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ABSTRACT

Interference constitutes a major challenge for communication networks op-

erating over a shared medium where availability is imperative. This dissertation

studies the problem of designing and analyzing efficient medium access proto-

cols which are robust against strong adversarial jamming. More specifically, four

medium access (MAC) protocols (i.e., JADE, ANTIJAM, COMAC, and SINRMAC)

which aim to achieve high throughput despite jamming activities under a variety

of network and adversary models are presented. We also propose a self-stabilizing

leader election protocol, SELECT, that can effectively elect a leader in the network

with the existence of a strong adversary.

Our protocols can not only deal with internal interference without the exact

knowledge on the number of participants in the network, but they are also robust to

unintentional or intentional external interference, e.g., due to co-existing networks

or jammers. We model the external interference by a powerful adaptive and/or re-

active adversary which can jam a (1−ε)-portion of the time steps, where 0 < ε ≤ 1

is an arbitrary constant. We allow the adversary to be adaptive and to have com-

plete knowledge of the entire protocol history. Moreover, in case the adversary is

also reactive, it uses carrier sensing to make informed decisions to disrupt commu-

nications.

Among the proposed protocols, JADE, ANTIJAM and COMAC are able to

achieve Θ(1)-competitive throughput with the presence of the strong adversary;

while SINRMAC is the first attempt to apply SINR model (i.e., Signal to Inter-

ference plus Noise Ratio), in robust medium access protocols design; the derived

principles are also useful to build applications on top of the MAC layer, and we

present SELECT, which is an exemplary study for leader election, which is one of

the most fundamental tasks in distributed computing.
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Chapter 1

INTRODUCTION

1.1 Overview

Designing efficient medium access protocols in a wireless network envi-

ronment that are robust against different kinds of interference is one of the most

relevant but also most complex problems in distributed computing. First, a wire-

less network requires distributed access coordination mechanisms which minimize

the internal interference due to simultaneous transmissions from wireless devices

in the same network. In addition, the availability of the wireless medium can vary

significantly over time due to the external interference, e.g., due to disturbances

from other sources such as microwaves, due to transmissions of coexisting (poten-

tially mobile) networks, or due to intentional or even adversarial interruptions. For

example, it is well-known that already simple jamming attacks—without using any

special hardware—constitute a threat for the widely used IEEE 802.11 MAC pro-

tocol [7]. Due to the problem’s relevance, there has been a significant effort to cope

with such disruption problems both from the industry and the academia side and

much progress has been made over the past few years.

This dissertation aims to design and analyze robust medium access proto-

cols, so that even with the existence of a strong adversary the protocols can still

manage to achieve provably high throughput. Note that we consider adversarial

physical layer jamming only. Although we do not study malicious fake message

jamming and other form of jamming activities which are above the physical layer,

our physical adversarial jamming model works in conjunction with other adversary

models at higher layers. The protocols studied here operate on the Medium Ac-

cess Control (MAC) sub-layer of the data link layer (defined in the seven-layer OSI

model), so we call them MAC protocols. The MAC protocols address the problem
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of how to decide who gets to use the shared medium when there is a contention for

it. Many MAC protocols have been proposed, however, the presence of a strong ad-

versary in the network makes the existing protocols vulnerable and inefficient to the

jamming attack. Classic defense mechanisms operate at the physical layer [38, 42]

and there exist approaches both to avoid as well as to detect jamming. Spread

spectrum and frequency hopping technologies have been shown to be very effective

to avoid jamming with widely spread signals. These physical layer solutions are

orthogonal to our work, and can improve the robustness of the protocols further.

However, the ISM frequency band used by IEEE 802.11 variants is too narrow to

effectively apply spread spectrum techniques [10]. Also, as jamming strategies can

come in many different flavors, detecting jamming activities by simple methods

based on signal strength, carrier sensing, or packet delivery ratios has turned out

to be quite difficult [37]. A more comprehensive overview of the related work is

provided in Section 1.3.

We consider two types of adversaries in this dissertation: (i) adaptive but

non-reactive, where the adversary has the complete knowledge of the protocol his-

tory and can use this knowledge to make jamming decisions. However, the adver-

sary has to take actions before honest nodes decide whether to transmit a message

or not; Clearly, the adaptive adversary is much stronger compared to oblivious or

random adversaries; (ii) adaptive and reactive, where the adversary is adaptive,

and moreover, it is reactive in the sense that the adversary can use carrier sensing

to sense the channel and make jamming decisions after honest nodes made their

transmission decisions, which makes the adversary even more powerful and effec-

tive. Let us consider the following scenario as an example: suppose that at the

current time step no node in the network decides to transmit, then the adversary can
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quickly sense the channel and decide not to jam the channel, so that the energy can

be saved to jam the channel when certain transmission activity is taking place.

Our work is motivated by the results in [7] and [6]. In [7] it is shown that

an adaptive jammer can dramatically reduce the throughput of the standard MAC

protocol used in IEEE 802.11 with only limited energy cost on the adversary side.

Awerbuch et al. [6] initiated the study of throughput-competitive MAC protocols in

single-hop wireless networks under continuously running, adaptive jammers, and

presented a protocol that achieves a high performance under adaptive but non-

reactive jamming. In a single-hop network, all the nodes are within transmission

and interference range of each other, i.e., the communication network is a complete

graph. In contrast, in a multi-hop network, not all nodes are within each other’s

transmission and interference range. In order to get a message broadcasted in a

multi-hop network, more than one hop of transmission is needed. We extend the

results in [6] in the following ways:

1. JADE: The JADE protocol is designed for multi-hop wireless networks. Cru-

cial modifications are made based on the protocol in [6], so that JADE achieves

constant throughput in multi-hop wireless networks that can be modeled as

unit disk graph (see Section 1.2.1), and is robust against an adaptive but non-

reactive adversary. We discuss JADE in more detail in Chapter 2 (this work

also appeared in [49]).

2. ANTIJAM: Although an adaptive but non-reactive adversary is much stronger

than an oblivious or random adversary, not being able to make a jamming de-

cision based on honest nodes’ decisions in the current time step makes the

adversary model less practical. Hence, we consider adaptive and reactive ad-

versary, and propose ANTIJAM, where constant throughput can be achieved
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with the presence of a strong adaptive and reactive adversary in the single-

hop wireless networks We discuss ANTIJAM in detail in Chapter 3 (this work

also appeared in [50]).

3. SELECT: Leader election is a classical problem in the field of distributed

computing. Once a leader is elected, many coordination tasks are greatly

simplified. We consider the problem of electing a leader in a harsh wireless

network in order to coordinate access to a shared communication medium.

We propose SELECT, a self-stabilizing leader election protocol that can al-

ways elect one and only one leader from a single-hop wireless network, no

matter what the initial state is, and despite the existence of a strong adaptive

and reactive adversary. We discuss SELECT in detail in Chapter 4 (this work

also appeared in [51]).

4. COMAC: The problem of accessing the shared medium by different co-

existing networks fairly and efficiently, especially in environments with un-

controllable external interference, such as jamming, is important and chal-

lenging. Nowadays, more and more devices belonging to co-existing net-

works share a chunk of the limited wireless spectrum resource simultane-

ously. We propose COMAC, which is able to achieve constant throughput

and fairness, since it evenly distributes the number of successful transmis-

sions for each individual network, up to a small multiplicative factor. The

protocol is also robust against an adaptive but non-reactive adversary. We

discuss COMAC in detail in Chapter 5 (this work also appeared in [53])).

5. SINRMAC: Designing a jamming-resistant MAC protocol under the widely

used and more realistic Signal-to-Interference-plus-Noise-Ratio (SINR) would

be the next big step forward. Hence, we explore the possibility to come

up with such a MAC protocol, called SINRMAC, which can achieve high
4



throughput despite jamming. An initial study on this problem is presented in

Chapter 6 (this work also appeared in [52]).

1.2 General Model

We specify the general network (interference), communication and adver-

sary models here. Note that models for specific protocols may vary. Please refer

to the corresponding chapters for the detailed models used by each protocol. We

summarize the models used by different protocols in Table 1.1.

Protocol Network Model Communication Model Adversary Model
JADE UDG (Multi-hop) Single Channel, Half-duplex Adaptive but Non-Reactive
ANTIJAM Single-hop Single Channel, Half-duplex Adaptive and Reactive
SELECT Single-hop Single Channel, Half-duplex Adaptive and Reactive
COMAC Single-hop Single Channel, Half-duplex Adaptive but Non-Reactive
SINRMAC SINR (Multi-hop) Single Channel, Half-duplex Adaptive but Non-Reactive

Table 1.1: Different models for different protocols.

1.2.1 Network (Interference) Model:

1. Single-hop: The network consists of n honest and reliable nodes that are

within the transmission and interference range of each other, which is equiv-

alent to assuming that the network topology is a complete graph.

2. UDG (Multi-hop): As an initial study of multi-hop wireless networks, we use

the Unit Disk Graph (UDG) to model the network topology. More specifi-

cally, let the network be represented by a graph G = (V,E) where V repre-

sents a set of n = |V | honest and reliable nodes and two nodes u,v ∈ V are

within each other’s transmission and interference range, i.e., {u,v} ∈ E, if

and only if their (normalized) distance is at most 1. Note that the transmis-

sion and interference range of the nodes are the same under the UDG model.
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3. SINR (Multi-hop): We assume n wireless nodes are distributed arbitrarily in

the 2-dimensional Euclidean plane. The SINR model defines a parameter

called minimum signal-to-interference-plus-noise ratio (SINR) at which a

data frame can still be received with a reasonably low frame error rate. A

message sent from u to v is received correctly if and only if

Pv(u)
N +∑w∈S Pv(w)

≥ β1

where Pv(u) is the received power at node v of the signal transmitted by node

u, N captures the background noise (e.g., thermal), S is the subset of nodes

in V \{u,v} that are concurrently transmitting, and β1 is the SINR threshold

that depends on the desired rate, the modulation scheme, etc.

1.2.2 Communication Model:

We assume a back-logged scenario where the nodes continuously contend for send-

ing a packet on the wireless channel. A node may either transmit a message or sense

the channel at a time step, but it cannot do both, and there is no immediate feedback

mechanism telling a node whether its transmission was successful. When consid-

ering single-hop or UDG (multi-hop) network model, a node sensing the channel

may come across one of the following three scenarios: (i) sense an idle channel (in

case no other node in the transmitting range of the node transmits at that time); (ii)

sense a busy channel (in case two or more nodes within the transmission range of

the node transmit at the time step, or the adversary or the adversary disrupts the

signal at the node); or (iii) receive a packet (in case exactly one node within the

transmitting range of the node transmits at the time step). While considering SINR

as the network model, a node does not have clear distinctions regarding idle and

busy channels. A noise level threshold is introduced to resolve this issue. More de-

tails can be found in Chapter 6. The wireless channel considered in this dissertation

has single frequency and is half-duplex.
6



1.2.3 Adversary Model:

We consider two types of adversaries:

1. adaptive but non-reactive adversary: adaptive in the sense that the adversary

knows the protocol history, and can make jamming decisions based on it.

The adversary has to make a jamming decision before honest nodes decide

whether to transmit or not.

2. adaptive and reactive adversary: in addition to being adaptive, the adversary

is reactive in the sense that it can perform physical carrier sensing to learn

whether the channel is currently idle or not, and jam the medium depending

on these measurements. Note that the adversary can sense the channel condi-

tion in the current time step and make a jamming decision instantly (i.e., the

jamming decision is made after honest nodes decide whether to transmit or

not).

Note that although being reactive gives the adversary more power by revealing some

information about the nodes’ random decisions at the current time step, an adaptive

adversary is already much stronger than its oblivious and random adversaries coun-

terparts.

1.3 Related Work

Due to the topic’s importance, wireless network jamming has been exten-

sively studied in the applied research fields [1, 10, 12, 31, 35, 37, 38, 42, 43, 58,

61, 62, 63], both from the attacker’s perspective [12, 35, 37, 63] as well as from

the defender’s perspective [1, 10, 12, 37, 38, 42, 61, 63]—also in multi-hop settings

(e.g. [29, 45, 65, 66, 67]).
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Recent work has also studied MAC layer strategies against jamming, includ-

ing coding strategies (e.g., [12]), channel surfing and spatial retreat (e.g., [1, 64]),

or mechanisms to hide messages from a jammer, evade its search, and reduce the

impact of corrupted messages (e.g., [61]). However, these methods do not help

against an adaptive jammer with full information about the history of the protocol,

like the one considered in our work.

In the theory community, work on MAC protocols has mostly focused on

efficiency. Many of these protocols are random backoff protocols (e.g., [8, 13, 14,

25, 48]) that do not take jamming activity into account and, in fact, are not robust

against it (see [6] for more details). But also some theoretical work on jamming is

known (e.g., [16] for a short overview). There are two basic approaches in the lit-

erature. The first assumes randomly corrupted messages (e.g. [47]), which is much

easier to handle than adaptive adversarial jamming [7]. The second line of work

either bounds the number of messages that the adversary can transmit or disrupt

with a limited energy budget (e.g. [23, 32]), or bounds the number of channels the

adversary can jam (e.g. [22, 39]). The protocols in, e.g., [32] can tackle adversarial

jamming at both the MAC and network layers, where the adversary may not only

jam the channel but also introduce malicious (fake) messages (possibly with ad-

dress spoofing). However, these solutions depend on the fact that the adversarial

jamming budget is finite, so it is not clear whether the protocols would work under

heavy continuous jamming. (The result in Theorem 1 of [23] upper bounds the ad-

versary’s capability of disrupting communications with a budget of β messages, and

then shows that the proposed protocol needs at least 2β rounds to terminate, which

implies a jamming rate below 0.5. The handshaking mechanism in [32] requires an

even lower jamming rate.
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In the multi-channel version of the problem introduced in the theory com-

munity by Dolev [17] and also studied in [19, 17, 18, 22, 39], a node can only access

one channel at a time, which results in protocols with a fairly large runtime (which

can be exponential for deterministic protocols [17, 22] and at least quadratic in the

number of jammed channels for randomized protocols [18, 39] if the adversary can

jam almost all channels at a time). Recent work [19] also focuses on the wireless

synchronization problem which requires devices to be activated at different times on

a congested single-hop radio network to synchronize their round numbering while

an adversary can disrupt a certain number of frequencies per round. Gilbert et

al. [22] study robust information exchange in single-hop networks.

There is also a chapter on the leader election application considered in this

dissertation. Leader election is an evergreen in distributed algorithms research and

there exist many theoretical and practical results [5, 20, 33, 36, 41, 44, 57, 60].

The following two book chapters provide a good introduction: Chapter 3 in [4] and

Chapter 8 in [27]. A leader election algorithm should be as flexible as possible in

the sense that a correct solution is computed independently of the initial network

state. For instance, the algorithm should be able to react to a leader departure, or

be able to cope with situations where for some reasons, multiple nodes consider

themselves leaders. Self-stabilization [15] is an attractive concept to describe such

self-repairing properties of an algorithm, and it has been intensively studied already,

not only in terms of eventual stabilization but also in terms of guaranteed conver-

gence times (see e.g., the works on time-adaptive self-stabilization such as [34]).

Several self-stabilizing leader election protocols have been devised, e.g., [2, 11, 28]

(see also the fault-contained solutions such as [21]). However, none of these ap-

proaches allows us to elect a leader in a wireless network that is exposed to harsh

interference or even adaptive jamming. But such interruptions of communication
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are often unavoidable in wireless systems, and we believe that electing a leader can

be particularly useful in such harsh environments.

When it comes to design robust and efficient MAC protocols for coexisting

networks, the performance achieved by the MAC protocols described in [6, 49, 50],

which are jamming-resistant in single network settings, drops sharply if multiple

networks are collocated: This is due to the fact that in these protocols, each indi-

vidual co-existing network will strive to achieve a constant competitive throughput

in the non-jammed time periods, which requires a constant cumulative access prob-

ability per co-existing network. It is easy to see that this necessarily leads to a

throughput which is exponentially small in the number of co-existing networks.

More importantly, the algorithmic approach used [6, 49, 50] is doomed to fail in

the context of co-existing networks, as nodes in different networks do not have a

consistent view of the successful transmissions: in a remote network, a successful

transmission cannot be distinguished from a collision or jammed time step.

It turns out that in a co-existing scenario, the nodes must strike a good bal-

ance between a less aggressive (more cooperative) medium access strategy while re-

maining robust against external interference. We will show that this can be achieved

by monitoring the availability of the wireless medium over time and adjusting the

sending probabilities or backoffs according to the fraction of observed idle time pe-

riods. (A similar approach is used in the IdleSense [26] Distributed Coordination

Function to synchronize the nodes’ contention windows.) Implicitly synchronizing

access via idle time periods is also the key to enable fairness between co-existing

networks. The performance analysis of such an algorithm however is involved,

as the distributed and randomized decisions exhibit many non-trivial dependencies.

Nevertheless, we are able to rigorously prove good competitive throughput and fair-

ness properties, which is also confirmed by our simulation study.
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Interestingly, although co-existing networks are ubiquitous and many dif-

ferent aspects are discussed intensively (e.g., the packet inter-arrival time and fair-

ness in co-existing 802.11a/g and 802.11n networks [3], interference cancelation

phenomena [54], transmission capacities in multi-antenna ad-hoc networks [30],

or even explicit inter-network communication for frequency cooperation [68]) in

different contexts (e.g., in the current debate on white space liberalization [46]

where primary TV and microphone users announcing their reservations in a cen-

tral database are given strict priority), we are not aware of any work on the design

of MAC protocols for independent co-existing networks with rigorous formal com-

petitive throughput and fairness guarantees.

1.4 Preliminaries

In this section, we present some important definitions and basic results,

which will be used in the following chapters.

1.4.1 Intuition

We first explain the intuition used by our protocols in this dissertation.

Although serving for different purposes under different models, the intu-

ition behind JADE, ANIJAM, SELECT, COMAC, and SINRMAC is similar to the

one presented in [6]. For JADE, ANTIJAM, COMAC and SINRMAC, the goal is to

achieve provably high throughput against adversarial jamming by adapting nodes’

access probabilities based on the events of idle channel and successful transmis-

sion. For SELECT, the main goal is to have a leader election protocol that is self-

stabilizing despite adversarial jamming. To accomplish this, nodes also need to

adjust their probabilities based on idle channel or successful transmissions so that

FOLLOWER and LEADER messages can go through despite jamming. Hence,

how to adjust nodes’ access probabilities appropriately is crucial to the design of

robust and efficient medium access despite jamming. Next, we explain the intuition
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in more detail. We assume the network model is single-hop and single network for

now, in case of multi-hop networks as well as coexisting networks, the same intu-

ition still applies, as explained in Chapters 2 and 5.

Let G = (V,E) be a single-hop network where n = |V |. Each node v main-

tains a medium access probability pv which determines the probability that v trans-

mits a message in a communication round. Let the cumulative probability p =

∑v pv, q0 be the probability that the channel is idle, and q1 be the probability that

exactly one node is sending a message. We have the following lemma which was

first proved in [6]:

Lemma 1.1 q0 · p≤ q1 ≤ q0
1−p̂ · p.

Proof. It holds that q0 = ∏v(1− pv) and q1 = ∑v pv ∏w6=v(1−pw). Hence,

q1 ≤∑
v

pv
1

1− p̂ ∏
w
(1− pw) =

q0 · p
1− p̂

q1 ≥∑
v

pv ∏
w
(1− pw) = q0 · p

which implies the lemma.

According to Lemma 1.1, if q0 =Θ(q1), then the cumulative sending proba-

bility p is constant, which in turn implies that at any non-jammed time step we have

constant probability of having a successful transmission. Hence our protocol aims

at adjusting the sending probabilities pv of the nodes such that q0 = Θ(q1), in spite

of adversarial jamming activities. This could be achieved by adjusting nodes’ ac-

cess probabilities based on the events of idle channel and successful transmissions,

more details of which are provided in the following chapters.

12



1.4.2 Mathematical Tools

In order to perform theoretical analysis on our protocols, we will frequently use the

following two lemmas: Lemma 1.2 is the variant of the Chernoff bounds [6, 56];

Lemma 1.3 follows immediately from the Taylor series of the exponential function.

Lemma 1.2 Consider any set of binary random variables X1, . . . ,Xn. Suppose

that there are values p1, . . . , pn ∈ [0,1] with E[∏i∈S Xi] ≤ ∏i∈S pi for every set

S⊆ {1, . . . ,n}. Then it holds for X = ∑
n
i=1 Xi and µ = ∑

n
i=1 pi and any δ > 0 that

P[X ≥ (1+δ )µ]≤
(

eδ

(1+δ )1+δ

)µ

≤ e−
δ2µ

2(1+δ/3) .

If, on the other hand, it holds that E[∏i∈S Xi]≥∏i∈S pi for every set S⊆ {1, . . . ,n},

then it holds for any 0 < δ < 1 that

P[X ≤ (1−δ )µ]≤
(

e−δ

(1−δ )1−δ

)µ

≤ e−δ 2µ/2.

Lemma 1.3 For all 0 < x < 1 it holds that

e−x/(1−x) ≤ 1− x≤ e−x
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Chapter 2

THE JADE PROTOCOL

In this chapter, we consider the problem of designing a robust MAC protocol for

multi-hop wireless networks, with the existence of a strong adaptive but non-reactive

adversary. We prove that the proposed protocol, JADE, can achieve constant com-

petitive throughput, and the limitations of JADE is also discussed.

The wireless network is modeled as a unit disk graph (UDG) G = (V,E)

where V represents a set of n= |V | honest and reliable nodes and two nodes u,v∈V

are within each other’s transmission range, i.e., {u,v} ∈ E, if and only if their (nor-

malized) distance is at most 1. We assume that time proceeds in synchronous time

steps called rounds. In each round, a node may either transmit a message or sense

the channel, but it cannot do both. Moreover, we assume that a (receiving) node

can detect collisions. Concretely, a node which is sensing the channel may either

(i) sense an idle channel (if no other node in its transmission range is transmitting at

that round and its channel is not jammed), (ii) sense a busy channel (if two or more

nodes in its transmission range transmit at that round or its channel is jammed), or

(iii) receive a packet (if exactly one node in its transmission range transmits at that

round and its channel is not jammed).

In addition to these nodes there is an adversary (controlling any number of

jamming devices). We allow the adversary to know the protocol and its entire his-

tory and to use this knowledge in order to jam the wireless channel at will at any

round (i.e, the adversary is adaptive). However, like in [6], the adversary has to

make a jamming decision before it knows the actions of the nodes at the current

round. The adversary can jam the nodes individually at will, as long as for every

node v, at most a (1− ε)-fraction of its rounds is jammed (ε > 0 can be an arbi-
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trarily small constant independent of n), among which at least an arbitrary constant

fraction are open. We say a round t is open for a node v if v and at least one other

node in its neighborhood are non-jammed (which implies that v’s neighborhood is

non-empty). More formally, an adversary is (T,1−ε)-bounded for some T ∈N and

0 < ε < 1, if for any time window of size w ≥ T and at any node v, the adversary

can jam at most (1− ε)w of the w rounds at v, and at least an arbitrary constant

fraction of the non-jammed rounds at v are open in every time interval of size w. In

this chapter, if not stated otherwise and by default, we always refer to the adversary

defined here. We also consider a stronger adversary that does not have the limita-

tion of providing open rounds. Note that we sometime explicitly use the adjective

weak to distinguish the adversary defined previously from the stronger variant.

Next, we need to rigorously define c-competitiveness in a multi-hop wireless

network setting. Given a node v and a time interval I, we define fv(I) as the number

of time steps in I that are non-jammed at v and sv(I) as the number of time steps in I

in which v successfully receives a message. Then, we have the following definition:

Definition 2.1 A MAC protocol is called c-competitive against some (T,1− ε)-

bounded adversary if, for any time interval I with |I| ≥ K for a sufficiently large K

(that may depend on T and n), ∑v∈V sv(I)≥ c ·∑v∈V fv(I).

In other words, a c-competitive MAC protocol can achieve at least a c-fraction of

the best possible throughput.

Our goal is to design a symmetric local-control MAC protocol (i.e., there is

no central authority controlling the nodes, and all the nodes are executing the same

protocol) that has a constant-competitive throughput (i.e., a c-competitive through-

put where c does not depend on n) against any (T,1− ε)-bounded adversary in

any multi-hop network that can be modeled as a UDG. Not only the nodes are dis-
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tributed in space in our model, but also the adversary. Concretely, we introduce

the concept of a k-uniform adversary, an adversary that can jam different nodes at

different times. An adversary is k-uniform if the node set V can be partitioned into

k subsets so that the jamming sequence is the same within each subset. In other

words, we require that at all times, the nodes in a subset are either all jammed or

all non-jammed. Thus, a 1-uniform jammer jams either everybody or nobody in a

round whereas an n-uniform jammer can jam the nodes individually at will. Note

that the adversary must hence not necessarily be geometrically constrained.

As already mentioned, we also consider a stronger adversary: we say that a

strong adversary is (T,1− ε)-bounded, if for any time window of size w ≥ T and

at any node v, the adversary can jam at most (1− ε)w of the w rounds at v, where

T ∈N and 0 < ε < 1. Note that this adversary is stronger as we only guarantee that

an ε-fraction of the rounds at v are non-jammed, but not that during these rounds

there exists at least one neighbor free to receive a message from v. While the nodes

do not know ε , we do allow them to have a very rough upper bound of the values n

and T .

Finally, let us emphasize that our notion of throughput is constrained to

Layer 2 (the MAC layer), and measures the number of successful transmissions over

“links”, i.e., pairs of nodes. That is, assuming a backlogged situation where packets

are constantly submitted to the medium access layer from higher layers, we can

schedule transmissions over Layer 2 links efficiently. In contrast to other through-

put models in literature (e.g., [59]), we explicitly consider the receiver-side which

we believe is much more meaningful: in a broadcast medium and in a distributed

setting, the throughput computed by focusing on the sender only can be misleading

as simply sending a packet out does not imply that it is also received (and by how

many nodes). However, also note that a (MAC layer) link-based throughput does
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not imply any minimal end-to-end throughput between remote nodes on higher lay-

ers, e.g., on the transport layer (especially when using TCP with its flow and con-

gestion control mechanisms), or throughput of flows. Moreover, note that we do

not model any retransmissions that would happen on higher layers. Indeed, our

MAC protocol has the nice property that it does not rely on any acknowledgements

on the MAC layer to guarantee the throughput, and assumes that retransmission

mechanisms are in place on higher layers.

In this dissertation, we say that a claim holds with high probability (w.h.p.)

iff it holds with probability at least 1− 1/nc for any constant c ≥ 1; it holds with

moderate probability (w.m.p.) iff it holds with probability at least 1−1/(logn)c for

any constant c≥ 1.

