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ABSTRACT 

Critical care environments are complex in nature. Fluctuating team 

dynamics and the plethora of technology and equipment create unforeseen 

demands on clinicians. Such environments become chaotic very quickly due to 

the chronic exposure to unpredictable clusters of events. In order to cope with this 

complexity, clinicians tend to develop ad-hoc adaptations to function in an 

effective manner. It is these adaptations or “deviations” from expected behaviors 

that provide insight into the processes that shape the overall behavior of the 

complex system. The research described in this manuscript examines the 

cognitive basis of clinicians’ adaptive mechanisms and presents a methodology 

for studying the same. 

Examining interactions in complex systems is difficult due to the 

disassociation between the nature of the environment and the tools available to 

analyze underlying processes. In this work, the use of a mixed methodology 

framework to study trauma critical care, a complex environment, is presented. 

The hybrid framework supplements existing methods of data collection 

(qualitative observations) with quantitative methods (use of electronic tags) to 

capture activities in the complex system. Quantitative models of activities (using 

Hidden Markov Modeling) and theoretical models of deviations were developed 

to support this mixed methodology framework. 

The quantitative activity models developed were tested with a set of 

fifteen simulated activities that represent workflow in trauma care. A mean 

recognition rate of 87.5% was obtained in automatically recognizing activities. 
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Theoretical models, on the other hand, were developed using field observations of 

30 trauma cases. The analysis of the classification schema (with substantial inter-

rater reliability) and 161 deviations identified shows that expertise and role played 

by the clinician in the trauma team influences the nature of deviations made 

(p<0.01). 

The results shows that while expert clinicians deviate to innovate, 

deviations of novices often result in errors. Experts’ flexibility and adaptiveness 

allow their deviations to generate innovative ideas, in particular when dynamic 

adjustments are required in complex situations. The findings suggest that while 

adherence to protocols and standards is important for novice practitioners to 

reduce medical errors and ensure patient safety, there is strong need for training 

novices in coping with complex situations as well. 
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INTRODUCTION 

In an ideal scenario, hospital systems would deliver care in a timely manner to a 

large number of patients with a variety of diseases. There would be no hospital-

acquired infections, staff-related oversights or prescription errors that result in 

complications. As patients, we would want to be treated in such an institution. 

Insurance companies, a principal (financial) driving force in the healthcare 

industry, would prefer that their customers visit hospitals where reduced 

complications result in shorter hospital stays and lower overall costs due to better 

outcomes. From the clinicians’ point of view, working in a safe and efficient 

system increases their reputation and work morale. Such an institution would 

attract a large volume of patients. This will result in greater reimbursement, which 

would make a strong case for improving quality of care from a business 

perspective as well. Although not all the features described may be practicably 

achievable, quality of care is a fundamental concept that is critical to building a 

safe, cost-effective and sustainable healthcare system. 

Unlike other domains such as aviation and nuclear power [1], medicine 

continues to rely on individual error-free performance as opposed to designing 

systems around principles of safety [2]. In order to build safer systems, 

understanding the cognitive mechanisms that drive errors and other adaptive 

deviations in complex systems is needed. The research described in this 

dissertation work elucidates the primary barriers for understanding complex 

healthcare systems and presents a methodology for studying the same. The goal of 

the research is to develop methods for understanding the nature of errors and 
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other deviations that may occur in complex systems, so that the system can be 

redesigned around theoretically grounded principles of safe practice. 

 

Current State of Quality of Care and Patient Safety 

The Institute of Medicine (IOM) released a number of reports that have increased 

the public awareness about quality in healthcare and patient safety. The 2000 

report “To Err Is Human” [3] drew attention to the vulnerability of the healthcare 

system to medical errors. This report estimated that in the United States (US) 

alone, 44,000 to 98,000 lives were lost annually due to preventable medical 

errors. These figures were based on injury rates estimated by two key studies that 

performed retrospective reviews of medical records [4]. The significance of this 

statistic lies in the fact that it is more likely to be an under-estimate. Chart review 

processes catch only errors reported in the hospital setting, which is only a small 

part of the care continuum [5]. Leape compared the reported figures to “three 

fully loaded jumbo jets crashing every-other day” [6]. In any field other than 

healthcare, such a high error rate would be unacceptable. 

This report made a number of recommendations for reducing errors. These 

included setting national goals for patient safety, developing evidence-based 

knowledge, understanding the cause for errors and encouraging voluntary error 

reporting. A 2001 IOM report, “Crossing the Quality Chasm” [7], provided broad 

recommendations for the future of healthcare, stating that systems should aim to 

be “safe, effective, patient-centered, timely, efficient and equitable”. Together, 

these two IOM reports have largely served to draw attention to the critical task of 
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error prevention, enlist the support of stakeholders, and had impact on practices in 

all levels of care [8]. 

Following these reports, a variety of interventions have been implemented 

at various healthcare centers across the United States. These interventions include 

incorporation of computer-based provider order entry (CPOE) systems, protocol 

adoption and team training, to name a few [8]. There is evidence of small but 

significant improvement in patient safety at various institutions. Fewer patients 

die from medication errors [9, 10], and infection rates have been reduced due to 

the use of protocols and checklists for specific procedures [11, 12]. 

