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ABSTRACT

Today’s competitive markets force companies to constantly engage in the complex task

of managing their demand. In make-to-order manufacturing or service systems, the demand

of a product is shaped by price and lead times, where high price and lead time quotes ensure

profitability for supplier, but discourage the customers from placing orders. Low price and

lead times, on the other hand, generally result in high demand, but do not necessarily

ensure profitability. The price and lead time quotation problem considers the trade-off

between offering high and low prices and lead times. The recent practices in make-to-

order manufacturing companies reveal the importance of dynamic quotation strategies,

under which the prices and lead time quotes flexibly change depending on the status of the

system.

In this dissertation, the objective is to model a make-to-order manufacturing system

and explore various aspects of dynamic quotation strategies such as the behavior of optimal

price and lead time decisions, the impact of customer preferences on optimal decisions, the

benefits of employing dynamic quotation in comparison to simpler quotation strategies,

and the benefits of coordinating price and lead time decisions.

I first consider a manufacturer that receives demand from spot purchasers (who are

quoted dynamic price and lead times), as well as from contract customers who have agree-

ments with the manufacturer with fixed price and lead time terms. I analyze how customer

preferences affect the optimal price and lead time decisions, the benefits of dynamic quo-

tation, and the optimal mix of spot purchaser and contract customers. These analyses

necessitate the computation of expected tardiness of customer orders at the moment cus-

tomer enters the system. Hence, in the second part of the dissertation, I develop method-

ologies to compute the expected tardiness in multi-class priority queues. For the trivial
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single class case, a closed formulation is obtained. For the more complex multi-class case,

numerical inverse Laplace transformation algorithms are developed. In the last part of the

dissertation, I model a decentralized system with two components. Marketing department

determines the price quotes with the objective of maximizing revenues, and manufacturing

department determines the lead time quotes to minimize lateness costs. I discuss the ben-

efits of coordinating price and lead time decisions, and develop an incentivization scheme

to reduce the negative impacts of lack of coordination.
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CHAPTER 1

Introduction

The mismatch between demand and supply is shown to be the major cause of

supply chain problems by managers. Excess supply may lead to high inventory levels,

underutilized personnel and capacity in manufacturing and service systems, which

in general indicates “wasted resources.” Excess demand, on the other hand, results

in lost sales, delayed deliveries, customer dissatisfaction, and is typically considered

to be “forgone profit opportunity” [Cachon and Terwiesch, 2009]. In academic

literature, a traditional method to tackle this imbalance is to match the supply to the

exogenous demand that is assumed to be unalterable by the companies (inventory

ordering policies, location, capacity selection, scheduling models). Although these

approaches ensure supply flexibility, today’s consumer purchasing behaviors and

competitive business environments necessitate demand management, which is in

line with the statement of Miles [2009]:“Demand volatility driven by the purchasing

habits of today’s fickle consumers requires flexibility in demand management like

never before.” Consequently, supply chain research studies should ensure demand

flexibility by focusing on factors to influence demand such as price and lead time.

These approaches are particularly vital for the industries where supply is inflexible

such as airlines, hotels and sporting events industries [Elmaghraby and Keskinocak,

2003].

The influence of prices on the demand for goods and services can be observed

on many real life cases. In 2006, Nintendo increased the Wii prices short time after

the product is released to keep up with the underestimated demand. Adversely,

Microsoft reduced Xbox prices to reduce the high number of products in retailer

inventories [Cachon and Terwiesch, 2009]. Lead time, which is equivalent to the
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time in between the purchase and the promised delivery time of the order, also has

significant impact on demand in manufacturing systems. For example, in the begin-

ning of 2010, polycarbonate lead times are increased from four to six weeks to 14 to

16 weeks, due to low supply and over-commitments [Victory, 2010]. These examples

indicate the critical role of price and lead times in managing the demand. By em-

ploying smart pricing and lead time quotation strategies, companies may overcome

the supply-demand mismatch, and in turn, increase profits, satisfy customers and

fully utilize their resources.

As stated by Littleson [2007], a key capability for manufacturers is to be able to

rapidly respond to what is happening at that moment. Hence, a key aspect of the

pricing and lead time quotation strategies is responsiveness to the changes in the

system status. This can be achieved by dynamically quoting price and lead times

based on system conditions such as inventory levels and number of orders on hand.

Although such strategies require frequent changes in quotes, Elmaghraby and Ke-

skinocak [2003] and Fleischmann et al. [2005] indicate that the recent developments

in information technologies offer opportunities to change prices and lead times eas-

ily. Dynamic quotation strategies are widely discussed in the academic literature.

Federgruen and Heching [1999], for example, consider a dynamic pricing-inventory

model, where the prices are quoted based on the inventory levels. Duenyas [1995],

on the other hand, discuss dynamic lead time quotation in a make-to-order man-

ufacturing environment, where the quoted lead times are functions of the number

of orders on hand. Readers are referred to Elmaghraby and Keskinocak [2003] and

Keskinocak and Tayur [2004] for an extensive reviews on dynamic pricing and lead

2



time quotation literature respectively. The benefits of dynamic quotation strategies

are widely discussed particularly in pricing field (see Fleischmann et al. [2004, 2005],

and Elmaghraby and Keskinocak [2003]).

In this dissertation, I explore the potential of dynamic price and lead time quo-

tation strategies to match supply and demand in a make-to-order manufacturing

system. The manufacturer produces single type of product that is manufactured

upon the order of a customer. The manufacturer receives product inquiries from

customers, and quotes a price and a delivery lead time to them. If the customer

accepts the quote, the manufacturer places an order to the job queue. The price

and lead time quotes are determined dynamically dependent on the status of the

job queue, with the objective of maximizing manufacturer profits in the long run. I

address the following questions in this dissertation:

• Given a consumer population with specific preferences, how do optimal dy-

namic quotation strategies behave?

• How do the optimal dynamic quotation strategies change under different cus-

tomer preferences?

• What are the benefits of employing dynamic quotation in comparison to sim-

pler quotation strategies?

• What are the benefits of coordinating price and lead time quotation decisions?

In Chapter 2, I discuss pricing and lead time quotation problem of a make-to-

order company that is serving two types of customers: (i) the spot purchasers, who

are arriving to the system over time, and are dynamically quoted prices and lead
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times; and (ii) contracted customers, who are agreed a fixed price and lead time in

the beginning of time horizon. In this chapter, I first analyze the impact of price

and lead time sensitivity of the spot purchasers on the optimal dynamic price and

lead time quotations to spot purchasers. I next focus on the potential benefits of

dynamic quotes to the spot purchasers by comparing the profits obtained when spot

purchasers are quoted (i) dynamic price/lead times that may change in the number

of orders on hand, and (ii) fixed price/lead times that does not change over time.

Finally, the determination of price and lead time terms for contract customers are

discussed. I analyze the potential benefit of achieving the optimal mixture of spot

and contract customers, and develop efficient algorithms to compute optimal price

and lead time terms.

Determination of optimal policy in Chapter 2 necessitates the computation of

expected tardiness of orders given a lead time quote, and the number of orders

in the queue. In Chapter 3, I develop methodologies to compute the expected

tardiness of orders given a lead time quote, priority class of the order and number

of orders in the queue, in a multi-class priority M/M/c queuing model. I first

focus on the single-class case, and derive a closed formulation for the expected

tardiness. However, expected tardiness values cannot be evaluated using a closed

formulation when there are multiple priority classes. Hence, I first derive the Laplace

transform of the expected tardiness, and develop three numerical inverse Laplace

transformation algorithms to approximate the expected tardiness. Two of these

algorithms provide upper and lower bounds on the expected tardiness. Using these

bounds, the expected tardiness in multi-class priority cases is computed with a

4



known error bound. I finally provide a recommendation scheme for the computation

of expected tardiness.

In Chapter 4, I consider a make-to-order manufacturer in two different settings.

In the centralized setting, price and lead time decisions are taken by a central-

ized agent in the company with the objective of maximizing long run profits. In the

decentralized setting, on the other hand, prices are determined by marketing depart-

ment with the objective of maximizing revenues, and lead times are determined by

the manufacturing department with the objective of minimizing lateness penalties.

I analyze the inefficiencies caused by decentralized decision making, and develop an

incentivization scheme to reduce the negative impacts of the lack of coordination.

In Chapter 5, I conclude and provide a brief summary of my contributions.
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CHAPTER 2

Price and Lead Time Quotation for Contract and Spot Customers

1. Introduction

Contracts formalize short-term and long-term transactions in supply chains and

cultivate relationships while providing suppliers with a partial view of future demand

and buyers with some guarantee of capacity availability and price stability. On

the other hand, non-contractual spot purchases do not imply any future business

guarantee, but provide flexibility to the suppliers to sell their excess capacity or

inventory and allow buyers to meet their unexpected needs.

Often times, companies prefer to buy and/or sell through a mix of long-term

contractual agreements and spot purchases to attain the benefits of both channels.

For example, Hewlett Packard, one of the largest memory part buyers, has developed

a procurement portfolio to meet 90% of their demand using long-term contracts,

whereas the remaining 10% is met from the spot market [Feng and Pang, 2010]. A

similar trend towards contractual agreements was observed in the metal products

sector, where the 64% of the customers had contracts, and the remaining 36% were

spot purchasers [Stundza, 2007]. Committing to a contract with, for example, a pre-

determined pricing scheme or volume, could sometimes hurt the supplier and/or the

buyer, if the market conditions change significantly. For instance, United Airlines

announced that their loss may be as much as $544 million due to their contracts with

their suppliers and falling oil prices [Demerjian, 2008]. Spot market flourishes under

volatile market conditions; for example the global steel manufacturer, ArcelorMittal

sells 80% of their steel in the spot market, and 20% to customers with contracts

[Haksoz and Kadam, 2009].
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In capacitated manufacturing systems, there is a critical trade-off between com-

mitting capacity to contract customers and reserving capacity for future spot pur-

chasers. By offering favorable contracts, companies can attract a higher number

of contract customers and increase the utilization of their capacity. For example,

Wencor, an aircraft parts distributor, offers price reductions and lower lead times

to contract customers to ensure some level of long-term business security [Wen-

cor.com, 2012]. However, this leaves less flexible capacity to be used for potentially

more profitable spot purchasers. Hence, offering the right contract terms and spot

market deals is crucial for obtaining the most desirable customer mix and achieving

profitability in the long run.

In this chapter, I address a make-to-order (MTO) manufacturer’s capacity reser-

vation trade-off by considering two main aspects of contracting and spot purchasing:

price and lead time. While the prices and lead times of contract customers are set

at the beginning of the planning horizon, for spot purchasers I propose the use of a

Dynamic Price and Lead Time Quotation policy (DPLQ) dependent on the system

conditions (i.e., congestion). I assume that all orders from contract customers must

be accepted and prioritized during processing, whereas the company has the op-

tion of rejecting orders from spot purchasers, by quoting a very high price and lead

time. I analyze the behavior of the optimal DPLQ for spot purchasers with varying

degrees of price and lead time sensitivity, and develop insights on how customer

preferences impact optimal policies. Noting the potentially undesirable effects of

frequent price and/or lead time changes DPLQ policies might require, I compare

the profits obtained by DPLQ policies with those obtained by fixed price/lead time
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quotation policies, and provide recommendations for managerial decisions. I analyze

the optimal contract decisions, potential benefits of offering optimal contract terms

in comparison to simple strategies and examine the impact of system parameters on

the optimal customer mix.

The chapter investigates the following topics:

• the structure of the optimal dynamic price/lead time quotation policies for

spot purchasers and how these policies change depending on the price and

lead time sensitivity of spot purchasers (Section 3.1),

• the performance difference between dynamic versus fixed price/lead time quo-

tation policies in the presence of spot and contract customers (Section 3.2),

• the optimal mix of spot purchasers and contract customers, and the benefits

of attaining the optimal mix (Section 4).

This chapter has three main contributions that are summarized as follows. Pre-

vious studies on price and/or lead time quotation investigate the impact of customer

behaviors (e.g., price/lead time sensitivity) on the optimal decisions using relatively

simple models where price and lead time quotes are not dynamic, and demand func-

tions are linear [Easton and Moodie, 1999, Ray and Jewkes, 2004, Wu et al., 2011].

In this chapter, I generalize their results using a more general demand function

under a dynamic quotation environment, which is indicated as a potential research

direction in those papers. My theoretical analyses indicate that the optimal spot

purchaser quotes heavily depend on price and lead time sensitivity of the spot pur-

chasers. When spot purchasers are highly sensitive to price changes, it is optimal
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to quote zero lead times, and modify the price quotes according to the profitability

of the spot purchaser. If they are highly sensitive to price changes, then it is often

optimal to adjust lead time quotes, while keeping the price quotes at the lowest

level.

Secondly, I analyze the benefits of DPLQ in comparison to fixed price and lead

time quotation (FPLQ) with no flexibility to change price and lead time quotes.

This has not been addressed in the literature, to the best of my knowledge. I

analyze the profit improvements offered by DPLQ, and provide recommendations

for manufacturers using an extensive numerical analysis.

Finally, I consider the impact of the contract-spot customer mix using a multi-

class queuing model, which is a research problem addressed by recent studies of

Haksoz and Kadam [2009] and Savasaneril et al. [2010]. I analyze the optimal

contract terms, and develop fast algorithms that compute optimal contract terms,

and provide desirable results in a relatively short time. I also analyze the profit

improvements offered by the optimal customer mix, and provide recommendations.

The chapter is organized as follows. I review the literature in Section 2. In

Section 3, I model and analyze the dynamic price and lead time quotation problem

for spot purchasers. In Section 4, I discuss the optimal contract customer/spot

purchaser mix, and the benefits of achieving the optimal mix. I summarize my

major findings and conclude in Section 5.

2. Literature review

There has been a significant amount of work discussing dynamic pricing and

lead time quotation separately. The readers are referred to Keskinocak and Tayur
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[2004] and Elmaghraby and Keskinocak [2003] for reviews in due date management

and dynamic pricing literature, respectively. The literature on joint dynamic price

and lead time quotation, however, is relatively scarce (see Celik and Maglaras [2008]

and Feng et al. [2011]).

Recent work on dynamic pricing in MTO systems focuses on admission control

models with the option of accepting or rejecting price sensitive customers [Aktaran-

Kalayci and Ayhan, 2009, Cil et al., 2009, Yoon and Lewis, 2004]. Most of the

studies in this stream employ Markov Decision Process (MDP) models, and focus

on developing structural properties of optimal policies, such as the monotonicity of

price quotes. Yoon and Lewis [2004] study the pricing problem in non-stationary

queues considering both total discounted and average reward problems for an infinite

horizon. They show that the optimal price and admission probability of an order

is increasing and decreasing, respectively, in the number of orders in the system.

Aktaran-Kalayci and Ayhan [2009] extend the monotonicity results to M/M/s/K

queues. Cil et al. [2009] present a general framework of queuing admission control

methods and structural properties.

As stated in Savasaneril et al. [2010], a remarkable portion of the due date man-

agement literature focuses on sequencing and due date setting decisions assuming

all arriving orders must be admitted to the system [Bertrand, 1983, Bookbinder and

Noor, 1985, Spearman and Zhang, 1999, Wein, 1991]. Among the studies employ-

ing admission control with lead time quotes, Charnsirisakskul et al. [2004, 2006],

Keskinocak et al. [2001], and Kapuscinski and Tayur [2007] assume deterministic

processing times, whereas Ata [2006] and Ata and Olsen [2009] employ heavy-traffic
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approximations to overcome the complexity of MDP formulations. Similar to my

setting, Keskinocak et al. [2001] and Kapuscinski and Tayur [2007] study settings

with two customer classes, and Carr and Lovejoy [2000] consider n prioritized cus-

tomer classes. Keskinocak et al. [2001] considers an “urgent” customer class, whose

orders are processed immediately and bring more revenue than regular customer

orders. In the setting of Kapuscinski and Tayur [2007], one customer class is priori-

tized and incurs higher delay penalties than the second customer class. In Carr and

Lovejoy [2000], the demand of higher priority customer classes are served earlier,

and the demand of lower priority classes may not be fulfilled. Duenyas and Hopp

[1995] address a dynamic lead time quotation problem by modeling an MTO system

as an M/M/1 queue using a MDP model. The authors show the optimality of the

earliest due date scheduling method. Using a similar MDP model, Duenyas [1995]

shows the monotonocity of lead time quotes in the number of orders in the system.

Although Duenyas [1995] extends the work into multiple customer classes, all orders

are assumed to be sequenced in first come first serve (FCFS) order, which the au-

thor indicates to be unrealistic for some real life settings [Duenyas, 1995]. Recently,

Savasaneril et al. [2010] extend the dynamic lead time quotation problem to hybrid

make-to-order/make-to-stock environments.

Joint price and lead time decisions are considered by Celik and Maglaras [2008],

Easton and Moodie [1999], ElHafsi [2000], Hua et al. [2010], Liu et al. [2007], Palaka

et al. [1998], Pekgun et al. [2008], Plambeck [2004], Ray and Jewkes [2004], Wu et al.

[2011], Xiao et al. [2010], and Feng et al. [2011]. Liu et al. [2007] and Pekgun et al.

[2008] consider fixed pricing and lead time decisions in decentralized supply chains.
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Palaka et al. [1998] and Easton and Moodie [1999] consider MTO environments,

where demand is a function of price and lead time, and optimize expected profits

by setting price and lead times. Celik and Maglaras [2008] study the DPLQ under

heavy traffic assumptions. The authors also discuss the effects of lead time flexibility,

expediting (under a high cost), and dynamic pricing. Plambeck [2004] considers

two customer classes, with different price and lead time sensitivities. Price decisions

are taken at the beginning of the planning horizon, and lead times are quoted

dynamically to the arriving customers. Hua et al. [2010], Liu et al. [2007], Pekgun

et al. [2008] and Xiao et al. [2010] discuss settings where price and lead times are

determined by separate entities within the company.

Feng et al. [2011] is the study that is closest to ours in spirit. The authors address

the joint dynamic pricing and lead time quotation problem in a MTO system using

an GI/M/1 queuing model and an MDP formulation. They define an optimal policy

structure including a threshold and reward maximizing lead time quote, and show

that the reward maximizing lead time is optimal under particular conditions. In

contrast to Feng et al. [2011], I consider two customer classes with different contrac-

tual rights to processing prioritization, discuss the impact of customer preferences

on the optimal policy, and quantify the benefits of DPLQ versus fixed pice and lead

time policies, as well as optimizing the contract-spot customer mix.

3. Dynamic Quotation Model for Spot Purchasers

I consider an MTO system with two classes of customers, each arriving accord-

ing to a Poisson process with rate λk, where k = c and k = s denote contract

customers and spot purchasers, respectively. The manufacturer produces a single
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type of product. Hence, the service times for both customer classes are independent

and identically distributed exponential random variables with rate µ. Hence, the

system is modeled as an M/M/1 queue with two customer classes. At the begin-

ning of the time horizon, the company sets the unit price (pc ≥ 0) and the lead time

(lc ≥ 0) for the orders of contract customers. Arriving contract customer orders

are always accepted and fulfilled. When a spot purchaser order arrives, a lead time

(ls ≥ 0) and a price (ps ≥ 0) are quoted dynamically, based on the system state.

The spot purchaser accepts the quote with probability given by the fS(ps, ls), which

I refer to as the acceptance probability function.

Assumption 1. (i) fS(ps, ls) is continuous, non-increasing, twice differentiable,

concave in ps and ls, and ∂2fS(ps, ls)/∂ps∂ls ≤ 0.

(ii) There exist a nonnegative lower bound on price, psMin, and the lower bound

on lead time is zero, such that fS(ps, ls) does not change for prices and lead

times below these lower bounds. That is, fS(p, l) = fS(psMin, l) for p < psMin.

Furthermore, fS(psMin, 0) = 1. Note that, psMin represents the minimum of

the willingness-to-pay of the individuals in the spot purchaser population, and

is referred to as the “accept all price” henceforth.

(iii) Given a lead time quote ls, there exists an upper bound on price, denoted

by psMax(ls), such that any price quote above this upper bound is definitely

rejected by spot purchasers. That is, psMax(ls) = min{p ∈ <+ : fS(p, ls) = 0}.

psMax(ls) is nonincreasing in ls, and its highest value is denoted as psMax, i.e.,

psMax = psMax(0). psMax is referred to as the “reject all price” henceforth.
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(iv) Given a price quote ps, there exists an upper bound on lead time, denoted

by lsMax(ps), such that any price quote above this upper bound is definitely

rejected. That is, lsMax(ps) = min{l ∈ <+ : fS(ps, l) = 0}. lsMax(ps) is non-

increasing in ps, and its highest values is denoted as lsMax, i.e., lsMax =

lsMax(psMin).

Assumptions 1(ii), 1(iii) and 1(iv) restrict fS(ps, ls) into the finite interval [0, 1].

Assumption 1(i) defines the general properties of the acceptance probability func-

tion, such as monotonocity and concavity in price and lead time, which is well

accepted in the literature. The assumption that ∂2fS(ps, ls)/∂ps∂ls ≤ 0 is more

restrictive than the monotonocity and concavity conditions, but fortunately this

condition holds true for a wide range of demand functions. For example, con-

sider an additive form, fS(ps, ls) = 1− gp(ps)− gd(ls), and a multiplicative form,

fS(ps, ls) = 1− gp(ps)ngl(ls)m, where gp(·) and gl(·) are nondecreasing and nonneg-

ative functions of price and lead time, and m ≥ 1, n ≥ 1. Since ∂gp(ps)/∂ps ≥ 0,

and ∂gl(ls)/∂ls ≥ 0, the condition ∂2fS(ps, ls)/∂ps∂ls ≤ 0 holds true for both mul-

tiplicative and additive forms.

An fS(ps, ls) that is linear in both ps and ls is illustrated in Figure 1(a) in 3-

dimensions, and in Figure 1(b) in 2-dimensions. In the remainder of the chapter, I

use the 2-dimensional representation to illustrate the various cases.

The objective is to maximize the long-run average expected profit per unit time,

where profit from a customer is equal to the revenue minus late delivery penalties.

Using the properties of fS(ps, ls), I first restrict the optimal price and lead times

into a finite region in Observation 1.
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(a) 3-dimensional representation
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fs(ps, ls) = 1

fs(ps, ls) = 0psMax(l)

lsMax(p)

p

l

(b) 2-dimensional representation

Fig. 1. Illustration of the acceptance probability function

Observation 1. There exists at least one optimal solution in θS, where θS is defined

as in Equation (2.1).

θS = {(p, l) ∈ <2 : psMin ≤ p ≤ psMax(l), 0 ≤ l ≤ lsMax(p)}. (2.1)

Proof. Decreasing the price below psMin does not change fS(·, ·), but decreases

the expected revenue. Hence, the optimal price to quote to a spot purchaser

cannot be less than psMin. Furthermore, given a lead time quote ls, increasing

prices above psMax(ls) does not change the expected profit to be obtained from the

spot purchasers. Similarly, given a price quote ps, increasing the lead times above

lsMax(ps) does not the change expected profit. Consequently, if any (p∗s, l
∗
s) satisfy-

ing p∗s > psMax(l∗s) or l∗s > lsMax(p∗s) is optimal, then (psMax(ls), ls) is optimal as

well.

In Figure 1(b), θS is given by the shaded area.
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The state of the system at time t is defined by the vector X(t) =

(I(t), J(t),K(t)) ∈ S, where I(t) and J(t) denote the number of spot purchasers

and contract customers in the system, respectively, and K(t) denotes the class of

the customer order currently being served. I assume a finite buffer of size N (due to

the need to limit the state space for numerical analysis), i.e., none of the incoming

customer orders are accepted when there are N orders in the system. Note that this

implies the possible rejection of a contract customer order. I assume a sufficiently

high buffer size in the numerical analysis, such that the probability of customer

rejection due to a full buffer is negligibly small.

{X(t), t ∈ T} defines a stochastic process and can be modeled as a continuous

time Markov chain. I drop t from the notation, and simply use (i, j, k) to denote

the state. The state space S can be denoted as S = S1 ∪ S2 ∪ S3 ∪ {(0, 0, 0)}, where

S1 = {(i, j, k) : i+ j ≤ N, i ≥ 1, j ≥ 1, k ∈ {c, s}}, S2 = {(i, 0, s) : 1 ≤ i ≤ N},

S3 = {(0, j, c) : 1 ≤ j ≤ N}, and |S| = N2 + N + 1. Note that S2 and S3 denote

the states where there are no contract and spot purchaser orders in the system,

respectively. The state where there are no orders in the system is denoted by

(0, 0, 0).

I assume that contract customer orders are always prioritized and processed

ahead of the spot purchaser orders, and preemption is not allowed. Orders within

the same class follow the FCFS sequence. Hence, at any time t ≥ 0, when the state

is (i, j, k) with i+ j > 0,

(i) an incoming spot purchaser order is placed behind i+ j orders in the system,

to the position i+ j + 1,
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(ii) an incoming contract customer order is placed to position j + 1, if there is a

contract customer order in process; otherwise, it is placed to position j + 2

(see Figure 2).

1 2 3 4 5

(a) Case (i). i = 3, j = 2, k = C

1 2 3 4 5

(b) Case (ii). i = 3, j = 2, k = S

Fig. 2. Illustration of the sequencing policy, where the numbers 1, 2, . . . denote the

position of the order

Due date management studies, which use MDP formulations similar to this chap-

ter, either consider a single class of customers with FCFS ordering [Duenyas, 1995,

Duenyas and Hopp, 1995, Feng et al., 2011, Savasaneril et al., 2010], or sequencing

of orders in the presence of single and multiple customer classes [Duenyas, 1995,

Duenyas and Hopp, 1995]. To the best of my knowledge, this is the first study

considering prioritization of a particular customer class in the dynamic lead time

quotation literature.

Once the quote is accepted by the spot purchaser, the order joins the queue

according to the above explained protocol. If the service completion time of an order

is later than the quoted due date, a late delivery penalty, which increases linearly

with the tardiness duration at rate τk, k ∈ {C, S}, is incurred. Let LCj,k(lc) denote

the expected late delivery penalty incurred for the order of a contract customer who
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was promised a lead time of lc and who joins the queue when there are j contract

orders already in the system and a class k order is in processing. I have

LCj,c(lc) = τC
∫ ∞
lc

(t− lc)fCj+1(t)dt, and LCj,s(lc) = τC
∫ ∞
lc

(t− lc)fCj+2(t)dt, (2.2)

where fCj (t) denotes the probability density function (pdf) of the time-in-system

(TIS) of the jth job in the system, i.e., pdf of Gamma distribution with parameters

j and µ. When the state is (i, j, k), the arriving spot purchaser order waits for at

least i + j + 1 order(s) for service completion. TIS for a spot purchaser possibly

increases due to contract customer orders arriving before this order starts processing.

The expected late delivery penalty of a spot purchaser order that arrives when the

system state is (i, j, ·) can be expressed as

LSi+j(ls) = τS
∫ ∞
ls

(t− ls)fSi+j+1(t)dt, (2.3)

for a lead time quote of ls. In Equation (2.3), fSi (t) denotes the pdf of the TIS of a

spot purchaser order that is placed in the ith position upon arrival.

The problem is formulated as an infinite-horizon MDP with the long run average

expected profit per unit time criteria. Any time a state transition happens, the

company determines the quote (ps, ls) ∈ θS for the next spot purchaser. Although

this indicates that the decision epochs are all event occurrences (i.e., spot purchaser

arrivals, contract customer arrivals, and service completion), in practice the quote is

offered only when a spot purchaser arrives. The continuous time model is converted

to an equivalent discrete time model using a uniformization rate of ν = λS + λC +

µ. The Bellman’s equation for the problem, referred to as Dyna, is presented in

Equations (2.4), (2.5) and (2.6). The expression v∗Dyna denotes the optimal expected
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average profit per unit time, and h∗i,j,k is the relative value of starting in state (i, j, k)

under the optimal policy,

Dyna :
v∗Dyna
ν

+ h∗i,j,k = max
(ps,ls)∈θS

ψi,j,k(ps, ls), (2.4)

where

ψi,j,k(ps, ls) =



λS+λC

ν h∗i,j,k + µ
ν h
∗
i,j,k for i+ j = N,

λS

ν f
S(ps, ls)(ps − LSi+j(ls) + h∗i+1,j,k)

+λS

ν (1− fS(ps, ls))h
∗
i,j,k

+λC

ν (pc − LCj,k(lc) + h∗i,j+1,k) + µ
ν h
∗
i,j,k for (i, j, k) 6= (0, 0, 0)

and, i+ j < N

λS

ν f
S(ps, ls)(ps − LS0 (ls) + h∗1,0,s)

+λS

ν (1− fS(ps, ls))h
∗
0,0,0

+λC

ν (pc − Lc0,c(lc) + h∗0,1,c) + µ
ν h
∗
0,0,0 for (i, j, k) = (0, 0, 0).

(2.5)

and h
∗
i,j,k is defined as

h
∗
i,j,k =



h∗i,j−1,c if i ≥ 0, j ≥ 2, k = c,

h∗i,0,s if i ≥ 1, j = 1, k = c,

h∗i−1,j,c if i ≥ 1, j ≥ 1, k = s,

h∗i−1,0,s if i ≥ 2, j = 0, k = s,

h∗0,0,0 if (i, j, k) ∈ {(1, 0, s), (0, 1, c)}.

(2.6)
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At state (i, j, k), the spot purchaser accepts the quote with probability fS(ps, ls),

bringing an expected profit of ps − LSi+j(ls), and changing the state to (i + 1, j, k).

The quote is rejected with probability 1 − fS(ps, ls) and no change occurs. When

a contract customer arrives to the system, the order is immediately put into the

system, transition occurs to state (i, j + 1, k) and an expected profit of pc −LCj,k(lc)

is obtained. When the processing of an order is completed, the system state is

decreased by one depending on the class of the order currently being processed.

3.1. Characterization of Optimal Policy

In this section, I characterize the optimal solution to Dyna. The price and lead

time quotes to spot purchasers are denoted as p and l to simplify notation. The

optimal solution at state (i, j, k) is denoted by the (p∗i,j,k, l
∗
i,j,k) pair. By rearranging

the terms in Equation (2.5), I observe that (p∗i,j,k, l
∗
i,j,k) for (i, j, k) ∈ S maximizes

γi,j,k(p, l) = fS(p, l)(Πi,j(p, l)−∆h∗i,j,k) (2.7)

where

∆h∗i,j,k =


h∗i,j,k − h∗i+1,j,k for (i, j, k) 6= (0, 0, 0), and i+ j < N

h∗0,0,0 − h∗1,0,S for (i, j, k) = (0, 0, 0), and,

(2.8)

Πi,j(p, l) = p− LSi+j(l). (2.9)

∆h∗i,j,k represents the monetary burden brought on by one additional spot pur-

chaser order if the quote is accepted at state (i, j, k). Πi,j(p, l), on the other hand,

is the immediate profit earned from a spot purchaser if the quote (p, l) is accepted

and the state is (i, j, k). Hence, Πi,j(p, l)−∆h∗i,j,k, which is the second term in the
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right hand side of Equation (2.7), denotes the long-run profit earned from a spot

purchaser order (denoted by LPES) at state (i, j, k), if (p, l) is accepted.

In Theorem 1, I show that relative price/lead time sensitivity of the spot pur-

chasers has a significant impact on the optimal solutions. I first prove two properties

of LSi+j(l) in Lemma 1, which are used in my theoretical analysis.

Lemma 1. LSi+j(l) is convex and non-increasing in l ≥ 0.

Proof. The proofs of all propositions, lemmas and theorems of Chapter 2 are in-

cluded in Appendix A-1.

I define T1 and T2, which are two threshold values used in Theorem 1 as follows.

T1 = − τS

∂fS(psMin, 0)/∂l
, and T2 = − 1

∂fS(psMin, 0)/∂p
. (2.10)

Theorem 1. The optimal policy for Dyna has the following structure.

Case 1: If max{T1, T2} ≤ Πi,j(psMin, 0)−∆h∗i,j,k, then (p∗i,j,k, l
∗
i,j,k) = (psMin, 0).

Case 2.1: If T1 < Πi,j(psMin, 0)−∆h∗i,j,k ≤ T2, then l∗i,j,k = 0 and p∗i,j,k > psMin.

Case 2.2: If T2 < Πi,j(psMin, 0)−∆h∗i,j,k ≤ T1, then p∗i,j,k = psMin and l∗i,j,k > 0.

Case 3: If Πi,j(psMin, 0) −∆h∗i,j,k < min{T1, T2}, and there exists a (p, l) sat-

isfying Πi,j(p, l)−∆h∗i,j,k > 0, then (p∗i,j,k, l
∗
i,j,k) satisfies 0 < fS(p∗i,j,k, l

∗
i,j,k) < 1.

Case 4: If Πi,j(psMin, 0)−∆h∗i,j,k < min{T1, T2}, and Πi,j(p, l)−∆h∗i,j,k <= 0,

for all (p, l), then (p∗i,j,k, l
∗
i,j,k) satisfies fS(p∗i,j,k, l

∗
i,j,k) = 0.

At any particular state (i, j, k), when Case 1 holds (i.e., the LPES obtained by

quote (psMin, 0) is greater than both T1 and T2), the manufacturer offers (psMin, 0)

to attract arriving spot purchasers. As the LPES obtained by quote (psMin, 0)
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decreases, it first falls below either T1 or T2. If it is less than T2, Case 2.1 holds,

and the manufacturer quotes prices higher than psMin while keeping the lead time

quote at zero. Otherwise, Case 2.2 holds, and l∗i,j,k increases as p∗i,j,k stays constant

at psMin. If LPES obtained by quote (psMin, 0) is less than both T1 and T2 but

greater than 0 for any (p, l), it is optimal to quote a price and lead time pair that

yields a positive acceptance probability by the spot purchaser. If obtained LPES is

less than 0 for all (p, l), then the manufacturer rejects the spot purchaser by quoting

sufficiently high price and lead time quotes. I next provide an example to illustrate

Theorem 1.

Example 1. Consider the case where λS = 0.75, λC = 0, µ = 1, psMin = 60,

psMax = 80, lsMax = 30, τS = τC = 1, and fS(p, l) = 1− p−60
20 − l

30 , for (p, l) ∈ θS.

In Figure 3, I plot the change of Πi,j(psMin, 0)−∆h∗0,j,0 as j increases.

$

T1

T2

Πi,j(psMin, 0) − ∆h∗0,j,0

j

Case 1

Case 2.2

Case 3 or 4

Fig. 3. Illustration of Theorem 1

Using fS(p, l), one can simply find that T1 = 30 and T2 = 20. From Figure

3, I observe that (p∗0,j,0, l
∗
0,j,0) = (psMin, 0), for j = {1, 2, 3, 4, 5, 6, 7}, which are the
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states with LPES above the T1 line. Because T1 > T2, the region between T1 and

T2 lines correspond to Case 2.2. Hence, I have p∗i,j,k = psMin and l∗i,j,k > 0 for

j = {8, 9, 10, 11}. For the states with Πi,j(psMin, 0) − ∆h∗0,j,0 < 20, Case 3 or 4

holds.

In Corollary 1, I develop a simple rule to compare T1 and T2, and derive intuition

about the structure of the optimal policy. Let

ρS(p, l) =
∂fS(p, l)/∂l

∂fS(p, l)/∂p
. (2.11)

Corollary 1. T1 < T2 if and only if ρS(psMin, 0) > τS.

The parameter ρS(p, l), which represents the relative price/lead time sensitivity

of the spot purchaser, gives the relative importance of due date and price changes

for the spot purchaser evaluated at price-lead time quote of (p, l), where a high (low)

ρS(·, ·) value indicates that a spot purchaser is more sensitive to lead time (price)

changes. If ρS(psMin, 0) ≤ τS , then the spot purchaser is significantly more sensitive

to price changes than lead time changes, and hence, increasing the lead time quote

rather than increasing the price is preferable to mitigate the due date violation risk

without discouraging the spot purchaser. If ρS(psMin, 0) > τS , on the other hand,

spot purchasers are less sensitive to price changes and increasing the price quote is

preferable for the manufacturer to gain more revenue from spot orders while keeping

the congestion under control. While Easton and Moodie [1999], Palaka et al. [1998],

Ray and Jewkes [2004] and Wu et al. [2011] demonstrate similar results using non-

dynamic models and linear demand functions, Theorem 1 and Corollary 1 extend
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their results into a more general concave demand form using a dynamic quotation

model.

One observes that T1 and T2 denote the minimum LPES obtained by the quote

(psMin, 0), such that it is optimal to offer a zero lead time and accept all price,

respectively for any particular state (i, j, k). If manufacturers could assess the LPES

of the incoming order accurately without solving the problem explicitly, they could

simply determine if the incoming order should be quoted the accept all price and/or

zero lead times by evaluating T1 and T2. When fS(p, l) is linear in price and lead

time, and additive (i.e., ∂fS(p,l)
∂p∂l = 0), T1 and T2 can be simply evaluated as shown

in Corollary 2.

Corollary 2. T1 = lsMaxτ
S and T2 = psMax − psMin, when fS(p, l) is additive and

linear in lead time and price, respectively.

For example, when fS(p, l) is linear in price, T2 is measured by the difference

between the reject all and accept all prices. If an incoming spot purchaser order

brings more long-run profits than this difference, then the spot purchaser should be

quoted the price psMin.

Theorem 1 presents cases where p∗i,j,k = psMin and/or l∗i,j,k = 0, using the values

of ∆h∗i,j,k, which requires the optimality equations in (2.4) to be solved. In Theorem

2, I develop a simple condition ensuring that p∗i,j,k = psMin and/or l∗i,j,k = 0 that

does not require the problem to be solved explicitly.

Theorem 2. (p∗i,j,k, l
∗
i,j,k) ∈ θSi,j, where
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(i) If ρS(p, l) > τS for all (p, l) ∈ θS, then l∗i,j,k = 0, i.e.,

θSi,j = {(p, 0) ∈ <2 : psMin ≤ p ≤ psMax}. (2.12)

(ii) If ρS(p, l) < τSF
S
i+j+1(lsMax) for all (p, l) ∈ θS, then p∗i,j,k = psMin, i.e.,

θSi,j = {(psMin, l) ∈ <2 : 0 ≤ l ≤ lsMax}. (2.13)

(iii) If τSF
S
i+j+1(lsMax) ≤ ρS(p, l) ≤ τS for some (p, l) ∈ θS, then

θSi,j ={(psMin, l) ∈ <2 : 0 ≤ l ≤ lsMax} ∪ {(p, 0) ∈ <2 : psMin ≤ p ≤ psMax}

(2.14)

∪
{

(p, l) ∈ θS :
ρS(p, l)

τS
= F

S
i+j+1(l)

}
. (2.15)

where F
S
i (l) = 1−

∫ l
0 f

S
i (t)dt, which is the probability that the i’th spot purchaser

order is not met on time if the quoted lead time is l.

Parts (i) (Part (ii)) of Theorem 2 indicates that when the spot purchasers are

sufficiently lead time (price) sensitive, then it is optimal to always quote l∗i,j,k = 0

(p∗i,j,k = psMin). In these cases, the manufacturer should only focus on determining

optimal prices and lead times, respectively, and hence, can avoid the burden of joint

price/lead time optimization.

When the spot purchasers are not highly price or lead time sensitive, from Part

(iii) of Theorem 2, p∗i,j,k = psMin or l∗i,j,k = 0 may not hold. When p∗i,j,k > psMin and

l∗i,j,k > 0, the optimal solution satisfies 1− ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = 1− FSi+j+1(l∗i,j,k) =

FSi+j+1(l∗i,j,k), where FSi+j+1(l∗i,j,k) denotes the probability that the spot purchaser

order is met on time when an optimal lead time is quoted. 1− ρS(p∗i,j,k, l
∗
i,j,k)/τ

S is
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analogous to the famous news-vendor critical ratio, which determines the proportion

of demand to be met. When fS(p, l) is additive, I obtain a simpler optimal policy

structure for Part (iii) of Theorem 2 in Proposition 1.

Proposition 1. If fS(p, l) is additive, and τSF
S
i+j+1(lsMax) ≤ ρS(p, l) ≤ τS for

some (p, l) ∈ θS, then the following hold:

(i) If ∂fS(psMin, 0)/∂l = ∂fS(psMin, 0)/∂p = 0, then ρS(p∗i,j,k, l
∗
i,j,k)/τ

S =

F
S
i+j+1(l∗i,j,k),

(ii) If ∂fS(psMin, 0)/∂l < τS∂fS(psMin, 0)/∂p, then l∗i,j,k = 0 or

ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = F
S
i+j+1(l∗i,j,k),

(iii) If ∂fS(psMin, 0)/∂l > τS∂fS(psMin, 0)/∂p, then p∗i,j,k = psMin or

ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = F
S
i+j+1(l∗i,j,k).