2.1 Contribution

We present a robust MAC protocol called JADE. JADE is a fairly simple pro-

tocol: it is based on a small set of rules and assumptions (e.g., collision detection at

receivers), and has a minimal storage overhead. We can prove the following main

theorem:

Theorem 2.2 When running JADE for Ω([T +(log3 n)/(γ2ε)] · (logn)/ε) rounds it

holds w.h.p. that JADE achieves a constant competitive throughput (i.e., indepen-

dent of n) for any (T,1−ε)-bounded (weak) adversary, where n is the total number

of nodes and γ ∈ O(1/(logT + log logn) is a parameter.

Since logT and loglogn are small the assumption on γ is not too restrictive:

A conservative estimate on logT and loglogn would leave room for a superpoly-

nomial change in n and a polynomial change in T over time. Also note that the

(unrealistic and non-scalable) assumption that the nodes know constant factor ap-
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proximations of n or T directly would render the problem trivial. (Whether a com-

petitive MAC protocol exists without any assumptions on the magnitude of these

parameters is an open question. We conjecture no such algorithm exists.)

Regarding the strong adversary, we can show constant throughput only if

one of the conditions in Theorem 2.3 is satisfied.

Theorem 2.3 When running JADE for Ω((T logn)/ε+(logn)4/(γε)2) rounds, JADE

has a constant competitive throughput against any strong adversary that is (T,1−

ε)-bounded and in any UDG w.h.p., as long as (a) the adversary is 1-uniform and

the UDG is connected, or (b) there are at least 2/ε nodes within the transmission

range of every node.

In Section 2.3.4, we show that Theorem 2.3 captures all the scenarios for which

JADE can have a constant competitive throughput under a strong adversary.

Concretely, we will show the following limitations under a strong adversary.

Let D(u) denote the set of nodes around node u, consisting of u’s neighboring nodes

as well as u.

Theorem 2.4 In general, JADE is not strongly c-competitive for a constant c > 0

(independent of n) if the strong adversary is allowed to be 2-uniform and ε ≤ 1/3.

Moreover, JADE is also not c-competitive for a constant c if there are nodes u with

|D(u)|= o(1/ε) and the strong adversary is allowed to be 2-uniform.

Here, strongly c-competitive refers to a stronger throughput model where we require

that for any sufficiently large time interval and any node v, the number of rounds in

which v successfully receives a message is at least a c-fraction of the total number

of non-jammed rounds at v.
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2.2 Description of JADE

This section first gives a short motivation for our algorithmic approach and

then presents the JADE protocol in detail.

2.2.1 Intuition

Each node u maintains a parameter pu which describes u’s probability of accessing

the channel at a given moment of time. That is, in each round, each node u decides

to broadcast a packet with probability pu. (This is similar to classic random backoff

mechanisms where the next transmission time t is chosen uniformly at random from

an interval of size 1/pv.) The nodes adapt and synchronize their pu values over time

in a multiplicative increase multiplicative decrease manner, i.e., the value is lowered

in times of high interference or increased during times where the channel is idling.

However, pu will never exceed p̂, for some constant 0 < p̂ < 1.

The intuition behind JADE follows the guideline illustrated in Section 1.4.1,

although Lemma 1.1 needs to be verified in multi-hop scenario. We show this as

follows.

Consider the unit disk D(u) around node u consisting of u’s neighboring

nodes as well as u.1 Moreover, let N(u) = D(u) \ {u} and p = p(u) = ∑v∈N(u) pv;

henceforth, when u is clear from the context, we will often simply write p instead

of p(u). Suppose that u is sensing the channel. Let q0 be the probability that the

channel is idle at u and let q1 be the probability that exactly one node in N(u) is

sending a message.

It holds that q0 = ∏v∈N(u)(1− pv) and q1 = ∑v∈N(u) pv ∏w∈N(u)\{v}(1− pw).
1In this dissertation, disks (and later sectors) will refer both to 2-dimensional areas in the plane

as well as to the set of nodes in the respective areas. The exact meaning will become clear in the
specific context.

19



Hence,

q1 ≤ ∑
v∈N(u)

pv
1

1− p̂ ∏
w∈N(u)

(1− pw) =
q0 · p
1− p̂

q1 ≥ ∑
v∈N(u)

pv ∏
w∈N(u)

(1− pw) = q0 · p.

Thus we prove Lemma 1.1 for the multi-hop case.

By Lemma 1.1, if a node v observes that the number of rounds in which

the channel is idle is equal to the number of rounds in which exactly one message

is sent, then p = ∑v∈N(v) pv is likely to be around 1 (if p̂ is a sufficiently small

constant), which would be ideal.

Otherwise, the nodes know that they need to adapt their probabilities. Thus,

if we had sufficiently many cases in which an idle channel or exactly one message

transmission is observed (which is the case if the adversary does not heavily jam the

channel and p is not too large), then one can adapt the probabilities pv just based on

these two events and ignore all cases in which the wireless channel is blocked, either

because the adversary is jamming it or because at least two messages interfere with

each other (see also [26] for a similar conclusion). Unfortunately, p can be very

high for some reason (e.g., due to high initial sending probabilities), which requires

a more sophisticated strategy for adjusting the access probabilities.

2.2.2 Protocol Description

In JADE, each node v maintains, in addition to the probability value pv, a threshold

Tv and a counter cv for Tv. Tv is used to estimate the adversary’s time window

T : a good estimation of T can help the nodes recover from a situation where they

experience high interference in the network. In times of high interference, Tv will

be increased and the sending probability pv will be decreased.
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Initially, every node v sets cv := 1 and pv := p̂. Note however that while

we provide some initial values for the variables in our description, our protocol is

self-stabilizing and works for any initial variable values, as we will show in our

proofs.

Algorithm 1 JADE: for each node v
1: roundcounter = 0
2: pv := p̂
3: cv := 1
4: Tv := 1 {JADE works in synchronized rounds}
5: while True do
6: v decides with probability pv to send a message
7: if v decides to send a message then
8: v sends a message
9: else

10: v senses the channel
11: if v senses an idle channel then
12: pv := min{(1+ γ)pv, p̂}
13: else if v successfully receives a message then
14: pv := (1+ γ)−1 pv
15: Tv := max{Tv−1,1}
16: end if
17: end if
18: cv := cv +1
19: if cv > Tv then
20: cv := 1
21: if there was no successful transmission or an idle channel among the past

Tv time steps then
22: pv := (1+ γ)−1 pv
23: Tv := min{Tv +1,21/(4γ)}
24: end if
25: end if
26: roundcounter := roundcounter+1
27: end while

As we will see in the upcoming section, the concept of using a multiplicative-

increase-multiplicative-decrease mechanism for pv and an additive-increase-additive-

decrease mechanism for Tv, as well as the slight modifications of the protocol in [6],

marked in italic above, are crucial for JADE to work. If in the Afterwards part of the
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algorithm we did not include the “idle” condition, in a distributed setting, it could

happen that a center node u which is surrounded by many nodes with low pv values

which are in turn surrounded by nodes with high pw values (and hence the middle

nodes’s pv values stay low), will never see any successful transmissions (apart from

u’s own transmissions), and hence Tu may increase arbitrarily. Such high Tu values

however are harmful to the fast recovery properties of the protocol.

2.3 Analysis

In contrast the description of JADE, its stochastic analysis is rather involved

as it requires to shed light onto the complex interplay of the nodes all following

their randomized protocol in a dependent manner. We first prove Theorem 2.2

in Sections 2.3.1 and 2.3.2, and then derive Theorem 2.3 in Section 2.3.3. The

limitations of JADE under the strong adversary are discussed in Section 2.3.4.

The analysis makes repeated use of Lemma 1.3 and the Chernoff bounds in

Lemma 1.2.

2.3.1 Proof of Theorem 2.2

First, we focus on a time frame F consisting of (α logn)/ε subframes of size f =

α[T +(log3 n)/(γ2ε)] each, where f is a multiple of T and α is a sufficiently large

constant. The proof needs the following three lemmas. The first one is identical to

Claim 2.5 in [6]. It is true because only successful message transmissions reduce

Tu.

Lemma 2.5 If in a time interval I the number of rounds in which a node u suc-

cessfully receives a message is at most r, then u increases Tu in at most r+
√

2|I|

rounds in I.
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The following lemma even holds for a strong adversary and will be shown

in Section 2.3.2.

Lemma 2.6 For every node u, ∑v∈D(u) pv = O(1) for at least a (1−εβ )-fraction of

the rounds in time frame F, w.h.p., where the constant β > 0 can be made arbitrarily

small.

The following lemma follows from simple geometric arguments.

Lemma 2.7 A disk of radius 2 can be cut into at most 20 regions so that the distance

between any two points in a region is at most 1.

Consider some fixed node u. Let J ⊆ F be the set of all non-jammed open

rounds at u in time frame F (which are a constant fraction of the non-jammed rounds

at u). Let p be a constant satisfying Lemma 2.6 (i.e., ∑w∈D(v) pw ≤ p). Define

DD(u) to be the disk of radius 2 around u (i.e., it has twice the radius of D(u)). Cut

DD(u) into 20 regions R1, . . . ,R20 satisfying Lemma 2.7, and let vi be any node in

region Ri (if such a node exists), where vi = u if u ∈ Ri. According to Lemma 2.6

it holds for each i that at least a (1− εβ ′/20)-fraction of the rounds in F satisfy

∑w∈D(vi) pw ≤ p for any constant β ′ > 0, w.h.p. Thus, at least a (1− εβ ′′)-fraction

of the rounds in F satisfy ∑w∈D(vi) pw≤ p for every i for any constant β ′′> 0, w.h.p.

As D(v) ⊆ DD(u) for all v ∈ D(u) and u has at least ε|F | non-jammed rounds in

F , we get the following lemma, which also holds for arbitrary (T,1− ε)-bounded

adversaries.

Lemma 2.8 At least a (1− β )-fraction of the rounds in J satisfy ∑v∈D(u) pv ≤ p

and ∑w∈D(v) pw = O(p) for all nodes v ∈ D(u) for any constant β > 0, w.h.p.
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Let us call these rounds good. Since the probability that u senses the channel

is at least 1− p̂ and the probability that the channel at u is idle for ∑w∈D(u) pw ≤ p

is equal to ∏v∈N(u)(1− pv) ≥ ∏v∈N(u) e−2pv ≥ e−2p, u senses an idle channel for

at least (1− p̂)(1− β )|J|e−2p ≥ 2β |J| many rounds in J on expectation if β is

sufficiently small. This also holds w.h.p. when using the Chernoff bounds under

the condition that at least (1−β )|J| rounds in F are good (which also holds w.h.p.).

Let k be the number of times u receives a message in F . We distinguish between

two cases.

Case 1: k ≥ β |J|/6. Then JADE is constant competitive for u and we are done.

Case 2: k < β |J|/6. Then we know from Lemma 2.5 that pu is decreased at most

β |J|/6+
√

2|F | times in F due to cu > Tu. In addition to this, pu is decreased

at most β |J|/6 times in F due to a received message. On the other hand, pu is

increased at least 2β |J| times in J (if possible) due to an idle channel w.h.p. Also,

we know from the JADE protocol that at the beginning of F , pu = p̂. Hence, there

must be at least β (2− 1/6− 1/6)|J| −
√

2|F | ≥ (3/2)β |J| rounds in J w.h.p. at

which pu = p̂. As there are at least (1−β )|J| good rounds in J (w.h.p.), there are

at least β |J|/2 good rounds in J w.h.p. in which pu = p̂. For these good rounds,

u has a constant probability to transmit a message and every node v ∈ D(u) has a

constant probability of receiving it, so u successfully transmits Θ(|J|) messages to

at least one of its non-jammed neighbors in F (on expectation and also w.h.p.).

If we charge 1/2 of each successfully transmitted message to the sender and

1/2 to the receiver, then a constant competitive throughput can be identified for

every node in both cases above, so JADE is constant competitive in F .

It remains to show that Theorem 2.2 also holds for larger time intervals than

|F |. First, note that all the proofs are valid as long as γ ≤ 1/[c(logT + log logn)] for
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a constant c≥ 2, so we can increase T and thereby also |F | as long as this inequality

holds. So w.l.o.g. we may assume that γ = 1/[2(logT + log logn)]. In this case,

21/(4γ) ≤
√
|F |, so our rule of increasing Tv in JADE implies that Tv ≤

√
|F | at any

time. This allows us to extend the competitive throughput result to any sequence

of time frames. Let J ⊂ l ·F be the set of all non-jammed open rounds at u overall

time frames, where l is the number of frames considered here. Hence, Case 1 holds

directly; as for Case 2, we have β (2−1/6−1/6)|J|−
√

2l|F | ≥ (3/2)β |J| rounds

in J w.h.p. at which pu = p̂. Hence, the rest of the proof follows directly, which

completes the proof of Theorem 2.2.

2.3.2 Proof of Lemma 2.6

This section is dedicated to the proof of Lemma 2.6 which is rather involved. Con-

sider any fixed node u. We partition u’s unit disk D(u) into six sectors of equal

angles from u, S1, ...,S6. Note that all nodes within a sector Si have distances of

at most 1 from each other, so they can directly communicate with one another (in

D(u), distances can be up to 2). We will first explore properties of an arbitrary node

in one sector, then consider the implications for a whole sector, and finally bound

the cumulative sending probability in the entire unit disk.

Recall the definition of a time frame, a subframe and f in the proof of The-

orem 2.2. Fix a sector S in D(u) and consider some fixed time frame F . Let us refer

to the sum of the probabilities of the neighboring nodes of a given node v ∈ S by

p̄v := ∑w∈S\{v} pw. The following lemma shows that pv will decrease dramatically

if p̄v is high throughout a certain time interval.

Lemma 2.9 Consider a node v in a unit disk D(u). If p̄v > 5− p̂ during all rounds

of a subframe I of F, then pv will be at most 1/n2 at the end of I, w.h.p.

Proof. We say that a round is useful for node v if from v’s perspective there is
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an idle channel or a successful transmission at that round (when ignoring the action

of v); otherwise the round is called non-useful. Note that in a non-useful round,

according to our protocol, pv will either decrease (if the threshold Tv is exceeded)

or remain the same. On the other hand, in a useful round, pv will increase (if v senses

an idle channel), decrease (if v senses a successful transmission) or remain the same

(if v sends a message). Hence, pv can only increase during useful rounds of I. Let

U be the set of useful rounds in I for our node v. We distinguish between two cases,

depending on the cardinality |U |. In the following, let pv(0) denote the probability

of v at the beginning of I (which is at most p̂). Suppose that f ≥ 2[(3c lnn)/γ]2 for

a sufficiently large constant c. (This lower bound coincides with our definition of f

in the proof of Theorem 2.2.)

Case 1: Suppose that |U |< (c lnn)/γ , that is, many rounds are blocked and

pv can increase only rarely. As there are at least (3c lnn)/γ occasions in I in which

cv > Tv and |U | < (c lnn)/γ , in at least (2c lnn)/γ of these occasions v only saw

blocked channels for Tv consecutive rounds and therefore decides to increase Tv and

decrease pv. Hence, at the end of I,

pv ≤ (1+ γ)|U |−2c lnn/γ pv(0)

≤ (1+ γ)−c lnn/γ pv(0)

≤ e−c lnn = 1/nc.

Case 2: Next, suppose that |U | ≥ (c lnn)/γ . We will show that many of

these useful rounds will be successful such that pv decreases. Since pv ≤ p̂ ≤

1/24 throughout I, it follows from the Chernoff bounds that w.h.p. v will sense the

channel for at least a fraction of 2/3 of the useful rounds w.h.p. Let this set of

useful rounds be called U ′. Consider any round t ∈U ′. Let q0 be the probability

that there is an idle channel at round t and q1 be the probability that there is a
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successful transmission at t. It holds that q0 + q1 = 1. From Lemma 1.1 we also

know that q1 ≥ q0 · p̄v. Since p̄v > 5− p̂ for all rounds in I, it follows that q1 ≥ 4/5

for every round in U ′. Thus, it follows from the Chernoff bounds that for at least

2/3 of the rounds in U ′, v will sense a successful transmission w.h.p. Hence, at the

end of I it holds w.h.p. that

pv ≤ (1+ γ)−(1/3)·|U ′|pv(0)

≤ (1+ γ)−(1/3)·(2c/3) lnn/γ pv(0)

≤ e−(2c/9) lnn = 1/n2c/9.

Combining the two cases with c≥ 9 results in the lemma.

Given this property of the individual probabilities, we can derive a bound for

the cumulative probability of an entire sector S. In order to compute pS = ∑v∈S pv,

we introduce three thresholds, a low one, ρgreen = 5, one in the middle, ρyellow = 5e,

and a high one, ρred = 5e2. The following three lemmas provide some important

insights about these probabilities.

Lemma 2.10 For any subframe I in F and any initial value of pS in I there is at

least one round in I with pS ≤ ρgreen w.h.p.

Proof. We prove the lemma by contradiction. Suppose that throughout the entire

interval I, pS > ρgreen. Then it holds for every node v ∈ S that p̄v > ρgreen− p̂

throughout I. In this case, however, we know from Lemma 2.9, that pv will decrease

to at most 1/n2 at the end of I w.h.p. Hence, all nodes v ∈ S would decrease pv to

at most 1/n2 at the end of I w.h.p., which results in pS ≤ 1/n. This contradicts our

assumption, so w.h.p. there must be a round t in I at which pS ≤ ρgreen.
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Lemma 2.11 For any time interval I in F of size f and any sector S it holds that if

pS ≤ ρgreen at the beginning of I, then pS ≤ ρyellow throughout I, w.m.p. Similarly,

if pS ≤ ρyellow at the beginning of I, then pS ≤ ρred throughout I, w.m.p.

Proof. It suffices to prove the lemma for the case that initially pS ≤ ρgreen as the

other case is analogous. Consider some fixed round t in I. Let pS be the cumulative

probability at the beginning of t and p′S be the cumulative probability at the end of

t. Moreover, let p(0)S denote the cumulative probability of the nodes w ∈ S with no

transmitting node in D(w) \ S in round t. Similarly, let p(1)S denote the cumulative

probability of the nodes w ∈ S with a single transmitting node in D(w) \ S, and let

p(2)S be the cumulative probability of the nodes w ∈ S that experience a blocked

round either because they are jammed or at least two nodes in D(w) \ S are trans-

mitting at t. Certainly, pS = p(0)S + p(1)S + p(2)S . Our goal is to determine p′S in this

case. Let q0(S) be the probability that all nodes in S stay silent, q1(S) be the prob-

ability that exactly one node in S is transmitting, and q2(S) = 1−q0(S)−q1(S) be

the probability that at least two nodes in S are transmitting.

When ignoring the case that cv > Tv for a node v ∈ S at round t, it holds:

E[p′S] = q0(S) · [(1+ γ)p(0)S +(1+ γ)−1 p(1)S + p(2)S ]

+q1(S) · [(1+ γ)−1 p(0)S + p(1)S + p(2)S ]

+q2(S) · [p(0)S + p(1)S + p(2)S ]

This is certainly also an upper bound for E[p′S] if cv > Tv for a node v ∈ S because

pv will never be increased (but possibly decreased) in this case. Now, consider

the event E2 that at least two nodes in S transmit a message. If E2 holds, then

E[p′S] = p′S = pS, so there is no change in the system. On the other hand, assume that

E2 does not hold. Let q′0(S) = q0(S)/(1−q2(S)) and q′1(S) = q1(S)/(1−q2(S)) be
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the probabilities q0(S) and q1(S) under the condition of ¬E2. Then we distinguish

between three cases.

Case 1: p(0)S = pS. Then

E[p′S] ≤ q′0(S) · (1+ γ)pS +q′1(S) · (1+ γ)−1 pS

= ((1+ γ)q′0(S)+(1+ γ)−1q′1(S))pS.

From Lemma 1.1 we know that q0(S) ≤ q1(S)/pS, so q′0(S) ≤ q′1(S)/pS. If pS ≥

ρgreen, then q′0(S)≤ q′1(S)/5. Hence,

E[p′S] ≤ ((1+ γ)/6+(1+ γ)−15/6)pS ≤ (1+ γ)−1/2 pS

since γ = o(1). On the other hand, p′S ≤ (1+ γ)pS in any case.

Case 2: p(1)S = pS. Then

E[p′S] ≤ q′0(S) · (1+ γ)−1 pS +q′1(S)pS

= (q′0(S)/(1+ γ)+(1−q′0(S)))pS

= (1−q′0(S)γ/(1+ γ))pS.

Now, it holds that 1− xγ/(1+ γ) ≤ (1+ γ)−x/2 for all x ∈ [0,1] because from the

Taylor series of ex and ln(1+ x) it follows that

(1+ γ)−x/2 ≥ 1− (x ln(1+ γ))/2≥ 1− (x(1− γ/2)γ)/2

and

1− xγ/(1+ γ)≤ 1− (x(1− γ/2)γ)/2

for all x,γ ∈ [0,1] as is easy to check. Therefore, when defining ϕ = q′0(S), we get

E[p′S]≤ (1+ γ)−ϕ/2 pS. On the other hand, p′S ≤ pS ≤ (1+ γ)ϕ pS.

Case 3: p(2)S = pS. Then for ϕ = 0, E[p′S] ≤ pS = (1+ γ)−ϕ/2 pS and p′S ≤ pS =

(1+ γ)ϕ pS.
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Combining the three cases and taking into account that p(0)S + p(1)S + p(2)S =

pS, we obtain the following result.

Lemma 2.12 There is a φ ∈ [0,1] (depending on p(0)S , p(1)S and p(2)S ) so that

E[p′S]≤ (1+ γ)−φ pS and p′S ≤ (1+ γ)2φ pS. (2.1)

Proof. Let a = (1+ γ)1/2, b = (1+ γ)ϕ/2 for the ϕ defined in Case 2, and c =

1. Furthermore, let x0 = p(0)S /pS, x1 = p(1)S /pS and x2 = p(2)S /pS. Define φ =

− log1+γ((1/a)x0 +(1/b)x1 +(1/c)x2). Then we have

E[p′S] ≤ (1+ γ)−1/2 p(0)S +(1+ γ)−ϕ/2 p(1)S + p(2)S

= (1+ γ)−φ pS.

We need to show that for this φ , also p′S ≤ (1+ γ)2φ pS. As p′S ≤ (1+ γ)p(0)S +(1+

γ)ϕ p(1)S + p(2)S , this is true if

a2x0 +b2x1 + c2x2 ≤
1

((1/a)x0 +(1/b)x1 +(1/c)x2)2

or

((1/a)x0 +(1/b)x1 +(1/c)x2)
2(a2x0 +b2x1 + c2x2)≤ 1 (2.2)

To prove this, we need two claims whose proofs are tedious but follow from stan-

dard math.

Claim 2.13 For any a,b,c > 0 and any x0,x1,x2 > 0 with x0 + x1 + x2 = 1,

(ax0 +bx1 + cx2)
2 ≤ (a2x0 +b2x1 + c2x2)

Claim 2.14 For any a,b,c > 0 and any x0,x1,x2 > 0 with x0 + x1 + x2 = 1,

((1/a)x0 +(1/b)x1 +(1/c)x2)(ax0 +bx1 + cx2)≤ 1
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Combining the claims, Equation (2.2) follows, which completes the proof.

Hence, for any outcome of E2, E[p′S] ≤ (1+ γ)−ϕ pS and p′S ≤ (1+ γ)2ϕ pS

for some ϕ ∈ [0,1]. If we define qS = log1+γ pS, then it holds that E[q′S] ≤ qS−ϕ .

For any time t in I, let qt be equal to qS at time t and ϕt be defined as ϕ at time t.

Our calculations above imply that as long as pS ∈ [ρgreen,ρyellow], E[qt+1]≤ qt−ϕt

and qt+1 ≤ qt +2ϕt .

Now, suppose that within subframe I we reach a point t when pS > ρyellow.

Since we start with pS ≤ ρgreen, there must be a time interval I′ ⊆ I so that right

before I′, pS ≤ ρgreen, during I′ we always have ρgreen < pS ≤ ρyellow, and at the

end of I′, pS > ρyellow. We want to bound the probability for this to happen.

Consider some fixed interval I′ with the properties above, i.e., with pS ≤

ρgreen right before I′ and pS ≥ ρgreen at the first round of I′, so initially, pS ∈

[ρgreen,(1+ γ)ρgreen]. We use martingale theory to bound the probability that in

this case, the properties defined above for I′ hold. Consider the rounds in I′ to be

numbered from 1 to |I′|, let qt and ϕt be defined as above, and let q′t = qt +∑
t−1
i=1 ϕi.

It holds that

E[q′t+1] = E[qt+1 +
t

∑
i=1

ϕi]

= E[qt+1]+
t

∑
i=1

ϕi ≤ qt−ϕt +
t

∑
i=1

ϕi

= qt +
t−1

∑
i=1

ϕi

= q′t .

Moreover, it follows from Inequality (2.1) that for any round t, p′S ≤ (1+ γ)2ϕt pS.

Therefore, qt+1 ≤ qt + 2ϕt , which implies that q′t+1 ≤ q′t +ϕt . Hence, we can de-

fine a martingale (Xt)t∈I′ with E[Xt+1] = Xt and Xt+1 ≤ Xt +ϕt that stochastically
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dominates q′t . Recall that a random variable Yt stochastically dominates a random

variable Zt if for any z, P[Yt ≥ z] ≥ P[Zt ≥ z]. In that case, it is also straightfor-

ward to show that ∑iYi stochastically dominates ∑i Zi, which we will need in the

following. Let T = |I′|. We will make use of Azuma’s inequality to bound XT .

Fact 2.15 (Azuma Inequality) Let X0,X1, . . . be a martingale satisfying the prop-

erty that Xi ≤ Xi−1 + ci for all i≥ 1. Then for any δ ≥ 0,

P[XT > X0 +δ ]≤ e−δ 2/(2∑
T
i=1 c2

i ).

Thus, for δ = 1/γ +∑
T
i=1 ϕi it holds in our case that

P[XT > X0 +δ ]≤ e−δ 2/(2∑
T
i=1 ϕ2

i ).

This implies that

P[q′T > q′0 +δ ]≤ e−δ 2/(2∑
T
i=1 ϕ2

i ),

for several reasons. First of all, stochastic dominance holds as long as pS ∈ [ρgreen,ρyellow],

and whenever this is violated, we can stop the process as the requirements on I′

would be violated, so we would not have to count that probability towards I′. There-

fore,

P[qT > q0 +1/γ]≤ e−δ 2/(2∑
T
i=1 ϕ2

i ).

Notice that qT > q0 + 1/γ is required so that pS > ρyellow at the end of I′, so the

probability bound above is exactly what we need. Let ϕ = ∑
T
i=1 ϕi. Since ϕi ≤ 1

for all i, ϕ ≥ ∑
T
i=1 ϕ2

i . Hence,

δ 2

2∑
T
i=1 ϕ2

i
≥ (1/γ +ϕ)2

2ϕ
≥
(

1
2ϕγ2 +

ϕ

2

)
.

This is minimized for 1/(2ϕγ2) = ϕ/2 or equivalently, ϕ = 1/γ . Thus,

P[qT > q0 +1/γ]≤ e−1/γ
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Since there are at most
( f

2

)
ways of selecting I′ ⊆ I, the probability that there exists

an interval I′ with the properties above is at most

(
f
2

)
e−1/γ ≤ f 2e−1/γ ≤ 1

logc n

for any constant c if γ = O(1/(logT + log logn)) is small enough.