Despite evidence of some improvement, health systems nation-wide did 

not show an anticipated (and necessary) overall level of progress in improving 

patient safety (IOM recommended reducing errors by 50% within 5 years) [5, 8]. 

One of the reasons for the lack of sufficient improvement is that errors are often 

not caused by individual clinicians or practices, but are the result of some 

fundamental systemic problems. Leape and Berwick [8], in their assessment of 

barriers to quality improvement, suggested that system complexity compounded 

by professional fragmentation and a hierarchical authority structure, may dissuade 

the creation of a culture of individual accountability and coordinated teamwork, 

both attributes of a safe system. Therefore, in order to understand the root cause 

of errors, researchers would first need to investigate how clinicians behave and 

interact within the complex healthcare system. 
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Healthcare as a Complex Adaptive System 

Recent research has approached the study of social systems, such as clinical 

environments, using scientific theory based on complex adaptive systems 

(depicted in Figure 1) [13]. Plesk and Greenhalgh define complex systems as “a 

collection of individual agents with freedom to act in ways that are not always 

predictable, and whose actions are interconnected so that one agent's actions, 

change the context for other agents” [14, 15]. Such systems typically involve a 

dynamic network of entities acting simultaneously, while continuously reacting to 

each other’s actions [16, 17]. Complex systems are adaptive, unpredictable, and 

inherently non-linear [18]. Inconsistencies, tension, and anxiety are by-products 

of such environments [19, 20].  

 

Figure 1. Overview of complex adaptive systems 
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Figure 1, an illustration adapted from “Complexity: Life at the Edge of 

Chaos” [21], depicts the key elements of a complex system. Typically, a large 

amount of information is utilized and generated by the system. In addition to the 

systems having an environment in which information and knowledge are 

dynamically changing, the overall behavior of such systems is also affected by the 

positive and negative feedback received through interactions among the 

individuals working in these systems. In order to cope with an unpredictable and 

dynamic environment, individuals tend to develop ad-hoc adaptations, which may 

eventually evolve into strategies. This “emergence” of stable strategies makes up 

the overall behavior of a complex adaptive system. 

Clinical environments, such as emergency departments (ED), intensive 

care units (ICU) and trauma critical care are particularly complex and dynamic. 

Changes in staff (due to shift changes, rotations of staff, or departure/new hires) 

continually alter team dynamics and the plethora of technology and equipment 

create unforeseen demands on clinicians. These characteristics allow clinical 

environments to be categorized as complex adaptive systems. 

 

Data Collection in Complex Systems 

In addition to the challenges faced by clinicians, the very nature of complex 

environments makes studying interactions in these systems difficult as well. This 

is primarily due to a disassociation between the complex nature of the 

environment and the tools available to analyze cognitive and workflow processes. 
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The tools currently used for analyzing processes in these environments 

include qualitative methods such as ethnographic observation, shadowing of 

individual clinicians, surveys and questionnaires [22]. The data collected by these 

methods can be used to model segments of the clinical workflow centered on a 

particular individual and his or her activities [23]. Although the workflow 

documented in this manner captures many aspects of the overall system behavior, 

the presence of dense and interrelated interactions between various entities often 

makes operations in complex environments intractable. For example, observations 

are usually gathered from a single individual’s point of view. A single observer 

may not be able to capture information on communication, movement and 

decision making, occurring at an instant of time. Theoretically, by increasing the 

number of observers it is possible to capture most of the information about the 

activities in the environment from several perspectives. However, based on 

informal interviews conducted with clinicians, more than two observers are 

considered disruptive to the clinical workflow. With such constraints imposed on 

data collection in complex environments, there is a need for an unobtrusive 

alternative that can augment existing methods of data collection, and help piece 

together a more complete description of system behaviors; both from individual 

and team perspectives. 

 

Assessment of Behaviors in Complex Systems 

In complex environments, adaptations (“deviations” from standards) and the 

resultant emergent behaviors provide insight into the processes that shape the 
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system. In order to understand the root cause for errors in these systems, 

researchers would first need to examine the cognitive basis of these adaptive 

mechanisms. Protocols and guidelines have proven to be very useful in 

understanding complex tasks by dividing them into simpler observable units. 

Typically, protocols and guidelines suggest a sequence of atomic tasks and define 

a criterion for success. Checklists, a tool that has proven to be very effective in 

the management and control of processes in some complex environments 

(especially those structured by rigid protocols, as opposed to flexible guidelines) 

[24-26], are then utilized to assess clinician performance by examining the 

adherence to a protocol. 

Much of the research assessing behaviors in complex systems follows this 

paradigm [27-29]. In these studies, deviations from protocols and guidelines are 

considered to be errors. The IOM, in fact, defines errors as “…a deviation from 

that (protocol, procedure) which is generally held to be acceptable” [30].  

