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ABSTRACT

In this thesis, we consider the problem of fast and efficient indexing

techniques for time sequences which evolve on manifold-valued spaces. Using

manifolds is a convenient way to work with complex features that often do not

live in Euclidean spaces. However, computing standard notions of geodesic

distance, mean etc. can get very involved due to the underlying non-linearity

associated with the space. As a result a complex task such as manifold se-

quence matching would require very large number of computations making it

hard to use in practice. We believe that one can device smart approximation

algorithms for several classes of such problems which take into account the

geometry of the manifold and maintain the favorable properties of the exact

approach. This problem has several applications in areas of human activity

discovery and recognition, where several features and representations are nat-

urally studied in a non-Euclidean setting. We propose a novel solution to the

problem of indexing manifold-valued sequences by proposing an intrinsic ap-

proach to map sequences to a symbolic representation. This is shown to enable

the deployment of fast and accurate algorithms for activity recognition, motif

discovery, and anomaly detection. Toward this end, we present generalizations

of key concepts of piece-wise aggregation and symbolic approximation for the

case of non-Euclidean manifolds. Experiments show that one can replace ex-

pensive geodesic computations with much faster symbolic computations with

little loss of accuracy in activity recognition and discovery applications. The

proposed methods are ideally suited for real-time systems and resource con-

strained scenarios.
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Chapter 1

INTRODUCTION

1.1 motivation

Manifold theory has gained popularity in vision over the past few years be-

cause it provides us with tools to work in feature spaces that are not necessarily

Euclidean. Many features used in vision can naturally be studied as objects

belonging to these manifolds. While studying shapes, for example, manifolds

allow us to perform shape algebra and hence enabling physical interpreta-

tions to notions such as “average shapes” etc. Extending well defined concepts

and techniques in Euclidean spaces to manifolds allows us to easily interpret

and work with complex data. However this is not trivial because we do not

fully understand the semantics of non Euclidean spaces yet. For manifolds,

standard notions of distance, statistics, quantization etc. need modification

to account for the non-linearity of the underlying space. As a result, basic

computations such as geodesic distance, mean computation etc are highly in-

volved in terms of computational complexity, and often result in long iterative

procedures further increasing the computational load. Not surprisingly, many

standard approaches for sequence modeling and indexing which are designed

for vector-spaces need significant generalization to enable application to these

non-Euclidean spaces. Many use extrinsic methods as an alternative to avoid

these problems, but these methods are approximate and work under the as-

sumption that the data points lie close to each other on the manifold. The

advantage of using extrinsic methods, which operate with the data embedded

into Euclidean space and project the end result onto the manifold, is that they

are quick and easy to compute as compared to intrinsic methods, which operate

on a tangent space associated with the manifold, and are usually iterative.
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In this thesis, we consider the problem of manifold sequence match-

ing which is the generalization of time series matching to manifold spaces,

applications of which include activity recognition, motif discovery in videos

and anomaly detection. Given the aforementioned limitations, such a complex

problem would require several geodesic computations, rendering it impractical

to work with. However, we believe that one can device smart approximation

algorithms for several classes of such problems which take into account the

geometry of the manifold as well as maintain the favorable properties of the

exact approach - if there exists one. In light of this, this thesis explores low

complexity approximation algorithms for the task of sequence matching on

manifolds. We demonstrate its utility on the problem of activity recognition

and discovery. We show that using these low complexity approximations, it is

possible to retain most of the recognition accuracy while enjoying sufficiently

low computations. We test the robustness of the technique on three of the most

commonly used features for activity analysis - Histograms of oriented optical

flow (HOOF), region covariances and shape silhouettes. These features are

extracted every frame and can be studied as points lying on well defined Rie-

mannian manifolds. Therefore the problem of approximating these activities

becomes one of discretizing a manifold valued time series. To this end, we

propose the generalization of a popular technique - Symbolic Approximation

[19]. Applying this to human activity has significant potential in resource con-

strained environments like robotic platforms, where one needs algorithms with

reduced computational and communication requirements.

1.2 related work

Activity analysis is one of the biggest challenges of computer vision with impor-

tant applications such as surveillance[26] in public places such as airpots and
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subway stations, Robotics [2] where systems allow robots to perform actions

based on what they see and more recently in human-computer interactions

(HCIs) [27]. Methods today do not allow us to operate on a low complex-

ity basis because they involve performing recognition on a set of rich features

which invariably have very expensive computations. Sensor based recognition

systems can be made to work in such a way, but they perform well for the

specific applications that they were designed for and cannot be easily gener-

alized. Examples of manifold valued sequences arise quite frequently in the

field of human activity analysis, where many features such as shape contours,

stick figures, histograms of oriented optical flow etc. have been studied in a

non-Euclidean setting. As an example, shape spaces have long been considered

Riemannian manifolds - Kendall’s shape space is a complex spherical manifold

[17], and affine shape spaces are Grassmann manifolds [1]. Further examples

of such manifold representations abound in computer vision literature. The

space of d× d covariance matrices or tensors [29] which appear both in med-

ical imaging [29] as well as texture analysis [37] is a Riemannian manifold.