Lemma 2.16 For any subframe I in F it holds that if there has been at least one

round during the past subframe where pS ≤ ρgreen, then throughout I, pS ≤ ρred

w.m.p.

Proof. Suppose that there has been at least one round during the past subframe

where pS ≤ ρgreen. Then we know from Lemma 2.11 that w.m.p. pS ≤ ρyellow at

the beginning of I. But if pS ≤ ρyellow at the beginning of I, we also know from

Lemma 2.11 that w.m.p. pS ≤ ρred throughout I, which proves the lemma.

Now, define a subframe I to be good if pS≤ ρred throughout I, and otherwise

I is called bad. With the help of Lemma 2.10 and Lemma 2.16 we can prove the

following lemma.

Lemma 2.17 For any sector S, at most εβ/6 of the subframes I in F are bad w.h.p.,

where the constant β > 0 can be made arbitrarily small depending on the constant

α in f .

Proof. From Lemma 2.10 it follows that for every subframe I in F there is a time

point t ∈ I at which pS ≤ ρgreen w.h.p. Consider now some fixed subframe I in F

that is not the first one and suppose that the previous subframe in F had at least

one round with pS ≤ ρgreen. Then it follows from Lemma 2.16 that for all rounds

in I, pS ≤ ρred w.m.p. (where the probability only depends on I and its preceding
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subframe), i.e., I is good. Hence, it follows from the Chernoff bounds that at most

εβ/7 of the odd-numbered as well as the even-numbered subframes after the first

subframe in F are bad w.h.p. (if the constant α is sufficiently large). This implies

that overall at most εβ/6 of the subframes in F are bad w.h.p.

From Lemma 2.17 it follows that apart from an εβ -fraction of the sub-

frames, all subframes I in F satisfy ∑v∈D(u) pv ∈ O(1) throughout I, which com-

pletes the proof of Lemma 2.6.

2.3.3 Proof of Theorem 2.3

Now, let us consider the two cases of Theorem 2.3 under the strong adversary.

Case 1: the adversary is 1-uniform and the UDG is connected.

In this case, every node has a non-empty neighborhood and therefore all non-

jammed rounds of the nodes are open. Hence, the conditions on a (T,1− ε)-

bounded adversary are satisfied. So Theorem 2.2 applies, which completes the

proof of Theorem 2.3 a).

Case 2: |D(v)| ≥ 2/ε for all v ∈V .

Consider some fixed time interval I with |I| being a multiple of T . For every node

v ∈D(u) let fv be the number of non-jammed rounds at v in I and ov be the number

of open rounds at v in I. Let J be the set of rounds in I with at most one non-jammed

node. Suppose that |J| > (1− ε/2)|I|. Then every node in D(u) must have more

than (ε/2)|I| of its non-jammed rounds in J. As these non-jammed rounds must be

serialized in J to satisfy our requirement on J, it holds that |J|> ∑v∈D(u)(ε/2)|I| ≥

(2/ε) · (ε/2)|I|= |I|. Since this is impossible, it must hold that |J| ≤ (1− ε/2)|I|.

Thus, ∑v∈D(u) ov≥ (∑v∈D(u) fv)−|J| ≥ (1/2)∑v∈D(u) fv because ∑v∈D(u) fv≥

(2/ε) · ε|I| = 2|I|. Let D′(u) be the set of nodes v ∈ D(u) with ov ≥ fv/4. That

is, for each of these nodes, a constant fraction of the non-jammed time steps is
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open. Then ∑v∈D(u)\D′(u) ov < (1/4)∑v∈D(u) fv, so ∑v∈D′(u) ov ≥ (1/2)∑v∈D(u) ov ≥

(1/4)∑v∈D(u) fv.

Consider now a set U ⊆ V of nodes so that
⋃

u∈U D(u) = V and for every

v ∈ V there are at most 6 nodes u ∈U with v ∈ D(u) (U is easy to construct in a

greedy fashion for arbitrary UDGs and also known as a dominating set of constant

density). Let V ′ =
⋃

u∈U D′(u). Since ∑v∈D′(u) ov ≥ (1/4)∑v∈D(u) fv for every node

u∈U , it follows that ∑v∈V ′ ov≥ (1/6)∑u∈U ∑v∈D′(u) ov≥ (1/24)∑u∈U ∑v∈D(u) fv≥

(1/24)∑v∈V fv. Using that together with Theorem 2.2, which implies that JADE is

constant competitive w.r.t. the nodes in V ′, completes the proof of Theorem 2.3 b).

2.3.4 Limitations under the Strong Adversary

One may ask whether a stronger throughput result than Theorem 2.3 can be shown

for the strong adversary. Ideally, we would like to use the following model. A MAC

protocol is called strongly c-competitive against some (T,1−ε)-bounded adversary

if, for any sufficiently large time interval and any node v, the number of rounds in

which v successfully receives a message is at least a c-fraction of the total number

of non-jammed rounds at v. In other words, a strongly c-competitive MAC protocol

can achieve at least a c-fraction of the best possible throughput for every individual

node. Unfortunately, such a protocol seems to be difficult to design. In fact, JADE

is not strongly c-competitive for any constant c > 0, even if the node density is

sufficiently high. We can prove the following lemmas which imply Theorem 2.4.

Lemma 2.18 In general, JADE is not strongly c-competitive for a constant c > 0 if

the strong adversary is allowed to be 2-uniform and ε ≤ 1/3.

Proof. Suppose that (at some corner of the UDG) we have a set U of at least

1/p̂ nodes located closely to each other that are all within the transmission range
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of a node v. Initially, we assume that ∑u∈U pu ≥ 1, pv = p̂ and Tx = 1 for all nodes

x ∈U ∪{v}. The time is partitioned into time intervals of size T . In each such time

interval, called T -interval, the (T,1−ε)-bounded adversary jams all but the first εT

rounds at U and all but the last εT rounds at v. It follows directly from Section 2.3

of [6] that if T = Ω((log3 n)/(γ2ε)), then for every node u ∈U , Tu ≤ α
√

T logn/ε

w.h.p. for some sufficiently large constant α . Thus, Tu ≤ γT/(β logn) w.h.p. for

any constant β > 0 if T is sufficiently large. Hence, between the last non-jammed

round at U and the first non-jammed round at v in a T -interval, the values Tu are

increased (and the values pu are decreased) at least β (logn)/(6γ) times. Thus, at

the first non-jammed round at v, it holds for every u ∈U that

pu ≤ p̂ · (1+ γ)−β (logn)/(6γ) ≤ p̂ · e−(β/6) logn ≤ 1/nβ/6

and, therefore, ∑u∈U pu = O(1/n2) if β ≥ 18. This cumulative probability will stay

that low during all of v’s non-jammed rounds as during these rounds the nodes in

U are jammed. Hence, the probability that v receives any message during its non-

jammed rounds of a T -interval is O(1/n2), so JADE is not c-competitive for v for

any constant c > 0.

Also, in our original model, JADE is not constant competitive if the node

density is too low.

Lemma 2.19 In general, JADE is not c-competitive for a constant c independent of

ε if there are nodes u with |D(u)|= o(1/ε) and the strong adversary is allowed to

be 2-uniform.

Proof. Suppose that we have a set U of k = o(1/ε) nodes located closely to each

other that are all within the transmission range of a node v. Let T =Ω((log3 n)/(γ2ε)).

In each T -interval, the adversary never jams v but jams all but the first εT rounds
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at U . Then Section 2.3 of [6] implies that for every node u ∈U , Tu ≤ γT/(β logn)

w.h.p. for any constant β > 0 if T is sufficiently large. The nodes in U con-

tinuously increase their Tu-values and thereby reduce their pu values during their

jammed time steps. Hence, the nodes in U ∪{v} will receive at most εT · |U |+

(εT +O(T/ logn)) = εT · o(1/ε)+ (ε + o(1))T = (ε + o(1))T messages in each

T -interval on expectation whereas the sum of non-jammed rounds over all nodes is

more than T .

Hence, Theorem 2.3 is the best one can show for JADE (within our notation).

More generally, of course, no MAC protocol can guarantee a constant competi-

tive throughput if the UDG is not connected. However, it is still an open question

whether there are simple MAC protocols that are constant competitive under non-

uniform jamming strategies even if there are o(1/ε) nodes within the transmission

range of a node.

2.4 Simulations

In order to complement our theoretical insights, we report on our simulation

results. First, we present our throughput results for a sufficiently large time interval,

and then we discuss the convergence behavior. For our simulations, as in our formal

analysis, we assume that initially all nodes v ∈ V have a high sending probability

of pv = p̂ = 1/24. The nodes are distributed at random over a square plane of 4×4

units, and are connected in a unit disk graph manner (multi-hop). We simulate the

jamming activity in the following way: for each round, a node is jammed indepen-

dently with probability (1− ε). Note that in the terminology we introduced, this

adversary is strong (as rounds do not need to be open) and n-uniform (as nodes

are jammed independently). The reason for studying this rather simplistic random-

ized “adversary” is twofold. First, although our formal results hold for arbitrary

adversaries, it is not clear how to constructively compute such a worst adversarial
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strategy; second, a random adversary also complements our formal results better as

it may capture the “average case” behavior.

We run the simulation for a sufficiently large number of time steps indicated

by the Theorem 2.2, i.e., for ([T +(log3 n)/(γ2ε)] ·(logn)/ε rounds, where ε = 0.1,

T = 200, and γ = 1/(logT + log logN). Simulations with different combinations

of ε ∈ {0.5,0.3,0.1} and T = {50,100,150,200} showed that ε = 0.1 and T = 200

yields the lowest throughput (and the strongest adversary), and hence, in the fol-

lowing, we will focus on this most challenging case. (The parameter γ is set to a

value satisfy its definition, i.e., γ = O(1/(logT + log logN)).)

Figure 2.1 (top) shows the throughput competitiveness of JADE for a sce-

nario where different numbers of nodes (i.e., n ∈ [100,2000]) are distributed uni-

formly at random over the plane and a scenario where the nodes are distributed

according to a normal/Gaussian distribution N (0,1). In both cases, the throughput

is larger when the density is higher. This corresponds to our formal insight that a

constant competitive throughput is possible only if the node density exceeds a cer-

tain threshold. For example, in a scenario with 100 nodes in the 4×4 plane (density

of 6.25), there are at least 6.25π ≈ 20 ≥ 2/ε = 20 uniformly distributed nodes in

one unit disk. As can be seen in the figure, when the number of nodes is larger than

600, the throughput falls between 20% and 40% for both uniform distribution and

Gaussian distribution.

Convergence time is the second most important evaluation criterion. We

found that already after a short time, a constant throughput is achieved; in particu-

lar, the total sending probability per unit disk approaches a constant value quickly.

This is due to the nodes’ ability to adapt their sending probabilities fast, see Fig-

ure 2.1 (bottom left). The figure also illustrates the high correlation between success
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Figure 2.1: Top: Throughput as a function of network size, where n ∈ [100,2000],
ε = 0.1, T = 200, and γ = 1/(logT + log logn). The result is averaged over
10 runs. Bottom left: Convergence behavior for multi-hop networks (uniform
distribution). As a demonstration, we used n = 500, ε = 0.1, T = 200, and
γ = 1/(logT + log logN). Note that the start-up phase where the sending prob-
abilities are high is short (no more than 50 rounds). Bottom right: Convergence
of Tv for multi-hop networks (uniform distribution). For demonstration, we used
n = 500, ε = 0.1, T = 200, and γ = 1/(logT + log logN).

ratio and aggregated sending probability.

Finally, we have also studied the average of the Tv values over time. The

average quickly stabilizes to a value around 10, as shown in Figure 2.1 (bottom

right).

2.5 Conclusion

To the best of our knowledge, JADE is the first jamming-resistant MAC pro-

tocol with provably good performance in multi-hop networks exposed to an adap-

tive but non-reactive adversary . While we have focused on unit disk graphs, we
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believe that our stochastic analysis is also useful for more realistic wireless net-

work models. Moreover, although our analysis is involved, our protocol is rather

simple. Also, there are several questions remain open. For instance, we assumed a

common parameter γ which is known by all nodes and which depends on n and T .

Although the estimations on these parameters we need are very rough and scalable,

it remains an open question whether this limitation can be relaxed,and e.g., a local

value γv = 1/ logTv would also work.
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Chapter 3

THE ANTIJAM PROTOCOL

In this chapter, we study the problem of designing a robust MAC protocol that can

achieve provably high competitive throughput despite a strong adaptive and reactive

adversary.

The wireless network considered consists of n honest and reliable simple

wireless devices (e.g., sensor nodes) that are within the transmission range of each

other and which communicate over a single frequency (or a limited, narrow fre-

quency band). We assume a back-logged scenario where the nodes continuously

contend for sending a packet on the wireless channel. A node may either transmit

a message or sense the channel at a time step, but it cannot do both, and there is no

immediate feedback mechanism telling a node whether its transmission was suc-

cessful. A node sensing the channel may either (i) sense an idle channel (in case

no other node is transmitting at that time), (ii) sense a busy channel (in case two or

more nodes transmit at the time step), or (iii) receive a packet (in case exactly one

node transmits at the time step).

In addition to these nodes there is arbitrary external interference which we

model as an adversary. Note that our notion of adversary is a model to describe

external interference only; it does not, e.g., read and modify packet contents. We

allow the adversary to know the protocol and its entire history (in terms of idle,

busy, and successful transmission events) and to use this knowledge in order to jam

the wireless channel at will at any time (i.e, the adversary is adaptive). Whenever it

jams the channel, all nodes will notice a busy channel. However, the nodes cannot

distinguish between the adversarial jamming or a collision of two or more messages

that are sent at the same time.
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Moreover, we allow the jammer to be reactive: it is allowed to make a

jamming decision based on the actions of the nodes at the current step. In other

words, reactive jammers can determine (through physical carrier sensing) whether

the channel is currently idle or non-idle (the channel is non-idle either because of

a successful transmission, or the channel is busy) and can instantly make a jam-

ming decision based on that information. Those jammers arise in scenarios where,

for example, encryption is used for communication and where the jammer cannot

distinguish between an encrypted package and noise in the channel. Note that ro-

bustness in the reactive model is relevant beyond jamming, e.g., in situations with

co-existent networks, as many MAC protocols based on carrier sensing activate

nodes during idle time periods.

We assume that the adversary is only allowed to jam a (1−ε)-fraction of the

time steps, for an arbitrary constant 0 < ε ≤ 1. In addition, we allow the adversary

to perform bursty jamming. Formally, an adversary is called (T,1−ε)-bounded for

some T ∈ N and 0 < ε ≤ 1 if for any time window of size w≥ T the adversary can

jam at most (1− ε)w of the time steps in that window.

The network scenario described above arises, for example, in sensor net-

works, which consist of simple wireless nodes usually running on a single fre-

quency and which cannot benefit from more advanced anti-jamming techniques

such as frequency hopping or spread spectrum. In such scenarios, a jammer will

also most probably run on power-constrained devices (e.g., solar-powered batter-

ies), and hence will not have enough power to continuously jam over time. (The

time window threshold T can be chosen large enough to accommodate the respec-

tive jamming pattern.)
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Indeed, due to the large number of possible strategies a jammer can pursue,

the problem becomes significantly more challenging than the non-reactive version.

First, the analysis is more involved as the nodes’ cumulative sending probability

varies in a larger range depending on the adversarial strategy. Technically, the reac-

tive jamming renders it impossible to apply Chernoff bounds over the non-jammed

time periods as their patterns are no longer random; rather, we have to argue over all

time periods. Second, modifications to the protocol in [6] are needed. For instance,

the ANTIJAM protocol seeks to synchronize the nodes’ sending probabilities; this

has the desirable side effect of achieving fairness: all nodes are basically granted

the same channel access probabilities, which greatly improves the unfair protocol of

[6]. While our formal analysis confirms our expectations that the overall throughput

under reactive jammers is lower than the throughput obtainable against non-reactive

jammers, we are still able to prove a constant-competitive performance (for constant

ε), which is also confirmed by our simulation study.

We study competitive MAC protocols.

Definition 3.1 (c-Competitive) A MAC protocol is called c-competitive against

some (T,1− ε)-bounded adversary (with high probability or on expectation) if, for

any sufficiently large number of time steps, the nodes manage to perform successful

message transmissions in at least a c-fraction of the time steps not jammed by the

adversary (with high probability or on expectation).

In other words, in a c-competitive protocol, on average every c-th round there is a

successful transmission in the network.

Our goal is to design a symmetric local-control MAC protocol (i.e., there is

no central authority controlling the nodes, and the nodes have symmetric roles at
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any point in time) that is fair and O(1)-competitive against any (T,1− ε)-bounded

adversary. The nodes do not know ε , but we do allow them to have a very rough up-

per bound of the number n and T . More specifically, we will assume that the nodes

have a common parameter γ = O(1/(logT + log logn)). As logT and loglogn

are small for all reasonable values of T and n, this is scalable and not a critical

constraint, as it leaves room for a super-polynomial change in n and a polynomial

change in T over time.1 Thus, all we need for our formal performance result to

hold is a is very a rough upper bound on γ , and as we will see in our theorems

there is a tradeoff between too low γ values (which causes the protocol to react too

slowly to changes) and a too high γ values (with which the cumulative probability

may overshoot). In practice we expect that choosing a constant, sufficiently small

γ yields a good performance for any practical network; indeed, in our simulations

γ = 0.1 results in a good throughput for a wide range of networks.

3.1 Contribution

This chapter presents a very simple medium access protocol called AN-

TIJAM. ANTIJAM is provably robust to a strong adaptive and reactive adversary

that can block the medium a constant fraction of the time and thus models a large

range of (intentional and unintentional) interference scenarios. Nevertheless, we

can show that the ANTIJAM MAC protocol achieves a high throughput performance

by exploiting any non-blocked time intervals effectively. The main theoretical con-

tribution is a formal and rigorous derivation of the good throughput and fairness

guarantees of our protocol. We show that ANTIJAM is competitive in the sense

that a constant fraction of the non-jammed execution time is used for successful
1On the other hand, note that the assumption that the nodes know constant factor approximations

of n or T directly would render the problem simple: if the set of n nodes is static, nodes can simply
access the medium with probability 1/n which yields a high and fair throughput; if T is known, a
time period of length T without idle and successful periods implies that the cumulative probability
is too high—an information which can be exploited by the algorithm. However, such assumptions
are unrealistic and do not scale.

44



transmissions, i.e., ANTIJAM is able to benefit from the rare and hard-to-predict

time intervals where the shared medium is available. Our theoretical results are

complemented by extensive simulations.

Theorem 3.2 Let N = max{T,n}. The ANTIJAM protocol is constant-competitive,

namely e−Θ(1/ε2)-competitive w.h.p., under any (T,1− ε)-bounded reactive adver-

sary if the protocol is executed for at least Θ(1
ε

logN max{T,(eδ/ε2
/εγ2) log3 N})

many time steps, where ε ∈ (0,1] is a constant, γ = O(1/(logT + log logn)), and

where δ is a sufficiently large constant. Moreover, ANTIJAM achieves a high fair-

ness: the channel access probabilities among nodes do not differ by more than a

factor of (1+ γ) after the first message was sent successfully.

3.2 Description of ANTIJAM
3.2.1 Intuition:

In the ANTIJAM protocol, each node v maintains a medium access probability pv

which determines the probability that v transmits a message in a communication

round. The nodes adapt and synchronize their pv values over time (which as a side-

effect also improves fairness) in a multiplicative-increase multiplicative-decrease

manner in order to ensure a throughput that is as good as possible. The pv values

tend to be lowered in times of high interference, and increased during times where

the channel is idling. (This is similar to classic random backoff mechanisms where

the next transmission time t is chosen uniformly at random from an interval of size

1/pv.) More precisely, the sending probabilities are changed by a factor of (1+ γ).

However, we impose an upper bound of p̂ on pv, for some constant 0 < p̂ < 1/24.

As we will see, unlike in most classic backoff protocols, our adaption rules for pv

ensure that the adversary cannot influence the pv values much by jamming.

In addition, each node maintains two variables, a threshold variable Tv and

a counter variable cv. Tv is used to estimate the adversary’s time window T : a good
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estimation of T can help the nodes recover from a situation where they experience

high interference in the network. In times of high interference, Tv will be increased

and the sending probability pv will be decreased.

Initially, every node v sets Tv := 1, cv := 1 and pv := p̂; however, as we will

see, ANTIJAM works for arbitrary variable values. Afterwards, the protocol works

in synchronized time steps. We assume synchronized time steps for the analysis,

but a nonsynchronized execution of the protocol would also work as long as all

nodes operate at roughly the same speed.

ANTIJAM is based on the intuition presented in Section 1.4.1. However,

since ANTIJAM aims to be jamming-resistant against an adaptive and reactive ad-

versary, in order to still achieve constant cumulative probability, not only does the

protocol need to use a multiplicative increase/decrease game for the probabilities

pv, but also it synchronizes all the nodes, both in terms of sending probabilities and

their own estimates on the time window threshold estimate Tv’s, at every successful

transmission.

3.2.2 Protocol Description:

With these definitions and insights, we can now formally present the ANTIJAM

protocol, see Algorithm 2.

A summary of all our variables (including the ones from the analysis) is

provided in Table 3.1.

The most significant change in ANTIJAM compared to the protocol in [6]

is that the nodes synchronize everything: (i) their pv, cv, and Tv values whenever

a message is successfully received, and (ii) Tv is decreased only when the channel

is idle, since idle channel is experienced by all the nodes. The reason that we seek

synchronization is that the adversary we consider here is much stronger, i.e., adap-

46



Algorithm 2 ANTIJAM: for each node v
1: roundcounter = 0
2: pv := p̂
3: cv := 1
4: Tv := 1 {ANTIJAM works in synchronized rounds}
5: while True do
6: v decides with probability pv to send a message
7: if v decides to send a message then
8: v sends a message along with a triple: (pv,cv,Tv).
9: else

10: v senses the channel
11: if v senses an idle channel then
12: pv := min{(1+ γ)pv, p̂}
13: Tv := Tv−1
14: else if v successfully receives a message along with the triple of

(pnew,cnew,Tnew) then
15: pv := (1+ γ)−1 pnew
16: cv := cnew
17: Tv := Tnew
18: end if
19: end if
20: cv := cv +1
21: if cv > Tv then
22: cv := 1
23: if there was no idle step among the past Tv time steps then
24: pv := (1+ γ)−1 pv
25: Tv := Tv +2
26: end if
27: end if
28: roundcounter := roundcounter+1
29: end while
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n number of nodes
T time window of adversary
N N = max{T,n}
ε adversary leaves εT time steps non-jammed
γ common parameter to adapt nodes’ access probabilities
pv node v’s access probability
cv counter variable used to keep track of time steps
Tv node v’s estimation of T
p̂ maximum individual node access probability
p cumulative probabilities of the network
pt(v) node v’s probability at time step t
pt cumulative probabilities at time step t
I′ subframe used to analyze the protocol
f size of I′

I a time frame consisting of a polylogarithmic number of I′

F size of I
k number of useful time steps in I′

k0 number of idle time steps in I′

k1 number of time steps in I′ with a successful transmission
k′1 successful transmission with different sender
k2 number of times cumulative probability decreased
k3 number of times pass started at initial step
g number of non-jammed time steps

Table 3.1: Important Variables

tive and reactive, and hence could dramatically affect the cumulative probability

of the network. By synchronizing the nodes, we could greatly simplify the proofs,

and manage to show constant competitive throughput can still be achieved. As a

by-product, ANTIJAM achieves fairness, as any two nodes’ access probabilities do

not differ by more than (1+ γ) factor.

3.3 Analysis

Our analysis of Theorem 3.2 unfolds in a number of lemmas. We first show

that given a certain initial cumulative sending probability p, p stays high in the

future, i.e., it cannot drop below this initial probability over time (Lemma 3.6).

Lemma 3.10 then shows that a sufficiently large initial cumulative sending proba-

bility p implies a good throughput in time intervals where p often remains below a

certain threshold. Finally, Lemma 3.13 proves that with high probability, p indeed

does not increase beyond a certain threshold.
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The analysis makes repeated use of Lemma 1.3 and the Chernoff bounds in

Lemma 1.2.

Let V be the set of all nodes. Let pt(v) be node v’s access probability pv

at the beginning of the t-th time step. Furthermore, let pt = ∑v∈V pt(v). Let I be a

time frame consisting of α

ε
logN subframes I′ of size f = max{T, αβ 2

εγ2 eδ/ε2
log3 N},

where α , β and δ are sufficiently large constants. Let F = α

ε
logN · f denote the

size of I.

We start with some simple facts which also provide some intuition for AN-

TIJAM. Fact 3.3 states that the protocol synchronizes the sending probabilities of

the nodes (up to a factor of (1+ γ)) as well as the values cv and Tv.

Fact 3.3 Right after a successful transmission of the triple (p′,c′,T ′), (pv,cv,Tv) =

((1+ γ)−1 p′,c′,T ′) for all receiving nodes v and (pu,cu,Tu) = (p′,c′,T ′) for the

sending node u. In particular, for any time step t after a successful transmission by

node u, (cv,Tv) = (cw,Tw) for all nodes v,w ∈V .

Fact 3.3 also implies the following corollary.

Corollary 3.4 After a successful transmission, the access probabilities pv of the

nodes v ∈V will never differ by more than a factor (1+ γ) in the future.

The following facts study how the cumulative sending probability varies

over time depending on the different events.

Fact 3.5 For any time step t after a successful transmission or a well-initialized

state of the protocol (in which (pv,cv,Tv) = (p̂,1,1) for all nodes v) it holds:

1. If the channel is idle at time t then (i) if pv = p̂ for all v, then pt+1 = pt; (ii) if

pu = p̂ and pv = (1+ γ)−1 p̂ for all nodes v 6= u, then pt+1 = (1+ γ −O(1/n))pt
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(because all nodes except for u increase their sending probability by a factor (1+γ)

from p̂/(1+ γ)); or (iii) if pv < p̂ for all nodes v, then pt+1 = (1+ γ)pt .

2. If there is a successful transmission at time t, and if cv ≤ Tv or there was an idle

time step in the previous Tv rounds, then (i) if the sender is the same as the last

successful sender, then pt+1 = pt (because for the sender u, pu(t +1) = pu(t), and

the other nodes remain at pu(t +1)/(1+ γ) = pu(t)/(1+ γ)); if (ii) the sender w is

different from the last successful sender u and pv = p̂ for all nodes v (including u

and w), then pt+1 = (1+ γ−O(1/n))−1 pt (all nodes except w reduce their sending

probability); or (iii) if the sender w is different from the last successful sender u and

pv < p̂ for at least one node v (including u and w), then pt+1 = (1+γ)−1 pt (because

at time t, for all nodes v 6= u: pv(t)= pu(t)/(1+γ); subsequently, pw(t+1)= pw(t)

and for all nodes v 6= w: pv(t +1) = pw(t +1)/(1+ γ)).