Although this definition of an error as a deviation is valid, the converse need not 

necessarily be true. In other words, while clearly all errors are deviations, not all 

deviations are errors. In fact, it is possible that a deviation from a protocol may be 

an innovation designed to maximize patient safety or an adaptation to enable the 

clinician to simply cope with the environment. 

An example of complex social system that is similar to a clinical 

environment is aviation. Both pilots and clinicians operate in environments where 

teams interact with numerous technology and the risks originate from a number of 

sources in the environment. Errors, in these environments, occur due to a number 
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of reasons; most of which are related to human error [31]. In contrast to medicine, 

however, errors in aviation often involve the loss of massive number of lives. A 

number of mechanisms have been adopted to minimize errors in aviation, 

focusing primarily on the task of error management in complex situations [32]. 

 Crew resource management (CRM) [33], a major safety training in 

aviation, focuses on error training individuals in the countermeasures of human 

performance limiters (stress and fatigue). These counter measures include 

encouraging behaviors such as leadership, continuous monitoring, briefings, 

decision-making and dynamic modification of plans. In addition to CRM, 

simulation allows pilots to practice dealing with error management and receive 

feedback about they performance in dealing with complexity [31]. In addition to 

technical training, the domain of aviation has recognized the need to train both 

individuals and teams in dealing with complex error-prone situations, situations 

where plans may need to be altered dynamically to tailor the solution to the 

problem at hand. 

 An example of such an adaptive situation is the emergency landing of US 

Airways flight 1549 (on January 15, 2009) in the Hudson River is very well 

known. It involved a situation in which the airplane lost engine power shortly 

after takeoff. In this case, the flight captain used his own judgment and followed 

some protocols, while departing from others [34] and managed to land the heavy 

plane safely in the river. In emergency situations, the US Airways protocol calls 

for the first officer to take control of the flight, so that the captain can focus on 

making time-critical decisions. In this case, however, the captain quickly assessed 
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the situation and deviated from the protocol. He took control of the plane instead 

and left his first officer to go through the checklist for restarting the engines. The 

decision was made because he felt that he was the more experienced pilot (and 

consequently had a better chances of landing the flight safely), while his first 

officer was more familiar with the specifics of the aircraft and would be able to go 

through the checklists more efficiently. The plane was in the river before the first 

officer completed the first page of the three-page checklist. This is an example 

where deviations from protocols (a dynamic alteration in action plan) resulted in a 

positive outcome. 

A lesser-known example from aviation is that of Air France flight 447 that 

disappeared over the Atlantic on June 1, 2009. The analysis of the black box 

(published in December, 2011) revealed a disturbing finding [35]. The pilots 

encountered a storm and had to disengage from autopilot. This was not an unusual 

situation. The captain then left the helm to junior co-pilots for a routine break. 

Fifteen minutes later, the plane crashed killing the 228 people on board. The 

situation called for the junior pilots to coordinate their efforts in order to pass 

through the storm. However, the more inexperienced pilot of the two was 

overcome by the intensity of the situation and reverted to a protocol that was no 

longer applicable. By the time the captain returned to the cockpit, it was too late 

to prevent the crash.  

“While (the first officer’s) behavior is irrational, it is not inexplicable. 
Intense psychological stress tends to shut down the part of the brain responsible 
for innovative, creative thought. Instead, we tend to revert to the familiar and the 
well-rehearsed ...It's not surprising, then, that amid the frightening disorientation 
of the thunderstorm, (the first officer) reverted to flying the plane as if it had been 
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close to the ground (normal conditions), even though this response was totally ill-
suited to the situation” [35]. 

 
This example highlights the fact that complexity, in some cases, cannot be 

controlled by protocols and standards. Individuals operating in such environments 

may be required to step outside the boundaries of “standard solutions” in order to 

solve time-critical problems. Based on safety mechanisms implemented in 

aviation it is evident that there is a need for research in medicine that examines 

the adaptive behavior of experts in order to improve the existing criteria for 

evaluation of performance in complex clinical environments. 

 

Mixed Method Framework for Complex Systems 

The research described in this manuscript examines the use of protocols and 

standards in a complex clinical environment with the end goal of understanding 

the cognitive mechanisms that initiate errors in these systems. The complex 

system under study is trauma care, a process occurring in a critical care 

environment. Trauma care is a highly dynamic process. Typically, teams of 

clinicians (with varying expertise, background and roles) treat a patient under 

critical conditions. The environment can become chaotic very quickly, due to the 

unpredictable nature of trauma cases and the unanticipated clustering of events. 

This makes trauma critical care a good representative environment for complex 

clinical systems. 

Lapses in patient safety in trauma care and other complex environments 

have been linked to unexpected perturbations in clinical workflow [36, 37]. 
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Effective workflow analysis is thus important to understanding the impact of 

these perturbations on patient outcome. The typical methods used for workflow 

analysis, such as ethnographic observations and interviewing, are limited in their 

ability to capture activities from different perspectives simultaneously. This 

limitation, coupled with the complexity and dynamic nature of clinical 

environments, makes understanding the nuances of clinical workflow difficult. In 

this work, a hybrid methodology is presented for capturing and analyzing 

workflow in complex environments.  