I illustrate my findings from Theorem 2 and Proposition 1, in Examples 2 and

3, respectively.

Example 2. Consider the following setting: λC = 0.45, µ = 1, i+ j = 3, psMin =

15, psMax = 23, lsMax = 8, and fS(p, l) = 1 − p−15
8 − l

8 , for (p, l) ∈ θS. Using

simple algebra, I have ρS(p, l) = 1 for all (p, l) ∈ θS, and F
S
i+j+1(lsMax) = 0.315. I

illustrate θSi,j, for two cases: (i) τS = 0.5, τSF
S
i+j+1(lsMax) = 0.16, and (ii) τS = 5

and τSF
S
i+j+1(lsMax) = 1.57 in Figures 4(a) and 4(b), respectively.

In Case (i), ρS(p, l) > τS holds for all (p, l) ∈ θS. Thus l∗i,j,k = 0 follows

from Part (i) of Theorem 2. In Case (ii), since ρS(p, l) < τSF
S
i+j+1(lsMax) for all

(p, l) ∈ θS and Part (ii) of Theorem 2, I have p∗i,j,k = psMin, as shown in Figure

1(b).
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p

l

psMax(l)

(a) Case (i): τS = 0.5

p

l

psMax(l)

(b) Case (ii): τS = 5

Fig. 4. Demonstration of θSi,j using Theorem 2

Example 3. Consider the following three settings:

(a) λC = 0, µ = 1, i + j = 3, psMin = 15, psMax = 25, lsMax = 8.55,

τS = 1.5 and fS(p, l) = 1− 0.01(p− 15)2 − 0.04l1.5. Thus, ∂fS(psMin, 0)/∂l =

∂fS(psMin, 0)/∂p = 0.

(b) λC = 0, µ = 1, i + j = 3, psMin = 15, psMax = 25, lsMax = 25, τS = 1.5

and fS(p, l) = 1 − 0.01(p − 15)2 − 0.04l. I have ∂fS(psMin, 0)/∂l = −0.04 and

τS∂fS(psMin, 0)/∂p = 0.

(c) λC = 0.45, µ = 1, i + j = 3, psMin = 15, psMax = 23, lsMax = 8, τS = 1.5,

fS(p, l) = 1 − p−15
8 − l

8 , for (p, l) ∈ θS. Thus, ∂fS(psMin, 0)/∂l = −0.125 and

τS∂fS(psMin, 0)/∂p = −0.1875.

One observes that (a), (b) and (c) satisfy the conditions of Proposition 1 (i), (ii)

and (iii), respectively. Reduced action spaces of (p∗i,j,k, l
∗
i,j,k) are depicted in Figure
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5, for the three cases, where the dashed line indicates the set of solutions satisfying

ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = F
S
i+j+1(l∗i,j,k).

p

l

psMax(l)

(a) Case (i): fS(p, l) = 1 − 0.01(p − 15)2 −

0.04l1.5

p

l

psMax(l)

(b) Case (ii): fS(p, l) = 1−0.01(p−15)2−0.04l

p

l

psMax(l)

(c) Case (iii): fS(p, l) = 1− p−15
8
− l

8

Fig. 5. Reduced action spaces obtained using Proposition 1

In Case (a), I have ∂fS(psMin, 0)/∂l = ∂fS(psMin, 0)/∂p = 0, indicating that

ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = F
S
i+j+1(l∗i,j,k) always holds and an optimal solution exists on

the dashed line shown on Figure 5(a). In Cases (b) and (c), the spot purchasers
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are relatively more lead time and price sensitive, respectively. Thus, there are cases

where l∗i,j,k = 0 and p∗i,j,k = psMin, in Cases (b) and (c), respectively. In these cases,

an optimal solution may also satisfy ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = F
S
i+j+1(l∗i,j,k), similar to

Case (a). For example, in case (c), I have ρS(p, l)/τS = 0.667, for all (p, l) ∈ θS.

Solving F
S
i+j+1(l∗i,j,k) = 0.667 gives l∗i,j,k = 3.67. Thus, the dashed line in Figure

5(c) illustrates the set of (p, l) ∈ θS where l = 3.67.

Theorem 2 is beneficial in two aspects. First, it proves that joint DPLQ is not

necessary when spot purchasers are highly price or lead time sensitive. Second, it

provides valuable information about the behavior of the optimal solution, and hence,

allows us to reduce the action space, which expedites my solution algorithms.

While the regular action space, θS , denotes the area below psMax(·) curves in

Figures 4 and 5, Theorem 2 points out that an optimal solution can be found on the

indicated lines. I use this information to reduce the size of action spaces and compute

the computational time savings using a numerical study. I use a relative value

iteration algorithm [Bertsekas, 2001] and solve the problems with regular action

space, θS , and the reduced action space, θSi,j for (i, j, k) ∈ S. The readers are referred

to Appendix A-2 for details. My analyses conducted using 256 instances reveal that

the action space reduction offers minimum, average and maximum computational

time savings of 30.75%, 74.20% and 96.92%, respectively. Hence, I use the reduced

action spaces to solve Dyna in the remainder of my computational analysis.
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3.2. Performance of Dynamic Price and Lead Time Quotation

In this section, I discuss the optimal long-run average expected profit per unit

time (denoted by OAP henceforth) improvements obtained by DPLQ in comparison

to the use of fixed price and/or lead times for spot purchasers. Unlike DPLQ, the

fixed price (lead time) quotation policy does not have the flexibility to change the

price (lead time) quotes over time, and quotes the same price (lead time), for all

(i, j, k) ∈ S. I next define the problems FixLT, FixP and Fix that evaluates OAP

when prices are dynamic and lead times are fixed, prices are fixed and lead times

are dynamic; and both prices and lead times are fixed, respectively.

FixLT : v∗FixLT = max
ls∈[0,lsMax]

v∗(ls), (2.16)

FixP : v∗FixP = max
ps∈[psMin,psMax]

v∗(ps), (2.17)

Fix : v∗Fix = max
(ps,ls)∈θS

v∗(ps, ls), (2.18)

where v∗(ls), v∗(ps), and v∗(ps, ls) are obtained by solving the problems,

v∗(ls)
ν

+ h∗i,j,k = max
ps∈[psMin,psMax]

ψi,j,k(ps, ls), ls ∈ [0, lsMax], (2.19)

v∗(ps)
ν

+ h∗i,j,k = max
ls∈[0,lsMax]

ψi,j,k(ps, ls), ps ∈ [psMin, psMax], and (2.20)

v∗(ps, ls)
ν

+ h∗i,j,k = ψi,j,k(ps, ls), (ps, ls) ∈ θS . (2.21)

I develop a computational study to evaluate the OAP improvement offered by

Dyna, FixLT and FixP over Fix, and provide recommendations for real-life systems.

The OAP improvements are evaluated by IMPX = (v∗X − v∗Fix)/v∗Fix100%, X ∈

{FixP, FixLT, Fix}.
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I define “Breakeven Delay” (BD), which is measured by psMin/τ
S . Hence, BD

represents the maximum amount of time that the delivery of a spot purchaser order

can be delayed such that the manufacturer earns non-negative profit by serving

that spot purchaser at the accept all price. BD is a unique time value for each

manufacturer, and can be estimated using contractual agreements. For example,

purchasing conditions of Samsung requires a contract with delivery penalty in the

amount of 1% of the order value for every delayed week [Samsung, 2012]. Thus, any

manufacturer working with Samsung has a BD of 100 weeks if the agreed price is

the accept all price for Samsung.

The unit time is the processing time for one unit, i.e., I set µ = 1. I model

fS(p, l) as in Equation (2.22). That is,

fS(p, l) = 1−
(

p− psMin

psMax − psMin

)κP
−
(

l

lsMax

)κL
−κPL(p− psMin)l, for (p, l) ∈ θS ,

(2.22)

where κP ≥ 1, κL ≥ 1 and κPL ≥ 0.

One verifies that used form of fS(p, l) satisfies Assumption 1 (i) using κP ≥ 1,

κL ≥ 1 and κPL ≥ 0. In addition, I have fS(psMin, 0) = 1, which is sufficient

for Assumption 1 (ii). I refer to Figure 18 in Appendix A-2 for the verification of

Assumptions 1 (iii) and (iv).

I set τS = 1 and test 22 levels of psMin ∈ {0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5,

6, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100}, which correspond to the same 22 levels

of BD. For each level of psMin, I test for (i) λS+λC

µ ∈ {0.6, 0.75, 0.9}, (ii) λS

λS+λC
∈

{1
3 ,

2
3 , 1}, (iii) κP ∈ {1, 2}, (iv) κL ∈ {1, 2}, (v) κPL ∈ {0, 0.05}, (vi) psMax

psMin
∈
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{1.2, 2, 3}, and (vii) psMax−psMin
lsMax

∈ {0.2τS , 0.5τS , 2τS , 5τS}, giving a total of 19872

instances.

(i)-(ii) allows us to test the impact of arrival rates. Using (iii) and (iv), I test

linear (κP = 1, κL = 1), and strictly concave (κP = 2, κL = 2) forms of fS(p, l)

in price and lead time, respectively. Similarly, using (v), I test additive (κPL = 0)

and non-additive (κPL > 0) forms of fS(p, l). In (vi)-(vii), I test various levels of

price/lead time sensitivity of the spot purchasers. Note that an increase (decrease)

of psMax − psMin and lsMax indicate a decrease (increase) in price and lead time

sensitivity, respectively. For simplicity, spot purchasers are referred to as price

sensitive when psMax−psMin
lsMax

≤ τS , and lead time sensitive otherwise. I provide a

detailed discussion about the selection of parameter levels, and the discretization

scheme in Appendix A-2.

When BD is quite small, the manufacturer may lose money by being in business.

For example, when BD = 0.5 and psMax
psMin

= 1.2, v∗Dyna, v
∗
FixP, v

∗
FixLT, v

∗
Fix ≤ 0 in

all instances. I observe that v∗Fix ≤ 0 in 69.8%, 46.1%, 25.9%, 13.9%, 7.4% and

1.9% of all instances when BD is 0,5, 0.75, 1, 1.25, 1.5 and 2, respectively. In these

cases, however, implementing Dyna may provide positive OAP values.

Observation 2. v∗Dyna > 0 in 25% of all instances with v∗Fix < 0 and BD > 1.

While Fix may lead to negative profits, Dyna may help manufacturers to achieve

positive profits in a significant proportion of all instances. This happens, in par-

ticular, when BD is longer than one time unit, where Fix is providing profits that

are positive or slightly less than zero. Thus, improvements offered by Dyna lead to

positive company profits.
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I next analyze the average profit improvements of Dyna, FixLT and FixP in Table

1. I omit the instances where v∗Fix < 0, since improvements cannot be evaluated

in these settings. In addition, I ignore the instances with BD < 1 and BD > 30,

because v∗Fix < 0 holds in more than half of the instances, and average IMPDyna is

less than 1% in these settings, respectively.

BD

1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30

IMPDyna 62.5% 55.2% 39.9% 25.8% 18.8% 14.8% 10.8% 8.6% 7.0% 5.1% 4.0% 2.5% 1.8% 1.2%

IMPFixLT 59.2% 52.6% 38.2% 24.4% 17.5% 13.6% 9.7% 7.6% 6.1% 4.4% 3.3% 2.0% 1.4% 0.8%

IMPFixP 58.5% 50.9% 38.2% 24.9% 17.8% 13.9% 10.0% 7.8% 6.3% 4.5% 3.5% 2.2% 1.5% 1.0%

Table 1. Change of average improvements in BD

Not surprisingly, Dyna provides the highest OAP improvements. As BD in-

creases, the manufacturer earns higher profits from customers, and the improve-

ments offered by DPLQ diminishes, where the improvements become significantly

small for BD > 30. In Observations 3 and 4, I analyze the parameter spaces, where

Dyna significantly improves OAP over both FixLT and FixP. For simplicity, I denote

the improvement of Dyna over FixLT and FixP, as IMP∗Dyna, which is evaluated as

IMP∗Dyna = IMPDyna −max{IMPFixLT, IMPFixP}.

Observation 3. When spot purchasers are lead time sensitive and fS(p, l) is strictly

concave in lead time, proportions of instances where IMP∗Dyna ≥ 1% are 81.1%,

56.3%, 41.4%, and 38.6% for BD levels of 0.5, 0.75, 1 and 1.25, respectively.

The significant improvements of Dyna can be attributed to Theorem 2 and Propo-

sition 1. Note that, IMP∗Dyna increases when both p∗i,j,k and l∗i,j,k changes frequently
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from state to state. When fS(p, l) is strictly concave in lead time, an optimal so-

lution often satisfies ρS(p∗i,j,k, l
∗
i,j,k)/τ

S = F
S
i+j+1(l∗i,j,k) (see for example Case (a) in

Figure 5), which indicates that (p∗i,j,k, l
∗
i,j,k) changes as the number of orders in the

system changes. From a practical point of view, the flexibility in lead time decisions,

offered by dynamic lead time quotation, provides higher benefits when fS(p, l) is

strictly concave in lead time. In addition, from Theorem 1 dynamic pricing is useful

when the spot purchaser population is lead time sensitive. Thus, when spot pur-

chasers are lead time sensitive, and fS(p, l) is strictly concave in lead time, joint

DPLQ benefits the improvements enabled by both dynamic pricing and lead time

quotation, and provides significant profit improvements over both of them.

From Table 1 and Observation 3, one deduces that IMP∗Dyna is higher when BD

is low, and fS(p, l) is strictly concave, respectively. In Observation 4, one observes

that Dyna significantly improves the OAP in most cases when fS(p, l) is strictly

concave in both lead time and price, and BD and psMax are sufficiently small.

Observation 4. When fS(p, l) is strictly concave in lead time and price, psMax
psMin

< 2

and BD is less than 1.5, then IMP∗Dyna ≥ 1% in 78.3% of all instances.

The profit improvement of joint DPLQ is observed to be higher when fS(p, l)

is strictly concave (see Observation 3). Furthermore, joint DPLQ is even more

valuable when the attainable profit from spot purchasers is low (i.e., low psMax and

psMin). In other words, even if the improvement brought by joint DPLQ is small

in magnitude, it becomes quite valuable when BD is small, i.e., spot purchasers are

less willing to pay.
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Ideally, manufacturers should use Dyna, which always provides the highest OAP

values. However, frequent change of price and lead times may not be desirable.

Thus, Dyna may not be the best strategy for manufacturers if it does not provide

sufficiently high profit improvements. I next provide some policy recommenda-

tions for manufacturers, given a minimum required profit improvement for dynamic

quotation denoted as ∆DQ. Using my comprehensive computational analysis, my

recommendation scheme ensures that the manufacturer does not use dynamic quo-

tation strategy, unless it provides OAP improvements higher than ∆DQ, and (ii) the

manufacturer does not sacrifice OAP improvement of more than ∆DQ. Accordingly,

Dyna is always recommended when ∆DQ = 0%. The detailed explanation of my

recommendation scheme is given in Appendix A-2.

In Tables 2, 3 and 4, I provide recommendations for λS+λC

µ = 0.6, 0.75 and 0.9,

respectively, for four levels of ∆DQ ∈ {0.2%, 2%, 10%, 20%} in three cases: (i) lead

time sensitive spot purchasers, linear fS(p, l) in lead time, (ii) lead time sensitive

spot purchasers, strictly concave fS(p, l) in lead time, and (iii) price sensitive spot

purchasers. I observe that the recommendations do not change significantly with the

form of fS(p, l) when spot purchasers are price sensitive. Hence, I provide general

recommendations when spot purchasers are price sensitive. I note that “either”

indicates the parameter spaces where either FixLT or FixP is recommended. I

note that dark shaded cells in Table 4 (c) indicate the cases where there is no

recommendation. To obtain recommendations in these cases, one needs to conduct

a more detailed analysis considering the form of fS(p, ).
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(a) Lead time sensitive spot purchasers, strictly concave fS(p, l) in lead time

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% Dyna FixP

2% Dyna FixLT Either Fix

10% Dyna FixLT Either Fix

20% Either FixLT Either Fix

(b) Lead time sensitive spot purchasers, linear fS(p, l) in lead time

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% FixLT Fix

2% FixLT Either Fix

10% FixLT Either Fix

20% FixLT Either Fix

(c) Price sensitive spot purchasers

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% Dyna FixP

2% Dyna FixP Dyna FixP Eit. Fix

10% Dyna FixP Either Fix

20% Dyna Either Fix

Table 2. Policy recommendations for changing price/lead time sensitivity when

λS+λC

µ = 0.6

One observes a relatively significant difference between the recommendations

of strictly concave and linear fS(p, l), when spot purchasers are lead time sensi-

tive. For example, in Table 3 (a), Dyna is recommended for all values of BD when

∆DQ = 0.2%. On the other hand, Dyna is never recommended in Table 3 (b). From

Observation 3, Dyna often significantly improves the OAP for low levels of BD, when
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(a) Lead time sensitive spot purchasers, strictly concave fS(p, l) in lead time

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% Dyna

2% Dyna FixLT Either

10% Dyna FixLT Either Fix

20% Dyna FixLT Either Fix

(b) Lead time sensitive spot purchasers, linear fS(p, l) in lead time

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% FixLT

2% FixLT Either

10% FixLT Either Fix

20% FixLT Either Fix

(c) Price sensitive spot purchasers

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% Dyna

2% Dyna FixP Dyna FixP Eit. Fix

10% FixP Either Fix

20% FixP Either Fix

Table 3. Policy recommendations for changing price/lead time sensitivity when

λS+λC

µ = 0.75

fS(p, l) is concave in lead time. Hence, Dyna is recommended in part (a) of Tables 2,

3 and 4 when BD is low. On the other hand, when fS(p, l) is linear, Theorem 2 and

Proposition 1 indicate that both p∗i,j,k and l∗i,j,k may not change significantly in the

number of orders (see for example Figure 4 and Case (iii) in Figure 5). Thus, Dyna

does not offer significant improvements in this case, and hence, is not recommended
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(a) Lead time sensitive spot purchasers, strictly concave fS(p, l) in lead time

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% Dyna

2% Dyna FixLT Either

10% Dyna Either Fix

20% Dyna Either Fix

(b) Lead time sensitive spot purchasers, linear fS(p, l) in lead time

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% FixLT

2% FixLT Either

10% FixLT Either Fix

20% FixLT Either Fix

(c) Price sensitive spot purchasers

BD

∆DQ 1 1.25 1.5 2 2.5 3 4 5 6 8 10 15 20 30 40 50 60

0.2% Dyna

2% Dyna No FixP

10% No FixP No Either Fix

20% FixP Either FixP Either Fix

Table 4. Policy recommendations for changing price/lead time sensitivity when

λS+λC

µ = 0.9

in when fS(p, l) is linear in lead time. FixLT and FixP are recommended when

spot purchasers are lead time and price sensitive, respectively, which is in line with

Theorem 1.

In Table 3 (c), at ∆DQ = 2% line, Dyna is recommended for 2.5 ≤ BD ≤ 10,

whereas FixP is recommended for 1.5 ≤ BD ≤ 2, which indicates that IMP∗Dyna
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may increase as BD increases. This results from increased number of states with

fS(p∗i,j,k, l
∗
i,j,k) > 0 (i.e., an acceptable offer is quoted), when BD is higher, which

increases the portion of the state space that Dyna is improving profits. For example,

in a particular instance I have fS(p∗i,j,k, l
∗
i,j,k) > 0 only for i + j ≤ 5 when BD is 2,

whereas when BD is 10, fS(p∗i,j,k, l
∗
i,j,k) > 0 for all i+ j ≤ 45.

The frequency of Dyna recommendations increases as the traffic intensity in-

creases. For example, when spot purchasers are lead time sensitive and fS(p, l) is

strictly concave in lead time, Dyna is recommended for BD ≤ 1.5 and BD ≤ 15 when

λS+λC

µ = 0.75 and 0.9, respectively for ∆DQ = 2%. Similarly, Dyna is recommended

for all tested values of BD when λS+λC

µ ≥ 0.75, whereas, it is only recommended

only for BD ≤ 30 when λS+λC

µ = 0.6 for ∆DQ = 0.2%. This behavior is due to

the better performance of joint DPLQ under higher traffic intensity. As the traffic

intensity increases, the importance of timely lead time quotes as well. Since, joint

DPLQ allows the lead time decisions to change over time, it allows higher precision

lead time quotes, and joint DPLQ becomes quite necessary as the incoming traffic

increases.

4. Contracting Model

In this section, I discuss the problem of selecting price and lead time terms for

the contract customers to maximize the OAP, and the benefits of offering optimal

contract terms so that the customer mix is optimized. I model the contract cus-

tomer arrival rate, λC(pc, lc) as a function of the contract terms pc and lc, with the

properties outlined in Assumption 2.
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Assumption 2. (i) λC(pc, lc) is continuous, non-increasing, twice differentiable,

concave in pc and lc for (pc, lc) ∈ θC

(ii) There exist a maximum potential contract customer arrival rate of λcMax.

(iii) There exist nonnegative lower bounds pcMin and 0 such that decreasing pc and

lc below these bounds does not change λC(pc, lc). I have λC(pcMin, 0) = λcMax.

(iv) Given a lead time quote lc, there exists an upper bound on price, denoted

by pcMax(lc), such that any price quote above this upper bound is definitely

rejected. pcMax(lc) is nonincreasing in lc, and its highest value is denoted as

pcMax = pcMax(0).

(v) Given a price quote pc, there exists an upper bound on lead time, denoted

by lcMax(pc), such that any price quote above this upper bound is definitely

rejected. lcMax(pc) is nonincreasing in pc, and its highest value is denoted as

lcMax = lcMax(pcMin).

The set θC is defined as follows.

θC = {(p, l) ∈ <2 : pcMin ≤ p ≤ pcMax(l), 0 ≤ l ≤ lcMax(p)}.

Assumption 2 defines the properties of the contract customers’ arrival rate, and

is analogous to Assumption 1, which defines the acceptance probability of a single

customer.

Offering the contract terms (pc, lc), the manufacturer receives a demand rate

of λC(pc, lc) from the contract customers, where the remaining customers either
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leave the system, or act as spot purchasers. I assume that 1 − γ(pc, lc) propor-

tion of λcMax − λC(pc, lc) is lost, and the remaining γ(pc, lc) proportion joins the

spot purchaser stream, where 0 ≤ γ(pc, lc) ≤ 1. I model the independent spot

purchaser population with an arrival rate of λSI . Consequently, given the contract

offer of (pc, lc), the total arrival rate of spot purchasers and contract customers

are λS(pc, lc) = λSI + γ(pc, lc)(λcMax − λC(pc, lc)), and λC(pc, lc), respectively. The

arrival process is depicted in Figure 6.

λcMax (pc, lc) offer

λC(pc, lc)
contract customer stream

(1 − γ(pc, lc))(λcMax − λC(pc, lc))
lost customer stream

λSI

γ(pc, lc)(λcMax − λC(pc, lc))

λSI + γ(pc, lc)(λcMax − λC(pc, lc))
spot purchaser stream

λcMax − λC(pc, lc)

independent spot purchaser stream

initial contract customer stream

Fig. 6. Arrival processes due to contract customers and spot purchasers

The optimal contract terms, (p∗c , l
∗
c ), can be determined by solving the problem

Cont : v∗ = max
(pc,lc)∈θc

v∗Dyna(pc, lc), (2.23)

where v∗ = v∗Dyna(p
∗
c , l
∗
c ), λ

C∗ = λC(p∗c , l
∗
c ) and λS∗ = λS(p∗c , l

∗
c ).
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4.1. Improving Computational Times

One straightforward way to solve Cont is to discretize the [pcMin, pcMax],

[0, lcMax] intervals into ε equal intervals. However, this method, which I refer to

as the discretization algorithm (denoted as DA) requires Dyna to be solved at least

ε2/2 times, which results in extensive computational times when high precision re-

quired, i.e., ε is high. In this section, I develop (i) an algorithm that provides reliable

results in less computational time, and (ii) rules to reduce the action space θC to

speed up the DA.

To develop my algorithm, I first focus on some structural properties. My pre-

liminary analysis indicates that while (p∗i,j,k, l
∗
i,j,k) is significantly affected by λC ,

the changes in (pc, lc) does not change (p∗i,j,k, l
∗
i,j,k) significantly, if λC remains un-

changed. That is, (pc, lc) values within the set θC(λ̃C) result in similar (p∗i,j,k, l
∗
i,j,k)

values, where θC(λ̃C) is defined as

θC(λ̃C) = {(pc, lc) ∈ θC : λC(pc, lc) = λ̃C}.

In Figure 7, I show θC(λ̃C) for λ̃C = {0, 0.2, 0.4, 0.6, 0.8} in a sample instance. In

this case, because λC(pc, lc) is linear in pc and lc, all points that result in a particular

λ̃C lie on a line.

I next define ΛC , which is the set of all λ̃C which the optimal spot purchaser

quotes remain the same across all elements of the set θC(λ̃C). That is,

ΛC = {λ̃C ∈ [0, λcMax] :(p∗i,j,k(p
′
c, l
′
c), l
∗
i,j,k(p

′
c, l
′
c)) = (p∗i,j,k(p

′′
c , l
′′
c ), l∗i,j,k(p

′′
c , l
′′
c )),

for all (p′c, l
′
c), (p

′′
c , l
′′
c ) ∈ θC(λC), and (i, j, k) ∈ S}.
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pc

lc

23

40
15

θC(0.8)

θC(0)

1 2 3

21

19

17

θC(0.2)

θC(0.4)

θC(0.6)

Fig. 7. Illustration of θC(λ̃C) for λ̃C = 0, 0.2, 0.4, 0.6, and 0.8

For example, if 0.4 ∈ ΛC , then for any given state (i, j, k) ∈ S, (p∗i,j,k, l
∗
i,j,k)

remain unchanged for all (pc, lc) ∈ θC(0.4) in Figure 7. In Theorem 3, I derive

(p∗c(λ̃
C), l∗c (λ̃

C)) that maximizes v∗Dyna(pc, lc) on θC(λ̃C) given that λ̃C ∈ ΛC , and

use this result to develop my new algorithm. I define ρC(·, ·) similar to ρS(·, ·), as

ρC(pc, lc) = ∂λC(pc,lc)/∂l
∂λC(pc,lc)/∂p

.

Theorem 3. Let λ̃C ∈ ΛC . Then,

(i) if ρC(pc, lc) ≥ τC , for all (pc, lc) ∈ θC(λ̃C), then l∗c (λ̃
C) = 0,

(ii) if ρC(pc, lc) ≤ τC
∑

(i,j,k)∈S
π∗i,j,kF

C
i+j+1(lcMax(1 − λ̃C

λcMax
)), for all (pc, lc) ∈

θC(λ̃C), then p∗c(λ̃
C) = pcMin,

(iii) otherwise, (p∗c(λ̃
C), l∗c (λ̃

C)) satisfies

ρC(p∗c(λ̃
C), l∗c (λ̃

C))

τC
=

∑
(i,j,k)∈S

π∗i,j,kF
C
i+j+1(l∗c (λ̃

C)),

where π∗i,j,k denotes the limiting probability of state (i, j, k) under the optimal dy-

namic quotation policy.
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Theorem 3 identifies the position of (p∗c(λ̃
C), l∗c (λ̃

C)) on θ(λ̃C)). Cases (i) and

(ii) indicate the two conditions where (p∗c(λ̃
C), l∗c (λ̃

C)) is located on the upper-left,

and lower-right extreme points of θ(λ̃C)) on Figure 7, respectively. On the other

hand, Case (iii) helps us find where (p∗c(λ̃
C), l∗c (λ̃

C)) is located in between the two

extreme points.

Theorem 3 shows that the structure of optimal contract terms is analo-

gous to that of optimal spot purchaser quotes, where both are highly depen-

dent on the price/lead time sensitivity of the customer. Recalling that values

of (p∗i,j,k, l
∗
i,j,k) depend on the news-vendor ratio 1 − ρS(·, ·)/τS (see Theorem 2),

One observes a similar structure for (p∗c(λ̃
C), l∗c (λ̃

C)) in Case (iii). The term∑
(i,j,k)∈S

π∗i,j,kF
C
i+j+1(l∗c (λ̃

C)) gives the probability that a contract customer order is

not met on time given the lead time quote l∗c (λ̃
C) (Poisson arrivals see time aver-

ages). Thus, 1− ρC(p∗c(λ
C), l∗c (λ

C))/τC should be equal to the probability that the

contract customer order is met on time.

I next develop an algorithm, which assumes that λ̃C ∈ ΛC for all λ̃C ∈ [0, λcMax],

and evaluates a solution using Theorem 3. The algorithm is denoted as T3A for

simplicity.

The T3A solves (2.4) 2ε times. On the other hand, the DA solves (2.4) at least

ε2

2 times, which presents the computational advantage of the T3A. In order to speed

up the DA, I next present two conditions verifying that any solution (p′c, l
′
c) gives

higher OAP than (p′′c , l
′
c), i.e., v∗Dyna(p

′
c, l
′
c) ≤ v∗Dyna(p′′c , l′c) in Proposition 2.

Proposition 2. For any two solutions (p′c, l
′
c) and (p′′c , l

′
c), (i) if p′c < p′′c and

the inequality (2.24) holds, or (ii) p′′c < p′c and the inequality (2.25) holds, then
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Algorithm 1 Pseudocode for T3A

Choose an ε, and set λ̃C = 0, θ̃C = ∅.

while λ̃C ≤ λcMax do

Set l′c = 0, and find the corresponding p′c by solving λC(p′c, 0) = λ̃C .

Solve (2.4) using (pc, lc) = (p′c, 0), and obtain π∗i,j,k, (i, j, k) ∈ S.

Find the candidate solution (p∗c(λ̃
C), l∗c (λ̃C)) using Theorem 3, and augment θ̃C by

(p∗c(λ̃
C), l∗c (λ̃C)).

Set λ̃C = λ̃C + ε.

end while

Solve max(pc,lc)∈θ̃c v
∗
Dyna(pc, lc).

v∗Dyna(p
′
c, l
′
c) ≤ v∗Dyna(p′′c , l′c).

e−µl
′
c

µ

(
λC(p′c, l

′
c)− λC(p′′c , l

′
c)
)
≥ λS(p′c, l

′
c)psMax+λC(p′c, l

′
c)p
′
c−λC(p′′c , l

′
c)p
′′
c (2.24)

LCN,c(lcMax)
(
λC(p′c, l

′
c)− λC(p′′c , l

′
c)
)
≥ λS(p′c, l

′
c)psMax + λC(p′c, l

′
c)p
′
c − λC(p′′c , l

′
c)p
′′
c

(2.25)

I use an extensive computational analysis to analyze the performances of T3A

and DA, while reducing my action set by Proposition 2. I set ε = 10 in all of my

analysis, noting that the DA runs in an average time of 76 minutes with this setting,

while increasing ε further exponentially increases the computational times. Similar

to the structure of fS(p, l) in Section 3.2, I model λC(pc, lc) as in Equation (2.26).

λC(pc, lc) = λcMax

(
1−

(
pc − pcMin

pcMax − pcMin

)κP
−
(

lc
lcMax

)κL
− κPL(pc − pcMin)lc

)
.

(2.26)

Examples from industry indicate that while contract and spot prices are often

different, the differences are not very large. For example, according to the recent sur-

vey of EnergyTrend among photovoltaic manufacturers, average contract prices for
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multiSi wafers and solar cells are $2.283 per piece and $0.853 per Watt, respectively.

On the other hand, average spot prices for same products are $2.189/piece and

$0.824/Watt, respectively [News.radio-electronics.co, 2011]. Wang [2009] presents a

case where solar wafer and cell makers cancel their contracts since contract prices

fell below half of the spot prices. To reflect the difference between contract and spot

prices in real life settings, I assume that pcMin = ωpsMin, where 0.5 ≤ ω ≤ 2.

Assuming that spot purchasers and contract customers are coming from the

same population (see Figure 6), the structure of λC(pc, lc) is assumed to be same as

that of fS(p, l). That is, I use the same κP , κL and κPL in λC(pc, lc) and fS(p, l).

To obtain same price and lead time sensitivities for contract customers and spot

purchasers, I set psMax
psMin

= pcMax
pcMin

and psMax−psMin
lsMax

= pcMax−pcMin
lcMax

.

I model γ(pc, lc) as in Equation (2.27).

γ(pc, lc) = γ1 + γ2
λcMax − λC(pc, lc)

λcMax
+ γ3

λC(pc, lc)

λcMax
, (2.27)

where γ1, γ2, γ3 ≥ 0, and 0 ≤ γ1 +γ2 +γ3 ≤ 1. γ1 denote the proportion of customers

who join the spot purchaser stream independent of the contract terms (pc, lc). The

second and third terms in Equation (2.27) denote proportions of customers joining

the spot purchaser stream affected by (pc, lc).
λcMax−λC(pc,lc)

λcMax
and λC(pc,lc)

λcMax
, which

are the proportion of rejected and accepted contracts, allow us to test γ(pc, lc) that

are increasing and decreasing in pc (lc), respectively.

Most of my testing levels are chosen according to the test given in Section 3.2.

I set τS = τC = µ = 1. I conduct a full factorial experiment with (i)
λSI +λcMax

µ ∈

{0.6, 0.75, 0.9}, (ii) λcMax/(λcMax+λSI ) ∈ {1
3 ,

2
3 , 1}, (iii) κP ∈ {1, 2}, (iv) κL ∈ {1, 2},

(v) κPL ∈ {0, 0.05}, (vi) psMax/psMin ∈ {1.23}, (vii) psMax−psMin
lsMax

∈ {0.5τS , 2τS},
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(vii) BD= psMin ∈ {2, 10, 25, 50}, (viii) ω ∈ {1
2 ,

2
3 ,

3
4 , 1,

4
3 ,

3
2 , 2}, and (ix) (γ1, γ2, γ3) ∈

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} giving a total of 21504 instances.

Proposition 2 is particularly effective in reducing the action space when

λcMax/(λcMax +λSI ) is high, and λC(pc, lc) is strictly concave in pc, which results in

lower values in the right hand sides of Equations (2.24) and (2.25). For example, I

observe that 24.11% of all solutions are dominated when λcMax/(λcMax + λSI ) = 1

and λC(pc, lc) is strictly concave in pc. The concavity of λC(pc, lc) indicates that

increasing pc above pcMin does not result in a significant decrease in λC(pc, lc),

but, increases the profit obtained from contract customers (i.e., pc − LCj,k(lc)) sig-

nificantly. This observation is most commonly observed when there is a higher

contract customer population in the system (i.e., λcMax/(λcMax + λSI ) = 1). This

helps Proposition 2 to eliminate actions with price values close or equal to pcMin.

I next compute the OAPs obtained by the T3A, vT3A, and DA, vDA, and compare

the performances of the two approaches. My analysis shows that the performance

of T3A is mostly affected by the setting of γ(pc, lc). Hence, I report several different

statistics comparing OAPs of vT3A and vDA for different values of γ(pc, lc) in Table

5, and report the generalized statistics in the last row. For simplicity, the percentage

difference of vT3A and vDA is denoted as PD, i.e., PD=(vDA − vT3A)/vDA. I also

report time time spend in T3A and DA.

Table 5 reveals that (i) T3A gives higher OAP in more than 60% of the instances,

(ii) the percentage difference of vDA and vT3A is less than 1% in more than 80% of

the instances, (iii) the average percentage difference is (vDA − vT3A)/vDA is 1.21%,

and (iv) T3A and DA runs with an average time of 20 and 76 minutes, respectively.
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% of inst. Avg. % of inst. % of inst. Avg. time Avg. time

(γ1, γ2, γ3) vT3A > vDA PD PD< 1% PD< 10% DA (min.) T3A (min.)

(0,0,0) 56.25% 0.55% 89.32% 97.92% 74.91 19.85

(1,0,0) 60.49% 1.90% 72.14% 87.76% 77.38 20.19

(0,1,0) 59.60% 1.79% 70.57% 89.58% 76.75 20.11

(0,0,1) 64.51% 0.62% 90.36% 95.83% 76.81 19.90

general 60.21% 1.21% 80.60% 92.77% 76.46 20.01

Table 5. Performance comparison of T3A and DA

That is, T3A is performing better than DA in more than half of the instances,

whereas, OAPs obtained by DA is only slightly better than T3A, with an expense

of approximately quadrupled computational time on the average. The superior

performance of the T3A can be attributed to either or both of the following two

facts: (i) λ̃C ∈ ΛC holds for a high range of λ̃C values, which indicates that Theorem

3 condition holds under most cases, (ii) λ̃C ∈ ΛC does not hold for many values of

λ̃C , but the deviation in (p∗i,j,k, l
∗
i,j,k) for a given λ̃C is insignificantly small, such that

Theorem 3 provides close-to-optimal solutions.

T3A is performing 10% worse than DA in more than 10% of the instances when

(γ1, γ2, γ3) ∈ {(1, 0, 0), (0, 1, 0)}. In particular, the performance of the T3A is sig-

nificantly better when (γ1, γ2, γ3) ∈ {(0, 0, 0), (0, 0, 1)}. In these two cases, one

observes that the proportion of customers who joins the spot purchaser stream

from the initial contract customer stream is generally lower than that in the other

two cases. For example, when λcMax = 10 and λC = 3, a rate of 0, 6, 4.9 and

2.1 joins the spot purchaser stream when (γ1, γ2, γ3) is equal to (0,0,0), (1,0,0),
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(0,1,0) and (0,0,1), respectively. The high value of λS , which is observed when

(γ1, γ2, γ3) ∈ {(1, 0, 0), (0, 1, 0)}, affects the performance of the T3A negatively, be-

cause it increases the impact of unsatisfied Theorem 3 conditions. Hence, I refer

(γ1, γ2, γ3) ∈ {(1, 0, 0), (0, 1, 0)} and (γ1, γ2, γ3) ∈ {(0, 0, 0), (0, 0, 1)}, to as the low

lost customer case (LLCC), and high lost customer case (HLCC), respectively, in

the remainder.

4.2. Benefits of Offering Optimal Contract Terms

In this section, I analyze the potential benefits obtained by offering the optimal

contract terms in comparison to simple contracting strategies. To analyze the bene-

fits of serving an optimal mix, I consider the following three schemes: (1) the optimal

mix policy (MIX), where (pc, lc) = (p∗c , l
∗
c ), and (λC , λS) = (λC∗, λS∗), (2) maximal

contract customer policy (MCC), where the manufacturer offers (pc, lc) = (pcMin, 0)

to maximize the contract customer arrival rate, i.e., (λC , λS) = (λcMax, λ
S
I ),

and (3) maximal spot purchaser policy (MSP), where the manufacturer offers

(pc, lc) = (pcMax, 0) to maximize the spot purchaser arrival rate, i.e., (λC , λS) =

(0, (1−γ(pcMax, 0))λcMax+λSI ). I compute the improvement of MIX over MCC and

MSP, using IMPMCC and IMPMSP, where IMPMCC =
v∗Dyna(p∗c ,l

∗
c )−v∗Dyna(pcMin,0)

v∗Dyna(p∗c ,l
∗
c ) 100%

and IMPMSP =
v∗Dyna(p∗c ,l

∗
c )−v∗Dyna(pcMax,0)

v∗Dyna(p∗c ,l
∗
c ) 100%. I note that IMPMCC and IMPMSP

can also give information about the optimal customer mix
(

λC∗

λC∗+λs∗
, λs∗

λC∗+λs∗

)
.

For example, IMPMCC = 0% indicates that (p∗c , l
∗
c ) = (pcMin, 0), and hence,(

λC∗

λC∗+λs∗
, λs∗

λC∗+λs∗

)
=
(

λcMax

λcMax+λSI
,

λSI
λcMax+λSI

)
. Similarly, when IMPMSP = 0%, I

get
(

λC∗

λC∗+λs∗
, λs∗

λC∗+λs∗

)
= (0%, 100%). Consequently, as IMPMCC and IMPMSP get
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close to 0%, optimal contract customer proportion approaches to λcMax

λcMax+λSI
and 0%,

respectively.

I use an extensive computational analysis to analyze the benefits of offering

optimal contract terms. I use the same parameter settings provided in the compu-

tational analysis of Section 4.1, and use the DA to compute the optimal contracting

strategy. My analysis reveals that performance of MIX is mostly affected by the

setting of γ(pc, lc), ω, BD and psMax/psMin. In particular, IMPMCC and IMPMSP

differ significantly when (i) psMax/psMin = 1.2, and psMax/psMin > 1.2; and (ii)

(γ1, γ2, γ3) ∈ {(1, 0, 0), (0, 1, 0)} and (γ1, γ2, γ3) ∈ {(0, 0, 0), (0, 0, 1)}, i.e., LLCC,

and HLCC. For simplicity, I denote the case psMax/psMin = 1.2, low price range

case (and high price range otherwise). In Tables 6, 7, 8 and 9, I provide the change

of average IMPMCC and IMPMSP for changing values of (γ1, γ2, γ3), ω, BD and the

setting of psMax. The dark and light shaded cells demonstrate the average values

below 1% and below 5%, respectively. I note that each cell is the average value

obtained from 24 observations.

