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ABSTRACT

A sequence of models is developed to describe urban population growth in

the context of the embedded physical, social and economic environments and

an urban disease are developed. This set of models is focused on urban growth

and the relationship between the desire to move and the utility derived from city

life. This utility is measured in terms of the economic opportunities in the city,

the level of human constructed amenity, and the level of amenity caused by the

natural environment. The set of urban disease models is focused on examining

prospects of eliminating a disease for which a vaccine does not exist. It is inspired

by an outbreak of the vector-borne disease dengue fever in Peru, during 2000-2001.
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Chapter 1

Introduction

Men come together in cities in order to live, but they remain together in

order to live the good life. -Aristotle

In this dissertation I outline a systematic approach to develop a sequence of mod-

els aimed at exploring the relationship between 1) amenity and migration and

2) vertical transmission and disease invasion. This approach builds on the well

established applied mathematics framework (specifically the dynamical systems

and stochastic processes approach to mathematical ecology and biology) and rep-

resents a novel approach to modeling urban growth mechanistically. It also offers

several extensions on the current literature of dengue fever modeling.

The impetus of this dissertation is the observation of extraordinary regular-

ity in the pattern of human settlements across temporal and spatial scales (Zipf’s

Law) in the face of an extremely heterogenous social-ecological landscape. Cen-

tral to the arguments presented here is the notion of feedbacks between various

aspects of the complex landscape and settlement patterns, especially in terms of

the drivers and markers of the true state of the system. In this formulation, migra-

tion is the force of change for settlement patterns and it is modulated by a sense of

the economic, environmental and social landscape. While it may be difficult for

the individual to ascertain the “true" state of a city due to imperfect information

(uncertainty, information lag, etc.) there are several important indirect indicators

of the happiness one might expect living in a certain area.

Crime, poverty, diseases, among others, may be better indicators of the the

healthiness and cleanliness of an area than arbitrary measures of land values and

easements. While I will not expound on the well known ideas of Jane Jacobs

[Jacobs, 1992] or the more recent notions of ecohealth, I will mention that dis-

eases may serve as markers of environmental degradation. If an area has an unusu-
1



ally high prevalence of disease, it may indicate that there are some environmen-

tal determinants such as toxic release sites or naturally contaminated soil, water,

etc. If the disease is an infectious one, it may also indicate that the environmen-

tal degradation may have roots in failed public infrastructure. This is especially

true for disease like dengue fever where the distribution of breeding sites for the

mosquito that transmits the disease is strongly influenced by the socio-political

context; how private actions are influenced by the provision/absence of public

services and infrastructure [Gubler, D., 2005]. Then those with the resources to

identify and avoid these areas will do so. Thus, diseases are not necessarily a driver

of migration (except for rare cases such as in areas endemic with HIV/AIDS) but

may serve as an indicator of expected happiness that influences migration in the

sense of Tiebot sorting.

This approach to studying urban growth is novel in the implementation of a

mechanistic approach based on the methodology of compartmental models. The

migration rate between cities is assumed to be a function of the population sizes

and the social, environmental and economic environments of the cities. A pre-

cise model of each of these factors is beyond the scope of this dissertation and

we restrict ourselves to a consideration of the effect of those factors on the mi-

gration rate. This work is motivated by a series of overarching questions (to be

elaborated later): in a mechanistic model of urban migration, does the interplay

between the natural environment, economic and social institutions alter the long

term distribution of city populations? Do institutions that impact the amenity

people derive from living in a particular city impact the long term sustainability

of that city? Does diversity in individual preferences increase the robustness of

urban populations? Does the ability to move between neighboring cities increase

the stability of urban populations? What is the role of uncertainty (information

lag and/or stochasticity) in the long-term distribution of city populations?

2



The urban environment provides unique opportunities for disease emergence

and reemergence. Some facilitating factors include a high concentration of indi-

viduals, immigration that may bring in more susceptible or infectious individuals,

and emigration that may export diseases to other urban areas. One particular dis-

ease that has thrived in the urban environment is dengue fever, a vector-borne

disease. The primary vectors of dengue have also thrived in urban environments,

displaying an increased resilience to adverse weather conditions and a generally

aggressive and invasive predisposition. The models of dengue formulated here

have been inspired by the 2000-2001 outbreak in Peru that saw the introduction

of a novel strain to the area and one of the worse epidemics in Peruvian history.

This work is also motivated by a set of overarching questions: is it possible to con-

tain/eradicate a reemerging infectious urban disease without vaccination? What

is the role of vertical transmission in the persistence and invasion potential of

dengue fever? What is the role of diapause and egg reservoirs in the persistence of

dengue? Is site reduction and/or insecticide spraying sufficient to control/prevent

dengue outbreaks?

Every model is a simplification of reality, and thus incomplete. The goal of

this dissertation is to establish a set of models that open up a new avenue for a

discussion of sustainability and robustness of cities (via population growth and

disease control). These models are a tool, a mechanism for the realization of cer-

tain hypothesis to be used in conjunction (either in series or parallel) with existing

models and frameworks. Every model has advantages and disadvantages and it is

hoped that by offering a different perspective, that can be used in conjunction

with existing and future models, I can contribute to a more comprehensive and

robust evaluation of sustainability [Page, 2011].
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Chapter 2

Mathematical Modeling

One of the pleasures of looking at the world through mathematical eyes

is that you can see certain patterns that would otherwise be hidden. -

Steven Strogatz

To model, mathematically or otherwise, is to simplify reality. It is to articulate

a perceived understanding of the core boundaries, agents, processes and interac-

tions of a system based on observations. Thus every model is wrong, however

some can be useful. Two such examples are Malthusian growth model and New-

ton’s Second Law. The Malthusian model is perhaps one of the most fundamental

relationships and will be discussed later. The other, more tangible, example of a

useful model, Newton’s Second law, is most commonly written as

F = ma,

where F is the sum of all the forces on an object, m is the mass of that object, and

a is its acceleration. This model is useful because of two important features: 1) it

is a robust description of how objects move at the correct scales, and 2) it opened

up a whole new area of mathematical investigation. It is the confluence of the

applied and the theoretical that has given this model the value it has to this day.

Modeling follows the scientific method in many ways. Observations are nec-

essary to formulate assumptions, conjectures and hypothesis concerning the con-

struction of the model. Analysis and simulation of the model provides predictions

that can be tested against further data. Refinement and calibration, often called

verification and validation in certain applications, is as critical in modeling as it is

in the scientific method. This iteration continues until the model becomes useful

on some level.
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Much like science, modeling is an art with numerous combinations of media,

bases, tools and techniques. The form chosen here leverages compartmental mod-

els and the dynamical systems approach because 1) I have some familiarity with

that medium and 2) I feel it is similar, but distinctively different, than other ap-

proaches that have been taken in the study of settlement patterns. Every model

has advantages and disadvantages and mine allows us to express the city as a unique

yet mimetic construct.

Before I unveil the model, I will briefly review how others have expressed

the city in models that are conceptually similar. There are generally two model-

ing extremes, the highly complex, large-scale urban simulation pioneered by For-

rester [Forrester, 1969] such as Urbansim at UC Berkeley, LEAM at UI Urbana-

Champaing, and Geosimulation at ASU, and the highly simplified, stylized mod-

els of the new urban economics [Dendrinos and Mullally, 1985]. In many ways

this parallels the application of mathematical modeling in ecology and biology

[Dendrinos and Mullally, 1981], and these models have had a tremendous impact

on the field both in terms of the mathematics and the ecology/biology (for exam-

ples see[Brauer and Castillo-Chavez, 2001, Allen, L.J.S., 2003] and the references

therein). I apply some of the methods employed in mathbiology while keeping in

mind that social systems are generally more complicated than biological ones; the

units of social systems are often biological systems which express some agency

and thus some inclination to not follow the rules.

Predator-Prey Models

The Kolmogorov or Lotka-Volterra type predator-prey models have been exten-

sively studied (with over 130,000 google scholar hits) and several authors have

modeled the population density and per capita income level of a city using this

framework [Dendrinos and Mullally, 1985, Samuelson, 1971]. The essential premise

of these nonlinear urban population dynamic models is that there exists a com-
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petitive environment that relates the city population to the per capita income of

the form

Ṅ = N ∗ f (N ,K)

K̇ = K ∗ g (N ,K)

where N is the population size and K is the per capita income. Then f (N ,K)

and g (N ,K) are generally linear functions. This framework is general enough to

exhibit a wide range of dynamical behavior including nodes, foci, saddles, centers

and limit cycles. These types of models can also be coupled to include several

connected cities. Despite this generality, they have not had good agreement with

data[Dendrinos and Mullally, 1985].

Scaling Laws

The economics literature has taken advantage of these types of mathematical for-

mulations and have used them to, among many other things, describe the growth

of cities (see [Córdoba, 2008] for a review of some recent success and limitations).

One pattern that has proven to be ubiquitous among cities in different regions is

Zipf’s Law or the Rank Size Rule. The rule essentially states that there is a corre-

lation between the population size of a city and its rank (determined by ordering

all the cities in a region according to its population size). What is surprising is

that this relationship is very robust and similar relationships hold for not just the

rank, but also the creativity, wealth, crime and number of gas stations in cities

[Bettencourt et al., 2007] (as well as applications in other fields such as linguistics

[Zipf, 1972]).

Agglomeration and Central Place Theory

Geographers are also interested in the distribution of resources and firms within

a city. One of the most significant concepts in this area is central place theory es-
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tablished by Christaller in the 1930s and Losch in the 1950s (see [Mulligan, 1984,

Richardson, H. W., 1973] and the references therein for a review). Christaller es-

tablished the idea that the centrality of a city (or firm) had a direct relationship to

its size or potential size. Additionally, cities (or firms) of different sizes had differ-

ent functions in terms of the services they received or provided to the surrounding

areas. Losch extended Christaller’s ideas by adding several considerations includ-

ing the welfare of the individual in addition to distance. Central place theory is

a framework to understand economic agglomeration and is still in use today, par-

ticular when considering the location of firms and the theory tends to give rise to

hierarchical spatial patterns

GIS and Multi-Agent Models

One critique of these models is that they tend to be too simplistic in their descrip-

tions and restrictive in their assumptions. To address this critique, experimental

economists tend to look at large data sets with many variables to describe the

problem of interest, in much the same way urban geographers may study urban

growth [Knox and McCarthy, 1994]. The rise of GIS has revolutionized these

fields by allowing the incorporation of spatial data. Among other things, this has

helped reveal the importance of place and uncover spatial correlations. However,

these models have limitations as well since correlations do not imply causation

and confounding factors can lead to misleading results.

Geographical information system (GIS), cellular automata (CA), and agent

based models (ABM) have gained much popularity due to their ability to visualize

and explicitly model space [Clapp et al., 1997, Batty, 2005, Shiode and Torrens, 2008,

White and Engelen, 2000, Clarke and Gaydos, 1998]. However, they have also

drawn criticism due to their complexity, high data requirements and computa-

tional intensity [Lee, 1973]. They have also been used to study organizations and

institutions within a city [Prietula et al., 1998]. CA and ABM are also the basis
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of complex adaptive systems and this has generated a lot of research in urban and

other models. As a tool for visualization, they are great for communication and

coupling with other modeling types.

Catastrophe

Catastrophe theory was introduced into urban geography by Amson in 1975 and

popularized in a book by Wilson in 1981, [Amson, J.C., 1975, Wilson, 1981].

This branch of bifurcation theory and non-linear dynamics focuses on the change

of state of a system as some parameters are varied. The focus is on urban form

and the supply side problem of urbanization.

Synergetics

Synergetics is concerned with self-organization and macro-scale structures from

mulit-component systems. It has contributed much to the field of complexity

science and has its roots in much of the early work by Haken in 1983 and later by

Weidlich in 1991 who also expanded on these concepts in his Sociodynamics in

2000 [Weidlich, 2000]. It makes heavy use of methods from statistical physics and

economic concepts such as dynamic utility functions, "At the core of my model-

building philosophy is the insight that the transition rates...will themselves be

general functions of the socio- and trend configurations," that is, they use concepts

from social sciences (utility functions) to derive the master equations or equation

of motion that is the basis of statistical mechanics [Weidlich, 2000].

World Systems Theory

World Systems Theory attempts to look at the macro-scale level and rejects many

of the base assumptions of classical analysis. Municipal borders are de-emphasized

and the city or state is no longer the basic unit of analysis [Hopkins et al., 1982,

Goldfrank et al., 1999]. These are replaced by a group of core-states that domi-

nate key global industries. While world systems theory generally focus on the
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global scale of these interactions, a similar approach has been undertaken at a

smaller scale.

Amenity in Models

There has been a lot of effort in the economics and geography literature to in-

clude natural and urban amenity (the quality of the physical environment). Aris-

totle noticed the importance of the quality of life circa 350 BC, then Bath and

Brighton remarked on the positive effect of “fashionable watering-places" in 1811

[Mulligan, 2009]. However, Mulligan remarks that amenity as a concept for ur-

ban growth did not gain traction until the work of Ullman in 1954. The ques-

tion of how to value these amenities became pressing and several different meth-

ods have been developed [De Groot et al., 2002]. I will highlight just one of the

more quantitative methods here: hedonic modeling. Lancaster introduced this

concept in 1971 and the methodology was formalized later by Rosen in 1974,

[Lancaster, 1971, Rosen, 1974]. Hedonic modeling tries to disentangle the differ-

ent components, and how people value those components, of something that has

a suite of benefits. When one choses to buy a house or move into a city, it is gener-

ally a decision made on many factors such as the proximity of parks, open spaces,

schools, grocery stores etc. Hedonic modeling aims to put a price on each of

these factors and many others that go into making a decision. What complicates

this analysis is the fact that different factors may have multiple benefits and exter-

nalities. One example is municipal parks; they can be both a source of amenity

due to recreational values, [Larson et al., 2010], and a disamenity due to increased

crime prevalence, [Troy and Grove, 2008]. Hedonic analyses are statistical in na-

ture and generally temporally static as opposed to my mechanistic and dynamic

approach. Although I take a different approach, my efforts can be informed by

the results of these other modeling efforts. I want to indicate how my approach

is different from the existing literature and its contributions to the field, but I em-
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phasize that my efforts are meant to be taken in the broader context, as a piece of

the puzzle and to be connected from and connect to the other pieces (modeling

efforts).

My approach is in the vein of population ecology and mathematical biology

and has its roots in the works of Reverend Thomas Robert Malthus who at the

turn of the 19th century gave rise to the eponymous Malthusian Growth Model

[Malthus and edited by Appleman, 2004]. While not the first, his work was defi-

nitely the most influential in theory and practice. His exponential growth law has

spawned several other eponymous models including those of Verhulst and Gom-

pertz. In his own words, “Population, when unchecked, increases in a geometrical

ratio," mathematically, this is equivalent to the relationship

P (t ) = P (0)e r t ,

where P (t ) is the population at some time t , e is the exponential function, and r

is the growth/decay rate. Evaluating this model at standard increments of time,

reveal a geometrical ratio. Armed with this simple model and a handful of simple

postulates, Malthus engaged in a philosophical, political and economic discussion

about populations and the distribution of resources that resonate to this day. Fun-

damentally he was concerned about the welfare of society and this mirrors the

motivation of this work. Although my methodology will differ, I ascribe to the

same philosophy linking great modelers such as Malthus, Einstein and Newton:

We are to admit no more causes of natural things than such as are both true and

sufficient to explain their appearances.
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Chapter 3

Cities in Ecology: Settlement Patterns

Traditional Approaches

The model derived in this paper describes how the economic, social and natural

environments of an urban area influence the rate of migration into and out of that

area. In this stylized model, population and built capital are the dynamic variables

which will allow us to derive the, multiple, stable characteristics of an urban area.

The overall goal of this paper is to examine the robustness of these stable states and

to explore how the interactions of the economic, social and natural environment

impact the resilience of the urban are. This pursuit necessitates that our model

be simple yet capable of depicting a broad range of city types; hence we use an

abstract, qualitative, model described in further detail below.

In this context, robustness refers to the number and nature of the stable config-

urations of an urban area. The methodology employed is similar to the catastro-

phe theory of Amson and Wilson [Amson, J.C., 1975, Wilson, 1981], which is an

application of bifurcation theory [Dendrinos and Mullally, 1985, Kuznetsov et al., 1998,

Strogatz, 1994]. However, our approach is similar to theoretical ecology and

social-ecological-systems (SES) [Anderies et al., 2002, Brauer and Castillo-Chavez, 2001,

Clark, 1985, Edelstein-Keshet, L., 1988]. Here, analyzing the robustness trans-

lates to essentially determining how the landscape changes in response to the slow

variables, or parameters, of our system.