Workflow analysis is an integral part of medical error research. A 

workflow is a description of a sequence of operations or activities performed by 

various entities or agents in the system [38]. It provides a description of the 

context and conditions in which errors occur. Careful analysis of workflow can be 

employed to model the distribution of cognitive work and the information flow in 

complex environments. For example, Malhotra et al. [23] utilized ethnographic 

observations and interview data to analyze the workflow in an intensive care unit. 

The workflow analysis helped the team to develop a cognitive model from which 

details of information flow could be extracted.  

This type of analysis could lead to the discovery of latent systemic flaws 

that potentially result in adverse events. In addition, monitoring and assessment of 

workflow in complex clinical environments can provide clues regarding the 

efficacy of patient management. For these reasons, studying workflows in clinical 

environments is an important aspect of patient care and safety research. 
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Critical care environments, being complex adaptive systems, can become 

intractable when examined using qualitative methods of data collection. 

Observations, while rich in description, may not capture the cluster of events that 

occur simultaneously. There is a need for an unobtrusive alternative that can 

augment existing qualitative methods of data collection. This will help researchers 

to piece together a more complete workflow, both from individual and team 

perspectives. 

In aviation (a complex social system similar to critical care), a key 

component of error analysis is the black box. The black box, as a tangible unit, 

refers to devices installed on aircrafts that track both communication within the 

cockpit of the aircraft, as well as performance parameters such as altitude, 

airspeed and heading. From a conceptual perspective, the black box is a 

continuous monitoring tool that does not interfere with the procedures of aviation 

and simply monitors parameters pertaining to the flight. If some tool akin to a 

black box were available for critical care units, analysis of adverse events would 

be far more accurate. The ability to automatically track all events that led to the 

adverse situation would be of great use in workflow modeling, error analysis and 

training of clinical professionals. In addition, an unobtrusive tool would enable 

monitoring of workflow without disrupting the activities of entities in the 

environment. 

Methods used to analyze workflow in clinical environments can be one of 

two types – qualitative methods or quantitative methods. While qualitative 

methods involve subjective observations gathered by researchers, quantitative 
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methods typically involve the usage of sensor technology or video recordings to 

capture data about workflow. The main differences between the data captured 

using quantitative methods and qualitative methods are as follows: 

(i) Using quantitative methods, accurately time-stamped data can be obtained. 

Human-intensive methods can only produce time-stamped observations 

with near accuracy. 

(ii) Qualitative methods of data collection produce relatively low volume, 

high quality data. On the other hand, quantitative methods produce a high 

volume of abstract data that in some way reflect underlying workflow. 

(iii) Human-intensive qualitative methods are best suited for low-intensity 

situations, whereas automated quantitative methods are optimal for data 

gathering in high-intensity situations. 

 

Qualitative Methods for Workflow Analysis 

Malhotra and his colleagues analyzed the workflow in intensive care units (ICU) 

in order to understand the process of evolution of error in a critical care setting 

[23]. Ethnographic observations and interviews were utilized to gather data to 

model workflow centered on the entities and activities in the environment. The 

process of gathering observations involved following a key member of the critical 

care team and recording all of his or her interactions with both clinicians and 

equipment. These key players were then interviewed to corroborate the 

observations collected and to delineate their individual workflows. Using 

observations and interviews, a collective workflow was reconstructed by 
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combining the individual workflows of each key player. The developed workflow 

summarizes how ICUs function and where errors are most likely to occur. 

Laxmisan and her colleagues utilize ethnographic observations and 

interviews to analyze the workflow in an emergency department (ED) [39]. The 

workflow is analyzed to study the cognitive demands imposed by the workflow in 

the context of the work environment. Multi-tasking, interruptions, gaps in 

information flow and handovers during shift change were some of the aspects of 

the workflow that were studied in detail. 

 

Quantitative Methods for Workflow Analysis 

Quantitative methods provide means of gathering some information about the 

activities and whereabouts of entities in an environment. An entity could be a 

person (nurse, physician, patient, etc.) or a machine (such as ultrasound device). 

The tracked activities can then be pieced together (similar to integration of 

observations and interviews) to provide an aggregated overview of the workflow.  

The sensors typically used for entity activity recognition include passive 

infrared sensors, radio frequency identification tags and pressure sensors. The 

sensors, depending on their type, are utilized to detect various activities in which 

the entity is involved. A number of systems have been developed for activity 

recognition and workflow monitoring using different types of sensors. These 

systems use the various types of sensors in some combination to model key 

activities of the entity being tracked. In general, these sensors are encased into a 

physical form representing a tag. These tags can sense different types of 
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information like movement and location through the ensemble of sensors 

embedded in the physical form. 