The space of linear subspaces also called the Grassmann manifold, occurs in

image set-modeling [14], video modeling by linear dynamic systems [36], and

tensor decomposition [22]. Long-term complex activities are often modeled

as time-varying linear dynamical systems [35], which can be interpreted as a

sequence of points on a Grassmann manifold, providing another motivating

application for the problem of indexing of manifold sequences. Fig 1.1 shows

some of these features and their manifold representations. Here C denotes the

set of square-root velocity functions (SRVFs) representing planar closed curves

and S1 denotes the shape space of such curves obtained after removing the re-

parameterization and rotation groups. Landmarks can be obtained in R3, S2

is the shape space obtained after removing translation, scale and rotation for
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Figure 1.1: Non Euclidean representations of features commonly used in human
activity analysis.

‘k’ landmarks (where Σ = {y ∈ R3xk |‖ y ‖= 1,
∑k

j=1 y:,j = 0}. Also shown

is the Histogram of Oriented Optical Flow. The histograms are points on a

B-dimensional Hypersphere or SB−1.

The problem of indexing of static data on manifolds is related, and

recent hashing based approaches have been proposed [5, 34]. This problem

is quite distinct from indexing of sequences on manifolds, where we are not

interested in indexing individual points, but sequences of points. Another

related line of work in recent years has been advances in Riemannian metrics

for sequences on manifolds [32]. These approaches consider a sequence as an

equivalent vector-field on the manifold. A distance function is imposed on

such vector-fields in a square-root elastic framework. This is applied to the

special case of curves in 2D-Euclidean space [32] and also nD Euclidean space

[15]. While such a distance function could be utilized for the purposes of

indexing and approximation of sequences, it is offset by the computational

load required in computing the distance function for long sequences. Further,

the generalization of these metrics to sequences on manifolds is non-trivial and
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not fully explored. We propose a novel approximation method for manifold

sequences, which is consistent with the underlying geometry of the manifold,

which also lends itself to fast algorithms for sequence indexing, motif discovery

etc. among other applications.

In the case of scalar time-series, the pattern discovery problem is de-

fined in [9] as “Given a real-valued time series T , an integer k, to find the

k-most frequent patterns occurring in T ”. A recent approach to tackle this

problem has been to discretize the sequence in a way such that the representa-

tive symbolic form contains most of the information as the original sequence,

but enabling much faster computations in the symbolic space. This class of

approaches are broadly termed as Symbolic Aggregate Approximation (SAX)

[19]. Several problems of indexing and motif discovery from time series have

been addressed using this framework [19, 24, 7]. Multidimensional extensions

to these algorithms have also been proposed such as [33, 23, 38] We argue that

this class of approaches has several appealing characteristics for manifold-

valued time-series, as they enable us to replace highly non-linear distance

function computations with much faster and simpler symbolic distance com-

putations. however, to enable this generalization one needs to extend several

key concepts to the manifold setting.

1.3 contributions and organization

The main contributions of this thesis are the following:

1. We present the first formalization of indexing time series evolving on

non-Euclidean spaces.

2. We propose an intrinsic generalization of symbolic aggregate approxima-

tion to the case of manifolds.
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3. We show that the recognition and discovery of human activity patterns

can be achieved very efficiently without significant loss of accuracy us-

ing the proposed techniques, while avoiding expensive geodesic distance

computations during run-time.

1.4 overview

This thesis is organized into five Chapters. In chapter 2 we briefly describe the

required notations and concepts to enable formalizing the sequence indexing

problem on manifolds. In Chapter 3 we describe the proposed representation

for manifold sequences which allows efficient algorithms to be deployed for a

variety of tasks such as motif discovery, low-complexity activity recognition,

and anomaly detection. Toward this end, we focus on the piecewise aggregate

and Symbolic approximation (PAA, SAX) [3, 19] formulation, and present an

intrinsic method to extend it to manifolds. Chapter 4 provides a discussion on

the expeiments and results using the proposed technique on popular datasets.

The final chapter concludes the work and discusses possible directions for

future work.
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Chapter 2

INTRODUCTION TO MANIFOLDS

2.1 topology and manifolds

A topological space is a setM, with a specified class of subsets or neighbor-

hoods φ such that 1) φ & M are open, 2) The intersection of any two open

sets is open and 3) The union of any number of open sets is open. A topolog-

ical space is called Hausdorff if any two points ofM possess non-intersecting

neighborhoods. A continuous function f : M→ S is one that maps open sets

onM to open sets on to the space S, that may or may not be the same asM.

If the function f has an inverse that is also continuous thenM & S are said

to be homeomorphic.