Complementary to this analysis is a consideration of the resilience of an ur-

ban area, a topic that has received much attention in SES [Anderies et al., 2006,

Berkes et al., 2000, Carpenter et al., 2001, Holling, 1973]. In this context, resilience

refers to the ability of a system to endure disturbances without a qualitative change

in its state. In the parlance of dynamical systems, this amounts to an analysis of
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the basins of attraction in our landscape. Here, disturbances can either impact

our fast variables, state variables, or our slow variables, parameters. It should

be noted that our model is dynamic and the population and built environment

change over time; hence resilience is not just a function of how large a distur-

bance is, but also when it occurs. In this sense, path dependence may have a large

impact in the qualitative dynamics of our model. In the next section we develop

the model and show the qualitative dynamics. Then we show how the effect of

different institutional arrangements can impact the landscape of the model, fol-

lowed by some numerical results. Finally, we conclude with an interpretation of

the model results in the context of SES.

3.1 Mathematical Model

In our stylized model, a city is described using just two factors, population size

(N ) and infrastructure (K). Many neoclassical economic models assume the pop-

ulation size and infrastructure are at equilibrium [Greenwood, 1985] and only

move in response to changes in wages. Other theories propose labor markets are

in disequilibrium and migration moves these markets towards equilibrium. Al-

though we do not model wages specifically, we can model the effect of changing

wages and labor market as the change in population and infrastructure due to

migration:

Ṅ = f (N ,K) (3.1)

K̇ = g (N ,K), (3.2)

Thus f (N ,K) describes the net migration process and g (N ,K) describes how

infrastructure changes over time in response to changing population and infras-

tructure. In order to have migration, there must be somewhere individuals mi-

grate to/from. In our first model, we assume individuals are migrating to our city

and migrating from a collection of possible sources that we simply call the hinter-
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land. We assume the hinterland is much bigger than the city and thus in-migration

does not significantly reduce the size of the hinterland. Instead, we will simply as-

sume there is some constant rate of flow, γ . However, not everyone that may want

to migrate into or out of the city does so since there are several costs associated

with moving including transaction opportunity and psychic costs[Massey, 1990].

Let I (N ,K , U ) be the per capita immigration rate into the city and E(N ,K , U ) is

the per capita emigration rate out of the city. Note that these rates are functions

of N and K , and thus change over time. The utility, U , also changes over time and

will be described below. Then γ · I represents the total rate of actual immigration

into the city. Similarly, the total rate of emigration is N · E . Thus f (N ,K) is net

migration1:

Ṅ = γ · I (N ,K , U )−N · E(N ,K , U ). (3.3)

Next we assume infrastructure (K) to be a proxy for the built environment

contained within a city. Most creatures shape their local environment and this

is especially true in social species. The arduous task of creating and maintaining

an infrastructure requires energy. Thus infrastructure is under the influence of

a natural decay such as our deteriorating roads and bridges that decay with use,

collapse with overuse such as the Mississippi River bridge in Minneapolis, or ruin

through disuse such as Troy in the Old World or Teotihuacán in the New World.

We will call this natural decay rate of infrastructure δ. The rate of resources

devoted to growing and maintaing the infrastructure is proportional to the base

productivity of the city, Y (N ,K), i.e. the capital investment rate (s ). According to

classical economic theory, the productivity of the city should, at minimum, be a

function of the labor supply and infrastructure. We choose the traditional Cobb-

Douglas formulation of the production function where the exponents sum to one
1In our simplified model, we will ignore the contribution to population change from intrinsic

growth.
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to imply there is constant returns to yield that scales uniformly for different city

sizes. Then g (N ,K) is the differences between investment and decay and we can

explicitly state the rate of change of infrastructure:

Y (N ,K) = N α1Kβ1 (3.4)

where α1+β1 = 1 (3.5)

K̇ = s ·Y (N ,K)−δK , (3.6)

where α1 is the relative contribution of the labor pool to productivity and β1 is

the relative contribution of infrastructure to productivity.

Now we will delve into the individual motivations of migration. The most

dominant factors to move or stay includes what the layman would refer to as eco-

nomic, job and business driven, opportunities. However, many other factors are

also vital [Center, 2008] including some that are uniquely supplied by the city it-

self. We can broadly define two types of good: traded and non-traded or location

based goods [Graves and Linneman, 1979]. Traded goods can be purchased, thus

the utility gained from traded goods increases with income. However, the util-

ity derived from non-traded goods may not directly increase with income. While

not all residents in a particular location may benefit equally, the change in the

quality of that good, and hence the utility derived from it, may be more strongly

influenced by factors other than income. For example, safety, congestion and

infrastructure can greatly influence the value placed on environmental amenities

[Troy and Grove, 2008]. For simplicity, we split non-traded goods into two broad

categories: human and natural amenities. Human amenity, Ah(N ,K), are the

facets of the city, built by people, that add to the enjoyability of that city. For ex-

ample, walkable streets, a vibrant night life or medical facilities. Natural amenity,

An(N ,K), are natural features that add to the enjoyability of a city, “topological,

climatological, and environmental amenities–such as mountains, seashore, tem-
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perate climate, sunshine and pollution" [Greenwood, 1985]. It has been clearly

demonstrated from empirical studies that not only are these amenities different

in various cities, but they are valued and factor into the migration decision of

individuals [Center, 2009].

Both of human and natural amenity should be functions of both population

size and infrastructure. However, the direction of this relationship is not clear.

Consider a lake. Increased infrastructure can represent a dock and services that

increase the ability of people to enjoy the lake. It can also represent investment

by businesses that may pollute the lake and reduce its amenity value. As the pop-

ulation increases, more people may visit the like, thus increasing the popularity

and prestige of the lake. However, if the increased popularity leads to increased

littering or congestion, then this can detract from the amenity value of the lake.

Human amenity operates in an analogous manner. The modeling process is inher-

ently iterative and as a first approximation, we assume a simple linear relationship

between amenity and population and infrastructure.

But first we must introduce the utility function (U (N ,K)), or the measure of

relative happiness. We assume people expect some average level of utility out-

side the city (Ū ). Then people in the hinterland may choose to move into the

city, I (N ,K , U ), or residents of the city may choose to move out of the city,

E(N ,K , U ) depending on whether they expect to be happier inside the city or

out2. For people in the city, we characterize their utility as being functions of

human amenity, natural amenity, and production Y (N ,K) (which serves as a

proxy for the level of income they might expect to have in the city). We also

assume this to have a Cobb-Douglas formulation, but with decreasing returns to

scale (all the exponents sum to less than one) since handling time may diminish

a person’s ability to enjoy a larger provision of goods and services. This formu-

lation is in accordance with neoclassical micro-economic theory. However, the
2The costs of migrating may be assumed constant and factored into Ū
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“new economics of migration" theory holds that decision makers are not just

individuals but also households that seek to both maximize income and mini-

mize risk [Massey et al., 1993]. This perspective is compatible with our formu-

lation with the following interpretations: instead of N being the number of in-

dividuals in a city, it may consist of the decision making actors in a city with

an appropriate scaling, and the utility functions include the effects of both max-

imizing income and reducing risk (thus we may interpret human amenity to in-

clude a level of income insurance). In addition to these micro scale considera-

tion, there are several macro scale or structural factors that may influence migra-

tion including migrant networks, institutional theory and cumulative causation

[Massey et al., 1993, Massey, 1990]. Although the decision to move is formulated

here as an individual one, it is based on aggregate information. The nonlinearity

in the aggregation functions chosen replicates the effect of these large scale phe-

nomenon, most notably the inertia and saturation effects [Greenwood, 1985].

While we do not describe the preconditions to migration, the model can explain

how further migration will persist once it has been initiated.

Then

Ah(N , k) = ahkK + ahnN + ah0 (3.7)

An(N ,K) = ankK + annN + an0 (3.8)

I (N ,K , U ) = I0

!π
2
+ arctanam(U (N ,K)− Ū )

"
(3.9)

E(N ,K , U ) = E0

!π
2
+ arctanam(Ū −U (N ,K))

"
(3.10)

U (N ,K) = Ah(N ,K)αh An(N ,K)αn Y (N ,K)αy (3.11)

where αh +αn +αy < 1 (3.12)

where ahk determines how infrastructure changes human amenity, ahn determines

how the population size changes human amenity and ah0 is the basic level of

16



human amenity. Similarly, ank determines how infrastructure changes natural

amenity, ann determines how the population size changes natural amenity and

an0 is the basic level of natural amenity. Then I0 is the maximum per capita im-

migration rate, and E0 is the maximum per capita emigration rate. Also, αh is

the relative strength of human amenity to utility, αn is the relative strength of

natural amenity to utility, αy and is the relative strength of productivity to utility.

The arctan function is sigmoidal and has been shifted so that it returns only pos-

itive values. Thus even at low expected utility in the city, there is some inflow of

migrants. Then am controls the steepness or drop-off of the sigmoidal response.

Then we can write our complete set of equation to describe urban growth

Ṅ = γ I (N ,K , U )−N · E(N ,K , U ) (3.13)

K̇ = s ·N α1Kβ1 −δK (3.14)

I (N ,K , U ) = I0

!π
2
+ arctanam(U (N ,K)− Ū )

"

E(N ,K , U ) = E0

!π
2
+ arctanam(Ū −U (N ,K))

"

U (N ,K) = Ah(N ,K)αh An(N ,K)αn Y (N ,K)αy .

Next we will describe the analytical results of our model.

Trivial Equilibrium

Our system of equations are 3.13 and 3.14. Clearly K = 0 is an equilibrium solu-

tion and we can solve for the equilibrium value of population, N 0, when K = 0:

N 0 =
γ I0(π− 2arctanam(Ū ))

E0(π+ 2arctanam(Ū ))
(3.15)

this represents a city with no significant infrastructural development. Even though

this means that there is no utility gained by residents in the city, there is still an

equilibrium population in the city (N 0). This may seem counterintuitive until we
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consider the transaction costs associated with moving. Even if you are not happy

in the city, there is a cost to move out. Thus N 0 represents a transient population.

Although each individual may not stay in the city for very long, the population

level remains constant since there are equal numbers of people moving in and

moving out. Note, a linear stability analysis is not possible because it would lead

to division by zero. We refer to this as our “trivial" equlibrium3. Next we look

for non-trivial equilibria.

Non-Trivial Equilibria

In general we cannot solve equations 3.13 and 3.14 explicitly and we employ

phase-plane analysis to describe the number and stability of the equilibria. Let

us first examine 3.14 and note α1+β1 = 1 :

K̇ = sN α1K1−α1 −δK , (3.16)

which we can now set to zero and solve for the equilibrium population size (N ∗)

0 = sN α1K1−α1 −δK (3.17)

δK = sN α1K1−α1 (3.18)

N α1 =
δK

sK1−α1
(3.19)

N α1 =
δ

s
K

K1−α1
(3.20)

δ

s
Kα1 = N α1 (3.21)

N =
#
δ

s

$(1/α1)

K , (3.22)

From equations 3.18 and 3.22 we see that if we have an equilibrium, then K̇ = 0

implies either K = 0 or N =
%
δ
s

&(1/α1)K . These two curves are called nullclines of
3Trivial in the mathematical sense as one of the state variables, capital, is equal to zero.
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our system. The term
%
δ
s

&
is the net decay ratio. If he decay rate is larger than the

capital investment rate, then the net decay ratio will be larger than one. Then we

can re-write equation 3.22 as N
%
δ
s

&α1 = K , that is the equilibrium level of capital

is directly proportional to the equilibrium population size scaled by the net decay

ratio and the share of labor to productivity. The larger the decay rate, the more

capital you need to support a given population size. The larger the share of labor

to productivity, the more accentuated the impact of the net decay ratio will be.

Then we can solve equation 3.13 for N .

N = γ
I (N ,K , U )
E(N ,K , U )

(3.23)

and equation 3.23 is another nullcline. Nullclines divide the state space of our

system into distinct regions with different growth patterns for the city. Each

point in the state space is a different realization of a city. A city may have a large

population and a large level of infrastructure, or low population and low level of

infrastructure, or any other combination of infrastructure and capital. Each city

would be represented as a point in the state space. This information is observable

and measurable. It can even be recorded over time and analyzed for trends, and

of course this has been done by historians, demographers, anyone interested in

cities. However, what has been lacking in the literature is an understanding of the

underlying dynamics of urban growth that gives rise to the patterns in city growth

in the context presented in this dissertation: the unobservables that produces the

cities as we know them.

Nullclines are one such unobservable. They are a mathematical abstraction

that are a direct consequence of the simplifying assumptions made in our formu-

lation of the city. Generally speaking, the dynamics of the city can only change

if it crosses a nullcline. Thus, if a city is in a growth phase, it will stay in a

growth phase if it does not cross a nullcline, ceteris paribus, although the rate of
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the growth is free to increase or decrease. Also, equilibria at the intersection of

nullclines, that is when both Ṅ and K̇ equal zero simultaneously. Understanding

the nullclines and equilibria would provide tremendous insight into the how we

would expect the city to evolve over time.

Ideally, we would simply solve for nullcline 3.23 with either nullcline 3.18

or 3.22. Unfortunately nullcline 3.23 is a transcendental equation that cannot

be solved explicitly, even in our highly stylized and simplified model. However,

for a fixed set of parameters we can solve for the nullclines numerically. Using

parameter values from Table 3.1, we constructed the phase-portrait, Figure 3.1,

that indicates the flow of solutions over time. Solid blue circles indicate stable

equilibria (attractors) while open circles indicate unstable equilibria (repellers). In

this particular system, all trajectories (solutions from any set of initial conditions)

will tend towards one of the (attracting) equilibria. Notice the equilibria occur at

the intersection of the nullcline for Ṅ , solid blue line, with either nullcline for the

K̇ , the dashed red lines. Additionally we have drawn the separatrix or unstable

manifold, dotted green line, of the saddle point, which is the interior unstable

equilibrium in this case.

The separatrix is another unobservable driving force in the evolution of a city.

Like the nullcline, the separatrix divides the state space of our system into regions

of different growth patterns of the city. However the nullcline has a much more

of a “local" impact in that the growth pattern of the city will only reverse when

it crosses a nullcline as it evolves over time. A city cannot cross the separatrix

during its evolution over time. The separatrix has more of a “global" impact in

that it determines the eventual long term evolution of the city. The separatrix di-

vides our phase-space into two basins of attraction. Solutions that start above the

green line will tend towards the upper stable equilibrium, and solutions that start

below will tend towards the lower stable equilibrium. The only way the city can

cross the separatrix is via some external force not captured in the model. Figure
20



3.2 takes a closer look at the unstable point and the separatrix, while Figure 3.3

displays the two equilibria near the origin, note the trivial equilibrium is unstable.
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Figure 3.1: There are four fixed points, two stable (blue dots) and two unstable (blue circles),
that correspond to the intersection of the nullclines for K̇ , blue line, and Ṅ , dashed red line. The
basins of attraction for the two stable points are separated by the unstable manifold, separatrix of
the saddle point (dotted green line).

Table 3.1: Default parameter values for numerical simulations

Parameter value Parameter value
I0 0.6 ank 0.5
E0 0.5 ann 0.5
δ 0.1 an0 1
αh 0.3 ahn 1.5
αn 0.3 ahk 1.5
αy 0.3 ah0 1
α1 0.6 as 0.25
β1 0.4 Ū 3
γ .1381 am 1
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Figure 3.2: Here the separatrix clearly divides the phase space into two separate basins of attrac-
tion between the smaller stable fixed point and the larger stable fixed point (not shown).
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Figure 3.3: Near the origin, there is an unstable trivial equilibrium and a stable interior equilib-
rium. The scale makes this equilibrium hard to distinguish from the unstable equilibrium unless
a comprehensive phase-plane analysis is undertaken.

22



Bi-Stability

With certain parameters we have shown that there are two positive stable states

and by changing the initial conditions, we can enter different basins of attraction.

The existence of two different basins of attraction are significant because it makes

it possible to move from one basin to another. The initial conditions determine

which basin of attraction the city is in: with low initial conditions, the city will

eventually4 evolve towards the lower attractor in this system, see figure 3.4; with

high initial conditions, the city will eventually evolve towards the higher attractor

in this system, see figure 3.5. The boundary between the basins is defined by

the separatrix (see figure 3.2) and as a general rule, the city may never cross this

boundary in its evolution over time. There are, however some exceptions to this

“rule."

One is a shift in the state of the system itself from an exogenous force. This

may be due to an influx in population or infrastructure (perhaps due to some

policy change), or loss such as famine, war, disease, natural (or anthropogenic)

disaster, etc. Then the state of the city has shifted in a manner that is outside

the normal dynamics described by the model. If this shift is short lived and the

time evolution of the city can continue to be described by the model, then the

city can be pushed accross the separatrix and be forced into a different basin of

attraction. The magnitude of the push depends on the state of the system, how

close the system is to the separatrix. Because the separatrix is unobservable, small

shifts can produce dramatic impacts to the long term dynamics of the city even if

the local time evolution of the city does not appear to be altered significantly.