In the domain of healthcare, tags have been employed for tracking 

patients, equipment and staff to gather data that can be used to improve patient 

care and the efficiency of clinical workflow [40-46]. Fry and Lenert [46] 

developed a system for location tracking of patients, staff and equipment called 

MASCAL. The main aim of the system was to aid in streamlining patient care 

during mass casualty situations. RFID tags were used by the system to track the 

location of key players (clinicians and equipment) in patient care during 

emergencies. This information is integrated with personnel databases, medical 

information systems and other applications (such as those that enable registration 

and triage) in order to centralize the management of resources during critical 

situations. In addition, MASCAL included interfaces for centralized management 

of various entities in the system. 

Chen et al. [45] studied the incorporation of RFID technology in a clinical 

setting in non-psychiatric hospitals in Taipei, Taiwan. Tags were used to identify 

patients and notify clinicians on the status of patients and patient related 

information (lab reports, radiology results etc.). Preliminary studies showed that 

using the RFID-enabled framework decreased the wait time for patients in 

intensive care units. 

The other technique for activity monitoring is processing of video 

recordings. Hauptmann et al. [47] describe a system that recognized activities 

from videos captured using video processing techniques. The system was 
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developed to recognize activities of daily living (ADL) for patients. Examples of 

ADL activities include visiting the washroom, eating, sleeping etc. Cameras 

placed at key locations within the environment provided video feeds. These video 

feeds were processed to identify the patients and draw conclusions on the possible 

activities in which the patients were involved. 

 

Limitations of Qualitative Methods 

Qualitative methods are human-intensive, i.e., they require significant amounts of 

human effort for data gathering and analysis. The dependency of qualitative 

methods on human effort has certain advantages and disadvantages. The main 

advantage is that human-intensive methods usually yield data that are of high 

quality. These data are detailed and descriptive, and potentially insightful 

inferences can be made using qualitative analyses of these descriptions. The 

disadvantage, however, is that the dependence on people for data gathering and 

analysis limits the capabilities of these methods to capture important details of the 

collective workflow in a critical care environment. 

 Observation gathering is a classical qualitative method for workflow 

analysis that suffers from its dependence on human effort. It is difficult for 

individuals to monitor and document all activities that occur at every instant in a 

dynamic and complex environment. Interviews, on the other hand, suffer from the 

poor recall of events on the part of clinicians being interviewed. Facts about 

events may be altered as the memory of the event changes temporally (post-hoc 

bias). Other real-time methods of data collection such as audio and video 
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recording systems not only require consent from clinicians to be used to gather 

workflow data, but also require significant human efforts for processing data 

collected to retrieve meaningful information. Post-processing of real-time data 

involves manual analysis of audio and video data in order to detect various 

workflow events. The real-time data can then be manually annotated with the key 

events that have been detected. This process requires time, effort and researcher 

expertise in order to be completed successfully. Such limitations make these 

methods more suited for workflow analysis in simple, low-activity environments. 

 

Limitations of Quantitative Methods 

In most quantitative methods, sensors for monitoring activities and locations are 

placed at pre-defined locations. The rigid infrastructure often makes installation 

costs prohibitive. In addition, maintenance can be complicated if spatial 

configurations are altered. Another issue lies with the modeling approaches 

employed to track workflow. In all the current systems, the sensor systems are 

employed to determine the location of the entities from which activities are 

estimated. This system works well if the location identification is reasonably 

accurate. However, RFID systems can often be highly erroneous, resulting in 

close to 200% errors in location estimates [48]. Location in these systems is 

determined by geometric triangulation methods that have limited performance in 

environments with electromagnetic fields. Since clinical environments require 

large amounts of equipment, it is impossible to control for electromagnetic fields. 

To account for this high rate of error, activities that are covered by the current 
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approaches limited to macro-level movement-based activities such as entering a 

room or going from one area of the hospital to another. Current systems are 

limited in documenting activities that occur in smaller area, because the sensors 

cannot discriminate location in these environments with acceptable accuracy. 

Video-based tracking suffers from similar issues. The locations of cameras 

are fixed. Areas need to be analyzed to ensure that the cameras cover all parts that 

need to be monitored. In addition, real-time analysis of videos for entity 

recognition can suffer from typical video processing problems, such as occlusion 

of entities by other entities, noise, motion blur, uneven lighting and so on. This, 

coupled with the requirements of privacy and security, often render video-based 

capture unusable.  

 

Proposed Framework for Assessment of Behaviors in Complex Systems 

As both qualitative and quantitative methods have advantages and disadvantages, 

an improved solution for workflow monitoring can be obtained by combining the 

two types of methods.  

Figure 2 depicts the framework of a mixed methods system for monitoring 

activities and behaviors in complex critical care environments. Such a framework 

supplements existing methods of data collection (qualitative observations) with 

quantitative methods (use of electronic tags and audio recording) to capture 

activities in the complex system. In addition to developing a quantitative activity 

models, a theoretical model of deviations (adaptations) is developed to support 

this mixed methodology framework. The qualitative analysis combined with 
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quantitative metrics obtained from tags and audio recording can provide deeper 

insight into adaptations from which the emergent behavior of the complex system 

can be inferred. 

