model, gels showed some antitumor efficacy both in the presence and 

absence of drug, indicating an antitumor effect of chitosan alone.175 Gels with 

drug showed tumor volumes at 17 days that was similar to that of daily 

intravenous injections for the first 4 days. However, it is unclear whether the 

higher efficiency (similar outcome using a single administration) of the gels is 

related to the material or simply the intratumoral administration of the drug in the 
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gel group. A notable disadvantage of these natural materials is that the release rate 

of the drug is not easily controlled by adjusting the properties of the device. While 

the authors note that the drug itself could be modified to alter the release (in this 

case, to increase the release rate for a high drug loading), this approach is 

undesirable in terms of cost and regulatory issues. Crosslink density of chitosan-

glycerophosphate interpenetrating polymer networks (IPNs) with hydrophilic 

poly(vinyl alcohol) was used to control the release of lysozyme,176 though it is 

worth noting that covalently crosslinked gels are likely to not be injectable or to 

break into many pieces upon injection through a needle, and the poly(vinyl 

alcohol) used was of relatively high molecular weight (66 kDa), which could lead 

to renal toxicity.  

 A common design for hybrid temperature-responsive hydrogels is to graft 

temperature-responsive synthetic polymers, such as poly(NIPAAm), onto a 

natural, hydrophilic polymer such as hyaluronic acid,177 gelatin,178 or chitosan.179–

181 The poly(NIPAAm) chains in these materials tend to be of low molecular 

weight, and so the resulting gels tend to be very weak and viscous. Further, the 

drug release is typically fast. A variety of low molecular weight drugs were 

shown to release from NIPAAm-grafted gelatin within 6 hours,178 and proteins 

released from NIPAAm-grafted hyaluronic acid within 12 hours.177 Similarly fast 

release over 2 days or less was observed for NIPAAm-grafted chitosan for various 

model drugs179–181—to prolong the release of hydrophobic drugs to 14 days, the 

authors embedded PLGA microparticles within the gel.181 In addition to the short 

duration of drug release so far demonstrated from this class of materials, another 
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disadvantage is that the thermosensitive polymer chains in these designs will 

remain insoluble after degradation of the natural component. 

 

2.2.4. Poly(organophosphazene)s 

 Another group of linear polymers having LCST-like behavior in aqueous 

solution are the poly(organophosphazene)s, which can be made degradable 

through the incorporation of amines, amino acids, or alkoxy groups. These gels 

thicken over a wide range of temperatures and remain transparent rather than 

phase-separating like most other LCST materials, and so the thermal transition is 

typically characterized by viscometry. Drug release can be controlled either by 

incorporation into the polymer182,183 or simply by diffusion or degradation, over a 

period of up to about 35 days.184 Kang et al. used hydrophobic side groups of L-

isoleucine ethyl ester and hydrophilic side groups of α-amino-ω-methoxy-PEG 

(MW 550) and reported duration of release for two model protein drugs to be 

between 3 and 15 days.185 Similar gels released the hydrophobic low molecular 

weight drug doxorubicin steadily over about 30 days.186 

 

2.2.5. Elastin-Like Polypeptides 

 Elastin-like polypeptides (ELPs) contain pentapeptide repeat units Val-

Pro-Gly-X-Gly, where X is any natural amino acid except proline.187 These 

materials have an LCST which tends to occur over a narrow temperature range. 

Since they are genetically encoded, they can be made to be monodisperse, and are 

enzymatically degradable in vivo. While these materials have also been 
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investigated as thermally triggered polymer-drug conjugates,188–191 hydrogels 

have also been made from these materials for injectable drug delivering matrices, 

primarily complexed with silk to comprise so-called silk-elastin like polypeptides 

or SELPs. These materials show injectability due to reduced crystallinity of the 

silk component by mixing with ELPs.192 However, the release from these matrices 

is rapid, occurring almost completely in a matter of hours, even for large protein 

drugs.193 

 

2.3. In Situ Crosslinking Hydrogels  

 Hydrogels can be formed from liquid or soluble precursors by in situ 

chemical reaction by a number of mechanisms including thermal polymerization, 

photopolymerization, or in situ polymer-polymer crosslinking reactions. For any 

application, it is desirable for such reactions to take place under biologically-

compatible conditions and usually with minimal side reactions to nearby tissue. In 

situ crosslinking is ideal for incorporating a wide variety of biocompatible 

hydrophilic biomaterials (such as natural soluble polymers or PEG) into an 

injectable hydrogel. The kinetics of gelation is an important consideration for 

drug delivery, particularly for systems which do not gel beginning on the outside, 

forming an initial ‘skin’ and then proceed to gel toward the center of the material. 

The material must have low enough viscosity to be injectable and yet gel quickly 

enough after injection to avoid burst release. Efficient crosslinking is also 

important for minimizing the toxicity associated with reactive chemical species or 

leachable small molecules (e.g. monomers, crosslinkers). Discussion of these 
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systems will be divided into natural or hybrid materials which are comprised of at 

least one natural component, and materials made from fully synthetic precursors. 

 

2.3.1. Natural or Hybrid Materials 

 Natural biomaterials are often high molecular weight, linear polymers 

which can subsequently be crosslinked together through a controlled fraction of 

functional groups on their sides, most commonly hydroxyls or amines. Alginate 

oxidized to contain terminal aldehyde groups can crosslink through proteins such 

as gelatin, which is accelerated in the presence of borax.194 The gelation time of 

these materials was 20-50 seconds, and even when the materials were allowed to 

gel for 10 minutes before release was measured in vitro, a 30% or greater burst 

release of primaquine was observed within 6 hr for all gels tested. The remainder 

of the drug was released slowly over at least 5 days. Similar chemistry has been 

used with an aldehyde-functionalized alginate derivative crosslinking through 

adipic acid dihydrazide, crosslinking upon the formation of two hydrazone 

linkages.195 A disadvantage of aldehyde chemistry is its lack of specificity—

aldehydes are prone to react with amines which are present in proteins, as is the 

case for the fixatives glutaraldehyde and formaldehyde. Conversely, a chemistry 

which has not been evaluated for drug delivery but is capable of forming 

crosslinked networks with high specificity is high-affinity non-covalent binding, 

such as that between avidin and biotin.196 

 A common crosslinking chemistry in both synthetic and natural materials 

is the Michael addition reaction between thiols and acrylates. Cai et al. developed 
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thiol-modified hyaluronic acid and chondroitin sulfate materials for in situ 

crosslinking with PEG diacrylate (PEGDA) and release of basic fibroblast growth 

factor (bFGF).197 Gelation time was dependent on pH, with gels forming more 

rapidly at higher pH. Gels formed within 1 minute at pH 8.5. Release of FITC-

HSA was prolonged over about 5 days in vitro. Using covalently bound heparin to 

complex with the bFGF, its release was prolonged over about 28 days, and this 

formulation showed improved neovascularization relative to gels without heparin 

or bFGF alone. Hiemstra et al. used thiol-modified dextran with either 4-arm 

PEG-tetraacrylate or dextran functionalized with vinyl sulfone to form gels in 

under 1 minute.198 At 20 wt%, these gels became rather strong, with storage 

modulus near 100 kPa. The gel properties of these materials are particularly 

sensitive to the ratio of reactive groups, with the strongest gels obtained using a 

thiol:acrylate ratio near 1:1. 

 Enzyme-mediated in situ crosslinking can be done using tyramine-

functionalized materials. Jin et al. functionalized hydroxyl groups on dextran with 

pendant phenol moieties, which are coupled to each other in the presence of 

hydrogen peroxide and horseradish peroxidase.199 Similar systems based on 

hyaluronic acid showed fast burst release in the first 5 hours up to a fraction of the 

total protein which was related to the crosslink density of the gels.200 This period 

was followed by degradation-based release of the entrapped model proteins 

lysozyme and α-amylase only in the presence of hyaluronidase.  

 Crosslinking can also be initiated using light as an external energy source. 

For example, chitosan functionalized with azide and lactose groups was 



  34 

crosslinked by UV light with a gelation time under 30 seconds and used for 

release of FGF-2 in a wound dressing.201–203 The reaction proceeds by release of 

nitrogen gas from azide groups, converting them to reactive nitrene groups which 

then crosslink either with amines or other nitrenes to yield a stable azo linkage. 

These materials provided some release for 1 day after gelation and then nearly 

zero release thereafter, though protein release was measured to be incomplete.202 

It is unclear what fraction of the FGF-2 remained active following the UV 

exposure, but improved wound closure with time was observed, indicating that 

some active protein was released.203 These materials released the alkaline model 

drug toluidine blue completely within one day in vitro, while almost no acidic 

model drug (trypan blue) was released for 5 days. This difference was attributed 

to the alkaline character of the chitosan itself, demonstrating the potential for 

control over release rate depending on the affinity between the drug and the 

device. 

 

2.3.2. Synthetic Materials 

 In situ polymerization of monomers with macromolecular crosslinkers can 

be used for controlled drug delivery applications provided that gelation is fast and 

the monomers have low toxicity. For example, West and Hubbell developed gels 

based on PEGDA and N-vinyl pyrrolidone (NVP) which crosslink by radical 

polymerization into solid gels within 20 seconds of exposure to UV light.204 The 

crosslinker in these designs can be engineered to control the degradability of the 

gels due to either hydrolysis204 or the action of specific enzymes.205 These gels 
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were shown to release a variety of proteins (6-66 kDa) in vitro at a steady rate 

over a period of up to 5 days depending on molecular weight. The UV 

photopolymerization was also shown to not substantially affect the activity of 

entrapped tissue plasminogen activator (tPA). In situ photopolymerized gels using 

poly(ε-caprolactone fumarate) diacrylate as the macromer required over 3 minutes 

to form gels when exposed to blue light.206 Thin cylindrical shaped gels (8 mm 

diameter, 2 mm thickness) optimized for maximum crosslinking showed 

diffusion-based release of the low molecular weight, hydrophobic drug tamoxifen 

citrate over a period of about 5 days in vitro. While the crosslinked gels are 

relatively non-toxic to cells, the macromers themselves can be relatively 

cytotoxic. Studies on acrylate-functionalized macromers207 and initiators208 show 

concentration-dependent toxicity of these components of in situ polymerizing 

hydrogels. 

 Some systems rely on crosslinking reactions between individual low 

molecular weight precursors to form gels rather than a polymerization reaction. 

This approach may be advantageous in that it does not require an external energy 

source or give rise to radicals.  The most common among these in situ 

crosslinking systems are systems of thiols and acrylates, of which the average 

functionality of the precursors must be greater than 2 for network formation (i.e. 

gelation) to occur.209,210 Elbert et al. mixed PEG-dithiol and multi-arm PEG 

acrylates at 40 wt% to yield gels which released albumin over 8-12 days, with 

slower release and longer degradation time observed in gels with greater average 

functionality.211 Vernon et al. used PEGDA and the tetra-thiol precursor 
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pentaerythritol tetrakis(3-mercaptopropionate) (QT) at a very high concentration 

(75 wt%) for partition-controlled release of progesterone.212 Gels with high drug 

loading showed prolonged and steady release over at least 50 days.  

 Drug release data from studies using in situ crosslinking gels must be 

evaluated carefully because the data is likely to underestimate the amount of burst 

release that would occur from the gels if used in vivo. Because the standard 

method in the literature involves curing the liquid precursors completely before 

exposing the gels to the release medium, most measurements of drug release 

behavior provided by these materials represent a “best case” in terms of 

minimizing burst release. While studies on temperature-responsive hydrogels may 

show similar bias by pre-gelling a drug-loaded injectable solution before exposing 

the gel to the release medium, burst release from temperature-responsive 

hydrogels tends to occur more slowly upon syneresis after gelation, and is 

therefore still likely to be reflected more accurately in vitro. 

 

2.4. Hydrogels Forming By Ionic Interactions or Self-Assembly 

 Systems that undergo gelation in the presence of ions in the solvent have 

also been evaluated.213 A change in the concentration of specific ions in solution 

can trigger solution to gel (sol-gel) transition in some materials due to ion 

exchange that causes a change in the interactions between polymer molecules and 

the solvent. For example, alginate, a naturally derived polymer, undergoes 

gelation in the presence of Ca2+ and other divalent ions.1 This material was shown 

to release active VEGF for over 2 weeks when first allowed to gel for 30 
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minutes214,215 and show improved motor function in a rat model of Huntington’s 

disease relative to a control without VEGF.216 While alginates can entrap a wide 

variety of drugs, they have a long in vivo degradation time.217 Alginate gels also 

have a time-sensitive gelling process which poses a challenge for drug delivery—

too fast, and the material is not injectable; too slow, and the drug is released 

rapidly before gelation can occur. Alginate gels undergo faster gelation without a 

preliminary mixing step when used in ophthalmic applications because the higher 

calcium concentration in the eye allows for alginate gelation without an initial 

mixing step. In these applications, release of low molecular weight drugs was 

prolonged over less than 12 hours.218,219 

  Electrostatic interactions between oppositely charged materials yield 

hydrogels following a pre-mixing step. Van Tomme et al. reported formation of 

mostly elastic gels upon mixing of oppositely charged microspheres comprised of 

dextran crosslinked either with negatively charged methacrylic acid or positively 

charged DMAEMA.220 These gels showed degradation-based release of 

rhodamine-B-dextran (70 kDa), which can be controlled by adjusting the 

crosslink density, microsphere weight fraction and charge balance.221 Negatively 

charged chondroitin 6-sulfate and positively charged type A gelatin were used to 

form a gel by complex coacervation which was used to control the gelation and 

drug release from a methylcellulose hydrogel.222 However, this system involves a 

salt (ammonium sulfate) which is unlikely to remain in the gel for several days 

after injection in vivo, limiting its use to short-term formulations. 
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 Hydrogels can form due to non-covalent interactions between similar 

molecules223–226 or complexation of two mixed precursors.227,228 Such gels are 

often referred to as self-assembling or nano-assembling gels. Self-assembling 

hydrogels are shear thinning which allows for injectability after subjecting the 

material to stress and then gels upon subsequent recovery of its mechanical 

properties in situ. Injectable self-assembling peptide nanofibers comprised of 

short peptides were shown to release PDGF-BB in vivo in a myocardial infarct 

model for up to 14 days.223 These peptides contain an alternating polar / non-polar 

pattern of amino acids which allows them to form nanofibers or other 

nanostructures which form gels upon entanglement of those structures.229 This 

design is advantageous because of the low molecular weight of the gelator, the 

low concentration required for gelation, and the enzyme-degradable nature of the 

materials. Using a similar approach, amphiphilic prodrugs based on 

acetominophen conjugated to fatty acids were shown to deliver drugs without 

initial burst release.225 Alternatively, a non-drug gelator such as ascorbyl 

palmitate can be used to entrap drugs.226 Drug release was enzyme-mediated, with 

almost zero release of physically entrapped drugs in the absence of enzyme.225,226 

Such low release in the “off” state over as long as 7 days is remarkable for a 

hydrogel material. This design is particularly promising because it uses materials 

which are natural and generally regarded as safe, offers flexibility for the 

incorporation of multiple types of drugs (hydrophilic drugs in the gelator itself 

and hydrophobic drugs entrapped physically), and allows for very high drug 

loading since a significant fraction of the device itself is composed of drug. 
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However, because the degradation and release are dependent on enzyme action, 

the rate of release is likely to be governed mostly by the amount of enzyme 

activity in the injection site. As injection of any foreign material is likely to 

induce some acute inflammatory response, proteases involved in this process 

might trigger faster release of drug. The release of the hydrophilic compound in 

such a case could be controlled through changing the gelator concentration. 

Another concern with these materials is their long gelation time, which may 

produce burst release in vivo even if not observed after the 15-45 minute gelation 

time. Over this amount of time, it is reasonable to expect that some release might 

occur as the gel recovers its properties. 

 Synthetic polymers can also be utilized in injectable self-assembling 

hydrogels. One synthetic approach utilizing segments of PEG-

poly(hydroxybutyrate)-PEG block copolymer hydrogels with α-cyclodextrin has 

been used to cause gelation, compared to the block copolymer alone which is 

soluble.230,231 Cyclodextrins form a necklace-like molecular structure with linear 

polymers such as PEG,232,233 which contribute to the crystallinity of the polymer. 

The gels are shear-thinning and thixotropic, reducing in viscosity by about 5-fold 

after 10 minutes of agitation and then recovering over a period of 12 hours. The 

gels released entrapped FITC-dextran (20 kDa) over 25 days at a nearly constant 

rate after gelation. However, the same concern as above applies—the gels were 

allowed to thicken for 12 hours prior to the start of the release study. Also the 

viscous and weak (~100 Pa*s viscosity at low shear rate)231 rheological properties 

of these gels may lead to irreversible deformation under nearly any load. 



  40 

Chapter 3: INJECTABLE HYDROGELS FOR SPACE FILLING 

APPLICATIONS 

 

3.1. Introduction  

 Because injectable hydrogels assume the shape of the environment into 

which they are placed, they are suitable choices for some materials which neither 

release drugs nor serve as tissue engineering matrices, but instead provide a 

structural, barrier, or space-filling function.3,5,234–238 For plastic surgery or tissue 

filling applications, minimally invasive administration and minimized scar 

formation make injectable materials ideal. Using embolic agents for diverting or 

eliminating flow in blood vessels can be useful for treatment of arteriovenous 

malformations or aneurysms. Similar materials might also be useful for 

contraception. Injectable hydrogels have also been investigated as tissue barriers 

for adhesion prevention or as bulking agents to reinforce weakened tissue. 

 There are several design considerations for hydrogels to be used in space-

filling applications. Typically, the primary consideration is that hydrogels tend to 

be relatively weak, and so both the modulus and the viscoelastic character (i.e. 

phase angle) of the gel must be suitable for the application. For a material to be 

resilient and resistant to creep in response to constant or periodic stresses, it must 

lose very little of the energy put into it—i.e. the material must be highly elastic 

(phase angle near zero). Deswelling is likely to be problematic in applications 

such as endovascular embolization where full occlusion of a space is a necessary 

function of the material. Swelling in the same applications should also be limited 
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to avoid exerting undue forces on weakened vessel walls. Other considerations 

include bioadhesion, solute transport through the device, biocompatibility, 

sterilization, deliverability (such as through a catheter), delivery time, gelation 

time, and degradability (and if so, degradation time). 

 In this section, injectable space-filling hydrogels reported in the recent 

literature will be presented according to the type of crosslinking responsible for in 

situ gelation (physical, chemical, or multiple). While many materials such as pre-

fabricated gels and silicone are used as injectable fillers in cosmetic surgery239–242 

and as tissue bulking agents,243–245 this section will focus on materials which 

undergo an increase in mechanical properties after administration. 