Finally, a manifoldM of dimension N, is a topological - Hausdorff space

that is locally homeomorphic to RN i.e. for each p ∈M, there exists an open

neighborhood U of p and a mapping φ : U → Rn such that φ(U) is open in Rn

and φ : U → φ(U) is a diffeomorphism. The pair (U, φ) is called a coordinate

chart for the points that fall in U .

The Euclidean space Rd is studied as a manifold using the identity

chart. The complex coordinate space Cn becomes a 2n-dimensional manifold

via the chart Cn → R2n replacing every complex coordinate zj by a pair of

real coordinates Re zj, Im zj. The sphere Sn = {x ∈ Rn+1 :
∑n

i=0 x
2
i =

1} is made into a smooth manifold of dimension n, by means of the two

stereographic projections onto Rn ∼= {x ∈ Rn+1 : x0 = 0}, from the North and

South poles (±1, 0, . . . , 0). The corresponding change of coordinates is given

by (x1, . . . , xn)→ (x1/|x|2, . . . , xn/|x|2).

In computer vision, the Grassmann and the Stiefel manifolds are used

in several applications as described earlier. The Grassman manifold is the
7



space of d-dimensional subspaces in Rn and the Stiefel manifold is the space

of d orthonormal vectors in Rn.

2.1.1 manifold sequences

As shown in fig 2.1, like in Euclidean space, a sequence of points that evolve

over time on the manifold can be studied as a time series. To analyze sequences

or curves on manifolds, one needs to take recourse to understanding tangent-

space and exponential mappings. A tangent-space at a point of a manifold

M is obtained by considering the velocities of differentiable curves passing

through the given point. i.e. for a point p ∈M, a differentiable curve passing

through it is represented as β : (−δ, δ)→M such that β(0) = p. The velocity

β̇(0) refers to the velocity of the curve at p. This vector has the same dimension

as the manifold and is a tangent vector toM at p. The set of all such tangent

vectors is called the tangent space to M at p. The tangent space Tp(M) is

always a vector-space.

2.1.2 riemannian metric

The distance between two points on a manifold is measured by means of the

‘length’ of the shortest curve connecting the points. The notion of length

is formalized by defining a Riemannian metric, which is a map 〈·, ·〉 that

associates to each point p ∈M a symmetric, bilinear, positive definite form on

the tangent space Tp(M). The Riemannian metric allows one to compute the

infinitesimal length of tangent-vectors along a curve. The length of the entire

curve is then obtained by integrating the infinitesimal lengths of tangents along

the curve. i.e. given p, q ∈ M, the distance between them is the infimum of

the lengths of all smooth paths onM which start at p and end at q:

8



Figure 2.1: Features are extracted on each image/frame of a video depicting human
activity resulting in a sequence of features evolving over time, or a manifold valued
time series. The idea is shown here using sample data from the Wiezmann Data set
for human action [13]

d(p, q) = inf
{β:[0,1] 7→M|β(0)=p,β(1)=q}

L[β],where, (2.1)

L[β] =

∫ 1

0

√(〈
β̇(t), β̇(t)

〉)
dt (2.2)

If M is a Riemannian manifold and p ∈ M, the exponential map

expp : Tp(M) → M, is defined by expp(v) = βv(1) where βv is a specific

geodesic in the direction of the tangent-vector v. The inverse mapping exp−1
p :

M→ Tp called the inverse exponential map at a ‘pole’, takes a point on the

manifold and returns a point on the tangent space of the pole.

9



Figure 2.2: Exponential, Inverse exponential maps and the Tangent Space.

10



Chapter 3

SYMBOLIC AGGREGATE APPROXIMATION

Briefly, the PAA and SAX formulation consist of the following principal ideas.

A given 1D scalar time-series is first divided into windows and the sequence in

each window is represented by its mean value. This process is referred to as

piece-wise aggregation and is illustrated in fig 3.1. Then, a set of ‘break-

points’ is chosen which correspond to dividing the range of the time-series into

equi-probable bins. These break-points comprise the symbols into which the

given time-series will be translated into. For each window, the mean value is

then replaced by the closest symbol. This step is referred to as symbolic

approximation, as shown in fig 3.2. This representation has been shown to

enable efficient solutions to scalar time-series indexing, retrieval, and analysis

problems [19].

Figure 3.1: Piecewise Aggregation: C is the original time series and C̄ represents the
sequence after replacing the sequence in each window by its mean.

In the manifold setting, to enable us to exploit the advantages offered

11



Figure 3.2: Symbolic Approximation: after choosing suitable break-points, each level
is assigned a label based on its proximity to break-points. For example, the sequence
shown here will then be approximated to "b a a b c c b c ".

by the symbolic representation of sequences, we need solutions to the following

main problems: a) piece-wise aggregation: which can be achieved by appro-

priate definitions of the mean of a windowed sequence on a manifold, and b)

symbolic approximation: which requires choosing a set of points that repre-

sent equi-probable regions on the manifold to serve as the ‘symbols’. Here, we

discuss how to generalize these concepts for the case of manifolds.