 

Figure 2. Conceptual framework of system for monitoring critical care 

The work described in the manuscript can be broadly divided into three 

segments. First, an introduction to trauma critical care environments is provided. 

In this segment the guidelines and standards followed in trauma critical care is 

discussed, placing it within the context of the clinicians and teams interacting in 

trauma care. Following a description of the environment, the methods for 

developing quantitative models of activities in trauma care is discussed. This 

section presents the work dealing with the use of radio frequency identification 

tags for automatically detecting activities in trauma care. Unlike infrared tags, 

RFID tags do not require a line of sight with other tags to record information. 

Hence, RFID tags are utilized to gather the quantitative data. Observations 
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gathered complement RFID data by providing a detailed description of 

communication and interaction activities that cannot be captured using the tags. 

Finally the last segment deals with the research on the development of 

qualitative models of deviations from standards in trauma care. In order to assess 

the deviations from standards (as detected by quantitative models of activity), it is 

important to understand the various types of deviations than can take place in a 

complex system. In addition to describing preliminary (explorative) research in 

the domain, the extended study of deviations and experiments conducted to assess 

inter-rater reliability in classifying the deviations is elucidated in this section.  

This research described in this work is one of the first to examine the 

cognitive basis of adaptive mechanisms of clinicians in medicine and present a 

methodology for studying the same. Through a deeper understanding of the 

cognitive decision-making processes that allow experts and teams to manage 

errors, healthcare systems designed around the principles of safety can be 

developed.  
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TRAUMA CRITICAL CARE 

In critical care settings, teams of care professionals care for patients. These teams 

typically involve clinicians with varying backgrounds and expertise, working in a 

collaborative manner. A patient may interact with as many as fifty different 

employees (including nurses, physicians and technicians), during a typical 4-day 

stay at a hospital [49]. These teams operate in environments with dynamic social 

structures [39] and are required to adapt to varying task demands and coordinate 

their efforts to carry out activities necessary for task completion  [50]. Team 

decision-making is a key factor that impacts co-ordination among individuals 

involved in the patient care process. 

In trauma critical care, clinicians follow the Advanced Trauma Life 

Support (ATLS) guideline [51], developed by the American College of Surgeons 

(ACS). It is mandatory that this protocol be followed in every Level 1 trauma 

center for accreditation purposes. Research has shown that the ATLS protocol is 

effective in improving the quality of care in trauma centers across the United 

States [52]. The tasks and goals for “Initial Survey and Management” of the 

patient are common to both physicians and nurses (summarized in Table 1). The 

guideline can be divided into three sections: (i) primary survey and resuscitation, 

(ii) secondary survey and examination, and (iii) definitive care and transfer. In the 

primary survey, all immediate, life-threatening conditions are mitigated. Once the 

patient’s vital signs stabilize, a thorough head-to-toe examination can be 

performed. Information obtained from examinations (and diagnostic tests) allows 

the trauma team leader to make decisions relating to the care of the patient.  
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Table 1. Key steps in Initial Assessment and Management ATLS protocol 

 

In addition to providing a systematic way to treat patients, the ATLS 

guideline serves to establish a common vocabulary for multi-disciplinary trauma 

teams to function effectively.  The guideline will now be described in detail, 

placing it within the context of the environment, tasks and goals. 



  23 

Trauma Team Structure 

Trauma teams aid in rapid identification and treatment of life-threatening 

conditions. They are responsible for: (i) assessment of the patient upon arrival, (ii) 

resuscitation and management of critical conditions, and (iii) diagnosis and 

transfer of the patient to the appropriate facility. The core team typically includes 

the attending surgeon, residents, an anesthesiologist, and nurses. Supporting 

members include a respiratory therapist, pharmacist and an X-ray technician. 

Roles and responsibilities are well defined for team members. The trauma 

team leader supervises the trauma care, making major decisions and delegating 

work to other members of the trauma team. A resident physician may assist the 

trauma lead. The assisting physician performs hands-on evaluation and treatment. 

The primary trauma nurse is responsible for the immediate care of the patient.  A 

nurse recorder who documents events in trauma workflow sheets may assist the 

primary nurse. The structure of the core team is often dynamic. Roles of the team 

leader and assisting physician may shift between residents and the attending 

trauma surgeon. In teaching hospitals, attending surgeons mostly play the role of a 

guide overseeing residents serving as the trauma leader. 

 

Trauma Information Sources 

In trauma critical care, the information available to the team evolves as new 

observations are made, tests are analyzed and consults are obtained. Trauma 

teams receive information from a variety of sources including pre-arrival patient 

information, trauma workflow sheets, the patient vital signs monitor, x-ray 
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images, computerized tomography (CT) scans, diagnostic tools to analyze blood 

and urine samples, and information shared by other care providers [53]. 

Although team members follow the same guideline for treating the patient, 

the boundaries of an individual’s role (within the team) impact the types of 

information processed and utilized by each team member. For example, x-rays 

and CT scans are always assessed by the trauma leader, which forms the basis for 

decisions about treatment and definitive care of the patient.  