 

3.2. Physically Crosslinked Hydrogels 

 Physical gels form associative networks without covalent crosslinks 

connecting the constituent molecules. Whereas chemical gels tend to be highly 

elastic, some physical gels tend to be viscoelastic144,246 which is disadvantageous 

for most space-filling applications. For example, physical gels of poly(N-

isopropylacrylamide) are formed due to hydrophobic interactions between side 

groups.247–249 During deformation of the material, hydrophobic interactions 

between side groups can be “broken” and then reformed between different 

combinations of polymer side groups. The interchangeable nature of the 

hydrophobic interactions can result in a viscous or viscoelastic gel.135,144,250 The 

phase angle can be controlled by a number of factors including 
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concentration,130,246 polymer architecture,250 light pre-crosslinking,118,119 in situ 

crosslinking,136,251 or molecular weight.130 

 One application of injectable hydrogels is intra-myocardial injection 

following myocardial infarction slow the progression of heart disease by reducing 

stresses on the infarcted tissue.3,252 Degradable physical gels of poly(NIPAAm-

co-AAc-co-HEMA-poly(trimethylene carbonate)) were shown to lead to 

improved contractility, ventricular wall thickness, and capillary density at 8 weeks 

after injection.253 Though no rheological data was reported, the gels were initially 

able to be stretched to ~200% strain. However it is unclear whether the gels were 

effective after 8 weeks and especially after degradation of the gel. If not, gel 

would need to be re-injected to be effective for more than a few months, which 

would be impractical. Self-assembling peptide hydrogels have been investigated 

for myocardial injection as well, but gels alone did not lead to improved outcome 

as measured by cardiac function or ventricular wall thickness.223,254,255 These 

hydrogels did show encouraging results in a rat model when releasing growth 

factors in a tissue engineering approach,254,255 but the data from hydrogels without 

growth factors suggests that the gels’ mechanical properties are insufficient to 

provide an improved outcome.  

 Copolymer architecture was used by Lin and Cheng to make injectable 

gels of elastic modulus between 1000-2500 Pa using block and star copolymers 

with a central PEG group and terminal poly(NIPAAm) groups.250 The materials 

exhibited reversible gelation due to the poly(NIPAAm) groups above the LCST of 

26-29°C. These gels show limited syneresis, a fast injection time, and some 
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elasticity (tan δ between 0.24-0.62). Stereocomplexing degradable star 

copolymers containing 8-arm PEG and terminal segments of either poly(D-lactic 

acid) (PDLA) or poly(L-lactic acid) (PLLA) were shown to exhibit lower gelation 

concentrations and higher strengths when equimolar amounts of each enantiomer 

were present compared to PEG-PLLA alone and compared to triblock 

copolymers.256 These gels were relatively strong, with the gels having up to 14 

kPa storage modulus and low phase angle. 

 Lightly crosslinked temperature-responsive gels based on poly(NIPAAm) 

have been developed for space-filling applications. Below the LCST, light 

crosslinking allows for the material to behave as a liquid, and yet above the LCST 

allows for improved elasticity characteristic of a chemical gel. In general, 

temperature-responsive materials with light pre-crosslinking tend to be weaker 

than temperature-responsive materials which undergo crosslinking in situ because 

the crosslink density is limited to a low fraction of comonomers. However these 

polymers do not have reactive groups present which may improve their 

biocompatibility. A lightly crosslinked copolymer of poly(NIPAAm-co-butyl 

methacrylate) lightly crosslinked with PEG-diacrylamide groups119,257 was 

investigated for embolization of cerebral aneurysms alone or in combination with 

protection devices such as stents and coils.85 Because of the low LCST of 13-

18°C, a cooling jacket had to be continuously flushed with 4°C saline to prevent 

gelation inside the microcatheter containing the polymer prior to delivery. 

Complete occlusion was observed after 14 days when the polymer was co-

administered with a stent or both stent and coil, but partial recanalization was 
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observed in aneurysms with neither, likely due to the low modulus of the polymer 

(storage modulus ~ 1000 Pa). It is also difficult to assess the effectiveness of the 

polymer alone because the study was only carried out for 14 days and the 

untreated control aneurysms did not rupture.85 

 Vernengo et al. used a similar polymer design of poly(NIPAAm) lightly 

crosslinked with PEG-dimethacrylate of various molecular weights for nucleus 

pulposus replacement.235 These materials are injectable and are reported to 

maintain their mass for up to 90 days in vitro, with compressive moduli over 50 

kPa seen in several of the formulations, particularly those with lower molecular 

weight PEG (below 4.6 kDa). However, using this range of PEG resulted in 

equilibrium water content that was near or below 50 wt% when the polymers 

were formulated at 15 wt%. Therefore, the gels shrank to approximately 30% of 

their initial volume within 90 days. This degree of shrinking could be problematic 

for a load-bearing material, due to concentration of stress on the shrunken 

implant, absence or deformation of the material potentially allowing for bone-

bone contact, or even risk of the implant being displaced.  

 Another material design used for intra-myocardial injection involves the 

use of a dextran and PCL-based degradable macromolecular crosslinker 

subsequently copolymerized with NIPAAm to yield a pre-crosslinked injectable 

hydrogel.258 The materials had storage modulus up to 1500 Pa depending on the 

crosslinker content. This material was injected into infarcted heart tissue in rabbits 

4 days post-infarct.259 After 4 weeks, they showed increased ejection fraction and 

lower left ventricular end diastolic diameter (LVEDD). While no material was 
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observed at 4 weeks in the histology due to degradation of the crosslinker, it is 

unclear if this material has longer term effects either on cardiac function or 

biocompatibility due to its partial non-degradability. 

 Ionic crosslinking of alginate gels that occurs based on local tissue 

calcium concentration has also been used as an injectable bulking agent in 

myocardium.260 Alginate solution was injected 7 days post-infarct in rats. After 8 

weeks, animals receiving alginate injections showed increased wall thickness and 

lower LVEDD. It was shown by staining that most of the material was not present 

in the infarct by 6 weeks. However, as with other myocardial bulking agents, it is 

unclear how the heart performs well past degradation. There is also evidence 

suggesting that increases in wall thickness are insufficient to prevent unwanted 

left ventricular remodeling post-infarct,261 and that long-term improvement in 

function may depend as much or more on healing in the infarct site rather than the 

stresses being absorbed by the injected gel.261–263  

 

3.3. Chemically Crosslinked Hydrogels 

 Covalently crosslinked materials based on liquid or injectable precursors 

are useful for space-filling applications because they form highly elastic network 

polymers with phase angles near zero. These materials are not as prone to creep as 

physical gels, and therefore tend to be suitable for applications that require load 

bearing or long-term exposure to stress. The precursor materials can potentially be 

delivered through a catheter without solidification, and gelation time can be easily 

controlled.  
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 In situ photopolymerization of a PEG-based crosslinker and N-vinyl 

pyrrolidone has been used to form a thin barrier on the interior of blood vessels to 

reduce thrombosis following vascular injury.5 The photoinitiator was first 

adsorbed onto the vessel surface followed by polymerization, creating a hydrogel 

with a nearly uniform thickness conforming to the surface of the vessel wall. The 

liquid precursor materials can also penetrate into the tissue, leading to adhesion 

between the gel and the tissue. Gel formation took place within seconds, and gel 

thickness was well controlled by adjusting the polymerization time. The gels 

significantly reduced thrombosis and reduced neointimal thickening by 80% after 

2 weeks in a rabbit balloon injury model.  

 In situ crosslinking between two soluble or liquid precursors has been 

used in a variety of bioinert or structural materials. One of the strongest is a 

reverse-emulsion (water-in-oil) system developed by Vernon et al. consisting of 3 

mass equivalents of a mixture of two organic precursors (one functionalized with 

thiols and the other with acrylates) mixed with 1 equivalent of aqueous buffer, 

resulting in 75 wt% gels.264 Reverse-emulsion gels made of tetrafunctional 

pentaerythritol tetrakis(3-mercaptopropionate) (QT) and pentaerythritol triacrylate 

(TA) had ultimate strength in compression exceeding 6 MPa and ultimate 

deformation of 37%. Stabilization with a surfactant was required for gelation to 

provide high surface area between the oil phase containing the precursors and the 

alkaline aqueous phase which activates the reaction. A similar system based on 

QT and poly(propylene glycol) diacrylate (PPODA) has recently been developed 

for intracranial aneurysm embolization.83,84 The gelation kinetics of this system 
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are desirable for embolization because there is a time after mixing during which 

the material is still injectable as a liquid with a phase angle near 90° (purely fluid 

versus elastic) and low viscosity. Then gelation occurs quickly, resulting in a 

material with low phase angle near 0° (purely elastic). A number of factors affect 

the gelation time and final properties of these materials, including mixing time 

and the composition of the aqueous phase.83 In vivo studies of the PPODA-QT 

system in swine showed neointimal growth at 1 month when the material was 

used to incompletely fill (80-90 vol%) aneurysms to avoid re-entry of material 

into the parent vessel.84 Based on the high strength of these gels, they were able to 

be deployed successfully without a second device such a stent to retain the gel 

inside the aneurysm. Also the deliverability time of these strong gels is much 

lower and the delivery process easier than for the solvent-exchange Onyx system 

(poly(ethylene-co-vinyl alcohol) delivered in DMSO)81,265 currently approved in 

the US. 

 Natural-synthetic hybrid in situ crosslinking materials have been 

developed for bioinert applications as well. Cloyd et al. screened a variety of gel 

types for mechanical matching of human nucleus pulposus and concluded that in 

situ crosslinking hydrogels based on hyaluronic acid and PEG-grafted chitosan 

was an appropriate match.234 These materials had moduli in compression between 

5-20 kPa. Hybrid hydrogels based on HA and methylcellulose crosslinking by 

aldehyde reaction with hydrazides showed moderate cytotoxicity in vitro, but 

were effective in preventing peritoneal adhesions in vivo in a rabbit cecal injury-

side wall defect model.266 Gels with methylcellulose were shown to be stronger 
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than in situ crosslinking HA gels, but all of the gels tested were weak, with shear 

moduli below 500 Da. These gels exhibited slower degradation than HA-based 

gels, dependent on the type of cellulose derivative used. This material design is 

suitable for prevention of peritoneal adhesions because complete surface coverage 

and biocompatibility are primary concerns, while the strength requirement is 

relatively low.  

 So-called “fibrin glue” forms upon the conversion of fibrinogen to fibrin 

by thrombin, and so gels can be made on demand by mixing thrombin and 

fibrinogen solutions together—for example, using a double-barreled syringe. 

These gels have good biocompatibility, are degradable, and can form gels rapidly. 

Fibrin glues have long been used as surgical sealants,267–269 and more recently 

have been evaluated for intramyocardial injection after infarction. Mukherjee et 

al. evaluated the injection of a fibrin-alginate composite gel into infarcted 

myocardium in pigs and found that infarct expansion was prevented for 2 weeks 

after injection.270 Promising results have also been obtained using fibrin glue in 

the same application both alone and seeded with skeletal myoblasts in smaller 

animal models.271,272  

 

3.4. Physically and Chemically Crosslinked Hydrogels 

Gels which crosslink both physically and chemically have potential to combine 

the advantages of fast gelation typical of temperature-responsive physical gels 

with the strength and elasticity of a covalently crosslinked material. Combining 

poly(NIPAAm-co-HEMA-acrylate) with either thiol-functionalized 
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poly(NIPAAm)273,274 or thiol-functionalized crosslinkers142 yields stronger gels 

with improved elastic properties at low frequency compared to physical gels. 

Alternatively, thiol-functionalized poly(NIPAAm) forms strong and elastic 

physical-chemical gels upon mixing with PEGDA below the LCST, which, when 

heated, reach storage moduli near 1 MPa, an exceptionally high value for a 

hydrogel.275 Alternatively, NIPAAm-based macromers can be polymerized in situ 

to obtain physical-chemical gels.276 Yet some frequency response is still observed 

in physical-chemical gels when allowed to crosslink above the LCST, and the gel 

moduli plateaus at lower values when the gels are heated to 37°C more quickly,274 

which indicates that crosslinking may be incomplete when the polymers must 

crosslink at temperatures above the LCST. These materials also are non-

degradable.  

 Degradable physical-chemical gelling systems based on Michael addition 

reactions between poly(organophosphazene)s with other 

poly(organophosphazene)s or PEG-based crosslinkers have recently been 

reported.251,277,278 Some of these gels with 8-arm PEG-based crosslinkers251 

showed the highest storage moduli (over 40 kPa) and slow degradation, with over 

half the gel mass remaining after 90 days after subcutaneous injection in mice. 

FT-IR data also suggests that the gels are capable of crosslinking at 37°C over 

about 40 minutes. While the poly(organophosphazene) acrylated precursor was 

found to be somewhat cytotoxic even at a very low concentration of 0.05 wt%, the 

same concentrations of the crosslinked hydrogel led to cell viability similar to 

cells without polymer. 
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Chapter 4 – TEMPERATURE-RESPONSIVE GRAFT COPOLYMER 

HYDROGEL DESIGN FOR CONTROLLED SWELLING AND DRUG 

DELIVERY 

 

4.1. Introduction 

 Poly(NIPAAm) gels exhibit substantial syneresis (shrinking and expulsion 

of solvent) when heated above the LCST,115–117,279 and so resistance to shrinking 

is an important consideration for the design of nearly any NIPAAm-based 

biomaterial. For most applications of in situ forming hydrogels, the ideal case is 

that the material transitions quickly from liquid to solid with no change in 

volume. For example, wound healing and embolization applications require 

retention of the hydrogel's original size to maintain contact with the surrounding 

tissue. For controlled drug delivery, a fast sol-to-gel transition without syneresis 

could reduce the high initial burst release of hydrophilic drugs typical of many in 

situ forming materials.7,143 

 There is evidence which suggests that the LCST depends on the number of 

consecutive NIPAAm repeat units in a polymer chain,110,111 while swelling 

depends on the mass of water that a hydrophilic comonomer retains within the 

gel.109,110,130 In other words, the LCST can be considered as a function of 

comonomer molar fraction, while swelling is a function of weight fraction. 

Copolymerization of NIPAAm with low molecular weight hydrophilic 

comonomers has failed to achieve full volume retention and an LCST below body 

temperature.105,118,280 Alternatively, graft copolymer architecture allows for a 
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comonomer to comprise a low molar fraction of the comonomers but a higher 

weight fraction of the polymer. For example, a poly(NIPAAm) or poly(NIPAAm-

co-BMA) backbone crosslinked with 6 kDa NH2-PEG-NH2 (~1 mol% or 38 wt% 

PEG) provides swollen and hydrophilic temperature-responsive gels with a 

minimal increase in LCST due to the PEG.257,119 Random copolymers of 

NIPAAm with methoxy-PEG-methacrylate (mPEGMA) have been reported as 

candidate materials for cell encapsulation or in situ forming implants.130 These 

extremely high molecular weight (3-4 MDa) polymers formed elastic gels at low 

polymer concentrations which retained their volume for over 10 days. However, 

because PEG is linked to the polymer backbone via an ester group in this and 

other similar materials, the side chains will eventually hydrolyze over a 

physiologically relevant time, leaving ionized methacrylic acid units which cause 

increased LCST and either partial or complete dissolution of the polymer under 

physiological conditions.145,210,281  

 Here, the synthesis and characterization of new water-stable graft 

copolymers with controlled equilibrium swelling based on NIPAAm and 

Jeffamine® M-1000 acrylamide (JAAm) is reported. Jeffamine® M-1000 is a 

random copolymer of ethylene oxide (EO) and propylene oxide (PO) in a 19:3 

EO:PO ratio and approximately 1000 Da molecular weight 282, with one methoxy 

end and one primary amine end, affording a stable amide linkage to the polymer 

backbone. The methoxy end group may decrease the material LCST and improve 

gel stability via interactions between the chain end and the hydrophobic 

poly(NIPAAm) core relative to the hydroxyl end group of PEG.130,283 The 
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hypothesis for this work was that JAAm would be useful as a component in a 

graft copolymer architecture for control of the swelling and release properties of 

NIPAAm-based gels with a minimal effect on LCST. The use of crosslinkers was 

avoided in the present work to isolate the LCST and swelling effects of JAAm 

rather than confounding those with the effects of the crosslinker itself. A 

secondary reason for this decision is that physical gels have improved flexibility 

by virtue of their convenient handling properties as liquids below the LCST and 

also their potential for conversion from gel to sol in a resorbable polymer.122–124 

 Copolymers of NIPAAm with or without various amounts of JAAm were 

synthesized in two ranges of molecular weights in order to ascertain the effect of 

JAAm on gelation and swelling at various polymer concentrations. These 

materials were synthesized and characterized via 1H nuclear magnetic resonance 

spectroscopy (NMR), differential scanning calorimetry (DSC), cloud point 

determination, and high-performance liquid chromatography (HPLC). Two high 

molecular weight polymers with markedly different equilibrium swelling behavior 

were further characterized for rheological properties and protein release kinetics, 

using ovalbumin as a model drug. 

 

4.2. Materials and Methods 

 

4.2.1. Materials 

 All materials were reagent grade and obtained from Sigma-Aldrich unless 

otherwise noted. NIPAAm monomer was recrystallized from hexane. 
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Azobisisobutyronitrile (AIBN) was recrystallized from methanol. Benzene and 

1,4-dioxane were anhydrous and used as received. Triethylamine (TEA) was 

distilled and stored under nitrogen. HPLC grade tetrahydrofuran (THF) was used 

for low molecular weight polymerizations and as the mobile phase for molecular 

weight and polydispersity determination.  Jeffamine® M-1000 polyetheramine 

was donated by Huntsman Corporation (The Woodlands, TX, USA). 

 

4.2.2. Synthesis 

 Jeffamine® M-1000 acrylamide (JAAm) was synthesized from Jeffamine® 

M-1000 polyetheramine as shown in Figure 4.1A. Jeffamine® M-1000 (20 g, 20 

mmol) was dissolved at 10 w/v% in dichloromethane (DCM) along with TEA 

(3.3 mL, 24 mmol) and maintained at 0°C under nitrogen atmosphere. Acryloyl 

chloride (1.95 mL, 24 mmol) was then added dropwise into the solution under 

stirring and the reaction was allowed to proceed for at least 6 hours at 0-4°C at 

under nitrogen atmosphere. Following the reaction, DCM was evaporated and the 

residue was dissolved in 0.1 N sodium bicarbonate (200 mL). The product was 

extracted into DCM and the organic layer evaporated once more. JAAm was 

solidified by cooling on ice, vacuum dried, and stored at 4°C until use. 
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Figure 4.1. Synthesis of A) Jeffamine® M-1000 acrylamide (JAAm) macromer 

and B) poly(NIPAAm-co-JAAm) 

 

 Poly(NIPAAm-co-JAAm) copolymers were synthesized by radical 

polymerization in each of two solvent mixtures, either 90:10 benzene: dioxane 

(high molecular weight, HMW) or 80:20 dioxane: THF (low molecular weight, 

LMW), as shown in Figure 4.1B. Feed ratios in the polymerizations were either 

100:0, 85:15, or 70:30 NIPAAm: JAAm by mass. Direct polymerization of 

monomers was chosen rather than side-chain substitution (for example, using N-

acryloxysuccinimide) because direct polymerization allows for one-step synthesis 

and easy purification without hydrolysis of the reactive intermediate 145. 

Monomer solutions were bubbled with nitrogen for at least 20 minutes prior to 

addition of the initiator to reduce dissolved oxygen. Polymerizations were 

conducted at 65°C for 24 hr under a slight positive pressure of nitrogen, with 

AIBN (0.007 mol AIBN/mol of total monomer) as the initiator. For HMW 

polymerizations only, approximately half of the solvent was either decanted or 
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evaporated and then replaced by an equivalent volume of acetone to reduce the 

viscosity of the polymer solution. Copolymers were collected by precipitation in 

10-fold (HMW) or 15-fold (LMW) excess of 0-4°C diethyl ether, filtered, and 

vacuum-dried overnight. The product was then dissolved in deionized water, 

dialyzed against deionized water at either 10,000 MWCO (HMW) or 3,500 

MWCO (LMW) for at least 3 days at 4°C, and lyophilized. 