3.1 piece-wise aggregation of manifold sequences

Given a sequence β(t) ∈ M, we define its piece-wise approximation in terms

of local-averages in small time-windows. To do this, we first need a notion

of a mean of points on a manifold. Given a set of points on a manifold, a

commonly used definition of their mean is the Karcher mean [16], which is

defined as the point µ that minimizes the sum of squared-distance to all other

points: µ = arg minx∈M
∑N

i=1 d(x, xi)
2, where d is the geodesic distance on the

manifold.

Computing the mean is not usually possible in a closed form, and is

unique only for points that are close together [16]. An iterative procedure
12



is popularly used in estimation of means of points on manifolds [28]. Since

in local time windows, points are not very far away from each other, the

algorithm always converges. Thus, given a manifold-valued time series β(t),

and a window of length w, we compute the mean of the points in the window

and this gives rise to the piece-wise aggregate approximation for manifold

sequences.

3.2 symbolic approximation of manifold sequences

As discussed above, one of the key-steps in performing symbolic approxima-

tion for manifold-valued time-series is to obtain a set of discrete symbols which

represent equi-probable regions on the manifold. One approach would be to

try clustering approaches and use the cluster centers as symbols. However,

it is well-known that standard clustering approaches do not necessarily result

in equi-probable distributions over symbols [40, 18, 30]. The same holds true

for manifold-valued data and we shall later illustrate this with comparative

examples. When symbols are not equiprobable, there is a possibility of induc-

ing a probabilistic bias in the process [20]. Further, data structures such as

suffix trees that are useful for anomaly detection applications produce optimal

results when symbols are equi-probable [19, 8].

Generation of equi-probable symbols is a hard problem in general. It

has been observed that a ‘conscience’ based competitive learning approach

does result in symbols that are much more equi-probable [10] than those ob-

tained from clustering approaches. The algorithm of [10] is devised only for

vector-spaces. In this section, we present a generalization of this approach to

account for non-Euclidean geometries. The tools that we build upon include

computation of geodesic distances, exponential maps and inverse-exponential

maps. These are known for many standard manifolds commonly occurring in

13



computer vision applications.

The conscience mechanism starts with a set of initial symbols/exemplars.

When an input data-point is presented, a competition is held to determine the

symbol closest in distance to the input point. Here, we use the geodesic dis-

tance on the manifold for this task. Let us denote the current set of K symbols

as {S1, S2, . . . , SK}, where each Si ∈M. Let the input data point be denoted

as X ∈M. The output yi associated with the ith symbol is described as

yi = 1, if d2(Si, X) ≤ d2(Sj, X),∀j 6= i (3.1)

yi = 0, otherwise (3.2)

where, d() is the geodesic distance on the manifold. Since this version

of competition does not keep track of the fraction of times each symbols wins,

it is modified by means of a bias term to promote more equitable wins among

the symbols. A bias bi is introduced for each symbol based on the number of

times it has won in the past. Let pi denote the fraction of times symbol i wins

the competition. This is updated after each competition as

pnewi = poldi +B(yi − poldi ) (3.3)

where 0 < B << 1. The bias bi for each symbol is computed as bi =

C( 1
K
−pi), where C is a scaling factor chosen to make the bias update significant

enough to change the competition (see below). The modified competition is

given by

zi = 1, if d2(Si, X)− bi ≤ d2(Sj, X)− bj,∀j 6= i (3.4)

zi = 0, otherwise. (3.5)

14
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Figure 3.3: Probability Density Functions of the labels generated using (a) K-Means
clustering, (b) Affinity Propagation and (c) Equi-Probable Clustering are shown. As
seen above, equiprobable clustering assigns all clusters with almost equal probability.

Finally, the winning symbol is adjusted by moving it partially towards

the input data point. The partial movement of a symbol towards a data-point

can be achieved by means of the exponential and inverse-exponential map as

Snewi = expSold
i

[α exp−1
Sold
i

(X)zi]. (3.6)

This competition based approach is a data-driven iterative algorithm

and thus obtains symbols that are equi-probable for the given dataset. In

practice, this means that one needs to provide a small training-set to the

system a priori before the system can be deployed. This is in contrast to

the 1D time-series symbolic approximation where one assumes that the values

of the time-series can be approximated as a Gaussian distribution[19], which

allows one to obtain equiprobable symbols in closed-form without the need for

any training. However, this approach does not generalize to manifolds and

thus the need for a training phase. The proposed algorithm for conscience

based equiprobable symbol learning is summarized in algorithm 1.