In such conditions, one of the main challenges faced by teams is decision 

making with evolving information. Often the complete medical history of the 

patient may not be available when critical decisions have to be made. Trauma 

teams may be required to adapt they decision making as more information 

emerges. 

 

Trauma Scenario Walkthrough 

Irrespective of type of trauma, certain key steps are performed (in quasi-

sequential order), to evaluate the patient. In this section, a walkthrough of a 

typical trauma case scenario encountered at a Level-1 trauma facility is presented 

(workflow depicted in Figure 3). The workflow in trauma care can broadly be 

divided into (i) primary survey and resuscitation, (ii) secondary survey, and, (iii) 

tertiary survey and definitive care. In the following sub-sections, the activities 

performed by the team in these three categories are described. Note that this 

scenario is based on workflow observed on site at the Level-1 trauma center as 

well as on the existing literature on ATLS guideline implementation [51]. 
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Figure 3. Trauma scenario walkthrough: typical workflow observed in trauma 

care 

 

Trauma Care Preparation 

A trauma care scenario typically begins with an announcement of trauma arrival 

with an acuity or case type indicator. This indicator is usually specific to the 

trauma care site.  With respect to a representative venue, Banner Good Samaritan 
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Hospital (Phoenix, AZ), trauma cases that may require an anesthesiologist are 

classified as “trauma A”. Cases with lower severity are classified as “trauma B”. 

There may be other classifiers that are independent of severity. For example, any 

case involving a pregnant woman is classified as “trauma C”. Based on the trauma 

severity or type indicator, care provider teams assemble in the trauma unit. In the 

case of trauma C, two trauma teams assemble; one for the mother and the other 

for the child. As simple as this triaging scheme may be, it allows for resources to 

be managed effectively within the hospital. 

Once the required team members assemble for the trauma care, the 

clinicians may have a brief window (often ranging from 2 to 10 minutes), in 

which they can perform activities to prepare for the case at hand. For example, 

clinicians may exchange information about the incoming case, or scrub and wear 

appropriate protective garments. When the patient arrives, emergency medical 

technicians transfer the patient to the trauma bay and provide a brief overview of 

patient history and treatment provided. At this point, the trauma leader takes 

charge of the trauma care and initiates the primary survey. 

 

Primary Survey and Resuscitation 

In the primary survey, the trauma leader evaluates the patient airway, breathing, 

circulation and neurological state (disability via Glasgow Coma Scale or Injury 

Severity Score metric [54]). This survey is usually quick and performed within 

the first two minutes of patient arrival. Resuscitative efforts (orders given by the 

leader) and patient exposure (removal of clothing) are typically performed in 
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parallel by other team members (primary nurse and assisting physician). When all 

life-threatening conditions have been addressed, the team proceeds to utilize 

diagnostic tests (x-ray, CT scan, blood and urine sample testing) as needed to 

further diagnose the patient trauma and follow appropriate treatment. 

 

Secondary Survey and Definitive Care 

The secondary survey may be performed while awaiting the results of diagnostic 

tests and involves detailed head-to-toe examination of the patient. Once the 

patient is thoroughly examined and diagnostic test information is available, the 

trauma leader proceeds with formulating a treatment plan. At this stage, he/she 

may consult with the mentor (attending surgeon) or a specific specialty consult 

(for example, orthopedic or plastics consult). The team may then proceed with 

providing definitive care (management of conditions not treated at the end of the 

primary survey) and conducting tertiary surveys, if required. When the patient is 

ready to be transferred out of the trauma unit, the patient may be discharged or 

moved to a room for monitoring and extended treatment by a consult. 

 

Protocols and Guidelines 

The ATLS standard described (and tabulated in Table 1) is a guideline as opposed 

to being a fixed protocol. A guideline is defined as “a statement or other 

indication of policy or procedure by which to determine a course of action” [55]. 

In contrast, a protocol is “a precise and detailed plan … for a regimen of 

diagnosis or therapy” [56]. Since trauma care is a complex system that is 
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inherently dynamic and unpredictable, providing clinicians with a rigid protocol 

would limit their ability to adapt to the situations at hand. A guideline, on the 

other hand, does not inherently penalize a clinician for not performing a particular 

step in order. This allows clinicians to adapt the guideline to suit the dynamic 

needs and requirements of the team.  

For the purpose of this research, the ATLS guideline is considered to be a 

set of minimum specifications. The guideline provides general direction for the 

team and describes role boundaries, resources and constraints [57, 58]. The 

implementation of such a guideline, as opposed to detailed protocols, can result in 

the emergence of innovative and complex behaviors [59]. The key challenge here 

is to ensure that the deviations or novel adaptations made by the team members do 

not contradict the purpose of the guideline and consequently compromise patient 

safety. The following chapter discusses the proposed framework for studying 

complex critical care environments. 
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QUANTITATIVE ACTIVITY MODELING USING RFID TAGS 

This chapter presents quantitative models of activity developed using Radio 

Frequency Identification (RFID) tags. The activities detected, combined with 

observations captured can provide a more complete picture of the workflow. 