Avg. IMPMSP Avg. IMPMCC

ω BD=2 BD=10 BD=25 BD=50 BD=2 BD=10 BD=25 BD=50

1/2 0.0% 31.9% 42.7% 47.2% 291.4% 22.2% 10.3% 7.1%

2/3 0.1% 42.5% 51.0% 54.5% 227.3% 12.5% 6.3% 4.5%

3/4 1.3% 47.2% 54.5% 57.5% 201.4% 9.5% 5.0% 3.6%

1 24.8% 58.2% 62.7% 64.7% 99.8% 4.6% 2.6% 1.9%

4/3 56.7% 67.9% 70.3% 71.4% 39.7% 2.6% 1.6% 1.3%

3/2 61.7% 71.4% 73.0% 74.0% 26.4% 2.2% 1.4% 1.1%

2 78.6% 78.4% 79.0% 79.4% 9.9% 1.6% 1.2% 1.0%

Table 6. Average profit improvements of MIX for psMax/psMin = 1.2, (γ1, γ2, γ3) ∈

{(0, 0, 0), (0, 0, 1)}
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Avg. IMPMSP Avg. IMPMCC

ω BD=2 BD=10 BD=25 BD=50 BD=2 BD=10 BD=25 BD=50

1/2 0.0% 0.0% 0.0% 0.0% 207.9% 54.5% 43.0% 38.7%

2/3 0.0% 0.0% 0.0% 0.0% 171.9% 39.4% 30.3% 25.5%

3/4 0.0% 0.0% 0.0% 0.0% 156.0% 31.9% 24.0% 20.9%

1 0.0% 0.6% 1.0% 1.3% 99.8% 9.7% 5.9% 4.4%

4/3 18.5% 19.6% 18.4% 18.2% 41.1% 2.7% 1.7% 1.4%

3/2 32.6% 28.2% 26.0% 25.4% 26.9% 2.2% 1.5% 1.2%

2 58.4% 45.8% 42.3% 41.1% 10.0% 1.7% 1.2% 1.0%

Table 7. Average profit improvements of MIX for psMax/psMin = 1.2, (γ1, γ2, γ3) ∈

{(1, 0, 0), (0, 1, 0)}

Avg. IMPMSP Avg. IMPMCC

ω BD=2 BD=10 BD=25 BD=50 BD=2 BD=10 BD=25 BD=50

1/2 25.0% 46.2% 54.9% 71.4% 185.9% 36.0% 23.1% 18.9%

2/3 38.8% 54.3% 61.2% 75.3% 142.6% 31.5% 21.4% 17.9%

3/4 44.8% 57.6% 63.8% 76.9% 126.0% 29.8% 20.7% 17.6%

1 58.3% 65.1% 69.8% 80.6% 91.6% 26.2% 19.3% 16.9%

4/3 69.4% 72.0% 75.4% 84.1% 66.8% 23.5% 18.2% 16.3%

3/2 73.1% 74.5% 77.4% 85.4% 59.1% 22.5% 17.8% 16.1%

2 80.5% 79.9% 82.0% 88.4% 45.0% 20.6% 17.1% 15.4%

Table 8. Average profit improvements of MIX for psMax/psMin > 1.2, (γ1, γ2, γ3) ∈

{(0, 0, 0), (0, 0, 1)}

Observation 5. MSP (MCC) performs better under LLCC (HLCC), and, when ω

is low (high).

The impact of ω on MSP and MCC is quite obvious, which indicates that the

optimal mix mostly consists of spot purchasers (contract customers), when ω is low

(high). The impact of γ(pc, lc) on the performance of MSP and MCC can be analyzed

as follows: The setting of γ(pc, lc) does not affect λC , but affects λS . Thus, OAP

obtained by MCC does not depend on the setting of (γ1, γ2, γ3), whereas the OAP
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Avg. IMPMSP Avg. IMPMCC

ω BD=2 BD=10 BD=25 BD=50 BD=2 BD=10 BD=25 BD=50

1/2 1.6% 0.6% 0.3% 15.8% 143.6% 57.9% 46.7% 42.2%

2/3 2.1% 1.4% 1.6% 16.9% 126.4% 47.4% 37.6% 33.6%

3/4 2.7% 2.8% 2.9% 18.1% 117.7% 42.9% 33.5% 29.9%

1 8.4% 9.5% 9.7% 23.7% 92.7% 31.9% 24.5% 21.7%

4/3 26.6% 24.3% 24.1% 35.8% 68.6% 26.5% 21.2% 19.2%

3/2 34.5% 30.5% 30.0% 40.8% 60.6% 24.9% 20.3% 18.5%

2 51.5% 44.7% 43.5% 52.0% 46.0% 22.1% 18.6% 17.3%

Table 9. Average profit improvements of MIX for psMax/psMin > 1.2, (γ1, γ2, γ3) ∈

{(1, 0, 0), (0, 1, 0)}

obtained MSP and MIX significantly increases (decreases) under LLCC (HLCC).

As a result, as the value of γ(pc, lc) increase, average IMPMCC and IMPMSP values

increase and decrease, respectively. This is intuitive because offering low price and

lead time contract terms by MCC to reduce the proportion of lost customers, is a

desirable strategy under HLCC. Under LLCC, on the other hand, the manufacturer

can increase pc and lc without risking the loss of customers due to rejected contracts.

Observation 6. MCC performs significantly worse when BD is low.

There are two different affects of BD on the performances of MSP and MCC:

(i) Increasing BD, increases the OAPs obtained by MIX, MSP and MCC, in turn,

decreasing the impact of improvements offered by MIX, and increasing IMPMCC

and IMPMSP. (ii) my observations in Section 3.2 show that joint DPLQ brings

higher profit improvements when BD is low. Because MCC only focuses on contract

customers, it misses the potential profit improvement offered by joint DPLQ, and

hence, performs significantly worse, as BD decreases. For example, average IMPMCC

values are above 100% when BD=2 and ω < 1. In addition, the OAP obtained by
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MCC is less than zero, in 36% of all instances when BD=2. MSP, on the other hand,

benefits from the improvements offered by joint DPLQ, and performs better as BD

decreases. Consequently, MCC performs better due to (i) and (ii) as BD increases.

However, performance of MSP may increase or decrease due to the two conflicting

effects of (i) and (ii).

Observation 7. MIX performs better under low price range.

Average IMPMCC and IMPMSP values are significantly lower when

psMax/psMin = 1.2, i.e., low price range, and under HLCC. For example, in Ta-

ble 7, 26 out of 52 cells are shaded, whereas in Table 9, 9 out of 52 cells are shaded.

Better performance of MIX under high price range is due to the wide range of price

opportunities (i.e., pc ∈ [pcMin, pcMax]) that can be offered to contract customers.

When the price range is high, the optimal price term p∗c may be significantly differ-

ent from the non-optimal price terms, pcMin and pcMax offered by MCC and MSP,

respectively. Hence, implementing MCC or MSP may result in significant profit loss.

In other words, as the range of possible price offers for contract customers increase,

the manufacturers should pay more attention to determination of optimal contract

terms.

As a result, MIX significantly improves over both MCC and MSP under HLCC

and high price range, as observed in Table 8, where the minimum average value of

IMPMCC and IMPMSP is 15.4%. Under LLCC and low price range, profits offered

by MSP and MCC approach to that of MIX when ω ≤ 1 and ω > 1, respectively. In

particular, maximum value of IMPMSP is 0.37% when ω ≤ 1, indicating that MIX

does not bring a significant improvement over MSP in this setting.
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Although MIX typically outperforms MSP and MCC, one observes that imple-

menting MSP and MCC may yield to close profits to that of MIX under some cases.

In these cases, the manufacturers may choose to implement MSP (MCC) to focus

entirely on spot purchasers (contract customers), and avoid the burden of solving

Cont. Thus, I next provide recommendations for manufacturers, using a similar

approach that is followed in Section 3.2. I define a threshold, which I refer to as

the minimum profit improvement required for MIX, and denote it as ∆OM . Sim-

ilar to approach followed in Section 3.2, I provide recommendations ensuring the

following: (i) The manufacturer does not offer the optimal mix, unless it provides

OAP improvements higher than ∆OM , and (ii) the manufacturer does not sacrifice

OAP improvement more than ∆OM . In Table 3, I provide the recommendations

for ∆OM = 10%. Recommendations for ∆OM = 1% and 20% is provided in the

Appendix A-2. I note that Tables 10 (a), (b) and (c) are in- line Tables 6, 7 and

8 respectively, where MSP and MCC are recommended only when average IMPMSP

and IMPMCC values are significantly small. In Table 10 (d), however, MIX is always

recommended, while one observes that average MSP values may fall below 1% in

Table 9. This is due to possible profit improvements of MIX that exceeds 10% when

psMax/psMin > 1.2 and (γ1, γ2, γ3) ∈ {(1, 0, 0), (0, 1, 0)}.

5. Conclusion

I consider the price and lead time quotation problem of a MTO manufacturer

who faces a mix of contract customers and spot purchasers. Contract customers

are offered a price and lead time quote at the beginning of the time horizon. Spot

purchasers arrive over time, and are quoted prices and lead times dynamically. I
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(a) psMax/psMin = 1.2, γ ∈

{(0, 0, 0), (0, 0, 1)}

BD

2 10 25 50

ω

1/2 MSP

2/3

3/4

1 MIX

4/3

3/2 MCC

2

(b) psMax/psMin = 1.2, γ ∈

{(1, 0, 0), (0, 1, 0)}

BD

2 10 25 50

ω

1/2

2/3 MSP

3/4

1

4/3

3/2 MIX MCC

2

(c) psMax/psMin > 1.2, γ ∈

{(0, 0, 0), (0, 0, 1)}

BD

2 10 25 50

ω

1/2

2/3

3/4

1 MIX

4/3

3/2

2

(d) psMax/psMin > 1.2, γ ∈

{(1, 0, 0), (0, 1, 0)}

BD

2 10 25 50

ω

1/2

2/3

3/4

1 MIX

4/3

3/2

2

Table 10. Policy recommendations for ∆OM = 10%

model the dynamic pricing and lead time quotation problem of spot purchasers as a

Markov decision process over an infinite horizon, with the objective of maximizing

the long run expected average profit per unit time. I analyze the structure of an
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optimal price and lead time policy, and examine its relation to the price and lead time

sensitivities of the spot purchasers. I show that when the spot purchasers are price

sensitive, it may be optimal to accept all customers by quoting a sufficiently small

price, and managing congestion by increases in lead times. When the customers are

lead time sensitive, on the other hand, zero lead time quotes are often optimal.

Using an extensive numerical study, I investigate the impact of several prob-

lem parameters on the profit improvements obtained by dynamic quotation when

compared to fixed price and lead time strategies. In particular, I observe the supe-

rior performance of dynamic pricing (lead time quotation) over dynamic lead time

quotation (pricing) for lead time (price) sensitive spot purchasers. In addition, a

recommendation scheme is developed.

I finally focus on the selection of optimal price and lead time terms for contract

customers to maximize long-run expected average profits. Because the problem

requires excessive computational time, I focus on developing faster algorithms and

reducing the action space. My computational analysis reveal that my computational

algorithm performs quite satisfactorily in a limited amount of computational time.

Several extensions are possible to improve the modeling of customer behavior.

One can also consider a model where unmet lead times impacts future decisions of

customers over time, as a function of previous interactions with the company. These

effects may incentivize the company to quote different prices and/or lead times in

consideration of the future impact that current quotes may have on the customers’

likelihood of accepting quotes.
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CHAPTER 3

Expected Tardiness Computations for Multiclass Priority M/M/c

Queues

1. Introduction

In many make-to-order environments, due date quotation is a key aspect of

business transactions. The due date quoted by the manufacturer impacts whether or

not the customer decides to do business (i.e., place an order) with that manufacturer.

For example, National Bicycle Industrial Co., a sports bicycle producer in Japan,

emphasizes their ability to offer short due dates proudly in their slogan:“I can deliver

a custom-made bicycle to you within two weeks [Lean-manufacturing-japan.com,

2012]. Once an order is placed, if the actual completion time of the order exceeds

the manufacturer’s promised due date, there may be monetary penalties as well as

negative implications for future business. Savasaneril et al. [2010] mention several

examples, where companies in various industries pay huge penalties due to late

deliveries.

The late delivery penalty often (linearly) increases in the tardiness of the order,

where tardiness is defined as the positive difference between the completion time

of the order and the promised due date. For example, metal pipe producer Merle

Blanc stipulates a contract, where suppliers pay a penalty amounting to 1% of the

shipment value for each week the product is delayed [Merleblanc.de, 2012].

While quoting a due date, companies need the ability to estimate the tardiness

of an order, and in turn, evaluate the late delivery penalties that can be incurred.

Hence, obtaining sufficiently accurate tardiness estimates plays an important role

in quoting due dates, which in turn impacts the ability to attract customer orders

and maintain profitability.
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Due date management literature partially addresses the issue of expected tar-

diness computation in the context of dynamic quotation models. The due date to

quote to an arriving customer is often based on the system status, where the ex-

pected tardiness is crucial in the determination of the optimal due date. Research

to date has considered relatively simple M/M/1 queuing models with a single cus-

tomer class [Feng et al., 2011, Savasaneril et al., 2010], or multiple customer classes

with First-Come-First-Served (FCFS) sequencing [Duenyas, 1995]. In practice, sup-

pliers may face demand from various customer classes and prioritize the orders

based on different criteria, such as the type of contract between the supplier and

the customer, or whether the order comes from a long-term versus a one-time cus-

tomer. For example, Motorola offers a three-day repair time with a bronze service

plan, where the regular warranty guarantees ten-day repair time [Motorola, 2012].

Given that prioritization of orders is a common practice in the presence of multiple

customer classes, extension of dynamic due date quotation research to multiple cus-

tomer classes requires the computation of expected tardiness of orders from different

priority classes.

The expected tardiness can be calculated using the distribution of the time in

system (often referred to as cycle time or sojourn time in references, and denoted

as TIS henceforth) of the order, and a simple conditioning argument. When the

distribution of the TIS is known explicitly as, for example, in the case of a single

priority class, the derivation of the expected tardiness is straightforward. In contrast,

when there are multiple priority classes, a high priority order arrival may push a

low priority order to the back of the queue, leading to an increase in the TIS for
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the low priority order. The derivation of the TIS distribution is not trivial in this

case, and requires the use of Laplace transforms, which do not necessarily yield a

closed-form TIS distribution [Wein, 1991, Zeltyn et al., 2009].

In this chapter, I discuss the computation of expected tardiness of an order

at the time of arrival for a given due date (denoted as ETA henceforth) in an

M/M/c queuing system. ETA is computed given (i) the quoted lead time, d (i.e.,

the difference between the due date and the time of arrival), (ii) the state of the

queuing system at the time of arrival, and (iii) the class of the arriving order. I

present my results for the cases of preemptive and non-preemptive service, and

discuss a special case with a single priority class. As also argued by Zeltyn et al.

[2009], the extension to general service times (i.e., M/G/c queues) requires more

complex analysis, which is beyond the scope of this chapter.

More specifically, I formulate the Laplace transform of ETA, and strive to ob-

tain the inverse transforms. For the trivial single-class case, I obtain a closed-form

expression for ETA. For the multiple-class case, however, Laplace transforms cannot

be inverted into a closed-form expression, necessitating the implementation of Nu-

merical Inverse Laplace Transformation (NILT) methods. Even though there is an

abundance of general-purpose NILT algorithms (denoted as GP-NILTA henceforth)

in the literature, the existing studies do not provide error bounds for the non-

invertible Laplace transforms such as those in my case. The lack of error bounds

may result in significant errors in late delivery penalty estimation (LPE), which may

lead to erroneous due date policies. Consequently, obtaining error bounds for the

NILT methods is crucial for due date management.
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For the multiple classes case with non-invertible Laplace transforms, I develop

three customized NILT algorithms (C-NILTA), which I refer to as trapezoidal (Z),

midpoint (M), and hybrid (H) algorithms, and show that Z overestimates and M

underestimates ETA under a simple condition. This result allows us to provide

lower and upper bounds for ETA, and to obtain worst-case error bounds for Z,M

and H. Using a computational analysis, I test the precision of worst-case bounds,

and observe that precision increases with computational time. Noting that high

computational times may be undesirable for decision makers, I do the following: (i)

test the performance of three fast and prominent GP-NILTAs presented in Abate

and Whitt [2006], which provide a unification of the state-of-the-art GP-NILTAs,

(ii) develop a recommendation scheme on the usage of NILT methods, and (iii)

illustrate the recommendations using an example.

GP-NILTAs are first developed in the late 60’s by the seminal studies of Dubner

and Abate [1968], Gaver [1966], Zakian [1969], and Stehfest [1970]. Various variants

of these algorithms have been developed since then. The readers are referred to

Abate and Whitt [1992] for an extensive survey. The performance of GP-NILTAs

has also been studied extensively, where Abate and Valko [2004], Abate and Whitt

[2006], Avdis and Whitt [2007] and Hassanzadeh and Pooladi-Darvish [2007] present

some recent examples. The common performance evaluation method in these papers

is the comparison of algorithm results with the exact results of Laplace transforms

for which the closed form inverses are readily available. For example, Abate and

Whitt [2006] test the Laplace transforms in Equations (46) and (48) in their paper,

whose inverse transforms are given in Equations (47) and (49), respectively. On
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the other hand, Hassanzadeh and Pooladi-Darvish [2007] study some non-invertible

Laplace transforms, and compare the results of GP-NILTAs with each other. As

also stated by Avdis and Whitt [2007], GP-NILTAs are not needed for the invertible

Laplace transforms, but indispensable for non-invertible ones. In this chapter, I

present an approach to evaluate the performance of GP-NILTAs in the context of

expected tardiness estimation in a multi-class queue, which involves non-invertible

Laplace transforms.

While results on the distributions of waiting time in the queue/system are abun-

dant in the literature, to the best of my knowledge, this is the first study addressing

the expected tardiness computation problem in a multi-class queuing setting. Ear-

lier studies typically focus on the derivation of queuing performance criteria, e.g.,

TIS and waiting time distributions in priority queues. Davis [1966] derives the TIS

distribution in a non-preemptive priority M/M/c queue using conditioning argu-

ments and Laplace transforms. Using a similar approach, Heyman and Sobel [2004]

derive first passage time distributions in an M/M/1 queue. Similar to Heyman and

Sobel [2004], I define the TIS of orders in Section 4. Following the approach of Davis

[1966], Segal [1970] derives the Laplace transforms of TIS distributions in an M/M/c

queue with preemptive service for a service rate of µ = 1. Unfortunately, µ = 1 case

does not provide a generalizable result for arbitrary values of the service rate, and

hence, I revisit those results to provide a more general expression in Section 5. More

recently, Zeltyn et al. [2009] discuss a special case with K priority classes, where P

of the highest priority classes (P < K) can preempt the lower priority orders in an

M/M/c queue. The authors derive the Laplace-Stieltjes transforms of the TIS and
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waiting time distributions. There are some other studies considering the more gen-

eral M/G/c case [Jagerman and Melamed, 2003, Paterok and Ettl, 1994, Stanford

and Drekic, 2000]. However, none of these studies address the ETA computations.

The early studies on due date quotation focus on the comparison of due date set-

ting and scheduling rules using simulation analysis, with objectives or constraints on

the expected (weighted) tardiness or the number of tardy jobs [Baker and Bertrand,

1981, Bertrand, 1983, Bookbinder and Noor, 1985, Hunsucker and Shah, 1992, Wein,

1991]. The reader is referred to Keskinocak and Tayur [2004] for an extensive liter-

ature survey on due date quotation. Wein [1991] proposes a due date quotation rule

with the goal of minimizing the weighted average of due date quotes, subject to an

upper bound on the expected tardiness. Similar to my study, the author considers

prioritization under multiple customer classes, and implements Laplace transforma-

tion to compute the expected TIS of the low priority customer class in an example

with two customer classes. More recently, due date quotation studies have focused

on the derivation of optimal policies (with the goal of maximizing profits subject to

late delivery penalties) assuming that the probability of the purchase is a function

of the quoted due date to the customer [Duenyas, 1995, Duenyas and Hopp, 1995,

Feng et al., 2011, Savasaneril et al., 2010]. Extension of these studies from FCFS

settings to more realistic prioritized multi-class customer models necessitates the

computation of ETA, which is the focus of this study.

In addition to being the first approach to compute ETA in the literature, my

study has three major contributions in the field of NILT. First, I develop error

bounds for the inverse Laplace transformation for my problem; such error bounds
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have not been obtained in the literature, even for a restricted class of transforms,

according to Abate and Valko [2004]. Second, since the exact solutions for non-

invertible Laplace transforms are not known, one cannot measure how good an

algorithm performs in terms of solution quality. The error bounds I developed

present a novel methodology to measure the quality of approximations obtained

by GP-NILTAs using non-invertible Laplace transforms. Third, using my recom-

mendation scheme, my C-NILTAs provide approximations within desired precision

requirements, which is not necessarily achieved by GP-NILTAs.

The remainder of the chapter is organized as follows. In Section 2, I formulate the

Laplace transform of the ETA. In Section 3, I discuss the case of single priority class,

and provide a closed-form solution for the ETA. The Laplace transforms of the ETA

for the non-preemptive and preemptive service cases are derived, in Sections 4 and

5, respectively. The upper and lower bounding algorithms for ETA are presented

at the end of Section 4 for the non-preemptive case, and modified to handle the

preemptive case at the end of Section 5. I conduct a computational analysis to

compare the performances of NILT algorithms in Section 6, where I also develop

recommendations on the use of appropriate NILT algorithm illustrating the benefits

of error bounds obtained using the approach presented in this chapter. I conclude

with a discussion on the contributions of the chapter in Section 7.

2. Methodology

I consider an M/M/c queuing system with N prioritized customer classes, where

the arrival rate is λi for class i ∈ {1, . . . , N}, and the service rate is µ for each class.

Without loss of generality, I assume that class k has higher priority than class m
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where k < m ≤ N , k ∈ {1, . . . N − 1}, and customer orders from the same priority

class are sequenced on a FCFS basis. I assume that there are no upper bounds on the

number of orders in the system, and the stability condition is met, i.e.,
∑N

i=1 λi < cµ.

Let Vi(t) and Qi(t), i ∈ {1, . . . , N}, denote the number of class i orders in the system

and in the queue, respectively, at time t. Let V0(t) =
∑N

i=1 Vi(t) denote the total

number of orders in the system at time t. The state of the system at time t is

defined by the vector Z(t) = (V (t), Q(t)), where V (t) = (V1(t), V2(t), . . . , VN (t)),

and Q(t) = (Q1(t), Q2(t), . . . , QN (t)). {Z(t), t ∈ T} defines a stochastic process,

and can be modeled as a continuous time Markov chain. My formulations provide

expressions for the expected tardiness of an order that arrives at time t and is quoted

a lead time of d. For simplicity, I drop t from the notation below and refer to the

order for which the expected tardiness is evaluated as the “marked” order. Let

Tz,i(d) denote the ETA of a class i marked order if d is the quoted lead time and

z is the system state upon the arrival of the order. Equation (3.1) provides the

expression for ETA.

Tz,i(d) =

∫ ∞
d

(x− d)fz,i(x)dx = Sz,i − d+ τz,i(d), d ≥ 0, (3.1)

where fz,i(·) denotes the probability density function (pdf) of the TIS, Sz,i denotes

the expected TIS, and τz,i(d) denotes the expected earliness of the marked order at

the time of arrival, where earliness is defined as the positive difference between the

due date and completion time of the marked order. By definition,

Sz,i =

∫ ∞
0

xfz,i(x)dx, and τz,i(d) =

∫ d

0
(d− x)fz,i(x)dx, d ≥ 0. (3.2)
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I note that Tz,i(d) depends on both the system state and the class of the marked

order but it is computed for a given d that may or may not depend on the system

state and the class of the marked order. For example, a manufacturer may develop

a class dependent due date quotation scheme, or may quote the same due date to

all customers. For a given d, the value of ETA is the same in both cases.

I evaluate τz,i(d) and Sz,i by Laplace transforms. Following the notation of

Heyman and Sobel [2004], I denote the Laplace transform of the function f(·) as

f̃(s) =

∫ ∞
0

e−sxf(x)dx, s ∈ C,

where C denotes the set of complex numbers.

Remark 1. The convolution property of Laplace transforms [Doetsch, 1974, Theo-

rem 10.1] implies,

a(t) =

∫ t

0
b(x)c(t− x)dx ⇐⇒ ã(s) = b̃(s)c̃(s).

Using Laplace transforms and the convolution property I prove the following.

Proposition 3.

τ̃z,i(s) =
f̃z,i(s)

s2
, s ∈ C.

Proof. Note that τz,i(d) is the convolution of two functions by Equation (3.2). Let-

ting γ(x) = x, x ∈ R, the convolution can be expressed as

τz,i(d) = (γ ∗ fz,i)(d) =

∫ d

0
γ(d− x)fz,i(x)dx, d ≥ 0.

Using the convolution property,

τ̃z,i(s) = γ̃(s)f̃z,i(s) . (3.3)
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The Laplace transform of γ(x) is equal to 1/s2. By plugging in Equation (3.3), I

reach the desired equation.

Using Equation (3.1) and Proposition (1), I have

Tz,i(d) = Sz,i − d+ L−1
d

{
f̃z,i(s)

s2

}
, d ≥ 0, (3.4)

where L−1
d {·} denotes the inverse Laplace transformation operation evaluated at

point d ≥ 0. Using the properties of Laplace transforms I obtain

Sz,i = −df̃z,i(s)
ds

∣∣∣
s=0

.

Hence, Equation (3.4) requires the derivation of f̃z,i(s) as well as the inverse trans-

formation of τ̃z,i(s) = f̃z,i(s)/s
2. I begin the analysis with the special case of N = 1,

i.e., one customer class.

3. Special Case: Single Customer Class

Since orders within each class are ordered in FCFS manner, N = 1 case is

equivalent to the well-known FCFS sequencing of all customer orders. For this

special case, v0 (the number of orders in the system upon arrival of the marked

order) becomes the only necessary information for the ETA evaluation. Thus, z is

replaced with v0. The index i is dropped from the notation, i.e., I aim to compute

Tv0(d), which depends on whether all the servers are busy upon arrival of the marked

order. Hence, there are two cases to consider.

Case I. v0 ≤ c− 1: There is at least one server available at the time of the

marked order’s arrival, and the processing of the marked order can start immediately.

Hence, the TIS of the marked order is distributed exponentially with rate µ. Using
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Equation (3.1), I get

Tv0(d) =

∫ ∞
d

(x− d)µe−µxdx =
e−µd

µ
, d ≥ 0. (3.5)

Case II. v0 > c− 1: Since all servers are busy, the marked order has to wait

for the completion of v0− c+1 orders before its processing can start. Thus, the TIS

of the marked order is a random variable that is equal to the sum of the Waiting

Time in the Queue (WTQ) and the Processing Time (PT). WTQ can be expressed

as the sum of v0 − c + 1 exponentially distributed random variables with rate cµ,

and hence, is a gamma random variable with parameters v0 − c + 1 and cµ. PT is

an exponential random variable with rate µ, and its pdf is denoted by hµ(·). Then,

hµ(x) = µe−µx, x ≥ 0 , and h̃µ(s) =
µ

s+ µ
, s ∈ C. (3.6)

From the above, the pdf of the TIS, fv0(·), is the convolution of hµ(·) and (v0−c+1)-

fold convolution of hcµ(·), implying that the Laplace transform of the fv0(·) is equal

to

f̃v0(s) = h̃µ(s)(h̃cµ(s))v0−c+1 =
µ

s+ µ

(
cµ

s+ cµ

)v0−c+1

, s ∈ C.

Using Proposition (3), I get the Laplace transform of τv0(d) as

τ̃v0(s) =
µ

s2(s+ µ)

(
cµ

s+ cµ

)v0−c+1

, s ∈ C. (3.7)

In Theorem 4, I derive Tv0(d) using τ̃v0(s).
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Theorem 4.

Tv0(d) =



e−dµ

µ

v0∑
k=0

(dµ)k
v0 + 1− k

k!
, if c = 1,

e−dµ

µ

(
c
c−1

)v0−c+1

+
e−dcµ(dcµ)v0−c+1

cµ(v0 − c)!

+e−dcµ
v0−c∑
k=0

(dµ)k

k!

[
ck
(

1

µ
− d+

v0 − c+ 1

cµ

)
− (c− 1)k

µ

(
c

c− 1

)v0−c+1
]
, if c ≥ 2.

(3.8)

Proof. Proofs of theorems are provided in Appendix B-2.

This result provides a closed-form solution for the expected tardiness of an order

which observes v0 orders in the system upon arrival in an M/M/c queue with FCFS

service discipline, when the quoted lead time is d. I next discuss the derivations for

systems with multiple customer classes, under the non-preemptive and preemptive

service assumptions.

4. Non-preemptive Service Discipline

In this section, I consider N ≥ 2 customer classes, indexed in decreasing priority.

Orders are sequenced on a FCFS basis within each class, and preemption of service

is not allowed. That is, once the processing of an order is started, it cannot be

interrupted even if an order of higher priority joins the queue. In Section 5, I

consider the preemptive service case, where a higher priority order can preempt the

processing of a lower priority order.

Similar to single-class case, the TIS of the marked order can be divided into two

durations: (i) the time elapsed until the order starts processing, i.e., the Waiting

Time in Queue (WTQ), and (ii) the processing time (PT). Any high priority order

arrival during the WTQ pushes the marked order back in the queue and increases its
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TIS. For a given marked order, from class i, one needs to consider two parameters

for the evaluation of the ETA: (i) the number of orders in the system, v0, and (ii)

the number of orders in the queue ahead of the marked order, qi, which can be

calculated from state variables qj as

qi =
i∑

j=1

qj ,

where i denotes the class of the marked order. To find Tv0,qi,i(d), similar to Section

3, I consider two cases based on server availability at the time of the marked order’s

arrival.

Case I. v0 ≤ c− 1: This condition implies that qi = 0, and the order can start

processing immediately, i.e., the WTQ of the marked order is equal to zero. Using

Equation (3.5), I get

Tv0,0,i(d) =
e−µd

µ
, d ≥ 0. (3.9)

Case II. v0 > c− 1: The marked order is behind qi orders in the queue. Thus,

the parameter, v0 is redundant and is dropped from the notation. Researchers have

focused on the use of Laplace transforms to derive the TIS distribution in this case

[Davis, 1966, Segal, 1970, Wein, 1991, Zeltyn et al., 2009]. Let λi denote the total

arrival rate of customer orders with higher priority than class i. Then,

λi =

i−1∑
j=1

λj , i ∈ {2, . . . , N},

where λ1 = 0. I can obtain Tq1,1(d) by plugging c + q1 for v0 in Equation (3.8).

Hence, I focus on the calculations for lower priority classes. Since λi and qi uniquely

defines priority class of the order, I also drop i from the notation, and derive τ̃qi(s)

for i ∈ {2, . . . , N} in Theorem 5.
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Theorem 5. For i ∈ {2, . . . , N},

τ̃qi(s) =
µ

s2(s+ µ)

(
g̃λi,cµ(s)

)qi+1
, s ∈ C, (3.10)

where

g̃λi,cµ(s) =
s+ λi + cµ−

√
(s+ λi + cµ)2 − 4λicµ

2λi
, s ∈ C.

Using τ̃qi(s), one can employ any GP-NILTA to numerically approximate τqi(d),

although it is not clear how well any of these algorithms would perform in this

setting. To obtain error bounds and a testing methodology for the GP-NILTAs, I

develop two C-NILTAs approximating τj(d) for j ∈ {0, 1, . . . , qi} using an iterative

approach. The main idea is to write the Laplace transform in a product form, where

each component of the product is inverse transformable as in Equation (3.10), which

for qi = 0 gives

τ̃0(s) =
µ

s2(s+ µ)
g̃λi,cµ(s) ,

and,

τ̃j(s) = τ̃0(s)
(
g̃λi,cµ(s)

)j
(3.11)

for all i ∈ {2, . . . , N} and j ∈ {0, 1 . . . , qi}. Equation (3.11) for customer class i can

be written recursively as

τ̃j(s) = τ̃j−1(s)g̃λi,cµ(s), j ∈ {0, 1, . . . , qi} , (3.12)

where τ̃−1(s) = µ
s2(s+µ)

. Equation (3.12) provides a product form of the Laplace

transform with inverse transformable terms. Then, using the convolution property,

I can write τj(·) as a convolution of τj−1(·) and gλi,cµ(·) as

τj(d) =

∫ d

0
τj−1(d− x)gλi,cµ(x)dx, j ∈ {0, 1, . . . , qi} , (3.13)
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where τ−1(x) = x− 1
µ + e−µx

µ . Thus, using Equation (3.13), τqi(d) can be evaluated

by recursively calculating τj(d) for j ∈ {0, 1, . . . qi}. Using the results of Heyman

and Sobel [2004] I get,

gλi,cµ(x) = L−1
x {g̃λi,cµ(s)} = e−(λi+cµ)xI1

(
2x

√
λicµ

) √
cµ

x
√
λi
, x ≥ 0, (3.14)

where I1(·) is the Bessel function of imaginary argument and first order [Heyman

and Sobel, 2004, pg. 90]. For example, τ0(d) can be evaluated by the expression

τ0(d) =

∫ d

0

(
d− x− 1

µ
+
e−µ(d−x)

µ

)
e−(λi+cµ)xI1

(
2x

√
λicµ

) √
cµ

x
√
λi
dx, d ≥ 0.

I next approximate τj(d) functions for j ∈ {0, 1, . . . qi} using numerical integration

and Equation (3.13),

τj(d) = lim
w→0

w

2

d/w−1∑
k=0

τj−1(d− kw)gλi,cµ(kw) + τj−1(d− kw − w)gλi,cµ(kw + w),

(3.15)

d ≥ 0, j ∈ {0, 1, . . . , qi}, and

τj(d) = lim
w→0

w

d/w−1∑
k=0

τj−1

(
d− kw − w

2

)
gλi,cµ

(
kw +

w

2

)
, d ≥ 0, j ∈ {0, 1, . . . , qi},

(3.16)

where Equations (3.15) and (3.16) follow the trapezoidal and midpoint rules respec-

tively [Davis and Rabinowitz, 1984, Chapter 2]. Using these two rules, I develop

two C-NILTAs (pseudocodes are given in Appendix B-1): (i) trapezoidal (Z) and,

(ii) midpoint (M) to inverse transform τ̃j(s), whose approximations are denoted as

Zwj (d) and Mw
j (d), given the numerical integration parameter w. I next show that

Zwj (d) and Mw
j (d), respectively, provide an upper and lower bound for τj(d) under

simple and mild conditions on λi and cµ.
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Theorem 6. Mw
j (d) ≤ τj(d) ≤ Zwj (d) hold for d ≥ 0, j = 0, 1, . . . , and w ≤ d,

when the following two conditions hold: (i) λi+cµ ≥ 2
λicµ+

√
λicµ

2
√
λicµ−1

and (ii) λicµ ≥ 1
4 .

Theorem 6 conditions are used to show the convexity of gλi,cµ(·), which is a

sufficient condition for the proof of Theorem 6. In Corollary 3, I provide a simple

condition that implies Theorem 6 conditions.

Corollary 3. Theorem 6 conditions hold when λicµ ≥ 4.

λicµ ≥ 4 is a simple, albeit more restrictive condition. Figure 8 plots the param-

eter space in terms of λi and cµ and graphically shows that Theorem 6 conditions

hold everywhere except in the small shaded region.

Fig. 8. Representation of the parameter space of Theorem 6 conditions, which hold

everywhere except in the small shaded region

Recall that the region λi ≥ cµ is not considered due to the stability condition.

λicµ ≥ 4, which is a sufficient condition for Theorem 6 conditions to hold, implies
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that the manufacturer’s production rate times the total arrival rate of the customers

with priority higher than i exceeds four. For example, a manufacturer with a pro-

duction capacity of four or more per day, and receiving an average of one or more

orders per day from the highest priority customer class satisfies this condition (when

the lead times are quoted in daily or weekly time units, as is common practice in

industry). Hence, the condition is not restrictive in practice. Under the cases where

Theorem 6 conditions do not hold, I may still have convexity of τj−1(d−x)gλi,cµ(x),

which is a sufficient condition for Theorem 6 to hold.

Although numerical integration is commonly used in Laplace transformation

methods [Abate and Whitt, 1992], M and Z are the first NILT algorithms that

implement numerical integration methods in a recursive manner as given in Equa-

tions (3.15) and (3.16). In addition, to the best of my knowledge, they are the first

algorithms providing lower and upper bounds for the inverse Laplace transform op-

eration. The obtained lower and upper bounds enable a novel methodology in the

comparison of GP-NILTAs. That is, any approximation value less than Mw
j (d) is

definitely a worse approximation thanMw
j (d). Similarly, any approximation higher

than Zwj (d) is a worse approximation than Zwj (d). Using these bounds, I com-

pute worst-case error bounds for C-NILTAs in Section 6. One can achieve tighter

bounds (smaller Zwj (d)−Mw
j (d) values) by using lower values of w, at the expense

of increased computational times due to the increased number of steps in numerical

integration.

While developing my C-NILTAs, I made use of the product form of two Laplace

transforms (as shown in Equation (3.11)) to obtain the closed form convolution
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integral. Hence, given any Laplace transform that can be inverted into a closed

form inversion integral, one can implement numerical integration and develop C-

NILTAs with the same structure. For example, such closed form inversion integrals

are provided by Duffy [1993], who presents five Laplace transform examples with

corresponding inverse transforms provided as integral equations.

To improve on the accuracy provided by the GP-NILTAs, I also present a hybrid

C-NILTA, which applies trapezoidal/midpoint rule for odd/even j values for j ∈

{0, 1, . . . , qi}. The hybrid algorithm (H) approximates τj(d) by the value Hwj (d)

and the pseudocode of the algorithm is given in Appendix B-1.

Corollary 4. If Theorem 6 conditions hold, then Mw
j (d) ≤ Hwj (d) ≤ Zwj (d) for

d ≥ 0, j = 0, 1, . . . , and w ≤ d.

Thus, when Theorem 6 conditions hold, H always generates an approximation

within the bounds given by Z andM. Note that Hwj (d) may or may not be a better

approximation than Mw
j (d), Zwj (d), or any value obtained by any GP-NILTAs.

However, it is within the derived worst-case bounds that are discussed in Section 6.

I next discuss the evaluation of Sqi . Wein [1991] derives the expected TIS for

class-dependent service rates and a single server. I evaluate the expected TIS of the

marked order by modifying the necessary parameters, e.g., service rates, as follows.

Sqi =
qi + 1

cµ− λi
+

1

µ
. (3.17)

Finally, Tqi(d) can be evaluated using Z,M, H, or any of GP-NILTA, and Equations

(3.1) and (3.17).
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5. Preemptive Priority Discipline

I now consider the case where an arriving order of higher priority preempts the

lowest priority in-process order, which, upon being preempted, joins the beginning

of the queue pushing back all the orders in the queue by one position. In this case,

any class i order is inserted behind vi =
∑i

j=1 vj orders (including the orders in

process), pushing back the remaining v0 −
∑i

j=1 vj orders by one position. My

goal is to evaluate Tvi,i(d). In Figure 9, I illustrate a three-server case, where the

numbers inside and outside the circles denote the priority class and position of the

order, respectively. If a class 2 order arrives when the state is as depicted in Figure

9, it is inserted to the second position, pushing all the lower priority orders back

by one position, and the processing of the class 4 order in the third position is

preempted.

Fig. 9. Position of orders under preemptive discipline

Similar to Section 4, the highest priority orders are placed ahead of the other

orders in the queue, and sequenced on a FCFS basis. Thus, the ETA for the highest

priority class, Tv1,1(d), can be evaluated by plugging v1 for v0 in Equation (3.8). For

the lower priority classes, i ∈ {2, . . . , N}, similar to the non-preemptive case, I have

two alternatives to consider: (i) the marked order starts processing immediately
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(vi ≤ c − 1), and (ii) the marked order joins the queue (vi > c − 1). As in the

non-preemptive case, I drop i from the notation, and derive f̃vi(s).