Another is a paradigm shift, a “tipping point" of the ilk described by Glad-

well in 2000 in his book of the same name, but also well known in various other
4The evolution is not uniform towards the attractor: the rate may speed up, slow down or

as in the case of the population growth with low initial conditions, the population may actually
increase initially even though the long term behavior is a steady state that is below the starting
population.
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Figure 3.4: With low initial conditions, we enter a basin of attraction of a smaller, but positive
non-trivial equilibrium.

scientific and mathematical contexts (the basic reproductive number, #0 in epi-

demiology and a bifurcation point in dynamical systems theory to name two ex-

amples) [Anderies, 1998, Brauer and Castillo-Chavez, 2001, Gladwell, 2000]. A

tipping point refers to small changes in a parameter5 that leads to a large change

in the state of the system. The effect of this small change is a bifurcation, or fun-

damental alteration of the underlying dynamics of the system. The unobservable

landscape has changed in such a way that the evolution of the city has been com-

pletely altered. Once attracting equilibria can transform into repelling equilibria

or disappear altogether, thus altering the long term, global, dynamics of the city.

In this sense, the city hasn’t crossed the separatrix so much as the separatrix itself
5This can also be thought of as a change in a slow or exogenous variable.
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Figure 3.5: With high initial conditions, the city grows rapidly to a larger non-trivial equilib-
rium.

has moved. Thus the state of the city may not have changed in any perceptible

manner, but the future time evolution of the city has fundamentally changed.

Thus, from what we can observe (i.e. the measurable aspects of the state of

the city), the two scenarios outlined above may be indistinguishable from their

genesis to their revelation. However, they are fundamentally different and an un-

derstanding of the underlying, unobservable, landscape is critical to evaluating

the robustness and resilience of a system. In the former scenario, the city is close

enough to the border of a basin of attraction that a shift in the state from an exter-

nal force was able to move city into the a different basin of attraction. If the city

remains near the border long enough, another shift can return the city into the

original basin of attraction, and hence the process in this sense is reversible. In the
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latter scenario, it may be practically impossible to return to the trajectory prior to

the bifurcation. Some bifurcations can be considered irreversible in the sense that

once a tipping point has been reached, it is impossible to reverse the long term at-

tracting state of the city even if the parameters that drove the tipping point are re-

versed (for example the backward bifurcation [Brauer and Castillo-Chavez, 2001,

Castillo-Chavez and Song, 2004, Kribs-Zaleta, 2002, Sanchez, F., 2007]).

Next we give a detailed illustration of the two scenarios presented.

Scenario 1: Robustness and Resilience

In this scenario, the state happens to be near the border of the basin of attraction.

Note all trajectories within the basin of attraction will tend to an attractor. In

figure 3.6 that attractor is the lower equilibrium and in figure 3.7 it is the larger

equilibrium. However, the specific path each city takes to reach the equilibrium

may be different. In figure 3.6, we first observe our city starting at the red dia-

mond. Then the city evolves over time along a path given by the black dot-dashed

line. The border of the basins of attraction is defined by the green dotted line, the

unstable equilibria are the open blue circles and stable equilibrium shown is the

solid blue circle. The other two lines are the nullclines, the red dashed line is the

nullcline for capital, and the solid blue line is the nullcline for population.

Notice that initially our city is decreasing in population. This is what we

might expect since the stable attractor here is at a much lower level of capital

and population then our starting value. However, the level of capital is actually

growing initially. In fact the level of capital will continue to grow until the trajec-

tory hits the nullcline: the direction of growth cannot change until a nullcline is

crossed. When the trajectory crosses the red dashed line, the nullcline for capital,

the capital takes a dramatic downturn and this accelerates the reduction in both

population size and infrastructure level.
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Figure 3.6: With low initial conditions we enter a basin of attraction of a smaller, but positive
non-trivial equilibrium.

An outside observer looking at the state of the city could conclude that the

city hit a cusp at that point, perhaps a tipping point was reached that caused the

city to veer off on a different trajectory than it was previously on. However plau-

sible that conclusion would be from the data, it is wrong. In fact, the city was al-

ways doomed to reach the lower equilibrium point since it was in the lower basin

of attraction. The fact that it increased initially is a function of its starting state

(the state where we first began to observe it) and the underlying, unobservable,

dynamical landscape; namely the nullclines. If our initial observation point was

below the blue line, then the population level would have initially increased. If

our initial observation point was between the red and blue lines, then city would

have decreased immediately. An observer could naturally conclude that a city in

the later case was a “bad" city where any of the former two cases showed potential

but fell victim to some “bad" circumstances.
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If, at the initial observation period, there was in influx of population, then

we would have the trajectory in figure 3.7. Notice that the initial starting point

is very similar to figure 3.6, and even the initial trajectory is similar: decreas-

ing population and increasing capital. An outside observer could conclude that

both cities are on a similar trajectory and that their endpoints would naturally

be similar. In fact, this would be the correct observation if the separatrix was

either shifted down or up. However, the separatrix, an unobservable feature of

the dynamical system landscape is between the two starting points and thus the

endpoints will be drastically different. The endpoint of this city will be the high

population high capital city seen in figure 3.1. There is virtually no way to dis-

tinguish these two trajectories from observing the first few data points and trends

unless there is an accurate description of the dynamical systems landscape (null-

clines, equlibria, basins of attraction, etc.).
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Figure 3.7: With high initial conditions the city grows rapidly to a larger non-trivial equilib-
rium.
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Another interesting observation in this scenario is that the trajectory stays

close to the separatrix initially. Thus, although an influx of people caused the

trajectory of the city to jump into a different basin of attractions, a disaster that

reduces the number of people or the quality of the infrastructure could likewise

alter the trajectory of the city and place it back in the lower basin of attraction.

This highlights the significance of path dependency or legacy effects in the time

evolution of cities. Relatively small perturbations in the history of a city can

have profound impacts on the evolution of cities, while other, perhaps even larger

perturbations may haver marginal long term effects. The difference lies in the dis-

tance the current state is from the edge of the basin, and whether or not these per-

turbations alter the underlying parameters and institutions (the functional forms)

that drive the dynamics of the city.

While cities are clearly sensitive to path dependence early on, because we can-

not observe the separatrix, it will be unknown to the city denizens how close, or

for how long, the trajectory of a city will bring it near to the border of a basin

of attraction. Hence, the true vulnerability of a city from its eventual long term

steady state will not be known from either its current state or its current trajec-

tory. Even if there are no alterations to the trajectory of a city, the final state

the city is trending towards cannot be predicted by the current state nor growth

trends alone.

In truth, it may be difficult if not impossible to distinguish this scenario from a

true tipping point. There has been tremendous research by scholars of urban areas

in understanding the drivers of change including Knox, Massey, Greenwood and

many others ([Greenwood, 1985, Knox, 1995, Krugman, P., 1996, Massey, 1990,

Massey et al., 1994]). Several others scholars have brought to light the unforesee-

able global consequences of individual or small scale actions, potential tipping

points, to the general public via the profound impacts on human lives and so-

cieties such as McNeill’s Plagues and Peoples and Diamond’s Guns, Germs and
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Steel, and the geographic landscape such as Reisner’s Cadillac Desert [Diamond et al., 2005,

McNeill, 1976, Reisner, 1993]. Whether these events can be explained as the con-

sequence of an outside force, a tipping point, or a natural evolution of the trajec-

tory the city is already on is impossible to discern without an understanding of

the underlying dynamical structure of the city. True tipping points, bifurcations,

will be explored below.

Scenario 2: Tipping Point

In this scenario, the parameters of the system undergo changes. Generally changes

in parameters will result in quantitative but not qualitative changes in the system:

growth rates may accelerate or slow down but the number and type of equilibria

do not change. However, there are situations where even slight changes in the

parameters can cause dramatically different, qualitative, changes in the dynamics,

i.e. a bifurcation. The parameter(s) involved in this qualitative change are then

called bifurcation parameter(s). For this analysis we will focus on the bifurcation

parameter ahk which translates how human amenity is appreciated from the built

infrastructure. In our particular model, many of the parameters can be chosen as

the bifurcation parameter, but the bifurcation structure is identical and it suffices

to explore in detail only one such parameter.

Starting with the default value of 1.5, as we decrease ahk the high stable equi-

librium point and the unstable equilibrium point approach each other, see figure

3.8. At the bifurcation, which occurs at ahk = 0.941, the two equilibria coalesce

and annihilate each other in a what is termed a saddle-node bifurcation6. Then

after the bifurcation, the separatrix dissapears and there is now only one basin

of attraction for the low population-low capital equilibrium point. Thus if the

infrastructure does not produce enough of a positive feedback in terms of the

amenity of the city, the city will not become attractive and can persist only at
6The unstable equilibrium is the saddle and the stable equilibrium is the node

[Brauer and Castillo-Chavez, 2001, Kuznetsov et al., 1998, Strogatz, 1994]
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very marginal levels (see figure 3.9.
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Figure 3.8: Before the bifurcation, there are two regions of attraction separated by the unstable
manifold of the unstable, saddle, point. A trajectory that starts in the upper region will trend to
the higher stable equilibrium point.

If we increase ahk instead, then the high stable equilibrium begins to get larger

and larger until another bifurcation is reached at ahk = 334.5. At this point the

unstable equilibrium point and the lower stable equilibrium point coalesce and

we are left with only one basin of attraction for the higher stable point. This

again occurs through a saddle-node bifurcation. Thus with a very high amplifica-

tion factor for turning capital into amenity, any city that become established will

eventually thrive. The bifurcation diagram for both bifurcations is given in terms

of the equilibrium level of capital, figure 3.10, and population level, figure 3.11.

The x-axis is the bifurcation parameter, ahk , and the y-axis is the equilibrium state

of the city. When there is bi-stability, there are two possible equilibria points.

Before the bifurcation at ahk = 0.9375 there is only the lower equilibrium point

exists. Between 0.9375 and 334.5, there is bi-stability and the city can evolve to ei-

ther the low or high equilibrium state depending on the initial conditions. After
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Figure 3.9: After the saddle-node bifurcation, the upper stable point and the unstable point
have coalesced. There is now only one region of stability remaining for the lower equilibrium
point. The same trajectory that approached the higher equilibrium before the bifurcation will
now approach the lower equilibrium point over time.

334.5, only the high equilibrium point exists.

We have fully described the suite of qualitative dynamics possible in this sim-

ple, stylized, model of a single city. In the next section we classifying different

types of cities by varying parameter ranges.
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Figure 3.10: Depending on the parameter ahk , there can be one or two stable equilibria for the
level of capital given by the blue dots (the unstable equilibria not shown for simplicity). When
ahk < 0.9375 the only stable equilibrium is near zero. At ahk = 0.9375 there is a saddle-node
bifurcation. When ahk is between 0.9375 and 334.5 there are two stable equilibria. At ahk = 334.5
another saddle-node bifurcation occurs, and when ahk > 334.5 the only stable equilibrium is the
larger one.

3.2 City Types and Institutions

Up to this point we have considered the city as abstract construct. Although we

will still formulate the city in an abstract manner, it is important to talk about

what a city is, or more importantly what separates one city from another. Aristo-

tle spent a great deal of time describing citizens and cities as they were and should

be. Mumford quotes Aristotle as saying, Òmen came together in cities to live, but

remained to live a good lifeÓ [Mumford, 1997]. The majority of the human pop-

ulation is now projected to live in cities [Wimberley et al., 2007], but will they

live good lives? Cities have been described as hellish, disorderly and chaotic, but

also as, Òcrucibles for innovation, tolerance, diversity, novelty surprise, and most

of all economic prosperity,Ó [Batty, 2008]. Just as there is dissension on how to

describe a city, there are also different ways to define a city. Visually, large build-
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Figure 3.11: Depending on the parameter ahk , there can be one or two stable equilibria for the
population size given by the blue dots (the unstable equilibria not shown for simplicity). When
ahk < 0.9375 the only stable equilibrium is near zero. At ahk = 0.9375 there is a saddle-node
bifurcation. When ahk is between 0.9375 and 334.5 there are two stable equilibria. At ahk = 334.5
another saddle-node bifurcation occurs, and when ahk > 334.5 the only stable equilibrium is the
larger one..

ings, roads and other human-made structures indicate a city, but [Park, 1951]

emphatically argues that a city is more than just its physical attributes. Although

it may appear to have a form dominated by buildings, a city is rooted in the habits

and customs of its people. Thus, a city may be identified by its built structures,

but a city is defined by the people, that is, the human ecology and institutions

contained within a city [Hawley, 1981].

In this section we will focus on the different components of the natural and

human amenity functional response. We will describe 5 archetypal cities depend-

ing on the signs of parameters given by table 3.2. The first archetype is the Oasis

or political city established by royal decree. This city is formed when there is

some highly local cultural or environmental features that make the city attractive,

but in general the surrounding environment is not conducive to large urban cen-
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ters. The second archetype is the Ecocentric city where too much infrastructure

is detrimental to the cultural lifestyle and the environment. The third archetype

is the Industrial city or trading nexus where the growth of the city may improve

the human amenity of the city, but at the cost of the natural environment. The

fourth archetype is Mining city centered on extracting some local resource and

where improving the quality of life of the citizens may not be the primary con-

sideration as the city grows. Lastly we have the utopian city, a city with intrinsic

natural and cultural values, as well as growth aimed to amplify both the quality

of the city and the connection to the environment.

Table 3.2: Effect of Institutions on Amenity Function and City Type

ann ank an0 ahn ahk ah0 Type
+ + - + + - Oasis
+ - + + - + Ecocentric
- + + - + + Industrial
- - + - - + Mining
+ + + + + + Utopia

While the complete bifurcation structure has been detailed for the Utopian

city, the underlying dynamics also hold for each of the other archetypes. What

will be different are the parameter values at which each city archetype undergoes

those bifurcations. Thus the qualitative dynamics of each city follow similar pat-

terns. The specific value at which each bifurcation occurs is of limited value in

the abstract framework presented thus far. However there is power in describing

the relative values necessary for each archetype to undergo the same type of trans-

formations. Following the previous analysis, comparisons will be made relative

to the default values of the Utopian city.

The Oasis with parameters similar in magnitude to Utopia has very similar

high equilibrium state, see figure 3.12. The percentage difference of the high equi-

librium state is less than 5%. However, the unstable equilibrium has a percent
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difference of 30%. This suggests that with enough resources both types of cities

can mature into large urban centers that provide significant natural and human

amenity. Although, the Oasis is more vulnerable at low population and infras-

tructure levels; more of an initial investment is required to establish this type of

city.
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Figure 3.12: The Oasis is very similar to Utopia, however the basin of attraction of the smaller
stable state is relatively larger. ann = 0.5, ank = 0.5, an0 =−1, ann = 1.5, ank = 1.5, ah0 =−1.

The Ecocentric city can only thrive at small scales, see figure 3.13. It requires a

large intrinsic natural and cultural aesthetic to facilitate any marginal population

size and level of infrastructure. The added cultural value that people bring must

far exceed the effects of crowding, pollution, etc that comes from urbanization.

Even in these ideal conditions, the level of infrastructure it can support is less

than one tenth that of the Utopian city.

The Industrial city can support a much larger population and level of infras-

tructure than the ecocentric city, see figure 3.14. However, it is still less than one

third of the size of the Oasis or Utopian city. Although the city can grow at the
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Figure 3.13: The Ecocentric city cannot support a large population or level of infrastructure. It
needs to have high positive feedback of natural amenity to grow beyond the small town. ann = 2,
ank =−0.01, an0 = 9, ahn = 5, ahk =−0.01, ah0 = 8.

expense of the environment, the city will not thrive in this contentious relation-

ship.

Not surprisingly, the Mining city, see figure 3.15. However, it is still less

than one third of the size of the Oasis or Utopian city. Although there may be

significant intrinsic natural and cultural values at the location of the city. The

city itself lacks the will or the institutions to leverage those intrinsic values into

an amenity for the city as it grows.

Each city essentially “looks" the same on paper because they share the same

bifurcation structure, meaning the qualitative dynamics are similar. However,

there are vast quantitative differences between these types of cities. To further

understand the differences between different types of cities, it is important to

understand the differences between the natural and human derived amenities, and

these differences are explored in the next section.
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Figure 3.14: The Industrial city is much easier to establish and grow than the Ecocentric city.
However, the Industrial city does not place enough emphasis on the connection to the natural
environment, reducing its potential to grow relative to the Oasis or Utopian city. ann = −0.1,
ank = 0.9, an0 = 1, ahn =−0.1, ahk = 1, ah0 = 1.
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Figure 3.15: The Mining city cannot support a large population or level of infrastructure. It
needs to have high positive feedback of natural amenity to grow beyond the small town. ann =
−0.2, ank =−0.08, an0 = 10, ahn =−0.1, ahk =−0.09, ah0 = 12.
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3.3 Dual Capital

In this section we allow the natural environment to have its own dynamics in the

form of a logistic equation with harvesting. This assumes there is some natural

regenerative quality to natural amenity that can be “consumed" by the interac-

tion of individuals. This type of formulation has been used extensively in bioeco-

nomics, and resource management [Anderies, 1998, Brauer and Castillo-Chavez, 2001,

Clark, 1985]. Then we can describe the new system as

Ah(N ,K) = ahkK + ahnN + ah0

An(W ,K) = ankW + annN + an0

I (N ,K , U ) = I0

!π
2
+ arctanam(U (N ,K)− Ū )

"

E(N ,K , U ) = E0

!π
2
+ arctanam(Ū −U (N ,K))

"

U (N ,K) = Ah(N ,K)αh An(N ,W )αn Y (N ,K)αy .