3. If the channel is busy at time t, then pt+1 = pt when ignoring the case that

cv > Tv.

Whenever cv > Tv and there has not been an idle time step during the past

Tv steps, then pt+1 is, in addition to the actions specified in the two cases above,

reduced by a factor of (1+ γ).

We can now prove the following crucial lemma lower bounding the cumu-

lative sending probability.

Lemma 3.6 For any subframe I′ in which initially pt0 ≥ 1/( f 2(1+ γ)
√

2 f ), the last

time step t of I′ again satisfies pt ≥ 1/( f 2(1+ γ)
√

2 f ), w.h.p.

Proof. We start with the following claim about the maximum number of times

the nodes decrease their probabilities in I′ due to cv > Tv.
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Claim 3.7 If in subframe I′ the number of idle time steps is at most k, then every

node v increases Tv by 2 at most k/2+
√

f many times.

Proof. Only idle time steps reduce Tv. If there is no idle time step during the

last Tv many steps, Tv is increased by 2. Suppose that k = 0. Then the number

of times a node v increases Tv by 2 is upper bounded by the largest possible ` so

that ∑
`
i=0 T 0

v + 2i ≤ f , where T 0
v is the initial size of Tv. For any T 0

v ≥ 1, ` ≤ √ f ,

so the claim is true for k = 0. At best, each additional idle time step allows us to

reduce all thresholds for v by 1, so we are searching for the maximum ` so that

∑
`
i=0 max{T 0

v +2i−k,1} ≤ f . This ` is upper bounded by k/2+
√

f , which proves

our claim.

This allows us to prove that p exceeds a certain minimal threshold in a

subframe.

Claim 3.8 Suppose that for the first time step t0 in I′, pt0 ∈ [1/( f 2(1+γ)
√

2 f ),1/ f 2].

Then there is a time step t in I′ with pt ≥ 1/ f 2, w.h.p.

Proof. Suppose that there are g non-jammed time steps in I′. Let k0 be the number

of these steps with an idle channel and k1 be the number of these steps with a

successful message transmission. Furthermore, let k2 be the maximum number of

times a node v increases Tv by 2 in I′. If all time steps t in I′ satisfy pt < 1/ f 2, then

it must hold that k0− log1+γ(1/pt0) ≤ k1 + k2. This is because no v has reached a

point with pt(v) = p̂ in this case, so Fact 3.5 implies that for each time step t with

an idle channel, pt+1 = (1+ γ)pt . Thus, at most log1+γ(1/pt0) time steps with an

idle channel would be needed to get pt to 1/ f 2, and then there would have to be

a balance between further increases (that are guaranteed to be caused by an idle

channel) and decreases (that might be caused by a successful transmission or the
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case cv > Tv) of pt in order to avoid the case pt ≥ 1/ f 2. The number of times we

can allow an idle channel is maximized if all successful transmissions and cases

where cv > Tv cause a reduction of pt . So we need k0− log1+γ(1/pt0)≤ k1 + k2 to

hold to avoid the case pt ≥ 1/ f 2 somewhere in I′.

We know from Claim 3.7 that k2 ≤ k0/2+
√

f . Hence,

k0 ≤ 2log1+γ f +
√

f + k1 + k0/2+
√

f

⇒ k0 ≤ 4log1+γ f +2k1 +4
√

f

Suppose that 4 log1+γ f + 4
√

f ≤ ε f/4, which is true if f = Ω(1/ε2) is

sufficiently large (which is true for ε = Ω(1/ log3 N)). Since g ≥ ε f due to our

adversarial model, it follows that we must satisfy k0 ≤ 2k1 +g/4.

Certainly, for any time step t with pt ≤ 1/ f 2,

P[≥ 1 message transmitted at t] ≤ 1/ f 2.

Suppose for the moment that no time step is jammed in I′. Then E[k1] ≤

(1/ f 2) f = 1/ f . In order to prove a bound on k1 that holds w.h.p., we can use the

general Chernoff bounds stated above. For any step t, let the binary random variable

Xt be 1 if and only if at least one message is transmitted at time t and pt ≤ 1/ f 2.

Then

P[Xt = 1] = P[pt ≤ 1/ f 2] ·P[≥ 1 msg sent | pt ≤ 1/ f 2]

≤ 1/ f 2.

and it particularly holds that for any set S of time steps prior to some time step t
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that, if there are multiple message transmissions and since pt ≤ 1/ f 2,

P[Xt = 1 |∏
s∈S

Xs = 1]≤ 1/ f 2.

Then, we have

P[∏
s∈S

Xs = 1] = P[X1 = 1] ·P[X2 = 1|X1 = 1]

· P[X3 = 1| ∏
s=1,2

Xs = 1]

·...·

· P[X|S| = 1| ∏
s=1,2,...,|S|−1

Xs = 1]

≤ (1/ f 2)|S|

and

E[∏
s∈S

Xs = 1] = P[∏
s∈S

Xs = 1]≤ (1/ f 2)|S|.

Thus, the Chernoff bounds and our choice of f imply that either ∑t∈I′ Xt <

ε f/4 and pt ≤ 1/ f 2 throughout I′ w.h.p., or there must be a time step t in I′ with

pt > 1/ f 2 which would finish the proof. Therefore, unless pt > 1/ f 2 at some point

in I′, k1 < ε f/4 and k0 > (1− ε/4) f w.h.p. As the reactive adversary can now

reduce k0 by at most f −g when leaving g non-jammed steps, it follows that for any

adversary, k0 > (1− ε/4) f − ( f − g) = g− (ε/4) f . That, however, would violate

our condition above that k0 ≤ 2k1 +g/4 as that can only hold given the bounds on

g and k1 if k0 ≤ g− (ε/4) f .

Note that the choice of g is not oblivious as the adversary may adaptively

decide to set g based on the history of events. Thus, we cannot assume that g is

a fixed value, and the worst adaptive adversarial path is hard to assess. Therefore,

we apply a union bound argument and sum up over all adversarial choices for g,

showing that our claim holds for all g simultaneously. In order to show that none
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of them succeeds, observe that there are only f many possible values for g, and

for each the claimed property holds w.h.p. (for all possible distributions of the

g events); therefore, the claim holds simultaneously for the polynomially many

options of g as well.

Similarly, we can also prove that once the cumulative probability exceeds a

certain threshold, it cannot become too small again.

Claim 3.9 Suppose that for the first time step t0 in I′, pt0 ≥ 1/ f 2. Then there is no

time step t in I′ with pt <
1

f 2(1+γ)
√

2 f , w.h.p.

Proof. Consider some fixed time step t in I′ and let I′′ = (t0, t]. Suppose that there

are g non-jammed time steps in I′′. If g≤ β logN for a (sufficiently large) constant

β , then it follows for the probability pt at the end of I′′ due to Claim 3.7 that

pt ≥
1
f 2 · (1+ γ)−(2β logN+

√
f ) ≥ 1

f 2(1+ γ)
√

2 f

given that ε = Ω(1/ log3 N), because in order to compute a pessimistic lower bound

on pt , assume that all g non-jammed steps are successful so at most β logN de-

creases of pt can happen, or similarly, assume that all g non-jammed steps are idle,

so at most β logN/2+
√

f decreases of pt can happen due to exceeding Tv; the total

number of decreases is smaller than β logN +β logN/2+
√

f < 2β logN +
√

f .

So suppose that g > β logN. Let k0 be the number of these steps with an

idle channel and k1 be the number of these steps with a successful message trans-

mission. Furthermore, let k2 be the maximum number of times a node v increases

Tv in I′′. If pt <
1

f 2(1+γ)
√

2 f then it must hold (deterministically) that k0 ≤ k1 + k2

because of our assumption that pt0 ≥ 1/ f 2 (more idle rounds would yield

higher pt values).
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Since k2 ≤ k0/2+
√

f , this implies that k0 ≤ 2k1+2
√

f ≤ 2k1+g/4. Thus,

we are back to the case in the proof of Claim 3.8, which shows that k0 ≤ 2k1 +g/4

does not hold w.h.p., given that g > β logN and we never have the case in I′′ that

pt > 1/ f 2.

If there is a step t ′ in I′′ with pt ′ > 1/ f 2, we prune I′′ to the interval (t ′, t]

and repeat the case distinction above. As there are at most f time steps in I′′, the

claim follows.

Combining Claims 3.8 and 3.9 completes the proof of Lemma 3.6.

Lemma 3.10 establishes an important relationship between cumulative send-

ing probability and throughput.

Lemma 3.10 Consider any subframe I′, and let δ > 1 be a sufficiently large con-

stant. Suppose that at the beginning of I′, pt0 ≥ 1/( f 2(1+ γ)
√

2 f ) and Tv ≤
√

F/2

for every node v. If pt ≤ δ/ε2 for at least half of the non-jammed time steps in I′,

then ANTIJAM is at least δ

8ε2 e−δ/(1−p̂)ε2
-competitive in I′.

Proof. A time step t in I is called useful if we either have an idle channel or a

successful transmission at time t (i.e., the time step is not jammed and there are no

collisions) and pt ≤ δ/ε2. Let k be the number of useful time steps in I′. Further-

more, let k0 be the number of useful time steps in I′ with an idle channel, k1 be

the number of useful time steps in I′ with a successful transmission and k2 be the

maximum number of times a node v reduces pv in I′ because of cv > Tv. Recall that

k = k0 + k1. Moreover, the following claim holds:

Claim 3.11 If n≥ (1+ γ)δ/(ε2 p̂), then

k0− log1+γ(δ/(ε
2 · pt0))≤ k′1 + k2
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where k′1 is the number of useful time steps with a successful transmission in which

the sender is different from the previously successful sender.

Proof. According to Corollary 3.4, if pt ≤ δ/ε2 and n ≥ (1+ γ)δ/(ε2 p̂), then

pv(t)≤ p̂/(1+ γ). This implies that whenever there is a useful time step t ∈ I with

an idle channel, then pt+1 = (1+ γ)pt . Thus, it takes at most log1+γ(δ/(ε
2 · pt0))

many useful time steps with an idle channel to get from pt0 to a cumulative proba-

bility of at least δ/ε2. On the other hand, each of the k′1 successful transmissions

reduces the cumulative probability by a factor of (1+ γ). Therefore, once the cu-

mulative probability is at δ/ε2, we must have k0 ≤ k′1 + k2 since otherwise there

must be at least one useful time step where the cumulative probability is more than

δ/ε2, which contradicts the definition of a useful time step.

Since pt0 ≥ 1/( f 2(1+ γ)
√

2 f ) it holds that

log1+γ(δ/(ε
2 · pt0))≤ log1+γ(δ f 2/ε

2)+
√

2 f .

From Lemma 3.7 we also know that k2 ≤ k0/2+
√

f . Hence,

k0 ≤ 2k′1 +2 · log1+γ(δ f 2/ε
2)+2 · (

√
f +
√

2 f )

≤ 2k′1 +6
√

f

if f is sufficiently large. Also, k0 = k− k1 and k′1 ≤ k1. Therefore, k− k1 ≤

2k1 +6
√

f or equivalently,

k1 ≥ k/3−2
√

f

Thus, we have a lower bound for k1 that depends on k, and it remains to find a lower

bound for k.

Claim 3.12 Let g be the number of non-jammed time steps t in I′ with pt ≤ δ/ε2.

If g≥ ε f/2 then

k ≥ δ

2ε2 e−δ/(1−p̂)ε2 ·g
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w.h.p.

Proof. Consider any (T,1− ε)-bounded jammer for I′. Suppose that of the non-

jammed time steps t with pt ≤ δ/ε2, s0 have an idle channel and s1 have a non-idle

channel. It holds that s0 + s1 = g ≥ ε f/2. For any one of the non-jammed time

steps with an idle channel, the probability that it is useful is one, and for any one of

the non-jammed time steps with a non-idle channel, the probability that it is useful

(in this case, that it has a successful transmission) is at least

∑
v

pv ∏
w6=v

(1− pw) ≥ ∑
v

pv ∏
w
(1− pw)

≥ ∑
v

pv ∏
w

e−pw/(1−p̂)

= ∑
v

pve−p/(1−p̂)

= e−p/(1−p̂)

where p is the cumulative probability at the step. Since pt ≤ δ/ε2, it follows that

the probability of a non-idle time step to be useful (note that we are considering

non-jammed time steps here) is at least

δ

ε2 e−δ/(1−p̂)ε2
.

Thus,

E[k]≥ s0 +
δ

ε2 e−δ/(1−p̂)ε2
s1 ≥

δ

ε2 e−δ/(1−p̂)ε2 ·g

since k is minimized for s0 = 0 and s1 = g.

Since our lower bound for the probability of a non-idle step to be useful

holds independently for all non-jammed non-idle steps t with pt ≤ δ/ε2 and E[k]≥
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α logN for our choice of g, it follows from the Chernoff bounds that k ≥ E[k]/2

w.h.p.

From Claim 3.12 it follows that

k1 ≥ (
δ

2ε2 e−δ/(1−p̂)ε2 ·g)/3−2
√

f

w.h.p., which completes the proof of Lemma 3.10: if we divide the lower bound on

k1 by the number of non-jammed time steps ε f (as g≥ ε f/2, k1 ≥ k/3−2
√

f and

as −2
√

f is negligible).

Finally, it remains to consider the case that for less than half of the non-

jammed time steps t in I′, pt ≤ δ/ε2. Fortunately, this does not happen w.h.p.

Lemma 3.13 Suppose that at the beginning of I′, Tv≤
√

F/2 for every node v. Then

at most half of the non-jammed time steps t can have the property that pt > δ/ε2

w.h.p.

Proof. Recall from Fact 3.5 that as long as the access probabilities of the nodes

do not hit p̂, the cumulative probability only changes by a (1+ γ)-factor in both

directions. Suppose that δ is selected so that δ/ε2 represents one of these values.

Let H be the set of time steps t ∈ I′ with the property that either pt = δ/ε2 and the

channel is idle or pt ≥ (1+ γ)δ/ε2. Now, we define a step t to be useful if t ∈ H

and there is either an idle channel or a successful transmission at t. Let k be the

number of useful time steps in H. Furthermore, let k0 be the number of useful time

steps with an idle channel, k1 be the number of useful time steps with a successful

transmission and k2 be the maximum number of times a node v reduces pv in H

because of cv > Tv. It holds that k = k0 + k1.

Let us cut the time steps in H into passes where each pass (t, p,S) starting

at time t consists of a sequence of all (not necessarily consecutive) non-idle time
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steps t ′ > t with pt ′ = (1+ γ)p following t until a time step t ′′ is reached in which

pt ′′ = p, or the end of I′ is reached if there is no such step, where t ′′ is either due

to cv > Tv or a successful transmission. The time step t is such that either pt = p

and there is an idle channel at t, or t is the beginning of I′ if there is no such idle

channel to mark the beginning of S in I′. (Note that for two different passes (t, p,S)

and (t ′, p′,S′) and p 6= p′, S∩S′ = /0.)

Although passes defined like this could be nested, we additionally require

that for any pair of passes (t, p,S) and (t ′, p′,S′) with p′ = p and final time step

t ′′ in S, (t ′∪ S′)∩ [t, t ′′] = /0, but passes with p 6= p′ are allowed to violate this (by

one being nested into the other). It is not difficult to see that for any distribution

of cumulative probabilities over the time steps of I′ one can organize the time steps

in H into passes as demanded above. Based on that, the following claim can be

easily shown, where k′1 ≤ k1 is the number of useful time steps with a successful

transmission by a node different from the previously successful node.

Let P be any collection of passes in H, and ∆ be the number of distinct

possible values of the cumulative probability p in P. We have the following claim.

Claim 3.14 For any collection P of passes, w.h.p., k0≥ k1−∆−Θ(1) where k0 and

k1 are the number of idle time steps and the number of successful transmissions in

P.

Proof. We first show that k0 ≥ k′1−∆. Recall that k′1 is the number of success-

ful transmissions in which the sender is different from the previously successful

sender. Moreover, we define k2 as the number of times that the cumulative proba-

bility decreased due to cv > Tv; we define k3 as the number of times a pass started

at the initial step of I′ (i.e., the pass started at a non-idle time step). Clearly, we

have k2 ≥ 0, and k3 ≤ ∆. Since P is any collection of passes in H, it implies that
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the cumulative probability p ≥ δ/ε2 throughout P. Hence, we have the following

inequality:

k0 + k3 ≥ k′1 + k2

Together with the fact that k2 ≥ 0, and k3 ≤ ∆, we have

k0 ≥ k′1−∆

Then, let Ei = 1 denote the event that the sender of the i-th successful trans-

mission is the same as the sender of the previous successful transmission. We show

that the probability that ∑i Ei ≥ c (c is a constant) given k1 is extremely small. Ac-

cording to Corollary 3.4, the nodes’ access probabilities do not differ by more than

a (1+ γ)-factor after the first successful transmission. Hence, each node has al-

most the same probability of transmitting a message at any given time step, which

implies that P[Ei = 1]≤ (1+ γ)/n.

P[∑
i

Ei ≥ c | k1]≤
(

k1

c

)
· (1+ γ

n
)c ≤

(
f
c

)
· (1+ γ

n
)c

Since f is polynomially smaller than n, P[∑i Ei ≥ c | k1] becomes very small

even for small c, which implies that Ei = 1 happens at most a constant number of

times during P w.h.p. Hence, the claim holds.

We have the following upper bound on the number of such steps in H.

Claim 3.15

|H| ≤ (k+ log1+γ max{p0/(δ/ε
2),1})

√
F

where k is the number of useful steps in H.

Proof. If at the beginning of I′, Tv ≤
√

F/2 for every node v, then according to

Claim 3.7, Tv ≤
√

F for every node v at any time during I′. Hence, after at most
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2
√

F nonuseful steps we run into the situation that cv > Tv for every node v, which

reduces the cumulative probability by a factor of (1+ γ). Given that we only have

k useful steps and we may initially start with a probability p0 > δ/ε2, there can

be at most (k + log1+γ max{p0/(δ/ε2),1})
√

F time steps in H; k are the useful

ones, and the nonuseful ones are the non-idle and non-successful steps in which the

cumulative probability is reduced: every
√

F nonuseful steps give one reduction of

p). This proves the claim.

For the calculations below recall the definition of f with the constants α

and β that are assumed to be sufficiently large. If k ≤ α logN, then it follows from

Claim 3.15 that, for large enough δ ,

|H| ≤ (α logN + log1+γ N)
√

F ≤ ε f/β

where N = max{n,T}. Thus, the number of non-jammed time steps in H is also at

most ε f/β , and since β can be arbitrarily large, Lemma 3.13 follows, as the steps

in H fulfill this property (β ≥ 2 yields half of the steps).

It remains to consider the case that k > α logN. Let us assume that H con-

tains at least ε f/2 non-jammed time steps, otherwise the claim certainly holds. Our

goal is to contradict that statement in order to show that the lemma is true. For this

we will show that Claim 3.14 is violated w.h.p.

Let Tp be the number of all time steps covered by passes (t ′, p′,S′) with

p′ = p. Certainly, ∑p≥δ/ε2 Tp = |H|. Let φ = δ/ε2, and Φ = (1− p̂) ln( f/ logN).

For a cumulative probability p ≥ Φ, P[idle | p] ≤ e−Φ = ( logN
f )1−p̂ and

P[success | p]≤ Φ

1−p̂ · e−Φ ≤ ln( f/ logN) · ( logN
f )1−p̂. Hence, by multiplying these

probabilities by the |H| ≤ f steps, we get that k ≤ f p̂ · ln f · log1−p̂ N on expecta-

tion, and from the Chernoff bounds it follows that k≤ 2 f p̂ · ln f · log1−p̂ N w.h.p., so

Claim 3.15 implies that the number of time steps in I′ with cumulative probability
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p≥Φ is at most

(2 f p̂ · ln f · log1−p̂ N + log1+γ N)
√

F ≤ ε f/β ,w.h.p.

Since β can be arbitrarily large, we can only focus on the time steps when φ ≤ p <

Φ.

Let J̄p be the number of non-jammed time steps in Tp. We consider the case

where J̄p < 2
P[idle|p] . Let k1,p be the number of successful time steps associated

with p-passes (i.e., at cumulative probability (1+ γ)p). Then, E[k1,p] = P[success |

p] · J̄p < 2. If we sum up over all possible probabilities p with φ ≤ p < Φ, the

number of non-jammed time steps covered by all J̄p such that J̄p < 2
P[idle|p] is at

most

log1+γ Φ

∑
i=0

2/e−(1+γ)i ≤ 4 · f/ logN = o( f )

many time steps, since the p values always differ by factors (1+ γ) (recall that

e−(1+γ)i
is the corresponding probability of an idle step).

Hence, we can ignore all the passes where J̄p < 2
P[idle|p] . We denote the

time steps that are ignored by H ′. Since we assumed |H| ≥ ε f/2, we have that f ≥

|H \H ′| ≥ ε f
2η

= Θ( f ), where η is a constant. Let Np be the number of time steps in

H \H ′ with cumulative probability p. Let Xt be a random variable, where Xt = 1 iff

there is a successful transmission at time step t. This implies that k1 = ∑t∈H\H ′ Xt ,

then:
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E[k1] =
Φ

∑
p=δ/ε2

Np ·P[success | p]

≥
Φ

∑
p=δ/ε2

Np · p · e−
p

1−p̂ ≥ ε f
2η
·Φ · e−

Φ

1−p̂

= (1− p̂) · ε f
2η
· (ln f − ln logN) · logN

f

= Ω(logN)

Applying Chernoff bounds, we have w.h.p., k1 ≥ (1− c1)E[k1] where 0 <

c1 ≤ 1.

Similarly, let Yt be a random variable, where Yt = 1 iff the channel is idle at

t. Then, k0 = ∑t∈H\H ′Yt .

E[k0] =
Φ

∑
p=δ/ε2

Np ·P[idle | p]≥
Φ

∑
p=δ/ε2

Np · e−
p

1−p̂

≥ ε f
2η
· e−

Φ

1−p̂ =
ε

2η
· logN = Ω(logN)

Applying Chernoff bounds, we have w.h.p., k0 ≤ c2 ·E[k0] where c2 ≥ 0 is

a large enough constant.

It implies that w.h.p.,
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k1− k0 ≥ (1− c1)E[k1]− c2 ·E[k0]

≥
Φ

∑
p=δ/ε2

Np((1− c1) · p · e−
p

1−p̂ − c2 · e−p)

≥ ε f
2η
· ((1− c1) ·Φ ·

logN
f
− c2 · e−φ )

≥ ε f
2η
· ((1− c1) ·Φ ·

logN
f
− c2 · e−δ/ε2

)

=
ε

2η
· logN((1− c1) ·Φ−

c3

logN
)

> log1+γ Φ

> ∆+Ω(1)

Note that c3 = c2 · e−δ/ε2
is a constant, since both δ and ε are constants. More-

over, the number of different p values in [φ ,Φ) associated with a pass is at most

∆ = log1+γ Φ− log1+γ φ . Hence, log1+γ Φ > ∆ + Ω(1). This inequality holds

w.h.p. when the constant c1 is small enough, and N is sufficiently large.

This is a contradiction to Claim 3.14, and hence completes the proof of

Lemma 3.13.

In order to proceed, we need the following claim.

Claim 3.16 For any collection P of passes it holds that

E[k′1]≥ (1− (1+ γ)/n)k1

where k1 and k′1 are defined w.r.t. P.

Proof. Because of Fact 3.5, the probability that a successful transmission is done

by a node different from the node of the last successful transmission is equal to

1− (1+ γ)p
(n+ γ)p

≥ 1− 1+ γ

n
.
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To see this, observe that among the cumulative probability p, if the last sender u has

a share pu(t) = x, all other nodes v have a share x/(1+ γ), and

pu(t)
∑v∈V pv(t)

=
x

(n−1) · x
1+γ

+ x
=

1+ γ

n+ γ
.

Hence, E[k′1]≥ (1− (1+ γ)/n)k1.

Notice that by the choice of f and F , Tv never exceeds
√

F/2 for any v

when initially Tv = 1 for all v. Hence, the prerequisites of the lemmas are satisfied.

We can also show the following lemma, which shows that Tv remains bounded over

time.

Lemma 3.17 For any time frame I in which initially Tv ≤
√

F/2 for all v, also

Tv ≤
√

F/2 for all v at the end of I w.h.p.

Proof. We already know that in each subframe I′ in I, at least ε f/2 of the non-

jammed time steps t in I′ satisfy pt ≤ δ/ε2 w.h.p. Hence, for all (T,1−ε)-bounded

jamming strategies, there are at least

(δ/ε
2) · e−δ/ε2 · ε f/2

useful time steps in I′ w.h.p. Due to the lower bound of pt ≥ 1/( f 2(1+ γ)
√

f ) for

all time steps in I w.h.p. we can also conclude that

k0 ≥ k′1 + k2− log1+γ((δ/ε
2) · f 2(1+ γ)

√
f ).

Because of Claims 3.7 and 3.16 it follows that

k0 ≥ k1/3

w.h.p. Since k0 + k1 = k and k ≥ (δ/ε2) · e−δ/ε2 · ε f/2 it follows that k0 = Ω( f ).

Therefore, there must be at least one time point in I′ with Tv = 1 for all v ∈V . This

in turn ensures that Tv ≤
√

F/2 for all v at the end of I w.h.p.
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With Lemma 3.17, we show that Lemma 3.13 is true for a polynomial

number of subframes. Then, Lemma 3.13 and Lemma 3.17 together imply that

Lemma 3.10 holds for a polynomial number of subframes. Hence, our main The-

orem 3.2 follows. Along the same line as in [6], we can show that ANTIJAM is

self-stabilizing, so the throughput result can be extended to an arbitrary sequence

of time frames.

3.4 Simulation

We have implemented a simulator to study additional properties of our pro-

tocol and to complement our formal insights. Our focus here is on the qualitative

nature of the performance of ANTIJAM, and we did not optimize the parameters to

obtain the best constants. We consider three different jamming strategies for a re-

active jammer that is (T,1−ε)-bounded, for different ε values and where T = 100:

(1) one that jams non-idle steps with probability (1− ε); (2) one that jams non-idle

steps deterministically (as long the jamming budget is not used up); (3) one that

jams idle steps deterministically (as long as the jamming budget is not used up).

Intuitively, it seems that jamming non-idle steps is more harmful than jamming idle

steps. However, note that jamming idle steps may be an effective strategy to steer

the protocol into bad states; moreover, it may capture scenarios where nodes in

co-existent networks start sending in quiet times.