 

4.2.3. Composition and Molecular Weight 

 1H NMR (Varian Inova, 400 MHz) was used to confirm successful 

synthesis and determine the composition of JAAm and the synthesized polymers. 

D2O was used as the NMR solvent.  

 The molecular weight and polydispersity of the synthesized polymers was 

determined by gel permeation chromatography (Shimadzu Corp.) in conjunction 

with static light scattering (MiniDawn, Wyatt Technology Corp.) with THF as the 

mobile phase. Samples were prepared by dissolving the polymers in THF with a 

concentration of 10 mg/mL. 

 

4.2.4. LCST Transition 

 The LCST transitions of the synthesized copolymers were evaluated by 

DSC (MC-DSC, Calorimetry Sciences Corp.). Samples were dissolved at 5 wt% 

in 150 mM PBS (pH 7.4). Scans were taken from 10°C to 80°C at a heating rate 

of 1°C/min. Samples were measured in triplicate. 
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 Synthesized copolymers were dissolved at 0.1 wt% in 150 mM PBS (pH 

7.4) and the LCST transition characterized by cloud point determination. This 

concentration was chosen because none of the polymer solutions saturated the 

detector when heated above the LCST. Cuvettes containing the polymer solutions 

were allowed to equilibrate in a water bath for at least 90 s prior to each 

measurement. Absorbance at 450 nm was measured every 1°C by a UV/Vis 

spectrometer from 25-45°C with buffer alone as the reference. Some polymers 

precipitated and formed aggregates upon heating. In this case, the greatest value 

of absorbance before observed aggregation was recorded as the maximum value 

and all previous values were normalized relative to the maximum value. 

Absorbance values for polymers that did not aggregate were normalized to the 

absorbance at 55°C.  

 

4.2.5. Gelation and Swelling 

 The swelling behavior and gel stability of the synthesized copolymers 

were characterized at various concentrations and molecular weights. Solutions of 

each low molecular weight (LMW) polymer were prepared at 5, 10, 20, and 30 

wt% and of each high molecular weight (HMW) polymer at 5, 10, and 20 wt%. 

Solutions of HMW polymers at 30 wt% were very viscous and difficult to 

dispense, particularly for the homopolymer. Three approximately 1 g aliquots of 

each polymer solution were placed into each of three 2 mL glass vials and heated 

to 37°C in a water bath. After 30 minutes, vials were photographed and then 1 mL 

of 37°C pre-warmed PBS was added to each sample. Solutions were maintained 



  57 

in a 37°C room for the remainder of the study. Vials were photographed at 

various time points to assess gel swelling.  

 A diagram depicting the method used to calculate swelling is shown in 

Figure 4.2. Images of the vials were cropped to contain only the entire water 

volume in the vial. Images for each vial at each time point were converted to 

grayscale and then thresholded into either white (gel) or black (not gel) pixels 

both manually and using MATLAB (Version R2009b, The MathWorks, Inc.). 

Manual thresholding was done only to remove image artifacts such as light 

reflections. The initial gel height in pixels corrected for any differences in image 

size was calculated for each sample in MATLAB using the equation  

 

 

 

where wt is the width in pixels of the image at time t, and hi and wi are the height 

and width, respectively, in pixels of the image of the same sample (gel plus any 

expelled water) at 30 minutes after gelation (before any additional buffer was 

placed on top of the gels). Gel volume was determined by assuming that 

horizontal cross sections of each gel were cylindrical. The number of white (gel) 

pixels in each row of an image was calculated, then each row's pixel count 

divided by 2 and squared. The sum of these values over all rows is a measure of 

volume, V. The initial gel volume for the same sample, V0, was determined using 

the formula  
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2  

 

Swelling was then reported as a fraction of the initial gel volume, i.e. V / V0. 

Significant differences in swelling between gels at the same concentration and 

time point were determined by Student’s t-test (α = 0.05).  

 

Figure 4.2. Method of swelling measurement. Images were cropped manually and 

thresholded into white (gel) or dark (no gel) pixels. Assuming cylindrical cross-

sections, the gel volume was calculated and then divided by the initial volume of 

the same sample (i.e. the volume of the gel plus any excess water at t = 30 min). 
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4.2.6. Rheometry 

 Rheological properties of 20 wt% HMW poly(NIPAAm) and HMW 

poly(NIPAAm-co-JAAm) (70:30 feed ratio) hydrogels at equilibrium were 

measured. For copolymer gels, about 400 µL of polymer solution was placed on 

the stage of a rheometer (MCR-101, Anton Paar USA Inc.), and the flat 25 mm 

diameter plate set to a gap height of 0.5 mm. The rheometer stage was initially 

20°C and then heated to 37°C for 60 seconds before measurements were taken. 

Because homopolymer gels shrank rapidly after gelation, the methods were 

altered to measure the properties of the gels at equilibrium. 1 mL of the 

homopolymer solution was first dispensed into the well of a 6-well tissue culture 

plate, heated to 37°C until completely opaque, and then incubated in excess PBS 

at 37°C for 24 hr to reach equilibrium. The gel was then quickly transferred to the 

pre-warmed rheometer stage and measurement started immediately.  Gels were 

evaluated with normal force maintained during measurement at 100 +/- 50 mN 

and a humidity chamber placed over the sample to reduce evaporation. The linear 

viscoelastic region for each gel was determined by varying the oscillatory strain 

applied to the gels between 0.01% and 25% at 1 Hz frequency (not shown). The 

materials were then subjected to oscillatory strain within the linear viscoelastic 

region and the frequency varied from 0.1 to 100 Hz..  Storage modulus (G') and 

loss modulus (G") were determined at each frequency.  
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4.2.7. Ovalbumin Release Kinetics 

 Protein release kinetics from 20 wt% HMW poly(NIPAAm) and HMW 

poly(NIPAAm-co-JAAm) (70:30 feed ratio) hydrogels were measured at 37°C 

using ovalbumin (44.3 kDa) as a model drug. Ovalbumin (10 mg/mL) was 

dissolved in the polymer solutions at 4°C and then 1 g samples (n = 3) were 

weighed out of each common solution into 4 mL vials. Gels were formed by 

incubation in a 37°C water bath for 15 minutes. The 4 mL vials with gels were 

then inserted into pre-warmed 20 mL vials which were then filled to the top with 

20 mL pre-warmed PBS and maintained in a 37°C room. This system was used 

because the copolymer gels were adhesive and difficult to handle above the 

LCST. Buffer was completely replaced for homopolymer samples after 1 day 

incubation in order to maintain infinite sink conditions. Aliquots were taken at 

various time points and frozen at -20°C. Protein concentration in the aliquots was 

measured at the end of the study using the BCA Protein Assay (Pierce 

Biotechnology) according to the manufacturer's instructions using a UV/Vis 

spectrophotometer (Fluostar Omega, BMG Labtech). An uncontrolled factor in 

this experiment was the surface area of the gels through which ovalbumin was 

able to diffuse out of the gel. To fairly compare the gels despite this lack of 

control, release rate normalized by gel surface area was reported in addition to 

cumulative release. The surface area of the homopolymer gels was assumed to be 

equal to the initial surface area of the gels (i.e. shrinking was not accounted for). 

Statistical analysis was performed on release rate data using repeated measures 

ANOVA with the factors being gel type and time (α = 0.05). 
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4.3. Results 

 

4.3.1. Composition and Molecular Weight 

 Successful synthesis of JAAm was confirmed by the appearance of two 

new peaks in 1H NMR (not shown) at 6.1 ppm (2H) and 5.6 ppm (1H) from the 

protons adjacent to the double bond of the acrylamide group.  The polymer feed 

ratios, composition, molecular weight, and LCST as measured by DSC are shown 

in Table 4.1. Polymer batches are abbreviated in terms of their molecular weight 

(H for high, L for low) and JAAm fraction in the feed (0, 15, or 30 wt%). When 

applicable, polymer concentration is written before the molecular weight (i.e. 20 

H 30). LMW polymers each had a polydispersity near 2.0 and Mw between 28.8 

and 37.2 kDa. HMW poly(NIPAAm) had a weight-average molecular weight 

(Mw) of 861 kDa, while the molecular weights of both HMW copolymers 

containing JAAm were considerably lower with Mw near 230 kDa, possibly due 

to lower reactivity for chain propagation steps involving JAAm or chain transfer 

caused by impurities. Polydispersities of HMW copolymers were slightly lower 

than those of LMW polymers, ranging from 1.67 to 1.90.  
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Table 4.1 Composition, molecular weight distribution, and LCST of 
poly(NIPAAm-co-JAAm) copolymers 

 JAAm content (wt%)    

Polymer Feed Ratio Composition Mw (kDa) Pd (Mw/Mn) LCST (°C) 

H 0 0 0 861.0 1.90 27.83 ± 0.06 
H 15 15 11.9 226.6 1.84 31.07 ± 0.06 
H 30 30 22.4 229.1 1.67 33.87 ± 0.15 
L 0 0 0 30.0 2.03 29.6 ± 0.06 

L 15 15 12.1 28.8 2.02 32.4 ± 0.06 
L 30 30 24.2 37.2 2.02 35.4 ± 0.06 

 
 
 
 Successful synthesis of poly(NIPAAm-co-JAAm) copolymers was 

confirmed by 1H NMR, as shown in Figure 4.3. JAAm content in the copolymers 

was calculated from the integration ratios of the peak at 3.5 ppm ascribed to the 

oxyethylene protons of the EO units (CH2CH2O) of JAAm relative to the peak at 

3.7 ppm (1H) of the lone isopropyl proton of NIPAAm (CH(CH3)2). JAAm 

weight fraction was calculated by assuming a 19:3:1 ratio of EO: PO: acrylamide 

units per macromer. JAAm content in the copolymers is reported as wt% in this 

work because weight fraction is thought to determine equilibrium swelling rather 

than the molar fraction.235 All copolymers exhibited lower incorporation of JAAm 

relative to the feed ratio, likely due to low reactivity of JAAm caused by steric 

hindrance. Batch-to-batch variability was low; in each copolymer, JAAm content 

was 74-81% of that in the feed ratio. 
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Figure 4.3. 1H NMR spectra of high molecular weight poly(NIPAAm) and 

poly(NIPAAm-co-JAAm) in D2O. 

 

4.3.2. LCST Transition 

 The LCST transition of each polymer at 5 wt% in PBS was characterized 

by DSC as shown in Figure 4.4. For both HMW and LMW copolymers, 

increasing JAAm content in the polymer caused an increase in the material LCST, 

which is consistent with previously reported data for copolymers of NIPAAm 

with PEG (meth)acrylates.130,257,235 The onset of the transition for each molecular 

weight range is about 5°C higher for H 30 and L 30 compared to the respective 

homopolymers. Increasing JAAm content also leads to broadening of the LCST 

endotherm. 
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 (A) 

 

(B) 

 
Figure 4.4. Representative differential scanning calorimetry thermograms for 5 

wt% solutions of (A) HMW and (B) LMW copolymers of poly(NIPAAm-co-

JAAm) in 150 mM PBS. 

 
 Cloud point determination was done to evaluate the broadness and average 
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in Figure 4.5. Incorporation of JAAm caused an increase in the cloud point and a 

broadening of the material LCST. Both homopolymers, H 0 and L 0, exhibited a 

sharp transition near 27°C and 29°C, respectively. H 15 and L 15 surpassed half-

maximum absorbance at 30°C and 32°C, and H 30 and L 30 did the same at 33°C 

and 35°C. Linear regression gives the following correlation coefficients for LCST 

vs. JAAm wt%: LMW by DSC: 0.240°C/wt%; HMW by DSC: 0.270°C/wt%; 

LMW by cloud point: 0.248°C/wt%; HMW by cloud point: 0.268°C/wt%  (all R2 

> 0.998). Though LCST can vary depending on the measurement technique, these 

results indicate that LCST is approximately 40 times less sensitive to JAAm than 

AAc105 on a wt% basis. 

 

Figure 4.5. Relative absorbance (λ = 450 nm) of 0.1 wt% solutions of synthesized 

copolymers in 150 mM PBS, pH 7.4. The dotted vertical line denotes body 

temperature. 
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4.3.3. Gelation and Swelling 

 Gelation and swelling of synthesized copolymer solutions at various 

concentrations was observed at 37°C. Figure 4.6A shows the gelation and 

swelling behavior of those HMW polymer solutions which formed opaque gels 

after 5 days. Polymer solutions not shown in the legend of Figure 4.6 (5 H 30, 10 

H 30) separated into a translucent phase and settled on the bottom of the vials 

within 2 hr upon heating to 37°C. The difference in gel formation between H 15 

and H 30 demonstrates that the critical polymer concentration required to form a 

gel increases with JAAm content at a given molecular weight. Greater polymer 

concentration is necessary to form copolymer gels because the EO-rich Jeffamine 

grafts play a role in hindering the chain entanglement required to form a physical 

gel.284 This is in agreement with other studies on physical gels of NIPAAm-based 

copolymers in the presence of hydrophilic molecules which show weak and 

viscous properties rather than elastic behavior when covalently bound to 

hydrophilic macromolecules.134,177 
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   (A)

  (B) 

Figure 4.6. Percentage of initial gel volume at various times after gelation for (A) 

HMW and (B) LMW copolymers of poly(NIPAAm-co-JAAm). Shape indicates 

polymer composition by feed ratio (square: 30% JAAm; circle: 15% JAAm; 

triangle: 0% JAAm). Symbols indicate polymer concentration (from highest to 

lowest concentration: large solid symbol > small solid symbol > small open 

symbol). Data are reported as mean ± s.d. (n = 3). 
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 Statistically significant differences in swelling ratio due to JAAm 

inclusion after 42 days were observed at 5 wt% between 5 H 0 and 5 H 15 (p = 

0.014), at 10 wt% between 10 H 0 and 10 H 15 (p = 0.009), and at 20 wt% 

between each pair of sample groups (20 H 0 vs. 20 H 15, 20 H 15 vs. 20 H 30, 

and 20 H 0 vs. 20 H 30) (all p < 0.005). While 20 H 30 was the only solution with 

30% JAAm in the feed that yielded gels at 37°C, those gels exhibited excellent 

resistance to shrinking and stability under physiological conditions, maintaining 

105 ± 3% of their initial volume after 42 days. Accordingly, 20 H 15 gels 

underwent minimal syneresis (83 ± 5%), and 20 H 0 homopolymer gels collapsed 

to a much greater extent, decreasing to 41 ± 1% of their initial volume. 

Representative gels of 20 H 0 and 20 H 30 are shown at various times after 

gelation in Figure 4.7. 
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Figure 4.7. Gel swelling of 20 wt% H 0 (top row) and H 30 (bottom row) at 

various times after gelation at 37°C. 

 

 Copolymers with low molecular weight in general had much poorer 

gelation characteristics, as shown in Figure 4.6B. Polymer solutions not shown in 

the legend of Figure 4.6B separated into a small translucent or opaque phase and 

settled on the bottom of the vials within 2 hr upon heating to 37°C. Homopolymer 

solutions at 10 wt% and greater formed gels at 37°C, while polymers containing 

JAAm only formed gels at 30 wt%. At 42 days, 30 L 30 became translucent and 

    H 0, 30 min        H 0, 1 day        H 0, 42 days 

 H 30, 30 min      H 30, 1 day     H 30, 42 days 
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flowed when inverted, so it was not considered a gel at that time, perhaps due to 

sensitivity to small temperature fluctuations (as low as 35°C) during incubation. 

 

4.3.4. Rheometry 

 Frequency-dependent storage and loss moduli of 20 H 0 and 20 H 30 

under oscillatory strain at 37°C are shown in Figure 4.8. Each gel exhibits 

increased resistance to deformation at higher frequencies which is characteristic 

of physical gels.275 In the frequency range 0.1-10 Hz, both gels have a phase angle 

near 45° (i.e. G’=G”), characteristic of a viscoelastic material. Homopolymer gels 

have both storage and loss moduli in the 5-50 kPa range, while the moduli for 

copolymer gels are lower, in the 10-100 Pa range.  

 

Figure 4.8. Storage (G') and loss (G") moduli of 20 H 0 and 20 H 30 at 

equilibrium subjected to oscillatory frequency sweeps with active normal force 

control at 37°C. 
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4.3.5. Ovalbumin Release Kinetics 

 Release kinetics of ovalbumin from 20 H 0 and 20 H 30 gels at 37°C is 

shown in Figure 4.9. Gel type and time were both significant factors (p < 0.001) 

with respect to release rate per surface area. Homopolymer gels provided fast 

release. During the first 15 minutes after gelation, gels decreased in volume by 

only about 20%, yet over 50% of the loaded ovalbumin was released in the same 

time. Over 90% of the loaded ovalbumin was released within 3 hours. The release 

rate from homopolymer gels decreased to near zero after 2 days. Release from the 

20 H 30 gels was much slower. Only 8% release was observed within one day 

after gelation, and an additional 7% was released over the following 5 days.  
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 (A) 

 
 (B) 

 
Figure 4.9. (A) Ovalbumin release rate in percent of loading per cm2 per day and 

(B) Cumulative fraction released from 20 H 0 and 20 H 30 hydrogels at 37°C in 

150 mM PBS, pH 7.4. Error bars represent one standard deviation (n = 3). Some 

error bars are smaller than the data points. 
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4.4. Discussion 

 

4.4.1. Effect of JAAm on LCST Transition 

 JAAm incorporation and low molecular weight both contributed to 

increased broadness of the LCST transition, especially above 0.5 relative 

absorbance. For example, the absorbance of a solution of H 0 completes over 90% 

of its transition within a range of 2°C, while L 30 must be heated over a range of 

10°C to do the same. L 15, H 30, and L 30 copolymers were all not completely 

transitioned at body temperature. The increase in broadness of the polymer LCST 

shown in both DSC and cloud point characterization can be attributed to the 

heterogeneity within a single batch of material produced by free radical 

copolymerization. It has previously been shown that both lower molecular 

weight100,285 and higher content98,105 of hydrophilic comonomers lead to higher 

polymer LCST, and that heterogeneity in both molecular weight and comonomer 

content are responsible for the broadness of the LCST transition within a single 

batch of material prepared by radical polymerization.284 In this case, molecules 

with less JAAm and higher molecular weight will transition at lower 

temperatures, while those with more JAAm and lower molecular weight will 

transition at higher temperatures. 

 

4.4.2. Gel Deswelling 

 Gel deswelling is a thermodynamically driven process. When a solution of 

a NIPAAm-based polymer is heated above its LCST, a homogeneous gel forms 
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that phase-separates into a polymer-rich gel phase and a phase consisting of 

almost pure solvent.141 This polymer-rich phase then tends toward an equilibrium 

volume.286,287 In cases where HMW polymer solutions formed stable gels, those 

with greater JAAm incorporation underwent less and slower syneresis on average. 