Ṅ = γ I −N (N ,K , U ) · E(N ,K , U ) (3.24)

K̇ = s ·N α1Kβ1 −δK (3.25)

Ẇ = r ·W
#

1−W
ak

$
− h ∗W ∗N , (3.26)

where r is the intrinsic growth rate of natural capital, W , ak is the carrying capac-

ity, and h is the harvesting constant. Also note that natural amenity now depends

on natural capital and population size.

This new model allows for multiple stable states. Figure 3.16 shows a city with

low initial conditions. This city essentially has never been able to establish itself

and remains dominated by the natural environment which persists at its carrying

capacity. Figure 3.17 shows a city with moderate initial conditions. This city is

able to take full advantage of the natural environment, consuming capital at a rate

that allows the environment to still be highly productive while still developing

high levels of infrastructure: a resort town. Figure 3.18 shows a city with high
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initial population and human capital, but low natural capital. The state of the

environment started too low to ever reach its carrying capacity. Despite this,

the city is able to grow initially and maintain the high levels it started with, for

some period of time. Although the decline is slight at first, and can be drawn out

for a long period of time, the city is doomed. The equilibrium state of the city

is one with low population, low human and low natural capital: a ghost town.

Eventually all the city dwellers will leave this city for another. We have seen

that the future of the city is uncertain. Early growth trends can lead to sustained

growth, or eventual decline. One way to understand the uncertainty inherent in

natural processes is via stochastic equations, which will be discussed in the next

section.
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Figure 3.16: With low initial conditions we enter a basin of attraction of a city dominated by
the natural environment. In this scenario, the environment grows to its carrying capacity, with
little interference from the city. Initial conditions: N (0) = 1, K(0) = 1, and W (0) = 1. Parameters:
ann = 0.5,ank = 0.5,an0 = 1,ahn = 0.5,ahk = 0.5,ah0 = 1, s = 0.25, r = 2, ak = 25, and h = 0.05.
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Figure 3.17: With moderate initial conditions we enter a basin of attraction of a city with high
human and natural capital. Initial conditions: N (0) = 10, K(0) = 10, and W (0) = 1. Parameters:
ann = 0.5,ank = 0.5,an0 = 1,ahn = 0.5,ahk = 0.5,ah0 = 1, s = 0.25, r = 2, ak = 25, and h = 0.05.
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Figure 3.18: With high population and infrastructure, but low natural capital, we enter the
basin of attraction of the abandoned city. Although the population and infrastructure levels may
start high, and also increase initially, there is a gradual decline. This decline may be long and drawn
out, but is inevitable. Initial conditions: N (0) = 60, K(0) = 60, and W (0) = 0.1. Parameters:
ann = 0.5,ank = 0.5,an0 = 1,ahn = 0.5,ahk = 0.5,ah0 = 1, s = 0.25, r = 2, ak = 25, and h = 0.05.

41



Chapter 4

Stochastic Model

Our modeling framework has been aimed at describing the mechanistic processes

in urban growth. We have used a deterministic set of equation to describe the

dynamics. However, in many situations in nature thing are either random or ef-

fectively random. The methodology used in this section is similar to that used

to model epidemics, molecular reactions, shot noise and population dynamics

[Kuske et al., 2007, Rogers and Murillo, 2010] and centers around random events

being Poisson processes [Karlin and Taylor, 1975, Kurtz, T.G., 1978, Allen, L.J.S., 2003].

Here we assume that only the migration process is random, that is, people move

in/out of cities independently at some stochastic rate. Suppose we have a time

interval (t , t +∆t ) where migration into or out of a city may occur. Let ∆t be

small enough such that it is unlikely that more than one event occurs in the time

interval. Let Nt , Kt and Ut be the population, the level of capital and average

utility of our city at time t , respectively. Since we only have two random events,

the population changes when either someone moves into the city or moves out.

P (Nt+∆t = k + 1|Nt = k) = γ I (Nt ,Kt , Ut )∆t + o(∆t ) (4.1)

P (Nt+∆t = k − 1|Nt = k) = Nt E(Nt ,Kt , Ut )∆t + o(∆t ). (4.2)

For clarity, we state that Equation 4.1 is read, "the probability that N at time t+

∆ t equals k+1, given that N at t equals k is γ I (Nt ,Kt , Ut )∆t plus little oh of∆t ,"

where o(∆t ) is Landau notation [Allen, L.J.S., 2003, Karatzas and Shreve, 1991].

Informally, we include the o(∆t ) term to represent the possibility (no matter how

unlikely) of other events happening in the time interval (t , t +∆t ). Note, as we

allow ∆t to get smaller and smaller, lim
∆t→0

o(∆t ) = 0. Further, if we can define the

increment Nt+∆t −Nt to be the change in the number of susceptible individuals
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in the time interval (t , t +∆t ), then Equation 4.1 can also be written as

P (Nt+∆t −Nt = 1) = γ I (Nt ,Kt , Ut )∆t + o(∆t ) (4.3)

P (Nt+∆t −Nt =−1) = Nt E(Nt ,Kt , Ut )∆t + o(∆t ). (4.4)

Now we can define ∆Nt = Nt+∆t −Nt and complete the probabilistic treat-

ment of the population:

P (∆Nt = 1) = γ I (Nt ,Kt , Ut )∆t + o(∆t ) (4.5)

P (∆Nt =−1) = Nt E(Nt ,Kt , Ut )∆t + o(∆t ) (4.6)

P (∆Nt = 0) = 1−Nt E(Nt ,Kt , Ut )∆t − γ I (Nt ,Kt , Ut )∆t

= +o(∆t ) (4.7)

P (∆Nt = anything else) = o(∆t ). (4.8)

This formulation is important when we need to explicitly consider the move-

ment of individual people. However, cities, by definition, have large numbers of

people. Consequently large numbers of people move into/out of cities every day

and this formulation would be too tedious and so we will invoke the central limit

theorem to derive the stochastic differential equations (SDE’s) for our model of

urban growth1.

Before we continue we observe that the increments∆Nt are stationary (do not

depend on t), independent and follows a Poisson distribution since the migration

rates are Poisson processes [Shreve, 2004]. Using the definition of the expected

value, we can calculate
1It is important to note that we are assuming our population is large, but not too large. As our

population gets sufficiently large, the probabilistic model can be approximated by normally dis-
tributed random variables and lends to the construction of the SDE’s [Allen, L.J.S., 2003]. In the
limit the population gets very large, then the SDE’s converge in distribution [Kurtz, T.G., 1978]
to the system of ordinary differential equations presented in the previous section.
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E[∆Nt] = 1 ∗ (γ I (Nt ,Kt , Ut )∆t + o(∆t ))− 1 ∗ (Nt E(Nt ,Kt , Ut )∆t + o(∆t ))

+0 ∗ (1−Nt E(Nt ,Kt , Ut )∆t − γ I (Nt ,Kt , Ut )∆t + o(∆t ))

= (γ I (Nt ,Kt , Ut )−Nt E(Nt ,Kt , Ut ))∆t + o(∆t ). (4.9)

Then the variances becomes

V a r [∆Nt] = (γ I (Nt ,Kt , Ut )+Nt E(Nt ,Kt , Ut ))∆t + o(∆t ) (4.10)

note that in Equation 4.9 the terms subtract because the Poisson process is a

counting process and we are counting “down" but in Equation 4.10 the terms

add because variances of independent random processes add. Then we can look

at how the population changes and employ the standard mathematical technique

of adding zero.

∆Nt = E[∆Nt |Nt]+∆Zt (4.11)

∆Zt = (∆Nt − E[∆Nt |Nt]) (4.12)

where∆Nt is the conditionally centered Poisson increment. The centering shifts

the mean of the Poisson increment to zero, but leaves the variance unchanged.

If we let the population size get large, but not too large, then, we can apply the

central limit theorem (and Itô calculus) to get the SDE for the population equation

dNt = (γ I (Nt ,Kt , Ut )−Nt E(Nt ,Kt , Ut ))d t +σt dWt (4.13)

where Wt is a Weiner process (also called white noise or Brownian motion, dB(t )).

The Weiner process has several important properties including that it is distributed

as a standard normal (mean zero, variance 1) [Allen, L.J.S., 2003]. Then σt =
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'
γ I (Nt ,Kt , Ut )−Nt E(Nt ,Kt , Ut )d t . Note that σt dWt is the limiting distribu-

tion of∆Zt as N gets large. Now we can write the stochastic model:

dNt = (γ I (Nt ,Kt , Ut )−Nt E(Nt ,Kt , Ut ))d t +σt dWt (4.14)

dKt = s ·N α1
t Kβ1

t −δKt (4.15)

I (Nt ,Kt , Ut ) = I0

!π
2
+ arctan(Ut − Ū )

"

E(Nt ,Kt , Ut ) = E0

!π
2
+ arctan(Ū −Ut )

"

Ut = Ah(Nt ,Kt )
αh An(Nt ,Kt )

αn Y (Nt ,Kt )
αy .

Our stochastic model, Equations 4.14 - 4.15, is a set of SDE’s even though the

Weiner process is only present in Equation 4.14 (Kt is now a stochastic process

since it depends on Nt ). Stochastic effects are the most significant when popu-

lation sizes are small. In our deterministic models, there were several scenarios

where city populations persisted at low levels. In a stochastic framework, these

small cities have a positive probability of extinction. Even in scenarios that had

high population and infrastructure levels as the equilibrium state have a chance of

becoming extinct, especially in the early stages of city development.

The stochastic framework presented allows us to explore what the probabil-

ity of extinction is for a city. In figure 4.1 we simulated 200,000 realizations of

our stochastic model with the same parameters, but different initial conditions.

The area in blue represents the simulations where the city went extinct. As we

expected, with low initial conditions, the probability of extinction increases. The

dark red represents the simulations where the city established a high level of built

infrastructure. The simulations at the border between the upper blue region and

the lower red region represent the cities that have become established, but have

not reached the same level of infrastructure as the cities in red: they are at greater

risk of becoming extinct in the future.
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Figure 4.1: As we allow the marginal utility with respect to natural amenity vary as a random
variable, the final city population size N∞ and capital level K∞ vary, but not according to a scaling
law analogous to Zipf’s Law.

As the initial level of capital decreases, the probability of extinction increases

(the area in blue). The probability of extinction decreases rapidly as the initial

capital level increases, but plateau’s quickly and never reaches 100%. Because the

model presented has only one absorbing state (the extinction equilibrium), even-

tually all simulations will become extinct. However, the time to extinction can be
46



so large that it effectively never happens. In the absence of major disasters, a city

that has survived the early stages and is in the basin of attraction of a prosperous

city will persist. However, diseases are one such disaster that have been respon-

sible for a large number of human deaths throughout history. In the next and

subsequent chapters, we will explore the dynamics of a disease that also thrives in

cities.
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Chapter 5

Cities in Ecology: Diseases - Why Context Matters

This history of society is intimately linked with the history of diseases. In this

chapter we discuss the role of the urban ecology on dengue fever. Many attempts

to control dengue have been made, and they have all failed. This chapter outlines

some of the major challenges facing any control program and highlights the role

mathematical modeling has played in epidemiology.

5.1 Diseases

Diseases have been with us since before recorded history and two of the deadli-

est diseases today are also two of the oldest: 1) there is evidence of Tuberculosis

in fossile records over 500,000 years ago [Lloyd, R., 2008], 2) Malaria may be re-

sponsible for half of all deaths since the bronze age [Shah, 2010, Shah, S., 2010].

For millenia we have been at the mercy of these diseases with little recourse.

There are several ancient texts which have documented diseases and their treat-

ments including Nei Ching (the Chinese, “Canon of Medicine"), biblical texts,

and the works of Hippocrates. However, until the advent of vaccines, the only

method we had to “control" the spread of a disease has been improved hygiene

and social distancing (quarantine). Although there is evidence of inoculation in

China circa 1000, the vaccine as we know it today was introduced in the 1700s to

combat smallpox [The College of Physicians of Philedelphia, 2012]. Since then,

disease eradication, the great promise of the vaccine, has been largely unrealized.

Thus far only smallpox and rinderpest (a disease that primarily infects livestock)

have been eradicated despite many campaigns against polio, malaria, and many

others. However, many diseases do not have vaccines including dengue fever.

5.2 Dengue

The history of dengue is fraught with ambitions, but failed attempts to eradi-

cate the vector mainly responsible for the transmission of dengue fever, Ae. ae-
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gypti [Gubler and Kuno, 1997, Gubler and Clark, 1996]. As urban centers grow,

the likelihood of any successful eradication program diminishes due to the com-

plexity of implementing any control program. There were various political, lo-

gistical and ecological issues that prevented the full eradication of Ae. aegypti

and that have allowed its re-infestation since the mid 1960′ s [Arias, J.R., 2002,

Soper, F.L., 1967]. In the absence of an effective vaccine, most control strategies

have centered around eliminating the vector that spreads the dengue.

Vector Control Strategies

The habitat of dengue is the vector-host ecosystem (set in an urban physical and

social environment). Ae. aegypti have several unique behavioral patterns that

make them well suited to spreading dengue including: 1) they are anthropophilic,

that is, they feed preferentially on humans which makes them more likely to ex-

pose humans to the dengue virus; 2) frequent ovipositions during a single egg

laying cycle [Scott et al 2000], thus enabling a single infected vector to distribute

its eggs to several breeding sites throughout the urban environment. The latter

effect poses a particular problem to controlling the disease since identifying and

clearing a breeding site of mosquito larvae can be challenging in urban environ-

ments.

Source Reduction

Classic source reduction is a type of control program aimed at reducing viable

breeding sites. It is conducted by trained inspectors under expert supervision. It

is a top-down or vertical governmental program [Reiter and Gubler, 1997] and re-

quires careful surveillance and record keeping. Many common breeding sites are

easily identified and eliminated either through removal of the container, applica-

tion of insecticides, sealing or storing in a dry location [Petit et al 2010]. Classic

source reduction is only effective with thorough, inquisitive and tenacious inspec-

tors. Finding less common containers takes incrementally more work to elimi-
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nate marginally fewer breeding sites. Despite the most well trained inspectors, it

is difficult not to fall into routines and miss the more exotic or ephemeral con-

tainers [Gubler and Kuno, 1997]. Inspections can also be a stressful occupation

as indoor inspections can become contentious, large cisterns or other containers

are also used to store fresh water, and many containers are items of perceived util-

ity to the household (old appliances, car parts or tires). Furthermore, all of these

issues become exasperated as the programs become more successful. They are

viewed as expensive and unnecessary invasions of privacy and can even become

difficult positions to staff when there has not been an outbreak in the recent past

[Reiter and Gubler, 1997]. Thus, they are inherently unsustainable since success

induces a negative feedback - there is less willingness to endure the hardships of a

strict control policy when the problem has been ameliorated (but not yet elimi-

nated).

There has been an increasing desire to shift from paid inspectors to a community-

based approach [Gubler and Clark, 1996]. In theory this shift is cost-effective as

the community takes on the burden of surveillance as a civic responsibility. In

practice, however, there may be poor recognition of rarer breeding sites and local

knowledge and attitudes may clash with the public health agenda [Gubler and Clark, 1996].

Aside from issues of the complexity of the mosquito life cycle, there may be a fun-

damental disassociation between source reduction strategies, contact with vectors

and the manifestation of dengue. Source reduction focuses on the removal of eggs

and larvae, an aquatic animal. There may be several species of mosquitoes and bit-

ing flies or other pests that are not impacted by source reduction strategies. Ae.

aegypti is an elusive mosquito and difficult to notice even when it is biting a host;

thus the connection between dengue prevalence and the vector, among so many

other flying pests, is not necessarily clear. While there has been some work to use

spatial modeling to elucidate this connection, applications to dengue have been

limited [Eisen and Eisen, 2008].
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Often, there is no clear observable response between source reduction and

the reduction of dengue prevalence. Furthermore, in poorly implemented source

reduction strategies, the only observable impacts on the community are nega-

tive: increased burdens on their time, dissonance between public health “educa-

tion" and traditional/empirical knowledge [Reiter and Gubler, 1997]. Any con-

trol strategy requires feedback, and the feedbacks of this strategy, as it is often

implemented, precludes its success.

Insecticides

In addition to control of the egg/larval stage, it is important to control adult

mosquitoes. Residual insecticides stick to surfaces, are often sprayed indoors,

and kill adult mosquitoes if they land on sprayed surfaces. While effective, it

is labor intensive to spray all the indoor surfaces that Ae. aegypti might hide on.

Impregnated bed nets are sometimes used but are of limited effect because Ae.

aegypti tends to bite during the day. Personal application of the repellant N,N-

diethyl-meta-toluamide (DEET) can be very effective for visitors, but care must

be taken with children and it may not be cost-effective for the local population

[Reiter and Gubler, 1997].