We define throughput as the number of successful transmissions over the

number of non-jammed time steps. Moreover, for networks larger than 100, we

choose (̂p) = 1/24, whereas for smaller networks we choose (̂p) = 1/2. As a gen-

eral guideline, it is always better to choose larger (̂p) values, as this avoids capping

the throughput in small networks artificially. A smaller (̂p) can make sense for

bootstrapping large networks, but due to the fast convergence times of the protocol

(see Section 3.4.2), this is unproblematic.
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Figure 3.1: Throughput under three different jamming strategies as a function of the
network size (large) and ε , where p̂ = 1/24 (averaged over 10 runs) (left: ε = 0.5,
right: ε = 0.3)
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Figure 3.2: Throughput under three different jamming strategies as a function of the
network size (small) and of ε , where p̂ = 1/2 (averaged over 10 runs) (left: ε = 0.5,
right: ε = 0.3)

3.4.1 Throughput

In a first set of experiments we study the throughput as a function of the network

size and ε . We evaluate the throughput performance for each type of adversary in-

troduced above, see Figure 3.1. For all three strategies, the throughput is basically

constant, independently of the network size; this is in accordance with our theoret-

ical insight of Theorem 3.2. We can see that given our conditions on ε and T , the

strategy that jams non-idle channels deterministically results in the lowest through-
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put. Hence, in the remaining experiments described in this section, we will focus

on this particular strategy. As expected, jamming idle channels does not affect the

protocol behavior much. In our simulations, ANTIJAM makes effective use of the

non-jammed time periods, yielding 20%−40% successful transmissions even with-

out optimizing the protocol parameters. Having shown the protocol scales well for

large network size, we also study the throughput results when the network size is

small, see Figure 3.2. We observe that the results for small and large scale networks

are comparable, but the throughput in the small scale networks can be slightly lower

under an adversary that jams non-idle channels deterministically or with probability

(1− ε).

Figure 3.3: Throughput as a function of γ under three different jamming strategies,
when n = 1000, and results are averaged over 10 runs

(left: ε = 0.5, right: ε = 0.3).

In additional experiments we also studied the throughput as a function of γ ,

see Figure 3.3. As expected, the throughput declines slightly for large γ , but this

effect is small. (Note that for very small γ , the convergence time becomes large

and the experiments need run for a long time in order not to underestimate the real

throughput.)
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3.4.2 Convergence Time

Besides a high throughput, fast convergence is the most important performance cri-

terion of a MAC protocol. The traces in Figure 3.4 (top left) show the evolution

of the cumulative probability over time. It can be seen that the protocol converges

quickly to constant access probabilities. (Note the logarithmic scale.) If the initial

probability for each node is high, the protocol needs more time to bring down the

low-constant cumulative probability. Moreover, the ratio of the time period the cu-

mulative probability is in the range of [ 1
2ε
, 2

ε
] to the time period the protocol being

executed is 92.98% when p̂ = 1/24, and 89.52% when p̂ = 1/2. This implies that

for a sufficiently large time period, the cumulative probability is well bounded most

of the time, which corresponds to our theoretical insights (cf Lemma 3.6 and 3.13).

Figure 3.4 (top right) studies the convergence time for different network sizes.

We ran the protocol 50 times, and assume that the execution has converged when

the cumulative probability p satisfies p ∈ [1,5], for at least 5 consecutive rounds.

The simulation result also qualitatively confirms our theoretical analysis in The-

orem 3.2, as the number of rounds needed to converge the execution is bounded

by Θ(1
ε

logN max{T, 1
εγ2 log3 N}). (Of course, the concrete convergence time can

depend on the scenario, and may be faster than expected in the general case.)

Figure 3.4 (bottom left) indicates that independently of the initial values p̂

and Tv, the throughput rises quickly (up above 20%) and stays there afterwards.

3.4.3 Fairness

As ANTIJAM synchronizes cv, Tv, and pv values upon message reception, the nodes

are expected to transmit roughly the same amount of messages; in other words, our

protocol is fair. Figure 3.4 (bottom right) presents a histogram showing how the

successful transmissions are distributed among the nodes. More specifically, we
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Figure 3.4: Top left: Evolution of cumulative probability over time (network size is
1000 nodes, and ε = 0.5). Note that the plot has logarithmic scale. Top right:
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ε = 0.5. Bottom left: Convergence in a network of 1000 nodes where ε = 0.5.
Bottom right: Fairness in a network of 1000 nodes, where ε = 0.5, and p̂ = 1/24
(averaged over 10 runs).

partition the number of successful transmissions into intervals of size 4. Then, all

the transmissions are grouped according to those intervals in the histogram.

3.4.4 Comparison

Finally, to put ANTIJAM into perspective, as a comparison, we implemented the

MAC protocol proposed in [6], as well as a simplified version of the widely used

802.11 MAC protocol (with a focus on 802.11a).

The configurations for the simulation are the following: (1) the jammer is

reactive and (T,1− ε)-bounded; (2) the unit slot time for 802.11 is set to 50µs;

for simplicity, we define one time step for ANTIJAM to be 50µs also; (3) we run
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ANTIJAM, the MAC protocol in [6], and 802.11 for 4 min, which is equal to 4.8 ·106

time steps in our simulation; (4) the backoff timer of the 802.11 MAC protocol

implemented here uses units of 50µs; (5) we omit SIFS, DIFS, and RTS/CTS/ACK.

A comparison is summarized in Figure 3.5. The throughput achieved by

ANTIJAM and the MAC protocol in [6] are significantly higher than the one by

the 802.11 MAC protocol, specially for lower values of ε , when the 802.11 MAC

protocol basically fails to deliver any successful message. Note that the throughput

results between ANTIJAM and the MAC protocol in [6] are similar in the simula-

tions, but ANTIJAM is slightly better for the most ε .
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Figure 3.5: Throughput as a function of ε ∈ [0.05,0.95], compared to the MAC
protocol in [6] and

802.11, averaged over 10 runs, where p̂ = 1/24.

3.5 Conclusion

ANTIJAM is a simple, fair and self-stabilizing distributed MAC protocol that

is able to make efficient use of a shared communication medium whose availability

is changing quickly and in a hard to predict manner over time. In particular, we

proved that our protocol achieves a constant competitive throughput if ε is constant.
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Chapter 4

THE SELECT PROTOCOL

In this chapter, we consider the problem of designing a self-stabilizing distributed

protocol to elect a leader among a set V of n simple wireless nodes (e.g., nodes of

a sensor network) that are within each other’s transmission range and communicate

over a single channel. For our formal analysis, we assume that the time proceeds

in synchronous rounds (or steps).1 The general communication model specified

earlier (in 1.2.2) applies to SELECT also.

In addition to these nodes there is an adversary. We allow the adversary to

know the protocol and its entire history and to use this knowledge in order to jam

the wireless channel at will at any round. Such an adversary is called adaptive.

If in addition to that the adversary also knows (through physical carrier sensing)

the current channel state, we call it reactive. That is, a reactive adversary can

distinguish between the channel being currently idle (no node transmits) or busy

(either because of a successful transmission, a collision of transmissions, or too

much background noise) and can instantly make a jamming decision based on that

information. Whenever the adversary jams the channel, all nodes will notice a

busy channel. The nodes cannot distinguish between the adversarial jamming and

a collision of two or more messages that are sent at the same time.

In order to study the degree of jamming activity needed by the adversary

to prevent successful message transmissions, we use the notion of a (T,1− ε)-

bounded adversary. An adversary is called (T,1− ε)-bounded for some T ∈ N

and 0 < ε < 1 if for any time window of size w ≥ T the adversary can jam at

most (1− ε)w of the time steps in that window. Moreover we assume that the n
1A round may represent the time needed to send a message, e.g., a multiple of the 50µs unit in

802.11, depending on the message size.
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nodes use an encryption mechanism that prevents the adversary from inspecting

their messages.

As mentioned earlier, our goal is to design a leader election protocol that

is self-stabilizing despite adversarial jamming. Following the usual notation in the

self-stabilization literature, the system state is determined by the state of all vari-

ables in the system. That is, the protocol and any constants used by the protocol

are assumed to be immutable and not part of the system state. A system is called

self-stabilizing if and only if (1) when starting from any state, it is guaranteed to

eventually reach a legal state (convergence) and (2) given that the system is in a

legal state, it is guaranteed to stay in a legal state (closure), provided that there are

no faults or membership changes in the system. In our case, roughly speaking, the

legal state is the state in which we have exactly one leader. We will define the set of

legal states more formally when we introduce our protocol. While our protocol is

randomized and the leader election has to be performed under adversarial jamming,

our protocol is still guaranteed to eventually elect exactly one leader from any initial

state.

4.1 Contribution

This chapter presents SELECT (“SElf-stabilizing Leader EleCTion”), a pro-

tocol that solves the leader election problem in harsh environments—namely in

wireless networks under adversarial reactive jamming—and in a self-stabilizing

manner, independently of the initial network state. We believe that self-stabilization

is a crucial feature in real networks where membership is often dynamic. Although

our algorithm is randomized, we will present a formal proof that its correctness

holds deterministically. Moreover, while our analysis is rather involved, the SE-

LECT protocol itself is simple and hence easy to implement.
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Concretely, in this chapter we will derive the following theorem.

Theorem 4.1 Given an arbitrary initial configuration and in the absence of state

faults, our leader election protocol reaches a state where there is exactly one leader

and n− 1 followers, despite a reactive (T,1− ε)-bounded jammer, for any T and

any constant ε > 0.

In SELECT, the nodes do not have to know anything about the system for

the protocol to work. The only assumption that we need is that some fixed common

parameter γ used by the nodes satisfies γ = O(1/(logT + log logn)). As logT and

loglogn are small for all reasonable values of T and n, this is scalable and not

a critical constraint, as it leaves room for a super-polynomial change in n and a

polynomial change in T over time.2 Thus, in practice we expect that choosing γ to

be a sufficiently small constant yields a good performance for any practical network,

which is confirmed by our simulations.

4.2 The SELECT Protocol
4.2.1 Intuition:

SELECT is based on the following idea. Each node v maintains a parameter pv

which describes v’s probability of accessing the medium at a given moment of time.

That is, in each round, each node v decides to transmit a message with probability pv

(e.g., in an attempt to become a leader). (This is similar to classic random backoff

mechanisms where the next transmission time t is chosen uniformly at random from

an interval of size 1/pv.) The nodes adapt and synchronize their pv values over time

in a multiplicative increase multiplicative decrease manner, i.e., the value is lowered

in times of high interference or increased during times where the channel is idling.

However, pv will never exceed p̂, for some constant 0 < p̂ < 1.
2On the other hand, note that the assumption that the nodes know constant factor approximations

of n or T directly would render the problem trivial. Moreover, such an assumption is unrealistic and
non-scalable.
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Algorithm 1 Leader Election: Follower
1: mc := cv mod b
2: if mc = 0 then
3: ls1 := ls′0, ls2 := ls′1, ls3 := ls′2, ls4 := ls′3
4: sv := s′v
5: end if
6: if (ls3 = undefined) or (mc 6= ls1 and mc 6= ls2 and
mc 6= ls3 and mc 6= ls4) then

7: v decides with pv to send a follower message
8: if v sends a follower message then
9: the message contains:

10: cc1 := ls′0, cc2 := ls′1, cc3 := ls′2, cc4 := ls′3,
cnew := cv , Tnew := Tv , pnew := pv

11: end if
12: end if
13: if v does not send a follower message then
14: v senses the channel
15: if channel is idle then
16: if mc = ls3 then
17: s′v := 1
18: pv := p̂
19: else
20: pv := min {(1 + γ)pv, p̂}
21: end if
22: else if v receives ‘LEADER’ then
23: s′v := 0
24: ls3 := undefined
25: ls′2 := undefined
26: else if v receives a tuple of {cc1, cc2, cc3, cc4, cnew,

Tnew, pnew} then
27: Tv := Tnew
28: pv := (1 + γ)−1pnew
29: cv := cnew
30: ls′0 := random(0, b− 1)
31: ls′1 := cc1, ls′2 := cc2, ls′3 := cc3, ls′4 := cc4
32: end if
33: end if
34: cv := cv + 1
35: if cv ≥ b · Tv then
36: cv := 0
37: if (not CONDITION) then
38: pv := (1 + γ)−1pv , Tv := Tv + 1
39: ls′0 := undefined, ls′1 := undefined,

ls′2 := undefined, ls′3 := undefined,
ls′4 := undefined

40: else
41: Tv := max{Tv − 1, 4}
42: end if
43: end if

Algorithm 2 Leader Election: Leader
1: mc := cv mod b
2: if mc = 0 then
3: ls1 := ls′1, ls2 := ls′2, ls3 := ls′3, ls4 := ls′4
4: end if
5: if mc = ls1 or mc = ls2 or mc = ls3 or mc = ls4

then
6: v sends the leader message ‘LEADER’
7: else
8: v decides with pv to send ‘LEADER’
9: if v does not send ‘LEADER’ then

10: v senses the channel
11: if channel is idle then
12: pv := min {(1 + γ)2pv, p̂}
13: else if v receives a message then
14: pv := (1 + γ)−1pv
15: if message is ‘LEADER’ then
16: sv := 0, s′v := 0
17: ls3 := undefined, ls′2 :=

undefined
18: else if message is a follower message,

i.e., a tuple of {cc1, cc2, cc3, cc4, cnew,
Tnew, pnew} then

19: cv := cnew, Tv := Tnew
20: ls′1 := cc1, ls′2 := cc2, ls′3 := cc3,

ls′4 := cc4
21: end if
22: end if
23: end if
24: end if
25: cv := cv + 1
26: if cv ≥ b · Tv then
27: cv := 0
28: if (not CONDITION) then
29: pv := (1 + γ)−1pv , Tv := Tv + 1
30: ls′0 := undefined, ls′1 := undefined,

ls′2 := undefined, ls′3 := undefined,
ls′4 := undefined

31: else
32: Tv := max{Tv − 1, 4}
33: end if
34: end if
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Figure 4.1: Algorithm for followers (left) and leaders (right).

In addition, each node maintains two variables, a threshold variable Tv and

a counter variable cv. Tv is used to estimate the adversary’s time window T : a good

estimation of T can help the nodes recover from a situation where they experience

high interference in the network. In times of high interference, Tv will be increased

and the sending probability pv will be decreased.

Initially, every node v sets cv := 1 and pv := p̂. Note however that while

we provide some initial values for the variables in our description, our protocol is

self-stabilizing and works for any initial variable values, as we will show in our

proofs.
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SELECT distinguishes between two node roles: follower and leader. We use

sv to indicate the role of the node: sv = 1 means that node v is a leader, whereas

sv = 0 means v is a follower. The basic idea of our protocol is to divide time into

intervals of a small number of rounds specified by the constant parameter b > 5

(we use the variable mc as a modulo counter); in the following, we will refer to a

sequence of rounds between two consecutive mc = 0 events as a b-interval. (Of

course, it can happen that all b slots of an interval are jammed.)

Our protocol is based on the concept of so-called leader slots, special rounds—

in each b-interval through which SELECT cycles—in which leaders are obliged to

send an alive message (a so-called leader message) and in which followers keep

silent. The idea is that the followers learn that the leader has left in case of an idling

medium during a leader slot (of course, the leader slots may be jammed!) and a

new election is triggered automatically.

SELECT uses four leader slots:3 ls1, ls2, ls3 and ls4. Of course, in the

beginning, all nodes may have different ls values and may disagree on which slots

during the b-interval are leader slots. However, over time, the nodes synchronize

their states and a consistent view emerges. For the synchronization, five temporary

variables ls′0, ls′1, ls′2, ls′3, and ls′4 are used, which store future ls values.

Depending on whether the node is of type follower or leader, the leader

slots are updated differently: At the beginning of a new b-interval, a leader copies

its ls′i values to the lsi values. A follower on the other hand copies the ls′ values

“diagonally” in the sense that ls′i is copied to ls′i+1 for i ∈ {0,1,2,3}. As we will

see, this mechanism ensures that an elected leader covers the leader slot ls3 of each

follower. (SELECT guarantees that the reactive adversary has no knowledge about

the ls3 slots at all until it is already too late to prevent a successful election.) An-
3It is an open question whether a protocol with less leader slots can be devised.
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other special slot besides ls3 is ls′0 which is a random seed to mix the execution for

increased robustness.

4.2.2 Description of SELECT

In Figure 4.1 we give the detailed formal description of the follower and the leader

protocol, respectively. Recall that our algorithms can tolerate any initial values of

mc, pv, Tv, cv, sv, s′v, ls1, ls2, ls3, ls4, ls′0, ls′1, ls′2, ls′3, ls′4. For instance, in the

beginning, all nodes v may be leaders and for all v, sv = 1. However, the fixed

parameters used by the algorithms, namely p̂,γ , or b, are assumed to be immutable.

Both the follower and the leader algorithm consist of three main parts. The

b-interval wise update (Lines 2− 4) makes sure that ls values are refreshed fre-

quently. Lines 6−33 (in case of a follower) and Lines 5−24 (in case of a leader)

are used for medium access in order to synchronize the nodes’ states (by a message

that includes cv, Tv, and pv values) and give nodes the chance to become or remain

leader (by a ‘LEADER’ message). The last sections of the algorithms are used to

react to high interference (by reducing pv) and to reset leader slots. The reason for

checking whether ls3 is undefined in Line 6 of the follower protocol is to keep the

leader slots hidden from the reactive adversary until it is already too late to prevent

a successful leader election.4

Both the follower and the leader protocol depend on the following crucial

CONDITION.

Definition 4.2 (CONDITION) We define CONDITION (Line 37 for followers, and

Line 28 for leaders) as the event that at least one ‘LEADER’ message was received

during the past b ·Tv steps.
4This check would not be necessary against a non-reactive adversary.
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The idea is that if CONDITION is fulfilled, we know that the protocol is already in

a good state. Moreover, we will see that the adversary cannot prevent CONDITION

to become true for a long time as the Tv values would continue to increase.

Finally, also note that leaders increase pv faster (i.e., by larger multiplicative

factors) during idle rounds than followers. With this mechanism, SELECT improves

the likelihood that a ‘LEADER’ message gets through and hence that a unique

leader is elected.

4.3 Analysis

This section shows that the randomized SELECT protocol is guaranteed to

eventually reach a situation where there is exactly one leader and n− 1 followers.

We make use of the following definitions. First, we define the system state.

Definition 4.3 (State and System State) The state of node v is determined by the

state of the variables pv, Tv, cv, sv, s′v, mc, ls′0, ls1, ls′1, ls2, ls′2, ls3, ls′3, ls4 and ls′4.

The state of the system is the set of the states of all nodes.

We use the following LSL set to describe the union of all possible leader slot

values present in the system.

Definition 4.4 (The LSL State Set) For any given system state, let LSL = {ls1(v),

ls2(v), ls3(v), ls4(v) |v is leader} \{unde f ined}.

The system can be in several special states which are formalized next: fol-

lower states, pre-leader states, and leader states. Let [b] = {0, . . . ,b−1}.

Definition 4.5 (Follower State) A state S is called a follower state, denoted by S ∈

FOLLOWER, if all the following conditions hold. (i) All nodes are followers (∀v ∈

V : sv = 0); (ii) for every node v: ls1(v), ls2(v), ls3(v), ls4(v) ∈ [b] ∪{unde f ined},
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ls′1(v), ls′2(v), ls′3(v), ls′4(v) ∈ [b]∪ {unde f ined}, ls′0(v) ∈ [b]; (iii) the follower

nodes can be partitioned into two sets {v} and V \{v}, according to their ls′ values

(v is the node that successfully sent the last follower message); for each w∈V \{v}:

ls′1(w) = ls′0(v), ls′2(w) = ls′1(v), ls′3(w) = ls′2(v), ls′4(w) = ls′3(v), and ls2(w) =

ls1(v), ls3(w) = ls2(v), and ls4(w) = ls3(v); (iv) for any pair of follower nodes

v,w ∈V with ls′2(v) ∈ [b] and ls3(v) ∈ [b], cv = cw and Tv = Tw.

We use the concept of so-called pre-leader states, i.e., states that result from

follower states before some nodes become leaders.

Definition 4.6 (Pre-leader State) A state S is called a pre- leader state, denoted by

S ∈ PRE−LEADER, if it is a follower state, and at least one follower node v has

s′v = 1.

While in the beginning, the leader sets may be large as each node regards

different slots during the b-interval as the “leader slots”, over time the values syn-

chronize and the LS sets become smaller. This facilitates a fast leader (re-) election.

Definition 4.7 (Leader State) A state S is called a leader state, denoted by S ∈

LEADER, if all the following conditions are satisfied:

(i) There is at least one leader, i.e., |{v|v ∈ V : sv = 1}| ≥ 1; (ii) for every

node v, ls1(v), ls2(v), ls3(v), ls4(v)∈ [b]∪{unde f ined}, ls′1(v), ls
′
2(v), ls

′
3(v), ls

′
4(v)∈

[b]∪{unde f ined}, ls′0(v) ∈ [b]; (iii) let v be any follower and let w be any follower

or leader, then ls3(v) ∈ {ls1(w), ls2(w), ls3(w), ls4(w)} ∪ {unde f ined}, ls′2(v) ∈

{ls′0(w), ls′1(w), ls′2(w), ls′3(w)} ∪ {unde f ined}; (iv) |LSL| ≤ 5; (v) for every fol-

lower w with ls3(w) ∈ [b] or ls′2(w) ∈ [b], cw = cv and Tw = Tv for any leader v.
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So in a leader state, it holds that any follower’s ls3 and ls′2 slots are covered by either

another follower’s ls and ls′ slots, or a leader’s ls and ls slots (cf Condition (iii)).

Finally, it is useful to define safe and legal states.

Definition 4.8 (Safe and Legal State) A system state S is called safe (denoted by

S∈ SAFE) if S∈FOLLOWER or S∈ LEADER, and legal (denoted by S∈ LEGAL)

if S is safe and there is exactly one node v with sv = 1.

Thus, according to our definitions, any legal state is also a safe state. In the follow-

ing, let S be the set of all possible system states, SAFE ⊂ S be the set of all safe

system states and LEGAL⊂ SAFE be the set of all legal system states.

The proof of Theorem 4.1 unfolds in a number of lemmas. An interest-

ing property of our randomized algorithm is that it is guaranteed to be correct, in

the sense that deterministically exactly one leader is elected; only the runtime is

probabilistic (i.e., depends on the random choices made by SELECT).

First, we study leader messages.

Lemma 4.9 For any network state it holds that if a leader successfully transmits a

‘LEADER’ message, the system will immediately enter a legal state.

Proof. When a node (either follower or leader) receives a ‘LEADER’ message, it

sets ls3 and ls′2 to unde f ined (Lines 22−25 in Figure 4.1 left; after Lines 15−17

of Figure 4.1 right), and considers itself a follower. Thus, in the new state, there is

exactly one leader (the sender of the ‘LEADER’ message) and n−1 followers. The

state is also a safe state, namely a leader state: Conditions (i) and (ii) are fulfilled

trivially. Condition (iv) also holds as there is only one leader that has four slots.

Condition (iii) is fulfilled because nodes receiving a ‘LEADER’ message reset their
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slots ls3 and ls′2; since ls3 and ls′2 are undefined for a follower, also Condition (v)

holds.

We next consider what happens if nodes hear a message sent by a follower.

Lemma 4.10 For any network state it holds that when a follower successfully trans-

mits a message, the system is guaranteed to enter a safe state at the beginning of

the next b-interval.

Proof. First note that if a leader message gets through before the next b-interval,

the claim holds trivially due to Lemma 4.9.

Otherwise we distinguish two cases: (A) For every node v, s′v = 0 (not pre-

leader) and sv = 0 (not leader) by the end of current b-interval. (B) There is at least

one node v with either s′v = 1 (pre-leader) or sv = 1 (leader) by the end of current

b-interval.

In Case (A), after the follower message has been successfully sent, there

are still n followers and no leaders or pre-leaders. We will show that the system

enters the follower state at the beginning of the next b-interval. Let us refer to the

follower node that sent the message by v and to any remaining node by w. When

w receives the message from v (Lines 26− 32 in Figure 4.1 left), it sets ls′1(w) :=

ls′0(v), ls′2(w) := ls′1(v), ls′3(w) := ls′2(v), and ls′4(w) := ls′3(v). The c values become

the same (cw = cv), and Tw := Tv. The new state therefore fulfills the follower

state conditions: Clearly, Conditions (i),(ii), and (iv) are fulfilled immediately, and

Condition (iii) holds as well, as for all followers w that did not send a message and

follower v which sent a message, at the beginning of the next b-interval: ls3(w) =

ls′2(w) = ls′1(v) = ls2(v), ls3(v) = ls′2(v) = ls′3(w) = ls4(w), and ls1(v) = ls2(w) =

ls′0(v) = ls′1(w).
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For Case (B), observe that during the remainder of the b-interval the number

of pre-leader nodes with s′v = 1 cannot decrease, and hence there will be at least one

leader at the beginning of the next b-interval. We now show that the new state will

indeed be a leader state as nodes “synchronize” with the follower node that sent the

message. Without loss of generality, assume that node u is the last follower that

successfully sent a follower message in the current b-interval. Let us refer to the

other follower nodes by v1 and to the leader nodes or the pre-leader nodes (i.e., the

followers v with s′v = 1) by v2. Again, Conditions (i) and (ii) are fulfilled trivially.

As for Condition (iii), we need to consider two sub-cases:

(Case 1) No node experienced an idle channel in its ls3 slot after the message

has been successfully sent. If this is the case and follower u is not a pre-leader, it

holds that for follower v1: ls′2(v1) = ls′2(v2) = ls′1(u) in the current b-interval, and

ls3(v1) = ls2(v2) = ls2(u) at the beginning of the next b-interval; on the other hand,

if follower u is a pre-leader, then in the current b-interval it holds that for follower

v1: ls′2(v1) = ls′2(v2) = ls′1(u), and ls3(v1) = ls2(v2) = ls1(u) at the beginning of

the next b-interval. Hence, Condition (iii) holds. Regarding the cardinality of the

leader set LSL, observe that at the beginning of the next b-interval, if u is not a pre-

leader, all leaders will have ls1 = ls′0(u), ls2 = ls′1(u), ls3 = ls′2(u), ls4 = ls′3(u), and

hence LSL = {ls′0(u), ls′1(u), ls′2(u), ls′3(u)}, therefore |LSL| ≤ 5; otherwise, if u is a

pre-leader, then LSL = {ls′0(u), ls′1(u), ls′2(u), ls′3(u), ls′4(u)}, therefore |LSL| ≤ 5.

(Case 2) One or more nodes experienced an idle channel in their ls3 slots

after the message has been successfully sent. In the following, we prove this case

correct assuming that u is a follower and not a pre-leader. If u is a pre-leader, the

proof is analogous.
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1. If v1 experienced the idle channel at its ls3 time slot, and became a pre-leader:

Note that a node v1 may experience an idle channel after receiving the mes-

sage from u and hence become a pre-leader, however Condition (iii) is still

satisfied, as it holds that for follower u: ls′2(u) = ls′3(v2) = ls′3(v1) in the

current b-interval and ls3(u) = ls3(v2) = ls3(v1) at the beginning of the next

b-interval. As for the cardinality of the leader set LSL, observe that at the

beginning of the next b-interval, all leaders will have ls1 = ls′0(u), ls2 =

ls′1(u), ls3 = ls′2(u), ls4 = ls′3(u), and hence LSL = {ls′0(u), ls′1(u), ls′2(u), ls′3(u)},

therefore |LSL| ≤ 5.