Case I. vi > c− 1 : If this condition holds, then the marked order joins the

queue by taking the position vi+1. The marked order is pushed back by the arrival

of any higher priority arrival with rate λi, and moves one position forward with rate

cµ, as long as its processing has not started yet. Thus, the Laplace transforms for

vi > c−1 are obtained in Equation (3.18), similar to the non-preemption case given

in Equation (3.11).

f̃vi(s) = f̃c−1(s)
(
g̃λi,cµ(s)

)vi−c+1
, s ∈ C . (3.18)

Case II. vi ≤ c− 1 : Laplace transforms for this case are derived in Theorem

7.

Theorem 7. For vi ≤ c− 1, i ∈ {2, . . . , N},

f̃vi(s) =
λif̃vi+1(s) + viµf̃vi−1(s) + µ

s+ λi + (vi + 1)µ
, s ∈ C . (3.19)

Letting µ = 1 in Equation (3.19), one reaches the result of Segal [1970]. However,

the result in Theorem 7 cannot be derived by rescaling the time variable, i.e., setting

λi/µ for λi in Segal [1970]. To prove Theorem 7, I use Laplace-Stieltjes transforms,

as presented in Appendix B-2.

By setting vi = 0, the middle term in the numerator in Equation (3.19) disap-

pears, which gives

f̃0(s) =
λif̃1(s) + µ

s+ λi + µ
, s ∈ C.
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By setting vi = c− 1, using Equation (3.18) and algebraic operations I get

f̃c−1(s) =
(c− 1)µf̃c−2(s) + µ

s+ λi + cµ− λig̃λi,cµ(s)
= g̃λi,cµ(s)

(
(c− 1)f̃c−2(s) + 1

)
, s ∈ C.

(3.20)

Consequently, having c unknowns and c equations by Theorem 7, Laplace transforms

are solvable. The analysis simplifies vastly in the single server case, i.e., c = 1, which

is discussed below.

Single Server Case: Setting c = 1 in Equation (3.20) and by algebraic manip-

ulations one gets for i ∈ {2, 3, . . . , N}

f̃vi(s) =
(
g̃λi,µ(s)

)vi+1
, and τ̃vi(s) =

(
g̃λi,µ(s)

)vi+1

s2
s ∈ C . (3.21)

Thus, the recursive form in Equation (3.13) is valid for inversion of τ̃vi(s) given

in Equation (3.21) with a modification on τ−1(x) as

τ−1(x) = L−1
x {1/s2} = x.

Moreover,

Svi =
vi + 1

µ− λi
.

I note that, results of Theorem 6 and Corollary 1 hold for this case as well.

I derive the Laplace transforms and discuss the implementation of Z, M, H for

c = 2 and c = 3 in Online Supplement. The useful property of Theorem 6 may or

may not hold for multiple servers case due to the extensive complexity of the Laplace

transforms in these cases. In the next section, I test the performances of Z,M, H, as

well as the three prominent GP-NILTAs for the cases where I can obtain worst-case

error bounds using Theorem 6, i.e., non-preemptive and preemptive single-server

cases.
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6. Computational Analysis

In this section, I provide a computational study to (i) analyze the precision

of approximations obtained by M,Z and H, and (ii) assess the performance of

three prominent GP-NILTAs, namely, Gaver-Stehfest (G), Euler (E), and Talbot

(T ). Abate and Whitt [2006] provide a general framework for GP-NILTAs and

reduce the GP-NILTAs in the literature into these three main algorithms. I then

provide a practical recommendation scheme for the inverse transformation of τ̃j(s).

To evaluate the error precision, I assess the number of significant digits obtained by

M,Z and H in Equation (3.22) (see Equation (34) of Abate and Whitt [2006]).

P (Xw
j )(d) = − log

∣∣∣∣Xw
j (d)− τj(d)

τj(d)

∣∣∣∣ , X ∈ {M,Z,H}. (3.22)

Since the exact values of τj(d) are not known, I define the following approximation

for the number of significant digits obtained by Z, M, and H.

ρwj (d) = − log

∣∣∣∣∣Zwj (d)−Mw
j (d)

Mw
j (d)

∣∣∣∣∣ . (3.23)

Note that, if Theorem 6 conditions holds, I have ρwj (d) ≤ P (Xw
j )(d), X ∈

{M,Z,H}, i.e., ρwj (d) is a lower bound for the number of significant digits produced

by Z, M, and H, and hence, represents the worst-case error bounds for the three

C-NILTAs developed in this chapter. The same condition applies to any GP-NILTA

only when the obtained approximation value is within the interval [Mw
j (d),Zwj (d)].

GP-NILTAs generally require the setting of several parameters as in the case

of the Euler algorithm [Abate and Whitt, 1999], which necessitates the selection of

four different parameters. Abate and Whitt [2006] overcome this burden by reducing

the number of parameters in G, E , and T to a single parameter called M , which
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is common to all of the three algorithms. The authors recommend that M should

be set to d1.1Re, d1.7Re, and d1.7Re to obtain R significant digits in G, E , and

T , respectively (see Sections 4, 5 and 6 in Abate and Whitt [2006]). I denote the

required parameter setting to obtain R significant digits by MX(R), X ∈ {G, E , T },

i.e., MG(R) = d1.1Re, ME(R) = d1.7Re, MT (R) = d1.7Re. The approximations

obtained using these parameter settings are denoted as XR
j (d).

My testing methodology works as follows. For each instance, I first gener-

ate the approximations Zwj (d), Mw
j (d), and compute ρwj (d), for four levels of

w ∈ {0.005, 0.001, 0.0005, 0.0001}, ten levels of d ∈ D = {1, 2, . . . , 10}, and ten

levels of j ∈ J = {0, 1, . . . , 9}, by running Z and M with qi = 9, and d = 10. I

then generate approximations GRj (d), ERj (d), and T Rj (d) for d ∈ D and j ∈ J , and

R ∈ {5, 7}. Finally, for each (w,R) pair in {0.005, 0.001, 0.0005, 0.0001} × {5, 7},

I count the number of instances in which the approximations GRj (d), ERj (d), and

T Rj (d) are within the interval [Mw
j (d),Zwj (d)], over all d ∈ D and j ∈ J .

I use Visual C++ 6.0 compiler that allows a system precision of 18 digits, which

is sufficient for my test bed. The maximum value of R is chosen as 7, since the

system precision requirement for G exceeds 18 for R > 8 [Abate and Whitt, 2006].

I select a minimum value of w = 0.0001 to avoid excessively long computational

times.

I test eight instances under the non-preemptive case with c = 1, µ = 5,

λi ∈ {1, 2, 3, 4}, and c = 3, µ = 5, λi ∈ {3, 6, 9, 12}, and four instances under

the preemptive case with c = 1, µ = 5, λi ∈ {1, 2, 3, 4}, to test one representative

case for single and multiple servers under changing traffic intensity. Note that all of
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the instances comply with Theorem 6 conditions and the stability condition. The

results for the non-preemptive and preemptive cases are presented in Tables 11 and

12, respectively. For each instance-w pair represented in a row, I report (i) the

average, minimum, and maximum ρwj (d) over all d ∈ D, j ∈ J , (ii) the average,

minimum and maximum Zwj,i(d) −Mw
j,i(d), over all d ∈ D, j ∈ J , (iii) total CPU

times of Z andM, and (iv) the number of GRj (d), ERj (d), and T Rj (d) that are within

[Mw
j,i(d),Zwj,i(d)] over all d ∈ D, j ∈ J (i.e., out of 100 instances), for R ∈ {5, 7},

where R is indicated inside the parenthesis as G(R), E(R), and T (R). The average,

minimum and maximum values of ρwj,i(d) are evaluated only for nonnegative values

ofMw
j,i(d) due to the logarithm restriction in Equation (3.23). I also omit the CPU

times of G, E , and T since they are negligibly small. Experiments are run on a

Intel Core 2 Quad CPU PC with processors running at 2.66 GHz and 4 GB memory

under Windows 7.

Observation 8. Up to eight significant digit precision is obtained in around 20

seconds by Z, M and H, whose performances significantly improve at a cost of

higher computational times.

Since Z,M and H provide approximations that are guaranteed to be within the

bounds, I conclude that my three proposed C-NILTAs are the best NILT methods in

terms of solution quality. From Tables 11 and 12, when c = 1, up to nine significant

digits are attained by either of Z,M and H, under preemptive and non-preemptive

cases. One also observes that the increase in the number of servers negatively

impacts the performance of the algorithms by reducing ρwj (d). For example, when

w = 0.0005, the average ρwj (d) ranges from 2.57 to 5.29 when c = 1, and from
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Table 11. Performances of NILT algorithms under non-preemptive case

ρwj (d) Zwj (d)−Mw
j (d) CPU time # of gen. in [Mw

j (d),Zwj (d)]

w c µ λi avg. min. max. avg. min. max. M Z G(5) E(5) T (5) G(7) E(7) T (7)

0.005

1 5 1 1.73 -1.52 5.47 2.E-03 5.E-06 7.E-03 0.21 0.17 59 100 92 90 100 91

1 5 2 1.55 -1.49 5.81 2.E-03 3.E-06 7.E-03 0.21 0.17 74 100 94 95 100 95

1 5 3 2.33 0.43 6.20 2.E-03 2.E-06 7.E-03 0.21 0.17 90 100 94 98 100 94

1 5 4 3.29 2.04 6.71 1.E-03 1.E-06 5.E-03 0.21 0.17 90 100 95 99 100 95

3 5 3 1.00 -0.78 1.97 2.E-02 7.E-04 7.E-02 0.21 0.17 100 100 100 100 100 100

3 5 6 0.94 -1.20 2.48 2.E-02 8.E-04 8.E-02 0.21 0.17 99 100 100 100 100 100

3 5 9 0.81 -1.24 3.03 2.E-02 8.E-04 9.E-02 0.21 0.17 99 100 100 100 100 100

3 5 12 1.05 -0.58 3.70 2.E-02 5.E-04 8.E-02 0.21 0.17 100 100 100 100 100 100

0.001

1 5 1 2.36 -1.11 6.87 8.E-05 2.E-07 2.E-04 5.37 4.39 8 87 86 39 100 85

1 5 2 2.56 -1.25 7.21 8.E-05 1.E-07 3.E-04 5.37 4.37 23 89 91 58 100 92

1 5 3 3.73 1.87 7.60 8.E-05 1.E-07 2.E-04 5.36 4.39 39 97 92 82 100 93

1 5 4 4.69 3.44 8.11 7.E-05 7.E-08 2.E-04 5.36 4.39 54 98 93 91 100 93

3 5 3 1.39 -1.58 3.37 9.E-04 2.E-05 3.E-03 5.36 4.39 82 100 100 93 100 100

3 5 6 1.48 -1.28 3.88 1.E-03 3.E-05 3.E-03 5.35 4.39 77 100 100 99 100 100

3 5 9 1.29 -2.30 4.43 1.E-03 3.E-05 3.E-03 5.37 4.39 88 100 100 99 100 100

3 5 12 2.49 1.16 5.10 1.E-03 2.E-05 3.E-03 5.35 4.39 95 100 100 100 100 100

0.0005

1 5 1 2.57 -3.54 7.47 2.E-05 5.E-08 7.E-05 21.4317.50 1 34 79 12 100 85

1 5 2 3.18 0.09 7.81 2.E-05 4.E-08 8.E-05 21.4017.51 3 40 90 34 100 91

1 5 3 4.33 2.48 8.20 2.E-05 3.E-08 7.E-05 21.3817.51 16 39 91 48 100 91

1 5 4 5.29 4.04 8.71 1.E-05 1.E-08 5.E-05 21.3817.51 24 44 91 71 100 93

3 5 3 1.84 -1.21 3.97 2.E-04 7.E-06 7.E-04 21.3817.51 61 100 99 83 100 100

3 5 6 1.79 -0.90 4.48 2.E-04 8.E-06 8.E-04 21.3817.53 59 100 100 86 100 100

3 5 9 1.61 -1.36 5.03 2.E-04 8.E-06 9.E-04 21.4117.51 60 100 100 97 100 100

3 5 12 3.10 1.77 5.70 2.E-04 5.E-06 8.E-04 21.4317.54 83 100 100 98 100 100

0.0001

1 5 1 3.38 -0.92 8.87 8.E-07 2.E-09 2.E-06 540.03435.62 0 0 44 0 86 82

1 5 2 4.58 1.59 9.21 8.E-07 1.E-09 3.E-06 538.73435.59 0 0 52 0 88 87

1 5 3 5.73 3.87 9.60 8.E-07 1.E-09 2.E-06 538.79435.61 1 0 71 4 97 89

1 5 4 6.69 5.44 10.117.E-07 7.E-10 2.E-06 538.74435.64 0 0 84 13 98 90

3 5 3 2.56 -1.06 5.37 9.E-06 2.E-07 3.E-05 538.91435.65 12 0 90 34 100 98

3 5 6 2.36 -1.49 5.88 1.E-05 3.E-07 3.E-05 539.06435.63 12 0 95 19 100 100

3 5 9 2.53 -0.63 6.43 1.E-05 3.E-07 3.E-05 539.04435.64 2 0 100 51 100 100

3 5 12 4.49 3.17 7.10 1.E-05 2.E-07 3.E-05 539.22435.71 18 0 100 70 100 100

1.61 to 3.10 when c = 3. The traffic intensity, on the other hand, has a positive

impact on the performance of the algorithms, as observed under most instances

in Tables 11 and 12. Comparison of preemptive and non-preemptive cases reveals
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Table 12. Performances of NILT algorithms under preemptive case

ρwj (d) Zwj (d)−Mw
j (d) CPU time # of gen. in [Mw

j (d),Zwj (d)]

w c µ λi avg. min. max. avg. min. max. Mid. Trap. G(5) E(5) T (5) G(7) E(7) T (7)

0.005

1 5 1 2.27 1.42 5.11 2.E-03 1.E-05 7.E-03 0.21 0.17 71 100 92 96 100 91

1 5 2 2.36 1.41 5.46 2.E-03 9.E-06 8.E-03 0.21 0.17 85 100 93 97 100 93

1 5 3 2.64 1.65 5.86 2.E-03 6.E-06 7.E-03 0.23 0.18 92 100 95 100 100 95

1 5 4 3.29 2.30 6.38 2.E-03 4.E-06 6.E-03 0.21 0.17 94 100 95 100 100 95

0.001

1 5 1 3.67 2.82 6.51 9.E-05 5.E-07 3.E-04 5.38 4.39 18 89 90 56 100 88

1 5 2 3.76 2.81 6.86 9.E-05 3.E-07 3.E-04 5.36 4.39 29 96 92 71 100 91

1 5 3 4.04 3.06 7.26 9.E-05 2.E-07 3.E-04 5.36 4.38 48 98 91 93 100 92

1 5 4 4.69 3.70 7.78 8.E-05 2.E-07 2.E-04 5.36 4.39 61 99 92 94 100 93

0.0005

1 5 1 4.27 3.43 7.11 2.E-05 1.E-07 7.E-05 21.4417.54 0 38 83 28 100 84

1 5 2 4.36 3.41 7.46 2.E-05 9.E-08 8.E-05 21.4317.54 9 42 91 48 100 89

1 5 3 4.64 3.66 7.86 2.E-05 6.E-08 7.E-05 21.4317.54 17 43 90 73 100 91

1 5 4 5.29 4.30 8.38 2.E-05 4.E-08 6.E-05 21.4217.54 29 50 91 90 100 92

0.0001

1 5 1 5.67 4.82 8.51 9.E-07 5.E-09 3.E-06 545.22437.12 0 0 49 1 88 80

1 5 2 5.76 4.81 8.86 9.E-07 3.E-09 3.E-06 544.21437.03 2 0 59 2 89 85

1 5 3 6.04 5.06 9.26 9.E-07 2.E-09 3.E-06 544.13436.96 0 0 85 3 98 88

1 5 4 6.69 5.70 9.78 8.E-07 2.E-09 2.E-06 544.72437.09 0 0 88 19 99 90

that slightly higher ρwj (d) values are obtained for the preemptive case. This is due

to the lower ETA values under preemptive case resulting in lower Mw
j (d) values,

while Zwj (d) −Mw
j (d) differences do not differ significantly under preemptive and

non-preemptive cases. Moreover, I observe that lower w values lead to an increase

in both CPU times and ρwj (d).

Observation 9. E outperforms G and T .

Results of Observation 9 are seen on the right-most six columns of Tables 11 and

12, with some exceptions for R = 5, w ∈ {0.0005, 0.0001}, where T performs better.

Using the parameter setting ME(7), E generates approximations 100% within the

bounds until the maximums of ρwj (d) exceed 8.5 (see the results for w = 0.0001).

Similarly, under the non-preemptive case, E fails to generate approximations 100%
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within the bounds only when ρwj (d) maximums reach 8.87 and 6.87 respectively for

the settings with ME(7), and ME(5) (see the first row for w = 0.0001, and the fifth

row for w = 0.001 in Table 11, respectively). I conclude that E approximations are

reliable for R ≥ dρwj (d)e − 1, when the parameter setting ME(R) is used.

G performs surprisingly poorly in some instances. For example, consider the

non-preemptive case results in Table 11 for w = 0.001. When it is executed with

the parameter setting MG(5), 92% of the approximations are out of the bounds,

where the average of ρwj (d) is only 2.36. This may occur due to two main reasons:

(i) the significant digits produced by Z andM are higher than 5, (recall that ρwj (d)

gives a lower bound), (ii) the parameter setting MG(5) gives fewer significant digits

than 5, probably even less than 2.36. The performances of E and T for the same

instance, which are 87%, and 88%, respectively, imply that case (i) is not possible.

Hence, I conclude that the precision analysis of Abate and Whitt [2006] does not

hold for this particular instance.

In summary, Z, M and H perform best in terms of solution quality, whereas E ,

G and T run faster but at the expense of lower solution quality. Although I cannot

determine which one of Z, M and H gives better solution quality on the average,

I recommend the use of H which is the hybrid version of the other two algorithms.

The algorithmic structures reveal that under the same settings, H runs longer than

Z and shorter thanM. On the other hand, E is the best NILT algorithm when fast

solutions are needed, and the precision requirements are relaxed.
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6.1. NILT Algorithm Recommendations

In this section, I obtain an upper bound on the expected late delivery penalty

estimation (LPE) error, and develop a recommendation scheme for the use of an

appropriate NILT algorithm. Consider the moment when a class i customer arrives

to the system when there are j orders in the queue. Assuming that the customer is

quoted a lead time of d, and the late delivery penalty cost per unit time is k dollars

per unit time, the expected late delivery penalties to be incurred can be expressed

as kTj,i(d). Using Theorem 6 and Equation (3.1), kTj,i(d) can be bounded as

k
(
Sz,i − d+Mw

j,i(d)
)
≤ kTj,i(d) ≤ k

(
Sz,i − d+ Zwj,i(d)

)
(3.24)

where I include the priority class index i back into the notation to avoid confu-

sion. Using Equation (3.24), kTj,i(d) can be estimated with a maximum error of

k
(
Zwj,i(d)−Mw

j,i(d)
)

. Let C(Hwj,i(d)) denote the computational time of H for ap-

proximating τj,i(d), within the LPE error tolerance, K, and maximum allowable

computational time for NILT of the manufacturer, C, when w ∈ W1 and w ∈ W2

respectively. That is,

W1 ∈ {w : max
d∈D,j∈J,i∈I

k
(
Zwj,i(d)−Mw

j,i(d)
)
≤ K}, and

W2 ∈ {w : max
d∈D,j∈J,i∈I

C(Hwj,i(d)) ≤ C},

whereD, J and I denote the set of d, j and i values, respectively, under consideration

for due date quotation. The NILT recommendation scheme is as follows:

• If there are no computational time restrictions, implement H with setting

w ∈W1,
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• if there are computational time restrictions, and W1 ∩W2 6= ∅, implement H

with setting w ∈W1 ∩W2,

• if there are computational time restrictions, and W1∩W2 = ∅, find a w∗ ∈W1.

Then, implement E with setting R such that ERj,i(d) ∈ [Mw∗
j,i (d),Zw∗j,i (d)] for

all d ∈ D, j ∈ J , and i ∈ I.

The first two cases identify the conditions, where H is recommended due to its supe-

rior solution quality. In the third case, due to tight computational time restrictions,

E is recommended with a guarantee that the estimation is within the error toler-

ances. Therefore, the presented recommendation scheme ensures that the selected

NILT algorithm gives approximations within LPE error tolerance and acceptable

computation times.

As discussed in Section 4, for the cases where the sufficient conditions for

Mw
j (d) ≤ τj(d) ≤ Zwj (d) do not hold, the bounds are still likely to be valid. Hence,

I suggest the use of the above recommendation scheme in general.

6.2. An Example

Consider a make-to-order manufacturer, who promises to pay k dollars to its

customers per each day the product is delivered late, and wants to analyze the

impact of lead time quotes on late delivery penalty costs. Assume that there is

a single server working at a rate of 5 per day, three priority classes with arrival

rates of λ1 = 2, λ2 = 1 and λ3 = 1 per day, preemption is not allowed, and the

manufacturer considers only ten lead time options as D = {1, 2, . . . , 10} days, and
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quotes due dates to newly arriving customers when there are less than 10 orders in

the system, i.e., J = {0, 1, . . . , 9}.

In Table 13, I present the maximum LPE errors and computational times ob-

tained by using H with w ∈ {0.005, 0.001, 0.0005, 0.0001} over all j ∈ J , d ∈ D, and

i ∈ {2, 3}, for k ∈ {1000$/day, 10000$/day}. I note that the LPE for priority class 1

can be obtained with zero error using Theorem 4, and λ2 = λ1 = 2, λ3 = λ1+λ2 = 3.

Table 13. Maximum expected lateness penalty cost estimation errors and CPU

times obtained by H

Priority Class 2 Priority Class 3

k w max. LPE max. CPU time max. LPE max. CPU time

$1000/day

0.005 $7 less than 1 sec. $7 less than 1 sec.

0.001 $0.3 around 5 sec. $0.2 around 5 sec.

0.0005 $0.08 around 20 sec. $0.07 around 20 sec.

0.0001 $0.003 around 8 min. $0.002 around 8 min.

$10000/day

0.005 $70 less than 1 sec. $70 less than 1 sec.

0.001 $3 around 5 sec. $2 around 5 sec.

0.0005 $0.8 around 20 sec. $0.7 around 20 sec.

0.0001 $0.03 around 8 min. $0.02 around 8 min.

Using the information from Table 13 and the recommendation scheme in Sec-

tion 6.1, I develop NILT algorithm recommendations for three levels of K ∈

{$10, $1, $0.1}, and C ∈ {10 sec., 1 min., 10 min.}, for two delay penalty levels,

k ∈ {$1000/day, $10000/day} in Tables 14 and 15, respectively. I select the smallest

w in case there are multiple w ∈W1 ∩W2.
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Table 14. NILT recommendations for k = $1000/day

K C w within W1 w within W2 Recommendation

$10 10 min. {0.005, 0.001, 0.0005, 0.0001} {0.005, 0.001, 0.0005, 0.0001} H with w = 0.0001

$10 1 min. {0.005, 0.001, 0.0005, 0.0001} {0.005, 0.001, 0.0005} H with w = 0.0005

$10 10 sec. {0.005, 0.001, 0.0005, 0.0001} {0.005, 0.001} H with w = 0.001

$1 10 min. {0.001, 0.0005, 0.0001} {0.005, 0.001, 0.0005, 0.0001} H with w = 0.0001

$1 1 min. {0.001, 0.0005, 0.0001} {0.005, 0.001, 0.0005} H with w = 0.0005

$1 10 sec. {0.001, 0.0005, 0.0001} {0.005, 0.001} H with w = 0.001

$0.1 10 min. {0.0005, 0.0001} {0.005, 0.001, 0.0005, 0.0001} H with w = 0.0001

$0.1 1 min. {0.0005, 0.0001} {0.005, 0.001, 0.0005} H with w = 0.0005

$0.1 10 sec. {0.0005, 0.0001} {0.005, 0.001} E with R = 7

Table 15. NILT recommendations for k = $10000/day

K C w within W1 w within W2 Recommendation

$10 10 min. {0.001, 0.0005, 0.0001} {0.005, 0.001, 0.0005, 0.0001} H with w = 0.0001

$10 1 min. {0.001, 0.0005, 0.0001} {0.005, 0.001, 0.0005} H with w = 0.0005

$10 10 sec. {0.001, 0.0005, 0.0001} {0.005, 0.001} H with w = 0.001

$1 10 min. {0.0005, 0.0001} {0.005, 0.001, 0.0005, 0.0001} H with w = 0.0001

$1 1 min. {0.0005, 0.0001} {0.005, 0.001, 0.0005} H with w = 0.0005

$1 10 sec. {0.0005, 0.0001} {0.005, 0.001} E with R = 7

$0.1 10 min. {0.0001} {0.005, 0.001, 0.0005, 0.0001} H with w = 0.0001

$0.1 1 min. {0.0001} {0.005, 0.001, 0.0005} E with R > 7

$0.1 10 sec. {0.0001} {0.005, 0.001} E with R > 7

Note that when k = $10000/day and K = $0.1, only w = 0.0001 gives results

within error tolerances, but it does not satisfy the computational time restriction

when C ≤ 1 min; hence, the use of E is recommended. Since, the condition ERj,i(d) ∈
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[Mw∗
j,i (d),Zw∗j,i (d)] does not hold for d ∈ D, j ∈ J, i ∈ I, R ∈ {5, 7}, and w∗ = 0.0001,

E should be executed with a parameter setting giving better solution quality, i.e.,

R > 7.

7. Conclusions

In this study, I discuss the computation of the expected tardiness of an or-

der as a function of the system state at the moment of the order’s arrival in an

M/M/c queue with N priority classes. The study is motivated by the need for

tardiness computations in dynamic due date quotation models considering multi-

ple priority classes. I first formulate the Laplace transform of expected tardiness

and discuss the numerical inverse Laplace transformation methodologies to approx-

imate the expected tardiness. I develop two customized numerical inverse Laplace

transformation algorithms giving upper and lower bounds for the expected tardi-

ness, and another hybrid algorithm that is guaranteed to give approximations well

inside the bounds. Using the two bounds, I obtain worst-case error bounds for

the developed algorithms, and test them using a computational study. Noting that

these customized algorithms may require long computational times, I also test the

performance of three prominent general purpose numerical inverse transformation

algorithms which run faster. I finally develop a recommendation scheme on the

selection of the numerical inverse transformation algorithm given an error tolerance

and allowable computational time, and illustrate the recommendation scheme on an

example.

My study is unique in a couple of aspects. First, to the best of my knowledge, it

is the first study addressing the evaluation of expected tardiness at the moment of
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order arrival (ETA) in a multi-class queuing environment. Second, it presents three

numerical inverse Laplace transformation algorithms with worst-case error bounds.

Third, it provides a novel methodology for performance evaluation of numerical

inverse Laplace transformation methods. Fourth, the Laplace transforms for the

preemptive priority settings are rederived to generalize the previous results for µ = 1

to any service rate.

My research is expected to contribute to the dynamic due date quotation liter-

ature to extend those studies to multi-server and multi-class cases. A worthwhile

extension to my study is the consideration of class-dependent service rates, i.e., µi

for class i. This case is more complex since the total service rate depends on the

class of orders being processed, and the class of the higher priority arrival joining

in front of the order affects the ETA. Extensions to more general M/G/c or G/G/c

models are more difficult to handle, however, approximations based on the results

outlined in this chapter may provide plausible solutions.
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CHAPTER 4

Centralized and Decentralized Dynamic Price and Lead Time Quotation

1. Introduction

Recent business trends and advances in customer behavior modeling reveal the

critical role of price and lead time decisions on the demand of goods and services. In

2006, Nintendo increased the Wii prices a short time after the product was released

to keep up with the underestimated demand. On the other hand, Microsoft reduced

Xbox prices to reduce the high number of products in retailer inventories [Cachon

and Terwiesch, 2009]. The quoted lead time also has significant impact on demand of

products in real-life systems. For example, in the beginning of 2010, polycarbonate

lead times were increased from 4-6 weeks to 14-16 weeks, due to supply shortages

and over-commitments [Victory, 2010]. By employing smart pricing and lead time

quotation strategies, companies can manage their demand, increase profits, and

satisfy customers.

Dynamic pricing and lead time quotation (DPLQ), where companies determine

price and lead time quotes depending on the status of the company (e.g., congestion,

workload, inventory level) has been shown to be a quite profitable strategy. Sahay

[2007] indicates that companies from various sectors, such as apparel, automative,

and telecommunication, have recently increased their profits and revenues by im-

plementing dynamic pricing strategies. According to estimations of Accenture, the

improvement in gross margins of major retailers can increase up to $20 billion by

implementing dynamic pricing [Fleischmann et al., 2005]. Benefits of joint DPLQ

are addressed in Chapter 2, where I observe that up to 100% profit improvement

can be attained using joint DPLQ.
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DPLQ requires a high level of coordination between marketing department

(which generally sets prices, and the manufacturing department (which generally

determines lead times). However, the incoordination of marketing and manufac-

turing departments has been a major issue of today’s companies, which has been

widely discussed in trade publications and academic literature [Balasubramanian

and Bhardwaj, 2004, Crittenden, 1992, Omurgonulsen and Surucu, 2008, Pekgun

et al., 2008, Shapiro, 1977, Shaw et al., 1999]. For instance, Omurgonulsen and

Surucu [2008] state that 63.2% of the manufacturing employees in Turkish manufac-

turing industry admit that they have poor coordination with marketing department.

Technology and Manufacturing Group director of Intel Corporation indicates that

the negative impact of the incoordination between marketing and manufacturing

departments on their business is about 100M$ [Pekgun et al., 2008].

In this chapter, my goal is to analyze the inefficiencies of marketing-

manufacturing incoordination in a make-to-order company whose prices and lead

times are dynamically quoted. I first consider a fully-coordinated centralized set-

ting, where dynamic prices and lead times are determined by a central agent with

the objective of maximizing expected profits, which is defined as revenues minus

late delivery penalties. I next discuss three decentralized settings, where dynamic

price quotes are determined by marketing department with the objective of maxi-

mizing expected revenues, and dynamic lead times are determined by manufacturing

department with the objective of maximizing expected profits of the department,

which is the incentives given to the manufacturing department minus late delivery

penalties. The first decentralized setting assumes that price and lead time decisions
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are simultaneously determined, whereas the second and third settings considers the

cases manufacturing and marketing departments act in advance, respectively.

Assuming stochastic arrivals and deterministic processing times, I model the

centralized setting as finite horizon stochastic dynamic program with the objec-

tive of maximization of total discounted expected profit over a finite horizon. The

decentralized settings, on the other hand, are modeled as repeated Cournot and

Stackelberg games. I obtain a closed form solution for optimal dynamic price and

lead times centralized setting, and obtain the Markov perfect equilibrium for the

marketing and manufacturing departments under all decentralized setting. Using

these findings, I finally compare the profits obtained under the two settings.

The remainder of the chapter is organized as follows. In Section 2 I survey

the literature. I present the models for centralized and decentralized settings, and

derive the closed form solutions for them in Section 3. In Section 4, I compare the

performances of the two settings, analyze the inefficiencies of decentralized setting.

In Section 5, I conclude.

2. Literature Survey

The literature on joint price and lead time quotation is mostly focused on deter-

mination of single values of price and lead times, i.e., fixed price and lead time quo-

tation (FPLQ) to maximize company profits in make-to-order systems. Although,

both centralized and decentralized settings are analyzed by FPLQ literature, DPLQ

is only discussed under centralized settings. In Table 16 I categorize the studies

that discuss price and lead time decisions according to two criteria: (i) the price
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and lead time quotation strategy, i.e., FPLQ or DPLQ, and (ii) whether they con-

sider decentralized settings.

Table 16. Summary of literature review

Centralized only Centralized and Decentralized

FPLQ

Palaka et al. [1998], So and Song [1998], Liu et al. [2007], Pekgun et al. [2008],

Easton and Moodie [1999], Boyaci and Ray [2003], Hua et al. [2010], Xiao et al. [2010]

Ray and Jewkes [2004]

DPLQ

Plambeck [2004], Charnsirisakskul et al. [2006],

Celik and Maglaras [2008], Ata and Olsen [2009],

Feng et al. [2011]

Studies implementing FPLQ typically discuss the steady state behavior of the

system to maximize company profits. Palaka et al. [1998] consider the problem

of capacity, price and lead time selection to maximize the expected profit of the

company, which is defined as revenue minus congestion cost and late delivery penalty,

subject to a service level requirement, under an M/M/1 queuing model. This study

is extended to multiple product settings by Boyaci and Ray [2003], who consider

the substitution effect of two different products. Both of these studies assume linear

demand forms similar to my study. So and Song [1998], on the other hand, consider

the same problem under a log-linear demand function. Easton and Moodie [1999]

discuss a different setting where companies compete on price and lead time bids

that are offered to customers.

DPLQ literature mostly aims to maximize long run profits considering a finite

or infinite horizon. Plambeck [2004] considers dynamic lead time and fixed price

quotation, where the company also has the flexibility to choose the capacity, in
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order to maximize profits such that the customer orders are processed on time.

Charnsirisakskul et al. [2006] discuss the dynamic price and fixed lead time quotation

problem under deterministic processing rate similar to my study. Recently, joint

DPLQ has been implemented by Celik and Maglaras [2008] and Feng et al. [2011].

While Celik and Maglaras [2008] investigate the expediting and sequencing policies

considering a diffusion model, Feng et al. [2011] model the problem as a Markov

decision processes and focus on the derivation of optimal policies and benefits of

DPLQ, respectively.

Decentralization of price and lead time decisions are first considered by Liu et al.

[2007] and Pekgun et al. [2008]. According to Pekgun et al. [2008], marketing de-

partments, who determine price quotes, work as a revenue center with the objective

of maximizing revenues. In contrast, manufacturing departments, who are in charge

of lead time decisions, work as a cost center and strive to minimize them. In the

setting of Liu et al. [2007], the manufacturing department (that acts as a supplier)

charges the marketing department (that acts as a retailer) a wholesale price per

order, and hence, aims to maximize its own profit. In my study, I adopt the setting

of Pekgun et al. [2008], which is in line with the setting of Balasubramanian and

Bhardwaj [2004] as well. Recently Hua et al. [2010] and Xiao et al. [2010] extend Liu

et al. [2007] into a dual sourcing model where the supplier (i.e., the manufacturing

department in my setting) has the option to make independent sales, and a setting

where there exists a subcontractor between the supplier and the retailer (i.e., the

marketing department in my setting), respectively.
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My study aims to fill the void for the implementation of DPLQ under centralized

and decentralized settings. Similar to Liu et al. [2007], Pekgun et al. [2008] and Hua

et al. [2010], I analyze the centralized and decentralized settings separately, and

assess the inefficiencies of decentralized setting.

3. Model

I consider a make-to-order (MTO) manufacturing company, who produces a

single type of product. Customers arrive to the system according to a stochastic

process, and there is a single server working with a deterministic processing time of

ν. At the moment the customer arrives, she is quoted a price p, and a lead time

l by the company. The customer accepts this quote with probability f(p, l), which

is assumed to be linear and non-increasing in p and l. If the quote is rejected, the

customer leaves the system. I define the general properties of f(p, l) in Assumption

3, which is similar to Assumption 1 in Chapter 2.

Assumption 3. (i) There exist nonnegative lower bounds on price and lead time,

such that decreasing price and lead times below these lower bounds does not

change f(p, l). The lower bound on price is pmin, whereas the lower bound

on lead time is zero. Furthermore, given a lead time quote l, there exists an

upper bound on price (denoted by pmax(l)), such that any price quote above

that level is definitely rejected. Similarly, given the price quote p, there exists

an upper bound on lead time (denoted by lmax(p)), such that any price quote

above that level is definitely rejected. pmax(l) and lmax(p) are nonincreasing in

l and p, respectively. Furthermore, the maximum values of pmax(l) and lmax(p)
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are denoted as pmax and lmax, respectively. Hence, I have, lmax = lmax(pmin),

and pmax = pmax(0).

(ii) f(p, l) is linear and decreasing in p and l within θ that is defined as follows.

f(p, l) = 1− p− pmin
pmax − pmin

− l

lmax
, for (p, l) ∈ θ, where (4.1)

θ = {(p, l) ∈ <2 : pmin ≤ p ≤ pmax(l), 0 ≤ l ≤ lmax}. (4.2)

Assumption 3 (i) confines f(p, l) into [0, 1] interval. Assumption 3 (ii) defines

general properties of f(p, l) such as monotonocity in price and lead time, and lin-

earity. Although linearity assumption is restrictive for the structure of f(p, l), it

is commonly implemented in the literature due to its analytical tractibility [Boyaci

and Ray, 2003, Hua et al., 2010, Liu et al., 2007, Palaka et al., 1998, Pekgun et al.,

2008]. Similar to Chapter 2, I denote pmin as the accept all price in the remainder.

If the customer accepts the quote, then the order is placed in the queue, us-

ing customer orders are sequenced in first-come-first-serve (FCFS) discipline. If

the order is processed later than the quoted due date, a lateness penalty is paid

which increases linearly with the lateness duration at a rate of τ is incurred by the

manufacturer.

I consider four decision making schemes: centralized setting, where a central

agent makes both price and lead time decisions, and three decentralized settings

where the prices are determined by the marketing department (referred to as market-

ing henceforth), whereas lead times are determined by the manufacturing (referred

to as production henceforth) department.
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3.1. Centralized Setting (C)

I model the problem as a finite-horizon stochastic dynamic program, maximizing

the long-run expected total discounted profit of the company, with a discount rate

of 0 < α ≤ 1, where profit is defined as revenue minus lateness penalties. Note

that, the formulation in Chapter 2 does not include a discount factor unlike the

formulation in this chapter. This is due to the average reward formulation that does

not require a discount factor. In this chapter, I model the problem using a finite

horizon formulation that allows both discounted and non-discounted formulations.

In my problem, I allow α = 1, which transforms the problem into the non-discounted

cases similar to the one modeled in Chapter 2. I also note that, all the forthcoming

theoretical results hold for non-discounted case, α = 1.

To facilitate the analysis, I divide the planning horizon into equal-sized inter-

vals of arbitrarily small length, in which the probability of a customer arrival is

β, and more than one customer arrival is negligibly small, i.e., assumed to be zero

(see Bitran and Mondschein [1995] for another example who implement the same

approach). The unit time is the duration of the interval. The stages correspond to

each of these periods and the state of the system is defined as the workload of the

manufacturer expressed in terms of unit time.

I assume a finite buffer ofN time units of workload, and consider a finite planning

horizon of T periods. The revenues are immediately obtained, and delivery penalties

are paid at the time that the order is delivered to the customer. Let ΠC∗
t,i denote the

long-run optimal discounted total expected profit for periods t, t+1, . . . , T , given an

initial workload of i time units, under the centralized setting C. The optimization
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problem under C is given in Equations (4.3), (4.4), and (4.5).

ΠC∗
t,i = max

(p,l)∈θ
ΠC
t,i(p, l), (4.3)

where

ΠC
t,i(p, l) =



βf(p, l)(p− ταi+ν(i+ ν − l)+ + αΠC∗
t+1,i+ν−1), if 0 ≤ i ≤ N,

+ (1− βf(p, l))αΠC∗
t+1,i

αΠC∗
t+1,i−1, if i > N,

(4.4)

x+ = max{0, x}, and

ΠC∗
t+1,i =


ΠC∗
t+1,i−1, i > 0,

ΠC∗
t+1,0, i = 0,

(4.5)

Given an initial workload of i (i ≤ N), and the price-lead time quote pair (p, l), at

the beginning of period t, the customer arrives and places an order with probability

βf(p, l), which brings an expected discounted profit of p − ταi+ν(i + ν − l)+, and

increases the workload level to i+ ν − 1 at time t+ 1 (see the first case in Equation

(4.4)). I note that l(i + ν − l)+ denotes the lateness penalty to be paid at time

t+ i+ν, which is discounted to the time t with a discount rate of α, giving a present

value of αi+ν(i + ν − l)+. Otherwise (i.e., either the customer arrives and rejects

the quote, or does not arrive), the workload decreases by one unit at time t + 1,

given that i > 0. When i > N , no customer orders are accepted. I finally add the

following boundary condition.

ΠC∗
T,i = 0, for 0 ≤ i ≤ N. (4.6)
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For notational simplicity, I define the following parameters.

ρ =
∂f(p, l)/∂l

∂f(p, l)/∂p
=
pmax − pmin

lmax
, and, ∆ΠC

t,i = αΠC∗
t+1,i − αΠC∗

t+1,i+ν−1. (4.7)

The expression ρ is the ratio of lead time sensitivity to price sensitivity of the cus-

tomers, where high (low) ρ values indicate relatively high lead time (price) sensitive

customers. ∆ΠC
t,i is the additional burden brought by one customer order under C

in period t given a workload of i time units. The optimal solution to Equation (4.3)

is denoted as (pC∗t,i , l
C∗
t,i ), which is derived in Theorem 8.