Homopolymer gels with low equilibrium swelling ratios began to separate from a 

substantial fraction of PBS within 30 minutes of heating above the LCST, while 

gels with JAAm and similarly low equilibrium swelling retained more water for 

hours after gelation. Afterward, the gels tended toward equilibrium over another 

2-5 days in a slower rearrangement process, during which local contacts between 

polymer molecules become increasingly favorable.141  

 

4.4.3. Lack of Gelation of Some Poly(NIPAAm-co-JAAm) Gels 

 The lack of gelation observed in copolymers containing JAAm may be 

attributed to the observations that 1) the transition temperatures of L 15 and L 30 

are both higher and more broadly distributed than HMW polymers with similar 

composition, and so fewer chains are insoluble at 37°C; and 2) LMW polymers 

require greater concentrations to form gels compared to  HMW polymers. 

Additionally, JAAm may contribute to reduced polymer-polymer interactions or 

chain entanglement, as seen in previous studies with high collagen content 

limiting the gelation of NIPAAm-based polymers above the LCST.134 Equilibrium 

(42 day) swelling of LMW homopolymer gels increased with polymer 

concentration, with 30 L 0 having V/V0 of 76 ± 17%. While 30 L 30 and 30 L 15 

gels retained a greater volume on average than 30 L 0 for the first 3 days, V/V0 



  75 

between any pair of these gels was not significantly different at any time point. 

There is an inverse relationship between the fraction of JAAm required to 

adequately control shrinking and the polymer concentration required to form a 

stable gel. An explanation for the lack of swelling difference observed in this 

molecular weight range (Mw 28-38 kDa) is that the minimum concentration 

required to form copolymer gels was so high that even homopolymer did not 

shrink much. However, JAAm may still provide controlled shrinking and drug 

delivery properties to more hydrophobic polymers in this molecular weight range. 

In particular, our group and others have previously developed resorbable 

materials with initial LCST below 25°C in the 10-80 kDa molecular weight range 

which undergo substantial shrinking even at high concentrations.123,124 

 

4.4.4. Rheological Properties and Implications for Biomaterials Applications 

 The lower strength of gels with JAAm can be attributed to their lower 

molecular weight, higher water content, and incomplete LCST transition at 37°C. 

The latter could be addressed by fractionation in aqueous medium, incorporating a 

hydrophobic comonomer, or modifying the composition of the JAAm comonomer 

to reduce its effect on increasing the LCST--for example, using an alkyl 

substitution.103 

 In terms of their potential for use as biomaterials, copolymers with JAAm 

(though weak) maintain consistent properties after gelation and lower modulus 

whereas homopolymer gels have highly dynamic properties but higher modulus. 

As both materials are hydrogels, neither is suitable for hard tissue or load-bearing 
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applications—the shear modulus of bone tissue exceeds 1 GPa.288 The weak and 

viscoelastic character of the copolymer gels renders them unsuitable for any 

application in which the material needs to retain its shape in the presence of 

nearly any amount of loading. Without further modification, these physical gels 

are likely only useful for drug delivery to non-load bearing sites or perhaps for 

cell encapsulation or drug delivery in soft tissues.130,289 However, these materials 

could be made stiffer (and more elastic) to allow for other applications by 

crosslinking—in particular, an in situ crosslinking and swelling-controlled 

material based on these materials might be useful for space-filling applications 

such as embolization83,142,275 or contraception237,290 while remaining injectable. 

Because the material is so weak and viscous above the LCST in the absence of 

crosslinking, it could potentially be injected via a catheter and then crosslink in 

situ to become stronger and more elastic. Crosslinking in situ of 2 mol% of 

monomers in a NIPAAm-based polymer gel has been shown to increase the 

storage modulus by over three orders of magnitude at 1 Hz frequency.275  On the 

other hand, homopolymer gels are strong enough to withstand greater stresses and 

retain their shape, yet their deswelling precludes them from being useful in space-

filling applications despite their potentially sufficient modulus. Additionally, 

purely physical gels tend to have phase angles well above zero and are therefore 

subject to creep in response to a low-pressure constant stress such as blood 

flow.275 
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4.4.5. Ovalbumin Release Study Limitations 

 Both gel type and time were significant factors affecting release. However, 

due to lack of control over exposed gel surface area in the release experiment, the 

release data from gels with and without JAAm are not directly comparable due to 

differences in gel surface area during the release study. When normalized to 

account for the difference in gel surface area, the release rate from 20 H 30 gels 

remained in the range 0.32-3.5% of loading per cm2 per day throughout the 

experiment, whereas the release rate from homopolymer gels was initially very 

high and fell to near zero after 2 days as the drug payload was exhausted. The 

influence of geometric differences is still not completely removed from the 

release rate data because the surface area to volume ratio (and hence the mean 

diffusion distance required for release) is different between polymers, which is a 

shortcoming of the study. Yet the vast difference in release rates cannot be 

sufficiently explained by this difference in geometry alone, as the release is 

prolonged by more than an order of magnitude in copolymer gels. Thus the more 

steady release rate per surface area observed from 20 H 30 gels indicates that the 

diffusivity of ovalbumin is greatly reduced in copolymer gels relative to 

homopolymer gels. 

 

4.4.6. Effect of JAAm on Protein Release 

 The lack of high initial burst release from 20 H 30 gels can be attributed to 

resistance to syneresis. Upon heating above the LCST, the polymer solution 

phase-separates into two phases—a homogeneous polymer-rich gel phase—
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consisting of nearly all of the polymer plus some fraction of water—and a nearly 

pure solvent phase.114,141 For 20 H 30 gels, the equilibrium water content of the 

gel being near the initial content led to a phase transition with minimal phase 

separation—therefore it can be assumed the protein is retained almost entirely 

within the polymer-rich gel phase. As the rate of release from non-crosslinked 

physical gels is known to be inversely related to their viscosity,125,132 it follows 

that the high viscosity of the 20 H 30 gel phase combined with little to no phase 

separation is the primary cause of the slow and sustained release of ovalbumin 

observed. Similarly low burst release and sustained release of dextran has been 

reported in temperature-responsive block copolymer physical gels which are also 

rich in PEO.155 Conversely, the phase transition of homopolymer gels leads to a 

high degree of phase separation following gelation, resulting in a hydrophobic 

polymer-rich gel phase and excess water. A possible explanation for the rapid 

albumin release is that, after phase separation, the albumin preferentially 

dissolved (partitioned) into the excess water phase based on its hydrophilicity and 

therefore rapidly diffused from the homopolymer gels. The vast difference in 

protein release kinetics from the two polymers used in this study demonstrates the 

potential utility of NIPAAm-based graft copolymer hydrogels for controlled drug 

delivery applications. 

 

4.5. Conclusions 

 Water-stable temperature responsive copolymers poly(NIPAAm-co-

JAAm) were successfully synthesized. Incorporation of JAAm was slightly lower 
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than feed ratio. JAAm caused a small increase in polymer LCST of 0.24-

0.27°C/wt% and increased broadness of the sol-gel transition. The gelation of 

poly(NIPAAm-co-JAAm) solutions in physiological saline depends on JAAm 

incorporation, polymer molecular weight, and polymer concentration. Significant 

differences in swelling behavior were observed between poly(NIPAAm) and 

poly(NIPAAm-co-JAAm) at high molecular weights (Mw > 225 kDa). Some 

copolymer gels underwent a sol-gel transition with almost no change in volume. 

Gelation of poly(NIPAAm-co-JAAm) solutions was generally poor at low 

molecular weight (Mw ~ 30 kDa) due to the high critical gelation concentration 

and incomplete precipitation of the polymer under physiological conditions. 

Physical gels of poly(NIPAAm-co-JAAm) are viscoelastic and have shear moduli 

approximately 500-fold lower than comparable homopolymer gels. Ovalbumin 

release from high molecular weight gels was slowed from a duration of minutes to 

a duration of over 6 days via incorporation of JAAm. The hydrolytic stability, 

hydrophilicity, and minimal LCST effect of JAAm make it suitable for inclusion 

in a variety of temperature-responsive biomaterials where control over swelling or 

drug release is required. 
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Chapter 5: TEMPERATURE-RESPONSIVE RESORBABLE HYDROGELS 

FOR PREVENTION OF PROSTHETIC JOINT INFECTION 

 

5.1. Introduction 

 Currently, injectable microsphere suspensions based on poly(lactic-co-

glycolic acid) (PLGA) provide one of the main clinically available degradable 

drug delivery vehicles.291,292 In situ forming hydrogels share this system’s 

advantages of injectability and potential for controlled release, but can undergo 

degradation much more uniformly with reduced generation of charges.122,124,293 

Hydrogels also provide viscoelastic properties that cannot be replicated with 

particulate systems, which may enable their use in additional applications in areas 

under cyclic mechanical loads, since wear debris from harder materials in joint 

spaces can lead to local toxicity.294,295 Because hydrogels contain a higher fraction 

of water compared to hard non-hydrogel materials (e.g., PLGA, hydroxyapatite), 

they offer potential for faster hydrolytic degradation. The slow degradation of 

hard materials may also be a drawback when administration of a second dose is 

desired, or in orthopaedic applications, as bone healing occurs within 6-8 

weeks.44,296 Using soft in situ forming hydrogels with tunable degradation may 

therefore enable drug delivery in many applications which are not amenable to 

sustained release carriers in currently approved products. 

 Temperature-responsive hydrogels based on N-isopropylacrylamide 

(NIPAAm) are particularly well-suited to drug delivery applications due to rapid 

physical crosslinking which takes place in physiological conditions without 



  81 

chemical reaction. Poly(NIPAAm) has a sharp lower critical solution temperature 

(LCST) in aqueous media near 30°C.97,285,297 As a sufficiently concentrated 

solution of poly(NIPAAm) is heated above the LCST, a hydrogel is formed. 

Various properties such as LCST, pH-sensitivity, or gel swelling can be 

controlled by incorporating small molar fractions (<10%) of comonomers with 

NIPAAm.98,111,103 For example, hydrophobic comonomers decrease the LCST 

while hydrophilic comonomers increase the LCST.98 Accordingly, copolymers of 

NIPAAm can be made to be degradable by incorporating comonomers with side 

chains which become more hydrophilic upon degradation either by 

water122,124,135,136,293 or specific enzymes,137 causing an increase in LCST. When 

the LCST increases to above body temperature, the polymer re-dissolves. 

 Effective controlled drug delivery from NIPAAm-based hydrogels is 

limited primarily by high burst release following gelation. As a poly(NIPAAm)-

based gel forms as a result of physical crosslinking, a homogeneous polymer-rich 

phase (i.e., the gel) separates from a fraction of the original solvent and then tends 

toward an equilibrium composition.141,297 Macroscopically, this is observed as 

shrinking and expulsion of solvent. While the polymer solutions tend to be 

formulated at 30 wt% or less for ease of handling, the final polymer concentration 

in the gel is about 50 wt%.115,118,105,142 Upon phase separation, hydrophilic drugs 

are prone to distribute predominantly into the solvent phase rather than the gel 

phase. As a result of shrinkage and drug distribution into the expelled solvent, 

most of the payload of both low molecular weight hydrophilic drugs116 or 

proteins143,298 is typically released quickly and completely upon the phase 
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transition of crosslinked NIPAAm-based gels. Poly(NIPAAm) gels without 

chemical crosslinking show even more burst release, with >90% protein release 

occurring in under 1 hr.144 

 Several methods have been reported for slowing or controlling drug 

release from temperature-responsive materials. Crosslinked NIPAAm copolymer 

gels have been demonstrated for on-off release, with the on (drug-releasing) state 

being either below117,143,299 or above116 the gel transition temperature. Prolonged 

protein release on the order of weeks has been reported from some crosslinked 

gels as well300—however, crosslinked gels must be loaded with drug by soaking 

in a drug solution, and none of these studies report resorbable materials. Recently, 

alternative strategies relying on electrostatic interaction between the polymer and 

drug,147 covalent conjugation of the drug by a labile linkage,293 and co-delivery of 

embedded drug-loaded microspheres293 have been demonstrated for prolonged 

protein release from temperature-responsive resorbable hydrogels. 

 This chapter describes the development of a resorbable NIPAAm-based 

polymer system which is capable of providing controlled release on its own, 

without requiring covalent crosslinking, intermolecular interactions, covalent 

conjugation of drug, or separately prepared embedded particles. Such a system 

would be simple to reliably manufacture and use and would have potential for a 

variety of local or sustained drug delivery applications. In Chapter 4, it was 

demonstrated that incorporating hydrophilic grafts of Jeffamine® M-1000 on a 

poly(NIPAAm) backbone yields physical gels which exhibit controlled swelling 

and slow protein release.144 Here, the hypothesis was that using Jeffamine® M-
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1000 grafts in a resorbable copolymer gel would reduce burst release upon 

gelation and, instead, cause any entrapped drugs to be subsequently released by 

diffusion or hydrogel degradation. These copolymers were synthesized and 

characterized to evaluate the effect of graft content on hydrogel properties and the 

feasibility of using these gels for delivery of low molecular weight drugs was 

evaluated. 

 One application for this these materials is especially well suited is for 

controlled release in a joint space. In particular, antibiotic delivery following total 

joint replacement could be used to prevent infections from arising by delivering 

antimicrobials directly at the surface of a joint prosthesis. There is no current 

opportunity for local antimicrobial delivery over the entire surface of a cementless 

prosthetic hip or over the majority of the surface of a prosthetic knee. Thus the 

feasibility of using soft, cohesive materials developed in this work was evaluated, 

and antimicrobial release kinetics were compared to that of antimicrobial-loaded 

bone cement.  

 

5.2. Materials and Methods 

 

5.2.1. Materials  

 All materials were reagent grade and obtained from Sigma-Aldrich unless 

otherwise noted. NIPAAm was recrystallized from hexane. Azobisisobutyronitrile 

(AIBN) was recrystallized from methanol. HPLC grade tetrahydrofuran (THF) 

was used for polymerizations and as the mobile phase for molecular weight 
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determination.  Jeffamine® M-1000 was donated by Huntsman Corporation (The 

Woodlands, TX, USA). 

 

5.2.2. Synthesis  

 JAAm was described as reported in Section 4.2.2 with the exception that 

the organic phase from the extraction was purified by column chromatography. 

After evaporation of DCM, JAAm was obtained as a viscous clear to light yellow 

liquid. JAAm was solidified by cooling on ice, vacuum dried overnight, then 

collected and stored at -20°C until use. 

 Copolymers of NIPAAm, (R)-α-Acryloyloxy-β,β-dimethyl-γ-

butyrolactone (DBLA), and JAAm were synthesized by radical polymerization 

with 80% dioxane / 20% THF as the solvent. This solvent blend was chosen to 

obtain a weight-average molecular weight near 40 kDa. The molar amount of 

DBLA relative to NIPAAm was held fixed at 92.8:7.2, as this was shown in 

previous work to provide a material with an LCST after degradation that exceeds 

37°C.122 JAAm was fed into the reaction as 0, 15, or 30% of the mass relative to 

NIPAAm. Monomer solution (10 w/v%) was bubbled with nitrogen for at least 20 

minutes prior to addition of initiator. After this time, AIBN was added (0.007 mol 

AIBN/mol of total monomer) and the reaction allowed to proceed for 18 hr at 

65°C under nitrogen.  Copolymers were collected by precipitation into 10- to 15-

fold excess of chilled diethyl ether. Following precipitation, the product, 

poly(NIPAAm-co-DBLA-co-JAAm) (abbreviated pNDJ) was collected by 

filtration and dried overnight under vacuum. The product was then dissolved in 
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deionized water and dialyzed against 3500 MWCO at 4°C for 20 hours with the 

excess water replaced 3 times. Materials were then lyophilized and stored under 

nitrogen at -20°C until use.  

 

5.2.3. Composition and Molecular Weight 

 1H NMR (Varian Inova, 300 MHz) was used to confirm successful 

synthesis and determine the chemical composition of the synthesized polymers. 

CDCl3 was used as the NMR solvent.  

 The molecular weight and polydispersity of the synthesized polymers was 

determined by gel permeation chromatography (Shimadzu Corporation) in 

conjunction with static light scattering (MiniDawn, Wyatt Technology 

Corporation) with THF as the mobile phase. 

 

5.2.4. LCST Measurement and Degradation Kinetics 

 Synthesized copolymers were dissolved at 0.25 wt% in 150 mM PBS (pH 

7.4) and analyzed for LCST properties by cloud point determination. None of the 

polymer solutions saturated the detector when heated above the LCST. Cuvettes 

containing the polymer solutions were allowed to reach the desired temperature in 

a water bath for at least 90 s prior to each measurement. Absorbance at 450 nm 

was measured every 1°C by a UV/Vis spectrometer throughout the range of the 

LCST transition with buffer alone as the reference. Some polymer solutions 

reached a temperature at which the absorbance began to decrease due to 

precipitation and settling out of polymer particles from the solution. In this case, 
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the last value of absorbance before observed aggregation was recorded as the 

maximum value and all previous values were normalized relative to this 

maximum value. Absorbance values for polymers that did not show a decrease in 

absorbance with heating were normalized to the absorbance at 55°C.   

 Solutions of pNDJ15 and pNDJ30 were dissolved at 5 wt% in 150 mM 

PBS (pH 7.4) and several samples of each were incubated separately at 37°C. 

After various time points, single samples of polymer solution were removed and 

frozen at -20°C to stop degradation. The study was stopped for each material after 

the polymer solution was completely transparent at 37°C. After the end of the 

study, all of the frozen samples were thawed, diluted to 0.25 wt%, and measured 

for LCST by cloud point determination as described above. LCST is reported as 

the temperature at which the absorbance was at least half of the maximum 

observed. The degradation kinetics of pND have been reported previously.122 

 

5.2.5. Rheological and Handling Properties 

 For each run, about 400 μL of polymer solution was placed between the 

flat 25 mm plates of a rheometer (Anton Paar MCR-101), with a gap height of 0.5 

mm. For frequency sweeps, polymer solutions were placed on the rheometer at 

20°C and then heated to 37°C for 60 seconds before measurements were taken. 

Because pND gels underwent significant shrinking throughout the first 15 minutes 

after gelation, pND gels of similar size to the other gel samples were quickly 

placed on the rheometer stage after being incubated in excess PBS at 37°C for 24 

hr to allow the gels to reach equilibrium. Gels were evaluated at 37°C with 
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normal force maintained throughout the measurement at 100 ± 50 mN and a 

humidity chamber placed over the samples to reduce evaporation. The gels were 

then subjected to 1% oscillatory strain and the frequency varied from 0.1 to 10 

Hz. For temperature sweeps, 400 μL of polymer solution was placed on the 

rheometer stage maintained at 10°C. The gels were evaluated under 1% 

oscillatory strain at 1 Hz frequency as the rheometer stage was heated to a final 

temperature of 50°C at a rate of 2°C/min with a humidity chamber used as above. 

Frequency sweeps of pNDJ30 were also done at 20, 25, 30, and 35 wt% with and 

without 50 mg/mL of added vancomycin both at 20°C and 37°C. The complex 

viscosity, which was nearly constant as a function of frequency was taken at 1 Hz 

and the phase angle reported for each sample at each temperature. 