There are also many programs that employ outdoor spraying of insecticides.

Aerosols insecticides are often sprayed at low densities (ULV) that are effective at

killing adult mosquitoes but insufficient to kill larvae in water. It may be delivered

via airplane, ground vehicle or by hand. This is often the method of choice during

an outbreak or whenever the public perceives an increased density of mosquitoes

[Reiter and Gubler, 1997]. While effective in temporarily reducing the number

of mosquitoes, the most important effect of these spraying programs is in eas-

ing public perception of risk and convincing them that the government is doing

something [Reiter and Gubler, 1997]. Although there will be a reduction in over-

all mosquito density temporarily (one to several weeks), the female Ae. aegypti is
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often found hiding indoors and thus will be protected from these programs [Am-

croft et al 2001]. If females survive and the larvae in the breeding pools are unaf-

fected, the total mosquito population can be replenished quickly. Furthermore,

ineffective spraying programs can lead to increased levels of insecticide resistance

in mosquitoes[Reiter and Gubler, 1997, Hemingway and Ranson, 2000].

The Growing Problem: Urbanization

As many cities face rapid urbanization, there is a proliferation of breeding sites:

flower pots, rain gutters, fresh water containers, ditches, old tires and discarded

appliances etc [Gubler and Kuno, 1997]. Densification also leads to the same

breeding site being closer to a higher density of hosts. Thus urbanization can di-

rectly contribute to an increase in the suitable habitat for the vector [Reiter and Gubler, 1997]

despite strong source reduction campaigns. Singapore has had one of the more

successful control programs. It was called an example for other countries by

PAHO [Reiter and Gubler, 1997]. Frequent inspections, large fines and slum

clearance led to the reduction of the number of indigenous dengue transmissions.

However, as the nation grew more affluent, they imported labor from the sur-

rounding areas and regional travel became more common. As standards of living

increased, so did the expectations of privacy and the burden of inspectors be-

came more onerous. Thus, public support for spraying programs waned. The

short term effect was to increase the pool of susceptible individuals in Singapore.

Dengue outbreaks were still prevalent outside the national boundaries of Singa-

pore and it was only a matter of time before dengue made a resurgence in Singa-

pore [Ooi et al., 2006, Reiter and Gubler, 1997].

Control programs cannot be abandoned after they are initiated, even if they

have been “successfull" for some time. Dengue fever outbreaks demonstrate strong

seasonal trends [Chowell, G. and Sanchez, F., 2006, Chowell, G. et al]. The deter-

minants of this temporal pattern include temperature and precipitation patterns.
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Temperature impacts the rate that the vector and the virus develop. The rain in-

undates ephemeral breeding sites and makes them viable. However, there is some

evidence that the “dry season" and droughts are also correlated with outbreaks

[Sanchez et al., 2006]. At these times, local residents are more inclined to store

freshwater and rain runoff which provide additional breeding sites that are dis-

tributed near dwellings.

Going to school is another human behavior that may contribute to dengue

outbreaks. In Mexico, prior to the start of the school year, rainwater may have

been allowed to collect in various breeding sites around the school. The high

concentration of children in classrooms produces elevated levels of carbon diox-

ide that may attract the vectors [Hernandez-Suarez, C.M., 2009]. Also, children

must wear uniforms that includes skirts for girls and shorts for boys during the

warmer months. All of these factors may contribute to the seasonal outbreaks of

dengue associated with the school year. A test program was initiated where lo-

cal janitors and parents where presented with source reduction information and

techniques. The application of these techniques was able to dramatically decrease

the prevalence of dengue in the test region. However, the lack of financial sup-

port caused the program to be abandoned [Hernandez-Suarez, C.M., 2009]. The

next seasonal outbreak of dengue was stronger in the test region than any of the

surrounding areas.

Finding a Solution

It is important to understand the customs and practices of the people in the urban

environment before a control program is initiated. This understanding will yield

a more complete picture of the type and distribution of potential breeding sites

[Pacheco-Coral, A.P. et al 2010]. No control program can be sustainable without

considerable effort and support by both local communities and the government

[Gomez-Dantes, H. and Willoquet, J.R., 2009, Paz-Soldan, V.A. et al 2009 ].
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The history of dengue is fraught with ambitions, but failed attempts to erad-

icate the vector mainly responsible for the transmission of dengue fever, Ae. ae-

gypti. We close this chapter the same we started it, with a reiteration of the chal-

lenge to combat dengue. As urban centers grow, the likelihood of any successful

eradication program diminishes. The sheer number and distribution of breeding

sites makes any eradication campaign prohibitively expensive from a governmen-

tal standpoint. Perhaps the best alternative is to engage the community and have

them share in the responsibility of vector control. Understanding the local ecol-

ogy of the vector, and hosts, will be critical in tackling dengue at the local level

[Aldstadt, J. et al 2011]. Although the remainder of this dissertation will be fo-

cused on the more abstract problem of the mathematical description of dengue

fever, it is done so with the intention that any successful effort in controlling

dengue must be a collaborative effort across the scientific, political, social and

environmental landscapes. Global climate change facilitates the proliferation of

Ae. aegypti. As the mosquito spreads, so does the hazard of dengue outbreaks. It

has never been more urgent that we take steps to understand and prevent dengue

outbreaks.
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Chapter 6

Cities in Ecology: Diseases - A Case Study with Dengue

6.1 Introduction

Dengue is considered one of the most important emerging and re-emerging infec-

tious diseases. According to the World Health Organization, 40% of the global

population is at risk of dengue infection with an estimate of 50 to 100 million

infections yearly including 500,000 cases of dengue hemorrhagic fever (DHF) and

22,000 deaths, mostly in children. Dengue has attracted some recent popular press

for potential cases in the US [Kok, Y., 2010, CDC, 2010] and a large number

of cases internationally [Morens and Fauci, 2008]. Dengue is considered one of

the most important emerging and re-emerging infectious diseases [WHO, 2010].

Dengue virus belongs to the genus Flavivirus, family Flaviviridae [Duebel, V. et al

1986] and has four antigenically distinct serotypes (DENV-1, DENV-2, DENV-3

and DENV-4). The pathogenicity of the disease ranges from asymptomatic and

mild dengue fever (DF) to dengue hemorrhagic fever (DHF) and dengue shock

syndrome (DSS), which primarily affects children [Nguyen, H. T., et al 2006,

Halstead, S.B., et al 2002]. Dengue is a vector borne disease transmitted primarily

by the mosquito Aedes aegypti, which has spread to a vast majority of countries

in the tropics and sub-tropics [Harris, E., et al. 2000]. The secondary vector, Ae.

albopictus, has a range that reaches farther north than Ae. aegypti and there are

reports that its eggs adapt better to subfreezing temperatures which increases the

risk of dengue outbreak in the US [Hawley, et al]. This risk could also be in-

creased due to vertical transmission from infected females to eggs. Although pre-

vious studies suggested that vertical transmission of dengue was not possible[Siler

J.F., et al 1926, Simmons J.S. et al, 1931] , recent findings have demonstrated that

vertical transmission is feasible in captivity and in the wild in both Ae. aegypti and



Ae. albopictus species [Arunachalam, N. et al 2008, Cecilio A.B. et al 2009, Kow,

C.Y. et al 2001, Gunther, J. et al 2007, Rosen L. et al 1983].

Differences in disease severity have been associated with particular serotypes

and genotypes posing the question that some specific genotypes are more pathogenic

than others [Halstead, S.B., 2006, Kyle and Harris, 2008]. Out of the four dengue

serotypes, dengue outbreaks, DHF and DSS have been mostly associated with

DENV-2 [Montoya Y. et al 2003, Rico-Hesse, R. et al 1997, Sittisombut, N.

et al 1997, Zhang, C. et al 2006]. Infection with one serotype does not usually

protect against the others, and while a secondary infection with a heterologous

serotype increases the probability of DHF and DSS1 [Burke, D.S. et al 1998, Hal-

stead, S.B. et al 1970], there are also reports that indicate a primary infection can

also be responsible for severe dengue cases [Barnes, W.J.S. and Rosen, L., 1974,

Harris, E. et al 2000, Gubler, D.J. et al 1978, Rosen, L., et al 1977, Scott, R.M.N.

1976]. Because of the association of a specific genotype of DENV-2, Asian geno-

type, to dengue outbreaks and DHF or DSS in young children, the identification

of specific DENV-2 genotypes has become one of the priorities in the study of

epidemiology of the disease [Lewis, J.A. et al 1993, Montoya, Y. et al 2003, Rico-

Hesse, R. et al 1997, Rico-Hesse, R. et al 1998, Sittisombut, N. et al 1997, Zhang,

C. et al 2006].

Although many mathematical and statistical approaches have been conducted

to study dengue [Nishiura, H., 2006], vertical transmission as a key factor has not

been explored. In this paper we investigate how vertical transmission can cause

one genotype of DENV-2 to outcompete or invade an area already endemic with a

different genotype of DENV-2. We derive the critical proportion of vertical trans-

mission as a function of the virulence of each genotype necessary for successful

invasion. This may explain the displacement of DENV-2 American genotype by

the Asian genotype as well as the speed and severity of dengue outbreaks in coun-
1A process sometimes called original antigenic sin or antibody-dependent enhancement.
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tries like Peru where the DENV-2 Asian genotype was first introduced during the

2000-2001 epidemic [Montoya, Y. et al 2003]. Prior to the appearance of DENV-2

Asian genotype in the northwestern coastal city of Tumbes, only DENV-1 and

DENV-2 American genotype were circulating in Peru [Kochel, T.J. et al 2002,

Montoya, Y. et al 2003]. The absence of DHF and DSS in the northeastern Peru-

vian city of Iquitos prior to 2000 could be due to the cross-immunity conferred

by DENV-1 against DENV-2 American genotype but not to the DENV-2 Asian

genotype [Kochel, T.J. et al 2002]. This cross-immunity might also increase the

pool of individuals susceptible to DENV-2 Asian genotype since they would not

have had exposure to DENV-2 American genotype, and hence protection against

DENV-2 Asian genotype.

Our model suggests that vertical transmission is an important mechanism that

should be taken into consideration for the prediction and control of dengue out-

breaks. In the absence of an effective vaccine, worldwide efforts should be focused

on monitoring not only the disease but also the Aedes mosquitoes, both males2

and females, and the DENV genotype that is being carried and transmitted.

6.2 Mathematical Model

There have been many attempts to gain insight into diseases using mathematical

models and vector borne disease (like malaria and dengue) were first modeled by

Ross (1910) and later Macdonald (1957). Nishiura (2006) reviews several model-

ing efforts specifically on dengue. We expand on the simplest model for dengue

presented by [Nishiura, H., 2006]. Our model includes a progression to DHF,

and for simplicity we ignore deaths due to DHF (see Figure 6.1). Another im-

portant difference is that we consider two genotypes of dengue circulating con-

currently in both the host and vector populations. In general, the more severe

cases of DHF and DSS are thought to be caused by a secondary infection with
2To estimate the contribution of vertical transmission to the prevalence of dengue in the

mosquito population.
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a heterologous strain, see [Sangkawibha, N. et al 1984, Halstead, S.B., 1988].

In this model we are only considering an outbreak of DENV-2, thus the preva-

lence of all other serotypes is assumed constant. We employ the mathematical

epidemiology framework using an SIR model for the host and SI for the vector

(see [Nishiura, H., 2006] for an introduction to this framework in the context

of Dengue). Then the host system is described by S, the class of susceptible hu-

mans, DAm, the class of humans infected with genotype American, DAs , the class

of humans infected with genotype Asian, H , the class of humans that progress to

DHF, and R, the class of recovered humans (see Figure 6.1). Vertical transmission

is only present in the vectors infected with DENV-2 Asian (see Figure 6.2).
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Figure 6.1: Host model. Only individuals infected with genotype Asian progress
to DHF in this model.

All of the parameters are assumed to be positive constants and the natural

birth/death rate of humans is µ, the rate that humans become infected with

genotype American or Asian from mosquitoes isβAm and βAs , respectively. The

rate that infections develop into DHF is α, and we assume only individuals in-
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Figure 6.2: Vector model. Vertical transmission only occurs in mosquitoes in-
fected with genotype Asian.

fected with genotype DENV2-Asian can progress to DHF after presenting DF

like symptoms. The rate that humans recover from infection from either geno-

type American, Asian or DHF is δAm ,δAs , and δH , respectively. N is the total

human population size and M is the total vector population size. It is assumed that

once a person has been diagnosed with DHF, that person will be hospitalized and

their potential to spread dengue to vectors is negligible. The natural birth/death

rate of mosquitoes is µm, p is the proportion of mosquitoes that are infected

through vertical transmission, θAm is the rate mosquitoes get infected with geno-

type American and θAs is the rate mosquitoes get infected with genotype Asian.

These parameters are summarized in Table 6.1. The system of nonlinear differen-

tial equations is:
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Table 6.1: Model parameters

Parameter Definition
µ human natural birth/death rate
βAm infectious rate from vectors to hosts, strain American
βAs infectious rate from vectors to hosts, strain Asian
δAm recovery rate from strain American
δAs recovery rate from strain Asian
δH recovery rate from strain DHF
α progression rate to DHF from strain Asian
µm natural mortality rate of vectors
θAm infectious rate from hosts to vectors, strain American
θAs infectious rate from hosts to vectors, strain Asian
p proportion of vectors infected via vertical transmission

Ṡ = µN − βAmSWAm

M
− βAs SWAs

M
−µS (6.1)

ḊAm =
βAm SWAm

M
− (δAm +µ)DAm (6.2)

ḊAs =
βAs SWAs

M
− (δAs +α+µ)DAs (6.3)

Ḣ = γAsαAs DAs − (δH +µ)H (6.4)

Ṙ = δAmDAm +δAs DAs +δH H −µR (6.5)

V̇ = µmM − pµmWAm −
V θAmDAm

N
− V θAs DAs

N
−µmV (6.6)

ẆAm =
V θAmDAm

N
−µmWAm (6.7)

ẆAs =
V θAs DAs

N
+ pµmWAs −µmWAs (6.8)

Basic Reproductive Number

We rescale the model and will refer to each class as the proportion of the total

population. Furthermore, we assume that all infected individuals recover at the

same average rate δ. If we consider our model to contain infections from DENV-
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2 American only, then the reproductive number is

#Am
0 =

(
βAm

δ +µ
θAm

µm
,

derived using the next generation operator (see Appendix 6.4). The square root

indicates that this is a “two-step" process, i.e. in order for a human to cause an-

other human to be infected, a mosquito must first be infected. 1
δ+µ , is the average

infectious period andβAm is the transmission rate (host to vector). Similarly, θAm

is the transmission rate from vectors to hosts. If#0 > 1 we expect an outbreak of

DF in our population.

If DENV-2 Asian is the only genotype present, the reproductive number is

#As
0 =

p
2
+

(! p
2

"2
+

βAs

(δ +α+µ)
θAs

µm
.

There are four components to #As
0 : θAs

µm
is the contribution to the reproductive

number from infected mosquitoes, the infectious force of mosquitoes times the

average time spent in the infectious class; βAs
δ+α+µ is likewise the infectious force

of humans times the average time spent in the infectious class;
% p

2

&2
is the in-

direct contribution from vertical transmission, that is, from infections caused by

mosquitoes that were born with dengue; p
2 is the direct contribution from vertical

transmission infectious mosquitoes create more infectious mosquitoes by giving

birth to them, not through infecting humans. When we had only DENV-2 Amer-

ican, dengue transmission was “two step" process because in order for an infected

mosquito to infect more mosquitoes, it had to first infect a human. Now, when

we have DENV-2 Asian, dengue transmission has contributions from a “two step"

and “one step processes. The “one step," or direct, transmission is due to verti-

cal transmission alone and includes the direct generation of infected mosquitoes

by other infected mosquitoes via birth. The “two step," or indirect transmission

is due to both vertical transmission and horizontal transmission (infection via

vector-host transmission). The impact of vertical transmission has been split in
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half, averaged, into direct and indirect components with the “two step" process

being the geometric average of the vertical and horizontal components.

Then the basic reproductive number of our entire model, defined as the av-

erage number of secondary cases produced by a typical infectious individual in a

mostly susceptible population, is the maximum of the two reproductive numbers

#0 = max[#Am
0 ,#As

0 ].

We compare the two reproductive numbers and find the critical value of the

vertical transmission coefficient pc r i t that dictates when DENV-2 Asian domi-

nates, #As
0 > #Am

0 . First let us define the reproductive number for Asian as a

function of p

#As
0 (p) =

p
2
+

(! p
2

"2
+

βAs

(δ +α+µ)
θAs

µm
. (6.9)

Then,

#As
0 (0) =

(
βAs

(δ +α+µ)
θAs

µm
.

If we assume that DENV-2 American and DENV-2 Asian are equally virulent

ceteris paribus, then

pc r i t =
α

δ +α+µ
#Am

0 .