Theorem 8. (pC∗t,i , l
C∗
t,i ) can be found as follows.

(i) If ρ > ταi+ν , then,

(pC∗t,i , l
C∗
t,i ) =



(pmin, 0), if ∆ΠC
t,i ≤ 2pmin − pmax − ταi+ν(i+ ν)(

∆ΠCt,i+pmax+ταi+ν(i+ν)

2
, 0

)
, if 2pmin − pmax − ταi+ν(i+ ν) <

∆ΠC
t,i < pmax − ταi+ν(i+ ν),

(pmax, 0), if pmax − ταi+ν(i+ ν) < ∆ΠC
t,i.

(4.8)

(ii) If ρ < ταi+ν , and i+ ν ≤ lmax then,

(pC∗t,i , l
C∗
t,i ) =



(pmin, 0), if ∆ΠC
t,i ≤ pmin − ταi+ν(lmax + i+ ν),(

pmin,
∆ΠCt,i−pmin

2ταi+ν
+ i+ν+lmax

2

)
, if pmin − ταi+ν(lmax + i+ ν) < ∆

ΠC
t,i ≤ pmin − ρ(lmax − (i+ ν)),

(pmin, i+ ν), if pmin − ρ(lmax − (i+ ν)) < ∆ΠC
t,i

≤ pmin − ταi+ν(lmax − (i+ ν)),(
∆ΠCt,i+pmax−ρ(i+ν)

2
, i+ ν

)
, if pmin − ταi+ν(lmax − (i+ ν)) < ∆ΠC

t,i

≤ pmax − ρ(i+ ν),

(pmax, 0), if pmax − ρ(i+ ν) < ∆ΠC
t,i.

(4.9)
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(iii) If ρ < ταi+ν , and i+ ν > lmax then,

(pC∗t,i , l
C∗
t,i ) =



(pmin, 0), if ∆ΠC
t,i ≤ pmin − ταi+ν(lmax + i+ ν),(

pmin,
∆ΠCt,i−pmin

2ταi+ν
+ i+ν+lmax

2

)
, if pmin − ταi+ν(lmax + i+ ν) < ∆ΠC

t,i

≤ pmin + ταi+ν(lmax − (i+ ν)),

(pmax, 0), if pmax − ρ(i+ ν) < ∆ΠC
t,i.

(4.10)

(iv) If ρ = ταi+ν , then (pC∗t,i , l
C∗
t,i ) = (pmax, 0).

Proof. All of the proofs in this chapter are given in Appendix C.

I depict the change of optimal solution in response to the increase of ∆ΠC
t,i

in Figure 10. Note that the change of (pC∗t,i , l
C∗
t,i ) depends on the value of ρ, i.e.,

whether ρ > ταi+ν or ρ < ταi+ν . When ∆ΠC
t,i is sufficiently small, optimal solution

is (pC∗t,i , l
C∗
t,i ) = (pmin, 0) under both cases. Hence, it is optimal to quote “sufficiently”

low price and lead times such that the customer definitely accepts the quote. When

ρ > ταi+ν , pC∗t,i increases with the increase of ∆ΠC
t,i, until it reaches pmax (see Figure

10(a)), which indicates that the customer definitely rejects the quote. On the other

hand, when ρ < ταi+ν , as ∆ΠC
t,i increases, pC∗t,i remain stable at pmin while lC∗t,i

increases until it reaches i+ ν (see Figure 10(b)). When, lC∗t,i reaches i+ ν, optimal

lead time quote does not increase further, since the late delivery penalties will hit

zero, however, decreases the acceptance probability of the quote. When lC∗t,i = i+ ν,

pC∗t,i increases with increase of ∆ΠC
t,i.

Theorem 8 is analogous to Theorems 1 and 2 in Chapter 2, where it is shown

that optimal price and lead time quotes depend highly on price/lead time sensitivity

of the customers. In particular, Cases (i) and (iii) provide the same results with
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p

l

pmax

pmin
0 lmaxi + ν

(a) Case I: ρ > ταi+ν

p

l

pmax

pmin
0 lmaxi + ν

(b) Case II: ρ < ταi+ν , i+ ν ≤ lmax
p

l

pmax

pmin
0 lmax i + ν

(c) Case III: ρ < ταi+ν , i+ ν > lmax

Fig. 10. Change of (pC∗t,i , l
C∗
t,i ) as ∆ΠC

t,i increases

Cases (i) and (ii) of Theorem 2, where it is shown that the optimal lead time quote

is zero, and price quote is the accept all price, respectively. In the remainder, the

customer is denoted as lead time sensitive if ρ ≥ l, and price sensitive otherwise.

3.2. Decentralized Settings

I now assume that the marketing department works as a revenue center that

determines the price with the objective of maximizing the long-run total discounted
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expected revenues with respect to price, denoted as ΠM
t,i(p, l) and given in Equation

(4.11).

ΠM
t,i(p, l) =


βf(p, l)

(
p+ αΠM∗

t+1,i+ν−1

)
+ (1− βf(p, l))αΠM∗

t+1,i, i ≤ N,

αΠM∗
t+1,i−1, i > N,

(4.11)

where,

ΠM∗
t+1,i =


ΠM∗
t+1,i−1, i > 0,

ΠM∗
t+1,0, i = 0,

(4.12)

and ΠM∗
t,i denotes the optimal total discounted revenues of marketing department

earned for periods for t, t+ 1, . . . , T , given the initial workload of i.

The production department, on the other hand, works as the cost center that

determines lead times, with the objective of minimization of total discounted ex-

pected costs. However, as stated by Pekgun et al. [2008], if this problem were a

solely cost minimization problem, a trivial solution to this problem would be to

quote lmax, which would ensure zero cost by rejecting customers. Hence, similar

to Pekgun et al. [2008], I assume a γ incentive given to production department for

each unit of production by the company. Consequently, the objective of production

department is to maximize ΠP
t,i(p, l), where,

ΠP
t,i(p, l) =



βf(p, l)(γ − ταi+ν(i+ ν − l)+ + αΠP∗
t+1,i+ν−1)

+ (1− βf(p, l))αΠP∗
t+1,i, i ≤ N,

αΠP∗
t+1,i−1, i > N,

(4.13)
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ΠP∗
t+1,i =


ΠP∗
t+1,i−1, i > 0,

ΠP∗
t+1,0, i = 0.

(4.14)

and ΠP∗
t,i denotes the optimal long-run expected total discounted profit of the pro-

duction department for periods t+1, t+2, . . . , T , given an initial workload of i time

units. The boundary conditions are given as

ΠP∗
T,i = ΠM∗

T,i = 0, for 0 ≤ i ≤ N. (4.15)

I next model the sequence of price and lead time decisions under three settings

that correspond to three different repeated games.

(i) Simultaneous decision making setting (S): Marketing and Production

determines the price and lead times simultaneously.

(ii) Production leader setting (P): Production first chooses a lead time that

is followed by the price decision of the marketing department.

(iii) Marketing leader setting (M): Marketing first chooses a price that is fol-

lowed by the lead time decision of the production department.

In all of the above games, the state i, the value functions ΠP∗
t+1,i and ΠM∗

t+1,i, and

objective functions of marketing and production are common knowledge to both

departments. I model S as a repeated Cournot game, whereas P and M are mod-

eled as a repeated Stackelberg games [Gibbons, 1992]. In all of the games I find

(i) the price pM∗t,i (l) that maximizes ΠM
t,i(p, l) given the lead time value l, and (ii)

the lead time lM∗t,i (p) that maximizes ΠP
t,i(p, l) given the lead time value p. In the

Cournot game, which is used to model S, I solve (pM∗t,i (l), l) = (p, lP∗t,i (p)) to find

103



the equilibrium. In P, I find the (lP∗t,i (p∗)), where p∗ = pM∗t,i (lP∗t,i (p∗))). That is,

production chooses the lead time decisions with the information that the market-

ing department will choose the price that will maximize its revenue given the lead

time from production department. On the other hand, in M, I find the (pM∗t,i (l∗)),

where l∗ = lP∗t,i (pM∗t,i (l∗))). That is, marketing chooses the price decisions with the

information that the production will choose the lead time that will maximize its

profit given the price from marketing department. The above equilibrium is solved

for each t = 1, 2, . . . , T and i = 0, 1, . . . , N . I assume that in case there are multiple

equilibria, Marketing and Production chooses an equilibrium that brings positive

immediate profit, (i.e., p for Marketing, and γ − ταi+ν(i + ν − l)+ for production)

to both sides, which I denote as the positive immediate profit Markov perfect equi-

librium (PIPE). If there is no PIPE, then price and lead time decisions are chosen

such that the customer definitely rejects the quote, i.e., (pM∗t,i , l
P∗
t,i ) = (pmax, 0).

I solve the problems using backward recursion, where in each state i and period t

(pM∗t,i , l
P∗
t,i ) is determined, and the optimal expected total discounted cost and profits

are computed as in Equation (4.16).

ΠM∗
t,i = ΠM

t,i(p
M∗
t,i , l

P∗
t,i ), and ΠP∗

t,i = ΠP
t,i(p

M∗
t,i , l

P∗
t,i ). (4.16)

In Theorem 9, I derive (pM∗t,i , l
P∗
t,i ) for S and P, whereas the optimal solution for

M is derived in Theorem 10. For simplicity, I define ∆ΠM
t,i and ∆ΠP

t,i that are anal-

ogously to ∆ΠC
t,i along with several other parameters and functions. Furthermore, I

provide a list of parameters in Table 17, including all parameters used in Theorems

9 and 10.

∆ΠM
t,i = αΠM∗

t+1,i − αΠM∗
t+1,i+ν−1, ∆ΠP

t,i = αΠP∗
t+1,i − αΠP∗

t+1,i+ν−1, (4.17)
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p∗t,i(l) =
1

2

(
∆ΠM

t,i + pmax − ρl
)
, Θt,i =

∆ΠP
t,i − γ

ταi+ν
+ i+ ν, (4.18)

∆t,i(x, y, z) = γ + ταi+ν

(
x

∆ΠM
t,i − z
ρ

+ y − (i+ ν)

)
, (4.19)

Ωt,i(x, y, z) = xρΘ− yρ(i+ ν) + z. (4.20)

Table 17. Defined parameters for Theorems 9 and 10

General Parameters

ψ1 = 2pmin − pmax κ1 = ∆t,i(0,−lmax, 0)

ψ2 = ρ(i+ ν) + 2pmin − pmax κ2 = ∆t,i(0, 2(i+ ν)− lmax, 0)

ψ3 = pmin κ3 = ∆t,i(0, i+ ν, 0)

ψ4 = pmax − ρ(i+ ν) κ4 = ∆t,i(0, lmax, 0)

ψ5 = pmax

Specific Parameters

S P M

κA ∆t,i(0.5, 0, pmax) ∆t,i(1, 0, pmax) –

κB ∆t,i(2, lmax, pmin) ∆t,i(3, lmax, pmin) –

κC ∆t,i(2, lmax, pmin) ∆t,i(2, lmax, pmin) –

κD ∆t,i(0.5, 1.5(i+ ν), pmax) ∆t,i(1, 2(i+ ν), pmax) –

κE ∆t,i(−1, 0, pmax) ∆t,i(−1, 0, pmax) –

ψA – – Ωt,i(1, 0, 2pmin − pmax)

ψB – – Ωt,i(3, 0, pmax)

ψC – – Ωt,i(2, 0, pmax)

ψD – – Ωt,i(−1, 0, pmax)

ψE – – Ωt,i(2, 3, pmax)

ψF – – Ωt,i(3, 4, pmax)

l∗1
1
2

(Θt,i + lmax) 1
2

(Θt,i + lmax) 1
2

(Θt,i + lmax)

l∗2
2
3

(
Θt,i +

pmax−∆ΠMt,i
2ρ

)
1
2

(
Θt,i +

pmax−∆ΠMt,i
ρ

)
1
4

(
3Θt,i +

pmax−∆ΠMt,i
ρ

)
l∗3

1
ρ

(
∆ΠMt,i + pmax − 2pmin

)
1
ρ

(
∆ΠMt,i + pmax − 2pmin

)
–

p∗4 – – Ωt,i(1, 0, pmax)

p∗5 – – Ωt,i(1, 2, pmax)
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Theorem 9. Unique Markov perfect equilibrium of (pM∗t,i , l
P∗
t,i ) under settings S and

P can be found as follows.

(i) If i+ ν ≤ lmax then

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,∆ΠP

t,i ≤ κ1,

(p∗t,i(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,∆ΠP

t,i ≤ κA,

(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψ1, κ1 < ∆ΠP
t,i ≤ κ2,

or ψ1 < ∆ΠM
t,i ≤ ψ2, κC < ∆ΠP

t,i ≤ κ2,

(pmin, l
∗
3), if ψ1 < ∆ΠM

t,i ≤ ψ2, κ
P
B < ∆ΠP

t,i ≤ κPC ,

(pmin, i+ ν), if ∆ΠM
t,i ≤ ψ2, κ2 < ∆ΠP

t,i ≤ κ3,

(p∗t,i(l
∗
2), l∗2), if ψ1 < ∆ΠM

t,i ≤ ψ2, κA < ∆ΠP
t,i ≤ κB,

or ψ2 < ∆ΠM
t,i ≤ ψ4, κA < ∆ΠP

t,i ≤ κD,

or ψ4 < ∆ΠM
t,i ≤ ψ5, κA < ∆ΠP

t,i ≤ κE ,

(p∗t,i(i+ ν), i+ ν), if ψ2 < ∆ΠM
t,i ≤ ψ4, κD < ∆ΠP

t,i ≤ κ3,

(pmax, 0), otherwise.

(4.21)
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(ii) If i+ ν > lmax then

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,∆ΠP

t,i ≤ κ1,

(p∗t,i(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,∆ΠP

t,i ≤ κA,

(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψ1, κ1 < ∆ΠP
t,i ≤ κ4,

or ψ1 < ∆ΠM
t,i ≤ ψ3, κC < ∆ΠP

t,i ≤ κ4,

(pmin, l
∗
3), if ψ1 < ∆ΠM

t,i ≤ ψ3, κ
P
B < ∆ΠP

t,i ≤ κPC ,

(p∗t,i(l
∗
2), l∗2), if ψ1 < ∆ΠM

t,i ≤ ψ3, κA < ∆ΠP
t,i ≤ κB,

or ψ3 < ∆ΠM
t,i ≤ ψ5, κA < ∆ΠP

t,i ≤ κE

(pmax, 0), otherwise.

(4.22)

In Figure 11, I depict the change of (pM∗t,i , l
P∗
t,i ) for i + ν ≤ lmax, depending on

the values of ∆ΠM
t,i and ∆ΠP

t,i, where changes of ∆ΠM
t,i and ∆ΠP

t,i are depicted on

horizontal and vertical axes, respectively. I note that whenever i+ ν ≤ lmax, I have

κ1 ≤ κ2 ≤ κ3, and ψ1 ≤ ψ2 ≤ ψ4 ≤ ψ5 as shown in the sorted order in Figure 11.

Furthermore, I have κA ≤ κB ≤ κC ≤ κ2 whenever ψ1 < ∆ΠM
t,i ≤ ψ2, κA ≤ κD ≤ κ3

whenever ψ2 < ∆ΠM
t,i ≤ ψ4, and κA ≤ κE whenever ψ4 < ∆ΠM

t,i ≤ ψ5, as illustrated.

In Theorem 9, I observe a similar structure to the one found in Theorem 8. If

the burden values ∆ΠM
t,i and ∆ΠP

t,i are sufficiently small, the customer is quoted

(pmin, 0) to guarantee the acceptance of the order. As ∆ΠM
t,i and ∆ΠP

t,i increase,

pM∗t,i and/or lP∗t,i increase until the point where the customer definitely rejects the

order. If ∆ΠM
t,i is increased solely, pM∗t,i increases from pmin to p∗(0), and reaches

pmax eventually, while lM∗t,i is kept constant at zero. Similarly as ∆ΠP
t,i increases,
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ψ1 ψ2 ψ4 ψ5

κA

κ2

κ3

κB

κ1

κD

κE

(p∗t,i(0), 0)

(pmin, 0)

(p∗t,i(d
∗
2), d

∗
2)

(p∗t,i(i+ ν), i+ ν)

(pmin, d
∗
1)

(pmin, i+ ν)

(pmin, dmax)

(pmax, 0)

∆M
t,i increases

increases

∆P
t,i

κC

(pmin, d
∗
3)

Fig. 11. Change of (pM∗t,i , l
P∗
t,i ) as a function of the ∆ΠM

t,i and ∆ΠP
t,i values under

settings S and P when i+ ν ≤ lmax.

lM∗t,i increases from zero to i + ν while pM∗t,i remains constant at pmin. I conclude

that, increasing of ∆ΠM
t,i and ∆ΠP

t,i increases pM∗t,i and lP∗t,i , respectively.

Theorem 10. Unique Markov perfect equilibrium of (pM∗t,i , l
P∗
t,i ) under setting M can

be found as follows.
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(i) If i+ ν ≤ lmax
2 and ∆ΠP

t,i ≤ κ2, then

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠP
t,i ≤ κ1,∆ΠM

t,i ≤ ψ1,

(pmin, l
∗
1), if κ1 < ∆ΠP

t,i ≤ κ2,∆ΠM
t,i ≤ ψA,

(p∗t,i(0), 0), if ∆ΠP
t,i ≤ κ1, ψ1 < ∆ΠM

t,i ≤ ψ5,

or κ1 < ∆ΠP
t,i ≤ κ2, ψC < ∆ΠM

t,i ≤ ψ5,

(p∗t,i(Θt,i), l
∗
2), if κ1 < ∆ΠP

t,i ≤ κ2, ψA < ∆ΠM
t,i ≤ ψB,

(p∗4, 0), if κ1 < ∆ΠP
t,i ≤ κ2, ψB < ∆ΠM

t,i ≤ ψC .

(pmax, 0), otherwise.

(4.23)

(ii) If lmax
2 < i+ ν ≤ lmax and ∆ΠP

t,i ≤ κ2, or if lmax < i+ ν and ∆ΠP
t,i ≤ κ4, then

(pM∗t,i , l
P∗
t,i ) =



(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψA,

(p∗t,i(Θt,i), l
∗
2), if ψA < ∆ΠM

t,i ≤ ψD,

(pmax, 0), otherwise.

(4.24)

(iii) If lmax
2 < i+ ν ≤ lmax and κ2 < ∆ΠP

t,i ≤ κ3, then

(pM∗t,i , l
P∗
t,i ) = argmax{ΠM

t,i(p
∗
A, l
∗
A),ΠM

t,i(p
∗
B, l
∗
B)}, (4.25)

where

(p∗A, l
∗
A) =



(pmin, i+ ν), if ∆ΠM
t,i ≤ ψ2,

(p∗t,i(i+ ν), i+ ν), if ψ2 < ∆ΠM
t,i ≤ ψE ,

(p∗5, i+ ν), if ψE < ∆ΠM
t,i ,

(4.26)
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(p∗B, l
∗
B) =



(p∗5, i+ ν), if ∆ΠM
t,i ≤ ψF ,

(p∗t,i(Θt,i), l
∗
2), if ψF < ∆ΠM

t,i ≤ ψD,

(pmax, 0) if ψD < ∆ΠM
t,i .

(4.27)

(iv) If i+ ν ≤ lmax
2 and κ2 < ∆ΠP

t,i ≤ κ3 then

(pM∗t,i , l
P∗
t,i ) = argmax{ΠM

t,i(p
∗
A, l
∗
A),ΠM

t,i(p
∗
C , l
∗
C)}, (4.28)

where

(p∗C , l
∗
C) =



(p∗5, i+ ν), if ∆ΠM
t,i ≤ ψF ,

(p∗t,i(Θt,i), l
∗
2), if ψF < ∆ΠM

t,i ≤ ψB,

(p∗4, 0), if ψB < ∆ΠM
t,i ≤ ψC ,

(p∗t,i(0), 0), if ψC < ∆ΠM
t,i ≤ ψ5,

(pmax, 0), if ψ5 < ∆ΠM
t,i .

(4.29)

The change of (pM∗t,i , l
P∗
t,i ) for case (i) of Theorem 10 is depicted in Figure 12

Similar to my observations from Figure 11, pM∗t,i and lP∗t,i increase with the in-

creases in ∆ΠM
t,i and ∆ΠP

t,i. In contrast, however, I observe that, the increase of

∆ΠM
t,i may lower the optimal lead time quotes. For example, when κ1 < ∆ΠP

t,i ≤ κ2,

lP∗t,i is strictly positive if ∆ΠM
t,i < ψB, and zero otherwise.

4. Comparison of Centralized and Decentralized Settings

In this section, I conduct a numerical study to analyze the total discounted

expected profits (TDEP) earned by the company under C, S, P, and M settings for
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∗
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(pmax, 0)

(pmax, 0)

∆M
t,i

increases

∆P
t,i

increases

κ2

ψC

Fig. 12. Change of (pM∗t,i , l
P∗
t,i ) as a function of ∆ΠM

t,i and ∆ΠP
t,i for part (i) of

Theorem 10

a length of T periods. Noting that γ can be determined by the company, TDEP’s

are denoted as ΠC ,ΠS(γ),ΠP (γ) and ΠM (γ), for C, S, P, and M, respectively.

I first analyze the incentive values that maximize the performance of the decen-

tralized settings, i.e., ΠS(γ),ΠP (γ) and ΠM (γ) (I refer such an incentive value as the

optimal incentive, and denote it as γ∗), and measure the difference of ΠS(γ∗),ΠP (γ∗)

and ΠM (γ∗) with ΠC . In the second part of my analysis, I focus on the impact of

three fundamental parameters on the TDEP: (i) traffic intensity, which is quanti-

fied by βν, i.e., the ratio of the arrival rate to the processing rate, (ii) accept all

price, pmin, and (iii) price/lead time sensitivity of the customers obtained by the

comparison of ρ and τ .

Assuming that the company starts the business with zero inventory at period t =

0, ΠC is computed by evaluating ΠC∗
0,0, using the closed-form solutions of Theorem

8 and backward recursion. To evaluate ΠS(γ),ΠP (γ) and ΠM (γ), I first compute

(pM∗t,i , l
P∗
t,i ), i ∈ {0, 1, . . . , N}, t ∈ {0, 1, . . . , T} for S, P and M using the closed form
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solutions from Theorems 9 and 10, and backward recursion. Given these sets of

optimal solutions, I compute company TDEPs similar to the centralized case, except

for the fact that ΠC∗
t,i is computed by ΠC

t,i(p
M∗
t,i , l

P∗
t,i ). One clearly observes that setting

C is guaranteed to yield highest TDEPs, ensuring that ΠC ≥ ΠX(γ), X ∈ {S, P,M}.

I report the TDEP percentage differences between centralized and decentralized

settings (which are denoted as ∆X(γ), X ∈ {S, P,M}) computed as

∆X(γ) =
ΠC −ΠX(γ)

ΠC
100%, X ∈ {S, P,M}. (4.30)

I next provide a discussion about the selection of parameter ranges used through-

out the numerical analysis, and illustrate the practical meaning of my selections

using an example case.

• Noting that each period is taken to be absolutely short, β and 1/ν are chosen

to be sufficiently small. I fix ν = 20 in all instances, and vary β in the range

[0.030,0.045] to obtain the traffic intensity levels ranging between 60% and

90%.

• pmin is tested in a range of [10,50].

• τ and ρ are varied in a range of [0.025,0.125] to represent price and lead time

sensitive customer cases.

• lmax is tested in a range of [60,140].

• I set pmax = ρlmax + pmin for changing values of pmin, ρ and lmax following

Equation (4.7).

• α is set to 0.9999.
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• Considering that α is set to 0.9999, the future value of one dollar decreases

down to $0.01 in approximately 46,000 periods. Hence, I set T = 46, 000,

noting that, increasing T further does not affect the TDEPs significantly,

while drastically increasing the computational burden.

• To determine the value of N , I conduct a preliminary analysis and determine a

sufficiently big N value that minimizes the impact of buffer on TDEPs. I test

N ∈ {150, 200, . . . , 400} using three instances, and observe that the impact of

increasing N from 250 to 300 on the TDEP values is less than 0.01 on average.

Hence, I set N = 250.

4.1. Optimal Incentives

In this section, I seek for the value of γ∗X that minimizes ∆X(γ) for each X ∈

{S, P,M} (i.e., maximizes ΠX(γ)) using the numerical analysis settings in Table 18.

Table 18. Numerical analysis settings in Section 4.1

Traffic intensity Accept All Price Price/lead time sensitivity

β = 0.0375 pmin ∈ {10, 30, 50} ρ, τ ∈ {0.025, 0.05, 0.075, 0.1, 0.125}

lmax ∈ {60, 100, 140}

I test three levels of pmin, a single level of traffic intensity, and five levels of each

ρ and τ . In Sections 4.2 and 4.3, I analyze the impact of traffic intensity and pmin

in more detail. For all instances, I evaluate ∆X(γ) for integer values of γ, and find

γ∗X . My preliminary analysis indicates that under the parameter settings listed in
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Table 18, increasing γ above a value of 60 does not decrease ∆X(γ). Hence, I test

for all γ ∈ {0, 1, 2, . . . , 59, 60}.

In Figures 13(a) and 13(b), I plot the change of ∆X(γ) for all X ∈ {S, P,M} in

γ, for two sample instances.

γ

∆(γ)

P

S

M

(a) Instance 1: pmin = 10, lmax = 100, l = 0.05, ρ = 0.1

γ

∆(γ)

P, S, M

(b) Instance 2: pmin = 30, lmax = 100, l = 0.1, ρ = 0.05

Fig. 13. Change of ∆X(γ) with respect to γ
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In both sample instances, I observe decrease in ∆X(γ) up to a point, which is a

function of pmin, and the increase in ∆X(γ) beyond this γ value. In the first instance,

∆P (γ), ∆S(γ) and ∆M (γ) curves differ significantly, where I have γ∗P = 17, γ∗S =

10, γ∗M = 11, ∆P (γ∗P ) = 2.15%, ∆S(γ∗S) = 2.11%, and ∆M (γ∗M ) = 1.20%. On

the other hand, all three curves behave quite similarly in the second instance, where

I obtain γ∗P = γ∗S = γ∗M = 30, and ∆P (γ∗P ) = ∆S(γ∗S) = ∆M (γ∗M ) = 0.

Figures 13(a) and 13(b) reveal three crucial observations: (i) Optimal incentive

values are typically quite close to pmin, with an exception in the first instance for

setting P, (ii) using the optimal incentives, ∆X(γ), X ∈ {S, P,M} can be decreased

down to 1 to 2%, and (iii) the accept all price, pmin, have significant impact on

∆X(γ∗). I analyze (iii) in Section 4.3, and now discuss (i) and (ii) in more detail.

To observe the value of offering optimal incentives, in Tables 19 and 20, I provide

the average ∆X(γ∗) and ∆X(0) values for ρ, τ ∈ {0.025, 0.05, 0.075, 0.1, 0.125} and

X ∈ {S, P,M}, respectively.

Observation 10. Offering optimal incentives improves the performances of all de-

centralized settings significantly.

As observed in Table 19, by offering optimal incentives ∆X(·) can be decreased

down to 1% on the average. On the other hand, when no incentives are offered

∆X(·) averages are above 13%, and reach up to 27% (see Table 20). This reveals

the importance of offering optimal incentives to maximize the performance of all

decentralized settings. In order to analyze the performance of offering pmin as the

incentive, I present the average ∆X(pmin) values in Table 21.
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Table 19. Average ∆X(γ∗) Values

(a) ∆S(γ∗)

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.13% 0.01% 0.00% 0.00% 0.00%

0.075 0.24% 0.45% 0.02% 0.00% 0.00%

0.1 0.25% 0.58% 0.66% 0.02% 0.00%

0.125 0.22% 0.58% 0.86% 0.83% 0.03%

(b) ∆P (γ∗)

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.13% 0.01% 0.00% 0.00% 0.00%

0.075 0.24% 0.45% 0.02% 0.00% 0.00%

0.1 0.25% 0.59% 0.68% 0.02% 0.00%

0.125 0.22% 0.58% 0.86% 0.86% 0.03%

(c) ∆M (γ∗)

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.05% 0.03% 0.13% 0.00% 0.00%

0.075 0.14% 0.21% 0.04% 0.11% 0.00%

0.1 0.17% 0.30% 0.31% 0.08% 0.29%

0.125 0.16% 0.33% 0.39% 0.37% 0.08%

Observation 11. Offering pmin incentives in decentralized settings often yields

TDEP values that are close to the case where optimal incentives are offered.

116



Table 20. Average ∆X(0) values

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 26.58% 22.16% 18.58% 15.87% 13.65%

0.05 26.69% 22.17% 18.58% 15.87% 13.65%

0.075 26.98% 22.85% 18.60% 15.87% 13.65%

0.1 27.45% 23.70% 19.85% 15.89% 13.65%

0.125 27.95% 24.51% 21.00% 17.40% 13.68%

One observes that average ∆X(pmin) values are typically below 2%, with some

exceptions for setting P where ρ = 0.125. In particular, ∆S(pmin) and ∆S(γ∗)

values are quite close to each other where the largest observed difference is 0.54%

when ρ = 0.125 and l = 0.075. The differences between ∆P (pmin) and ∆P (γ∗),

on the other hand, are larger and may exceed 2%. However, one still observes a

huge difference between the averages of ∆X(pmin) and ∆X(0) in accordance with

Observation 11.

In summary, my analysis reveals that average ∆X(γ∗) values are below 1%, and

average ∆X(pmin) values are below 3%. However, one notes that the numerical

analysis in this section are conducted using three values of pmin and single value of

traffic intensity. In Sections 4.2 and 4.3, I explore wider ranges of these parameters

in an attempt to generalize my observations.

I next analyze the performances of decentralized settings with respect to ρ and

τ .

Observation 12. S and P perform better than M when customers are price sensi-

tive. M performs better than S and P when customers are lead time sensitive.
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Table 21. Average ∆X(pmin) Values

(a) ∆S(pmin)

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.13% 0.01% 0.00% 0.00% 0.00%

0.075 0.25% 0.47% 0.02% 0.00% 0.00%

0.1 0.29% 0.59% 0.87% 0.02% 0.00%

0.125 0.25% 0.59% 1.07% 1.37% 0.03%

(b) ∆P (pmin)

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.13% 0.01% 0.00% 0.00% 0.00%

0.075 0.41% 0.95% 0.02% 0.00% 0.00%

0.1 0.35% 2.34% 1.38% 0.02% 0.00%

0.125 0.23% 3.04% 2.84% 1.61% 0.03%

(c) ∆M (pmin)

ρ\l 0.025 0.05 0.075 0.1 0.125

0.025 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.06% 0.21% 1.06% 0.00% 0.00%

0.075 0.16% 0.29% 0.54% 0.85% 0.01%

0.1 0.22% 0.32% 0.58% 1.10% 1.38%

0.125 0.21% 0.33% 0.61% 1.24% 0.79%

Recalling that customers are price (lead time) sensitive when ρ < τ (ρ > τ)

the results given in the upper-right (lower-left) triangles, in each 5 × 5 =25 cells

presented in Tables 19 and 21. One observes that in both tables, all of the average

∆X(·) values in the upper-right triangles of S and P settings are lower than that
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are in the upper-right triangles of M. For example, all of the values observed in

upper-right triangles of S and P in Table 21 are 0.00%, whereas I observe average

∆X(·) values of 1.06%, 0.85% in the upper-right triangles of M. In contrast, the

lower-left triangles point to the superior performance of M, where each average

∆M (·) is lower than either of the corresponding ∆S(·) and ∆P (·) averages in Tables

19 and 21. As a result, I reach the conclusion in Observation 12.

A more detailed investigation on Tables 19 and 21 reveals two more crucial

observations: (i) average ∆P (γ∗P ) and ∆S(γ∗S) values are quite close to each other,

and (ii) average ∆S(pmin) values are always less than ∆P (pmin). In my analysis in

Sections 4.2 and 4.3, I only compute ∆X(pmin) for all X ∈ {S, P,M} to observe the

performance of pmin choice as the incentive. In addition, to improve the performance

of incentivization scheme, I propose a simple decision rule, which is denoted as DR

and implements M when customers are lead time sensitive (i.e., ρ > τ), and S

otherwise (i.e., ρ > τ).

4.2. Impact of Traffic Intensity

In this section, I analyze the impact of βν on the performances of S, P, M and

DR. I compute ∆X(pmin) for all X ∈ {S, P,M,DR} using the numerical analysis

setting given in Table 22 that tests traffic intensity levels of 0.6, 0.62, . . . , 0.9.

Table 22. Numerical analysis settings in Section 4.2

Traffic intensity Accept All Price Price/lead time sens.

β ∈ {0.030, 0.031, . . . , 0.045} pmin ∈ {10, 30, 50} ρ, τ ∈ {0.05, 0.075, 0.1}

lmax ∈ {60, 100, 140}
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The average ∆X(pmin) for X ∈ {S, P,M,DR} values for β ∈

{0.030, 0.031, . . . , 0.045} are plotted in Figure 14.

S

P

βν

∆X(pmin)

M

DR

Fig. 14. The impact of traffic intensity on ∆X(pmin) for X ∈ {S, P,M,DR}

Observation 13. Decentralized settings perform significantly worse under higher

traffic intensity. Furthermore, DR outperforms all decentralized settings, when pmin

is offered as the incentive.

As observed in Figure 14, ∆X(pmin) averages increase slightly as the traffic in-

tensity increases. Although S performs better than both M and P, all decentralized

settings are outperformed by DR, which gives a maximum average ∆DR(pmin) of

0.25% when traffic intensity is 0.90%. The superior performance of DR can be

attributed to improved performance of M and S for lead time and price sensitive

customer cases, respectively. In addition, I note that ∆DR(pmin) is an upper bound

on ∆DR(γ∗DR). Hence, one can obtain even better results by implementing optimal

incentive values.
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4.3. Impact of the Accept All Price

I now analyze the impact of pmin on ∆X(pmin) using the levels given in Table

23.

Table 23. Numerical analysis settings used in Section 4.3

Traffic intensity Accept All Price Price/lead time sens.

β = 0.0375 pmin ∈ {5, 6, . . . , 50} ρ, τ ∈ {0.05, 0.075, 0.1}

lmax ∈ {60, 100, 140}

Averaged ∆X(pmin) values for pmin values changing from 5 to 50 are illustrated

in Figure 15.

S

P

pmin

∆X(pmin)

M

DR

Fig. 15. The impact of accept all price on ∆X(pmin) for X ∈ {S, P,M,DR}

Observation 14. When pmin is offered as the incentive, decentralized settings per-

form better as the accept all price increases.
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The averaged ∆X(pmin) values decrease in pmin with some exceptions under

M. Unlike the previous observations, I observe that the averaged ∆X(pmin) values

are greater than 1% in particular when pmin is relatively small. For example, for

pmin = 5, I have averaged ∆X(pmin) values of 3.63%, 2.63%, 2.16% and 1.47% for P,

M, S and DR, respectively. These results reveal the superior performance of DR,

which provides an improvement of 31.8% over the performance of S when pmin = 5.

5. Conclusion

In this chapter, I discuss the impact of centralization of price and lead time

decisions in a make-to-order company, whose price and lead time decisions are dy-

namically determined. Assuming deterministic processing times and stochastic ar-

rivals, I model the centralized setting using a finite horizon stochastic dynamic pro-

gramming formulation with the objective of maximizing total discounted expected

profits, where profit is defined as revenues minus late delivery penalties. In the

decentralized setting, marketing and manufacturing departments aim to maximize

total discounted expected revenues and profits, respectively, where the profit of man-

ufacturing department is defined as the incentive given for each unit of production

minus the late delivery penalty. I consider three decision making sequences. In the

marketing leader game, which is modeled using a repeated Stackelberg game, price

decisions are determined in advance by the marketing department, which is followed

by the lead time decision of the manufacturing department. In the manufacturing

leader game, which is modeled similarly using a repeated Stackelberg game, lead

decisions of manufacturing are followed by the price decisions of the marketing de-

partment. On the other hand, simultaneous setting represents the case where both
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departments act simultaneously, and is modeled using a repeated Cournot game. I

derive optimal solutions for the centralized setting, and Markov perfect equilibria

for all decentralized settings.

Using the derived optimal solutions, I conduct a numerical analysis to compute

the total discounted expected profit differences of centralized and decentralized set-

tings that yields several crucial findings: (i) using the optimal incentives, the profit

differences can be decreased below 1% on the average, (ii) offering the accept all price

(pmin) as the incentive, the profit differences can be decreased to below 1% when the

accept all price is sufficiently high. (iii) marketing leader setting outperforms other

decentralized settings when the customers are lead time sensitive, (iv) production

leader setting and simultaneous setting perform better than the marketing-leader

setting when customers are price sensitive, (v) increase of the accept all price and

traffic intensity decreases and increases the profit differences, respectively. Using

these results, I develop a simple decision rule that chooses accept all price as the

incentive, marketing leader (simultaneous) setting when customers are lead time

(price) sensitive, which is shown to outperform all decentralized settings.

As the future work, I plan to focus on two different directions. First, I will

consider the decentralized settings where the marketing and manufacturing depart-

ments do not have complete information about each other’s objective function, and

objective function values. I will focus on the derivation of the perfect Markov equi-

librium, and analyze the profits obtained under this imperfect information case.

Second, I will focus on the cases where the price and lead times are not dynamically

quoted, similar to analysis conducted in Chapter 2. I plan to answer the research
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question “Should companies focus on the coordination of the price and lead time

decisions, or dynamic quotation strategies in order to improve their profits?”
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CHAPTER 5

Conclusions

1. Summary of Results and Contributions

In this dissertation, I discuss the dynamic pricing and lead time quotation prob-

lem that is faced by make-to-order manufacturers. The manufacturer produces a

single type of product, receives inquiries from customers, and quotes a price for

the product and a delivery lead time to them. Late deliveries are penalized. The

problem seeks for the optimal price and lead time decisions of the manufacturers

that maximizes the company profits in the long run.

In Chapter 2, I discuss the problem of price and lead time quotation in a make-

to-order system with two customer classes: (1) contract customers whose orders are

practically always accepted and fulfilled based on a contract price and lead time set

up at the beginning of the time horizon, and (2) spot purchasers who arrive over time

and are quoted a price and lead time pair dynamically. The objective is to maximize

the long run expected average profit per unit time, where profit from a customer

is defined as revenues minus lateness penalties incurred due to lead time violations.

I first model the dynamic quotation problem of the spot purchasers as an infinite

horizon Markov decision process, given a fixed price and lead time for contract

customers. I analyze the impact of price and lead time sensitivity of customers on

the optimal price and lead time decisions for spot purchasers, and characterize the

optimal policy. I explore the benefits of dynamic quotation in comparison to the

use of fixed price and lead times, and provide recommendations for manufacturers.

I finally analyze the optimal contract terms given the dynamic quotation strategy

for spot purchasers, and discuss the profit improvements offered by the optimal mix

of spot and contract customers.
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There are two main theoretical contribution of this chapter. First is the the-

orems demonstrating the impact of price and lead time sensitivity on the optimal

price and lead time decisions. Although price and lead time quotation literature

demonstrate similar results, the papers in the literature use simple non-dynamic

models with relatively simple linear demand functions. Second, I provide several

theorems that reduce the action spaces in the MDP formulations, and in turn, allow

huge computational time savings. This is a significant contribution to the MDP

literature that typically suffer from the high computational effort due to curse of

dimensionality. As the practical contribution, this chapter provides useful recom-

mendations for manufacturers about whether the dynamic price and/or lead time

quotation strategies should be implemented, and whether the manufacturers should

spend effort in optimizing their customer mix, or simply focus on contract customers

(spot purchasers).

My model formulation in Chapter 2, requires computation of expected lateness

in multi-class priority queuing systems. Hence, in Chapter 3, I discuss the evalua-

tion of expected tardiness of an order at the time of arrival in an M/M/c queuing

system with N priority classes, considering both nonpreemptive and preemptive ser-

vice disciplines. Upon arrival, a customer order is quoted a lead time, and placed in

the queue according to the priority class of the customer. Orders within the same

priority class are processed on a first-come, first-served basis. I derive the Laplace

transforms of the expected tardiness of the order given the quoted lead time, pri-

ority class of the order, and system status. For the special case of single priority

class, the Laplace transform can be inverted into a closed-form expression. For the
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case with multiple priority classes, a closed-form expression cannot be obtained,

hence, I develop three customized numerical inverse Laplace transformation algo-

rithms. Two of these algorithms provide upper and lower bounds for the expected

tardiness under a simple condition on system parameters. Using this property, I ob-

tain error bounds for my customized algorithms; such bounds are not available for

general purpose numerical inversion algorithms in the literature. Next, I develop a

novel methodology to compare the precision of general purpose numerical inversion

algorithms and analyze the performances of three algorithms from the literature.