 

5.2.6. Distribution in Cadaveric Human Femur 

 In situ distribution of a radio-opaque mock polymer solution in cadaveric 

femur was evaluated by fluoroscopy. Because the poly(NIPAAm-co-DBLA-co-

JAAm) solutions behave as viscoelastic fluids above the LCST, a viscoelastic 

fluid mock was made using Conray™ 60 (60 w/v% iothalamate meglumine, 

Covidien Pharmaceuticals, Hazelwood, MO) as the solvent and 600 kDa PEO as 

the solute. It was determined by rheometry that 13 wt% and 4 wt% solutions of 

600 kDa PEO in Conray™ exhibited similar viscoelastic properties (complex 

viscosity and phase angle vs. frequency) to a 30 wt% solution of pNDJ30a 

containing 50 mg/mL vancomycin HCl at 37°C and 20°C, respectively (see 
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Figure 5.1). This substitution was made because pNDJ is not soluble at 30 wt% in 

Conray™. It also facilitated conducting the experiment at room temperature. 

 

Figure 5.1. Matching of rheological properties between pNDJ30a above (red 

squares) and below (blue squares) the LCST using radio-opaque solutions of PEG 

(600 kDa) in Conray™ 60. 

 

 Cadaveric human femur was prepared by making a guided cut through the 

base of the femoral neck, getting rid of the femoral head and allowing access to 

shaft’s marrow cavity.  Femurs were then cut to be 2 inches longer than the 

implant. The marrow was then evacuated and the distal end of the femur was 

fitted with a PMMA plug in the base approximately 1 inch thick. The femur 

construct was then reamed and broached appropriately to accommodate implant 

size. The broach was removed and radio-opaque polymer solution was added to 

the intramedullary canal, followed by re-insertion of the broach to the proper 

depth. Images were acquired at a variety of angles at each of three stages: 1) bone 

without broach inserted; 2) bone with broach inserted; and 3) bone with broach 
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inserted containing polymer. No polymer solution was lost during the second 

implantation of the broach except out of the proximal cavity in the medullary 

canal. 

 

5.2.7. In Vitro Antimicrobial Release 

 Release of cefazolin (454.5 g/mol) and vancomycin (1449.3 g/mol) from 

copolymer gels was evaluated at 37°C. The model antimicrobials were chosen 

because they are frequently used in surgeon-mixed high dose cement to manage 

infection and have different solubility at neutral pH. The solubility of a drug can 

substantially affect its release kinetics.156. Cefazolin is a readily accessible 

cephalosporin which inhibits the synthesis of bacterial cell wall peptides and is 

efficacious against gram-positive bacteria.301 Vancomycin is a glycopeptide 

antimicrobial that inhibits bacterial cell wall synthesis, and is a typical second-line 

treatment against methicillin resistant staphylococcus aureus (MRSA).302,303 

Cefazolin exhibits considerable water solubility, similar to the aminoglycosides 

(gentamicin and tobramycin) commonly used in orthopaedic infection 

management and prophylaxis.34,304,305 Vancomycin is less soluble at neutral pH, 

and is used in clinical preparations as the hydrochloride salt. 

 Polymer solutions were prepared at 30 wt% and allowed to dissolve 

overnight at 4°C. Gel samples were prepared by measuring one gram of polymer 

solution into a 20 mL glass vial (inner diameter ~ 25 mm, resulting in gel 

thickness of approx. 2 mm), and then the desired amount of drug (either 5 or 50 

mg) was added to the solution and vortex mixed to dissolve or suspend the drug. 
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The mass of drug (+/- 0.1 mg) loaded into each sample was recorded due to some 

error in adding 5.0 mg of drug to each low-dose sample.  Only the low dose 

cefazolin-loaded polymer solutions were transparent after mixing; the high dose 

samples contained evenly distributed but insoluble drug. Gels were formed by 

incubation in a 37°C water bath for 15 minutes. After 15 minutes, vials were 

filled to the top with 20 mL pre-warmed PBS and maintained at 37°C. pND 

hydrogels evaluated for release used only polymer batch pNDb, while the batches 

of pNDJ15 and pNDJ30 were used interchangeably for various studies. 

 For cement samples, a quarter batch (10 g powder) of Simplex bone 

cement (Stryker, Kalamazoo, MI) was prepared and finely ground antimicrobial 

powder. High dose samples had 2.5 g of antimicrobial powder added, equivalent 

to a clinical load of 10 g per batch. This loading is similar to those used by 

infection surgeons to control active infection, but is weaker than allowed for 

fixation (ISO 5833, 70 MPa required after 24 hours). Low dose samples had 0.25 

g of antimicrobial powder added, equivalent to a clinical load of 1 g per batch. 

This is similar to cement formulations approved for fixation. Antimicrobial 

powder was uniformly mixed with polymer powder using a spatula, after which 5 

mL of methyl methacrylate monomer was added, and the material was stirred 

approximately 3 minutes as it entered the dough phase. Cement was mixed at 

room temperature without vacuum, similar to methods used by surgeons who 

choose to mix their own antimicrobials into cement. Approximately 1 g portions 

of drug-loaded cement were weighed and then pressed into cylinders while in the 

dough phase using the flat bottom of a 20 mL scintillation vial pressed onto a 
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plastic weigh boat. Both the gel and cement samples had a thickness of 

approximately 2 mm and diameter of approximately 25 mm. Release from cement 

discs was evaluated in beakers containing 20 mL of PBS.  Samples were 

maintained at 37°C throughout the course of the experiment. 

  At selected time points, aliquots were removed and stored at -20°C, and 

the release buffer was completely replaced with pre-warmed PBS to maintain 

infinite sink conditions. Drug concentration in the aliquots was measured at the 

end of the study by UV spectrophotometry (BMG Labtech, Fluostar Omega) at 

280 nm for vancomycin and 272 nm for cefazolin. Calibration curves for each 

drug were used on each plate. It was verified that degraded polymers exhibited 

minimal absorbance at 1.5 wt% (corresponding to complete gel dissolution in the 

release medium in a single time point) at the wavelengths used for drug detection. 

 

5.2.8. In Vitro Cytocompatibility 

 The cytocompatibility of degraded poly(NIPAAm-co-DBLA-co-JAAm) 

(batch pNDJ30a) was characterized at various polymer concentrations between 1-

25 mg/mL. These concentrations were chosen as they are likely to represent the 

range of concentration of soluble polymer byproducts to which cells in local 

tissues would be exposed for a sustained period of time (i.e., days). Studies on 

similar and lower concentrations have been reported in the literature to assess the 

cytocompatibility of the soluble precursors or degradation byproducts of 

resorbable hydrogel materials.251,306 Polymer was dissolved at 10 wt% in PBS 

titrated to pH 12 with 1 N NaOH and degraded by stirring for 3 days at room 
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temperature with the pH titrated to pH 12 twice daily. Following degradation, the 

polymer solution was dialyzed for 5 days against deionized water (3500 MWCO) 

with frequent water changes, and then lyophilized. Lyophilized polymer and glass 

scintillation vials were then treated with ethanol and exposed to UV light in a 

laminar flow hood for at least 1 hr. Then the polymer was dissolved at various 

concentrations in sterile DMEM supplemented with penicillin (100 units/mL), 

streptomycin (100 μg/mL), and l-alanyl-l-glutamine (2 mM). Solutions were then 

filter sterilized using a 0.45 μm filter and placed into scintillation vials. MC3T3 

mouse osteoblasts (MC3T3-E1) and NIH3T3 mouse fibroblasts (clone A31) were 

seeded at 10,000 cells/well in separate 24 well plates and allowed to adhere for 24 

hr (37°C, 5% CO2) in 550 μL control media (DMEM supplemented with 1% 

glutamine, 1% pen-strep, and 10% bovine calf serum) per well. The media was 

then replaced with either degraded polymer solution (n=4 for each concentration) 

or control media without polymer. Calf serum (50 μL) was added to the polymer-

media solutions in each well individually. NIH3T3 cultures were analyzed after 3 

days. MC3T3 cultures (including controls) took longer to approach confluency, so 

the media was exchanged after 3 days and the cultures were analyzed after a total 

of 6 days incubation in polymer solutions. Cells were then rinsed with PBS and 

evaluated for live cell number using the CellTiter 96® AQueous Cell Proliferation 

Assay (Promega, Inc.) according to the manufacturer’s instructions. The assay 

uses the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) which is 

reduced by metabolically active cells. Before evaluation of cell number, cells 
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were imaged by light microscopy to observe any differences in cell morphology. 

Significant differences in cell number between cells in media without polymer 

and cells in each concentration of polymer were determined using Student’s t-test 

(α = 0.05). 

 

5.3 Results 

 

5.3.1. Composition and Molecular Weight 

 The polymer feed ratios, composition, molecular weight, initial LCST as 

measured by cloud point, and degradation time are shown in Table 5.1. Polymer 

batches are abbreviated in terms of the JAAm weight fraction in the feed (0, 15, 

or 30 wt%). Additional batches of polymer made using the same feed ratios are 

denoted by a letter. The molecular weight distributions of all the polymer batches 

were relatively consistent, with number-average molecular weight between 13-28 

kDa and weight-average molecular weight between 28-54 kDa. Because the 

polymer backbone remains intact after degradation of these materials, their 

molecular weight should be near or below 40 kDa in order to facilitate rapid 

clearance through the kidneys.307 
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 Successful synthesis was confirmed by 1H NMR. JAAm content in the 

copolymers was calculated from the integration ratios of the peak at 3.5 ppm 

ascribed to the oxyethylene protons of the EO units (CH2CH2O) of JAAm relative 

to the peak at 3.7 ppm (1H) of the lone isopropyl proton of NIPAAm (CH(CH3)2). 

DBLA content was determined using the peaks near 5.3-5.5 ppm (1H) of the lone 

proton on the acryloyloxy-substituted carbon of the butyrolactone ring group. All 

copolymers exhibited lower incorporation of JAAm relative to the feed ratio, and 

DBLA content was also slightly lower than feed. Batch-to-batch variability in 

content was low. 

 

5.3.2. LCST Properties and Degradation  

 The initial LCST of all synthesized materials was between 18-27°C, with 

JAAm incorporation being positively correlated with LCST. Solutions of these 

polymers will thus be flowable at ambient or slightly cooler temperatures and will 

Table 5.1. Selected properties of degradable temperature-responsive 
polymers poly(NIPAAm-co-DBLA-co-JAAm).  

Polymer 

Feed ratio 
(mol%) 

Composition* 
(mol%)

Molecular 
weight (g/mol)

Initial 
LCST 
(°C) 

Degradation time 
(37°C, pH 7.4) 

DBLA JAAm DBLA JAAm Mn Mw 

pNDa 7.2 - 5.6 0.0 13,100 32,100 18 - 

pNDb 7.2 - 6.4 0.0 14,890 28,940 19 ~180 days** 

pNDJ15a 7.1 1.7 6.8 1.2 28,000 54,440 21 40 days 

pNDJ15b 7.1 1.7 6.6 1.2 19,060 36,980 21 - 

pNDJ30a 6.9 4.1 6.4 2.8 19,100 35,330 27 9 days 

pNDJ30b 6.9 4.1 6.4 2.8 19,820 49,680 27 - 

*Measured by 1H NMR,  **estimated from accelerated degradation reported previously122 
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gel at body temperature. Degradation kinetics of pNDJ30a and pNDJ15a at 5 wt% 

are shown in Figure 5.2. Similar data on pND copolymers without JAAm have 

been previously reported by our lab using an accelerated degradation study122 due 

to the longer degradation time of these polymers. Arrhenius kinetics suggest a 

degradation time for pND of approximately 180 days at 37°C. In this work, 

degradation time of the copolymers varied greatly with JAAm content, with 

JAAm leading to faster degradation. pND gels exhibit an initially slow increase in 

LCST, followed by a linear increase in LCST as the hydrophilicity of gels 

increases.122,123 A similar but faster process was observed for pNDJ15, with 

minimal LCST change over the first two weeks of degradation, followed by a 

linear (R2 = 0.995) increase in LCST with time between day 18 and day 54, and a 

final degradation time of about 40 days. pNDJ30a exhibited a linear (R2 = 0.992) 

increase in LCST throughout the first 14 days of degradation.  

 

Figure 5.2. Degradation kinetics of poly(NIPAAm-co-DBLA-co-JAAm) 

hydrogels at 5 wt% (PBS, pH 7.4). Increased JAAm content resulted in higher 

initial LCST and faster degradation. 
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 The degradation time of this system at 5 wt% can thus be tuned between 

about 9-180 days depending on JAAm content. This agrees well with previous 

work showing that JAAm functions to retain water (reducing shrinkage) within 

the polymer-rich “gel” phase at temperatures above the LCST.144 As more water 

is retained within the polymer-rich phase, the rate of hydrolysis increases. While 

these polymers did not form gels at 5 wt%, 30 wt% gels in release studies 

exhibited degradation kinetics similar to the results reported in Figure 5.2. 

Whereas 30 wt% p(ND) gels showed no marked change in appearance in over 15 

weeks at 37°C, pNDJ15b gels degraded over about 4-5 weeks at 37°C, and 

pNDJ30a gels with 2.8 mol% JAAm (about 21 wt%) became translucent within as 

little as 3 days.  

 Inclusion of JAAm grafts in the polymer design leads to more uniform 

degradation throughout the resulting hydrogel (Figure 5.3).  Gels of 30 wt% 

pNDJ30 maintained their initial volume (or slightly increase in volume) and 

underwent gradual degradation. Gels of 30 wt% pND that have low equilibrium 

water content underwent rapid shrinking and slower degradation (Figure 5.3, top 

row). Interestingly, pNDJ gels degrade over a similar period of time but in a much 

different process than poly(NIPAAm-co-DBLA-co-acrylic acid) (pNDA) gels. 

Whereas pNDJ gels exhibit degradation which appears to be approximately 

uniform, the degradation of pNDA gels (which shrink) has been shown to occur 

primarily at the surface, leading to re-swelling of the periphery of the gel and 

formation of an inward-moving front between the swollen, translucent outer phase 
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and the shrunken inner gel core.123,308 After the swelling front reaches all parts of 

the pNDA gel, the swollen phase then disintegrates to yield a solution.123 

pNDa, 1 d pNDa, 3 d pNDa, 7 d pNDa, 13 d 

    

pNDJ30a, 1 d pNDJ30a, 3 d pNDJ30a, 7 d pNDJ30a, 13 d 

    

 
Figure 5.3. Swelling and degradation behavior of 30 wt% pND (top row) and 

pNDJ30 (bottom row) hydrogels incubated in PBS (pH 7.4) at 37°C. Gels were 1 

mL with 1.5 mL excess PBS added after gelation. pND gels shrink and expel 

solvent and do not degrade within 13 days, whereas pNDJ30 gels maintain their 

initial volume, but dissolved in the excess PBS when buffer was replaced at 13 

days. PBS was replaced at 1,3,7, and 13 days. 
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5.3.3. Rheological and Handling Properties 

 Rheological properties of 30 wt% hydrogels at 37°C as a function of 

frequency are shown in Figure 5.4. All of the gels were viscoelastic above the 

LCST, with phase angles greater than 45° (i.e., the gels are more viscous than 

elastic). Gels containing JAAm had storage and loss moduli in the 100-500 Pa 

range at 1 Hz, while pND gels were considerably stronger, particularly at lower 

frequencies. All of the gels showed increasing modulus with frequency which is 

characteristic of physical gels.135,144,250 

 

Figure 5.4. Frequency sweep showing the storage (solid icons) and loss (open 

icons) moduli of 30 wt% gels of pNDJ30a (circles), pNDJ15b (triangles), and 

pNDb (squares) at 37°C. pNDJ gels are weaker and more sensitive to frequency 

than pND gels. 

 

 Rheological properties of 30 wt% hydrogels at 37°C as a function of 
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gels showed G” > G’ over the range tested. pND in both the sol and gel state had 

the highest moduli. pNDJ15 and pNDJ30 gels were both considerably weaker in 

both the sol and gel states, but both showed an approximately 50-fold increase in 

complex modulus when heated from a sol to a gel. pNDJ15 became stronger over 

the temperature range 15-21°C, whereas pNDJ became stronger over 20-40°C. 

The slight decrease in modulus observed at temperatures above 37°C for pNDJ 

gels may have to do with stronger physical crosslinking at these temperatures 

leading to shrinking and poor contact with the rheometer resulting in a 

measurement of lower modulus, a finding consistent with other gels which do not 

shrink at 37°C but do shrink at higher temperatures.147 

 

Figure 5.5. Temperature sweep showing the storage (solid icons) and loss (open 

icons) moduli of 30 wt% gels of pNDJ30a (circles), pNDJ15b (triangles), and 

pNDb (squares) at 37°C. pNDJ solutions form less viscous solutions below the 

LCST and less strong gels above the LCST compared to pND. Both pNDJ 

solutions increase in modulus by about 50-fold through the sol-gel transition. 
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 In most of the samples, the complex modulus was linearly related to the 

frequency of the applied strain on the material over most of the frequency range 

tested. Therefore complex viscosity (i.e. complex modulus divided by angular 

frequency in rad/s) was used a single measure of the gels’ strength. Complex 

viscosity as a function of polymer concentration and drug loading is shown in the 

top of Figure 5.6 for the polymer solutions at room temperature (21.3°C) and at 

body temperature (37°C). The gels show increased complex viscosity by 20-50 

fold in most cases at body temperature relative to room temperature. At room 

temperature, the gels show phase angles exceeding 75°, characteristic of a viscous 

fluid, whereas the polymer solutions above the LCST behave as more viscoelastic 

fluids with phase angles between 60-75°. Concentration also has a meaningful 

effect on the rheological properties of the polymer solutions and on their 

handling. At 40 wt%, the polymer solution is so viscous that drug cannot be 

mixed into it using a vortex mixer. There was some inconsistency in measuring 

the complex viscosity of the gels at higher concentrations. For example, the 30 

wt% gel has higher complex viscosity than the 35 wt% gel. This is likely due to 

incomplete contact of the gel with the rotating head of the rheometer, as it is clear 

that the modulus should increase with concentration, an effect easily observed at 

room temperature. 
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Figure 5.6. Complex viscosity (top) and phase angle (bottom) of pNDJ30b with or 

without 50 mg/mL vancomycin hydrochloride. Gels show increased viscosity and 

decreased phase angle when heated from room temperature to body temperature. 

 

5.3.4. Distribution in Cadaveric Human Femur 

After reaming but prior to the application of the hydrogel (Figure 5.7A), the 

jagged surface of the firmly inserted implant is clearly visible on both the lateral 

(top in the image) and medial (bottom) sides of the implant. After filling with 
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radio-opaque polymer solution and re-insertion of the implant (Figure 5.7B), none 

of the surface features along the entire length of the implant were visible. The 

images also show penetration of the polymer solution into the cancellous bone 

slightly lateral to the proximal portion of the implant.       