Thus vertical transmission must balance the proportion of individuals who progress

to DHF (since we assume they do not transmit infection). Note that ifα= 0, then

any level of vertical transmission would cause DENV-2 Asian to dominate. This

is as expected since if they are completely identical except one strain has an addi-

tional mechanism to spread, then it will out compete the other strain. However, if

we assume DENV-2 Asian is more virulent, as the data suggests, then it becomes

even less likely that DENV -2 American will dominate DENV-2 Asian and this

may explain why DENV-2 Asian tends to out compete DENV-2 American wher-

ever the two strains co-circulate [Rico-Hesse, R. et al 1997, Montoya, Y. et al

2003]. In this case, the general form for the critical value of vertical transmission
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is

pc r i t =

%
#Am

0

&2−
%
#As

0 (0)
&2

#Am
0

, (6.10)

and whenever p > pc r i t ,#As
0 >#Am

0 . For a fixed value of#As
0 and#Am

0 , Figure

6.3 shows how large p must be for#As
0 >#Am

0 . Alternately we can fix p at some

value and for a given value of #Am
0 , if the value of #As

0 is above the line, then

#As
0 >#Am

0 . If p = 0 (solid line), then we need#As
0 (0) >#Am

0 . However, as we

increase p to 0.5 (dotted line), or even to 1 (dashed line), then we see #As
0 (0) <

#Am
0 and still #As

0 > #Am
0 , since #As

0 needs to only be above the line. Thus

increases p can decrease the threshold required for DENV-2 Asian to outcompete

DENV-2 American.
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Figure 6.3: The region where DENV-2 Asian genotype outcompetes DENV-2
American genotype is represented by the area above the line for a fixed pc r i t .
For a fixed #As

0 (0) and #Am
0 , if p is greater than pc r i t , graphed, then DENV-2

Asian dominates DENV-2 American. Conversely, if p = 0 (the solid line), then
#As

0 > #Am
0 if #As

0 (0) > #Am
0 . As we increase p to 0.5 (the dotted line), we see

that#As
0 (0) can be less than#Am

0 and still#As
0 >#Am

0 . If we further increase p
to 1 (the dashed line), then DENV-2 American must be much much stronger than
DENV-2 Asian in order for DENV-2 American to outcompete DENV-2 Asian.
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Equilibria

There are three equilibria in our system. Competitive exclusion precludes a coex-

istence equilibrium. We have a disease free equilibrium (DFE), an DENV-2 Amer-

ican equilibrium (EAM) and an DENV-2 Asian equilibrium (EAS). The DFE is

S∗ = 1

D∗Am = 0

D∗As = 0

H ∗ = 0

R∗ = 0

V ∗ = 1

W ∗
Am = 0

W ∗
As = 0. (6.11)

The DFE always exists and is locally asymptotically stable whenever#0 < 1,

see Appendix 6.4. Further, we can use a Lyapunov function to show that the DFE

is globally asymptotically stable if#0 < 1, see Appendix 6.6. For the EAM,

S∗ =
µβAm +µm(δ +µ)
θAm(βAm +µ)

D∗Am =
µµm

)%
#Am

0

&2− 1
*

θAm(βAm +µ)
D∗As = 0

H ∗ = 0

R∗ = 1− S∗ −D∗Am

V ∗ = 1−W ∗
Am

W ∗
Am =

µ
)%
#Am

0

&2− 1
*

θAmµ
%
#Am

0

&2
+βAm

W ∗
As = 0. (6.12)
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The EAM only exists if#Am
0 > 1 and Section 6.2 will determine its stability. For

EAS,

S∗ =
βm2µ+µm(δ +α+µ)(1− p)

βm2(βAs +µ)
D∗Am = 0

D∗As =
µµm#As

0 (0)
2+ p − 1

βm2(βAs +µ)

H ∗ =
µµmα#As

0 (0)
2+ p − 1

βm2(βAs +µ)(δ +µ)
R∗ = 1− S∗ −D∗As −H ∗

V ∗ = 1−W ∗
As

W ∗
Am = 0

W ∗
As =

µµm#As
0 (0)

2+ p − 1

µ#As
0 (0)

2(1+ µm
βAs
)+ 1− p

. (6.13)

The EAS only exists if
%
#As

0

&2
(0)> 1 and its stability is determined below.

Invasion Reproductive Numbers

The invasion reproductive number (derived in Appendix 6.5) for DENV-2 Asian

invading DENV-2 American is

#As
i nv =

p
2
+

√√√√√
! p

2

"2
+

.#As
0 (0)

#Am
0

/2
. (6.14)

Note, if p = 0, then the invasion reproductive number is simply the ratio of

the DENV-2 Asian and DENV-2 American reproductive numbers, as we would

expect in a simple competition model. In order for EAM to be locally asymp-

totically stable, #Am
0 > 1 and #As

i nv < 1. The invasion reproductive number for

DENV-2 American invading DENV-2 Asian is

#Am
i nv =

#Am
0

#As
0 (0)

'
(1− p). (6.15)
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Furthermore, if p = 1, then DENV-2 American could never invade. This is

because there would always be a reservoir of DENV-2 Asian if the probability

of vertical transmission was 100%, although this is highly unlikely. Then EAS is

locally asymptotically stable if#As
0 > 1 and#Am

i nv < 1.

Figure 6.4a shows how#As
i nv < 1 varies as a function of #Am

0 and #As
0 (0) for

p = 0. Note that #As
i nv = 1 when #Am

0 =#As
0 . In Figure 6.4b p = 0.5 and note

how the curve has shifted upwards, making it easier for#As
i nv > 1. In Figure 6.4c,

p = 1 and notice how the lowest point of the graph is at 1.
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graph.
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Figure 6.4: Invasion reproductive number for DENV-2 Asian into DENV-2
American. As p is increased, it becomes easier for DENV-2 Asian to invade
DENV-2 American, represented by the upward shift of the graph.

To further illustrate the impact of the invasion reproductive number, we will
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play out a scenario where DENV-2 American is endemic in a population and

DENV-2 Asian tries to invade. Suppose DENV-2 American is introduced into a

region and#Am
0 > 1, then we would expect an outbreak and DENV-2 American

would remain endemic in the population. This is the situation in Peru prior

to 2000. Then suppose DENV-2 Asian is introduced into that same region. It

is not enough for #As
0 > 1 for there to be an outbreak of DF because not all

of the population is suscetible. There is a segment of the population that has

been exposed to DF and thus is protected from DENV-2 Asian. Therefore, for

there to be an outbreak of DF, #As
i nv > 1, the situation in Peru after 2000. This

scenario is shown in Figures 6.5 and 6.6. We introduce a few infected people

with DENV-2 American in a population of mostly susceptible individuals. The

DFE (x) is unstable because#Am
0 > 1 and the outbreak is dominated by genotype

American since #Am
0 > #As

0 (Figure 6.5b). Genotype American is endemic and

genotype Asian dies out in this scenario (Figure 6.5a). Then we increaseβAs such

that #As
i nv > 1. Another outbreak is triggered, but this time it is dominated by

genotype Asian (Figure 6.6b. The population started near an endemic level of

genotype American (EAM), but now genotype Asian tends to an endemic level

(EAS) and genotype American tends to zero (Figure 6.6a).

Similarly, we can illustrate how#Am
i nv varies as a function of#Am

0 and#As
0 (0)

for fixed p, see Figure 6.7. The top most manifold is when p = 0. As #Am
0

increases, #Am
i nv increases. When we increase p, the manifold lowers and flattens

out until the point when it is flat at p = 0. At this point, DENV-2 American is

no longer able to invade DENV-2 Asian as no value for#Am
0 will make#Am

i nv > 1
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Figure 6.5: If#As
0 < 1,#Am

0 > 1, then EAM is stable as genotype American tends
to some endemic level and genotype Asian tends to zero (a). The phase portrait
shows the relative prevalence of each genotype (b). The outbreak starts near the
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Figure 6.6: If the outbreaks starts near EAM and#As
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portrait shows the relative prevalence of each genotype (b). The outbreak starts
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6.3 Discussion

We have shown that vertical transmission makes a disease more likely to both

spread in an area without prior infection, but also to invade an area that is already

endemic to that disease. This work builds on an epidemiological framework that

shows vertical transmission may be a viable transmission mechanism for dengue

in the wild. It also advances mathematical modeling of dengue in particular, and

vector-borne diseases in general. Despite the evidence that vertical transmission

may be important in dengue, few models have incorporated this feature.

Bernoulli, in 1760, was one of the earliest scholars to mathematically model a

disease [Murray, J.D., 2002]. It would be a century later when Ross used his mod-

els to study the novel idea of mosquitoes spreading Malaria in 1900’s, and a couple

more decades before the seminal work of Kermack McKendrick in 1927 [Brauer,

F. and Castillo-Chavez, C., 2001, Gumel, A. et al 2006]. Over a century after

the ground breaking work of Ross, models are still being used to study Malaria

[McKenzie and Samba, 2004], dengue [Nishiura, H., 2006], and other vector-borne

disease such as West Nile Virus [Cruz-Pacheco, G., et al 2004, Bowman, C. et al

2005]. However, vertical transmission in these models is rarely studied, whereas

HIV has become the canonical example of vertical transmission in an infectious

disease [Anderson, R.M., 1988, Blower and Dowlatabadi, 1994, Soderlund et al., 1999].

Vertical transmission of dengue has been demonstrated to occur both in the

wild as well as in laboratory settings [Rosen, L. et al 1983, Bosio, C.F. et al 1992,

Kow, C.Y. et al 2001, Gunther, J. et al 2007, Arunachalam, N. et al 2008, Cecõlio,

A.B. et al 2009], although the percentage of transovarial transmission in Ae. ae-

gypti is low [Hutamai, S. et al 2007, Akbar, M.R. et al 2008]. Another study

showed that mosquitoes infected with DENV-2 through vertical transmission are

not only capable of horizontally transmit the virus but that also there was a higher

vertical transmission rate of the virus when eggs were incubated for longer times
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at room temperature [Mourya et al., 2001]. Overall these studies showed the epi-

demiological importance of Ae. aegypti not only as a vector but also in the main-

tenance of virus through transovarial passage in nature. Our results show that

even a low probability of vertical transmission can have a major impact on the

long term dynamics of DF. In the situation where we have two competing geno-

types, vertical transmission can make the difference between a failed outbreak and

a successful invasion and ability to become endemic in a population.

Our model was inspired by the 2000-2001 dengue epidemic in the northwest

region of Peru. This was the first time that DHF cases were observed in Peru,

and DENV-2 Asian genotype was introduced into the country [Montoya, Y. et

al 2003]. Despite the endemic presence of both DENV-1 and DENV-2 American

genotype in Peru, no DHF cases were previously detected, this could be explained

by cross-immunity conferred by DENV-1 against DENV-2 American genotype

and not the Asian genotype [Kochel, T.J. et al 2002]. Moreover, data from the

2000-2001 outbreak in Peru showed that the DENV-2 Asian genotype displaced

the DENV-2 American as observed by Restriction Fragment Length Polymor-

phism (RFLP) analysis and corroborated by partial sequence analysis [Montoya,

Y. et al 2003]. Displacement of DENV-2 American by the Asian genotype has

previously been documented in the Americas to be associated to the appearance

of DHF in Cuba [Guzman, M.G. et al 1995], , Jamaica, Venezuela, Colombia,

Brazil and Mexico [Rico-Hesse, R. et al 1997]. [Rico-Hesse et al., 1997]We pro-

posed that displacement of the DENV-2 American genotype could be in part

due to vertical transmission of the virus to the progeny, eggs could survive the

inter-epidemic season and hatch already containing the virus. This proposition is

supported by both the basic and invasion reproductive numbers calculated in this

paper.

In an area where neither DENV-2 genotype Asian or American is present, the

basic reproductive number is simply the maximum of the two, genotype specific,
72



reproductive numbers

#0 = max
0
#Am

0 ,#As
0

1

#Am
0 =

(
βAm

δ +µ
θAm

µm

#As
0 =

p
2
+

(! p
2

"2
+

βAs

(δ +α+µ)
θAs

µm
,

where we note #As
0 is a strictly increasing function of the vertical transmission

parameter, p. In a completely susceptible population, vertical transmission can

improve the chances of a DENV-2 Asian outbreak. Furthermore, in an area al-

ready endemic with DENV-2 genotype American, vertical transmission facilitates

the invasion, and replacement by DENV-2 genotype Asian if the invasion repro-

ductive number is greater than one

#As
i nv =

p
2
+

√√√√√
! p

2

"2
+

.#As
0 (0)

#Am
0

/2
.

Similarly, if DENV-2 genotype Asian is endemic in a region, then vertical trans-

mission makes it more difficult for DENV-2 American to invade

#Am
i nv =

#Am
0

#As
0 (0)

'
(1− p).

Invasion reproductive numbers generally arise in the context of two species com-

peting for the same niche leading to competitive exclusion [Zhang et al., 2007].

In the absence of an effective vaccine, worldwide efforts should be made in

order to monitor not only the disease but also Aedes mosquitoes, both males and

females, and the DENV serotypes and genotypes that are being carried and trans-

mitted. Our model is intended not only to highlight the importance of vertical

transmission in a dengue outbreak but also the importance of epidemiological
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surveillance incorporating molecular genotyping. Routine detection of the virus

in both mosquitoes and hosts in endemic areas with dengue will be valuable in

order to prevent major outbreaks and gauge the severity of the response that is

required to combat any potential outbreak. Interdisciplinary efforts should be

encouraged in order to validate theoretical models with real life data.

74



6.4 Appendix: #0 via Next Generation Operator

We use the next generation operator to calculate the basic reproductive number.

This method has several advantages over other methods especially in the context

of vector-borne diseases, see [Van den Driessche and Watmough, 2002] or

[Diekmann et al., 1990] for a more complete discussion and proof of the method.

In this section we outline how this method is applied. First we must identify

the infected classes: DAm, DAs , WAm, WAs and H . Then we must identify the

“new" infections. Infections coming into DAm, DAs , WAm and WAs are new while

infections coming into H are “old" since individuals must first be infected via

DAs . Then we form two vectors, ' which consists of only the new infection

terms, and ( that is the negation of the remaining terms in our infected classes,

that is

' −( =




˙DAm

ḊAs

ẆAm

ẆAs

Ḣ




Then

' =




βAm SWAm
M

βAs SWAs
M

θAmV DAm
N

βm2V DAs
N + pµmWAs

0




, (6.16)
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and

( =




(δ +µ)DAm

(δ +α+µ)DAs

µmWAm

µmWAs

(δ +µ)H −αDAs




. (6.17)

Next we calculate the Jacobian Matrices

F =




0 0 βAm S
M 0 0

0 0 0 βAs S
M 0

θAmV
N 0 0 0 0

0 θAmV
N 0 pµm 0

0 0 0 0 0




(6.18)

V =




δ +µ 0 0 0 0

0 δ +α+µ 0 0 0

0 0 µm 0 0

0 0 0 µm 0

0 −α 0 0 δ +µ




. (6.19)

Next we must evaluate the Jacobian matrices at the disease free equilibrium (Equa-

tion 6.11), keeping in mind that we have normalized both the human and mosquito

populations. Then it only remains to find the eigenvalues of FV−1 since the ba-

sic reproductive number is the spectral radius, or largest eigenvalue of the next

generation matrix

#0 = ρ(FV−1). (6.20)
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Carrying out the calculation yields two candidates (the other eigenvalues are zero

or strictly smaller than these candidates)

#Am
0 =

(
βAm

δ +µ
θAm

µm
and (6.21)

#As
0 =

p
2
+

(! p
2

"2
+

βAs

δ +α+µ
θAs

µm
(6.22)

where

#0 =max{#Am
0 ,#As

0 } (6.23)

as required.

6.5 Appendix: Invasion Reproductive Numbers

To find the invasion reproductive number, we follow the same methodology as in

finding the basic reproductive number. However, instead of assuming the entire

population is susceptible to infection, we assume that one genotype is already

established, endemic, in the population. Then “new" infection are only those

infections associated with the invading strain. Then for Asian invading American,

only classes DAs , WAs and H are of interest with new infections in the DAs and

WAs classes:

' =




βAs SWAs
M

βm2V DAs
N + pµmWAs

0




, (6.24)

and

( =




(δ +α+µ)DAs

µmWAs

(δ +µ)H −αDAs




. (6.25)
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Next we calculate the Jacobian Matrices

F =




0 βAs S
M 0

θAs V
N pµm 0

0 0 0




(6.26)

V =




δ +α+µ 0 0

0 µm 0

−α 0 δ +µ




. (6.27)

Next we evaluate these Jacobian matrices at the American equilibrium (Equation

6.12) since we assumed stain 1 was endemic prior to the introduction of Asian.

Then it only remains to find the eigenvalues of FV−1 yields only one candidate

#As
i nv =

p
2
+

√√√√√√
! p

2

"2
+



%
#As

0 (0)
&2
%
#Am

0

&2




2

. (6.28)

Similarly for American invading Asian, DAm and WAm are the classes of inter-

est.