Here, we illustrate the strength of this approach in obtaining equiprob-

able symbols on manifolds. For this experiment we chose the UMD human
15



Algorithm 1 Equi-probable symbol generation on manifolds.
Input: Dataset {X1, . . . , Xn} ∈ M. Initial set of symbols {S1, . . . , Sk}.
Parameters: Biases bi = 0, learning rate α, win update factor B, conscience
factor C.
while iter ≤ maxiter do
for j = 1→ n do
ĩ← mini d

2(Xj, Si)− bi
zĩ = 1, zi = 0, i 6= ĩ
Si ← expSi

[α exp−1
Si

(Xj)zi]
pi ← pi +B(zi − pi)
bi ← C(1/k − pi)

end for
end while

activity dataset [39] and preprocessed it such that we obtain the outer contour

of the human. A detailed discussion of the dataset, processing, choice of shape

metrics etc. appears in the experiments section. Here, we performed clustering

of the shapes into 5 clusters and used the centroids as symbols. We show the

histograms of the symbols as obtained in fig 3.3. We also used the conscience

based approach to obtain our symbols and the histograms of the symbols are

shown as well. As can be seen, both k-means and affinity propagation result

in symbols that are far from equi-probable. The proposed approach results in

symbols which are much closer to a uniform distribution.

3.3 activity recognition and discovery

The applications considered in this paper are recognition and discovery of

human activities. For recognition, a very commonly used approach involves

storing labeled sequences for each activity, and performing recognition using a

distance-based classifier, a nearest-neighbor classifier being the simplest one.

When activity sequences involve manifold-valued time-series, distance com-

putations are quite intensive depending on the choice of shape metric. We

explore here the utility of the symbolic approximation as an alternative way
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for approximate yet fast recognition of activities that can replace the expensive

geodesic distance computations during testing. This is especially applicable

in real-time deployments and in cases where recognition occurs remotely and

there is a need to reduce the communication requirements between the sensor

and the analysis engine.

For each N -length activity, we extract a symbolic representation in

windows of size w (where typically w << N). To replace geodesic distance

computations for recognition, we will consider subsequences in their symbolic

representations to calculate the distance between activities. Let psub (eg: ‘b c

c d e a’) and qsub (eg: ‘a f f f e c’) be two such subsequences of length l, then

the distance metric dsymbol, defined on symbols, is:

dsymbol(psub, qsub) =
l∑

i=1

d
(
S
(
psub(i)

)
, S
(
qsub(i)

))
(3.7)

where S is the set of symbols and S(a) is the manifold point cor-

responding to the symbol a etc. Since the symbols are known a priori, the

distance between them can be pre-computed and stored as a look-up table

of pairwise geodesic distances between symbols. This enables us to compute

distances between activities in near constant time.

For activity discovery, we consider the problem as one of mining for

motifs in time-series. In finding motifs, it is important to consider only non-

trivial matches, because if we have a match at the ith location there is a

good chance that we will have one at the (i± 1)th locations as well. Sequences

p and q are said to be a non-trivial match when the following conditions are

met :

1. dsymbol(psub, qsub) ≤ R, where R is a threshold.
17



2. psub and qsub are separated by at least n symbols, where n is the symbol

length of each activity.

3. There is no better match for psub in the neighborhood of qsub and vice

versa. We defined a neighborhood as a window of length n centered

around the current location.

This idea is shown in fig 3.4. Next, for every non-trivial match we store its

location and find the top k motifs. For each of the k motifs, we define a center

for the motif as the sequence which is at minimum distance to all the sequences

similar to it. These centers are the k most recurring patterns in the manifold

valued time series.

A
B

B

C

Trivial Match

dist(C,A)<R dist(B,C)<R

Figure 3.4: An illustration of trivial and non-trivial matches is shown. Here, C is
a motif and subsequences A ,B represent valid matches to C. R is the threshold
for a match. An intermediate sub-sequence is a trivial match and is rejected by the
threshold.

3.4 special cases and limitations

In this section, we discuss the limitations and some special cases of the pro-

posed formulation. The overall approach assumes that a training set can be
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easily obtained from which we can extract the symbols for sequence approx-

imation. In the 1D scalar case, this is not an issue, and one assumes that

data distribution is a Gaussian, thus the choice of symbols can be obtained

in closed-form without any training. If data is not Gaussian, a simple trans-

formation/normalization of the data can be easily performed. In the manifold

case, there is no simple generalization of this idea, and we are left with the

option of finding symbols that are tuned for the given dataset.

For the special case of M = Rn, the approach boils down to familar

notions of piece-wise aggregation and symbolic approximation. For the case

of manifolds implicitly specified using samples, we suggest the following ap-

proach. One can obtain an embedding of the data into a Euclidean space and

apply the special case of the algorithm for M = Rn. The requirement for

the embedding here is to preserve geodesic distances between local pairs of

points, since we are only interested in ensuring that data in small windows of

time are mapped to points that are close together. Any standard dimension-

ality reduction approach can be used for this task. However, recent advances

have resulted in algorithms for estimating exponential and inverse exponen-

tial maps numerically from sampled data points [21]. This would make the

proposed approach directly applicable for such cases, without significant modi-

fications. Thus the proposed formalism is applicable to manifolds with known

geometries as well as to those whose geometry needs to be estimated from

data.