Finally, I provide a recommendation scheme given computational time and error

tolerances of the decision maker.

This chapter contributes to the academic literature in two ways. First, it de-

velops a methodology for the accurate estimation of expected tardiness that estab-

lishes an important step toward developing due date quotation policies in a mul-

ticlass queue. This contributes to the due date quotation literature that has been

largely focused on single-class queues. Second, the novel numerical inverse Laplace

transformation algorithm comparison methodology allows the comparison of algo-

rithms using non-invertible Laplace transforms, which has not been achieved in

Laplace transformation literature to the best of my knowledge. Similar to Chapter

2, this chapter provides a recommendation scheme for manufacturers as a significant

practical contribution. This scheme helps the manufacturers choose their tardiness

computation algorithm given a computational time and late delivery penalty esti-

mation error tolerance. This recommended tardiness computation algorithm allows

manufacturers to determine accurate and timely due date decisions.
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In Chapter 4 I discuss the dynamic price and lead time quotation problem in a

make-to-order system under two decision making settings: (1) Centralized setting

considers a central agent determining price and lead times with the objective of

maximizing total discounted expected profits, and (2) decentralized setting assumes

that price and lead time decisions are taken respectively by marketing and manu-

facturing departments. The objective of marketing department is to maximize total

discounted expected revenues, whereas manufacturing department strives to max-

imize total discounted expected profits of the department, which is defined as the

incentive offered for each unit of production minus late delivery penalties. I consider

three decision making sequences under decentralized setting: (1) marketing leader

setting, where marketing determines the prices in advance, (2) manufacturing leader

setting, where manufacturing determines lead times in advance, and (3) simultane-

ous setting, where both departments take decisions simultaneously. I derive closed

form solutions for all settings, and discuss the impact of price and lead time sen-

sitivity of customers on optimal solutions. I next analyze the inefficiencies of the

decentralized setting in comparison to centralized decision making. Numerical anal-

ysis results reveal that performance of decentralized settings can be significantly

increased by the choice of right incentives. Furthermore, production leader and si-

multaneous settings perform better than marketing leader setting when customers

are price sensitive, whereas marketing leader setting outperforms the other two set-

tings when the customers are lead time sensitive.

Although dynamic price and lead time quotation, and decentralization of price

and lead time decisions are widely discussed in the literature, to the best of my
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knowledge, Chapter 4 is the first study that considers the decentralization of price

and lead time decisions under a dynamic quotation environment. I provide theoret-

ical results to determine optimal price and lead time decisions under the decentral-

ized setting, as well as the centralized setting where decisions are coordinated similar

to Chapter 2. For the practical contribution, an incentivization scheme is recom-

mended. This scheme minimizes the negative impacts of the lack of coordination,

often times yielding to close profits to the fully coordinated centralized case.

2. Future Work

This dissertation can be extended in several directions. First, one can relax the

assumption of exponentially distributed inter-arrival times and processing times, and

focus on the research question “how do the optimal price and lead time decisions

found in Chapters 2 and 4 perform in an environment where inter-arrival time and

processing time distributions are not exponential?” However, in this case, obtaining

the optimal price and lead time decisions requires an MDP model with additional

state variables to record the amount of time the product is under process, and the

amount of time since the last order arrival. Hence, the MDP formulation would be

unsolvable due to the huge state space. One way to overcome this complication is

to develop a simulation study. Using the simulation study, one can compare the

performances of optimal price and lead time decisions obtained in this dissertation,

and simple price and lead time quotation strategies.

In Chapters 2 and 4, the models assume that arrival rate and acceptance prob-

ability of the customers does not change over time. Second, one can consider the

case, where the customers keep a memory of previously quoted prices and lead

129



times. Thus, high (low) prices may decrease (increase) the future arrival rate of the

customers. Similarly, unsatisfied (satisfied) lead times may decrease (increase) the

acceptance probability of a given quote. This problem can be modeled as an MDP

similar to Chapter 2 and 4, however, the extension requires state parameters to keep

the memory of previously quoted prices and lead times. Using this research problem

one can answer the following research questions: What is the impact of customer

memory on the optimal price and lead time decisions? What are the negative con-

sequences of ignoring customer memory? What is the positive impact of customer

memory consideration on the service levels, i.e., proportion of orders met on time?

Third, price and lead time quotation problem can be extended to multiple prod-

uct case in several ways. One interesting research direction is the case where there

are multiple products that have different demand functions (i.e., acceptance proba-

bility functions) and are produced by the same server. These products may also be

substitute or complementary of each other, and thus, sale of any particular prod-

uct increases or decreases of the demand of the other, respectively. The intriguing

research questions in this problem are: what is the optimal capacity allocation be-

tween the two products? what is the optimal production schedule of the server?,

how do the substitution effects impact the optimal price, lead time and scheduling

decisions?
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In this Appendix, I provide the proofs my Propositions, Lemmas and Theorems,

two additional Theorems, and detailed discussion about my numerical analysis set-

tings and results.

1. Proofs of Propositions, Lemmas and Theorems in Chapter 2

Proof of Lemma 1. Using Equation (2.3) and Leibnitz’s derivation rule under the

integral sign, I get

∂LSi+j(l)

∂l
= τS

∫ ∞
l

∂(t− l)fi+j+1(t)

∂l
dt = −τS

∫ ∞
l

fi+j+1(t)dt = τS(Fi+j+1(l)− 1).

(A.1)

where Fi+j+1(·) denotes the cumulative distribution function of TIS for a spot

purchaser order, who upon arrival finds the i + j orders in the system. Since,

Fi+j+1(l) < 1 for all d ≥ 0, ∂LSi+j(l)/∂l is negative and LSi+j(l) is hence decreasing

in l. To prove convexity, I differentiate one more time to obtain

∂2LSi+j(l)

∂l2
= τSfi+j+1(l) ≥ 0, for all l ≥ 0, (A.2)

which ensures that LSi+j(l) is convex.

Proof of Theorem 1. The proof of Theorem 1 requires the following Lemma.

Lemma 2. If p ≥ LSi+j(l)+∆h∗i,j,k then ∂2γi,j,k(p, l)/∂p∂l ≤ 0, ∂2γi,j,k(p, l)/∂p
2 ≤ 0

and ∂2γi,j,k(p, l)/∂l
2 ≤ 0 hold.

Proof. By differentiating γi,j,k(p, l), I get the following,

∂2γi,j,k(p, l)

∂p2
=
∂2fS(p, l)

∂p2
(p− LSi+j(l)−∆h∗i,j,k) + 2

∂fS(p, l)

∂p
, (A.3)

∂2γi,j,k(p, l)

∂l2
=
∂2fS(p, l)

∂l2
(p−LSi+j(l)−∆h∗i,j,k)−2

∂fS(p, l)

∂l

∂LSi+j(l)

∂l
−fS(p, l)

∂2LSi+j(l)

∂l2
,

(A.4)
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∂2γi,j,k(p, l)

∂p∂l
=
∂2fS(p, l)

∂p∂l
(p− LSi+j(l)−∆h∗i,j,k) +

∂fS(p, l)

∂l
−
∂LSi+j(l)

∂l

∂fS(p, l)

∂p
.

(A.5)

I have ∂2fS(p,l)
∂l2

≤ 0, ∂2fS(p,l)
∂p2 ≤ 0, and p ≥ LSi+j(l) + ∆h∗i,j,k from the assumption of

the lemma, ∂f
S(p,l)
∂l ≤ 0, ∂f

S(p,l)
∂p ≤ 0, fS(p, l) ≥ 0, and ∂2fS(p,l)

∂p∂l ≤ 0 from Assumption

1,
∂LSi+j(l)

∂l ≤ 0, and
∂2LSi+j(l)

∂l2
≥ 0 from Lemma 1. Thus, the desired conditions are

satisfied using straightforward algebra.

Proof of Theorem 1. I show that

(i) If LSi+j(0) + ∆h∗i,j,k ≤ psMin + τS

∂fS(psMin,0)/∂l
, then l∗i,j,k = 0,

(ii) If LSi+j(0) + ∆h∗i,j,k ≤ psMin + 1
∂fS(psMin,0)/∂p

, then p∗i,j,k = psMin,

(iii) if psMin + τS

∂fS(psMin,0)/∂l
< LSi+j(0) + ∆h∗i,j,k ≤ T 2

i,j , then l∗i,j,k > 0, and

(iv) if psMin + 1
∂fS(psMin,0)/∂p

< LSi+j(0) + ∆h∗i,j,k ≤ psMin + τS

∂fS(psMin,0)/∂l
then

p∗i,j,k > psMin,

which complete the proof for Cases 1, 2.1 and 2.2. I omit the proofs of Cases 3

and 4, because they are straightforward.

(i) Assume LSi+j(0) + ∆h∗i,j,k ≤ psMin + τS

∂fS(psMin,0)/∂l
holds. Then, I have

LSi+j(0) + ∆h∗i,j,k ≤ psMin +
τS

∂fS(psMin, 0)/∂l
≤ psMin. (A.6)

From LSi+j(0) + ∆h∗i,j,k ≤ psMin, and concavity of fS(p, l) in p and l, all

conditions for Lemma 2 hold for (p, l) ∈ θS . From LSi+j(0) + ∆h∗i,j,k ≤

psMin + τS

∂fS(psMin,0)/∂l
, fS(psMin, 0)/∂l ≤ 0, and by simple algebraic opera-

tions, the following inequality holds.

(
psMin − LSi+j(0)−∆h∗i,j,k

) ∂fS(psMin, 0)

∂l
+ τS ≤ 0. (A.7)
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Since fS(psMin, 0) = 1 and τS = −∂LSi+j(0)/∂l (see Lemma 1), the inequality

can be rewritten as

(
psMin − LSi+j(0)−∆h∗i,j,k

) ∂fS(psMin, 0)

∂l
−fS(psMin, 0)

∂LS+
i+j(0)

∂l
≤ 0. (A.8)

Note that the left hand side in Equation (A.8) is the derivative of γi,j,k(p, l) in

l evaluated at the point (psMin, 0). Thus, I reach
∂γi,j,k(psMin,0)

∂l ≤ 0.

From Lemma 2,
∂γi,j,k(p,l)

∂l is nonincreasing in both p and l. Thus,
∂γi,j,k(p,l)

∂l ≤ 0

holds for (p, l) ∈ θS , and the maximum is achieved at l∗i,j,k = 0.

(ii) Assume LSi+j(0) + ∆h∗i,j,k ≤ psMin + 1
∂fS(psMin,0)/∂p

holds. Then, I have

LSi+j(0) + ∆h∗i,j,k ≤ psMin +
1

∂fS(psMin, 0)/∂p
≤ psMin. (A.9)

From LSi+j(0) + ∆h∗i,j,k ≤ psMin and concavity of fS(p, l) in p and l, all

conditions for Lemma 2 hold. Proceeding similarly to case (i), I obtain

∂γi,j,k(psMin,0)
∂p ≤ 0. From Lemma 2,

∂γi,j,k(p,l)
∂p is nonincreasing in both p and

l. Thus,
∂γi,j,k(p,l)

∂p ≤ 0 holds for (p, l) ∈ θS , and the maximum is achieved at

p∗i,j,k = psMin.

(iii) Assume that psMin + τS

∂fS(psMin,0)/∂l
< LSi+j(0) + ∆h∗i,j,k ≤ psMin +

1
∂fS(psMin,0)/∂p

. Proceeding similarly to case (i), and using the inequality

psMin+ τS

∂fS(psMin,0)/∂l
< LSi+j(0)+∆h∗i,j,k), one reaches the following inequality.

∂γi,j,k(psMin, 0)

∂l
> 0. (A.10)

Since γi,j,k(p, l) is concave in l, there exists an optimal l∗ > 0 such that

∂γi,j,k(psMin,l
∗)

∂l = 0.
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(iv) The proof for this case is similar to case (ii), and hence, is omitted.

Proof of Theorem 2 I define the following,

θSp = {(p, l) ∈ θS : ∂γi,j,k(p, l)/∂p = 0}, θSl = {(p, l) ∈ θS : ∂γi,j,k(p, l)/∂l = 0},

θSp = {(p, l) ∈ θS : ∂γi,j,k(p, l)/∂p < 0}, θSl = {(p, l) ∈ θS : ∂γi,j,k(p, l)/∂l < 0}.

I make use of the following fmy cases that can be proven using the concavity of

γi,j,k(p, l).

(A) If there exists a (p∗, l∗) such that (p∗, l∗) ∈ θSp∩θSl, then (p∗i,j,k, l
∗
i,j,k) = (p∗, l∗),

(B) if θSp ⊂ θSl, then l∗i,j,k = 0,

(C) if θSl ⊂ θSp, then p∗i,j,k = psMin, and

(D) if θSp = θSl = θS , then (p∗i,j,k, l
∗
i,j,k) = (psMin, 0)

In Figure 16, I plot representative θSp and θSl curves for the first three cases.

I note that from concavity of γi,j,k(p, l), areas below θSp and θSl are θSp and θSl,

respectively.

When (p∗i,j,k, l
∗
i,j,k) 6= (psMax, 0), either of the following above fmy cases should

hold. I next prove the following Lemma that is used in the proof.

Lemma 3. (i) p∗i,j,k > psMin, l∗i,j,k > 0 if and only if Equation A.11 holds.

ρS(p∗i,j,k, l
∗
i,j,k) = τSF i+j+1(l∗i,j,k), (A.11)

holds.
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Fig. 16. Illustration of Cases A, B and C. Cases A represents the case where

p∗i,j,k > psMin, l∗i,j,k > 0, whereas Cases B and C represent cases where l∗i,j,k = 0 and

p∗i,j,k = psMin, respectively

(ii) If there is no solution satisfying Equation A.11 in θS, then at least one of the

followings hold (i) p∗i,j,k > psMin, (ii) l∗i,j,k > 0.

Proof of Lemma 3 I first note that any optimal solution p∗i,j,k > psMin, l∗i,j,k > 0 can

only be obtained by Case A. Solving for ∂γi,j,k(p
∗, l∗)/∂l = ∂γi,j,k(p

∗, l∗)/∂p = 0, I
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obtain the Equality in Equation A.11, which completes the proof of (i). Furthermore,

if (ii) holds, then I have no solution for Case A. Thus, B, C or D should hold.

Proof of Theorem 2 I now prove Theorem 2 case by case.

(i) If ρS(p, l) > τS for (p, l) ∈ θS holds, then (i) there is no solution for Equation

A.11 for (p, l) ∈ θS , and (ii) τS ≤ ρS(p, 0), for psMin ≤ p ≤ psMax. From

(i), Case A does not hold. Hence, as long as (p∗i,j,k, l
∗
i,j,k) 6= (psMax, 0), in the

remainder of my analysis either of B, C or D should hold. Consider the point

(p1, 0) where ∂γi,j,k(p1, 0)/∂l = 0. Taking derivatives, I obtain

∂γi,j,k(p1, 0)

∂l
=
(
p1 − LSi+j(0)−∆h∗i,j,k

) ∂fS(p1, 0)

∂l
+ τSfS(p1, 0) = 0. (A.12)

Rearranging the terms gives

p1 − LSi+j(0)−∆h∗i,j,k = − τSfS(p1, 0)

∂fS(p1, 0)/∂l
(A.13)

Evaluating
∂γi,j,k(p1,0)

∂p , and plugging in p1 − LSi+j(0)−∆h∗i,j,k I obtain

∂γi,j,k(p1, 0)

∂p
=
(
p1 − LSi+j(0)−∆h∗i,j,k

) ∂fS(p1, 0)

∂p
+ fS(p1, 0),

= − τSfS(p1, 0)

∂fS(p1, 0)/∂l

∂fS(p1, 0)

∂p
+ fS(p1, 0),

= fS(p1, 0)

(
1− τS

ρS(p1, 0)

)
. (A.14)

Since τS ≤ ρS(p, 0), for psMin ≤ p ≤ psMax, right hand side of Equation (A.14)

is non-negative, and hence,
∂γi,j,k(p1,0)

∂p ≥ 0. One notes that (p1, 0) ∈ θSl, and

(p1, 0) /∈ θSp. Hence, Case C cannot hold, and only remaining possible Cases

are B and D, i.e., l∗i,j,k = 0 (even the optimal solution is rejection of customer,

the optimal solution is (p∗i,j,k, l
∗
i,j,k) = (psMax, 0)).
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(ii) Similar to the proof of part (i), if ρS(p, l) < τSF
S
i+j+1(lsMax) for (p, l) ∈ θS ,

then I have the following: (i) there is no solution for Equation A.11 for (p, l) ∈

θS , and (ii) ρS(p, 0) < τS , for psMin ≤ p ≤ psMax. The proof follows similar to

the proof of part (i).

(iii) The proof of part (iii) immediately follows from Lemma 3.

Proof of Proposition 1. From Lemma 1 and Assumption 1 for any l1 ≥ l2, I have (i)

F
S
i+j+1(l1) ≤ F

S
i+j+1(l2), (ii) −∂fS(p, l1)/∂p ≥ −∂fS(p, l2)/∂p. Using (i), (ii) and

additivity of fS(p, l), one obtains

∂fS(p, l2)/∂l

F
S
i+j+1(l2)

≤ ∂fS(p, l1)/∂l

F
S
i+j+1(l1)

, (A.15)

for any psMin ≤ p ≤ psMax.

Assume that (p1, l1) and (p2, l2) are two pairs of solutions satisfying ρS(p,l)
τS

=

F
S
i+j+1(l), where l1 ≥ l2. Using Inequality (A.15), I have,

−τS∂fS(p2, l2)/∂p =
∂fS(p2, l2)/∂l

F
S
i+j+1(l2)

≤ ∂fS(p1, l1)/∂l

F
S
i+j+1(l1)

= −τS∂fS(p1, l1)/∂p,

(A.16)

which gives −τS∂fS(p2, l2)/∂p ≤ −τS∂fS(p1, l1)/∂p. Thus, from Assumption 1,

I have p1 ≥ p2. Consequently, the set of p satisfying ρS(p,l)
τS

= F
S
i+j+1(l) is non-

decreasing in l. I illustrate two representative set of (p, l) satisfying ρS(p,l)
τS

=

F
S
i+j+1(l) in Figure 17.

First consider case (ii). From ∂fS(psMin, 0)/∂l < τS∂fS(psMin, 0)/∂p, one

clearly obtains T1 < T2, which indicates that I have p∗i,j,k > psMin and l∗i,j,k = 0

for some value of ∆h∗i,j,k from Theorem 1. In addition, I know that the set of p

satisfying ρS(p,l)
τS

= F
S
i+j+1(l) is non-decreasing in l, which indicates that the curve
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Fig. 17. Two representation set of (p, l) satisfying ρS(p,l)
τS

= F
S
i+j+1(l)

satisfying ρS(p,l)
τS

= F
S
i+j+1(l) looks like the one depicted in Case 1 of Figure 17.

Thus, p∗i,j,k = psMin cannot hold. In case (iii), similarly I have T2 < T1, and hence,

p∗i,j,k = psMin and l∗i,j,k > 0 for some value of ∆h∗i,j,k from Theorem ??. Thus

p∗i,j,k > psMin and l∗i,j,k = 0 cannot hold. In case (i), on the other hand, I have that

both T1 → −∞ and T2 → −∞ indicating that neither T1 < T2, nor T1 ≥ T2 hold.

Thus, neither p∗i,j,k = psMin, nor l∗i,j,k = 0 holds, implying that ρS(p,l)
τS

= F
S
i+j+1(l)

always holds.

Proof of Theorem 3.

To facilitate my analysis, v∗Dyna(pc, lc) is rewritten in Equation (A.17).

v∗Dyna(pc, lc) = λS(pc, lc)
∑

(i,j,k)∈S
π∗i,j,k(p

∗
i,j,k, l

∗
i,j,k)f

S(p∗i,j,k, l
∗
i,j,k)Ω

S∗
i,j,k(pc, lc)

+λC(pc, lc)
∑

(i,j,k)∈S
π∗i,j,k(p

∗
i,j,k, l

∗
i,j,k)Ω

C
i,j,k(pc, lc), (A.17)

where π∗i,j,k(p
∗
i,j,k, l

∗
i,j,k) denotes the steady state probability of being at state

(i, j, k) ∈ S given the set of optimal decisions (p∗i,j,k, l
∗
i,j,k), ΩS∗

i,j,k(pc, lc) = p∗i,j,k −
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LSi+j(l
∗
i,j,k) (i.e., the optimal expected profit obtained from a spot purchaser at state

(i, j, k)). π∗i,j,k(p
∗
i,j,k, l

∗
i,j,k)f

S(p∗i,j,k, l
∗
i,j,k)Ω

S∗
i,j,k(pc, lc) and π∗i,j,k(p

∗
i,j,k, l

∗
i,j,k)Ω

C
i,j,k(pc, lc)

denote the average optimal expected profit obtained from a spot purchaser and con-

tract customer arriving in state (i, j, k) ∈ S when the offered contract terms are

(pc, lc), respectively.

Given that λC ∈ ΛC , changing pc(λ
C) (or equivalently lc(λ

C)) only impacts

ΩC
i,j,k(pc, lc) = pc − LCj,k(lc) in (A.17), whereas the other terms do not change since

λC , λS , p∗i,j,k and l∗i,j,k do not change. Since ΩC
i,j,k(pc, lc) is concave in pc and lc,

one can obtain the maximizer of v∗Dyna(pc, lc) using first order conditions. Plugging

pc(λ
C) in Equation (A.17) for pc and taking the first derivative w.r.t. lc(λ

C), I

obtain,

∂v∗Dyna(pc, lc(λ
C))

∂lc(λC)
= λC

∑
(i,j,k)∈S

π∗i,j,k(p
∗
i,j,k, l

∗
i,j,k)

[
−ρC + τCF

C
j,k(lc(λ

C))
]

(A.18)

Since,
∂v∗Dyna(pc,lc(λC))

∂lc(λC)
is non-increasing in lc(λ

C), I have the following three

conditions: (i) If
∂v∗Dyna(pc,0)

∂lc(λC)
≤ 0 then l∗c (λ

C) = 0, (ii) if
∂v∗Dyna(pc,lcMax(1− λC

λcMax
))

∂lc(λC)
≥ 0

then l∗c (λ
C) = lcMax(1− λC

λcMax
) (note that the maximum value of lc(λ

C) is lcMax(1−

λC

λcMax
)), (iii) if neither (i), nor (ii) holds, then

∂v∗Dyna(pc,l∗c (λC))

∂lc(λC)
= 0. If (i) holds, then

from F
C
j,k(0) = 1 and

∑
(i,j,k)∈S π

∗
i,j,k(p

∗
i,j,k, l

∗
i,j,k) = 1, it follows that −ρC + τC ≤ 0,

which completes the proof for Case (i). The proofs for Cases (ii) and (iii) follow

immediately from (ii) and (iii).

Proof of Proposition 2. Assume that the given inequality holds. From Equation

(3.9), I have LC0,0(l′c) = e−µl
′
c

µ . In addition, from p′′c ≥ p′c, I have λC(p′′c , l
′
c) ≤
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λC(p′c, l
′
c), which ensures that the following holds.

λS(p′c, l
′
c)psMax + λC(p′c, l

′
c)p
′
c − λC(p′′c , l

′
c)p
′′
c ≤ LC0,0(l′c)

(
λC(p′c, l

′
c)− λC(p′′c , l

′
c)
)

(A.19)

In addition, I have LC0,0(lc) ≤ LCj,k(lc) for any j and k, that gives the following:

λS(p′c, l
′
c)psMax+λC(p′c, l

′
c)p
′
c−λC(p′′c , l

′
c)p
′′
c ≤ LCj,k(l′c)

(
λC(p′c, l

′
c)− λC(p′′c , l

′
c)
)
, (i, j, k) ∈ S,

(A.20)

where by rearranging the terms I get

λS(p′c, l
′
c)psMax + λC(p′c, l

′
c)Ω

C
i,j,k(p

′
c, l
′
c) ≤ λC(p′′c , l

′
c)Ω

C
i,j,k(p

′′
c , l
′
c), (i, j, k) ∈ S.

(A.21)

Note that, the following inequalities trivially hold

psMax ≥ fS(p∗i,j,k(pc, lc), l
∗
i,j,k(pc, lc)Ω

S∗
i,j,k(pc, lc), (i, j, k) ∈ S, (A.22)

0 ≤ fS(p∗i,j,k(pc, lc), l
∗
i,j,k(pc, lc)Ω

S∗
i,j,k(pc, lc), (i, j, k) ∈ S. (A.23)

where I write (p∗i,j,k, l
∗
i,j,k) in terms of (pc, lc) to avoid confusion. Combining inequal-

ities (A.21), (A.22) and (A.23), I obtain

λS(p′c, l
′
c)f

S(p∗i,j,k(p
′
c, l
′
c), l
∗
i,j,k(p

′
c, l
′
c))Ω

S∗
i,j,k(p

′
c, l
′
c) + λC(p′c, l

′
c)Ω

C
i,j,k(p

′
c, l
′
c)

≤ λS(p′′c , l
′
c)f

S(p∗i,j,k(p
′′
c , l
′
c), l
∗
i,j,k(p

′′
c , l
′
c))Ω

S∗
i,j,k(p

′′
c , l
′
c) + λC(p′′c , l

′
c)Ω

C
i,j,k(p

′′
c , l
′
c)

(A.24)

From Equation (A.17), one observes that (A.24) is a sufficient condition for

v∗Dyna(p
′
c, l
′
c) ≤ v∗Dyna(p′′c , l′c).
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2. Numerical Analysis Settings in Chapter 2

In this section, I discuss setting of my numerical analysis. I use a relative value

iteration algorithm to solve Cont, Dyna, Fix, FixP and FixLT [Bertsekas, 2001]. The

late delivery penalties LSi+j(ls) and LCj,k(lc) are computed using Chapter 3, where it

is indicated that a closed form solution for LSi+j(ls) cannot be obtained, necessitat-

ing approximation approaches based on numerical inverse Laplace transformation

algorithms. I approximate LSi+j(ls) allowing an error tolerance of 0.001 using the

Hybrid Algorithm in Appendix B-1. My computational results indicate that using

an error tolerance lower than 0.001 does not change the optimal quotation decisions.

The buffer size is selected sufficiently high to minimize the probability of contract

customer rejections (PCR). Maximum possible value of PCR can be evaluated by the

M/M/1/N queue limiting probability for state N , i.e., πN . Under a traffic intensity

(i.e., λC+λS

µ ) of 0.9, N = 80 gives the limiting probability of π80 = 2.18 × 10−5

which is sufficiently small [Ross, 2007]. Hence, I set N = 80, and the tested traffic

intensity levels are bounded above by 0.9. Note that PCR decreases further at lower

traffic intensity levels.

I model fS(p, l) as in Equation (2.22), and plot psMax(l) for several tested forms

of fS(p, l) in Figure 18, where psMin = 15, psMax = 25 and lsMax = 10.

One verifies that used form of fS(p, l) satisfies Assumption 1 (i) using κP ≥ 1,

κL ≥ 1 and κPL ≥ 0. In addition, I have fS(psMin, 0) = 1, which is sufficient for

Assumption 1 (ii). In Figure 18, I observe that psMax(l) and lsMax(p) is nonincreas-

ing in l and p, respectively. Thus, Assumptions 1 (iii) and (iv) hold for the tested

values as well.
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(a) κP = κL = 1

p

l

κPL = 0

κPL = 0.025

κPL = 0.05

(b) κP = κL = 1.5

p

l

κPL = 0

κPL = 0.025

κPL = 0.05

(c) κP = κL = 2

Fig. 18. Illustration of psMax(l) for κP = κL = 1, 1.5, 2 and κPL = 0, 0.025, 0.05

The tested values of κP ∈ {1, 1.5, 2}, κL ∈ {1, 1.5, 2} and κPL ∈ {0, 0.025, 0.05}

allow us to test linear/strictly concave, and additive/non-additive forms of fS(p, l).

As observed in Figure 18 (a), when κPL = 0.05 the action space (i.e., θS) is signif-

icantly smaller than the case where κPL = 0. Increasing κPL further results in an

even smaller action space. Hence the highest tested value of κPL is set to 0.05.

In all my numerical analysis, I set µ = 1. The tested levels of traffic intensity,

λS+λC

µ ∈ {0.6, 0.75, 0.9}, and spot purchaser proportion, λS

λS+λC
∈ {1

3 ,
2
3 , 1} indicate

low, medium and high levels, respectively.
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I note that changing τS , τC , psMax, psMin, pcMax and pcMin in the same propor-

tion changes the OAP values in the same proportion. Thus, I set τS = τC = 1.5,

and change the values of other parameters. I change psMax proportional to psMin.

The values of lsMax are chosen considering the price/lead time sensitivity of the

spot purchasers. When fS(p, l) is additive and linear in price and lead time, I have

ρS(p, l) = psMax−psMin
lsMax

. I test for ρS(p, l) = {1
5τ

S , 1
2τ

S , 2τS , 5τS} to analyze chang-

ing levels of price/lead time sensitivity, and change the values of lsMax considering

the values of psMax and lsMin. Below, I discuss the settings in each Section in detail.

2.1. Settings in Section 3.1

To test the computational time savings offered by action space reduction, I con-

duct a preliminary experiment to determine the appropriate discretization scheme

for price and lead time decisions. The [psMin, psMax] and [0, lsMax] intervals are

tested for 5, 10, 20, 40, 60 and 80 equal-sized intervals leading to 6, 11, 21, 41,

61 and 81 discrete p and l alternatives, respectively. I observe that increasing the

discrete alternatives from 61 to 81 increases the computational times significantly,

whereas the computational time improvements obtained by the reduced action space

increases less than 1%. Hence, I discretize the action space into 60 equal-sized in-

tervals.

I choose the parameter levels as follows: My analyses from real life cases reveal

that contract prices are often close to spot prices [Macyel.com, 2011, News.radio-

electronics.co, 2011]. Hence I set pc = psMax+psMin
2 . Similarly lc is set to lsMax

2 . I

test (i) two levels of λS+λC

µ ∈ {0.6, 0.9}, (ii) two levels of spot purchaser propor-

tion, λS

λS+λC
∈ {1

3 , 1}, (iii) two levels of κP ∈ {1, 2}, (iv) two levels of κL ∈ {1, 2},
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(v) two levels of κPL ∈ {0, 0.05}, (vi) two levels of psMin ∈ {5, 25}, (vii) two lev-

els of psMax ∈ {2psMin, 4psMin}, (viii) two levels of ρS(p, l) = {1
2τ

S , 2τS , }, giving

lsMax ∈ {psMax−psMin
0.75 , psMax−psMin

3 }. I observe a minimum computational time im-

provement of 93% using this test bed, which is sufficient to demonstrate the sub-

stantial computational time improvement of the reduced action space. Thus, I use

this 256 instance test bed in this Section, unlike Section 3.2, where I test 19880

instances.

2.2. Settings in Section 3.2

I conduct a preliminary experiment to determine the appropriate discretization

scheme similar to the one used in Section 3.1. I observe that increasing the discrete

alternatives from 21 to 41 increases obtained IMP· values less than 0.01% on the

average, however quadruples the computational times. Hence, I discretize the action

space into 20 equal-sized intervals.

Similar to the settings in Section 3.1, I set pc = psMax+psMin
2 and lc = lsMax

2 .

For notational simplicity, I denote IMP∗FixP = IMPFixP − IMPFixLT. Given a

particular parameter setting Θ (e.g., BD=2, price sensitive spot purchasers), rec-

ommendations scheme works as follows:

(i) If maxΘ IMP∗Dyna ≥ ∆DQ, then recommend Dyna.

(ii) If Dyna is not recommended, maxΘ IMPFixLT ≤ ∆DQ, and maxΘ IMPFixP ≤

∆DQ, then recommend Fix.

(iii) If Dyna and Fix are not recommended, maxΘ IMP∗FixP ≥ ∆DQ, and

minΘ IMP∗FixP ≥ −∆DQ, then recommend FixP.
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(iv) If Dyna and Fix are not recommended, maxΘ IMP∗FixP < ∆DQ, and

minΘ IMP∗FixP ≤ −∆DQ, then recommend FixLT.

(v) If Dyna and Fix are not recommended, maxΘ IMP∗FixP < ∆DQ, and

minΘ IMP∗FixP > −∆DQ, then recommend either FixLT or FixP.

(vi) Otherwise, no recommendation.
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APPENDIX B

PROOFS AND ALGORITHMS OF CHAPTER 3
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I present the pseudo-codes for trapezoidal, midpoint and hybrid algorithms in

Section 1, proofs of my theorems in Section 2, and Laplace transforms for the pre-

emptive multi-server case in Section 3.

1. Proposed NILT Algorithms

Algorithm 2 The trapezoidal algorithm approximating τj(d) for j ∈ {0, 1, . . . qi},

and d = 0, w, 2w, . . . , d

Set j = 0, and Zw−1(d) = τ−1(d) for d = 0, w, 2w, . . . d

while j ≤ qi do

d = w

while d ≤ d do

Set ψ(d, x) = Zwj−1(d− x)gλi,cµ(x) for x = w, 2w, . . . d; and ψ(d, 0) = Zwj−1(d)cµ.

Compute Zwj (d) =
w

2

d/w−1∑
k=0

ψ(d, kw) + ψ(d, kw + w)

d = d+ w

end while

j = j + 1

end while

Remark 2. The trapezoidal algorithm evaluates Zwj (d) for d = 0, w, 2w, . . . , d, j =

0, 1, . . . qi, whereasMw
j (d) is computed for d = 0, w/2, w, 3w/2, . . . , d, j = 0, 1, . . . qi.

The difference is due to the structural difference of two algorithms (see Equations

(3.15) and (3.16)), and results in higher computational times for the midpoint algo-

rithm.

Remark 3. In the trapezoidal algorithm, the evaluation of ψ(d, x) is handled sep-

arately for x = 0 and x > 0, due to the division problems at x = 0 in pro-

gramming languages. However, observing the Bessel expansion in Equation (B.1)
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Algorithm 3 The midpoint algorithm approximating τj(d) for j ∈ {0, 1, . . . qi},

and d = 0, w/2, w, . . . , d

Set j = 0, and Mw
−1(d) = τ−1(d) for d = 0, w/2, w, . . . d

while j ≤ qi do

d = w/2

while d ≤ d do

Set ψ(d, x) =Mw
j−1(d− x)gλi,cµ(x) for x = w/2, 3w/2, . . . , d− w/2.

Compute Mw
j (d) = w

dd/we−1∑
k=0

ψ(d, kw + w/2)

d = d+ w/2

end while

j = j + 1

end while

(Korenev [2002] Equation 4.3), one can clearly see that gλi,cµ(0) = cµ, and thus,

ψ(d, 0) = Zwj−1,i(d)gλi,cµ(0).

I1(x) =
x

2

[
1 +

(x/2)2

2(1!)2
+

(x/2)4

3(2!)2
+ . . .

]
. (B.1)

2. Proofs of theorems

Proof of Theorem 4. I use the convolution property to inverse transform τ̃v0(s) with

the following inverse transforms,

L−1
x

{
µ

s2(s+ µ)

}
= x− 1

µ
+
e−µx

µ
,L−1

x

{(
cµ

s+ cµ

)v0−c+1
}

=
(cµ)v0−c+1xv0−c

(v0 − c)!
e−cµx.

Note that L−1
x

{(
cµ
s+cµ

)v0−c+1
}

is the pdf of a gamma random variable. Using

convolution property, the Laplace transform in Equation (3.7) can be inverse trans-

formed as

τv0(d) =

∫ d

0

(
d− x− 1

µ
+
e−µ(d−x)

µ

)
(cµ)v0−c+1xv0−c

(v0 − c)!
e−cµxdx, d ≥ 0.
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Algorithm 4 The hybrid algorithm approximating τj(d) for j ∈ {0, 1, . . . qi}, and

d = 0, w, . . . , d

Set j = 0, and Hw−1(d) = τ−1(d) for d = 0, w/2, w, . . . d

while j ≤ qi do

if j is even then

d = w/2

while d ≤ d do

Set ψ(d, x) = Hwj−1(d− x)gλi,cµ(x) for x = w/2, 3w/2, . . . , d− w/2.

Compute Hwj (d) = w

dd/we−1∑
k=0

ψ(d, kw + w/2)

d = d+ w/2

end while

else

d = w

while d ≤ d do

Set ψ(d, x) = Hwj−1(d− x)gλi,cµ(x) for x = w, 2w, . . . d; and ψ(d, 0) = Hwj−1(d)cµ.

Compute Hwj (d) =
w

2

d/w−1∑
k=0

ψ(d, kw) + ψ(d, kw + w)

d = d+ w

end while

end if

j = j + 1

end while

I next find a closed-form solution for the integral. Let V (n) =
∫ d

0 e
−xαxndx.

Given α 6= 0, by partial integration,

V (n) = −d
ne−dα

α
+
n

α
V (n− 1), n ∈ {0, 1, 2, . . .},

and using the initial condition of

V (0) =
1

α
− e−dα

α
,
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V (n)’s can be solved recursively. So I get,

V (n)

n!
=

1

αn+1
− e−dα

n∑
k=0

dk

k!αn−k+1
.

If α = 0 then, the integral can be evaluated as,

V (n) =

∫ d

0
e−xαxndx =

dn+1

n+ 1
.

I can now derive the expression for τv0(d) as

τv0(d) =

∫ d

0

(
d− x− 1

µ
+
e−µ(d−x)

µ

)
(cµ)v0−c+1xv0−c

(v0 − c)!
e−cµxdx

= (cµ)v0−c+1
d− 1

µ

(v0 − c)!

∫ d

0
xv0−ce−xcµdx

−(cµ)v0−c+1 1

(v0 − c)!

∫ d

0
xv0−c+1e−xcµdx

+(cµ)v0−c+1 e−dµ

µ(v0 − c)!

∫ d

0
xv0−ce−x(c−1)µdx.

The cases with c = 1 and c ≥ 2 need to be handled separately.

Case I. c = 1

τv0(d) = µv0

(
d− 1

µ

)(
1

µv0
− e−dµ

v0−1∑
k=0

dk

k!µv0−k

)

−µv0v0

(
1

µv0+1
− e−dµ

v0∑
k=0

dk

k!µv0−k+1

)

+µv0
e−dµ

µ(v0 − 1)!

dv0

v0

= d− v0 + 1

µ
+ e−dµ

(
1

µ
− d
) v0−1∑

k=0

(dµ)k

k!
+
e−dµv0

µ

v0∑
k=0

(dµ)k

k!
+
e−dµ(dµ)v0

µ(v0)!

= d− v0 + 1

µ
+ (v0 + 1)

e−dµ

µ

v0∑
k=0

(dµ)k

k!
− e−dµ

µ

v0−1∑
k=0

(dµ)k+1

k!

= d− v0 + 1

µ
+
e−dµ

µ

(
v0 + 1 +

v0∑
k=1

(dµ)k
(
v0 + 1

k!
− 1

(k − 1)!

))

= d− v0 + 1

µ
+
e−dµ

µ

v0∑
k=0

(dµ)k
v0 + 1− k

k!
.
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Case II. c ≥ 2

τv0(d) = (cµ)v0−c+1

(
d− 1

µ

)(
1

(cµ)v0−c+1
− e−dcµ

v0−c∑
k=0

dk

k!(cµ)v0−c−k+1

)

− (v0 − c+ 1)(cµ)v0−c+1

(
1

(cµ)v0−c+2
− e−dcµ

v0−c+1∑
k=0

dk

k!(cµ)v0−c−k+2

)

+ (cµ)v0−c+1 e
−dµ

µ

(
1

((c− 1)µ)v0−c+1
− e−d(c−1)µ

v0−c∑
k=0

dk

k!((c− 1)µ)v0−c−k+1

)

= d− 1

µ
− v0 − c+ 1

cµ
+
e−dµ

µ

(
c

c− 1

)v0−c+1

+

(
1

µ
− d
)
e−dcµ

v0−c∑
k=0

(dcµ)k

k!

+
(v0 − c+ 1)e−dcµ

cµ

v0−c+1∑
k=0

(dcµ)k

k!
− e−dcµ

µ
cv0−c+1

v0−c∑
k=0

(dcµ)k

k!