 

 

Figure 5.7. Biomet Exact® implant in cadaveric human femur (A) uncoated and 

(B) coated with mock p(NDJ30) above the LCST. Inserting the implant into 

viscous hydrogel provides complete coverage of the gel on the implant surface. 
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5.3.5. In Vitro Antimicrobial Release  

 Drug release profiles from 2 mm-thick discs of pND, pNDJ15, and 

pNDJ30 hydrogels are shown in Figure 5.8. Data are reported as the cumulative 

amount of drug released (Mt) normalized to the cumulative amount of drug 

released after 168 hr (M168 hr), because the release rate by 168 hr was very slow 

for all hydrogels tested. The percentage of the loaded drug that was released from 

each material within 168 hr is reported in Table 5.2. For each hydrogel/drug 

combination, at least 65% of the drug loaded into the gels was released within 168 

hr. Cumulative release of cefazolin was over 85% from pNDJ gels, and as low as 

65% from pND gels, whereas only 70-85% of vancomycin was measured as 

having been released from any of the gel formulations. Incomplete release over 

this timeframe may be due to some combination of drug retention within the gel 

or degradation of the drugs—vancomycin309,310 and cefazolin311,312 both are 

known to be unstable under conditions similar to those used in these studies. 

pNDJ30 gels became translucent by 72 hr and were dissolved in the release media 

by 120 or 168 hr. Both pNDJ15 and pND gels remained intact throughout the 

studies.  
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Figure 5.8. Release of model drugs from 2 mm thick discs of resorbable 

temperature-responsive hydrogels (30 wt%). Release is dependent on JAAm graft 

content, drug, and drug loading. Data are reported as mean ± s.d. (n = 3). 
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Table 5.2. Cumulative fraction of entrapped 
drug (M168 hr/ Loading) released after 168 hr.  

 
Low Dose* 
Cefazolin 

High Dose* 
Cefazolin 

High Dose* 
Vancomycin

pND 65.3 ± 1.2 78.1 ± 4.8 72.8 ± 11.7 

pNDJ15 86.3 ± 6.6 99.4 ± 8.8 70.5 ± 2.2 

pNDJ30 100.0 ± 1.7 92.6 ± 9.7 86.6 ± 2.6 

pMMA 16.6 ± 3.4 46.7 ± 6.8 29.8 ± 0.6 

*Low dose loading: Hydrogels 5 mg; pMMA 16.4 mg 
** High dose loading: Hydrogels 50 mg; pMMA 143 mg 

 

 pMMA cement released the lowest fraction of the drug loaded into it in all 

cases. The fraction of drug released was particularly low (16.6%) when the 

cement was prepared with the low dose (16.4 mg per g) of cefazolin.  Release is 

known to be relatively fast and incomplete from bone cement, as a fraction of the 

drug mixed into cement remains trapped.38,39 Higher doses of drug increase the 

fraction of drug released because the drugs can act as pore-forming agents which 

allow access of a greater volume fraction of the cement to the surrounding 

aqueous medium.39 

 When loaded with 5 mg/mL cefazolin, pND gels provided high burst 

release, with 94% release observed within 1 hr after gelation. Gels with JAAm 

showed reduced burst release (under 40% within 1 hr) but over 85% release after 

24 hr. When loaded with 50 mg/mL cefazolin, similar release profiles were 

observed both from pND and pNDJ30, with slower release observed over about 5 

days from pNDJ15 gels. pNDJ15 released 12% within 1 hr, 61% within 24 hr, and 

90% within 72 hr. Gels loaded with 50 mg/mL vancomycin showed slower 

release from each hydrogel formulation. pND gels released drug with high 
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sample-to-sample variability, but on average released 31% within 1 hr, 67% 

within 24 hr, and 92% in 72 hr. pNDJ30 gels provided low burst release, but 

release was 98% complete within 72 hr. pNDJ15 gels provided the slowest release 

of vancomycin, with 54% release within 24 hr and approximately linear release 

for 6 days thereafter. 

 Figure 5.9 shows the mass of drug released with time from pNDJ15 

hydrogels (the slowest releasing hydrogel formulation) and from pMMA cement. 

For each set of conditions tested, the mass of drug released was similar between 

pNDJ15 gels and pMMA cement, despite the loading of the cement samples being 

approximately 3 times that of the hydrogels. 
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Figure 5.9. Cumulative mass of model antimicrobials released from 2 mm thick 

discs of pNDJ15 resorbable temperature-responsive hydrogels or pMMA bone 

0

1000

2000

3000

4000

5000

0 24 48 72 96 120 144 168

M
as

s 
re

le
as

ed
 (
μ

g)

Time (hr)

Release of cefazolin (low dose)
pNDJ15 vs. pMMA

pNDJ15, 5.0 mg 
loading
pMMA, 16.4 mg 
loading

A)

0

20000

40000

60000

80000

0 24 48 72 96 120 144 168

M
as

s 
re

le
as

ed
 (
μ

g)

Time (hr)

Release of cefazolin (high dose)
pNDJ15 vs. pMMA

pNDJ15, 50 mg 
loading
pMMA, 143 mg 
loading

B)

0

10000

20000

30000

40000

0 24 48 72 96 120 144 168

M
as

s 
re

le
as

ed
 (
μ

g)

Time (hr)

Release of vancomycin (high dose) 
pNDJ15 vs. pMMA

pNDJ15, 50 mg 
loading

pMMA, 143 mg 
loading

C)



  108 

cement. The extent and rate of release from hydrogels is similar to that of cement 

loaded with approximately 3 times as much drug. Data are reported as mean ± s.d. 

(n = 3). Some error bars are smaller than the data points. 

 

5.3.6. In Vitro Cytocompatibility 

 Results from in vitro cytocompatibility studies on pNDJ30a degradation 

byproducts are shown in Figure 5.10. The number reported represent the number 

of live cells present per well of a 24 well plate. The number of living NIH3T3 

fibroblasts after 3 days was greatly increased from the initial seeding of 10,000 

cells in every concentration of the polymer solution tested, and no significant 

differences in cell number between negative control media without polymer and 

any of the individual polymer concentrations were found. The number of living 

MC3T3 osteoblasts after 6 days in culture was also greatly increased relative to 

the initial cell seeding density. A significant difference (p = 0.007) in cell number 

was observed between control and 2.5 wt% degraded pNCJ30a, with 2.5 wt% 

having a greater number of cells present. This difference may have been caused 

by greater initial cell seeding density or more uniform initial cell density within 

the wells, as all of the wells (including controls) were observed to have variable 

cell density from location to location within a single well. Representative images 

of high cell density areas in the presence of control media or 2.5 wt% degraded 

pNDJ30 for both cell types prior to performing the MTS assay are shown in 

Figure 5.11. Cells cultured in up to 2.5 wt% degraded polymer displayed spread 

or spindle-like morphology as cells cultured in standard media. 
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Figure 5.10. Cytocompatibility of pNDJ30a degradation byproducts to NIH3T3 

fibroblasts (left) and MC3T3 osteoblasts (right). Both cell types were able to 

proliferate when cultured in degraded pNDJ30a at concentrations up to 2.5 wt%. 

 

 

 

 

 

 

 

 

 

 

 

 

0

40000

80000

120000

160000
C

el
ls

 / 
w

el
l

NIH3T3

0

40000

80000

120000

160000

C
el

ls
/ w

el
l

MC3T3 



  110 

 

 NIH3T3 MC3T3 
C

on
tr

ol
 

 

2.
5 

w
t%

 p
N

D
J3

0a
 

  

Figure 5.11. Light microscopy photographs of NIH3T3 fibroblasts (left) and 

MC3T3 mouse osteoblasts (right). Cell density and morphology is similar when 

cultured in standard media without polymer (top) or 2.5 wt% degraded pNDJ30a 

(bottom). Scale bars are each 100 μm. 

 

5.4. Discussion 

 The inclusion of hydrophilic JAAm grafts in temperature-responsive 

resorbable copolymers results in increased water content in the corresponding 

hydrogels. JAAm can therefore be used to control gel properties relevant to local 

drug delivery (degradation kinetics, drug release, and rheological properties). The 
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pNDJ gels reported in this work display a unique combination of attributes 

(highly viscous, controlled release, and degradable over 1-8 weeks) for an 

injectable and degradable drug carrier. While the relatively fast degradation time 

and viscous nature of the hydrogels limits their feasibility for some applications, it 

may enable their feasibility in others, particularly in sites with irregular 

geometries or sites under mechanical load which are unsuitable for pre-formed 

solid implants or drug-loaded microspheres.  

 

5.4.1. Swelling and Degradation Relationship 

 The degradation and swelling behavior of pNDJ hydrogels changes greatly 

due to JAAm. Incorporation of JAAm in the polymer led to reduced shrinking and 

more uniform degradation throughout the gel. The initially slow change in LCST 

observed in pNDJ15 gels agrees well with previous published data on pND 

gels.122 The acceleration of the LCST increase observed in pNDJ15 is thought to 

be attributed to the degradable ester groups on the butyrolactone ring being 

hydrolyzed to pendent hydroxyl and carboxyl groups still bound to the polymer. 

Along with increasing the LCST, this increases the accessibility of the water to 

the remaining intact esters of the polymer. In pNDJ30 gels, the polymer is so 

hydrophilic that the degradation occurs at a faster rate even before hydrolysis. 

Despite the fact that the degradation time of NIPAAm-based gels can be easily 

controlled using small molecules like AAc,123,124,135 the graft copolymer approach 

used in this work results controls swelling to a greater extent, which is important 
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for maintaining the interfacial contact between the gel and the implantation site as 

well as for providing controlled release of low molecular weight drugs. 

 It is important to note that gelation of these copolymers is concentration-

dependent and the polymer molecules within each batch are heterogeneous in 

both content and molecular weight. Accordingly, the gels are likely to weaken or 

macroscopically degrade slightly prior to the average LCST increasing to body 

temperature. In vitro, this results in the gel becoming a translucent solution, and 

eventually a transparent solution. While undisturbed pNDJ30 gels remained 

somewhat intact at 7 or even 13 days, it was observed that even gentle 

replacement of release media on pNDJ30 gels in the release studies caused 

pNDJ30 gels to partially mix with the release medium as early as 5 days post-

gelation. 

 

5.4.2. Rheological and Handling Properties 

 All of the gels tested could be characterized as viscoelastic fluids, with G” 

> G’ above the LCST. All of the polymer solutions were observed to become 

stronger upon heating above their LCST. pND gels macroscopically behaved as 

solid materials after shrinking—the gels retained their shape and were not prone 

to flow. On the other hand, pNDJ15 and pNDJ30 gels had much lower modulus, 

and were even prone to slow flow over a period of days at 37°C. The gels would 

not noticeably flow in an inverted vial for 30 seconds, but if left overnight, the 

gels would flow. These gels therefore would be unsuitable for use in sites where 

external forces would deform the gel undesirably or cause displacement of the gel 
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from the site. All of the hydrogels tested would be prone to creep. However, these 

properties are likely to be acceptable or even advantageous in irregular 

geometries, in sites where the material would remain in the site due to its 

viscosity (such as a thin coating on an implant), or in sites where gel cohesion is 

desired rather than strength. The pNDJ hydrogels reported in this work could 

provide complete interfacial contact even at temperatures above the LCST, as 

they behave more like very viscous liquids than elastic gels.  

 The difference in rheological properties is meaningful for the handling and 

use of the material. Below the LCST such as at room temperature, pNDJ30 is a 

liquid with a viscosity similar to warm honey. Above the LCST, the gel/fluid is so 

thick that it will not flow when inverted for up to minute. In a large container such 

as a mason jar, the material will begin to flow if inverted for over 30 seconds. 

Such a material is likely to maintain its location adequately (i.e. not flow) in a 

closed space, such as around an orthopaedic implant. 

 

5.4.3. In Vitro Antimicrobial Release Kinetics 

 Drug release kinetics from the gels varied depending on the drug choice, 

drug loading, and polymer JAAm content. Vancomycin release was sustained for 

a period of 3-7 days from gels based on all three polymers. On account of 

vancomycin’s higher molecular weight and lower solubility at neutral pH, 

vancomycin release was slower than cefazolin release for all gels tested. While 

pND gels did show the greatest amount of release over the first hour when gel 

shrinking occurs, they nevertheless provided sustained release over at least 5-7 
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days, which is evidence that vancomycin distributes predominantly into the 

polymer-rich gel phase when the polymer solution is heated above its LCST. The 

shortest duration of vancomycin release was observed from pNDJ30 gels. These 

gels became translucent within 72 hr of release and partially mixed with the 

release media by 120 hr. Therefore, the faster release from pNDJ30 may be 

caused by partial degradation of the gel, resulting in increased diffusivity of the 

drug in the gel and faster release.  

  When heated above the LCST, pND gels released a large fraction of the 

loaded cefazolin within 15 minutes regardless of drug loading. Because cefazolin 

is hydrophilic, it is likely to partition predominantly into the solvent phase as the 

pND phase-separates following gelation. pNDJ30 gels showed slower cefazolin 

release over 24-48 hr without the large initial burst observed from pND gels. 

Though the release was still relatively rapid, a majority of the cefazolin was 

retained in the gels at 1 hr, indicating controlled release. The slowest cefazolin 

release was observed from pNDJ15 gels, which exhibit intermediate 

hydrophilicity and reduced phase separation. Even though a small fraction of 

water separates from pNDJ15 gels, the release data suggests that most of the 

cefazolin was retained within the gel after the transition. Release then occurs 

almost entirely by diffusion, as these gels did not degrade much within the first 

week.  

 The release rate being the slowest from pNDJ15 gels is evidence that a 

balance was achieved in these gels between low phase separation (achieved by 

more JAAm) and slow degradation (achieved by less JAAm). Even with further 
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optimization, it is anticipated that the release of small hydrophilic drugs such as 

cefazolin could not be prolonged by much longer than 5-7 days by this system, 

simply due to the diffusivity of the drug within the polymer gel. This duration of 

release is shorter than what might be achieved by injectable gels with much 

longer degradation times containing drug-loaded microspheres.293 Differences in 

the final polymer content in the gel (after shrinking) did not seem to strongly 

affect the diffusivity of the drugs remaining in the gel phase, as the release of 

vancomycin was similar between pND and pNDJ15 gels. While release could be 

somewhat controlled by polymer concentration in the gel, the concentration must 

not exceed about 40 wt% because the polymer solution can become too viscous 

and eventually the polymer itself would not be soluble. Alternatively, the release 

of hydrophobic drugs could be prolonged for a much longer time, perhaps up to 

20 weeks from pND gels, particularly if the drug were loaded well above its 

solubility, resulting in partition-controlled release.212 Sustained release beyond the 

degradation time of pND would require changes to the polymer composition not 

explored in this work. 

 pNDJ15 sustained the release of both drugs for the longest time, providing 

a similar release profile to pMMA cement over the first 7 days. While the 40 day 

degradation time of pNDJ15 is very close to the time at which bone healing onto 

implants can be seen radiographically (6-8 weeks), the amount of JAAm in the 

polymer could be increased to provide faster gel degradation. Optimization of the 

hydrogel degradation time may be required to facilitate clearance of the gel 
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degradation products from a bone-implant interface and allow for implant 

fixation. 

 It is important to note that the release kinetics from these gels in vivo are 

expected to depend on the gel shape and the surrounding fluid environment 

(viscosity, flow, pH). Release was evaluated from discs with 2 mm diameter in 

infinite sink conditions to reliably compare the materials under conditions prone 

to fast release. Release would be sustained over a longer time in vivo if the gel 

had a lower surface area-to-volume ratio or if the drug were cleared slowly from 

the local tissue. 

 

5.4.4. Implications for Prevention of Prosthetic Joint Infection 

 Release of both antimicrobials was more complete from the pNDJ15 

hydrogels than from the cement after 168 hr, but with similar release profiles. 

Release is known to continue at a very low rate from antimicrobial-loaded bone 

cement for extended periods of time (months to years).38,39,313,314 This may 

provide subtherapeutic local concentrations which allow the emergence of 

resistant organisms,315,316 and has led some to advocate against the use of 

antimicrobial-loaded bone cement for prophylaxis in routine primary 

arthroplasty.317 At the lower dose, pNDJ15 hydrogels showed greater mass release 

than pMMA, whereas at the higher dose, pMMA showed greater mass release. 

This difference is attributed to the fact that the pMMA becomes more porous with 

higher drug loading and hence releases a greater fraction of the entrapped drug 

more quickly. Nevertheless, given that the shape of the high-dose release profiles 
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are similar between the cement and hydrogel formulations, it seems likely that 

similar antimicrobial concentrations as those provided high-dose pMMA 

formulations used for infection management could be provided from the hydrogel 

delivery vehicle either for infection management or for prophylaxis. By providing 

increased and sustained delivery relative to ALBC that is safe for fixation, these 

new hydrogel materials may be able to more effective in preventing infections 

while being compatible with cementless fixation. 

 The complete surface coverage shown by the radio-opaque PEG mock is a 

strong indication that the hydrogel would provide complete surface coverage on a 

hip implant. Infusion of the hydrogel into interstices in the bone exposed before 

insertion of an implant is promising because those interstices comprise part of the 

surface area of the wound created during an arthroplasty. The ability of a polymer 

with the rheological characteristics of pNDJ30 (and very similar to pNDJ15 as 

well) to thoroughly cover the surface of the implant as well as to be driven into 

cavities within the nearby bone is promising for the prevention of infections on or 

near these implants. Though the anatomical features of the surgical wound are 

certain to affect the concentration profile in and around the surgical site, direct 

contact of the delivery vehicle to the desired site is the best way to provide the 

most drug to vulnerable surfaces. 

 Additionally, because the polymer solution is capable of flowing, it yields 

easily when the implant is inserted and so it does not negatively affect the quality 

of fit between the implant and the bone in the way that a pre-formed solid implant 

might. Such a fluid-like controlled release vehicle which provides release over a 
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complete surface is not currently available for any indication and to my 

knowledge has not been reported elsewhere in the literature. 

 

5.4.5. In Vitro Cytocompatibility 

 While microscopy shows more rounded cells at higher polymer 

concentrations, the MTS assay data is evidence that the polymer does not slow 

cell growth and division and is not cytotoxic. At any location not within the 

hydrogel, it is unlikely that the polymer concentration will exceed the 

concentrations tested here for multiple days, as the degradation products are 

expected to diffuse from the delivery site once soluble. While only one degraded 

polymer, pNDJ30, was tested, it is expected that the other polymers would 

perform similarly as they are made of the same components, and all are 

predominantly composed of NIPAAm repeat units. These results also agree well 

with previous in vivo biocompatibility studies on subcutaneous injections of 

poly(NIPAAm-co-DBLA-co-AAc) where the injection site was indistinguishable 

from native tissue after degradation of the gels were complete.123 Future work will 

be required to determine what concentrations, if any, affect either the 

mineralization of osteoblasts or the osseointegration of bone onto an implant 

surface in the presence of gel, as would be required to safely use the gel on a 

femoral prosthesis indicated for cementless fixation. 
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5.5. Conclusions 

 In situ forming, temperature-responsive, degradable polymers were 

successfully synthesized and characterized for the controlled release of the model 

drugs cefazolin and vancomycin. To our knowledge, these are the first purely 

physical gels based on NIPAAm demonstrated for the sustained release of 

hydrophilic low molecular weight drugs with minimal burst release. The gels 

provide controlled release over days without relying on drug-polymer interactions 

or co-delivered microparticles. Gel degradation and drug release was controlled 

by varying the amount of hydrophilic JAAm grafts on the polymer backbone. 