19



Chapter 4

EXPERIMENTS AND RESULTS

In this chapter, we demonstrate the utility of the proposed algorithms for sym-

bolic approximation and its application to activity recognition and discovery.

We first describe the datasets, and choice of features.

4.1 datasets

We performed experiments on three different datasets namely: the UMD Hu-

man Activity Dataset [39], the Weizmann Dataset for Human Actions [13] and

the UCSD Traffic Database [4].

The UMD database consists of 10 different activities like bend, jog,

push, squat etc., each activity was repeated 10 times, so there were a total of

100 sequences in the dataset.

The Weizmann Dataset consists of 93 videos of 10 different actions

each performed by 9 different persons. The classes of actions include running,

jumping, walking, side walking etc.

The traffic video database consists of 254 video sequences of day-

time highway traffic in Seattle in three patterns i.e. heavy, medium and light

traffic. It was collected from a single stationary traffic camera over two days.

4.2 choice of feature representation and metrics

To show the robustness of our technique, we used a different feature on each

data set such as landmarks on the silhouette of the subject for the UMD

Dataset, Histogram of Oriented Optical Flow for the Weizmann Dataset and

Region Covariance on the Traffic Dataset achieving near state of the art recog-

nition performance. All these features lie on well defined Manifolds. We will
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describe their Manifold representations along with the choice of metrics used

here.

4.2.1 landmarks on the silhouette

The background within the UMD Dataset is relatively static which allows

us to perform background subtraction. From the extracted foreground, we

perform morphological operations and extract the outer contour of the hu-

man. We sampled a fixed number of points on the outer contour of the

silhouette to yield landmarks. The specific choice of shape space, and as-

sociated metrics are described next.To represent the points sampled on the

outer contour of the human, we use an affine invariant representation of land-

marks as follows. The set of landmark points is given by a m × 2 matrix

L = [(x1, y1); (x2, y2); . . . ; (xm, ym)], of the set of m landmarks of the centered

shape. The affine shape space [12] is useful to remove the effects of small vari-

ations in camera location or small changes in the pose of the subject. Affine

transforms of the base shape Lbase can be expressed as Laffine(A) = Lbase∗AT ,

and this multiplication by a full-rank matrix on the right preserves the column-

space of the matrix Lbase. Thus, the 2D subspace of Rm spanned by the

columns of the matrix Lbase is an affine-invariant representation of the shape.

i.e. span(Lbase) is invariant to affine transforms of the shape. Subspaces such

as these can be identified as points on a Grassmann manifold [36].

We used extrinsic approaches for Grassmann manifold computations

which are conceptually simpler and implemented more easily. A given d-

dimensional subspace of Rm, Y can be associated with a idempotent rank-d

projection matrix P = Y Y T , where Y is a m× d orthonormal matrix such as

span(Y ) = Y . The space ofm×m projectors of rank d, denoted by Pm,d can be

embedded into the set of all m×m matrices - Rm×m- which is a vector space.
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Using the embedding Π : Rm×m → Pm,d we can define a distance function on

the manifold using the metric inherited from Rm×m.

d2(P1, P2) = tr(P1 − P2)T (P1 − P2) (4.1)

The projection Π : Rm×m → Pm,d is given by:

Π(M) = UUT (4.2)

where M = USV T is the d-rank SVD of M.

Given a set of sample points on the Grassmann manifold represented

uniquely by projectors {P1, P2, ...PN}, we can compute the extrinsic mean by

first computing the mean of the Pi’s and then projecting the solution to the

manifold as follows:

µext = Π(Pavg),where Pavg =
1

N

N∑
i=1

Pi (4.3)

4.2.2 histograms of oriented optical flow (hoof)

As described in [6],optical flow is a natural feature for motion sequences. Di-

rections of optical flow are computed for every frame, then binned according

to their primary angle with the horizontal axis and weighted according to their

magnitudes. Using magnitudes alone is susceptible to noise and can be very

sensitive to scale. Thus all optical flow vectors, v = [x, y]T with direction

θ = tan−1( y
x
) in the range

−π
2

+ π
b− 1

B
≤ θ < −π

2
+ π

b

B
(4.4)

will contribute by
√
x2 + y2 to the sum i bin b, 1 ≤ b ≤ B, out of a to-

tal of B bins. Finally, the histogram is normalized to sum up to 1. Each

frame is represented by one histogram and hence a sequence of histograms
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are used to describe an activity. The histograms ht = [ ht;1, . . . , ht;B] can

be re-parameterized to the square root representation for histograms,
√
ht =

[
√
ht;1,. . . ,

√
ht;B] such that

∑B
i=1(
√
ht;i)

2=1. The Riemannian metric between

two points R1 and R2 on the hypersphere is d(R1,R2) = cos−1(RT
1 R2). This

projects every histogram onto the unit B-dimensional hypersphere or SB−1.