1

(c− 1)v0−c−k+1

= d− 1

µ
− v0 − c+ 1

cµ
+
e−dµ

µ

(
c

c− 1

)v0−c+1

+
(v0 − c+ 1)e−dcµ

cµ(v0 − c+ 1)!
(dcµ)v0−c+1

+

(
1

µ
− d+

v0 − c+ 1

cµ

)
e−dcµ

v0−c∑
k=0

(dcµ)k

k!
− e−dcµ

µ

(
c

c− 1

)v0−c+1 v0−c∑
k=0

(d(c− 1)µ)k

k!

= d− 1

µ
− v0 − c+ 1

cµ
+
e−dµ

µ

(
c

c− 1

)v0−c+1

+
e−dcµ(dcµ)v0−c+1

cµ(v0 − c)!

+ e−dcµ
v0−c∑
k=0

(dµ)k

k!

[
ck
(

1

µ
− d+

v0 − c+ 1

cµ

)
− (c− 1)k

µ

(
c

c− 1

)v0−c+1
]
.

The expected TIS, denoted by Sv0 , is simply the summation of expectations of

v0− c+ 1 exponential random variables with rate cµ plus the expected service time:

Sv0 =
v0 − c+ 1

cµ
+

1

µ
.

Thus, using Equation (3.1) and Sv0 , τv0(d) formulas, Tv0(d) is obtained.

Proof of Theorem 5. The PT of the marked order is distributed exponentially with

pdf hµ(·). Thus, I focus on deriving expressions for the WTQ of the marked order

using first passage times. Let T λ,µm,n denote the first passage time from state m to

n in a birth-death process with the constant arrival and service rates of λ and µ

respectively for all states. The WTQ of a marked order that arrives when there are

qi orders in the system ahead of it in the queue can be expressed by the random

variable, T λi,cµqi+1,0. Recall that in a birth-death process the length of the queue ahead
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of the marked order increases with the arrival rate λi, and decreases with the service

rate cµ for all states. Let gλ,µm,n(·) denote the pdf of the random variable T λ,µm,n. The

distribution of TIS of a class i order can be calculated through the convolution of

gλi,cµqi+1,0(·) and hµ(·). Using the convolution property, the Laplace transform of the

TIS distribution is

f̃qi,i(s) = h̃µ(s)g̃λi,cµqi+1,0(s), s ∈ C, (B.2)

for all i ∈ {2, . . . , N}. Using the analysis of Heyman and Sobel [2004, pg. 87-89], I

have,

T λ,µj,0 =

j∑
k=1

T λ,µk,k−1 ,

and T λi,cµj,j−1’s are independent and identically distributed, i.e., g̃λi,cµj,j−1(s) are the same

for j ∈ {1, 2, . . .}; for simplicity, the subscripts are dropped and I use g̃λi,cµ(s) to

denote g̃λi,cµj,j−1(s). Using the rightward convolution property I obtain

g̃λi,cµqi+1,0(s) =
(
g̃λi,cµ(s)

)qi+1
, s ∈ C, (B.3)

for all i ∈ {2, . . . , N}. g̃λi,cµ(s) was first derived by Davis [1966] as

g̃λi,cµ(s) =
s+ λi + cµ−

√
(s+ λi + cµ)2 − 4λicµ

2λi
, s ∈ C. (B.4)

τ̃qi,i(s) is obtained by applying Proposition (1) and Equations (3.6), (B.2), and

(B.3).

Proof of Theorem 6. I need Lemmas 4 and 5 to prove this theorem.

Lemma 4. τj(d−x) is nonnegative, nondecreasing and convex in x for j = 0, 1, . . . ,

0 ≤ x ≤ d.
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Proof. From Equation (3.2), I have, τj(d− x) =
∫ d−x

0 (d− x− y)fj(y)dy for x ≤ d.

τj(d − x) is clearly nonnegative since fj(·) ≥ 0. By differentiating both sides twice

using the Leibniz integral rule I get,

−τ ′j(d− x) = −
∫ d−x

0
fj(y)dy = −Fj(d− x), x ≤ d,

τ ′′j (d− x) = fj(d− x), x ≤ d,

where Fj(·) is the corresponding cumulative distribution function. Since 0 ≤ Fj(d−

x) ≤ 1, and fj(d− x) ≥ 0 for x ≤ d the result is obvious.

Lemma 5. If λi + cµ ≥ 2
λicµ+

√
λicµ

2
√
λicµ−1

and λicµ ≥ 1
4 then gλi,cµ(x) is nonnegative,

nonincreasing and convex in x ≥ 0.

Proof. For simplicity let p = 2
√
λicµ and k = λi + cµ. By simple algebra I get,

p ≤ k, and assuming, λi + cµ ≥ 2
λicµ+

√
λicµ

2
√
λicµ−1

and λicµ ≥ 1
4 , I reach the following

inequalities

k ≥ p ≥ 1, and 2pk ≥ p2 + 2k + 2p

Rewriting Equation (3.14) in terms of p and k, I get

gλi,cµ(x) =
pe−kx

2λx
I1(px).

Since I1(px) ≥ 0, gλi,cµ(x) is nonnegative. Differentiating twice by using the well

known differentiation rule, I ′n(x) = In−1(x)− n/xIn(x), I reach,

g′
λi,cµ

(x) =
pe−kx

2λix2
[pxI0(px)− (kx+ p+ 1)I1(px)] ,

g′′
λi,cµ

(x) =
pe−kx

2λix3

[
I1(px)((k2 + p2)x2 + (2pk + 2k)x+ 3p+ 3)

− I0(px)(2kpx2 + (p2 + 2p)x)
]
. (B.5)
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I first show that g′
λi,cµ

(x) ≤ 0. The inequality (B.6) gives a sufficient condition for

g′
λi,cµ

(x) ≤ 0.

pxI0(px) ≤ (kx+ p+ 1)I1(px), x ≥ 0. (B.6)

Using 2.21 in Ifantis and Siafarikas [1990], pxI0(px) can be bounded above as:

pxI0(px) ≤ (2 + px)I1(px). (B.7)

Since I1(px) ≥ 0 and k ≥ p ≥ 1 for x ≥ 0, I easily get

(2 + px)I1(px) ≤ (kx+ p+ 1)I1(px). (B.8)

Hence by combining inequalities (B.7) and (B.8), I get inequality (B.6), and complete

the first part of the proof. For g′′
λi,cµ

(x) ≥ 0, I need the following inequality.

I1(px)((k2+p2)x2+(2pk+2k)x+3p+3) ≥ I0(px)(2kpx2+(p2+2p)x), x ≥ 0. (B.9)

By following the same approach in (B.7) I reach

(2kpx2 + (p2 + 2p)x)I0(px) ≤(2 + px)(2kpx2 + (p2 + 2p)x)

px
I1(px)

= (2kpx2 + (p2 + 2p+ 4k)x+ 2p+ 4)I1(px).

(B.10)

I have k2 + p2 ≥ 2kp, 3p+ 3 ≥ 2p+ 4 from p > 1, and 2pk+ 2k ≥ p2 + 2p+ 4k from

2pk ≥ p2 + 2k + 2p. Thus, the following holds.

(2kpx2 +(p2 +2p+4k)x+2p+4)I1(px) ≤ ((k2 +p2)x2 +(2pk+2k)x+3p+3)I1(px).

(B.11)

Combining inequalities (B.10) and (B.11), I reach inequality (B.9), which completes

the second part of the proof.
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For simplicity let γj(d, x) = τj−1(d − x)gλi,cµ(x). First note that γj(d, x) is

continuous and obtains continuous first and second derivatives for 0 ≤ x ≤ d.

Moreover, given λicµ ≥ 4, it can be trivially shown to be convex in 0 ≤ x ≤ d by

taking the second derivative and combining the results of Lemmas 4 and 5.

By induction: γ0(d, x) possesses continuous second order derivatives and is con-

vex in 0 ≤ x ≤ d. Since I have τ0(d) =
∫ d

0 γ0(d, x), using the bracketing property

given in the Corollary of Davis and Rabinowitz [1984, pg. 52], the trapezoidal and

midpoint rules respectively over and under estimates τ0(d), and I get

Mw
0 (d) ≤ τ0(d) ≤ Zw0 (d).

Now, assume that for some j = 1, 2, . . . ,Mw
j−1(d) ≤ τj−1(d) ≤ Zwj−1(d) holds. Since

τj−1(d − x)gλi,cµ(x) possesses continuous second order derivatives and is convex in

0 ≤ x ≤ d as well, the bracketing property holds. Thus, I get

w

dd/we−1∑
k=0

τj−1(d− kw − w/2)gλi,cµ(kw + w/2)

≤ τj(d)

≤ w

2

d/w−1∑
k=0

τj−1(d− kw)gλi,cµ(kw) + τj−1(d− kw − w)gλi,cµ(kw + 2).(B.12)

Since gλi,cµ(x) ≥ 0 for 0 ≤ x ≤ d, inequalities (B.13) and (B.14) hold.

Mj(d) = w

dd/we−1∑
k=0

Mj−1(d− kw − w/2)gλi,cµ(kw + w/2)

≤ w
dd/we−1∑
k=0

τwj−1(d− kw − w/2)gλi,cµ(kw + w/2) (B.13)
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w

2

d/w−1∑
k=0

τj−1(d− kw)gλi,cµ(kw) + τj−1(d− kw − w)gλi,cµ(kw + 2)

≤ w

2

d/w−1∑
k=0

Zj−1(d− kw)gλi,cµ(kw) + Zj−1(d− kw − w)gλi,cµ(kw + 2) = Zj(d).(B.14)

Combining the inequalities (B.12), (B.13), and (B.14) the proof is completed.

Proof of Theorem 7. f̃vi(s) for vi ≤ c − 1 derivation is done by Laplace-Stieltjes

Transforms (LST) of the cumulative distribution functions, Fvi(·). The LST of Fvi(·)

is equivalent to the sought Laplace Transform, fvi(·) by the following LST definition

[see pg. 523 of Heyman and Sobel, 2004].

∫ ∞
0

e−sxdFvi(x)dx =

∫ ∞
0

e−sxfvi(x)dx = f̃vi(s), s ∈ C.

My purpose is to obtain recursive equations of the Laplace transforms f̃vi(s) by

taking the LST of the Fvi(·) and using a conditioning argument, similar to the

approach presented in Heyman and Sobel [2004, pg. 88]. Consider the marked

order observing vi orders in front upon arrival, where vi ≤ c − 1. One can rewrite

Fvi(·) by conditioning on the next event, considering three possibilities:

1. Arrival of a higher priority order with rate λi, pushing the marked order one

position back,

2. Service completion of an order in a lower position with rate viµ, pulling the

marked order one position to the front, and

3. Service completion of the marked order with rate µ.
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Hence, by conditioning on the time and type of the next event I reach,

Fvi(d) =
λi

λi + (vi + 1)µ

∫ d

0
Fvi+1(d− x)(λi + (vi + 1)µ)e−(λi+(vi+1)µ)xdx

+
viµ

λi + (vi + 1)µ

∫ d

0
Fvi−1(d− x)(λi + (vi + 1)µ)e−(λi+(vi+1)µ)xdx

+
µ

λi + (vi + 1)µ

(
1− e−(λi+(vi+1)µ)d

)
, d ≥ 0.

Conditions 1, 2, and 3 are reflected in the first, second and third term of the right

hand side respectively. Note that, the integrals in the first and second terms are

convolutions of the exponential distribution, and the conditional cumulative TIS

distributions. Taking the LST’s of both sides and using the convolution property, I

get

f̃vi(s) =
λi

λi + (vi + 1)µ
f̃vi+1(s)

λi + (vi + 1)µ

s+ λi + (vi + 1)µ

+
viµ

λi + (vi + 1)µ
f̃vi−1(s)

λi + (vi + 1)µ

s+ λi + (vi + 1)µ

+
µ

λi + (vi + 1)µ

λi + (vi + 1)µ

s+ λi + (vi + 1)µ
, s ∈ C.

By arranging the terms I reach the recursive form.

3. Laplace Transform Derivations for Multi-Server Cases

Derivation of f̃vi(s) for c ≥ 2 is more complicated, also burdening the evaluation

of expected TIS. However, after solving f̃vi(s) for vi ≤ c− 1, one easily reaches the

useful product form of f̃vi(s) for vi > c− 1 through Equation (3.19). Thus, Z, M,

and H can also be applied for the preemptive case for vi > c− 1 given f̃c−1(s) and

fc−1(·). I next derive f̃0(s) and f̃1(s) for c = 2 in Equation (B.15).
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f̃0(s) =
λig̃λi,2µ(s) + µ

s+ λi + µ− λig̃λi,2µ(s)
, f̃1(s) = g̃λi,2µ(s)

s+ λi + 2µ

s+ λi + µ− λig̃λi,2µ(s)
, s ∈ C .

(B.15)

Following the same approach, I derive f̃0(s), f̃1(s) and f̃2(s) for c = 3.

f̃0(s) =
λi(λig̃λi,3µ(s) + µ) + µ(s+ λi + 2µ− 2λig̃λi,3µ(s))

(s+ λi + µ)(s+ λi + 2µ− 2λig̃λi,3µ(s))− λiµ
, s ∈ C .

f̃1(s) =
(s+ λi + µ)(λig̃λi,3µ(s) + µ) + µ2

(s+ λi + µ)(s+ λi + 2µ− 2λig̃λi,3µ(s))− λiµ
, s ∈ C .

f̃2(s) = g̃λi,2µ(s)
(s+ λi + µ)(s+ λi + 4µ) + 2µ2 − λiµ

(s+ λi + µ)(s+ λi + 2µ− 2λig̃λi,3µ(s))− λiµ
, s ∈ C .
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PROOFS OF CHAPTER 4
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In this Appendix, I provide proofs for Theorems 8 and 9. I first define simple

properties facilitating my proofs.

Remark 4. Let f(x) be a concave function in x ∈ < with the global maximum of

x∗, i.e., x∗ = argmaxx∈< f(x). Let a and b two real numbers with a < b. I have the

following three properties from the concavity of f(x).

(i) If x∗ ≤ a then argmaxa≤x≤b f(x) = a (R1.1).

(ii) If a < x∗ ≤ b then argmaxa≤x≤b f(x) = x∗ (R1.2).

(iii) If b < x∗ then argmaxa≤x≤b f(x) = b (R1.3).

Remark 5. Let f1(x) and f2(x) be concave functions in x ∈ <, with the global

maximums of x∗1 and x∗2, respectively. Let g(x) be the piecewise function defined as

follows.

g(x) =


f1(x) for a ≤ x < b

f2(x) for b ≤ x < c

(C.1)

Using Remark 1, I obtain the following results.

(i) If x∗1 ≤ a and x∗2 ≤ b then argmaxa≤x≤c g(x) = a (R2.1).

(ii) If a < x∗1 ≤ b and x∗2 ≤ b then argmaxa≤x≤c g(x) = x∗1 (R2.2).

(iii) If b < x∗1 and x∗2 ≤ b then argmaxa≤x≤c g(x) = b (R2.3).

(iv) If b < x∗1 and b < x∗2 ≤ c then argmaxa≤x≤c g(x) = x∗2 (R2.4).

(v) If b < x∗1 and c < x∗2 then argmaxa≤x≤c g(x) = c
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Note that, concavity of the piecewise elements is the sufficient condition for

Remark 1 and 2. In the remainder, at any point Remark 1 and 2 are implemented,

I already know that this sufficient condition is satisfied. Hence I do not provide any

discussion about concavity of the functions.

Proof of Theorem 8. In this proof, I follow the following roadmap. I first derive the

optimal price, pC∗t,i (l), given a fixed lead time l, and the optimal lead time lC∗t,i (p),

given a fixed price that are defined in Equation (C.2), and then use these two curves

to derive (pC∗t,i , l
C∗
t,i ). pC∗t,i (l) and lC∗t,i (p) are defined as follows.

pC∗t,i (l) = argmax
p

ΠC
t,i(p, l), d ∈ [0, lmax], and

lC∗t,i (p) = argmax
l

ΠC
t,i(p, l), p ∈ [pmin, pmax] (C.2)

Derivation of pC∗t,i (l) and lC∗t,i (p)

First, note that ΠC
t,i(p, l) is concave in p and l. Hence, I can find pC∗t,i (l) and lC∗t,i (p)

using first order conditions. Taking derivatives of ΠC
t,i(p, l) in p and l respectively

gives,

∂ΠC
t,i(p, l)

∂p
=


β
[

−1
pmax−pmin

(
p− ταi+ν(i+ ν − l)−∆ΠC

t,i

)
+ f(p, l)

]
if l ≤ i+ ν

β
[

−1
pmax−pmin

(
p−∆ΠC

t,i

)
+ f(p, l)

]
if l > i+ ν.

(C.3)

∂ΠC
t,i(p, l)

∂l
=


β
[
−1
lmax

(
p− ταi+ν(i+ ν − l)−∆ΠC

t,i

)
+ ταi+νf(p, l)

]
if l ≤ i+ ν

β
[
−1
lmax

(
p−∆ΠC

t,i

)]
if l > i+ ν.

(C.4)
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I obtain the first order condition in p for (p, l) ∈ θ, using Equation (C.3) in

Equation (C.5).

p(l) =
1

2

(
∆ΠC

t,i + pmax − ρl + ταi+ν(i+ ν − l)+
)
. (C.5)

Note that, pC∗t,i (l) = p(l) only for (p, l) ∈ θ, i.e., pmin < p(l) ≤ pmax(l) (R1.2). If

p(l) ≤ pmin, then I get pC∗t,i (l) = pmin (R1.1). If p(l) > pmax(l), on the other hand,

I obtain, pC∗t,i (l) = pmax(l) (R1.3). Consequently, I get,

pC∗t,i (l) =



pmin if p(l) ≤ pmin,

p(l) if pmin < p(l) ≤ pmax(l),

pmax(l) if pmax(l) < p(l).

(C.6)

I next obtain the first order condition in l for l ≤ i + ν and (p, l) ∈ θ, using

Equation (C.4) in Equation (C.7).

l(p) =
1

2

(
∆ΠC

t,i − p
ταi+ν

+ i+ ν + lmax −
p− pmin

ρ

)
. (C.7)

Note that, lC∗t,i (p) = l(p), only when 0 ≤ l(p) < min{i+ν, lmax(p)} (R1.2). Similar to

above case, If l(p) < 0, then lC∗t,i (p) = 0 (R1.1). If l(p) > i+ν, where i+ν ≤ lmax(p),

then I know that lC∗t,i (p) ≥ i + ν (R1.3). In this case there are two possibilities: (i)

if p ≥ ∆ΠC
t,i, then

∂ΠCt,i(p,l)

∂l ≤ 0 for l > i + ν from Equation (C.4), and hence

lC∗t,i (p) = i + ν, (ii) If p ≤ ∆ΠC
t,i, then

∂ΠCt,i(p,l)

∂l > 0, which means ΠC
t,i(p, l) is

increasing as l increases for l > i + ν. Thus, I get lC∗t,i (p) = lmax(p). In summary,
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when i+ ν ≤ lmax I obtain,

lC∗t,i (p) =



0 if l(p) ≤ 0,

l(p) if 0 ≤ l(p) ≤ min{i+ ν, lmax(p)},

i+ ν if i+ ν ≤ lmax(p), i+ ν ≤ l(p), and p ≥ ∆ΠC
t,i

lmax(p) otherwise .

(C.8)

An illustration of lC∗t,i (p) and pC∗t,i (l) are given in Figure 19(b), for the correspond-

ing l(p), p(l) given in Figure 19(a).

p

l

pmax

pmin
0 lmaxi + ν

p(l)

l(p)

∆C
t,i

(a) Sample l(p), p(l) lines are denoted as dotted

lines

p

l

pmax

pmin
0 lmaxi + ν

pC∗t,i (l)

lC∗t,i (p)

∆C
t,i

(b) lC∗t,i (p) and pC∗t,i (l) curves are plotted for the

corresponding l(p), p(l) lines. pC∗t,i (l) is denoted

as a dashed line, and lC∗t,i (p) is plotted using a

solid line

Fig. 19. Illustration of l∗(p) and p∗(l)

Derivation of (pC∗t,i , l
C∗
t,i )

Note that (pC∗t,i , l
C∗
t,i ) can be found on the intersections of pC∗t,i (l) and lC∗t,i (p). I next

derive (pC∗t,i , l
C∗
t,i ) considering the possible intersections. I first define p1(l), which is
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the d ≤ i + ν part of p(l) line curve, and p2(l), which is the inverse of l2(p), i.e.,

p2(l) = p, where l2(p) = d.

p1(l) =
1

2

(
∆ΠC

t,i + pmax − ρl + ταi+ν(i+ ν − l)
)

(C.9)

p2(l) =
ρ∆ΠC

t,i + ρταi+ν(i+ ν + lmax − 2d) + ταi+νpmin

ρ+ ταi+ν
(C.10)

In Figure 20(b), I plot p1(l) and p2(l), for the same l(p) and p(l) curves given in

Figure 19(a) that are also plotted in Figure 20(a).

p

l

pmax

pmin
0 lmaxi + ν

p(l)

l(p)

∆C
t,i

(a) Sample l(p), p(l) lines are denoted as dotted

lines

p

l

pmax

pmin
0 lmaxi + ν

p1(l)

p2(l)

∆C
t,i

(b) p1(l) and p2(l) lines are plotted for the cor-

responding l(p), p(l) lines. Note that p2(l) cor-

responds to the same line with l(p), whereas

p1(l) is different than p(l) for l > i+ ν

Fig. 20. Illustration of p1(l) and p2(l)

I note three properties that are shown on Figure 20(b): (i) p1(l), p2(l) and

pmax(l) intersect at the same point, (ii) p1(l) line slopes down faster than p2(l), and

(iii) pmax(l) slopes down faster than both p1(l) and p2(l). I show that properties (i)

and (ii) always hold, whereas property (iii) holds under a condition:
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(i) Solving p1(l∗) = p2(l∗) = pmax(l∗), I get,

l∗ =
pmax −∆ΠC

t,i − ταi+ν(i+ ν)

ρ− ταi+ν , (C.11)

which gives the point p1(l), p2(l) and pmax(l) intersect.

(ii) The slopes of p1(l) and p2(l) are respectively given as −ρ+ταi+ν

2 and − 2ρταi+ν

ρ+ταi+ν
.

Using simple algebra one can clearly obtain the following inequality,

ρ+ ταi+ν

2
≥ 2ρταi+ν

ρ+ ταi+ν
. (C.12)

and, I get −ρ+ταi+ν

2 ≤ − 2ρταi+ν

ρ+ταi+ν
, which gives the desired property.

(iii) The slope of pmax(l) is −ρ. First assume that ρ < ταi+ν . Then, I simply

obtain

ρ <
2ρταi+ν

ρ+ ταi+ν
<
ρ+ ταi+ν

2
. (C.13)

Now assume that ρ > ταi+ν . Now I get,

2ρταi+ν

ρ+ ταi+ν
<
ρ+ ταi+ν

2
< ρ. (C.14)

In summary, when ρ < ταi+ν then both p1(l) and p2(l) slope down faster

than pmax(l), whereas the opposite holds when ρ > ταi+ν , which is the case

depicted in Figure 20(b).

I next analyze the optimal solution under various different cases, where proofs

for two cases are illustrated and given in detail. I consider the case with i+ν ≤ lmax,

and the proof for complementary condition follows from the derived results. I first

analyze the condition ρ > ταi+ν under two cases. I also note that pmax(l) slopes

down faster than both p1(l) and p2(l) in this case.
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Case I ρ > ταi+ν, l∗ > 0: I plot the p1(l) and p2(l) lines in Figure 21(a),

and the corresponding lC∗t,i (p), pC∗t,i (l) curves in Figure 21(b). As depicted in Figure

p

l

pmax

pmin
0 lmaxi + ν

p1(l)

p2(l)

∆C
t,i

(a) Representative p1(l) and p2(l) lines

p

l

pmax

pmin
0 lmaxi + ν

pC∗t,i (l)

lC∗t,i (p)

∆C
t,i

(b) The corresponding lC∗t,i (p), pC∗t,i (l) curves

Fig. 21. Illustration of (pC∗t,i , l
C∗
t,i ) , when l∗ > 0, ρ > ταi+ν , ∆ΠC

t,i ≥ pmin, where

(pC∗t,i , l
C∗
t,i ) is shown using a circular mark

21(b), lC∗t,i (p) and pC∗t,i (l) intersects at a point where lC∗t,i = 0 and pC∗t,i < pmax.

Furthermore, if p1(0) > pmin, as depicted in Figure 22, then I obtain pC∗t,i = p1(0)

(R1.2). Otherwise, I get pC∗t,i = pmin (R1.1). Hence, by plugging in the value of

p1(0), I have

(pC∗t,i , l
C∗
t,i ) =


(

∆ΠCt,i+pmax+ταi+ν(i+ν)

2 , 0

)
, if p1(0) > pmin,

(pmin, 0), if p1(0) ≤ pmin.
(C.15)

Case II ρ > ταi+ν, l∗ ≤ 0: In this case, p1(l) and p2(l) intersects at a point

smaller than d = 0. Hence, I get p1(l) > pmax(l) and p2(l) > pmax(l) for 0 ≤ l ≤ i+ν,

and

(pC∗t,i , l
C∗
t,i ) = (pmax, 0) . (C.16)
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Summary of Case I and II:

In order to simplify my analysis, I describe the derivation of some inequalities

and equalities using derivation tables in the remainder. In each derivation table

the equalities (inequalities) on the left side explains how the equality (inequality)

on right hand side is acquired using simple algebra. For example, in Table 24 the

inequality ∆ΠC
t,i < pmax − ταi+ν(i+ ν) is derived from the inequalities ρ > ταi+ν

and l∗ > 0.

Table 24. Derivation Table for Centralized Setting for Cases I and II

ρ > ταi+ν , l∗ > 0 ∆ΠC
t,i < pmax − ταi+ν(i+ ν)

ρ > ταi+ν , p1(0) ≤ pmin ∆ΠC
t,i ≤ 2pmin − pmax − ταi+ν(i+ ν)

Using the results from Table 24, I combine the results of Cases I and II, and

obtain

(pC∗t,i , l
C∗
t,i ) =



(pmin, 0), if ∆ΠC
t,i ≤ 2pmin − pmax − ταi+ν(i+ ν)(

∆ΠCt,i+pmax+ταi+ν(i+ν)

2 , 0

)
, if 2pmin − pmax − ταi+ν(i+ ν) < ∆ΠC

t,i

< pmax − ταi+ν(i+ ν),

(pmax, 0), if pmax − ταi+ν(i+ ν) < ∆ΠC
t,i

(C.17)

I next analyze three different cases under ρ < ταi+ν . Note that, in this case

pmax(l) slopes down slower than both p1(l) and p2(l).

Case III ρ < ταi+ν, l∗ < i+ ν, p2(i+ ν) ≤ pmin: I plot this case in Figure 22.
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p

l

pmax

pmin
0 lmaxi + ν

p1(l)

p2(l)

(a) Representative p1(l) and p2(l) lines

p

l

pmax

pmin
0 lmaxi + ν

pC∗t,i (l)

lC∗t,i (p)

(b) The corresponding pC∗t,i (l), lC∗t,i (p) curves

Fig. 22. Illustration of (pC∗t,i , l
C∗
t,i ) , when ρ < ταi+ν , l∗ < i + ν, p1(i + ν) ≤ pmin,

where (pC∗t,i , l
C∗
t,i ) is shown using a circular mark

In this case, I have pC∗t,i = pmin, and the value of lC∗t,i depends on the point l∗∗,

where p2(l∗∗) = pmin, i.e., l∗∗ =
∆ΠCt,i−pmin

2ταi+ν
+ i+ν+lmax

2 . If l∗∗ > 0 then lC∗t,i = l∗∗

(R1.2). Otherwise, I have lC∗t,i = 0 (R1.1). In summary, I have

(pC∗t,i , l
C∗
t,i ) =


(pmin, 0), if l∗∗ ≤ 0,

(pmin, l
∗∗), if l∗∗ > 0.

(C.18)

Case IV ρ < ταi+ν, l∗ < i+ ν, p2(i+ ν) > pmin, p1(i+ ν) ≤ pmin: I illustrate

the case in Figure 23.

In this case, the possible intersection occurs at the point (pmin, i+ ν). However,

recall that lC∗t,i (pmin) = i+ ν only if pmin ≥ ∆ΠC
t,i (see Equation (C.8)). Note that,

I have, p1(i + ν) = 1
2

(
∆ΠC

t,i + pmax − ρ(i+ ν)
)

. From p1(i + ν) ≤ pmin, one can
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p

l

pmax

pmin
0 lmaxi + ν

p1(l)

p2(l)

(a) Representative p1(l) and p2(l) lines

p

l

pmax

pmin
0 lmaxi + ν

pC∗t,i (l)
lC∗t,i (p)

(b) The corresponding pC∗t,i (l), lC∗t,i (p) curves

Fig. 23. Illustration of (pC∗t,i , l
C∗
t,i ) , when ρ < ταi+ν , l∗ < i + ν, p2(i + ν) > pmin,

p1(i+ ν) ≤ pmin, where (pC∗t,i , l
C∗
t,i ) is shown using a circular mark

obtain the following inequality

∆ΠC
t,i ≤ pmin − ρ(lmax − (i+ ν)), (C.19)

which clearly satisfies the desired condition, and I obtain (pC∗t,i , l
C∗
t,i ) = (pmin, i+ ν).

Case V ρ < ταi+ν, l∗ < i+ ν, p1(i+ ν) > pmin: I illustrate the case in Figure

24.

In this case, the possible intersection occurs on line (p1(i+ ν), i+ ν). However,

as depicted in Figure 24, one should also ensure that p1(i + ν) > ∆ΠC
t,i. Note that

from l∗ < i + ν, I obtain ∆ΠC
t,i < pmax − ρ(i + ν), and the desired condition is

trivially satisfied. Consequently, I obtain (pC∗t,i , l
C∗
t,i ) = (p1(i+ ν), i+ ν).

Case VI l∗ ≥ i+ ν, ρ < ταi+ν: Similar to Case II, I have p1(l) > pmax(l) and

p2(l) > pmax(l) for 0 ≤ l ≤ i+ ν, and hence (pC∗t,i , l
C∗
t,i ) = (pmax, 0).
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p

l

pmax

pmin
0 lmaxi + ν

p1(l)

p2(l)

∆C
t,i

(a) Representative p1(l) and p2(l) lines

p

l

pmax

pmin
0 lmaxi + ν

pC∗t,i (l) lC∗t,i (p)

∆C
t,i

(b) The corresponding pC∗t,i (l), lC∗t,i (p) curves

Fig. 24. Illustration of (pC∗t,i , l
C∗
t,i ) , when ρ < ταi+ν , l∗ < i + ν, p1(i + ν) > pmin,

where (pC∗t,i , l
C∗
t,i ) is shown using a circular mark

Summary of Cases III, IV, V and VI: Using Equations (C.7), (C.9) and

(C.11) I get Table 25.

Table 25. Derivation Table for Centralized Setting for Cases III, IV, V and VI

ρ < ταi+ν , l∗ ≤ i+ ν ∆ΠC
t,i ≤ pmax − ρ(i+ ν)

ρ < ταi+ν , l∗∗ ≤ 0 ∆ΠC
t,i ≤ pmin − ταi+ν(lmax + i+ ν)

ρ < ταi+ν , p2(i+ ν) ≤ pmin ∆ΠC
t,i ≤ pmin − ταi+ν(lmax − (i+ ν))

ρ < ταi+ν , p1(i+ ν) ≤ pmin ∆ΠC
t,i ≤ pmin − ρ(lmax − (i+ ν))
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Combining the results of Cases III, IV, V and VI, I obtain

(pC∗t,i , l
C∗
t,i ) =



(pmin, 0), if ∆ΠC
t,i ≤ pmin − ταi+ν(lmax + i+ ν),(

pmin,
∆ΠCt,i−pmin

2ταi+ν
+ i+ν+lmax

2

)
, if pmin − ταi+ν(lmax + i+ ν) < ∆ΠC

t,i

≤ pmin − ρ(lmax − (i+ ν)),

(pmin, i+ ν), if pmin − ρ(lmax − (i+ ν)) < ∆ΠC
t,i

≤ pmin − ταi+ν(lmax − (i+ ν)),(
∆ΠCt,i+pmax−ρ(i+ν)

2 , i+ ν

)
, if pmin − ταi+ν(lmax − (i+ ν)) < ∆ΠC

t,i

≤ pmax − ρ(i+ ν),

(pmax, 0), if pmax − ρ(i+ ν) < ∆ΠC
t,i.

(C.20)

When i+ ν > lmax, the possible intersection occurs on (0, l∗∗). Note that, given

0 ≤ l∗∗ < lmax, I obtain pmin − ταi+ν(lmax + i+ ν) < ∆ΠC
t,i ≤ pmin + ταi+ν(lmax −

(i+ ν)). Consequently, implementing R1.1, R1.2 and R1.3 I have

(pC∗t,i , l
C∗
t,i ) =



(pmin, 0), if ∆ΠC
t,i ≤ pmin − ταi+ν(lmax + i+ ν),(

pmin,
∆ΠCt,i−pmin

2ταi+ν
+ i+ν+lmax

2

)
, if pmin − ταi+ν(lmax + i+ ν) < ∆ΠC

t,i

≤ pmin + ταi+ν(lmax − (i+ ν)),

(pmax, 0), if pmax − ρ(i+ ν) < ∆ΠC
t,i.

(C.21)

Furthermore, note that when ρ = ταi+ν , I obtain p1(l) = p2(l) = pmax(l), and

hence (pC∗t,i , l
C∗
t,i ) = (pmax, 0).
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Proof of Theorem 9. In this proof, I first find the best response curves for M and

P that are denoted to as pM∗t,i (l) and lP∗t,i (p), respectively, and find the equilibrium

under three different settings.

Derivation of pM∗t,i (l) and lP∗t,i (p)

Note that ΠP
t,i(p, l) and ΠM

t,i(p, l) are concave in l and p respectively. pM∗t,i (l) is

derived using first order conditions in Equation (C.22) similar to the derivation of

p∗(l) in the proof of Theorem 8.

pM∗t,i (l) =



pmin if p1(l) ≤ pmin,

p1(l) if pmin ≤ p1(l) ≤ pmax(l),

pmax(l) if pmax(l) ≤ p1(l),

(C.22)

where,

p1(l) =
1

2

(
∆ΠM

t,i + pmax − ρl
)
. (C.23)

To derive lP∗t,i (p), I first differentiate ΠP
t,i(p, l) w.r.t. l.

∂ΠP
t,i(p, l)

∂l
=


β
[
−1
lmax

(
γ − ταi+ν(i+ ν − l)−∆ΠP

t,i

)
+ ταi+νf(p, l)

]
if l ≤ i+ ν,

−β
lmax

(
γ −∆ΠP

t,i

)
if l > i+ ν.

(C.24)

The first order condition in l for l ≤ i+ ν is derived in Equation (C.25).

l(p) =
1

2

(
∆ΠP

t,i − γ
ταi+ν

+ i+ ν +
pmax − p

ρ

)
. (C.25)
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I next derive lP∗t,i (p) similar to lC∗t,i (p) in the proof of Theorem 8.

lP∗t,i (p) =



0 if l(p) ≤ 0,

l(p) if 0 ≤ l(p) ≤ min{i+ ν, lmax(p)},

i+ ν if i+ ν ≤ l(p), i+ ν ≤ lmax(p), and ∆ΠP
t,i ≤ γ

lmax(p) otherwise .

(C.26)

I invert l(p) curve to simplify my analysis, and obtain

p2(l) = ρΘ− 2ρl + pmax, (C.27)

where

Θ =
∆ΠP

t,i − γ
ταi+ν

+ i+ ν. (C.28)

I note that slopes of p1(l), pmax(l) and p2(l) are −ρ/2, −ρ and −2ρ, respectively,

as precisely drawn in Figure 25. Hence p1(l) slopes down slower than pmax(l),

whereas p2(l) slopes down faster than pmax(l).

p

l

pmax

pmin
0 lmax

p1(l)
p2(l)

i + ν

Fig. 25. Illustration of p1(l) and p2(l)
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Definition of Parameters

In this section, I define various parameters that are used in the proofs for settings

S, P and M. First, note that, p1(l) and p2(l) are also functions of ∆ΠM
t,i and ∆ΠP

t,i.

To facilitate my analysis, I redefine them in Equations (C.29) and (C.30).

p1(d,K) =
1

2
(K + pmax − ρl) , (C.29)

p2(d,K) = ρ

[
K − γ
ταi+ν

+ i+ ν

]
− 2ρl + pmax. (C.30)

In the remainder, I use pi(d,K) and pi(l) i = 1, 2 interchangeably. Using the

new definitions, I define various parameters in Table 26 that are functions of ∆(·, ·, ·)

(see Equation (4.18)).

Table 26. Derivation Table for parameters ψ1, ψ2, ψ3, ψ4, ψ5, κ1, κ2, κ3, κ4

p1(0, ψ1) = pmin ψ1 = 2pmin − pmax

p1(i+ ν, ψ2) = pmin ψ2 = ρ(i+ ν) + 2pmin − pmax

p1(lmax, ψ3) = pmin ψ3 = pmin

p1(i+ ν, ψ4) = pmax(i+ ν) ψ4 = pmax − ρ(i+ ν)

p1(0, ψ5) = pmax ψ5 = pmax

p2(0, κ1) = pmin κ1 = ∆(0,−lmax, 0)

p2(i+ ν, κ2) = pmin κ2 = ∆(0, 2(i+ ν)− lmax, 0)

p2(i+ ν, κ3) = pmax(i+ ν) κ3 = ∆(0, i+ ν, 0)

p2(lmax, κ4) = pmin κ4 = ∆(0, lmax, 0)

Using ψi i = 1, 2, 3, 4, 5, and κi, i = 1, 2, 3, 4, one can determine the location

of p1(d, ·) and p2(d, ·) that will help us to find the optimal decisions. I illustrate

various cases of p1(d, ·) and p2(d, ·) in Figure 26.
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i + ν
p1(l, ψ1)

p1(l, ψ2)

p1(l, ψ3)

p1(l, ψ4)

p1(l, ψ5)

p

l

pmax

pmin
0 lmax

(a) Illustration of p1(d, ψ1), p1(d, ψ2),

p1(d, ψ3), p1(d, ψ4), and p1(d, ψ5)

p

l

pmax

pmin
0 lmaxi + ν

p2(l, κ1) p2(l, κ2)
p2(l, κ4)

p2(l, κ3)

(b) Illustration of p2(d, κ1), p2(d, κ2), p2(d, κ3),

and p2(d, κ4)

Fig. 26. Various cases of p1(d, ·) and p2(d, ·)

In the remainder of this proof, I analyze the PIPE considering the different

positions of p1(l) and p2(l) as a function of ∆ΠM
t,i and ∆ΠP

t,i, respectively. For

example, ψ1 < ∆ΠM
t,i ≤ ψ2 indicates that p1(l) cuts l axis between 0 and i + ν.

Similarly, κ2 < ∆ΠP
t,i ≤ κ3 implies that pmin < p1(i+ν) ≤ pmax(i+ν). As observed

from Figure 26, whenever i+ ν < lmax, the following inequality hold,

ψ1 < ψ2 < ψ3 < ψ4 < ψ5. (C.31)

Whereas, when i+ ν > lmax, I have

ψ1 < ψ3 < ψ5. (C.32)

Similarly when i+ ν < lmax, I obtain

κ1 < κ2 < κ3 < κ4. (C.33)
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In addition, I define fmy parameters in Table 27 using Equations (C.23) and

(C.27).

Table 27. Derivation Table for parameters l∗1, l∗2, l∗3 and l∗4

p2(l∗1) = pmin l∗1 = 1
2

(Θ + lmax)

p2(l∗2) = p1(l∗2) l∗2 = 2
3

(
Θ +

pmax−∆ΠMt,i
2ρ

)
p1(l∗3) = pmin l∗3 = 1

ρ

(
∆ΠM

t,i + pmax − 2pmin
)

p2(l∗4) = pmax(l∗4) l∗4 = Θ

For example, l∗2 denotes the intersection of p1(l) and p2(l), and l∗3 is the point

where p1(·) intersects pmin. I demonstrate l∗1, l∗2, l∗3 and l∗4 on sample p1(l) and p2(l)

lines in Figure 27.

p

l

pmax

pmin
0 lmax

p1(l)
p2(l)

l∗1 l∗3l∗2l∗4

Fig. 27. Illustration of l∗1, l∗2, l∗3 and l∗4

Proof of Theorem 9 for setting S The Markov perfect equilibria can be found by

the intersections of pM∗t,i (l) and lP∗t,i (p) for the repeated Cournot game [Fudenberg
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and Tirole, 1991]. In this proof, I derive the Markov equilibrium, (pM∗t,i , l
P∗
t,i ), using

a similar approach to the proof of Theorem 8. In particular, I determine the pos-

sible pM∗t,i (l) and lP∗t,i (p) curves for all possible cases of p1(l) and p2(l), and find the

intersection of pM∗t,i (l) and lP∗t,i (p) to obtain (pM∗t,i , l
P∗
t,i ) like in the examples given in

Figures 22 and 23.