' =




βAm SWAm
M

θAmV DAm
N


 , (6.29)

and

( =



(δ +µ)DAm

µmWAm


 . (6.30)

Next we calculate the Jacobian Matrices

F =




0 βAm S
M 0

θAmV
N 0


 (6.31)

V =



δ +µ 0

0 µm


 , (6.32)
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and we evaluate these Jacobian matrices at the Asian equilibrium (Equation 6.13)

since we assumed stain 2 was endemic. Then the dominant eigenvalue of FV−1 is

#Am
i nv =

√√√√√√


%
#Am

0

&2
(1− p)
%
#As

0 (0)
&2




2

. (6.33)

6.6 Appendix: Global stability of#0

Using the rescaled system of equations, let

L= D2Am +D2As +
β2Am

µm
WAm +

β2As

µm
WAs .

Clearly L is positive definite and radially unbounded. The orbital derivative of L

is

L̇ = βAmWAm S − (δAm +µ)DAm +βAsWAs S − (δAm +µ)DAm

θAmDAmV −µmWAm +θAs DAsV −µmWAs + pµmWAs

= −βAmWAm(1− S)− (δAm +µ)DAm(1−#Am
0 V )

−βAsWAs (1− S − pWAs )− (δAs +µ)DAs (1−#As
0 (0)V )

If #0 < 0, then clearly L̇ ≤ 0. Next we must show that the DFE is the maximal

invariant subspace of L̇ = 0. From above we have four conditions that must be

simultaneously satisfied for L̇= 0,

WAm(1− S) = 0 (6.34)

WAs (1− S − pWAs ) = 0 (6.35)

DAm(1−#Am
0 V ) = 0 (6.36)

DAs (1−#As
0 (0)V ) = 0 (6.37)

Equation 6.34 implies that either WAm = 0 or S = 1. Suppose WAm *= 0, then

S = 1 and Ṡ = 0 but

Ṡ =−βAmWAm −βAsWAs < 0,
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which is a contradiction, thus WAm = 0. From Equation 6.36 either DAm = 0

or V = 1
#Am

0
. Suppose DAm *= 0, since #Am

0 < 1, V < 0 which is impossible

since V ∈ [0,1]. Therefore DAm = 0. Similarly, Equation 6.37 implies that either

DAs = 0 or V = 1
#As

0 (0)
, but if#As

0 < 1, then#As
0 (0)< 1 and we conclude DAs = 0.

Finally, condition 6.35 implies that either WAs = 0 or S = 1− pWAs > 0 if p < 1.

Suppose WAs *= 0. Since DAs = 0, ḊAs = 0 and

ḊAs =βAs SWAs > 0,

thus we conclude WAs = 0. Also note that since ḊAs = 0, Ḣ = −(δH + µ)H

which implies H → 0, thus the maximal invariant set is the DFE which is globally

asymptotically stable the the Lyapunov-LaSalle Theorem.
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Chapter 7

Final Epidemic Size

In this section we present a relationship between the basic reproductive number

and the final epidemic size for a vector-borne disease. This type of relationship

was first presented by Kermack and McKendrick in 1927 for an age of infection

model (see [Arino, J. et al 2007] and references therein for a review of this type of

formulation). This is the first application of the final epidemic size to a model of

a vector disease with vertical transmission. Consider a single strain vector trans-

mitted disease

7.1 Extension of the Final Size Relation to Simple Host-Vector Models

Suppose we have a vector-host system characterized by an SIR with out vital dy-

namics for the host and SI with vital dynamics for the vector. This system is

described by the following equations:

Ṡ = −βS
W
M

(7.1)

İ = βS
W
M
− γ I (7.2)

Ṙ = γ I (7.3)

V̇ = Λ−θV
I
N
−µV (7.4)

Ẇ = θV
I
N
−µW (7.5)

where S is the class of susceptible hosts, I is infectious hosts, R is recovered

hosts, V is susceptible vectors and W is infectious vectors. We note that the total

host population is conserved and the total vector population can be written as

Ṁ = Λ−µM . This expression can be explicitly solved and we see M → Λ
µ

expo-

nentially. If we assume the time-scale of the vector vital dynamics is much faster

than the epidemiological time-scale, then we can take the asymptotic approxima-
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tion that dynamics of the whole system is equivalent to the dynamics considering

the vector system at equilibrium, V →V ∗, W →W ∗, and M → Λ
µ

. Then we can

rescale the host equations by N and the vector equations by Λ
µ

and use lower case

letters to denote fractions of the relevant population size to write:

ṡ = −βs w (7.6)

i̇ = βs w − γ i (7.7)

ṙ = γ i (7.8)

v̇ = µ−θvi −µv (7.9)

ẇ = θvi −µw. (7.10)

We can then solve the vector system for the equilibrium infected population pro-

portion as a function of the infected host proportion

w∗ =
θi
θi +µ

.

If we add equations 7.6 and 7.7 yields

ṡ + i̇ =−γ i

from which we conclude that i∞ → 0. Since v is bounded, we can conclude from

equation 7.10 that w∞→ 0. Then integrating equation 7.6 yields

ln
s0

s∞
=β
∫ ∞

0
wd t .

The right hand side is bounded which implies s∞ > 0. Then we can take the ratio

of equations 7.6 and 7.7 to calculate the final epidemic size of the model
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d i
d s

= −1+
γ i
βs w

(7.11)

= −1+
γ i

βs θi
θi+µ

(7.12)

= −1+
γ i
βs
+
µ

βθs
(7.13)

d i
d s
− γ
βs

i = −1+
γµ

βθs
(7.14)

#
d i
d s
− γ
βs

i
$

s−
γ
β =
#
−1+

γµ

βθs

$
s−

γ
β (7.15)

d
d s

)
i s−

γ
β

*
= −s−

γ
β +
γµ

βθ
s−

γ
β−1 (7.16)

∫ d
d s

)
i s−

γ
β

*
=
∫
−s−

γ
β +
∫ γµ
βθ

s−
γ
β−1 (7.17)

i s−
γ
β =

−s 1− γβ

1− γ
β

− µ
θ

s−
γ
β +C (7.18)

i =
−s

1− γ
β

− µ
θ
+C s

γ
β (7.19)

C = i0 s
− γβ
0 +

s
1− γβ
0

1− γ
β

+
µ

θ
s
− γβ
0 (7.20)

Now if we allow for vertical transmission in the vectors, we arrive at the fol-

lowing set of differential equations

Ṡ = −βS
W
M

(7.21)

İ = βS
W
M
− γ I (7.22)

Ṙ = γ I (7.23)

V̇ = Λ−θV
I
N
−µV − pµW (7.24)

Ẇ = θV
I
N
−µW + pµW (7.25)
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where p is the proportion of female mosquitoes that become infectious vertically

(through birth). Then we can rescaled system as before to get

ṡ = −βs w (7.26)

i̇ = βs w − γ i (7.27)

ṙ = γ i (7.28)

v̇ = µ−θvi −µv − pµw (7.29)

ẇ = θvi −µw + pµw. (7.30)

Solving the final equation gives

w∗ =
θi

θi +µ(1− p)
.

If we let µ̂=µ(1− p), we recover the same solution as before, but with a modified

death/birth rate. Additionally, if we replace the constant recruitment rate,Λwith

proportional recruitment that keeps the total vector size constant, µM , then we

also recover the same final size relation.
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Chapter 8

Optimal Control of Dengue Fever

8.1 Introduction

Dengue fever is one of the most important reemerging vector-borne diseases. The

primary vector, Aedes Aegypti has endured several attempted eradication cam-

paigns, but both the vector and the disease have revealed themselves to be ex-

tremely resilient to control measures. We suggest that vertical transmission, an

often overlooked transmission pathway for dengue fever, may contribute to the

difficulty of controlling the disease. As the number and severity of outbreaks

increases worldwide, we need to be both effective and efficient in how we imple-

ment campaigns to mitigate or prevent disease outbreaks. Our modeling efforts

show that ignoring vertical transmission may undercut the effectiveness of any

control program.

There are only two disease that has been successfully eradicated: smallpox in

1979 and just recently rinderpest has been declared eradicated by the UN, due in

large part to an effective vaccine and aggressive vaccination program [Nations, 2011].

Although vaccines exist for many other diseases, there are many barriers to widespread

vaccine coverage including costs, side effects and even public perception. WIth-

out a broad vaccine coverage “herd immunity," the first step in disease eradica-

tion, is difficult to establish [Amanna and Slifka, 2005, Anderson and May, 1985,

Shim et al., 2009]. There is no vaccine for dengue fever, thus the mitigation and

prevention policies have focused on site reduction (elimination of mosquito breed-

ing sites) and spraying programs; that is, they have focused on controlling the vec-

tor. This shift in strategy has the advantage of transforming the disease control

problem into one of eliminating an easier to visualize, and villianize, insect rather

than a virus. However, the primary driver of extinction is habitat disturbance
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and direct elimination (harvesting, hunting, etc.) [Ceballos and Ehrlich, 2002,

Sodhi et al., 2009]. Unfortunately, Ae. Aegypti has demonstrated an affinity to

the urban landscape and ability to thrive even in countries with strict control

programs [Goh, 1998].

Of the several attempts to eradicate dengue via eliminating the vector, the

most notable dengue eradication campaign has been the attempt by the then called

Pan American Sanitary Board using DDT. Political, logistic and ecological issues

prevented the full eradication of Ae. aegypti in 1952 in a campaign initiated by

the Pan American Sanitary Board [Reiter and Gubler, 1997]. Although the pro-

gram was declared a success at the time, as the campaign waned, re-infestation

begin in the mid 1960′ s [Arias, J.R., 2002, Soper, F.L., 1967]. The surviving Ae.

aegypti population developed increased levels of resistance to DDT and other in-

secticides that has made its eradication or control of the mosquito via chemical

means difficult [ Reiter, P. et al 1997, Polson, K.A. et al 2006, Polson, K.A. et

al 2010]. Botanical extracts have been pursued as an alternative means of vector

control, but their effectiveness (as part of a dengue control strategy) has yet to be

ascertained [Govindarajan, M. et al 2011, Koodalingam, A. et al 2011]. .

Although relatively unheard of in North America, dengue fever is a grow-

ing concern and the World Health Organization estimates that 40% of the global

population is at risk for dengue infection. It has been estimated that between 50

and 100 million new infections are generated each year, a group that includes ap-

proximately 500,000 cases of the more severe manifestation dengue hemorrhagic

fever, DHF, and 22,000 deaths (mostly children) [WHO, 2010]. The range of Ae.

Aegypti have traditionally been limited by weather, but increased urbanization

and climate change facilitate the spread of the mosquito. The challenges that we

face in isolating and controlling dengue not only come from climate changes but

also from global transportation flows. The FAA (Federal Aviation Administra-

tion) estimates that American air traffic will double [FAA, 2011] over the next 20
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years with the largest share of the international growth coming from the Asian

and Latin American, regions where dengue is endemic. Mass transportation is

indeed an important factor in the long range dispersal of dengue [Harrington,

L.C. et al 2005, Farrar, J. et al 2007, Gomez-Dantes, H. and Willoquet, J.R.,

2009] and the always increasing numbers of Americans globally engaged puts the

U.S. at risk of dengue especially, in the 28 US states where Ae. aegypti is already

established; a group that includes the states of Arizona and Florida, among oth-

ers [CDC, 2010, Knowlton et al., 2011].

While we have mentioned some of the political and ecological reasons for

the failure of previous eradication campaigns [Reiter and Gubler, 1997], this pa-

per aims to elucidate some implications of vertical transmission on an attempt to

control an outbreak of dengue fever. Because vertical transmission is often con-

sidered to not be a major factor in dengue transmission, we model the effect of

a control measure that does not directly impact vertical transmission. We then

compare situations where vertical transmission is and is not a significant mode of

dengue transmission. In the next session we will develop the system with control

and develop conditions for the existence of an optimal control. Then we present

some numerical results and finally we discuss the implications of optimal control

in a model of an infectious disease with vertical transmission.

8.2 Mathematical Model

Although vertical transmission has been mostly understudied in models of dengue,

recent results [Murillo et al., 2012b] have demonstrated that vertical (transovar-

ial) transmission has both primary and secondary effects in facilitating the in-

vasion and persistence of novel strains of dengue. Dengue management poli-

cies exist virtually everywhere dengue fever is a major health concern, yet the

fact that dengue outbreaks are increasing in severity and frequency suggests we

need to better understand control strategies and how to evaluate them [Knowl-
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ton, K., et al 2011]. The model presented here is based on a previous model

[Murillo et al., 2012b] and we will highlight the features that are relevant to the

formation of the optimal control problem.

Among these features is vertical transmission which will be explored by con-

sidering a population that is impacted by two variants of the same strain of dengue

simultaneously: one that exhibits vertical transmission as a significant mode of

disease transmission and one that does not1. We use a compartmental modeling

framework where each compartment, shown in Figures 8.1 and 8.2 by a letter

within a box, denotes a class of individuals. Then the arrows represent the flows

of individuals between different states [Brauer and Castillo-Chavez, 2001]. Let S

represent the number of susceptible hosts (humans). These individuals are anti-

genically naive to the particular strain of dengue being modeled, but may have

had previous exposures to other strains. DAm and DAs are individuals infected

with genotypes of dengue strain 2, DENV-2 Asian and DENV-2 American, re-

spectively. H represents individuals who have developed DHF, R and is recov-

ered individuals. V is the class of susceptible vectors (female mosquitoes). WAm

and WAs are mosquitoes that carry strain DENV-2 American and DENV-2 Asian,

respectively. Then we can write the system of equations representing our model

as:
1For an example of this particular context, see [Murillo et al., 2012a]. In that paper DENV-

2 American was endemic in Peru prior to the 2000 outbreak that saw the invasion of DENV-2
Asian.
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Figure 8.1: Host model. S is the class of susceptible individuals who can become
infectious with either DENV-2 American genotype, DAm, or DENV-2 Asian
genotype DAs via infectious female mosquitoes W carrying the corresponding
strain. In this model, only individuals infected with the Asian genotype can
progress to DHF, H , and all infected individuals can recover, R. The control
is given by u(t).

Ṡ = µN − βAm(1− u(t ))SWAm

M
− βAs SWAs

M
−µS

ḊAm =
βAm(1− u(t ))SWAm

M
− (δ +µ)DAm

ḊAs =
βAs SWAs

M
− (δ +α+µ)DAs

Ḣ = αDAs − (δ +µ)H

Ṙ = δDAm +δDAs +δH −µR

V̇ = µmM − pµmWAs −
θAm(1− u(t ))V DAm

N
− θAs (1− u(t ))V DAs

N
−µmV

ẆAm =
θAm(1− u(t ))V DAm

N
−µmWAm

ẆAs =
θAs (1− u(t ))V DAs

N
+ pµmWAs −µmWAs (8.1)

Where u(t ) is the percentage reduction in infection due to the effect of control
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Figure 8.2: Vector model. V is the class of susceptible female mosquitoes that
can become infected with either DENV-2 American genotype WAm or DENV-2
Asian genotype WAs via contact with an infectious human, D carrying the cor-
responding genotype. Vertical transmission only occurs in mosquitoes infected
with genotype Asian. In this model, there is a constant birth rate, but a pro-
portion, p, of those births by mosquitoes carrying genotype Asian, WAs , enter
directly into the infectious class. The control is given by u(t).

measures. Thenβi (1− u) is the effective transmission force for strain i . Note we

assume no a priori knowledge of what strain a particular individual has, thus the

control measure is independent of the strain. Furthermore, since we are primarily

interested in modeling the effect of a control measure, we assume that the reduc-

tion in effective contacts impacts mosquitoes equally well as humans. Thus, their

effective force of infection is also reduced by u(t ). We also assume that one strain,

DENV-2 Asian, is more virulent, leading to cases of DHF and also exhibiting

vertical transmission with some probability p times the basic fecundity function

while the other strain, DENV-2 American, does not.

When the control function u(t ) ≡ 0, system 8.1 is said to be autonomous.

The basic reproductive number of an epidemiological model generally determines

whether or not the disease will die out or persist [Brauer and Castillo-Chavez, 2001].

For the autonomous system, if we consider each strain independently, then the
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reproductive number for DENV-2 American is #Am
0 =
?

βAm
(δ+µ)

θAm
µm

, and the re-

productive number for DENV-2 Asian is#As
0 =

p
2 +
@% p

2

&2
+ βAs
(δ+α+µ)

θAs
µm

. Then

the basic reproductive number is#0 = max[#Am
0 ,#As

0 ] [Murillo et al., 2012b].

The basic reproductive number is a central component of the model that can dis-

tinguish between different qualitative behavior in the autonomous system.

A central component of the control problem is the optimization, in this case

minimization, of an objective function. We are interested in controlling an out-

break of dengue, thus we want to minimize the number of infective individuals.