2. If u experienced the idle channel at its ls3 time slot, and became a pre-leader:

If node u experienced an idle channel after successfully sending the message,

u became a pre-leader, and we have for a follower v1, ls′2(v1) = ls′2(v2) =

ls′1(u) in the current b-interval and ls3(v1) = ls2(v2) = ls1(u) at the begin-

ning of the next b-interval. Hence, Condition (iii) is satisfied. As for |LSL|,

observe that at the beginning of the next b-interval, for a leader v2, ls1 =

ls′0(u), ls2 = ls′1(u), ls3 = ls′2(u), ls4 = ls′3(u), while for the remaining leader

u, it holds that ls1 = ls′1(u), ls2 = ls′2(u), ls3 = ls′3(u), ls4 = ls′4(u). Hence,

also in this case, we have that |LSL| ≤ 5.

Finally, Condition (v) is true for both of the sub-cases, because the cv and

Tv values are “synchronized” when the follower message is received (Lines 27 and

29 in Figure 4.1 left; Line 19 in Figure 4.1 right).

An important property of SELECT is that once it is in a safe state, it will

remain so in future (given that there are no external changes). Similar properties

can be derived for other states, as we will see.
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Lemma 4.11 Once the system is in a safe state, it will remain in a safe state in the

future.

Proof. We study what can happen in one round, and show that in each case, the

safety properties are maintained. In a round, (A) either a ‘LEADER’ message is

successfully sent, (B) a follower message is successfully sent, (C) there are colli-

sions or the channel is jammed, or (D) there is an idle channel.

In Case (A), the claim directly follows from Lemma 4.9 and from the fact

that safe states are a super set of the legal states (SAFE ⊃ LEGAL). In Case (B),

the claim follows from Lemma 4.10 and by the fact that the system is in the safe

state already.

In Case (C), if the channel is blocked, follower nodes (even those which

sent a message in this round) do not change their state except for the synchronized

rounds in Lines 35−43, and similarly for the leaders in Lines 26−34. Our proto-

cols guarantee that the leaders have the same cv and Tv values as the followers when

ls3 and ls′2 are valid, and since the leaders experience the same number of success-

ful transmissions and idle time steps as the followers do (single-hop network), the

claim follows.

If there is an idle channel (Case (D)), all nodes v for which ls3(v) = mc will

set s′v = 1 in the current b-interval, while other values remain the same. It is clear

that from this point on until the end of the current b-interval, the claim holds. More-

over, as we show next, the claim is still true at the beginning of next b-interval. If

ls3(v) is undefined, then the claim holds trivially, as no states will change in this

case. If ls3(v) = mc for any node v and the nodes experience an idle channel, there

is no leader since, if there was a leader, according to Condition (iii) of the leader

state definition (Definition 4.7), a follower’s ls3 slot would always be covered by a
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leader slot of a leader, which yields the contradiction. Hence, the current safe state

must be a pre-leader state. Let v denote the followers that have s′v = 0 (i.e., they are

not pre-leaders); let u denote the followers with s′u = 1 (pre-leaders). In the current

b-interval, we have ls′2(v) ∈ {ls′0(u), ls′1(u), ls′2(u), ls′3(u)}∪{unde f ined}, which is

true according to Condition (iii) of the follower state definition (Definition 4.5).

Then, at the beginning of next b-interval, u will become a leader, and hence we

have ls3(v) = ls′2(v), ls1(u) = ls′1(u), ls2(u) = ls′2(u), and ls3(u) = ls′3(u). This

implies that ls3(v) ∈ {ls′0(u), ls1(u), ls2(u), ls3(u)}, which satisfies Condition (iii)

of the leader state Definition 4.7. Conditions (i) and (ii) are clearly satisfied. Con-

dition (iv) holds simply because we have shown (in Lemma 4.10, Case (B)), when

there is an idle time step, |LSL| ≤ 5. Condition (v) is true because we always syn-

chronize the cv and Tv values.

Lemma 4.12 Once a system is in a leader state, it will remain in a leader state in

the future.

Proof. Lemma 4.11 tells us that the system will never leave a safe state. There-

fore, it remains to prove that there will always be at least one node v with sv = 1.

This clearly holds as the only way a leader can become a follower again is by receiv-

ing a ‘LEADER’ message (see Lines 15−17), which of course implies that another

leader is still active and remains to be a leader. Also, since we are in a leader state,

Condition (v) holds and it further implies that leaders will never invalidate their ls

slots before the followers. This guarantees that the protocol will never get out of a

leader state.

Lemma 4.13 Once a system is in a legal state, it will remain in a legal state in the

future.
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Proof. By Lemma 4.11, we know that our system will never leave a safe state

again, and hence, we only need to prove that there will always be exactly one

node v with sv = 1. This is true because in the safe state, a follower node w

can never become a leader, as its ls3(w) slot is covered by the leader v: ls3(w) ∈

{ls1(v), ls2(v), ls3(v), ls4(v)} and ls′2(w)∈{ls′0(v), ls′1(v), ls′2(v), ls′3(v)} (Condition (iii)

of leader state). Since a follower will never send a ‘LEADER’ message, v will re-

main a leader forever, which proves the claim.

Regarding convergence, note that the system quickly enters a safe state,

deterministically.

Lemma 4.14 For any initial system state with T̂ = maxv Tv, it takes at most b · T̂

rounds until the system is in a safe state.

Proof. We distinguish three cases: if a leader message gets through sometimes

in these rounds, then the claim holds by Lemma 4.9; if a follower message gets

through, then the claim holds by Lemma 4.10. If within maxv Tvb rounds neither

a follower message nor a leader message gets through, all nodes will have to reset

their ls slots (since CONDITION in Line 37 (Figure 4.1 left) resp. Line 28 (Figure 4.1

right) is not met). This however constitutes the safe state (all conditions fulfilled

trivially), which is maintained according to Lemma 4.11.

Armed with these results, we can prove convergence.

Lemma 4.15 For any safe state, SELECT will eventually reach a legal state.

Proof. We divide the proof in two phases: the phase where the protocol transitions

to the leader state from the follower state, and the phase where it transitions to the

legal state from the leader state.
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1. Follower state to leader state

If CONDITION is fulfilled, we know that a ‘LEADER’ message got through

and the system is in a legal state (and hence also in a leader state). As long as

CONDITION is not fulfilled, Tv is increasing for each node v. So eventually,

T̂ = maxv Tv ≥ 2T/b. We can also provide a lower bound on the cumulative

probability p. W.l.o.g. suppose that T ≥ (3/ε) log1+γ n (a smaller T will only

make the jammer less flexible and weaker). Suppose that p is at most ε/4

throughout some T -interval I. Then it follows from the standard Chernoff

bounds that there are at most εT/3 busy steps in I with high probability.5

If this is true, then no matter how the adversary jams during I, at least (1−

ε/3)T − (1− ε)T = 2εT/3 non-jammed steps will be idle, which implies

that the cumulative probability at the end of I will be by a factor of at least

(1 + γ)εT/3 ≥ n3 higher than at the beginning of I. Using this insight, it

follows that eventually a T -interval is reached with p > ε/4. Once such a

T -interval has been reached, it is easy to show that p will not get below 1/n2

any more w.h.p. so that for every T -interval afterwards there is a time point

t with p > ε/4 w.h.p. So infinitely often the following event can take place

with some lower-bounded, positive probability:

Consider two consecutive T -intervals I1 and I2 starting at a time when cv = 0

for every node v. Suppose that I1 just consists of busy steps and I2 just con-

sists of idle time steps. Then the adversary has to leave εT busy time steps

in I1 non-jammed and εT idle time steps in I2 non-jammed. For I1, there is a

positive probability in this case that exactly 3 messages from different nodes

are successfully sent in 3 different b-intervals. In this case, all but one fol-

lower respect the leader slots (as their ls3-value is defined) while the follower
5“With high probability”, or short “w.h.p.”, means a probability of at least 1− 1/nc for any

constant c > 0.
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that sent the last successful message may still send out messages at all time

steps (as its ls3-value is still undefined, see Line 6 of the follower protocol).

Thus, it is indeed possible that all time steps in I1 are busy. Up to that point,

the adversary has not learned anything about the leader slots. In I2, there

is also a positive probability that none of the followers transmits a message

throughout I2 so that all time steps are idle. As the adversary does not know

which of them is a leader slot and has to leave εT non-jammed, there is a pos-

itive probability that ls3 is non-jammed, and some of the followers become

pre-leaders and then leaders.

Thus, the expected time to get from a follower to a leader state is finite.

2. Leader state to legal state

If there is only one leader in the leader state, the system is already in a le-

gal state by definition. If there is more than one leader, then we distinguish

between the following cases. If CONDITION is fulfilled, we know that a

‘LEADER’ message got through and the system is in a legal state. Other-

wise, the leaders will invalidate all of their ls slots once their cv values are

reset to 0. At this point there is a positive probability that for the next T steps

a ‘LEADER’ message is successfully sent. As the adversary has to leave εT

time steps non-jammed, at least one ‘LEADER’ message will be successfully

transmitted within these T steps so that the system reaches a legal state.

Analogous to the followers in the previous case, one can lower bound the cu-

mulative probability of the leaders (in fact, the leaders will eventually reach a

time point with a cumulative probability of Ω(ε) as they increase their prob-

abilities in case of an idle channel more aggressively than the followers) so

that the chance above of successfully transmitting a ‘LEADER’ message re-
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peats itself infinitely often with a lower-bounded positive probability. Thus,

the expected time to get from a leader to a legal state is finite as well.

From these cases, the lemma follows.

4.4 Experiments

We conducted several simulations to study the behavior of SELECT under

different types of jammers and interference.

4.4.1 Performance under Jamming

For our formal analysis, we introduced the notion of a (T,1−ε)-bounded adversary

for some T ∈ N and 0 < ε < 1 which denotes that for any time window of size

w ≥ T the adversary can jam at most (1− ε)w of the time steps in that window.

While our protocol is provably robust to any adversary meeting these constraints,

for our simulations, we will need to focus on specific instantiations. For example,

we will consider an adversary that reactively jams all non-idle time periods only

(as long as the budget is not used up), in order not to waste energy jamming idling

periods.

Figure 4.2: Left: Convergence time from safe state to legal state, where the ad-
versary ADVrand jams the channel. We ran our protocol until exactly one leader is
elected. Middle: Convergence time from safe state to legal state, where a reactive
adversary ADVbusy jams the channel when one or more nodes are transmitting. We
ran SELECT until only one leader is elected. Right: Convergence time from safe
state to legal state under the reactive ADVidle adversary.
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We consider jammers of different powers, one that can block the channel

90% of the entire time, one that blocks 70% of the time, and a “weak” one that

blocks 50% of the time (i.e., ε ∈ {0.1,0.3,0.5}, resp.). We set T = 100 and consider

a b-interval (see Figure 4.1) with parameter b = 15 (smaller b values are possible as

well). Experiments are repeated 50 times for each individual setting, and average

values are recorded correspondingly. We run each experiment until one and only

one leader is elected.

We conducted experiments with different types of reactive jammers: jam-

mers ADVrand which interrupt transmissions at random, jammers ADVbusy which

only jam busy periods where one or more nodes transmit, and jammers ADVidle

which jam the channel whenever it is idle. Concretely, for ADVbusy and ADVidle

we assume that the adversary will jam each busy resp. idle time period until the

“jamming budget” is used up for this T -period. For ADVrand we set the jamming

probability per round equal to (1− ε). ADVidle may appear less challenging to the

deal with. However, note that an adversary may be able to lead a protocol to sub-

optimal states by jamming idle time periods. Moreover, this scenario also describes

interference from co-existing networks where nodes are activated in quiet times.

Hence, this adversary constitutes an interesting case that should not be neglected in

the analysis.

Recall from Lemma 4.14 that from any initial state, the safe state is reached

quickly, and hence, we are mainly interested in the convergence time from the safe

state to the legal state. Figure 4.2 (left) plots the corresponding convergence times.

At first sight the runtime may appear to be rather high. For example, under an

adversary ADVrand that jams 90% of the entire time, it takes a few thousand time

steps. However, note that this result implies that during the merely a few hundred

non-jammed time steps, the five hundred nodes are able to successfully coordinate
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the medium access among themselves—without being able to distinguish between

time periods with collisions and time periods that are jammed!— and use the com-

puted access probabilities to elect a leader. We believe that when taking this into

account, and although we do not have any lower bounds, the convergence time is

very good and probably cannot be improved much with alternative schemes.

Figure 4.2 (middle and right) presents the corresponding convergence times

for the reactive jammers ADVbusy and ADVidle. As expected, jamming the busy

channel yields higher convergence times, also when comparing these results to our

experiments with ADVrand. In contrast, interestingly, for ADVidle, the runtime is

fairly independent of the adversarial power: a reactive jammer blocking idle chan-

nels gives similar results as ADVrand. Clearly, among the scenarios we investigated,

the most effective strategy for the adversary is to reactively jam the busy time peri-

ods as long as the total number of jammed time steps does not exceed (1− ε) ·T .

Figure 4.3 complements Figure 4.2 by studying the execution times in smaller net-

works.
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Figure 4.3: Like Figure 4.2, but for smaller networks and using ε = 0.5 and p̂ =
1/24.

Our protocol aims to quickly reach a cumulative sending probability around

a small constant, such that on expectation, roughly one node will try to transmit a

message in a non-jammed step. Thus, given the constant probability of having a

successful transmission, a follower messages will get through soon, the nodes syn-

chronize, and the ls slots are defined as well. Since the leaders’ sending probabili-

ties reach higher values more quickly than the sending probabilities of the follow-

ers (according to Line 12 of Figure 4.1 right), a leader message gets through soon,

yielding a legal state. We consider two initial states, a “well-initialized one” where

all nodes have the maximum access probability p̂ (in simulation we set p̂ = 1/24),

where there is no leader in the network, and where the ls and ls′ slots are all inval-

idated (according to Definition 4.5, this implies that we are in the follower state);

and one with “arbitrary initialization” where the roles and variables are chosen at
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random (each node is either follower or leader, pv is chosen uniformly at random

between 0 and 1, and the ls values uniformly at random between 0 and b−1). Our

experiments show that both scenarios yield similar results, which indicates that the

convergence time of self-stabilization if fairly independent of the initial state.

Figure 4.4 (left) shows a typical trace of the cumulative probabilities over

time when the protocol is well initialized, i.e., the protocol starts from the follower

state. Initially, all nodes are followers, and we will denote the cumulative sending

probability of the followers by pF , and the cumulative sending probability of the

leaders by pL. At beginning, pF > 500 · p̂ > 10 while pL = 0. As time goes on, pF

decreases quickly until it falls in an interval of small constant range (i.e., pF < 10),

and multiple successful transmissions happen which synchronize the nodes’ ls and

ls′ values. Next, multiple leaders are elected because many followers sense an idle

time step in their ls3 slot. That is why pL emerges at the same point in time as pF

decreases dramatically to a value between 0 and 1. Then, the nodes continue to

adjust their transmission probabilities depending on the channel state, until the first

leader message gets through and all the other leaders become followers; this yields

the quick decrease of pL and increase of pF accordingly. One and only one leader

is elected after this point. Subsequently, both pF and pL remain within a small

constant range. Figure 4.4 (right) shows the cumulative probabilities when the pro-

tocol starts from an “arbitrary” state (pv, Tv, leaders and follower roles, etc. chosen

at random). In the beginning, there are both followers and leaders in the network. It

can be seen that SELECT converges fast, similarly to the well-initialized case. After

the legal state is reached, both pF and pL also remain in a small constant range.

4.4.2 Co-existing Networks

Our leader election protocol is robust to arbitrary (but bounded with respect to time)

interruptions of the availability of the medium, and it is convenient to regard these
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Figure 4.4: Left: Fast convergence of pF and pL (ε = 0.5, T = 100, network with
500 nodes) under ADVbusy when the protocol starts from a safe state. Right: Cor-
responding convergence of pF and pL when the protocol starts from an arbitrary
state.

Figure 4.5: Left: Convergence time of co-existing networks (as a function of their
individual sizes) performing the leader election algorithm. Right: Fair convergence
time among co-existing networks.

interruptions as caused by a malicious adversary. However, there are many other

forms of interference to which our protocol is resilient and under which the few

available time slots can be exploited effectively. In the following, we briefly report

on one more source of interference, namely co-existing protocol instances. Con-

cretely, we remove the jammer from the network and we compare the performance

of our leader election protocol when run alone to situations where additional net-

works (of the same size) are concurrently trying to elect a leader and interfere with

the other protocol instances accordingly.
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Figure 4.5 (left) plots the averaged runtime until successful leader election

for one, two, three and four co-existing networks, as a function of the correspond-

ing sub-network sizes (i.e., four co-existing networks imply a four times larger total

number of nodes). Our results indicate that each additional interfering network

increases the runtime by a factor corresponding to the additional nodes. The con-

vergence time among the co-existing networks exhibits a high fairness, as can be

seen in Figure 4.5 (right): in all networks, a leader is elected almost at the same

time.

4.5 Conclusion

We introduce the first self-stabilizing leader election protocol, SELECT, for

wireless networks operating in harsh environments, e.g., environments with hard-

to-predict interference from co-existing networks or environments subject to (both

adaptive and reactive) adversarial jamming. Although the nodes are not able to dis-

tinguish between collisions due to external interference or jamming and concurrent

transmissions of other nodes in the network, they are able to coordinate access to

the medium in the few and arbitrary time periods without external interference, and

subsequently elect a leader in a robust manner. Although our protocol is random-

ized, it yields deterministic guarantees.

There are several important open directions for future research. For exam-

ple, the formal study of convergence times under different adversaries is an open

problem. Another open problem is the generalization of our algorithms to multi-

hop networks where leaders need to be elected in different regions (e.g., in order to

construct a sparse backbone).
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Chapter 5

THE COMAC PROTOCOL

The decentralized allocation of a communication medium among a set of wireless

nodes does not only constitute one of the most fundamental theoretical problems

in distributed computing, but is also of direct practical relevance. Today, a chunk

of the wireless spectrum is often simultaneously used by many devices belonging

to different, so-called co-existing networks. It is expected that the popularity of

wireless mobile devices will further increase the resource sharing by such networks

in the future.

Interestingly, not much is known today on how a given spectrum can be

shared efficiently and fairly among co-existing networks, especially in environ-

ments with uncontrollable external interference. Existing distributed MAC pro-

tocols (typically based on random backoff schemes) are either not resistent to the

unpredictable unavailability of the medium at all, or are optimized towards a sin-

gle network only, in the sense that the nodes of a network collaboratively seek to

coordinate the access among themselves [50]. However, the state-of-the-art pro-

tocols fail if multiple networks are collocated (as illustrated, for example, in our

simulation study in Section 5.4).

This chapter presents (and rigorously prove the performance of) a robust

MAC protocol suited for co-existing networks exposed to a harsh environment with

unpredictable or even adversarial interference.

We attend to a simplified scenario where a set of n wireless nodes V are

located within transmission range of each other and need to communicate over a

single shared channel. The wireless nodes belong to K co-existing networks Ni with

node sets Vi, i.e., V =V1∪V2∪ . . .∪VK , for some constant K (which is of unknown
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to the nodes). For simplicity we will assume that these networks are node disjoint.

However, by emulating multiple instances, a node may also participate in several

networks simultaneously; the performance guarantees derived in this chapter would

still hold.

We aim to design a distributed MAC protocol for these wireless nodes. Al-

though the protocol is used by all nodes v ∈V , it should not depend on any knowl-

edge of how many nodes n there are in total, on the number of co-existing networks

K, or on the size of the co-existing network v belongs to. Moreover, it should ensure

that the K networks are independent in the sense that no communication is required

between different networks.

Co-existing wireless networks appear in many scenarios where different

wireless networks share the same wireless medium. For example, consider a major

conference, e.g., organized by the United Nations, where participants from different

countries use their hand-held devices to communicate with the other representatives

of their country. We assume that the different networks only share the same medium

access protocol, but are otherwise different and inter-network communication may

not be desired or possible (except, e.g., for multi-national participants). Another

scenario where ensuring fairness among co-existing networks is crucial are emer-

gency response networks, where many emergency response services, such as fire

squads, police, and paramedics, all arrive simultaneously at some accident or disas-

ter scene and have to share the wireless medium in a fair and even manner in order

to establish their own separate communication networks.1

We present a robust and fair medium access (MAC) protocol COMAC that

makes effective use of the few and arbitrarily distributed time periods where a wire-
1Whereas in some scenarios it may be desirable that messages are broadcast across all emer-

gency unit networks, for better immediate response action to a disaster/accident, in the longer run,
it is still important to be able to differentiate among the different ad-hoc networks established.
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less medium is available. We model interference—due to simultaneous transmis-

sions, co-existing networks, changes in the environment that affect the wireless

medium, etc., and, when applicable, intentional jamming—generally as an adver-

sary, which we may sometimes simply refer to as the jammer (even when a mali-

cious jammer is not present in the environment and interference may be caused by

other factors). Our adversary may behave in an adaptive manner: we assume that

the adversary has full knowledge of the protocol and its history, and that it uses this

knowledge to decide on whether to jam at a certain moment in time.

Let us use the simplifying notation N(v) to denote the network node v ∈ V

belongs to. We assume that a node v can distinguish among the following events

at some time t: (1) idle channel (no node in V transmits and there is no outside

interference, including jamming activity, at time t); (2) successful transmission of

a packet in network N(v) (which occurs every time a single node in N(v) transmits,

and no other node in V nor the adversary transmits); and (3) medium busy (due

to a transmission by a node in some co-existing network different from network

N(v), or to simultaneous transmissions by two or more nodes in N(v), or to external

interference or jamming).

How to design such a distributed medium access protocol which shares the

bandwidth fairly among the K networks, without sacrificing performance? At first

sight this may seem impossible: as the total number of co-existing networks and

the number of devices is not known, a node cannot guess its fair share of the chan-

nel time. We show that this is indeed possible, even in the presence of a powerful

adaptive adversarial jammer, referred to as a (T,1− ε)-bounded (adaptive) adver-

sary, which can jam the medium an arbitrary (1− ε) fraction of the time for an

arbitrarily small constant ε > 0 and which hence models a wide range of exter-

nal interference scenarios or jammers. For the ease of presentation, we assume a
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synchronous environment where time proceeds in rounds (also called steps). For-

mally, the (T,1− ε)-bounded adversary is defined as follows: for some T ∈ N and

a constant 0 < ε < 1, the adversary may jam at most (1− ε)w of the time steps,

for any time window of size w ≥ T . In the following, we will use the notation

N = max{T,n} to denote the maximum over the adversarial window size and n.

Assuming backlogged traffic at the wireless devices, we require that our

MAC protocol fulfill the following properties: (1) c-competitiveness: Given a time

interval I, we define g(I) as the number of time steps in I that are non-jammed,

and s(I) as the total number of time steps in I in which a successful transmission

happens in any network. A MAC protocol is called c-competitive against some

(T,1− ε)-bounded adversary if, for any sufficiently large time interval I, s(I) ≥

c ·g(I). (2) Fairness: The probabilities of having a successful transmission in any

two networks Ni and N j, where i, j ∈ [1,K], do not differ by much; moreover, the

nodes inside a network share the bandwidth fairly as well.

Note that the nodes have no knowledge of how many nodes are there in

the same network as itself, nor do the nodes know how many other networks are

co-existing and how many nodes are there in each of these co-existing networks,

respectively. However, we assume that the nodes have a common parameter γ ∈

O(1/(logT + log logn)). The assumption that nodes know γ is not critical for the

scalability of our protocol, as it requires only a polynomial estimate of T and an

even rougher estimate of n.

Although the presented COMAC protocol converges fast and is therefore

expected to work well under continuously entering and leaving nodes, in this chap-

ter we will just focus on a synchronous setting where nodes do not join or leave.
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5.1 Contribution

To the best of our knowledge, we are the first to present a robust medium

access protocol which provably performs well in an environment with co-existing

networks. The COMAC protocol features a guaranteed competitive throughput in

the presence of co-existing networks as well as a wide range of external interfer-

ence patterns that can be subsumed and modeled as a (T,1− ε)-bounded adaptive

adversary blocking the medium a (1− ε) fraction of all time. Moreover, it features

fairness among co-existing networks and within an individual network. Finally, the

protocol is attractive for its simple design. Our main theoretical result is summa-

rized in the following theorem.

Theorem 5.1 The COMAC medium access protocol guarantees that in a back-

logged scenario, if executed for Ω(1
ε

logN max{T, 1
εγ2 log3 N}) many time steps,

COMAC achieves a competitive throughput of Ω(ε2 min{ε,1/poly(K)}) w.h.p.,

despite the arbitrarily distributed non-jammed time periods left by the (T,1− ε)-

bounded adaptive adversary that arbitrarily jams the medium up to an (1−ε) frac-

tion of the time, and which has complete knowledge of the protocol history. More-

over, the cumulative probabilities among different networks, as well as the access

probabilities of individual nodes within the same network, differ only by a small

factor.

To complement our theoretical asymptotic bounds, we also report on a comparative

simulation study.

5.2 Description of COMAC

Before presenting the formal MAC algorithm, we explain its variables and

provide some intuition.
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5.2.1 Intuition

In the COMAC protocol, each node v maintains a medium access probability pv

which determines the probability that v transmits a message in a communication

round. The nodes adapt and synchronize (inside a co-existing network) their pv

values over time (which as a side-effect also improves fairness) in a multiplicative-

increase multiplicative-decrease manner in order to ensure a throughput that is as

good as possible. More precisely, the sending probabilities are changed by a factor

of (1+ γ). Moreover, we impose an upper bound of p̂ on pv, for some constant 0 <

p̂ < 1. As we will see, unlike in most classic backoff protocols, our adaption rules

for pv ensure that the adversary cannot influence pv much by adaptive jamming.

In addition, each node maintains two variables, a threshold variable Tv and

a counter variable cv. Tv is used to estimate the adversary’s time window T . A good

estimation of T can help the nodes recover from a situation where they experience

high interference in the network. In times of high interference, Tv will be increased

and the sending probability pv will be decreased.

While these concepts have already been used in our other protocols in [6, 49,

50], they are not sufficient to ensure a jamming-resistant protocol that also works

well in case of co-existing networks. The basic problem lies in the fact that all of

these protocols aim at reaching a constant cumulative probability, irrespective of

the adversarial jamming, so that a good throughput can be obtained in those steps

that are not jammed. In co-existing networks, however, this is not a good idea:

Suppose that we have K co-existing networks that each have a constant cumulative

probability. Then the overall cumulative probability would be Θ(K) and therefore,

the probability of having a successful transmission in any network would be as low

as Θ(K)e−Θ(K), which is exponentially low in K.
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Hence, a less aggressive approach than the one pursued in [6, 49, 50] is

needed. Ideally, this approach should also make sure that the available bandwidth

is shared in a fair way among the networks. Surprisingly, a relatively simple change

in the protocol in [50] can achieve jamming-resistance, a good throughput in co-

existing networks, and also fairness. The basic idea behind this change is to re-

member the latest idle time step, and whenever there is a new idle time step, then

with a probability qv that is inversely proportional to the time difference to the pre-

vious idle time step, pv and Tv are adapted. (The protocol in [50] would always

adapt pv and Tv in case of an idle channel.) Since this probabilistic rule turned out

to be very hard to analyze, we transformed it into a deterministic rule that shows

the same performance in the experiments.