Gels with greater JAAm content shrank less upon heating above their LCST, 

which resulted in reduced burst release, particularly for cefazolin. Gels with 

JAAm were viscoelastic and weak with storage and loss moduli in the 100-500 Pa 

range at 1 Hz. Drug release from pNDJ15 gels was sustained for both drugs 

tested, and nearly complete elution occurred within 7 days. Hydrogels provided 

similar elution over 7 days to pMMA cement when loaded with approximately 1/3 

as much drug. The degradation byproducts of one hydrogel formulation were 

shown to be cytocompatible to NIH 3T3 fibroblasts and MC3T3 osteoblasts at 

concentrations up to 2.5 wt%. Given their unique combination of fluid-like 

handling properties, controlled release, and rapid degradability, these new 

hydrogels are promising as sustained release carriers of low molecular weight 

drugs for applications where administration of multiple doses, percutaneous 

injection, or delivery to sites with irregular geometries is desired. In particular, 

these gels have potential for enabling drug delivery in joint spaces, overcoming 
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the limitations of currently available hard materials (PLGA, cement) and implant 

surface coatings. 
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Chapter 6: IN SITU CROSSLINKING TEMPERATURE-RESPONSIVE 

HYDROGELS WITH IMPROVED DELIVERY, SWELLING, AND 

ELASTICITY FOR ENDOVASCULAR EMBOLIZATION 

 

6.1. Introduction 

 Hemorrhage results from approximately 30,000 cerebral aneurysms 

annually in the United States, about half of which are fatal.54 Endovascular 

embolization is a common method of pre-emptive cerebral aneurysm treatment 

owing to its minimal invasiveness and enabled by the development of 

endovascular coils—flexible platinum coils inserted into the aneurysm. Coils 

occlude less than half of an aneurysm, relying on clot formation to occlude the 

remaining volume.83 Though coils are considered the most effective endovascular 

approach, they are associated with poor recanalization rates (>25%) in large or 

wide-neck aneurysms,59,61,75,318 which is attributed to the low volume fraction that 

the coils occupy within the aneurysm.62–64 

 In situ forming materials are a promising alternative to endovascular coils 

because the shape of an in situ forming implant is defined by its local 

environment, allowing complete filling of the aneurysm sac. While one liquid 

embolic formulation—poly(ethylene-co-vinyl alcohol) in dimethyl sulfoxide, 

marketed under the name Onyx® (Covidien, Mansfield, MA, USA)—which forms 

by solvent exchange precipitation has been FDA approved for use, there are 

concerns over solvent toxicity including vessel necrosis and vasospasm.89,92,319 

Another unavoidable limitation of the solvent exchange approach is that the 
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delivery procedure is complicated and time intensive, requiring repeated steps 

allowing for the DMSO to gradually leave the aneurysm site and be replaced by 

water, precipitating the polymer in situ often over the course of an hour or more—

even up to 6 hr in some cases.81 Water-borne gelling systems based on 

poly(NIPAAm),85 alginate,86 chitosan,320 and acrylated oligomeric precursors84,321 

have been more recently investigated, though none are yet approved.  

 Temperature-responsive polymers based on N-isopropylacrylamide 

(NIPAAm) provide a potentially useful platform for embolization because they 

quickly precipitate from aqueous solution when heated to body temperature and 

can be modified easily through copolymerization with other monomers. Despite 

these advantages, NIPAAm-based systems also have major limitations to practical 

use as liquid embolics. As the polymer solution in the catheter is warmed to body 

temperature, the polymer is liable to gel inside the catheter, preventing its 

delivery, yet the hydrogel must also be sufficiently strong and highly elastic after 

delivery. Though chemical crosslinking (most commonly done via Michael 

addition between thiols and acrylates) can result in a stronger and elastic gel 

forming in situ,142,275,277,278 this reaction takes place much more quickly below the 

polymer’s LCST, presumably due to the hydrophobicity of the polymer.274 

Embolization also requires that the material maintain its volume after delivery, 

whereas poly(NIPAAm) typically undergoes shrinking within hours after 

gelation.144,235,274  

 This Chapter reports on the development of a polymer system that would 

be initially flowable at body temperature, chemically crosslink in situ within a 
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reasonable time, and adequately maintain its shape and volume. The material is 

based on a copolymer consisting of repeat units of NIPAAm, repeat units with 

pendent thiol groups for chemical crosslinking, and Jeffamine® M-1000 

acrylamide (JAAm) to increase the hydrophilicity of the copolymer. Upon mixing 

with an alkaline solution of poly(ethylene glycol diacrylate) (PEGDA), the 

polymer begins to chemically crosslink by Michael addition. Previously, it has 

been demonstrated that JAAm grafts on NIPAAm-based polymers cause 

weakened physical crosslinking and controlled gel swelling.322 The hypothesis for 

this work was that combining the NIPAAm-JAAm graft copolymer design with 

physiologically compatible in situ crosslinking would provide a viable candidate 

material for endovascular embolization of cerebral aneurysms.  

 

6.2. Materials and Methods 

 

6.2.1. Materials 

 All materials were reagent grade and obtained from Aldrich unless 

otherwise noted. The polymerization solvent was HPLC grade Tetrahydrofuran 

(THF). Dichloromethane (DCM) was distilled and stored under nitrogen. 

Jeffamine® M-1000 was donated by Huntsman Corporation (The Woodlands, TX, 

USA).  
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6.2.2. Synthesis 

 Jeffamine® M-1000 acrylamide (JAAm) was synthesized from Jeffamine® 

M-1000 by acryloylation with acryloyl chloride as reported in Chapter 5. 

Poly(NIPAAm-co-N-acryloxysuccinimide-co-JAAm) copolymers (pNNJ), with 5 

mol % N-acryloxysuccinimide (NASI) and varying feed ratios of JAAm (0, 10, 

and 20 wt% relative to the amount of NIPAAm monomer) were synthesized by 

radical polymerization in THF (10 wt%) as depicted in Figure 6.1. The monomer 

solution was bubbled with nitrogen for 20 minutes before the addition of the 

initiator to reduce dissolved oxygen. The reaction was initiated with AIBN (0.007 

mol AIBN per mol monomer), and conducted at 65°C for 24 hr under slightly 

positive nitrogen pressure. pNNJ copolymers were obtained by precipitation in 

10-fold (0 JAAm) or 15-fold (10%, 20% JAAm) excess of diethyl ether at 0°C, 

and then filtered and vacuum-dried overnight.  
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Figure 6.1. (A) Synthesis of poly(NIPAAm-co-NASI-co-JAAm) intermediate (B) 

Substitution of cysteamine to form poly(NIPAAm-co-cysteamine-co-JAAm). 

 

 NASI side groups were converted to pendent thiols by nucleophilic 

substitution with cysteamine.275 Cysteamine hydrochloride was measured in a 

two-fold excess over the NASI and dried under vacuum at 60°C for 24 hours to 

reduce moisture. DCM was added to the cysteamine hydrochloride and a 1.5x 

excess of triethylamine was added to deprotect hydrochloride. The solution was 

allowed to dissolve under stirring for 30 minutes; if cysteamine hydrochloride 

remained partially undissolved, the solution was vacuum filtered to remove 

excess cysteamine. pNNJ was then added to this solution and allowed to dissolve, 

resulting in a final pNNJ concentration of 10 wt%. This reaction was allowed to 
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proceed under nitrogen at 30°C for 72 hr. The resulting polymers, poly(NIPAAm-

co-cysteamine-co-JAAm) (abbreviated pNC, pNCJ10, and pNCJ20), were 

precipitated in diethyl ether, filtered and vacuum-dried overnight. Polymers were 

then dissolved in 5 mM HCl with a stoichoimetric amount of dithiothreitol (DTT) 

to reduce disulfide linkages and dialyzed (3500 MWCO) against 5 mM HCl for 7 

days with frequent exchange of the dialysis solution to remove the DTT. The 

pNCJ solution was then lyophilized and stored at -20°C under nitrogen until use.  

 

6.2.3. Hydrogel Preparation 

 Unless otherwise noted, hydrogels were prepared as shown in Figure 6.2. 

Each pNCJ copolymer was dissolved in 5 mM HCl at 33 wt% and stored at 4°C 

for less than 48 hrs prior to use. To induce chemical crosslinking, the polymer 

solution was mixed with a solution of PEGDA (MW 700) (acrylates equimolar to 

thiols on pNCJ) in 750 mM phosphate buffered saline (PBS) titrated to pH 10 

with 1 M NaOH. PEGDA solution was prepared immediately before mixing of 

the two precursor solutions. Syringes (1 mL) were loaded with the precursor 

solutions and connected by a syringe coupler. The solutions were mixed for 15 

seconds and used immediately. The pNCJ concentration in the gels after mixing 

was 30 wt%.  
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Figure 6.2. Method used for preparing in situ crosslinking hydrogels by mixing 

aqueous solutions of temperature-responsive polymers with poly(ethylene glycol) 

diacrylate (PEGDA). 

 

6.2.4. Composition and LCST Transition 

 Polymer composition and molecular weight were determined by 1H NMR 

and GPC as reported in Section 5.2.3. To determine the LCST of the synthesized 

copolymers, solutions were prepared at 0.25 wt% in 150 mM PBS titrated to pH 5 

using 1 N HCl to reduce disulfide bonding. Cuvettes containing polymer solution 

were allowed to equilibrate for 90 seconds before each absorbance measurement. 

Absorbance (λ = 450 nm) was measured using a UV/Vis spectrometer (Fluostar 

Omega, BMG Labtech) every 1°C from 25-45°C with buffer alone as a reference. 

For samples which precipitated and formed aggregates at higher temperatures, the 

highest absorbance value before this aggregation was recorded as the maximum 

value. All absorbance values measured were normalized to the maximum value 
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measured for that sample. If the polymer did not aggregate, values were 

normalized to the absorbance at 55°C.  

 

6.2.5. Equilibrium Swelling 

 Polymer solutions were mixed as described above to obtain final polymer 

concentrations of 5, 10, 20, and 30 wt%. Immediately after mixing, the solutions 

were pushed to one syringe and submerged in a water bath at 37°C for 2 minutes. 

The gels were then incubated for an additional 24 hours at 37°C to allow the gels 

to crosslink. After 24 hr, the syringe was cut and the gel inside was removed and 

sliced into 3 approximately equal pieces. Each gel piece was placed into a vial 

filled with pre-warmed 37°C PBS (pH 7.4) to allow the gel to swell or shrink to 

equilibrium. After 5 days, the gel sections were removed from the vials, excess 

water was removed, and the gel pieces were weighed to determine the wet mass 

(W). Each piece was then lyophilized and again weighed to obtain the measured 

dry mass (Dm). The dry mass was calculated as: 

 

to correct for the salt content (1.7 wt%) of the PBS in the polymer. The swelling 

ratio (S) for each piece of gel was calculated as  

 

The initial swelling ratio S0 was calculated based on the initial gel concentration 

(i.e. for a 20 wt% gel, S0 = 4). The relative change in gel volume after 5 days 

(V/V0) was then calculated as 

D  Dm 0.017W

S 
1.017W D

D 0.017W
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and reported. Significant differences in relative volume ratio (V/V0) between gels 

prepared at the same polymer concentration were determined by Student’s t-test 

(α = 0.05). 

 

6.2.6. Gelation Kinetics and Rheometry 

 Hydrogel samples were prepared as described above. The gelation kinetics 

were measured for the first 30 minutes after mixing. For each sample, 400 mL of 

prepared polymer solution was placed between the flat 25 mm plates of the 

rheometer (Anton Paar MCR-101) at a gap height of approximately 0.5 mm. The 

stage was maintained at 37°C. The experiment was started approximately 60 

seconds after the polymer solutions were syringe mixed to allow the gelling 

solution to reach temperature. The storage and loss moduli were measured under 

oscillation (0.5% strain, f = 1Hz) for 30 minutes (time sweep) with a humidity 

chamber placed over the sample to limit evaporation. Normal force control was 

not used because the gels were initially very weak. Immediately after 30 minutes 

had elapsed, a frequency sweep was conducted from 0.1-10 Hz (0.5% strain) with 

the normal force maintained at 100 ± 50 mN.  

 Hydrogels were evaluated separately to assess their susceptibility to creep 

after crosslinking. For this test, the hydrogel was allowed to cure for 30 minutes at 

37°C under oscillation (0.5% strain, f = 1Hz) under a humidity chamber to limit 

V

V0


S 1

S0 1
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evaporation. Immediately after the 30 minute curing period, the strain of each gel 

was measured under a constant shear stress (5 Pa) for 90 minutes. 

 

6.2.7. Delivery Window Characterization 

 The delivery window of each polymer system was tested using a 3.0 

French polyethylene microcatheter with an inner diameter of 0.018 in (0.46 mm) 

and length of 55 cm (DHN1, Cook Medical, Bloomington, IN). The microcatheter 

was primed using normal saline and the length of the catheter, except for about 5 

cm at either end, was submerged in a recirculating water bath maintained at 37°C. 

The saline solution was allowed to equilibrate before the study started. Each 

polymer solution (30 wt%, 1.1 mL) was prepared by syringe mixing using the 

method described above. After mixing, the syringe was quickly attached to the 

microcatheter and 0.4 mL of polymer solution was injected into the catheter 10 

seconds after mixing, filling the catheter with polymer solution. At 30 second 

intervals after the initial injection, 100 μL of polymer solution was injected into 

the catheter. To test the control of the delivery, the polymer was injected through 

the catheter using only the thumb, with the syringe held by the first two fingers of 

the same hand. The end of the delivery window was determined to be when 

injection of 100 μL of the gelling solution could not be performed or controlled 

using only the thumb. 
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6.2.8. In Vitro Embolization Model 

 A stability test for gels based on pNC and pNCJ20 was performed in glass 

aneurysm models under flow in the parent vessel. The hydrogels were injected 

into the models at room temperature to assess the stability in the model aneurysm 

independently of the deliverability of the gels. Glass aneurysm models were 

obtained from a custom glassblowing shop and consisted of a hollow glass parent 

vessel of approximately 7 mm inner diameter with an attached spherical side-wall 

aneurysm with a dome-to-neck ratio of 1.5 and dome width of approximately 10 

mm. Such a large neck aneurysm model was intended to present a challenge to 

this material,323,324 as temperature-responsive hydrogels previously used in these 

geometries are associated with a risk of recanalization unless co-delivered with 

protection devices such as coils or stents.85  

 Precursor solutions were mixed for 15 sec and then immediately injected 

at room temperature through a cut-off microcatheter into the side-wall aneurysm 

of the glass model until filling was complete. The models were oriented to allow 

the polymer solution to settle into the aneurysm and the model was submerged in 

a 37°C water bath for 10 min to allow for chemical crosslinking to proceed in 

situ. After 10 min, the glass models were placed in series with the recirculating 

line of a recirculating water bath filled with PBS (pH 7.4) and maintained at 37°C 

with a flow rate of 40 mL/sec. This flow rate was chosen because it imparts 

similar shear stress on the gel as that which might be experienced in the carotid 

artery, where liquid embolic agents have previously been evaluated in pre-clinical 

experiments.82,85 Photographs were taken after 7 days to show gel morphology. 
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6.2.9. In Vitro Cytocompatibility 

 To evaluate cytocompatibility of the hydrogels, an indirect contact 

methodology was used. Precursor solutions were filter sterilized and gels were left 

inside one of the coupled syringes overnight at 37°C. Under sterile conditions, the 

end of the syringe containing the crosslinked gels was cut and the gels were 

ejected and placed in 10 mL of sterile media pre-warmed to 37°C. The gels were 

incubated for 1 week with the media changed twice. This step was done to allow 

the alkaline buffer to exchange out of the gel so that the toxicity of the polymer 

rather than its pH could be evaluated.  

 NIH3T3 cells, clone A31, from the American Tissue Culture Collection 

(ATCC) were seeded in a 24 well plate (10,000 cells/well) and allowed to adhere 

for 24 hrs (37°C, 5% CO2) in 550 μL control media (DMEM supplemented with 

1% glutamine, 1% pen-strep, and 10% bovine calf serum) per well. Then the gels 

(which floated in the media) were added to the wells (n = 4). Four wells were also 

left without gels as a control. Cells were incubated for an additional 72 hr, washed 

with PBS, and then evaluated for cell number using the CellTiter 96® AQueous 

Cell Proliferation Assay (Promega, Inc.) according to the manufacturer’s 

instructions. Significant differences in cell number between cells in media without 

polymer and cells in each concentration of polymer were determined using 

Student’s t-test (α = 0.05). 
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6.3. Results 

 

6.3.1. Composition and Molecular Weight 

 Poly(NIPAAm-co-cysteamine-co-JAAm) was successfully synthesized 

using three feed ratios of JAAm, 0, 10, and 20 wt% as a fraction of all monomers 

(abbreviated pNC, pNCJ10, and pNCJ20, respectively). A representative 1H NMR 

spectrum for the pNCJ polymers is shown in Figure 6.3. The molar ratio of 

cysteamine to NIPAAm and JAAm in each polymer was calculated by comparing 

the area under the curve (AUC) of the peaks attributed to cysteamine (2H) at 3.4 

ppm to the AUC of the peak attributed to the isopropyl proton of NIPAAm (1H) 

at 4.1 ppm and the peak attributed to the protons of the ethylene oxide repeat units 

of JAAm (76H) at 3.7 ppm. The results are shown in Table 6.1. 

 

Figure 6.3. 1H NMR spectrum for poly(NIPAAm-co-cysteamine-co-JAAm). 
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Table 6.1. Selected properties of in situ crosslinking temperature-responsive 
copolymers 

Polymer 

Content in Feed Ratio 
(mol%) 

Content by 1H NMR (mol %) Mn 
(Da) 

Pd 
LCST 
(°C) 

NIPAAm Cyst JAAm NIPAAm Cyst JAAm 

pNC 95.0 5.0 0.0 94.7 5.3 0.0 6247 2.13 27 

pNCJ10 93.8 4.9 1.3 95.6 3.4 1.0 9584 3.37 29 

pNCJ20 92.3 4.9 2.8 93.5 4.4 2.1 15990 4.54 33 

 

 Average molecular weight and polydispersity of the synthesized 

copolymers both increase with increasing JAAm content. This may be attributed 

to light crosslinking of pendent thiol groups with greater amounts of JAAm 

during dialysis or storage. Similar polymerizations with THF as the solvent yield 

number-average molecular weights near 10 kDa.137 

 

6.3.2. LCST Transition 

 The polymer LCST in PBS (pH 5) was between 27-33°C for all polymers 

tested, as seen in Figure 6.4. The LCST = was evaluated at pH 5 to avoid self-

crosslinking. Because the pKa of the thiol of pNC is above 9, the fraction of thiols 

that are deprotonated will be near zero both at pH 5 and at physiological pH.325 

JAAm increases the LCST slightly for these polymers; however, the LCST is still 

low enough that the majority of the polymer is physically crosslinked at 37°C. 

Physical crosslinking is important because it prevents the polymer from diluting 

in the surrounding aqueous medium prior to chemical crosslinking. 
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Figure 6.4. Relative absorbance at 450 nm for each of the temperature-responsive 

polymers pNC (circles), pNCJ10 (triangles), and pNCJ20 (squares) at 0.25 wt% 

(150 mM PBS, pH 5). LCST increased with JAAm content in the copolymers. 