However, we are also interested in preventing future outbreaks, thus we want

to minimize the number of infected mosquitoes and individuals both during the

course of our control measure and when our control policy has ended: at time

t = T . Then the corresponding objective function is:

J (u1(t )) =
∫ T

0

A
w1(DAm(t )+DAs (t ))+w2(WAm(t )+WAs (t ))+

1
2

w3u2(t )
B

d t

+w4(DAm(T )+DAs (T ))+w5(WAm(T )+WAs (T )) (8.2)

where w1 is the weight constants for host infections, w2 is the weight constant

for vector infections, 1
2 w3u2(t ) is the cost of control and included as a quadratic

term for technical reasons, and w4 and w5 are the weight constant for the payoff

term (at time t = T ). If we let X be the vector of our state variables which is

restricted to the positive orthant, X ∈ !8
+, then X ∗ is the optimal solution that

corresponds to the optimal control function u∗ such that

J (u∗) =min{J (u)|u ∈Ω},

where Ω = {(u(t ) ∈ L1 | 0 ≤ u(t ) ≤ 1, t ∈ [0,T ]}. Then the Hamiltonian of our

system is
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Ĥ (X , u) = w1(DAm(t )+DAs (t ))+w2(WAm(t )+WAs (t ))+
1
2

w3u2(t ) (8.3)

+λ1

#
µN − βAm(1− u(t ))SWAm

M
− βAs (1− u(t ))SWAs

M
−µS
$

+λ2

#
βAm(1− u(t ))SWAm

M
− (δ +µ)DAm

$

+λ3

#
βAs (1− u(t ))SWAs

M
− (δ +α+µ)DAs

$

+λ4
C
αDAs − (δ +µ)H

D

+λ5
C
δDAm +δDAs +δH −µR

D

+λ6

#
µmM − pµmWAs −

θAm(1− u(t ))V DAm

N
− θAs (1− u(t ))V DAs

N
−µmV
$

+λ7

#
θAm(1− u(t ))V DAm

N
−µmWAm

$

+λ8

#
θAs (1− u(t ))V DAs

N
+ pµmWAs −µmWAs

$
, (8.4)

where λi are the co-state or adjoint variables [Lenhard and Workman, 2007].

Then, by Pontryagin’s Maximum Principle [Pontryagin et al., 1962], our optimal

solution can be found by simultaneously solving the adjoint system:
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dλ1(t )
d t

=− ∂ Ĥ
∂ S = (λ1−λ2)βAm(1− u)

WAm

M
+ (λ1−λ3)βAs (1− u)

WAs

M
+λ1µ

dλ2(t )
d t

=− ∂ Ĥ
∂ DAm

= (λ6−λ7)θAm(1− u)
V
N
+ (λ2−λ5)δ +λ2µ−w1

dλ3(t )
d t

=− ∂ Ĥ
∂ DAs
= (λ6−λ8)θAs (1− u)

V
N
+ (λ3−λ5)δ + (λ3−λ4)α+λ3µ−w1

dλ4(t )
d t

=− ∂ Ĥ
∂ H = (λ4−λ5)δ +λ4µ

dλ5(t )
d t

=− ∂ Ĥ
∂ R = λ5µ

dλ6(t )
d t

=− ∂ Ĥ
∂ V = (λ6−λ7)θAm(1− u)

DAm

N
+ (λ6−λ8)θAs (1− u)

DAs

N
+λ6µm

dλ7(t )
d t

=− ∂ Ĥ
∂WAm

= (λ1−λ2)βAm(1− u)
S
N
+λ7µm −w2

dλ8(t )
d t

=− ∂ Ĥ
∂WAs

= (λ1−λ3)βAs (1− u)
S
N
+ (λ6−λ8)pµm +λ8µm −w2,

with the transversality conditions

λ1 = λ4 = λ5 = λ6 = 0

λ2 = λ3 = w1

λ7 = λ8 = w2,

and the optimality condition

∂ Ĥ
∂ u

= w3u + (λ1−λ2)βAmS
WAm

M
+ (λ1−λ3)βAs S

WAs

M
(8.5)

+(λ6−λ7)θAmV
DAm

N
+ (λ6−λ8)θAsV

DAs

N
,

where ∂ Ĥ
∂ u = 0 at u = u∗. We can solve this for the optimal control function

u∗ with the constraint that u must be between 0 and 1 to get
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u∗ = min
E

max
E

0, (λ2−λ1)βAmS
WAm

w3M
+ (λ3−λ1)βAs S

WAs

w3M

+(λ7−λ6)θAmV
DAm

w3N
+ (λ8−λ6)θAsV

DAs

w3N

F
, 1
F

.

This type of optimal control formulation has several application in mathemat-

ical biology [Blayneh et al., 2009, Lee et al., 2010a, Lee et al., 2010b, Lee et al., 2011,

Lenhard and Workman, 2007]. Although a proof of the existence of an optimal

control is left to the Appendix, the solution to our control problem will be a

piecewise smooth control function. For the purposes of this article, what is im-

portant is the qualitative shape of this control function. Because it is unclear what

the costs of these control policies are relative to the effective reduction in trans-

mission, more insight may be gleaned by examining the qualitative features of the

control function as the relative costs are changed.

8.3 Numerical Results

Each numerical solution is ran over a period of three years to give account for

transient dynamics. In reality, a control policy would also be evaluated over short,

medium and long term time periods, and three years seemed sufficient for our

numerical results. The default parameters for all simulations are listed in Table

8.1 unless otherwise indicated.

If the cost of the control function is comparable, on the same order of mag-

nitude, to the costs incurred from the disease, then there is no incentive to invest

heavily on control. We see this in Figure 8.3 where not much effort is spent on

the control function. However, if the control because less expensive, or analo-

gously the costs from disease become more expensive, then it is worthwhile to

invest in eliminating the disease and preventing an outbreak. Note that with suf-

ficient effort the control function can mitigate the current outbreak and prevent

future ones (the damped oscillations predicted in the autonomous model) as seen
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Table 8.1: Default Parameter Values for Dengue.

parameter default value units source
α 0.113 per day Watts et al
µm 0.0958 per day Rodhain and Rosen
p 0.0133 dimensionless Chunge et al

mu 0.000038 per day WHO2

θAs 0.28 per day estimated
θAm 0.28 per day estimated
βAs 0.75 per day estimated
βAm 0.25 per day estimated
δ .2 per day estimated

in Figure 8.3. This is the case where the reproductive number,#0, is greater than

one (1.4), otherwise there would be no outbreak and control would be moot.

However, the left panels in Figures 8.3 and 8.4 are when #As
0 < #Am

0 , i.e. the

strain without vertical transmission is the dominant strain during an outbreak.

If we keep the same basic reproductive number, but instead chose the outbreak

to be dominated by the strain with vertical transmission, #As
0 > #Am

0 , then we

get the scenarios depicted in the right panels of Figures 8.3 and 8.4. Here we see

that when the cost of control is comparable to the cost of the disease, we get the

same results as before. When the cost of control is too high, we cannot com-

pletely control the outbreak and we must respond to rises in prevalence, Figure

8.4. However, at the same level of relative costs where the outbreak was con-

trolled before, here we are unable to fully control the outbreak. The total num-

ber of cases is larger and there is a small secondary outbreak. In order to fully

control the outbreak, we have to reduce the relative costs even further than in the

previous case. Vertical transmission made the outbreak more difficult to control

because the control function did not prevent the development of new infected

mosquitoes from infected eggs.
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when the dominant strain is DENV-2 American,
βAme r i can = .1948 and βAs ian = .185.
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with either strain DENV-2 American or DENV-2
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Figure 8.3: As the relative cost of the control function, w3, is reduced, the propor-
tion of infected people decreases. However when the outbreak is dominated by
the strain without vertical transmission, (a), then the outbreak can be controlled
more easily than when the outbreak is dominated by the strain with vertical trans-
mission, (b). In the latter case, the cost of control must be reduced even further
to effectively control the outbreak.
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Figure 8.4: As the relative cost of the control function decreases, it is used more
frequently and is able to control the outbreak. If the relative cost is expensive,
then it is used sparingly and in response to outbreaks. Notice the peaks occur
right after an increase in the prevalence of dengue in the corresponding panel of
Figure 8.3.
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To further see the impact of vertical transmission, we measured the total value

of the objective function and the cumulative costs as functions of p, the propor-

tion of eggs hatched infected with dengue. Regardless of the costs of control,

having a large force of vertical transmission makes an outbreak extremely ex-

pensive to control, Figure 8.5b. This is due to the fact that the control policy

cannot directly stop the generation of infected mosquitoes via vertical transmis-

sion, and thus are penalized by the number of new infections those mosquitoes

cause, Figure 8.6b. If the relative cost of control is higher, then the total costs are

proportionally higher as well.

For a fixed force of horizontal transmission,β, we can see how the total costs

of control and the severity of an outbreak vary directly with changes in the force

of vertical transmission, p, and relative cost of control, w3, in Figure 8.7. As

the horizontal transmission increases, we notice that larger outbreaks occur for

smaller values of vertical transmission. Large values of vertical transmission can

cause larger outbreaks with associated larger costs.

8.4 Discussion

Diseases have been and continue to be a major public health challenge, with out-

breaks of infectious diseases capable of causing tremendous loss of life in relatively

short time periods. There are various strategies to controlling an epidemic (in-

cluding vaccination, isolation, and social distancing) that have been used to study

disease prevention/mitigation in various contexts (see [Anderson and May, 1985,

Brauer and Castillo-Chavez, 2001, Lee et al., 2010a, Lenhard and Workman, 2007,

Reiter and Gubler, 1997] and references therein). If the disease is environmental,

then policy makers can, in theory, impose restrictions on how the environmental

conditions are created (regulate polluters, etc) or regulate how individuals come

in contact with the environment (storage of radioactive material, for example). If

the disease is infectious, then regulators can try to inform the public on how the
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(b) If the control is expensive w3 = 2, but not prohibitively so,
then the control function will still be effective, but the objec-
tive function will be very expensive, especially for large values
of vertical transmission.

Figure 8.5: Even with an “effective" control program, a high vertical transmission
rate can render the health policy moot regardless of the cost of additional control
is low, left panel, or high, right panel.

disease is transmitted and how to prevent transmission (washing hands, practicing

safe sexual contact, needle sharing programs, voluntary isolation, etc). However,

if the disease is vector transmitted, then we often have little recourse in trying to

reason with the vectors.

Vectors are often harbored in poor environmental quality/sanitation condi-

tions [Gubler and Kuno, 1997] and those with the socioeconomic means will of-

ten choose to live in environments where the vector is well controlled or they

can afford to modify their environment to prevent the vector from becoming es-
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(b) If the control is expensive, then the control function
can only reduce incidence by a limited factor.

Figure 8.6: The outbreak can be well controlled except when vertical transmis-
sion is extremely high. Although this situation is unrealistic, it highlights the
importance of a control strategy, whether highly cost efficient, left, or otherwise
to take into consideration all possible transmission pathways.

tablished in these communities. This perverse form of Tiebot sorting can lead

to a segregation of the population where the most vulnerable live in areas that

facilitate the proliferation of the vector and hence the disease. However, peo-

ple do not live in isolated communities and the introduction of dengue from en-

demic areas can undermine even the most effective control strategies [Goh, 1998,

Gómez-Dantés and Willoquet, 2009, Gubler and Kuno, 1997]. This is particu-

larly true of dengue where there is no vaccine, and hence no way to establish herd

immunity [Anderson and May, 1985]. This is true on the global scale as well as

the local scale. Although we consider mosquitoes to be the “vector" of dengue,

their limited flying ability has made it clear that humans play a substantial role in

the long range dispersal of dengue fever [Harrington, L.C. et al 2005]. Dengue

has spread to many new countries and increased global engagement [FAA, 2011]

makes the U.S. particularly vulnerable to future outbreaks considering that the

vector is already endemic in many states [Knowlton, K., et al 2011].

This gloomy outlook is exacerbated by the fact that we sill do not understand
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(b) Even if the force of horizontal transmission is
moderate, βAm , the force of vertical transmission can
create larger outbreaks.
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(c) If the relative costs of control, w3, are high, then
it is cheaper not to strongly implement a control mea-
sure and the number of dengue cases increases. How-
ever, as vertical transmission becomes high, the any
control policy becomes inadequate.
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(d) As the force of transmission increases, we observe
biologically unrealistic rates of infection. These re-
sults are included here for illustration of the strong
effect low levels of vertical transmission may have if
the force of horizontal transmission is large.

Figure 8.7: Regardless of whether horizontal transmission is low, left panels, or
moderate, right panels, a high level of vertical transmission can create extremely
large, and costly outbreaks, top panels. If the relative costs of controlling the
outbreak are low, w3, then the epidemic can still be controlled, bottom panels.
However, if the cost is high, then the outbreak will be extremely expensive and
impossible to control.
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the role vertical transmission plays in the spread (of some or potentially all strains)

of dengue and how particular strains contribute to more severe manifestations of

dengue including DHF and DSS. This paper illuminates some of the implications

of a control strategy that ignores the role of vertical transmission. If horizontal

transmission is the dominant mode of transmission, and the reproductive num-

ber is not near its threshold value, then vertical transmission may be negligible.

However, if any of those conditions are not met, vertical transmission may render

a perfectly adequate control policy useless. There is some evidence that genetic

changes in either the vector or the virus may facilitate vertical transmission [Bo-

sio, C.F. et al 1992, Mourya et al, 2001, Gunther, J. et al 2007, Arunachalam, N. et

al 2008, ]. The unbeknownst proliferation of these genetic mutants can establish

an alternative pathway of dengue transmission leading to unexpected outbreaks

and perplexing regulators using policies that should be effective. Thus now know-

ing the force of vertical transmission can increase both the costs associated with

controlling the vector and the burden of dengue cases. While control is still pos-

sible, ignoring the role of vertical transmission can only subvert an otherwise

effective policy.
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8.5 Appendix: Existence of Optimal Control

To prove the existence we use Theorem 4.1 from Fleming and Rishel, but first

note the system 1 is clearly well-posed. In particular, the total host and vector

populations are constant, dN
d t = 0, d M

d t = 0, and thus the solutions are bounded

in the positive orthant. Then, to use the Theorem from Fleming and Rishel we

require the following 5 conditions:

1. The set of controls and corresponding state variables is non-empty

2. The control set, Ω, is convex and closed

3. The right hand side of system 8.1 is bounded by a linear function in the

state and control

4. The integrand of the objective functional is convex and bounded below by

c1(|u1|2+ |u2|2)
β
2 − c2, the Lipschitz condition

5. The payoff function is continuous

To show these we note

1. If we consider the vector of state variables x= [S, DAm, DAs , H , R,V ,WAm,WAs]T ,

then we can write our system of equations as

ẋ = f (x, u).

Since we know our state variables are bounded in the positive orthant, the

particular form of our system of equations dictates that f (x, u) is bounded.

Thus there exists a unique solution to our system given suitable initial data

(cite fred or luke, cauchy or IVP).

2. By construction of Ω, this condition is clearly met.
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3. The total population for both the host and vector systems is constant, thus

all solutions are bounded. The control function is also bounded thus the

right hand side can be bounded by a linear function in the state and control.

4. The integrand is linear in the state variable and quadratic in the control

function, and thus clearly convex. Furthermore, the Lipschitz is condition

is clearly satisfied as the integrand is bounded below since both the state and

control are non-negative.

5. The payoff function is clearly continuous by construction.

Thus we have satisfied the conditions of the Theorem and an optimal control

exits.
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Chapter 9

Cities in Ecology: Synthesis

We have constructed a framework to conceptualize the city along the dimensions

of population and built infrastructure. In our framework the city had its dy-

namics governed by net migration mediated through the effects of the economic,

social and natural environments of the city. We discovered that there were mul-

tiple stable states for our city given a fixed set of parameters and that changes in

initial conditions, path dependence, had the potential to alter the long term tra-

jectory of our city. However, exogenous forces such as shocks and disturbances or

changes in parameters could also qualitatively change the long term equilibrium

state of the city. The interplay of human amenity, natural amenity, and economic

productivity in a city allowed us to describe the suite of possible trajectories for a

set of disparate city types.

Although cities are human dominated habitats, many species have become

well adapted to our urban areas. In particular, Ae. aegypti, the mosquitoes pri-

marily responsible for large outbreaks of dengue, have adapted to city life. Dengue

outbreaks impact primarily children and are often spread in areas that are rapidly

urbanizing and lack the social or financial resources to control the mosquito.

Thus it is not just the human, natural and economic environment within a city

that drives the time evolution of the city, but also the distribution of the human,

natural and economic resources that drives the well being of the denizens of the

city. The urbanization patterns (and inequality) in a city may drive disease preva-

lence, and disease prevalence is a signal that could shape the migrations patterns

of cities (especially who moves where).

We must understand how we can merge natural, social, and economic re-

sources to drive our cities towards equilibrium states that are desirable, but we

must also understand how to distribute those resources to ensure that our cities
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are equitable and livable. We want people to come to our cities because they are

great, and we want them to stay in our cities because they will have great lives.
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