5.2.2 Protocol Description

Now we are ready to provide the detailed and formal description of the COMAC

see Algorithm 3. Initially, each node v sets pv = p̂ ( p̂ ≤ 1/24), cv = Tv = 1, and

qv = 0. In the following, Lv ≥ 1 is the time that went by from v’s viewpoint since

the last idle time step. (If there has not yet been an idle time step, Lv = ∞.)

5.3 Analysis

For the analysis of our protocol we will use the following notation. We

are given K ≥ 2 co-existing networks denoted by N1, . . . ,NK . Each network Ni

consists of a node set Vi where ni = |Vi| ≥ 2 (otherwise, the network would be

irrelevant). The cumulative probability due to nodes in Ni is given by Pi = ∑v∈Vi pv,

and the cumulative probability over all co-existing networks is given by P=∑
K
i=1 Pi.

Whenever we consider some specific time step t, Pi(t) is the value of Pi at time t

and P(t) is the value of P at time t.
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Algorithm 3 COMAC: for each node v
1: roundcounter = 0
2: pv := p̂
3: cv := 1
4: Tv := 1
5: Lv := ∞ {COMAC works in synchronized rounds}
6: while True do
7: v decides with probability pv to send a message
8: if v decides to send a message then
9: v sends a message along with a triple: (pv,cv,Tv).

10: else
11: v senses the channel
12: if v senses an idle channel then
13: qv := qv +1/Lv
14: if qv ≥ 1 then
15: pv := min{(1+ γ)pv, p̂}
16: Tv := Tv−1
17: qv := qv−1
18: update Lv
19: end if
20: else if v successfully receives a message along with the triple of

(pnew,cnew,Tnew) then
21: pv := (1+ γ)−1 pnew
22: cv := cnew
23: Tv := Tnew
24: end if
25: end if
26: cv := cv +1
27: if cv > Tv then
28: cv := 1
29: if there was no idle step among the past Tv time steps then
30: pv := (1+ γ)−1 pv
31: Tv := Tv +2
32: end if
33: end if
34: roundcounter := roundcounter+1
35: end while
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5.3.1 Basic Observations

Given that we have a single-hop network, any idle time period is observed by all

nodes in all co-existing networks. Hence, the qv and Lv values of all nodes are

identical if all start at the same time (otherwise, two idle time steps suffice to syn-

chronize the Lv values so that the increase of the qv’s is synchronized from that point

on, which would also be sufficient for our analysis to go through). Henceforth, we

will drop the subscript v from qv and Lv. Since after the first successful transmission

in Ni, the Tv and cv values are synchronized among the nodes in Ni, we arrive at the

following fact, which establishes fairness within a network.

Fact 5.2 After the first successful transmission in network Ni, the access probabil-

ities pv of the nodes v ∈Vi differ by a factor of at most (1+ γ).

Throughout our analysis, we will make use of Lemma 1.3 and Chernoff

bounds from Lemma 1.2 repeatedly.
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Based on Lemma 1.3, we prove the following lemma.

Lemma 5.3 For any non-jammed time step,

e−
P

1−p̂ ≤ P[channel is idle]≤ e−P and

Pi · e−
P

1−p̂ ≤ P[successful msg transmission in Ni]≤
Pi

1− p̂
· e−P

Proof. For P[idle] it holds that

P[idle] = ∏
v∈V

(1− pv)≥∏
v∈V

e−
pv

1−pv ≥∏
v∈V

e−
pv

1−p̂ = e−
P

1−p̂

and

P[idle] = ∏
v∈V

(1− pv)≤∏
v∈V

e−pv = e−P

Next we show a lower bound on the probability of a successful transmission in some

given co-existing network Ni:

P[successful in Ni] = ∑
v∈Vi

pv · ∏
w∈V\{v}

(1− pw)≥ ∑
v∈Vi

pv ·∏
w∈V

(1− pw)

≥ ∑
v∈Vi

pv ·∏
w∈V

e−
pw

1−pw ≥ ∑
v∈Vi

pv ·∏
w∈V

e−
pw

1−p̂

= ∑
v∈Vi

pv · e−
P

1−p̂ = pi · e−
P

1−p̂

Finally, we derive an upper bound on P[successful at network i]:

P[successful in Ni] = ∑
v∈Vi

pv · ∏
w∈V\{v}

(1− pw)≤
1

1− p̂
· ∑

v∈Vi

pv ·∏
w∈V

(1− pw)

≤ 1
1− p̂

· ∑
v∈Vi

pv ·∏
w∈V

e−pw = pi ·
e−P

1− p̂
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5.3.2 Cumulative Probability

In the following, we will derive the first fundamental property of our protocol:

we show that the overall cumulative probability P = ∑
K
i=1 Pi converges to some

range of values so that the contention on the wireless medium is moderate. This

is a necessary condition for a good performance. Our proof framework basically

follows the framework of [6] but the proof arguments significantly differ in various

places when it comes to analyzing the specifics of our new protocol. We refer to

Section 2 of [6] for a comparison.

The proof works by induction over sufficiently large time frames. Let I be

a time frame consisting of α

ε
logN subframes I′ of size f = max{T, αβ 2

εγ2 log3 N}

rounds, where α and β are sufficiently large constants and N = max{T,n}. Let

F = α

ε
logN · f denote the size of I.

First, we show that for any subframe I′ in which initially the overall cu-

mulative probability is at least 1/( f 2(1+ γ)2
√

f ), also afterwards this cumulative

probability is at least 1/( f 2(1+ γ)2
√

f ), w.h.p.

Lemma 5.4 For any subframe I′ = [t0, t1) in which P(t0)≥ 1/( f 2(1+ γ)2
√

f ), also

P(t1)≥ 1/( f 2(1+ γ)2
√

f ) w.h.p.

Proof. We start with the following claim about the maximum number of times

nodes decrease their probabilities in I′ due to cv > Tv.
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Claim 5.5 If in subframe I′, Tv is decreased at most k times, then node v increases

Tv by 2 at most k/2+
√

f many times.

Proof. Only an idle time step can potentially reduce Tv by 1. If there is no idle

time step during the last Tv many steps, Tv is increased by 2. Suppose that k = 0.

Then the number of times a node v increases Tv by 2 is upper bounded by the

largest possible ` so that ∑
`
i=0 T 0

v + 2i ≤ f , where T 0
v is the initial value of Tv. For

any T 0
v ≥ 1, ` ≤ √ f , so the claim is true for k = 0. For each decrease of Tv, the

current Tv as well as all subsequent values of Tv (until a Tv is reached with Tv = 1)

get reduced by one. Hence, for an arbitrary value of k ≥ 0 we are searching for

the maximum ` so that ∑
`
i=0 max{T 0

v +2i− k,1} ≤ f . This ` is at most k/2+
√

f ,

which proves our claim.

This claim allows us to prove that the overall cumulative probability P will

exceed a certain threshold in a subframe w.h.p.

Claim 5.6 Suppose that in I′= [t0, t1), P(t0)∈ [1/( f 2(1+γ)
√

2 f ),1/ f 2]. Then there

is a time step t in I′ with P(t)≥ 1/ f 2, w.h.p.

Proof. Suppose that there are g non-jammed time steps in I′. Let k0 be the number

of these steps with an idle channel and k1 be the number of these steps with a

successful message transmission in any of the co-existing networks. Let the binary

random variable Xi be 1 if and only if the nodes increase their access probabilities in

the i-th idle time step in I′, and let X =∑
k0
i=1 Xi. Furthermore, let k2 be the maximum

number of times a node v increases Tv by 2 in I′.

Suppose for the moment that P(t0) = 1/ f 2. If all time steps t in I′ satisfy

P(t)≤ 1/ f 2, then it must hold that the total decrease of P(t) in I′ (due to successful

transmissions and cases in which access probabilities are decreased when cv > Tv),
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which is at most (1+ γ)k1+k2 , has to be at least as large as the total increase of

P(t) (due to idle time steps), which is equal to (1+ γ)X . Hence, we must have that

X ≤ k1 + k2. For an arbitrary initial probability P(t0) ≤ 1/ f 2, we must therefore

have

X− log1+γ((1/ f 2)/P(t0))≤ k1 + k2 (5.1)

to avoid a time step t in I′ with P(t)> 1/ f 2. Our goal is to show that this inequality

is violated w.h.p., which implies that I′ has a time step t with P(t)> 1/ f 2 w.h.p.

Next, we focus on k2. Consider some fixed k0 ≥ 2 (as we will see later,

k0 ≥ 2 w.h.p.). Let Li be the L-value of the nodes at the i-th idle time step (note that

they are all the same) and let qi = 1/Li denote the increase of the q-values of the

nodes in the i-th idle time step. Also, let q̄ = 1
k0−1 ∑

k0
i=2 qi. Certainly, the number of

times any node v decreases Tv in I′ is bounded by the number of times q is at least

1, which is at most d∑k0
i=1 qie ≤ d1+(k0− 1)q̄e. Hence, it follows from Claim 5.5

that

k2 ≤ dq̄(k0−1)+1e/2+
√

f (5.2)

On the other hand, the number of times any node v increases pv in I′ is at least

b∑k0
i=2 qic = b(k0− 1)q̄c (because due to Fact 5.2 it follows from P(t) ≤ 1/ f 2 that

pv(t) < p̂ for all v). Plugging this together with (5.2) into (5.1) and using the fact

that P(t0)≥ 1/( f 2(1+ γ)
√

2 f ), we obtain

b(k0−1)q̄c−d(k0−1)q̄+1e/2 ≤
√

2 f + k1 +
√

f

⇒ (k0−1)q̄/2 ≤ k1 +4
√

f (5.3)

given that f is large enough. It remains to lower bound q̄ and k0 and to upper bound

k1 in order to arrive at a contradiction.

We start with q̄. Let L̄ = 1
k0−1 ∑

k0
i=2 Li. Since ∑

k0
i=2 Li < f , it holds that

L̄ < f
k0−1 . Moreover, we make use of the following well-known fact.
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Fact 5.7 For any sequence of positive numbers x1, . . . ,xn it holds for its arithmetic

mean A=(1/n)∑
n
i=1 xi and its harmonic mean H =((1/n)∑

n
i=1 1/xi)

−1 that A≥H.

Hence, it follows that L̄≥ 1/( 1
k0−1 ∑

k0
i=2 1/Li) and therefore, 1

k0−1 ∑
k0
i=2 1/Li≥

1/L̄. This in turn implies that

q̄≥ 1/L̄≥ k0−1
f

Next we provide an upper bound for k1 that holds w.h.p. Certainly, for any time

step t with P(t)≤ 1/ f 2,

P[≥ 1 message transmitted at step t] ≤ 1/ f 2.

Hence, E[k1] ≤ g · (1/ f 2) ≤ 1/ f . In order to prove an upper bound on k1 that

holds w.h.p., we can use the general Chernoff bounds stated in Lemma 1.2. For any

step t let the binary random variable Yt be 1 if and only if at least one message is

transmitted successfully at time t and P(t)≤ 1/ f 2. Then

P[Yt = 1] = P[P(t)≤ 1/ f 2] ·

P[successful msg transmission | P(t)≤ 1/ f 2]

≤ 1/ f 2.

Moreover, it certainly holds for any set S of time steps prior to some time step t that

P[Yt = 1 |∏
s∈S

Ys = 1]≤ 1/ f 2.

Therefore, we have

P[∏
s∈S

Ys = 1]

= P[Y1 = 1] ·P[Y2 = 1|Y1 = 1] ·P[Y3 = 1| ∏
s=1,2

Ys = 1] · . . .

· P[Y|S| = 1| ∏
s=1,2,...,|S|−1

Ys = 1]

≤ (1/ f 2)|S|
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and

E[∏
s∈S

Ys = 1] = P[∏
s∈S

Ys = 1]≤ (1/ f 2)|S|.

Thus, the Chernoff bounds and our choice of f imply that w.h.p. either ∑t∈I′Yt <

ε2 f/8 and P(t) ≤ 1/ f 2 throughout I′, or there must be a time step t in I′ with

P(t)> 1/ f 2, which would finish the proof. Therefore, unless P(t)> 1/ f 2 at some

point in I′, k1 < ε2 f/8 w.h.p.

Next we prove a lower bound on k0 that holds w.h.p. For any time step t

with P(t)≤ 1/ f 2 it holds that

P[channel is idle]≥ e−P(t)/(1−p̂) ≥ 1− P(t)
1− p̂

≥ 1−1/ f

Hence, E[k0] ≥ g · (1− 1/ f ) ≥ ε f (1− 1/ f ). Using similar arguments as for k1, it

follows that k0 > (7/8)ε f w.h.p. unless P(t) > 1/ f 2 at some point in I′. When

combining the bounds for q̄ and k0, we obtain

(k0−1)q̄/2 ≥ (k0−1)2

2 f
≥ (7/8)2

ε
2 f/2

> ε
2 f/8+4

√
f > k1 +4

√
f

w.h.p., if f is large enough, which violates Inequality (5.3) and therefore completes

the proof of Claim 5.6.

Similarly, we can also prove that once the cumulative probability exceeds a

certain threshold, it cannot become too small again.

Claim 5.8 Suppose that for the first time step t0 in I′, P(t0) ≥ 1/ f 2. Then there is

no time step t in I′ with P(t)< 1
f 2(1+γ)

√
2 f , w.h.p.

Proof. Consider some fixed subinterval I′′ = [t1, t2) in I′ with the property that

P(t1)≥ 1/ f 2 and P(t)≤ 1/ f 2 for all other t in I′′ (i.e., we will use conditional prob-

abilities based on P(t) ≤ 1/ f 2 like in the bound for k1 in the proof of Claim 5.6).
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Suppose that there are g non-jammed time steps in I′′. If g ≤ β logN for a (suffi-

ciently large) constant β , then it follows for the probability P(t2) at the end of I′′

that

P(t2)≥
1
f 2 · (1+ γ)−((3/2)β logN+

√
f ) ≥ 1

f 2(1+ γ)
√

2 f

given that f is large enough (i.e., ε = Ω(1/ log3 N)). This is because in the worst

case for the decrease of P(t) all non-jammed time steps are successful. In this

case, P(t) is decreased at most β logN times due to these steps. Moreover, from

Claim 5.5 it follows that P(t) can be decreased another at most β logN/2+
√

f

times due to cv > Tv.

So suppose that g > β logN. Let X be the number of time steps in I′′ in

which P(t) increases and k1 be the maximum number of time steps in I′′ (over

all networks) with a successful message transmission. Furthermore, let k2 be the

maximum number of times a node v increases Tv in I′′. If P(t2)< 1
f 2(1+γ)

√
2 f then it

must hold that the total increase in P(t) (which is equal to (1+ γ)X ) is at most the

total decrease in P(t) (which is at most (1+ γ)k1+k2), or in other words,

X ≤ k1 + k2.

From the previous claim we know that this is not true w.h.p. given that P(t)≤ 1/ f 2

for all t > t1 in I′′ and the constant β is sufficiently large to achieve polynomially

small probability bounds. Since there are at most f 2 possible values for t1 and t2,

there is no time step t2 in I′ with P(t2) < 1
f 2(1+γ)

√
2 f w.h.p., which completes the

proof.

Combining Claims 5.6 and 5.8 completes the proof of Lemma 5.4.

Next we show an upper bound for P(t). In the following, K′ = O(K) is a

sufficiently large constant ≥ K.
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Lemma 5.9 For any subframe I′ = [t0, t1) with Tv ≤ (3/4)
√

F for all nodes v at the

beginning of I′, P(t1)≤ 12lnK′ w.m.p.

Proof. First, we will show that if P(t) ≥ 4lnK′ throughout I′, then for each Ni,

there must be a step t ′ with Pi(t ′) ≤ (2lnK′)/K′ w.h.p., and once such a step is

reached, we show that Pi(t ′′)< (4lnK′)/K′ w.m.p. for all time steps t ′′ following t ′.

Hence, there must be a time step t ′′ in I′ with Pi(t ′′)< (4lnK′)/K′ for all i, w.m.p.,

contradicting the assumption that P(t) ≥ 4lnK′ throughout I′. Once we have that,

we will show that at the end of I′, P(t1)≤ 12lnK′ w.m.p.

Consider some fixed network i. Let k0 be the number of idle steps in I′ and

k1 be the number of successful time steps for network i. Moreover, let X be the

total number of times Pi(t) is increased by (1+ γ) due to an idle channel in I′. For

Ni to avoid a time step t ′ in I′ with Pi(t ′)≤ (2lnK′)/K′, we must have that the total

increase of Pi(t) (which is equal to (1+ γ)X ) is at least the total decrease of Pi(t)

once we have reached a point t with Pi(t) = (2lnK′)/K′, which is the case after at

most log1+γ(ni · p̂) reductions of Pi(t). Hence, we must have

X ≥ k′1− log1+γ(ni · p̂) (5.4)

where k′1 is the total decrease (in the exponent) of Pi(t) due to successful transmis-

sions to avoid a time step t ′ in I′ with Pi(t ′) ≤ (2lnK′)/K′. Notice that k′1 is not

equal to k1 because if, for example, a node successfully transmits twice in a row,

Pi(t) does not get decreased the second time.

In order to contradict this bound, we first need to have a closer look at what

happens when there is a successful transmission in Ni.

Claim 5.10 If the node v successfully transmitting a message in Ni at time t is

different from the node that previously successfully transmitted a message in Ni,
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then Pi(t +1) ∈ [ 1
1+γ

Pi(t), 1√
1+γ

Pi(t)] for any ni ≥ 2.

Proof. The lower bound is obvious. Moreover, it follows from the protocol that

Pi(t +1) = pv,t + ∑
w∈Vi\{v}

1
1+ γ

· pv,t

=
1

1+ γ
·Pi(t)+

γ

1+ γ
· pv,t

≤ 1
1+ γ

·Pi(t)+
γ

1+ γ
· Pi(t)

ni

=
1

1+ γ

(
1+

γ

ni

)
Pi(t)

≤ 1
1+ γ

(1+ γ)1/ni Pi(t)≤
1√

1+ γ
Pi(t)

given that ni ≥ 2.

If the same node v successfully transmits again at time t, then Pi(t + 1) =

Pi(t), which only happens with probability at most (1+ γ)/ni because in this case

the transmitting node has an access probability that is by a (1+γ) factor larger than

the other access probabilities in Ni. Hence, on expectation, at least 1/3 of the time

steps with successful transmission, Pi(t) is reduced by at least (1+ γ)1/2, which

implies that E[k′1]≥ k1/6.

Based on this insight, the next claim shows that under certain conditions,

Inequality (5.4) is not true w.h.p. Let gi be the number of useful time steps for Ni,

which are time steps that are either idle or successful for Ni in I′.

Claim 5.11 If all time steps t ∈ I′ satisfy P(t) ≥ 4lnK′ and gi ≥ δ log1+γ N for a

sufficiently large constant δ , then X + log1+γ ni < k′1 w.h.p.
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Proof. It is easy to see that for any useful time step t,

P[t successful for Ni] ≥ Pi(t) ·P[t idle] (5.5)

and therefore E[k1]≥ 2lnK′
K′ E[k0] unless there is a time step t with Pi(t)< (2lnK′)/K′.

For a given number of useful time steps gi, since k0 + k1 = gi and therefore also

E[k0]+E[k1] = gi, E[k1]≥ 2lnK′
K′ (gi−E[k1]), which implies that E[k1]≥ lnK′

K′ ·gi if

K′ = O(K) is a sufficiently large constant. Since E[k′1] ≥ k1/6, gi = Ω(log1+γ N),

and for each useful time step there is an independent probability whether this time

step is idle or successful, it follows from the Chernoff bounds that k′1≥ lnK′
8K′ gi w.h.p.

Next we bound X . Let the binary random variable X j denote the increase of

Pi(t) by (1+ γ)X j in the j-th idle time step. Then X = ∑
k0
j=1 X j. Moreover, let L j be

the number of time steps between the ( j− 1)-th and j-th idle time steps. It holds

that

P[t idle]≤ e−P(t) ≤ 1/(K′)4

for every t ∈ I′ given that P(t)≥ 4lnK′. Hence,

E[X j] = ∑
`≥1

P[L j = `] ·1/`≤ ∑
`≥1

1
(K′)4

(
1− 1

(K′)4

)`−1

· 1
`

≤ 1
(K′)4−1 ∑

`≥1
e−`/(K

′)4
/`≤ 1

(K′)4−1
·2ln(K′)4

=
4lnK′

(K′)4−1

and therefore, E[X ] ≤ 4lnK′
(K′)4−1 · k0 ≤ 4lnK′

(K′)4−1 · gi. Since the upper bound on E[X j]

holds independently for each j, it follows from the Chernoff bounds that X ≤ 6lnK′
(K′)4 ·

gi w.h.p.

Since gi = Ω(log1+γ N), X + log1+γ ni < k′1 w.h.p. if K′ = O(K) is suffi-

ciently large, which completes the proof of the claim.

Otherwise, suppose that gi < δ log1+γ N. For every node v it follows from

the COMAC protocol and the choice of f and F that if initially Tv≤ (3/4)
√

F , then
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Tv can be at most
√

F during I′. Let us cut I′ into m intervals of size 2
√

F each. It

is easy to check that if β in the definition of f is sufficiently large compared to δ ,

then m ≥ 3δ log1+γ N. Since there are less than δ log1+γ N useful steps in Ni in I′,

at least 2δ log1+γ N of these intervals do not contain any useful step, which implies

that pv is reduced by (1+ γ) by each v ∈Vi in each of these intervals.

Hence, altogether, every pv gets reduced by a factor of at least (1+γ)−2δ log1+γ N

during I′ in Ni. The useful time steps can only raise that by at most (1+ γ)δ log1+γ N ,

so altogether we must have Pi(t ′)≤ (2lnK′)/K′ at some time point t ′ in I′, w.h.p.

Next we prove the following claim, which implies that for all t ′′ > t ′ in I′,

Pi(t ′′)< (4lnK′)/K′ w.m.p.

Claim 5.12 If all time steps t ∈ I′ satisfy P(t)≥ 4lnK′ and initially Pi(t)≤ (2lnK′)/K′,

then for all steps t ∈ I′, Pi(t)≤ (4lnK′)/K′ w.m.p.

Proof. Consider some fixed subinterval I′′ = [t1, t2) in I′ with the property that

Pi(t1)≤ (2lnK′)/K′ and Pi(t)≥ (2lnK′)/K′ for all other t in I′′. Suppose that there

are gi useful time steps in I′′. If gi ≤ ln1+γ 2, then it follows for the probability

Pi(t2) at the end of I′′ that Pi(t2)≤ 2lnK′
K′ · (1+ γ)ln1+γ 2 ≤ 4lnK′

K′ . Otherwise, suppose

that gi > ln1+γ 2, which is at least 1/(2γ) = Ω(ln f ). Let X be the number of time

steps in I′′ in which Pi(t) increases and k1 be the number of time steps in I′′ with

a successful transmission in Ni. Furthermore, let k2 be the maximum number of

times a node v ∈Vi increases Tv in I′′. If P(t2)> (4lnK′)/K′ then it must hold that

the total increase in Pi(t) (which is equal to (1+γ)X ) is at least the total decrease in

P(t) (which is at most (1+ γ)k1+k2) plus ln1+γ 2, or formally,

X ≥ k′1 + ln1+γ 2 (5.6)
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where k′1 is the total decrease (in the exponent) of Pi(t) due to successful transmis-

sions. We know that E[k′1] ≥ k1/6. Also, from the proof of the previous claim it

follows that E[k1]≥ lnK′
K′ gi if K′ = O(K) is a sufficiently large constant, unless there

is a time step t in I′ with Pi(t) < (2lnK′)/K′. Since gi = Ω(ln f ), it follows from

the Chernoff bounds that k′1 ≥ lnK′
8K′ gi w.m.p. On the other hand, it follows from

the proof of the previous claim that X ≤ 6lnK′
(K′)4 ·gi w.m.p. Hence, inequality (5.6) is

violated w.m.p., which implies that Pi(t2)≤ 4lnK′
K′ w.m.p. Since there are at most f 2

different values of t1 and t2, there is no time step t2 in I′ with Pi(t2)> 4lnK′
K′ w.m.p.,

which completes the proof.

Combining the insights above, it follows that there must be a time step t in

I′ with P(t)< 4lnK′ w.m.p. To finish the proof, we need the following claim.

Claim 5.13 If for the first time step t0 in I′, P(t0)≤ 4lnK′, then P(t)≤ 12lnK′ for

all time steps t in I′ w.m.p.

Proof. Consider some subinterval I′′ = [t1, t2) in I′ with the property that P(t1)≤

4lnK′ and P(t) ≥ 4lnK′ for all t > t1 in I′′. Suppose that there are g useful time

steps in I′′, where a time step is useful if there was either a successful transmission

in some network or the channel is idle. If g≤ log1+γ 2, then certainly P(t)≤ 12lnK′

for all t in I′. So suppose that g > log1+γ 2. Consider some fixed network Ni. Let X

be the number of time steps in I′′ in which Pi(t) increases and k1 be the number of

time steps in I′′ with a successful message transmission in Ni. Furthermore, let k2 be

the maximum number of times a node v ∈ Vi increases Tv in I′′. If P(t2) > 12lnK′

then there must be a network Ni with Pi(t2) > max{(8lnK′)/K′,2Pi(t1)}. To see

this, let I1 be the set of all i with Pi(t1) < (4lnK′)/K′ and I2 be the set of all other

i. As long as for all i, Pi(t2)≤max{(8lnK′)/K′,2Pi(t1)}, it must hold that P(t2)≤
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∑i∈I1(8lnK′)/K′+∑i∈I2 2Pi(t1)≤ (8lnK′)/K′ ·K +2P(t1)≤ 12lnK′ if K′ = O(K)

is sufficiently large.

First, consider the case that for some i with Pi(t1) ≥ (4lnK′)/K′, Pi(t2) >

2Pi(t1). Then the total increase of Pi(t) in I′′ (which is equal to (1+ γ)X is at least

the total decrease in Pi(t) plus log1+γ 2. Hence,

X ≥ k′1 + log1+γ 2 (5.7)

where k′1 is the total decrease (in the exponent) of P(t) due to successful transmis-

sions in Ni. From Inequality (5.5) we know that E[k1]≥ 4lnK′
K′ ·E[k0] and therefore

E[k1]≥ 2lnK′
K′ ·g if K′ = O(K) is large enough. Since E[k′1]≥ k1/6 and g = Ω(ln f )

it follows from the Chernoff bounds that k′1 ≥ lnK′
4K′ ·g w.m.p. On the other hand, we

also know that X ≤ 6lnK′
(K′)4 ·g w.m.p., which implies that Inequality (5.7) is violated

w.m.p. Hence, Pi(t2)≤ 2Pi(t1) w.m.p.