The geodesic distance between any two points ψi, ψj on a unit sphere

is simply the angle between them, i.e.

dist(ψi, ψj) = cos−1 〈ψi, ψj〉 = cos−1

(∫ T

0

ψi(s)ψj(s)ds

)
(4.5)

where 〈.〉 is the normal dot product between points in the sphere under the

L2 metric. From the differential geometry of the sphere, the exponential map

is defined as

expψi
(υ) = cos(||υ||ψi

)ψi + sin(||υ||ψi
)

υ

||υ||ψi

(4.6)

Where υ ∈ Tψi
(Ψ) is a tangent vector at ψi and ||υ||ψi

=
√
〈υ, υ〉ψi

= (
∫ T

0
υ(s)υ(s)ds)

1
2 .

In order to ensure that the exponential map is a bijective function, we restrict

||υ||ψi
∈ [0, π]. The logarithmic map from ψi to ψj is then given by

−−→
ψiψj = logψi

(ψj) =
u

(
∫ T

0
u(s) u(s)ds)

1
2

cos−1 〈ψi, ψj〉 , (4.7)

with u = ψi − 〈ψi, ψj〉ψj.

4.2.3 region covariance

Tuzel et al [37] describe a region descriptor and apply it to the problem of

texture classification. They use the covariance of d- features like the three-

dimensional color vector, the norm of the first and second derivatives of in-

tensity with respect to x and y etc. Since moving traffic can be studied as

dynamic textures, we use the region covariance as the feature for the traffic

database. We used norm of first and second derivatives of intensities with
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Activity Type Motif 1 Motif 2 Motif 3 Motif 4 Motif 5
Jogging 7 0 0 0 0
Squatting 0 7 0 0 0

Bending Knees 0 0 8 0 0
Waving 0 0 0 9 0
Throwing 0 0 0 0 8

Table 4.1: Confusion Matrix for the Discovered Motifs

respect to x and y to calculate a covariance matrix. Therefore each pixel in

the image is converted to a 4 dimensional feature vector:

F (x, y) =

[
∂I(x, y)

∂x
,
∂I(x, y)

∂y
,
∂2I(x, y)

∂x2
,
∂2I(x, y)

∂y2

]
(4.8)

We also use the distance measure proposed in [11] to measure the dissimilarity

of two covariance matrices:

ρ( C1, C2) =

√√√√ n∑
i=1

ln2λi( C1, C2) (4.9)

where λi( C1, C2)i=1...nare the generalized eigenvalues of C1 and C2

computed from

λiC1xi − C2xi = 0 , i = 1 . . . d (4.10)

and xi 6= 0 are the generalized eigenvectors.

Pennec et al [29] describe the exponential and logarithmic maps for

tensors, or positive semi-definite matrices as shown in equations (4.11) and

(4.12) respectively.

expΣ(W ) = Σ
1
2 exp(Σ−

1
2WΣ−

1
2 )Σ

1
2 (4.11)

logΣ(Λ) = Σ
1
2 log(Σ−

1
2 ΛΣ−

1
2 )Σ

1
2 (4.12)

Where Σ is the pole, Λ - a point in tensor space, and W is the tangent vector

at the pole (i.e., symmetric matrices but not necessarily definite or positive.)
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4.3 activity discovery experiment

For this experiment, we randomly concatenated 10 repetitions of 5 different

activities of the UMD dataset to create a sequence that was 50 activities long.

Each activity consists of 80 frames which were sampled by a sliding window

of size 20 frames with step size of 10 frames. After symbolic approximation,

this resulted in 6 symbols per activity, chosen from an alphabet of 25 symbols,

as shown in fig 4.2. The motifs or repeating patterns, in five activities -

Jogging, Squatting, Bending Knees, Waving and Throwing were discovered

automatically using the proposed method, the confusion matrix is shown in

table 4.1 and some sample motifs are shown in fig 4.1. Each of the discovered

motifs was validated manually to obtain the confusion matrix. As can be seen,

it shows a strong diagonal structure, which indicates that the algorithm works

fairly well. Even though all executions of the same activity are not found, we

do not find any false matches either.{ {

{

Figure 4.1: Sample images from the dataset used for the activity discovery experi-
ment. A few recurring action patterns are highlighted.
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Figure 4.2: Symbol alphabet for the UMD activity data set. The cluster centers
obtained are shown here where each center represents one member of the class of
symbols.

4.4 activity recognition using manifold symbolic approximation:

Symbolic approximation plays a significant role in reducing computational

complexity since it allows us to work with symbols instead of working with

high dimensional feature sets. In this experiment, we test the utility of the

proposed symbolic approximation method for fast and approximate recognition

of activities over three datasets. For the UMD dataset, we performed the

experiment on all the activities using a leave one-execution-out test in which we

trained on 9 executions and tested on the remaining execution the results are

shown in Table 4.2. For the Weizmann Dataset we performed the experiment

on all the 9 subjects performing 10 activities each with a total of 90 activities.