I define fmy new parameters in Table 28.

Table 28. Derivation Table for parameters κSA, κSB, κSl and κSE

p1(0,∆ΠM
t,i) = p2(0, κSA), i.e., l∗2 = 0 κSA = ∆(0.5, 0, pmax)

p1(l∗3 ,∆ΠM
t,i) = p2(l∗3 , κ

S
B), i.e., l∗2 = l∗3 κSB = ∆(2, lmax, pmin)

p1(i+ ν,∆ΠM
t,i) = p2(i+ ν, κSl ), i.e., l∗2 = i+ ν κSl = ∆(0.5, 1.5(i+ ν), pmax)

p1(l∗4 ,∆ΠM
t,i) = p2(l∗4 , κ

S
E), i.e., l∗2 = l∗4 κSE = ∆(−1, 0, pmax)

In the analysis below, I follow the following roadmap: (i) Determine the possible

regions of p1(l) and p2(l) given the possible values of ∆ΠM
t,i and ∆ΠP

t,i, (ii) determine

the pM∗t,i (l) and lP∗t,i (p) curves given p1(l) and p2(l) curves, respectively, and (iii) find

(pM∗t,i , l
P∗
t,i ) by finding the intersection of pM∗t,i (l) and lP∗t,i (p). I note that in case of

multiple equilibria, I choose PIPE, i.e., any equilibrium that is not on pmax(l) line,

and hence, gives positive immediate profit. I first discuss the evaluation of (pM∗t,i , l
P∗
t,i )

for i+ ν ≤ lmax.

Case I. ∆ΠM
t,i ≤ ψ1:

In Figure 28, I illustrate a sample p1(l), and fmy regions where p2(l) can possibly

exist depending on the value of ∆ΠP
t,i. For example, when κ1 < ∆ΠP

t,i ≤ κ2, p2(l)

intersects with pmin line at a value ranged in between 0 < l ≤ i + ν. I also note

that p1(0) ≤ pmin due to ∆ΠM
t,i ≤ ψ1 (see Figure 26(a) and observe that p1(·) is
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increasing in ∆ΠM
t,i). Hence, pM∗t,i (l) curve lies on pmin as depicted as a solid line in

Figure 28.

p

l

pmax

pmin
0 lmaxi + ν

∆P
t,i ≤ κ1 κ1 < ∆P

t,i ≤ κ2
κ2 < ∆P

t,i ≤ κ3 κ3 < ∆P
t,i

p1(l)

pM∗
t,i (l)

Fig. 28. Possible regions of p2(l) and pM∗t,i (l) curve under Case I.

I have fmy different optimal solutions depending on the range of p2(l) that

are separately analyzed in Table 29. In this derivation table, I demonstrate my

analysis in three columns, where the inequality in second column is obtained using

the inequality in first column, and the result shown in third column is derived using

the inequality in the second column using the indicated property. For example using

∆ΠP
t,i ≤ κ1, one obtains l∗1 ≤ 0 which indicates that lP∗t,i = 0 by Remark 1.1.
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Table 29. Derivation Table for Case I under setting S

∆ΠP
t,i ≤ κ1 l∗1 ≤ 0 lP∗t,i = 0 (R1.1), and pM∗t,i = pmin

κ1 < ∆ΠP
t,i ≤ κ2 0 < l∗1 ≤ i+ ν lP∗t,i = l∗1 (R1.2), and pM∗t,i = pmin

κ2 < ∆ΠP
t,i ≤ κ3 ∆ΠP

t,i ≤ γ lP∗t,i = i+ ν (R1.3), and pM∗t,i = pmin

κ3 < ∆ΠP
t,i and ∆ΠP

t,i > γ no PIPE lP∗t,i = 0, and pM∗t,i = pmax

In Equation (C.34), I summarize my findings.

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠP
t,i ≤ κ1,

(pmin, l
∗
1), if κ1 < ∆ΠP

t,i ≤ κ2,

(pmin, i+ ν), if κ2 < ∆ΠP
t,i ≤ κ3,

(pmax, 0), if κ3 < ∆ΠP
t,i.

(C.34)

Case II. ψ1 < ∆ΠM
t,i ≤ ψ2:

From ψ1 < ∆ΠM
t,i ≤ ψ2, I have 0 ≤ l∗3 < i+ ν, κSA < κSB < κ2, and pM∗t,i (l) curve

takes the form depicted in Figure 29. Similar to Figure 28, several ranges of p2(l)

are depicted as well.

Note that results for κSB < ∆ΠP
t,i ≤ κ2, and κ2 < ∆ΠP

t,i are identical to κ1 <

∆ΠP
t,i ≤ κ2, and κ2 < ∆ΠP

t,i with those derived in Case I., respectively. Hence, I

focus on the remaining two cases in Table 30.

Table 30. Derivation Table for Case II under setting S

∆ΠP
t,i ≤ κSA l∗2 ≤ 0 lP∗t,i = 0 (R1.1), and pM∗t,i = p1(0)

κSA < ∆ΠP
t,i ≤ κSB 0 < l∗2 ≤ l∗3 lP∗t,i = l∗2 (R1.2), and pM∗t,i = p1(l∗2)
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p

l

pmax

pmin
0 lmaxi + ν

∆P
t,i ≤ κSA

κSA < ∆P
t,i ≤ κSB

κSB < ∆P
t,i ≤ κ2

κ3 < KP
t,i

p1(l)

pM∗
t,i (l)

κ2 < ∆P
t,i ≤ κ3

Fig. 29. Possible regions of p2(l) and pM∗t,i (l) curve under Case II.

I summarize all possible conditions under Case II. in Equation (C.35).

(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠP
t,i ≤ κSA,

(p1(l∗2), l∗2), if κSA < ∆ΠP
t,i ≤ κSB,

(pmin, l
∗
1), if κSB < ∆ΠP

t,i ≤ κ2,

(pmin, i+ ν), if κ2 < ∆ΠP
t,i ≤ κ3,

(pmax, 0), if κ3 < ∆ΠP
t,i.

(C.35)

Case III. ψ2 < ∆ΠM
t,i ≤ ψ4: In this case, I have i + ν < l∗3 (or equivalently

p1(i+ ν) > pmin) and p1(i+ ν) ≤ pmax(i+ ν). The results for various cases of p2(l)

line are illustrated in Figure 30.

(pM∗t,i , l
P∗
t,i ) are derived using the results of the Case II in Table 31.

Hence I obtain the following PIPE.
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p

l

pmax

pmin
0 lmaxi + ν

∆P
t,i ≤ κSA κSA < ∆P

t,i ≤ κSD
κ3 < ∆P

t,i

p1(l)

pM∗
t,i (l)

κSD < ∆P
t,i ≤ κ3

Fig. 30. Possible regions of p2(l) and pM∗t,i (l) curve under Case III.

Table 31. Derivation Table for Case III under setting S

∆ΠP
t,i ≤ κSA l∗2 ≤ 0 lP∗t,i = 0 (R1.1) and pM∗t,i = p1(0)

κSA < ∆ΠP
t,i ≤ κSl 0 < l∗2 ≤ i+ ν lP∗t,i = l∗2 (R1.2) and pM∗t,i = p1(l∗2)

κSl < ∆ΠP
t,i ≤ κ3 ∆ΠP

t,i ≤ γ lP∗t,i = i+ ν (R1.3) and pM∗t,i = p1(i+ ν)

(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠP
t,i ≤ κSA,

(p1(l∗2), l∗2), if κSA < ∆ΠP
t,i ≤ κSl ,

(p1(i+ ν), i+ ν), if κSl < ∆ΠP
t,i ≤ κ3,

(pmax, 0), if κ3 < ∆ΠP
t,i.

(C.36)

Case IV. ψ4 < ∆ΠM
t,i ≤ ψ5: I now have p1(i+ ν) > pmax(i+ ν), p1(0) ≤ pmax,

and κSA < κSE . The results for various cases of p2(l) line are illustrated in Figure 31.
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p

l

pmax

pmin
0 lmaxi + ν

∆P
t,i ≤ κSA κSA < ∆P

t,i ≤ κSE κSE < ∆P
t,i

p1(l)

pM∗
t,i (l)

Fig. 31. Possible regions of p2(l) and pM∗t,i (l) curve under Case IV.

Note that, the results for this case differs from the previous cases only for the

optimality region of (p1(l∗2), l∗2) for 0 < l∗2 ≤ l∗4, i.e., κSA < ∆ΠP
t,i ≤ κSE . Solution is

given in Equation (C.37).

(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠP
t,i ≤ κSA,

(p1(l∗2), l∗2), if κSA < ∆ΠP
t,i ≤ κSE ,

(pmax, 0), if κSE < ∆ΠP
t,i.

(C.37)

Case V. ψ4 < ∆ΠM
t,i : In this case p1(0) > pmax, and no PIPE exists, i.e.,

(pM∗t,i , l
P∗
t,i ) = (pmax, 0).

In summary, I have
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(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,∆ΠP

t,i ≤ κ1,

(p1(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,∆ΠP

t,i ≤ κSA,

(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψ1, κ1 < ∆ΠP
t,i

≤ κ2, or ψ1 < ∆ΠM
t,i ≤ ψ2, κ

S
B < ∆ΠP

t,i ≤ κ2,

(pmin, i+ ν), if ∆ΠM
t,i ≤ ψ2, κ2 < ∆ΠP

t,i ≤ κ3,

(p1(l∗2), l∗2), if ψ1 < ∆ΠM
t,i ≤ ψ2, κ

S
A < ∆ΠP

t,i

≤ κSB, or ψ2 < ∆ΠM
t,i ≤ ψ4, κ

S
A < ∆ΠP

t,i ≤ κSl ,

or ψ4 < ∆ΠM
t,i ≤ ψ5, κ

S
A < ∆ΠP

t,i ≤ κSE ,

(p1(i+ ν), i+ ν), if ψ2 < ∆ΠM
t,i ≤ ψ4, κ

S
l < ∆ΠP

t,i ≤ κ3,

(pmax, 0), otherwise.

(C.38)

I now discuss the case for i+ ν > lmax.

Case VI. ∆ΠM
t,i ≤ ψ1:

The result for this case partially follows from Case I. Note that since i+ν > lmax,

(pmin, l
∗
1) is the PIPE for κ1 < ∆ΠP

t,i ≤ κ4 (see Figure 26(b)). Hence I obtain,

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠP
t,i ≤ κ1,

(pmin, l
∗
1), if κ1 < ∆ΠP

t,i ≤ κ4,

(pmax, 0), if κ4 < ∆ΠP
t,i.

(C.39)

Case VII. ψ1 < ∆ΠM
t,i ≤ ψ3:
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The result for this case partially follows from Case II. as well.

(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠP
t,i ≤ κSA,

(p1(l∗2), l∗2), if κSA < ∆ΠP
t,i ≤ κSB,

(pmin, l
∗
1), if κSB < ∆ΠP

t,i ≤ κ4,

(pmax, 0), if κ4 < ∆ΠP
t,i.

(C.40)

Case VIII. ψ3 < ∆ΠM
t,i ≤ ψ5:

The result for this case is identical to that of Case IV.

In summary, I obtain

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,∆ΠP

t,i ≤ κ1,

(p1(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,∆ΠP

t,i ≤ κSA,

(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψ1, κ1 < ∆ΠP
t,i ≤ κ4,

or ψ1 < ∆ΠM
t,i ≤ ψ3, κ

S
B < ∆ΠP

t,i ≤ κ4,

(p1(l∗2), l∗2), if ψ1 < ∆ΠM
t,i ≤ ψ3, κ

S
A < ∆ΠP

t,i ≤ κSB, or

ψ3 < ∆ΠM
t,i ≤ ψ5, κ

S
A < ∆ΠP

t,i ≤ κSE ,

(pmax, 0), otherwise.

(C.41)

Proof of Theorem 9 for setting P Since production moves first, I first solve the

marketing problem, and use their solution as an input to the production’s problem.

Note that, given a lead time decision l, the optimal decision of marketing is given by
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pM∗t,i (l) in Equation (C.22). Hence, given the production’s lead time decision of l, I

derive the optimal acceptance probability function, f(pM∗t,i (l), l), in Equation (C.42),

using Equations (C.22) and (C.23).

f(pM∗t,i (l), l) =



1− l
lmax

if p1(l) ≤ pmin,

pmax−∆ΠMt,i−ρl
2ρlmax

if pmin ≤ p1(l) ≤ pmax(l),

0 if pmax(l) ≤ p1(l),

(C.42)

Then, by plugging in pM∗t,i (l), ∆ΠP
t,i and rewriting ΠP

t,i(p, l) for i ≤ N , I obtain,

ΠP
t,i(p

M∗
t,i (l), l) = βf(pM∗t,i (l), l)(γ − ταi+ν(i+ ν − l)+ −∆ΠP

t,i) + αΠP∗
t,i , (C.43)

and I reach

ΠP
t,i(p

M∗
t,i (l), l) =



(
1− l

lmax

) (
γ − ταi+ν(i+ ν − l)+ −∆ΠP

t,i

)
+ αΠP∗

t,i , if p1(l) ≤ pmin,

pmax−∆ΠMt,i−ρl
2ρlmax

(
γ − ταi+ν(i+ ν − l)+ −∆ΠP

t,i

)
+ αΠP∗

t,i if pmin ≤ p1(l) ≤ pmax(l),

αΠP∗
t,i if pmax(l) ≤ p1(l).

(C.44)

The optimal lead time decision, lP∗t,i , can be found by

lP∗t,i = argmax
0≤l≤lmax

ΠP
t,i(p

M∗
t,i (l), l). (C.45)

After evaluating lP∗t,i the optimal decision of marketing can be found by

pM∗t,i = pM∗t,i (lP∗t,i ). (C.46)

To solve the maximization problem in (C.45), I first find the maximizers of

the piecewise elements of ΠP
t,i(p

M∗
t,i (l), l) that will help us in derivation of lP∗t,i . The

local maximizers of first and second piecewise elements are denoted as l∗5 and l∗6,

respectively, and are derived in Table 32.
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Table 32. Derivation Table for parameters l∗5 and l∗6

l∗5 = argmaxd

(
1− l

lmax

) (
γ − ταi+ν(i+ ν − l)−∆ΠP

t,i

)
l∗5 = 1

2
(Θ + lmax)

l∗6 = argmaxd
pmax−∆ΠMt,i−ρl

2ρlmax

(
γ − ταi+ν(i+ ν − l)−∆ΠP

t,i

)
l∗6 = 1

2

(
Θ +

pmax−∆ΠMt,i
ρ

)

Since l∗5 and l∗6 are functions of ∆ΠP
t,i, I redefine them as follows.

l∗5(κ) =
1

2

(
κ− γ
ταi+ν

+ i+ ν + lmax

)
, and (C.47)

l∗6(κ) =
1

2

(
pmax −∆ΠM

t,i

ρ
+
κ+ ταi+ν(i+ ν)− γ

ταi+ν

)
. (C.48)

I follow the approach used in the proof for the setting S, and define new param-

eters in Table 33.

Table 33. Derivation Table for parameters κPA, κPB, κPC , κPl and κPE

l∗6(κPA) = 0 κPA = ∆(1, 0, pmax)

p1(l∗6(κPB)) = pmin κPB = ∆(3, lmax, pmin)

p1(l∗5(κPC)) = pmin κPC = ∆(2, lmax, pmin)

l∗6(κPl ) = i+ ν κD = ∆(1, 2(i+ ν), pmax)

p1(l∗5(κPE)) = pmax(l∗6(κPE)) κPE = ∆(−1, 0, pmax)

I only derive (pM∗t,i , l
P∗
t,i ) for i + ν ≤ lmax under several cases listed below. The

proof for i+ ν > lmax follows from i+ ν ≤ lmax and is omitted.

Case I. ∆ΠM
t,i ≤ ψ1:

As depicted in Figure 28, I have p1(l) ≤ pmin and ΠP
t,i(p

M∗
t,i (l), l) =(

1− l
lmax

)(
γ − ταi+ν(i+ ν − l)+ −∆ΠP

t,i

)
+ αΠP∗

t,i for 0 ≤ l ≤ lmax. Recalling

that l∗5 is the maximizer of lM∗t,i (p) in this case (see Table 32), I analyze the possible

values of l∗5 to determine the optimal decision in Table 34
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Table 34. Derivation Table for Case I under setting P

∆ΠP
t,i ≤ κ1 l∗5 ≤ 0 lP∗t,i = 0 (R1.1), and pM∗t,i = pmin

κ1 < ∆ΠP
t,i ≤ κ2 0 < l∗5 ≤ i+ ν lP∗t,i = l∗5 (R1.2), and pM∗t,i = pmin

κ2 < ∆ΠP
t,i ≤ κ3 ∆ΠP

t,i ≤ γ lP∗t,i = i+ ν (R1.3), and pM∗t,i = pmin

κ3 < ∆ΠP
t,i and ∆ΠP

t,i > γ no PIPE lP∗t,i = 0, and pM∗t,i = pmax

Note that, obtained optimal solution is same with the one derived for setting S

Case I. The findings are summarized in Equation (C.49).

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠP
t,i ≤ κ1,

(pmin, l
∗
1), if κ1 < ∆ΠP

t,i ≤ κ2,

(pmin, i+ ν), if κ2 < ∆ΠP
t,i ≤ κ3,

(pmax, 0), if κ3 < ∆ΠP
t,i.

(C.49)

Case II. ψ1 < ∆ΠM
t,i ≤ ψ2:

pM∗t,i (l) is depicted in Figure 32.

Note that in this case ΠP
t,i(p

M∗
t,i (l), l) is a piecewise function given as follows.

ΠP
t,i(p

M∗
t,i (l), l) =


pmax−∆ΠMt,i−ρl

2ρlmax

(
γ − ταi+ν(i+ ν − l)+ −∆ΠP

t,i

)
+ αΠP∗

t,i , for 0 ≤ d < l∗3 ,(
1− l

lmax

) (
γ − ταi+ν(i+ ν − l)+ −∆ΠP

t,i

)
+ αΠP∗

t,i , if l∗3 ≤ d ≤ lmax.
(C.50)

One observes that the first and second elements of ΠP
t,i(p

M∗
t,i (l), l) are maximized by

l∗6 and l∗5, respectively. Hence, I analyze the possible values of l∗5 and l∗6 and use the

findings of Remark 2 to derive the optimal solution in Table 35. Furthermore, I use

the inequality κPA < κPB < κPC < κ2, which is simply acquired from ψ1 < ∆ΠM
t,i ≤

ψ2 < ψ3.
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p

l

pmax

pmin
0 lmaxi + νl∗3

p1(l)

pM∗
t,i (l)

Fig. 32. Illustration of Case II.

Table 35. Derivation Table for Case II under setting P

∆ΠP
t,i ≤ κPA < κPC l∗6 ≤ 0 and l∗5 ≤ l∗3 lP∗t,i = 0 (R2.1), and pM∗t,i = p1(0)

κPA < ∆ΠP
t,i ≤ κPB < κPC 0 ≤ l∗6 ≤ l∗3 and l∗5 ≤ l∗3 lP∗t,i = l∗6 (R2.2) and pM∗t,i = p1(l∗2)

κPB < ∆ΠP
t,i ≤ κPC l∗3 < l∗6 and l∗5 ≤ l∗3 lP∗t,i = l∗3 (R2.3) and pM∗t,i = pmin

κPC < ∆ΠP
t,i ≤ κ2 l∗3 < l∗6 and l∗3 ≤ l∗5 ≤ i+ ν lP∗t,i = l∗5 (R2.4) and pM∗t,i = pmin

κ2 < ∆ΠP
t,i ≤ κ3 l∗3 < l∗6 and i+ ν < l∗5 lP∗t,i = i+ ν (R2.5) and pM∗t,i = pmin

Consequently, I obtain

(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠPt,i ≤ κPA,

(p1(l∗6), l∗6), if κPA < ∆ΠPt,i ≤ κPB ,

(pmin, l
∗
3), if κPB < ∆ΠPt,i ≤ κPC ,

(pmin, l
∗
5), if κPC < ∆ΠPt,i ≤ κ2,

(pmin, i+ ν), if κ2 < ∆ΠPt,i ≤ κ3,

(pmax, 0), if κ3 < ∆ΠPt,i.

(C.51)

196



Case III. ψ2 < ∆ΠM
t,i ≤ ψ4:

The results for this case follows from Case III for setting S, where l∗2, κSA and κSl

are replaced by l∗6, κPA and κPl , respectively.

(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠP
t,i ≤ κPA,

(p1(l∗6), l∗6), if κPA < ∆ΠP
t,i ≤ κPl ,

(p1(i+ ν), i+ ν), if κPl < ∆ΠP
t,i ≤ κ3,

(pmax, 0), if κ3 < ∆ΠP
t,i.

(C.52)

Case IV. ψ4 < ∆ΠM
t,i ≤ ψ5:

This case is depicted in Figure 33.

p

l

pmax

pmin
0 lmaxi + ν

p1(l)

pM∗
t,i (l)

l∗4

Fig. 33. Illustration of Case IV.

Similarly, the results for this case is identical to that of Case IV for setting S,

where l∗2, κSA and κSE are replaced by l∗6, κPA and κPE , respectively.
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(pM∗t,i , l
P∗
t,i ) =



(p1(0), 0), if ∆ΠP
t,i ≤ κPA,

(p1(l∗6), l∗6), if κPA < ∆ΠP
t,i ≤ κPE ,

(pmax, 0), if κPE < ∆ΠP
t,i.

(C.53)

Case V. ψ4 < ∆ΠM
t,i : In this case p1(0) > pmax, and no PIPE exists, i.e.,

(pM∗t,i , l
P∗
t,i ) = (pmax, 0).

In summary, I get the following.

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,∆ΠP

t,i ≤ κ1,

(p1(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,∆ΠP

t,i ≤ κPA,

(pmin, l
∗
5), if ∆ΠM

t,i ≤ ψ1, κ1 < ∆ΠP
t,i ≤ κ2, or

ψ1 < ∆ΠM
t,i ≤ ψ2, κ

P
C < ∆ΠP

t,i ≤ κ2,

(pmin, l
∗
3), if ψ1 < ∆ΠM

t,i ≤ ψ2, κ
P
B < ∆ΠP

t,i ≤ κPC ,

(pmin, i+ ν), if ∆ΠM
t,i ≤ ψ2, κ2 < ∆ΠP

t,i ≤ κ3,

(p1(l∗6), l∗6), if ψ1 < ∆ΠM
t,i ≤ ψ2, κ

P
A < ∆ΠP

t,i ≤ κPB, or

ψ2 < ∆ΠM
t,i ≤ ψ4, κ

P
A < ∆ΠP

t,i ≤ κPl ,

or ψ4 < ∆ΠM
t,i ≤ ψ5, κ

P
A < ∆ΠP

t,i ≤ κPE ,

(p1(i+ ν), i+ ν), if ψ2 < ∆ΠM
t,i ≤ ψ4, κ

P
l < ∆ΠP

t,i ≤ κ3,

(pmax, 0), otherwise.

(C.54)
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Following the results for i+ν ≤ lmax, I obtain the optimal solution for i+ν > lmax

in Equation (C.55).

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,∆ΠP

t,i ≤ κ1,

(p1(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,∆ΠP

t,i ≤ κPA,

(pmin, l
∗
5), if ∆ΠM

t,i ≤ ψ1, κ1 < ∆ΠP
t,i ≤ κ4, or

ψ1 < ∆ΠM
t,i ≤ ψ3, κ

P
C < ∆ΠP

t,i ≤ κ4,

(pmin, l
∗
3), if ψ1 < ∆ΠM

t,i ≤ ψ3, κ
P
B < ∆ΠP

t,i ≤ κPC ,

(p1(l∗6), l∗6), if ψ1 < ∆ΠM
t,i ≤ ψ3, κ

P
A < ∆ΠP

t,i ≤ κPB, or

ψ3 < ∆ΠM
t,i ≤ ψ5, κ

P
A < ∆ΠP

t,i ≤ κPE ,

(pmax, 0), otherwise.

(C.55)

Proof of Theorem 9 for setting M

I first solve the optimization problem of production department, and use the

solution as an input to the marketing’s problem. I derive the optimal acceptance

probability function, f(p, lM∗t,i (p)), in Equation (C.56), using Equations (C.8) and

(C.7) for ∆ΠP
t,i ≤ κ3. Note that f(p, lM∗t,i (p)) = 0 when ∆ΠP

t,i > κ3.
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f(p, lM∗t,i (p)) =



pmax−p
ρlmax

if l(p) ≤ 0,

pmax−p−ρΘ
2ρlmax

0 ≤ l(p) ≤ min{i+ ν, lmax(p)},

pmax−p−ρ(i+ν)
ρlmax

if i+ ν ≤ l(p), i+ ν ≤ lmax(p),

and ∆ΠP
t,i ≤ γ,

0 otherwise .

(C.56)

Then, by plugging in f(p, lM∗t,i (p)), ∆ΠM
t,i and rewriting ΠM

t,i(p, l) for i ≤ N I

obtain,

ΠM
t,i(p, l

M∗
t,i (p)) = βf(p, lM∗t,i (p))(p−∆ΠM

t,i) + αΠM∗
t,i , (C.57)

and I reach

ΠM
t,i(p, l

M∗
t,i (p)) =



pmax−p
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , if l(p) ≤ 0,

pmax−p−ρΘ
2ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , 0 ≤ l(p) ≤ min{i+ ν, lmax(p)},

pmax−p−ρ(i+ν)
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , if i+ ν ≤ l(p), i+ ν ≤ lmax(p),

and ∆ΠP
t,i ≤ γ,

0 otherwise .

(C.58)

The optimal lead time decision, lP∗t,i , can be found by

lP∗t,i = argmax
0≤l≤lmax

ΠP
t,i(p

M∗
t,i (l), l) (C.59)

I first evaluate the optimal price decisions that maximizes each piecewise function

in Equation (C.73). Using simple algebra, one obtains

p1(0) = argmax
p

pmax − p
ρlmax

(p−∆ΠM
t,i). (C.60)
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p1(Θ) = argmax
p

pmax − p− ρΘ

2ρlmax
(p−∆ΠM

t,i). (C.61)

p1(i+ ν) = argmax
p

pmax − p− ρ(i+ ν)

ρlmax
(p−∆ΠM

t,i). (C.62)

Given these pricing decisions, lP∗t,i takes values of 0, 1
4(3Θ +

pmax−∆ΠMt,i
ρ ), and

i+ ν, respectively. For simplicity I let,

l∗7 =
1

4

(
3Θ +

pmax −∆ΠM
t,i

ρ

)
. (C.63)

Following the approaches implemented in the previous proofs, I define new pa-

rameters in Table 36 using the definition of Ω(·) in Equation (4.20).

Table 36. Derivation Table for parameters ψA, ψB, ψC , ψD, ψE and ψF

p1(Θ, ψA) = pmin ψA = Ω(1, 0, 2pmin − pmax)

p1(Θ, ψB) = p2(0) ψB = Ω(3, 0, pmax)

p1(0, ψC) = p2(0) ψC = Ω(2, 0, pmax)

p1(Θ, ψD) = p2(l∗4) ψD = Ω(−1, 0, pmax)

p1(i+ ν, ψE) = p2(i+ ν) ψE = Ω(2, 3, pmax)

p1(Θ, ψF ) = p2(i+ ν) ψF = Ω(3, 4, pmax)

Similar to my previous analysis, I plot various cases of p2(l), and find the max-

imizer of ΠM
t,i(p, l

M∗
t,i (p)) in each case. I note that the slope of p2(l) is −2ρ, which

indicates that it slopes down two times faster than pmax(l). Any p2(l) line passing

through (pmax, 0), also passes from (pmin,
lmax

2 ) (which is also p2(d, κ1+κ4
2 )) as shown

in Figure 34.

Consequently, I may obtain different solutions for the case with i + ν ≤ lmax
2

and i + ν > lmax
2 , as well as ∆ΠP

t,i ≤ κ1+κ4
2 and otherwise. I consider these cases
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p

l

pmax

pmin
0 lmaxi + ν

p2(l, κ1)

p2(l, κ2)

p2(l, κ4)

p2(l, κ3)

p2(l,
κ1+κ4

2 )

lmax
2

Fig. 34. Illustration of p2(d, κ1+κ4
2 )

separately. In each figure below, I plot p2(l) and the corresponding lM∗t,i (p) using

dashed and solid lines respectively.

Case I. ∆ΠP
t,i ≤ κ1:

p

l

pmax

pmin
0 lmax

p2(l)
lM∗
t,i (p)

Fig. 35. Representative p2(l) and lM∗t,i (p) curve under Case I.
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As observed in Figure 31, I have

ΠM
t,i(p, l

M∗
t,i (p)) =

pmax − p
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , pmin ≤ p ≤ pmax

Recalling that p1(0) is the maximizer of lM∗t,i (p) in this case (see Equation (C.60)),

I analyze the possible values of p1(0) to determine the optimal decision in Table 37.

Table 37. Derivation Table for Case I under setting M

∆ΠM
t,i ≤ ψ1 p1(0) ≤ pmin pM∗t,i = pmin (R1.1), and lP∗t,i = 0

ψ1 < ∆ΠM
t,i ≤ ψ5 pmin < p1(0) ≤ pmax pM∗t,i = p1(0) (R1.2), and lP∗t,i = 0

ψ5 < ∆ΠM
t,i pmax < p1(0) pM∗t,i = pmax (R1.3), and lP∗t,i = 0

Hence, I obtain,

(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠM
t,i ≤ ψ1,

(p1(0), 0), if ψ1 < ∆ΠM
t,i ≤ ψ5,

(pmax, 0), if ψ5 < ∆ΠM
t,i .

(C.64)

Case II. κ1 < ∆ΠP
t,i ≤ κ2 and ∆ΠP

t,i ≤ κ1+κ4
2 :

In this case ΠM
t,i(p, l

M∗
t,i (p)) is in a piecewise form as observed in Figure 36, which

is given as follows.

ΠM
t,i(p, l

M∗
t,i (p)) =


pmax−p−ρΘ

2ρlmax
(p−∆ΠM

t,i) + αΠM∗
t,i if pmin ≤ p ≤ p2(0),

pmax−p
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i if p2(0) < p ≤ pmax,
(C.65)

where the maximizers of the piecewise functions are p1(Θ) and p1(0) (see Equations

(C.60) and (C.61)), respectively. Furthermore, using the inequalities κ1 < ∆ΠP
t,i ≤
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p

l

pmax

pmin
0 lmax

p2(l)

i + ν

lM∗
t,i (p)

p2(0)

Fig. 36. Representative p2(l) and lM∗t,i (p) curve under Case II.

κ2 and i+ ν ≤ lmax
2 , one obtains

ψA ≤ ψB ≤ ψC ≤ ψ5 (C.66)

I analyze each case separately in Table 38.

Table 38. Derivation Table for Case II under setting M

∆ΠM
t,i ≤ ψA < ψC p1(Θ) ≤ pmin and p1(0) ≤ p2(0) pM∗t,i = pmin (R2.1), and lP∗t,i = l∗1

ψA < ∆ΠM
t,i ≤ ψB < ψC pmin < p1(Θ) ≤ p2(0) and p1(0) ≤ p2(0) pM∗t,i = p1(Θ) (R2.2), and lP∗t,i = l∗7

ψB < ∆ΠM
t,i ≤ ψC p2(0) < p1(Θ) and p1(0) ≤ p2(0) pM∗t,i = p2(0) (R2.3), and lP∗t,i = 0

ψB < ψC < ∆ΠM
t,i < ψ5 p2(0) < p1(Θ) and p2(0) < p1(0) ≤ pmax pM∗t,i = p1(0) (R2.4), and lP∗t,i = 0

ψB < ψ5 < ∆ΠM
t,i p2(0) < p1(Θ) and pmax < p1(0) pM∗t,i = pmax (R2.5), and lP∗t,i = 0

I have,
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(pM∗t,i , l
P∗
t,i ) =



(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψA,

(p1(Θ), l∗7), if ψA < ∆ΠM
t,i ≤ ψB,

(p2(0), 0), if ψB < ∆ΠM
t,i ≤ ψC .

(p1(0), 0), if ψC < ∆ΠM
t,i ≤ ψ5,

(pmax, 0), if ψ5 < ∆ΠM
t,i .

(C.67)

Case III. i+ ν ≤ lmax, κ1 < ∆ΠP
t,i ≤ κ2 and ∆ΠP

t,i >
κ1+κ4

2 :

p

l

pmax

pmin
0 lmax

p2(l)

i + ν

lM∗
t,i (p)

p2(l
∗
4)

Fig. 37. Representative p2(l) and lM∗t,i (p) curve under Case III.

As shown in Figure 37, I now have

ΠM
t,i(p, l

M∗
t,i (p)) =

pmax − p− ρΘ

2ρlmax
(p−∆ΠM

t,i) + αΠM∗
t,i , pmin ≤ p ≤ p2(l∗4),

whose maximum is achieved by p1(Θ). I derive the solution in Table 39 and Equation

(C.68), respectively.
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Table 39. Derivation Table for Case III under setting M

∆ΠM
t,i ≤ ψA p1(Θ) ≤ pmin pM∗t,i = pmin (R1.1), and lP∗t,i = l∗1

ψA < ∆ΠM
t,i ≤ ψD pmin < p1(Θ) ≤ p2(l∗4) pM∗t,i = p1(Θ) (R1.2), and lP∗t,i = l∗7

ψD < ∆ΠM
t,i p2(l∗4) < p1(Θ) pM∗t,i = pmax (R1.3), and lP∗t,i = 0

(pM∗t,i , l
P∗
t,i ) =



(pmin, l
∗
1), if ∆ΠM

t,i ≤ ψA,

(p1(Θ), l∗7), if ψA < ∆ΠM
t,i ≤ ψD,

(pmax, 0), if ψD < ∆ΠM
t,i .

(C.68)

Case IV. i+ ν ≤ lmax, κ2 < ∆ΠP
t,i ≤ κ3 and ∆ΠP

t,i >
κ1+κ4

2 :

p

l

pmax

pmin
0 lmax

p2(l)

i + ν

lM∗
t,i (p)

p2(l
∗
4)

p2(i + ν)

Fig. 38. Representative p2(l) and lM∗t,i (p) curve under Case III.

I now have,
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ΠM
t,i(p, l

M∗
t,i (p)) =


pmax−p−ρΘ

2ρlmax
(p−∆ΠM

t,i) + αΠM∗
t,i , if pmin ≤ p ≤ p2(i+ ν),

pmax−p−ρ(i+ν)
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , if p2(i+ ν) ≤ p ≤ p2(l∗4).

(C.69)

Unlike previous piecewise cases, unfortunately conditions of Remark 2 does not

hold in this case. Hence, I analyze pmin ≤ p ≤ p2(i+ ν) and p2(i+ ν) ≤ p ≤ p2(l∗4)

separately and find the local maximizers in each case that are denoted as p∗1 and p∗2,

respectively. I have,

p∗1 =



pmin, if ∆ΠM
t,i ≤ ψ2,

p1(i+ ν), if ψ2 < ∆ΠM
t,i ≤ ψE ,

p2(i+ ν), if ψE < ∆ΠM
t,i ,

(C.70)

p∗2 =



p2(i+ ν), if ∆ΠM
t,i ≤ ψF ,

p1(Θ), if ψF < ∆ΠM
t,i ≤ ψD,

pmax, if ψD < ∆ΠM
t,i ,

(C.71)

where, the derivations are given in Table 40.

Finally, the optimal decision can be found by the local maximum that gives

higher revenues, i.e.,

pM∗t,i = argmax{ΠM
t,i(p

∗
1, l

M∗
t,i (p∗1)),ΠM

t,i(p
∗
2, l

M∗
t,i (p∗2))}. (C.72)

Case V. i+ ν ≤ lmax, κ2 < ∆ΠP
t,i ≤ κ3 and ∆ΠP

t,i ≤ κ1+κ4
2 :
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Table 40. Derivation Table for Case IV under setting M

∆ΠM
t,i ≤ ψ2 p1(i+ ν) ≤ pmin p∗1 = pmin (R1.1)

ψ2 < ∆ΠM
t,i ≤ ψE pmin < p1(i+ ν) ≤ p2(i+ ν) p∗1 = p1(i+ ν) (R1.2)

ψE < ∆ΠM
t,i p2(i+ ν) < p1(i+ ν) p∗1 = pmax (R1.3)

∆ΠM
t,i ≤ ψF p1(Θ) ≤ p2(i+ ν) p∗2 = p2(i+ ν) (R1.1)

ψF < ∆ΠM
t,i ≤ ψD p2(i+ ν) < p1(Θ) ≤ p2(l∗4) p∗2 = p1(Θ) (R1.2)

ψD < ∆ΠM
t,i p2(l∗4) < p1(Θ) p∗2 = pmax (R1.3)

p

l

pmax

pmin
0 lmax

p2(l)

i + ν

lM∗
t,i (p)

p2(0)

p2(i + ν)

Fig. 39. Representative p2(l) and lM∗t,i (p) curve under Case III.

As shown in Figure 39, I now have three piecewise functions, and

ΠM
t,i(p, l

M∗
t,i (p)) =



pmax−p−ρ(i+ν)
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , pmin ≤ p < p2(i+ ν),

pmax−p−ρΘ
2ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , p2(i+ ν) ≤ p ≤ p2(0),

pmax−p
ρlmax

(p−∆ΠM
t,i) + αΠM∗

t,i , if p2(0) < p ≤ pmax.
(C.73)
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I follow a similar approach to that of Case IV. I know the local maximizers for

the range pmin ≤ p < p2(i + ν) and p2(i + ν) ≤ p < pmax. The local maximizer

for the former is shown to be p∗1 (see Equation (C.70)). The local maximizer of the

latter is denoted as p∗3 and given in Equation (C.74).

p∗3 =



p2(i+ ν), if ∆ΠM
t,i ≤ ψF ,

p1(Θ), if ψF < ∆ΠM
t,i ≤ ψB,

p2(0), if ψB < ∆ΠM
t,i ≤ ψC ,

p1(0), if ψC < ∆ΠM
t,i ≤ ψ5,

pmax, if ψ5 < ∆ΠM
t,i .

(C.74)

Finally, the optimal decision can be found by (C.75).

pM∗t,i = argmax{ΠM
t,i(p

∗
1, l

M∗
t,i (p∗1)),ΠM

t,i(p
∗
3, l

M∗
t,i (p∗3))}. (C.75)

Case VI. i+ ν > lmax, κ1 < ∆ΠP
t,i ≤ κ4 and ∆ΠP

t,i >
κ1+κ4

2 :

The results for this case follows from that of Case III and the optimal solution

is given in Equation (C.68).

I sum up the results in three general cases. If i+ ν ≤ lmax
2 and ∆ΠP

t,i ≤ κ2, then

Cases I and II are considered, and I obtain.
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(pM∗t,i , l
P∗
t,i ) =



(pmin, 0), if ∆ΠP
t,i ≤ κ1,∆ΠM

t,i ≤ ψ1,

(pmin, l
∗
1), if κ1 < ∆ΠP

t,i ≤ κ2,∆ΠM
t,i ≤ ψA,

(p1(0), 0), if ∆ΠP
t,i ≤ κ1, ψ1 < ∆ΠM

t,i ≤ ψ5, or

κ1 < ∆ΠP
t,i ≤ κ2, ψC < ∆ΠM

t,i ≤ ψ5,

(p1(Θ), l∗7), if κ1 < ∆ΠP
t,i ≤ κ2, ψA < ∆ΠM

t,i ≤ ψB,

(p2(0), 0), if κ1 < ∆ΠP
t,i ≤ κ2, ψB < ∆ΠM

t,i ≤ ψC .

(pmax, 0), otherwise.

(C.76)

The optimal solution can be found as follows in the remaining cases:

• If i + ν ≤ lmax
2 and κ2 < ∆ΠP

t,i ≤ κ3 then the optimal solution can be found

as given in Case V.

• If lmax
2 < i+ ν ≤ lmax and ∆ΠP

t,i ≤ κ2, then the optimal solution can be found

as given in Case III.

• If lmax
2 < i+ ν ≤ lmax and κ2 < ∆ΠP

t,i ≤ κ3, then the optimal solution can be

found as given in Case IV.

• If i+ ν > lmax then the optimal solution can be found as given in Case VI.
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