 

6.3.3. Swelling 

 Gel swelling was dependent on polymer concentration and JAAm content 

as shown in Figure 6.5. Retention of volume is reported rather than swelling ratio 

because was deemed more relevant to assessing potential for effective aneurysm 

embolization and also because the swelling ratio (defined as the ratio of wet 

weight to dry weight) of these gels varies with concentration. Both copolymer 

gels containing JAAm showed significantly increased relative volume ratio (p < 

0.05) relative to pNC gels at every concentration tested. pNC gels shrank from 

their initial volume in all cases. At 5 wt%, both gels with JAAm shrank, with 

pNCJ20 gels being slightly more swollen than pNCJ10 gels. At 10 and 20 wt% 

polymer concentration, the equilibrium volume of pNCJ10 and pNCJ20 gels 
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remained within 20% of their initial volume. This demonstrates the gels having 

some shape memory because they were crosslinked inside a closed container (in 

this case, a syringe). At 30 wt% polymer concentration, both gels containing 

JAAm swelled beyond their initial volume, with pNCJ20 gels increasing in 

volume by about 75%.   

 

Figure 6.5. Equilibrium gel volume to original gel volume ratio for each polymer 

system at various hydrogel concentrations. JAAm had a positive effect on 

hydrogel swelling. Data are reported as mean +/- s.d (n = 3). 

 

6.3.4. Gelation Kinetics and Rheometry 

 The rheological properties of each gelling system during the first 30 

minutes at 37°C are shown in Figure 6.6, with the frequency response of each 

system after 30 minutes shown in Figure 6.7. Immediately upon heating, the 

pNC+PEGDA gelling system becomes a viscoelastic gel with storage and loss 

moduli both above 1000 Pa. Over the following 30 minutes, the storage modulus 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5% 10% 20% 30%

R
el

at
iv

e 
V

o
lu

m
e 

R
at

io
 (

V
/V

0
)

Polymer Concentration

pNC+PEGDA

pNCJ10+PEGDA

pNCJ20+PEGDA



  137 

of the pNC system increases the least. After 30 minutes, the rheological properties 

of the pNC gelling system are frequency dependent, characteristic of a 

viscoelastic material.144,246,250 The initial strength of the pNC gel is derived from 

physical crosslinking between pNC chains, while the small increase in storage 

modulus indicates that chemical crosslinking between pNC and PEGDA is slow 

and incomplete. 

 

Figure 6.6. Time sweeps showing the storage (solid icons) and loss (open icons) 

moduli of pNC+PEGDA (circles), pNCJ10+PEGDA (triangles), and 

pNCJ20+PEGDA (squares) hydrogels at 30 wt%. Hydrogels with greater JAAm 

content have lower loss modulus and become elastic more quickly. 
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Figure 6.7. Frequency sweeps showing the storage (solid icons) and loss (open 

icons) moduli of pNC+PEGDA (circles), pNCJ10+PEGDA (triangles), and 

pNCJ20+PEGDA (squares) hydrogels at 30 wt %. Frequency dependence 

decreases and elasticity increases with increasing JAAm content. 

 

 The pNCJ20+PEGDA gelling system is initially weak, with storage and 

loss moduli below 200 Pa. While the loss modulus remains nearly constant 

throughout gelation, the storage modulus increases to over 6000 Pa after 30 

minutes, the highest of all formulations tested The moduli of the crosslinked 

pNCJ20+PEGDA gel are relatively independent of frequency, characteristic of an 

elastic gel.275,278 The pNCJ10+PEGDA gel has intermediate properties in terms of 

its increase in storage modulus, initial strength, and frequency response after 30 

minutes. pNCJ10 gels have the lowest storage modulus after 30 minutes and an 

intermediate ratio of G’ to G”, indicating that the increase in chemical 
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crosslinking relative to pNC is not enough to overcome the hindered physical 

crosslinking caused by JAAm.  

 Creep characterization for pNC and pNCJ20 gelling systems after 30 

minutes at 37°C is shown in Figure 6.8. pNC gels show significant creep under a 

low constant shear stress, deforming by up to 40% within 1 hr. pNCJ20 gels show 

very little creep and only about 0.05% strain over 1 hour, evidence of purely 

elastic behavior.  

 

Figure 6.8. Creep test showing the shear strain of the hydrogels, pNC+PEGDA 

(circles) and pNCJ20+PEGDA (squares). The pNC+PEGDA hydrogel is prone to 

creep under a constant shear stress whereas the pNCJ20+PEGDA hydrogel is not. 

 

6.3.5. Delivery Window 

 The delivery window for each hydrogel is shown in Table 6.2. While the 

pNC system can be quickly injected into a microcatheter filled with warm saline, 

it gels inside the catheter within 30 seconds. Polymers with greater JAAm content 
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was deliverable for a longer time, and the pNCJ20 system was injectable for all 

time points (up to 220 sec) tested. However, increased pressure was required to 

deliver the pNCJ20 system 220 sec after mixing.  

Table 6.2. Delivery window of physical-
chemical gelling polymer systems at 37°C 

Polymer System 
End of Delivery Window 

(post-mixing) 

pNC+PEGDA Less than 40 sec 

pNCJ10+PEGDA 160 sec 

pNCJ20+PEGDA Over  220 sec 

 

6.3.6. In Vitro Embolization Model  

 Photographs of physical-chemical gels inside glass model aneurysms after 

1 week at 37°C are shown in Figure 6.9. Both hydrogels remained in the model 

aneurysms throughout the experiment and did not visibly deform or show 

recanalization of the aneurysm. Because the gels were delivered at room 

temperature, this test was not affected by the poor deliverability of the pNC 

gelling system.  
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Figure 6.9. Pictures of glass model aneurysms with (A) pNC+PEGDA and (B) 

pNCJ20+PEGDA hydrogels after 7 days at 37°C. Flow in the parent vessel (d = 

0.7 cm) was maintained at 40 mL/sec. 

 

6.3.7. In Vitro Cytocompatibility 

 In vitro cytocompatibility results are shown in Figure 6.10. Hydrogels 

were allowed to crosslink for 24 hr and then soak in media for 1 week prior to the 

study to allow the initiating solution to rinse out of the gel. Fibroblasts were able 

to proliferate in the presence of each hydrogel. The number of cells after 72 hr 

was lower in both cases when cultured in the presence of hydrogel compared to 

control. pNC+PEGDA gels showed significantly lower cell number than control 

(p < 0.001), while the difference between pNCJ20+PEGDA and control was not 

significant (p = 0.15). 
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Figure 6.10. NIH3T3 fibroblasts present per well after 72 hrs in culture with or 

without hydrogels in each well. Data are reported as mean +/- s.d. (n=3). 

 

6.4. Discussion 

 

6.4.1. Swelling 

 Equilibrium swelling greater than the initial volume, as exhibited by 

pNCJ20+PEGDA, is likely to be tolerable or perhaps advantageous for a liquid 

embolic agent. These gels may not be so strong as to cause the aneurysm sac to 

distend, and instead the gel may permanently remain at a volume below that 

dictated by its equilibrium swelling. Accordingly, the tendency of the gels to 

expand inside the aneurysm could provide some interfacial pressure between the 

gel and aneurysm wall, reducing recanalization. 
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6.4.2. Gelation Kinetics and Delivery 

 Unlike pNC, the pNCJ20 gelling system’s high increase in rheological 

properties is strong evidence that chemical crosslinking between pNCJ20 and 

PEGDA is faster and more complete within a timeframe relevant for endovascular 

embolization (i.e. 10-30 minutes). The gel’s modulus after 30 minutes is 

approximately an order of magnitude greater than previously reported lightly 

crosslinked NIPAAm-based hydrogels used for embolization.85,119  The difference 

in creep despite these materials having similar complex moduli demonstrates the 

importance of elasticity derived from chemical crosslinking on the stability of 

these hydrogels for embolization, which requires the gel to retain its shape after 

many repeated stresses. 

 Physical temperature-induced crosslinking observed in the pNC system 

cannot be slowed adequately in this system without a cooling jacket, as the 

temperature surrounding the microcatheter in an endovascular procedure is 

always physiological. The delivery window for the polymer systems containing 

JAAm grafts could potentially be controlled by changing the pH of the PEGDA 

precursor solution (controlling the rate of chemical crosslink formation), with 

higher pH leading to faster gelation and a shorter required delivery time. 

 

6.4.3. In Vitro Embolization Model and Cytocompatibility 

 The lack of shrinking observed in the pNC gel (Figure 6.9A) suggests that 

the gel may have adhered to the glass, resulting in either no recanalization or gel 

collapse and recanalization only in the center of the aneurysm where it could not 
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be seen. Another important limitation of this study was the use of constant rather 

than pulsatile flow. By approximating the shear stress to which the gel would be 

exposed in vivo, the glass model experiment demonstrates that the 

pNCJ20+PEGDA gel (Figure 6.9B) is strong enough to withstand a shear stress of 

similar magnitude to physiological after 10 minutes of crosslinking. As gels with 

about 0.1 times the shear modulus of the gels reported in this work have been 

retained inside model aneurysms in swine,85 it is reasonable to expect that these 

materials would perform at least as well in vivo. 

 A noticeable difference between the gels in glass models was that the 

pNCJ20 gels appeared bright white while the pNC gels were off-white and 

slightly less opaque. A small portion of the pNC+PEGDA gelling solution was 

carried away from the aneurysm in the parent vessel over the first 15 minutes of 

flow, and the recirculating fluid in the parent vessel for the pNC study was 

slightly turbid after the study. It is possible that the pNC gels had a broader LCST 

transition after crosslinking due to incomplete crosslinking with PEGDA. If a 

fraction of the PEGDA was bound on one end and free on the other, the thiol-

bearing repeat units becoming more hydrophilic would lead to an increase in 

LCST. On the other hand, the pNCJ20 gels became more opaque than when 

initially heated to 37°C due to the high extent of crosslinking causing an effective 

increase in polymer molecular weight, which is known to decrease the 

LCST.100,285  

 The significantly lower cytocompatibility of the pNC+PEGDA gelling 

system may also be attributed to poor crosslinking and leaching of soluble 
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PEGDA from the pNC physically crosslinked network into the culture media. 

Acrylate species on otherwise cytocompatible polymers including PEG are known 

to be cytotoxic.326,327 Without additional data, it is not possible to determine 

whether PEGDA or some other leachable was responsible for the lower cell 

numbers observed in cultures with polymer gels. In vivo studies would be 

required to assess the local biocompatibility of the device because the present 

study did not evaluate cell attachment on the hydrogel and thus the potential to 

allow a neointimal layer to form over the gel is unknown and the short-term 

toxicity due to the high pH of the gel was not explored. An in vitro cytotoxicity 

test which adequately predicts this system’s in vivo toxicity is difficult at best 

because the spatially variable exchange of alkaline buffer out of the gel in vivo is 

difficult to reproduce. 

 

6.4.4. Comparison of pNCJ20 and pNC Gelling Systems for Embolization 

 There are three major flaws of the pNC physical-chemical gelling system, 

namely: 1) it shrinks rapidly after gelation; 2) it is too strong to be injectable at 

body temperature; and 3) it is liable to creep because of poor crosslinking at 

temperatures above the LCST.  

 First, JAAm grafts improve gel swelling due to their hydrophilicity. 

Second, JAAm grafts weaken the physical interaction between polymer chains 

above the LCST, resulting in lower initial gel strength when physically 

crosslinked. Thus the requirement of a cooling catheter for endovascular delivery 

can be avoided, and the gelling solution can be delivered for up to 4 minutes after 
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mixing. Third, JAAm grafts increase the rate of chemical reaction on the polymer 

when heated above its LCST. While similar polymer systems without hydrophilic 

grafts are able to crosslink below the LCST275 or to a lesser extent when the 

mixing time at room temperature is long,274 the pNCJ20+PEGDA material 

reported in this work is the first based on NIPAAm in which chemical 

crosslinking above the LCST results in a purely elastic gel. It is by coincidence 

that adding JAAm to the polymer causes changes in three properties (swelling, 

delivery time, and final strength) which all improve the ability of the polymer 

system to serve as a liquid embolic. 

 

6.5. Conclusions 

 Hydrogels capable of simultaneous physical and chemical crosslinking 

were successfully prepared by mixing aqueous precursor solutions of 

poly(NIPAAm-co-cysteamine-co-JAAm) and poly(ethylene glycol) diacrylate. 

Fast physical crosslinking is intended to prevent dilution of the polymer upon 

delivery into an aneurysm while subsequent chemical crosslinking increases the 

strength and elasticity of the gel. Polymers with JAAm grafts are deliverable 

through a microcatheter and undergo more rapid and complete crosslinking, 

yielding an elastic gel with an elastic shear modulus over 6000 Pa within 30 

minutes at 37°C. Gel swelling was also determined to be dependent on JAAm 

content. Further testing in vivo will be required to assess whether this swelling 

behavior is acceptable or if it may require a modification to the delivery 

procedure such as sub-complete aneurysm filling.84 The pNCJ20+PEGDA system 
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reported in this work combines the capability to completely fill an aneurysm 

while enabling a faster and simpler delivery procedure than solvent-exchange 

precipitating materials allow. Taken together, the data on the pNCJ20+PEGDA 

system reported in this work supports the further investigation and development 

of these hydrogels for endovascular embolization of cerebral aneurysms.  
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Chapter 7: CONCLUSIONS AND FUTURE WORK 

 This dissertation reports on the development of temperature-responsive 

polymers based on N-isopropylacrylamide (NIPAAm) with hydrophilic side-chain 

grafts of Jeffamine® M-1000 acrylamide (JAAm). Because of the graft copolymer 

architecture, the water content within the gels at body temperature can be 

controlled over a wide range without undesirably altering the LCST. Other 

approaches such as copolymerization with low molecular weight monomers, 

introduction of crosslinkers, and mixing with hydrophilic chain molecules 

produce hydrogels which have inherent limitations for most applications 

(including burst release, LCST above body temperature, poor delivery 

characteristics).  

 The experimental approach to this work was to first synthesize and 

characterize these copolymers in terms of their capability for gelation, swelling, 

and drug release, with the hypothesis that controlled gel swelling would affect 

release rates from the hydrogels. Following this initial phase of investigation, the 

utility of this graft copolymer design was explored by developing resorbable 

hydrogels for drug delivery and in situ crosslinkable hydrogels for endovascular 

embolization. In all of the gels, JAAm incorporation allowed for controlled water 

content without unacceptable effects on LCST or delivery properties. JAAm 

grafts led to other (often unanticipated) changes in gel properties which in almost 

every respect bode well for the further development of these gels toward clinical 

applications in embolization and especially drug delivery. 
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7.1. Temperature-Responsive Graft Copolymer Design 

 Temperature-responsive graft copolymers of NIPAAm and JAAm were 

made in an attempt to combine the desirable LCST property of poly(NIPAAm) 

with the hydrophilicity imparted by JAAm, a PEG-based macromer. The 

objective of this work was to demonstrate proof-of-principle for controlling gel 

swelling nearly independently of LCST, and to characterize important differences 

in other properties relevant to potential applications as materials in medicine.  

 This work demonstrated that JAAm provides excellent control over 

swelling with a low impact on LCST, eliminating the design tradeoffs inherent 

with using acrylic acid or PEGDA to control swelling. The gels were very soft, 

behaving as viscoelastic fluids above the LCST. Copolymers also required higher 

concentrations to form gels. Finally, copolymer gels significantly slowed the 

release of ovalbumin whereas homopolymer gels released nearly 100% within 

minutes.  

 The weak physical crosslinking and controlled release properties observed 

in this material provided valuable proof-of-concept to justify the subsequent 

work. The poly(NIPAAm-co-JAAm), while not necessarily useful on its own, 

demonstrated for the first time controlled swelling above the LCST without 

confounding effects on LCST, degradation, or delivery properties. The principle 

of using polymer architecture is not completely new, but further research in 

biomaterials and other areas are likely to find more materials problems that graft 

copolymers will address in an improved way. 
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7.2. Resorbable Temperature-Responsive Graft Copolymer Hydrogels for Drug 

Delivery 

 The graft copolymers of NIPAAm and JAAm were made resorbable by 

copolymerization with DBLA, a comonomer which causes an increase in LCST 

upon degradation. JAAm led to controlled gel swelling, slower drug release 

(particularly for cefazolin, a hydrophilic antimicrobial), weaker gelation, and 

faster degradation. An interesting and new property of these materials is that they 

are both water-insoluble and liquid-like above the LCST, allowing for the gel to 

deform yet remain cohesive in situ.  

 In terms of their appropriateness for preventing prosthetic joint infection, 

the poly(NIPAAm-co-DBLA-co-JAAm) hydrogels reported in this work have 

properties which may enable local delivery to joint replacement sites. While local 

delivery is likely to be required for effective antimicrobial prophylaxis in joints, it 

remains impossible using materials currently in FDA-approved products. Because 

the pNDJ gels are viscoelastic fluids, they can completely coat a joint prosthesis 

without generating wear debris like a hard material such as PLGA or bone 

cement. The hydrogels can be loaded with much higher amounts of drugs than 

bone cement, and provide complete release within about one week, providing a 

similar release profile to surgeon-mixed bone cements used clinically for infection 

management. Finally, the rapid degradation of the gels may enable their use in 

sites through which healing takes place within weeks, whereas harder materials 

already in FDA-approved products are degradable only over months or more. The 
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gels may also be suitable for a variety of other applications, including in fractures 

or to protect other device surfaces against infection. 

 Future work on antimicrobial-loaded hydrogels for prevention of 

prosthetic joint infection should consist of in vivo evaluation of biocompatibility, 

demonstration of bone healing through an implant-bone interface with gel present 

simulating, and anti-infection effectiveness on an implanted material. Because the 

hydrogel on its own has no therapeutic effect, a final product to be considered for 

regulatory approval would consist of the gelling solution and one or more active 

ingredients. Because it is likely most cost-effective to use a single antimicrobial, 

the antimicrobial should be chosen such that it is effective against a broad 

spectrum of organisms which are responsible for prosthetic joint infection. If 

these early in vivo experiments are successful, then the pursuit of approval as a 

new drug product is warranted. While developing new drugs is both time and 

resource intensive, the reasonable cost of the polymer, clinical need, and market 

size all help to justify the high cost and risk associated with commercializing this 

polymer. 

 

7.3. In Situ Crosslinking Temperature-Responsive Graft Copolymer Hydrogels for 

Embolization  

 Simultaneously physical-chemical gelling hydrogels were made by mixing 

aqueous solutions of PEGDA and poly(NIPAAm-co-JAAm-co-cysteamine), a 

thiol-modified polymer. This design was pursued as PEGDA is soluble and 

mobile in water, allowing it to more completely crosslink the polymer network. 
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The molecular weight of the temperature-responsive polymer (pNCJ) was 

intended to be low (around 10 kDa) to allow the gelling solution to be delivered 

through a microcatheter under physiological conditions. JAAm affected the 

swelling of the networks, led to a longer delivery window, and higher final 

strength. 

 The biocompatibility and ability of the hydrogels to embolize cerebral 

aneurysms will require in vivo validation. Such a material would likely have to 

address large or giant aneurysms where coils tend to fail, because coils are 

popular and easy to use in most cases. This system represents a clear 

improvement in terms of procedure cost, delivery properties, and final properties 

relative to previously reported NIPAAm-based embolic agents in the literature. 

However, it remains unclear which, if any, in situ forming liquid embolic 

hydrogels are most effective in the indications which are poorly treated by 

available materials and therefore represent the best opportunity both for a viable 

path to market and improved patient care. 
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