We used a sliding window of length 3 frames and 50 clusters to form the

alphabet of symbols. The results for the leave-one-execution-out recognition

test for different degrees of approximation and the confusion matrix are shown

in Table 4.3 & Table 4.3, as it can be seen, the performance does not decrease
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by much for approximated sequences. For the Traffic Database, we performed

the symbolic approximation by sampling the original video database such that

each video was represented by 13 − 14 frames. This combined with using 50

clusters to represent the symbols resulted in each video being approximated

to 13 symbols. We performed the recognition experiment on 4 different test

sets which contained 25% of the total videos. The results are shown in Table

4.5 & 4.6.

4.5 non-equiprobable symbols

While the proposed formalism supports arbitrary symbols to be used, equi-

probable symbols are a desirable feature in several applications [19]. However,

at the expense of such inefficiencies, one can often acquire higher accuracy by

using symbols that are not equi-probable. Here, we test the increase in recogni-

tion accuracy when we use an intrinsic manifold version of k-means clustering

to generate our symbols. As seen in table 4.2, it is possible to achieve close

to optimal recognition accuracies with a non-optimal choice of symbols. How-

ever, for the Traffic Dataset it can be seen in Table 4.5 that the equiprobable

clustering performs better. This is mostly because nearly 50% of the videos in

the dataset belong to the class of Light Traffic, which will result in obtaining

symbols that favor the class. A detailed analysis of these considerations needs

to be discussed in the context of a particular application. Instead, here we

simply demonstrate the flexibility and generality of the proposed formalism.
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Activity Pick
Object

Jog Push Squat Wave Kick Bend Throw Turn Talk Avg.

Veeraraghavan
et al[39]

100 100 100 100 100 100 100 100 100 100 100%

Equi-
Probable

90 70 70 100 100 90 80 100 50 100 85%

Non-Equi
Probable

90 100 100 90 100 100 100 90 90 100 96%

Table 4.2: Accuracies for the recognition experiment using symbolic approximation
compared to an oracle geodesic distance based nearest neighbor classifier. In general,
recognition with symbols performs as well as full-fledged geodesic distance compu-
tations. Further, for this dataset non equi-probable symbols obtained by manifold
k-means clustering results in negligible loss of accuracy.

Table 4.4: Confusion Matrix for the Weizmann Dataset.
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Proposed Method - 1 Symbol/Frame 90%
Proposed Method - 0.5 Symbols/Frame 86.67%
Proposed Method - 0.33 Symbols/Frame 81.11%
Chaudry et al [6] 95.66%
Gorelick et al [13] 97.83%
Niebles et al [25] 90.00%

Table 4.3: Recognition Performance for the Weizmann Dataset.

Expt 1 Expt 2 Expt 3 Expt 4
SAX 84% 87.5% 87.5 % 78.5%
SAX non-
equiprobable

85.71% 84.38% 87.5% 74.6%

Oracle LDS
[31]

84.12% 85.93% 87.5 % 92.06

Table 4.5: Comparison in recognition performance on 4 different test sets.

Heavy Medium Light
Heavy 37 ( 37) 5(7) 2(0)
Medium 13 (4) 24 ( 39 ) 8 (2)
Light 3(0) 11( 1) 151 (164)

Table 4.6: Confusion Matrix for the Traffic Videos Dataset. Results achieved by
Chan et al [4] are shown in brackets.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis we presented a formalization of manifold-valued time-series ap-

proximation for efficient and low-complexity activity discovery, activity recog-

nition, and anomaly detection applications. We presented novel algorithms to

extend symbolic aggregate approximation techniques to non-Euclidean mani-

folds. The results show that it is possible to significantly reduce Riemannian

computations during run-time by an intrinsic indexing and approximation al-

gorithm - allowing us to work with symbols instead of complex features. This

is the first formalization of its kind for manifold valued sequences which opens

up several avenues for future work.

A natural extension to this work would be in picking better symbolic

representatives for each class, i.e. perform clustering that fits the data better.

Understanding how features for activities are distributed on manifolds will

enable us to do this. A related problem is that of understanding what these

symbols physically mean, which ultimately asks the question - could we break

down actions into a set of simpler motion primitives? The effect of equiprob-

able symbols is another aspect of the problem that could be studied in more

detail. We have demonstrated the flexibility in using this technique for both

kinds of symbols. As it can be seen with the traffic dataset, in situations where

the data is heavily biased towards a particular class, equiprobable symbols will

perform better. Finally, a theoretical and empirical analysis of the advantages

of the proposed formalism on resource-constrained systems such as robotic

platforms would be another avenue of research.
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