For the case that Pi(t1)< (4lnK′)/K′ let t ′1 be the first step in I′′ with Pi(t ′1)≥

(4lnK′)/K′. If t ′1 does not exist, we are done, and otherwise we prove in the same

way as above that w.m.p. Pi(t2)≤ (12lnK′)/K′.

Since there are at most f 2 ways of choosing t1 and t2, there is no time step t

in I′ with P(t)≤ 12lnK′ w.m.p., which completes the proof.

All claims combined imply Lemma 5.9.
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A proof similar to Lemma 5.9 also implies the following result.

Corollary 5.14 For any subframe I′ that satisfies P(t) ≤ 12lnK′ at the beginning

of I′, all time steps t of I′ satisfy P(t)≤ 36lnK′ w.m.p.

We also need to show that for a constant fraction of the non-jammed time

steps in a subframe where initially P(t)≤ 12lnK′, P(t) is also lower bounded by a

constant for a sufficiently large fraction of time steps t.

Lemma 5.15 For any subframe I′ in which initially P(t0) ≥ 1/( f 2(1+ γ)2
√

f ), at

least ε/8 of the non-jammed steps t satisfy P(t)≥ ε p̂/4, w.h.p.

Proof. Let G be the set of all non-jammed time steps in I′ and S be the set of all

steps t in G with P(t) < ε p̂/4. Let g = |G| and s = |S|. If s ≤ (1− ε/8)g, we are

done. Hence, consider the case that s≥ (1− ε/8)g.

Suppose that P(t) must be increased ` many times to get from its initial

value up to a value of ε p̂/4. (If P(t0)≥ ε p̂/4 then `= 0.) Let k0 be the number of

time steps in S with an idle channel and k1 be the number of time steps in S with a

successful message transmission in any of the co-existing networks. Let the binary

random variable Xi be 1 if and only if the nodes increase their access probabilities in

the i-th idle time step in S, and let X = ∑
`
i=1 Xi. Furthermore, let k2 be the maximum

number of times a node v decreases pv due to cv > Tv in I′. For S to be feasible (i.e.,

probabilities can be assigned to each t ∈ S so that P(t)< ε p̂/4), we must have

X ≤ `+ k1 + k2 (5.8)

For the special case that ` = k2 = 0 this follows from the fact that whenever there

is a successful message transmission, P(t) is reduced by (1+ γ)−1, at most. On
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the other hand, whenever the nodes decide to increase P(t) for some t ∈ S, P(t)

can indeed increase because of P(t) < ε p̂/4 and therefore pv < p̂ for all v. Thus,

if X > k1, then one of the steps in S would have to have a probability of at least

ε p̂/4, violating the definition of S. ` comes into the formula due to the startup cost

of getting to a value of ε p̂/4, and k2 comes into the formula since the reductions of

the pv(t) values due to cv > Tv allow up to k2 additional decreases of P(t) for S to

stay feasible.

Certainly, ` ≤ 2log1+γ f + 2
√

f . Moreover, for k1 it holds that E[k1] ≤

ε p̂/4 · s and therefore, k1 ≤ ε p̂/2 · s w.h.p. For k2 it holds that k2 ≤ (X +εg/8)/2+
√

f . Hence, Inequality (5.8) implies that

X ≤ 2log1+γ f +2
√

f + ε p̂s/2+(X + εg/8)/2+
√

f

⇒ X ≤ (p̂+1/16)εg+8
√

f (5.9)

if f is sufficiently large. It remains to compute a lower bound for X .

Let X ′ be the total number of times P(t) is increased over all time steps in

G, k′0 be the number of idle time steps in G, and q̄ be the average increase of the

qv-values in I′. From the proof of Claim 5.6 we know that q̄ ≥ (k′0− 1)/ f and

that X ′ ≥ b(k′0− 1)q̄c. Moreover, X ≥ X ′− εg/8. Hence, X ≥ b(k0− 1)2/ f c−

εg/8. We know that E[k0] ≥ (1− ε p̂/4)s and therefore, k0 ≥ 3g/4 w.h.p. Hence,

X ≥ g2/(4 f )− εg/8≥ εg/8 w.h.p. Since this violates Inequality (5.9), the lemma

follows.
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In the following, let us call a subframe I′ good if its initial step t0 satisfies

P(t0)≤ 12lnK′. Combining the results above, we get:

Lemma 5.16 For any good subframe I′, there are at least ε2 f/8 non-jammed time

steps t in I′ with P(t) ∈ [ε p̂/4,36lnK′] w.m.p.

Consider now the first eighth of frame I, called J. The following lemma

follows directly from Lemma 2.14 in [6].

Lemma 5.17 If at the beginning of J, pv ≥ 1/( f 2(1+ γ)2
√

f ) and Tv ≤
√

F/2 for

all nodes v, then we also have pv ≥ 1/( f 2(1+γ)2
√

f ) at the end of J for every v and

the number of non-jammed time steps t in I′ with P(t) ∈ [ε p̂/4,36lnK′] is at least

ε2 f/16 w.h.p.

We finally need the following lemma, which follows from Lemma 2.15 in

[6].

Lemma 5.18 If at the beginning of J, Tv ≤
√

F/2 for all v, then it holds that also

Tv ≤
√

F/2 at the end of J w.h.p.

Inductively using Lemmas 5.17 and 5.18 on the eighths of frame I implies

that COMAC satisfies the property of Lemmas 5.17 for the entire I and at the end of

I, pv≥ 1/( f 2(1+γ)2
√

f ) and Tv≤
√

F/2 for all v w.h.p. Since our results hold with

high probability, we can also extend them to any polynomial number of frames.

5.3.3 Throughput

Summarizing the results above, we obtain the following result for the throughput.
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Theorem 5.19 For any polynomial sequence of time steps of length at least F,

COMAC achieves a competitive throughput of Ω(ε2 min{ε,1/poly(K)}) for any

constants ε and K.
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Figure 5.1: Left: Throughput of COMAC and ANTIJAM [50] as a function of the
number of co-existing networks and for two different adversaries (ε = {0.5,0.3}).
The total number of nodes for each K = 1, . . . ,10 is 500, and each co-existing net-
work has the same size (up to an additive node due to rounding). The protocol is
executed for 7000 rounds, and the result is averaged over 10 runs. The adversary
is modeled in a simplified manner and simply jams each round with independent
probability 1− ε . Right: Fairness as the min/max competitive throughput ratio for
ε = 0.3.
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Figure 5.2: Left: Throughput and fairness of COMAC and ANTIJAM [50] for a
setting like in Figure 5.1 but where the size of the co-existing networks is heteroge-
nous, i.e., the i-th largest network is roughly 1.5 times the size of (i+ 1)-largest
network. Right: Fairness as the min/max competitive throughput ratio for ε = 0.3.

5.3.4 Fairness

Finally, we show that COMAC also ensures a limited degree of fairness. Note

that by Lemma 5.3, we can directly bound the probabilities of having a successful
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transmission within networks Ni and N j by their respective cumulative probabilities,

which we bound on the following theorem.

Theorem 5.20 If all nodes v initially start with access probability p̂, then it takes

at most F time steps until a time step is reached in which the difference between

minimum and maximum cumulative probability of a network is at most O(K2).

Proof. Consider the potential function Φ = ∑i |xi− xmin| where xi = ln1+γ Pi and

xmin = mini xi. We focus on the events with a successful transmission, since only

successful transmissions can change the difference among individual network prob-

abilities. Assume a successful transmission occurred in network Ni, if xi > xmin,

then the change in Φ, denoted by ∆Φ, satisfies ∆Φ =−1. If xi = xmin, then ∆Φ≤K.

Hence, E[∆Φ] ≤ −P[xi > xmin & successful] +KP[xi = xmin & successful]. Sup-

pose that xmax ≥ xmin+ log1+γ(2K2). Then, P[xi > xmin & successful]≥ 2K ·P[xi =

xmin & successful] as there can be up to K− 1 many Ni with xi = xmin. Certainly,

P[xi > xmin & successful]+P[xi = xmin & successful] = 1 given that there is a suc-

cessful transmission. Hence in this case, P[xi > xmin & successful] ≥ 2K
2K+1 , which

implies that E[∆Φ] ≤ − 2K
2K+1 +

K
2K+1 = − K

2K+1 ≤ −1/3, whenever there is a suc-

cessful transmission.

Now, let us define the random variable Xt as follows for the t-th successful

transmission:

• Xt = 1 if either xmax < xmin + log1+γ(2K2) (i.e., we reached our goal) or the

successful transmission is from a network Ni with xi > xmin, and

• Xt =−K otherwise.
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Suppose that there are s successful transmissions across all networks. Let

X = ∑
s
t=1 Xt . Then it holds that E[X ] ≥ s/3. In order to apply Chernoff bounds,

let us define Yt = (Xt +K)/(K + 1) and Y = ∑
s
t=1Yt . Then Yt is a binary random

variable with E[Yt ]≥ (K+1/3)/(K+1) and therefore E[Y ]≥ s(K+1/3)/(K+1).

Since the upper bound on E[Yt ] holds irrespective of previous Yj’s, it follows from

the Chernoff bounds that P[Y ≤ (1− δ )s(K + 1/3)/(K + 1)] ≤ e−δ 2s/3, for any

0 < δ < 1. Since Y = (X + s ·K)/(K + 1), we get P[X ≤ (1− δ )s/3− δ sK] ≤

e−δ 2s/3. If we choose δ = 1/(6(K + 1/3)) then P[Y ≤ (1− δ )s(K + 1/3)/(K +

1)] = P[X ≤ s/6] and hence, P[X ≤ s/6] ≤ e−δ 2s/3. Now, from Theorem ?? we

know that s = Ω(ε2 min{ε,1/poly(K)}F) w.h.p., so s = ω(K logN). This implies

that when running the protocol for F time steps, X > K logN w.h.p. Thus, if the

initial value of the potential Φ0 is at most K logN, we must have reached a point

where xmax < xmin + log1+γ(2K2) as otherwise we would end up with a negative

potential. It remains to bound Φ0.

Given that all nodes start with the same access probability p̂, the maximum

initial difference between Pi and Pj for any i and j is N and therefore, xmax < xmin+

log1+γ N. Hence, Φ0 ≤ K log1+γ N, which implies the theorem.

Fact 5.2 ensures that the access probabilities of the nodes within a network

differs by at most a (1+ γ) factor, ensuring fairness within each network Ni.

5.4 Simulation

Although the focus of this chapter is on the formal, asymptotic and worst-

case performance guarantees achieved by COMAC, we also briefly report on some

of our quantitative insights from a simulation study. We are interested in: (i) how

the competitive throughput of all the networks changes when the number of net-

works varies, where the competitive throughput of all the networks is defined as the

fraction of non-jammed time steps that are used for successful transmissions among
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all K networks; (ii) the fairness of COMAC, i.e., whether the successful transmis-

sions are evenly distributed among all the networks. Also, we compare COMAC

to the state-of-the-art jamming resistent MAC protocol ANTIJAM in [50], and find

that COMAC indeed better suits co-existing networks.

There is a total of 500 nodes among all the co-existing networks, and the

number of networks K ranges from 1 to 10. All the results are averaged over 10 runs,

and the confidence intervals are provided as well. More specifically, we conduct

competitive throughput and fairness experiments in two different scenarios.

Scenario 1: The size of individual networks are the same, namely |Vi| ∈

{b500/Kc,d500/Ke}. In Figure 5.1 (left) we study the competitive throughput, i.e.,

the fraction of non-jammed time steps that are used for successful transmissions

among all K networks. We observe that for a single network (K = 1) the com-

petitive throughput of COMAC is relatively worse compared to ANTIJAM as pv is

raised more strictly when the channel is idle. However, COMAC is always better

than ANTIJAM when there is more than one network (K > 1) as the additional inter-

ference introduced by co-existing networks is bounded. For example, when K = 10,

the competitive throughput of COMAC is still above 20% even when adversary can

jam 70% of all time steps, while the competitive throughput of ANTIJAM is below

10%. Note that there is a trend towards smaller competitiveness for larger K, as ex-

pected from our formal worst-case analysis. Figure 5.1 (right) studies the fairness

of COMAC in terms of min/max competitive throughput ratio, where the mini-

mum and maximum competitive throughput are selected from the K co-existing

networks. The closer this ratio is to 1, the fairer the protocol. Obviously COMAC

is fair in a sense that even when K = 10, the min/max competitive throughput ratio

is above 0.78.

Scenario 2: The size of i-th largest network is roughly 1.5 times the size of
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(i+ 1)-th largest network. Figure 5.2 shows that even when the size of individual

networks vary a lot, COMAC still achieves a better competitive throughput (above

20% when K = 10) compared to ANTIJAM (below 10% when K = 10), and more

importantly, COMAC is still fair in a sense that the min/max competitive through-

put ratio when K = 10 is still above 0.73.

5.5 Conclusion

Motivated by our observation that MAC algorithms optimized for a sin-

gle network often yield a poor performance in scenarios with multiple co-existing

networks due to too high sending probabilities, we present the first protocol for

provably robust, efficient and fair medium allocation among a set of co-existing

networks (e.g., of a multi-nation conference or of an emergency network). Inter-

estingly, with simple adaption, our protocol could even be used in scenarios where

the throughput is required to be distributed according to some specific proportions

among the co-existing networks (not necessarily fair). For instance, a spectrum

owner may require the co-existing networks to use only a share of the medium that

corresponds to the negotiated or auctioned share.

We believe that our work raises a series of interesting questions for future

research. For example, we have assumed a rather naive interference model and it

would be interesting to generalize our results for the SINR physical interference

model.
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Chapter 6

THE SINRMAC PROTOCOL

The protocols proposed in the previous four chapters (i.e., JADE, ANTIJAM, SE-

LECT, and COMAC) work under the protocol interference model, i.e., the interfer-

ence is modeled by either single-hop or UDG networks. In the protocol interference

model, the impact of interference from neighboring nodes is binary and completely

depends on whether or not the node falls within the interference range of non-

intended transmitters. In particular, if the UDG is used, then the transmission range

and the interference range are the same, and equal to 1 (note that the distance is

normalized). Hence, under the UDG model, interference from the nodes outside

the receiver node’s interference range can be ignored completely, which greatly

simplifies the theoretical analysis of the protocols.

However, it seems difficult to go beyond these simplistic interference mod-

els. The next big step forward would certainly be a result on the widely used and

more realistic Signal-to-Interference-plus-Noise-Ratio (SINR) model. A crucial dif-

ference from the previous models such as the UDG model is the fact that in the

SINR model, nodes cannot always objectively distinguish an idle medium from a

busy one. This however was a central assumption of the MAC protocols presented

so far as it was used to adjust the nodes’ backoff periods: in times of an idling

medium, the medium access probability was increased, and in times of a successful

transmission, the medium access probability was decreased.

We report on our endeavor to generalize our previous results to the SINR

model. Concretely, we describe a first algorithm where each node maintains a noise

threshold to determine whether the channel is idle or busy, and then adjust its access

probability and noise threshold accordingly in an adaptive fashion.
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We assume that the wireless nodes V (n = |V | many) are distributed ar-

bitrarily in the 2-dimensional Euclidean plane, and that they communicate over a

wireless network with a single channel. We also assume the nodes are backlogged

in the sense that they always have something to broadcast. The SINR model de-

fines a parameter called minimum signal-to-interference-plus-noise ratio (SINR) at

which a data frame can still be received with a reasonably low frame error rate.1

In other words, these SINR values specify the transmission range of the data trans-

mission mechanism, i.e., the maximum range within which data frames can still

be received correctly. The SINR model is first introduced in [24], which accounts

for the SINR at the receiver end of a communication link to determine whether the

transmission is successful. More specifically, a message sent from node u to node v

is successfully received by node v if and only if

Pv(u)
N +∑w∈S Pv(w)

≥ β1

where Pv(u) is the received power at node v of the signal transmitted by

node u, N captures the background noise (e.g., thermal), S is the subset of nodes

in V \ {u,v} that are concurrently transmitting, and β1 is the SINR threshold that

depends on the desired rate, the modulation scheme, etc.

In wireless communications, the value of the received signal power at a

node r of a signal transmitted by node y, i.e., Px(y), is a decreasing function of the

distance d(x,y) between node x and node y. More specifically,

Px(y) =
Py

d(x,y)α
, (6.1)

where Py is the sending power of node y, and α ≥ 2 is the pass-loss exponent (in

[40]), which is a constant between 2 and 6, and depends on external conditions of
1For example, according to [55], the minimum SINR for 802.11b are 10dB for 11Mbps down

to 4dB for 1Mbps.
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the medium as well as the exact sender-receiver distance. Although, in practise

the received signal power may be different from 6.1, due to the reason that obsta-

cles in the transmission medium may have an impact on the signal power at the

receiver end. To better approximate the path loss, both [55] and [40] use the more

generalized signal propagation model. However, as an initial study of designing

jamming-resistant MAC protocols under SINR, we focus on the most basic signal

propagation model which is indicated by 6.1.

For our formal description and analysis, we assume a synchronized setting

where time proceeds in time steps called rounds. In each round, a node u may either

transmit a message (at a certain power level) or sense the channel, but it cannot do

both. A node which is sensing the channel may either (i) sense an idle channel, (ii)

sense a busy channel, or (iii) receive a packet.

In the UDG model, the three cases can easily be distinguished in the follow-

ing manner: idle means no other node in a node u’s transmission range is transmit-

ting at that round and the channel is not jammed, busy means two or more nodes

in u’s transmission range transmit at that round or the channel is jammed, and suc-

cessful reception occurs if exactly one node in u’s transmission range transmits at

that round and the channel is not jammed. In the SINR model, things are more

complicated. In order to distinguish between an idle and a busy channel, a node

may use a certain threshold β2: if the measured signal power exceeds β2, a channel

is considered busy, otherwise idle. Whether a message is successfully received is

determined by the SINR rule described above. (There is at most one successful

reception at any moment of time.)

We assume that in addition to the nodes there is an adversary: the idea

is that our conservative definition of adversary subsumes many different forms of

intentional and unintentional interference. Concretely, like in [6], we want to allow
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the adversary to know the protocol and its entire history and to use this knowledge in

order to jam the wireless channel at will at any round (i.e, the adversary is adaptive).

However, unlike in previous works [6], the adversary is not bounded over time in

the sense that it can only jam a subset of the time periods, but with respect to

energy: for each time period of length T , the adversary has a certain energy budget

to disrupt communications. Rather than assuming some jammer locations in the

Euclidean plane from which it can transmit at different energy levels, we propose

a model where the jammer has a certain budget Bv for each wireless node v ∈ V .

Henceforth, we assume that this budget is the same for every node and we will

simply refer to it by B. Such a jammer is called a (B,T )-bounded adversary: in

every time interval of size w ≥ T , the adversary can add B ·w/T to the noise level

N of each node.

Our goal is to design a symmetric local-control MAC protocol (i.e., there is

no central authority controlling the nodes, and all the nodes are executing the same

protocol) that has a “competitive” throughput against any (B,T )-bounded adversary

in any multi-hop network that can be modeled by SINR. Intuitively, we want to call

a MAC protocol competitive if the number of successful message receptions at the

nodes is a “large” fraction of the messages that would have been received if the

adversarial contributions to the noise N are subtracted in the SINR formula for the

corresponding time steps.

6.1 Description of SINRMAC

Basically, the SINRMAC protocol we propose is a random backoff protocol,

but with a twist: the nodes do not only backoff once their messages collide, but

maintain a “backoff counter” which is adapted over time and reflects the current

channel state (see also [6]). Rather than storing the backoff counter itself, each

node v in SINRMAC stores a medium access probability pv (between 0 and some
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upper bound p̂ < 1). The idea is that in times of an idling channel, pv is increased

(message transmissions become more likely), whereas in times of a busy medium,

pv is decreased. Unfortunately, unlike in the UDG model, such a distinction is not

possible in the SINR model, because absolute silence on the channel no longer ex-

ists due to background noise and the jammer. Hence, it is hard to tell from a node’s

point of view that the noise it senses at a particular time step is due to background

noise, message collisions, adversarial jamming, or any combination of these.

In SINRMAC, each node v maintains pv (in some sense, the inverse of a

random backoff timer), a noise threshold estimate τv to distinguish between idle

and non-idle time periods, plus a time window threshold Tv, and a counter cv. (The

threshold Tv is necessary since an accurate estimation of T allows v to adjust its pv

correctly and in a timely manner.) Finally, the nodes share a common small factor γ

with which the cumulative sending probabilities are adjusted, and a constant value

c, which is used to additively adjust τv. In the following, let Nv be the noise level

(background noise plus concurrent transmissions plus jamming) at node v.

In order to find a good equilibrium and achieve a high throughput, the pv

and τv values need to converge to meaningful values quickly. This constitutes a

non-trivial challenge. If there are no successful message transmissions, a node v

cannot decide whether τv is too high or too low. Fortunately, however, in practice

one may determine some reasonable upper bound τ̂ for τv, as, e.g., (1) the RSSI

register (i.e., Received Signal Strength Indicator which measures the power of a

received radio signal) is of limited size and constitutes a natural upper bound, or as

(2) according to [9], a constant density of transmitter nodes in the network implies

that interference from far-away nodes can be bounded by a constant. Given such an

upper bound, it seems feasible to come up with MAC protocols which find a good

equilibrium (in terms of pv and τv values in a certain region), even in the presence
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of adversaries.

Our solution, the SINRMACprotocol, is formally described in Algorithm 4.

The algorithm is essentially interpreting any noise floor smaller than τv as an idle

channel and increases the sending probabilities accordingly; if on the other hand

the noise is relatively high, the sending probabilities are reduced, but only after Tv

rounds where the channel was not idle.

In SINRMAC, each node adapts τv additively and pv multiplicatively, based

on the channel states. Concretely, we decrease τv by 2c if there is not much noise

(Nv < τv), but only increase it by c otherwise: thus, in an equilibrium, we strive for

a 2 : 1 ratio of busy to idle time periods.

Algorithm 4 SINRMAC

1: Initially, every node v sets Tv := 1, cv := 1, pv := p̂, and τv := 0.1.
2: Afterwards, the protocol proceeds in synchronized rounds:
3: v decides with probability pv to send a message
4: if v decides not to send a message then
5: v senses the channel
6: if a message is successfully received then
7: pv = pv/(1+ γ)
8: else if Nv < τv then
9: τv := max{τv−2c,0}

10: pv := min{(1+ γ)pv, p̂}
11: Tv := max{Tv−1,1}
12: else if Nv ≥ τv then
13: τv := min{τv + c, τ̂}
14: if cv ≥ Tv then
15: cv := 1
16: if no idle channel in past Tv rounds then
17: pv := pv/(1+ γ)
18: Tv := Tv +2
19: end if
20: end if
21: end if
22: end if
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6.2 First Results

Although intuitively, adapting τv seems to be crucial to accurately react to

the channel states and converge to a good throughput, our first experiments indicate

that static τv values (fixed at the maximal possible reception power) are better, if

the fixed value for τv is chosen appropriately. In the following, we report on our

preliminary simulation study to evaluate the performance of our protocol in terms

of throughput and as a function of the network size. We define throughput as the

number of messages successfully received in the whole network per round per node.

In our network, nodes are distributed uniformly in a two-dimensional plane of size

7×7. The number of nodes n ∈ [10,200]. We implement a (B,T )-bounded adver-

sary which jams the channel using a random amount of energy from its remaining

budget. The transmission power for all nodes is set to 4, the SINR ratio is β1 = 6,

and T = 50. We set c = 0.1, and consider p̂ = 1/24.

We evaluate four different schemes for adapting τv: the first one initializes

τv = 1 and adapts τv based on “idle” and “busy” channel states afterwards (see

Algorithm 4); the other three schemes use a fixed τv (from {1,4,40}).
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Figure 6.1: Normalized throughput as a function of the network size and under
different τv adaption schemes. The result is averaged over 10 runs.

Figure 6.1 shows an exemplary dependency of the throughput on the differ-
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ent τv schemes when p̂ := 1/24. We see that fixing τv at 1 produce the best through-

put result. More specifically, when the network density is low (i.e., n≤ 70), fixing

τv at {1,4,40} results better throughput than adapting τv. This is because when node

density is low, the network needs to have increase cumulative probability in order

to experience more successful transmissions, and in order to achieve this, there has

to be sufficient number of “idle” channels sensed by the nodes. Fixing τv at a rela-

tively high value (note that when τv is adaptive, it is initialized to 0.1), nodes would

sense “idle” channels more frequently. However, as the network size grows, adap-

tively adjusting τv produces better result than fixing τv at {4,40}, simply because

if the network density is high enough, the value of τv should be lower, so that by

having more “busy” channels, the cumulative probability of the network would be

deceased accordingly to maintain at an appropriate level. Although based on our

intuition, adapting τv should give us better throughput when node density is high,

fixing τv at 1 makes the throughput result remains around 30%, and is much better

than our adaptive strategy. The throughput produced by our adaptive strategy for

τv drops below 10% when n ≥ 130. Here, being able to identify the busy channels

and decrease access probabilities accordingly is crucial for the protocol to achieve a

good throughput. As we can see from the simulation result, our adaptive approach

for τv still needs improvement, because it cannot always reach to an appropriate

value so that the throughput is maximized.

6.3 Conclusion

We propose a preliminary MAC protocol for the SINR model under jam-

ming activities. We found that our adaptive idle/busy threshold adaption strategy

scales better than a static strategy.

In our future work, we plan to rigorously evaluate different adapting schemes

for τv, and study our algorithm under more sophisticated and worst-case adver-
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saries, not only empirically but hopefully also by deriving performance proofs. Ob-

viously, in this process, changes to the protocol presented here may be required.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, we study the problem of designing and analyzing efficient MAC

protocols that are robust against strong adversarial jamming. How to efficiently ac-

cess the wireless medium, which is a limited resource, is one of the most important

problems in wireless computing.

Four jamming-resistant MAC protocols and a leader election protocol, which

work under different interference and network models, are presented. More specif-

ically, JADE can achieve constant competitive throughput against the adaptive but

non-reactive adversary in multi-hop wireless networks that can be modeled as UDG;

ANTIJAM can achieve constant competitive throughput against the adaptive and

reactive adversary in single-hop wireless networks; SELECT is a self-stabilizing

leader election protocol that is also robust against adaptive and reactive jamming;

COMAC can achieve constant competitive throughput as well as fairness for K co-

existing networks in a single-hop wireless network environment; SINRMAC is our

first attempt to explore the possibility of designing jamming-resistant MAC proto-

cols under SINR model.

The next natural step would be to design a jamming-resistant MAC proto-

col under SINR model that can achieve provably high throughput. Also, in all the

protocols presented in this dissertation, we assume the nodes have a common pa-

rameter γ = O( 1
logT+log logn). Although such estimate on loglogn and logT still

allows for a superpolynomial increase in n and a polynomial increase in T without

violating the assumptions on γ , it would of course be more desirable if γ could be

set to a constant.
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