RFID tags provide a means to automatic identify an entity, in addition to 

continuous monitoring and location sensing. Basic information about interaction 

among the entities, such as duration, proximity and location can be extracted from 

the tag data. These data, combined with qualitative measures allows one to 

construct an intermediate workflow that can be visualized in virtual reality 

environments. The end result is a system that augments existing methods of data 

collection to capture a comprehensive view of workflow in complex 

environments. 

In general, workflow can be described by (a) the underlying cognitive 

processes that drive decision making, (b) gross physical movement, and (c) 

interaction and communication activities. The mixed methodology framework for 

workflow analysis system combines qualitative and quantitative methods of data 

collection to capture each of these three activities. RFID tags can provide 

quantitative information about movement activities, in addition to some basic 

interaction statistics such as proximity between two or more clinicians and time 

spent at particular locations. While, these statistics could be utilized to model the 

movement patterns of clinicians in the environment, RFID tags cannot gather 

information about specific details of communication or decision making of 

clinicians that result in a particular situation. Researchers rely on qualitative 
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methods of observations for capturing this kind of information. Figure 4 depicts 

the types of activities that can be captured using the hybrid framework. 

 

Figure 4. Overview of activities captured and tools utilized 

Traditionally qualitative data collection involves observers following both 

cognitive and movement activities. This is in addition to collecting detailed 

information about the time of activity initiation and the sequence of activities in a 

workflow. Use of quantitative methods offers the means to offload the task of 

recognizing movement-based activities to the automatic algorithms that process 

incoming tag data.  This system can theoretically capture any movement activities 

that require team members to move at least 8 inches [48]. 

With respect to the mixed method framework, two different streams of 

data are collected; (a) qualitative data from observers, and (b) quantitative data, 

gathered from the RFID tags. Both the qualitative data and quantitative data are 
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obtained from standardized sources. While time-stamped quantitative data is 

retrieved from the RFID tags, observations are gathered by observers shadowing 

clinicians in the environment. Observations logged on a laptop are automatically 

dated and timed and stored in the output observation file. The saved time stamp is 

then used to synchronize the qualitative and quantitative data sources. 

 

SNiF Radio Frequency Identification Tag System 

Quantitative data is obtained using active RFID tags (depicted in Figure 5). 

Active RFID tags have an inbuilt power source, hence the name “active”. In 

addition to being portable, active tags use low levels of energy, ensuring that they 

do not interfere with other devices, such as telephones and other network 

connections found in a healthcare setting. 

 

Figure 5. Active radio frequency identification (RFID) tag and base station 
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SNiF® (Social Networking in Fur) is an off-the-shelf active RFID tag. The 

SNiF tag system comes with portable tags and passive base stations. While the 

base-stations operate similar to the tags, they primarily serve as location beacons. 

They are placed at critical areas in the environment being studied. It was found 

that in a trauma unit, the trauma bays, nurses’ station and entry and exit points are 

some of the key locations. It should be noted that these locations would vary from 

site to site, depending on variations in the workflow. 

The tags record encounters with other tags (tag-tag encounter) and base 

stations (tag-base encounter). For each encounter or interaction, the tags record: 

(i) identification number of the tag or base station detected, 

(ii) time and date of encounter, and 

(iii) received signal strength indication (RSSI) value. 

The RSSI value provides proximity information. This value is inversely 

related to the distance between the interacting tags. Consequently, it can be used 

to measure approximate distances between tags and base stations involved in an 

interaction.  Encounters are recorded at a rate of 0.33 pings/second. Temporal 

analysis of pings can provide information of duration of interaction, in addition to 

the proximity information. Using information about proximity and duration of 

interaction, it is possible to infer activities, such as a resident leaving trauma care, 

or a nurse documenting the case at the nurses’ station. Utilizing proximity 

information from tag-tag and tag-base encounters, an abstraction of movement-

based activities can be obtained. 
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Use of Proximity as a Proxy for Interaction and Communication 

In addition to movements, some information about communication and interaction 

can be obtained from tags as well. Consider the scenario representing “patient 

arrival”. When a patient arrives in a trauma room, trauma team members tend to 

converge at a trauma bay. Following this, an examination of the patient takes 

place. Eventually, a resident may move to the telephone for a consult or the nurse 

may move to the nurses’ station to document details of the encounter. All these 

activities are linked to entities performing some type of movement in the 

environment and can be inferred from the tag data. Formally this sequence of 

activities can be expressed in terms of time as: 

(i) At time t1: Patient arrives at the trauma unit and is sent to the trauma bay. 

(ii) At time t2: The nurse and a resident check in on the patient. 

(iii) At time t3: The resident seeks a phone consult while the nurse heads over 

to the station to continue with documentation. 

Assume the trauma room is equipped with base stations and tags, as 

depicted in Figure 6. In this diagram, ‘P’ refers to the patient; ‘N’ refers to the 

nurse and ‘R’ to the resident on call. The black solid dots denote the locations of 

base stations (B1 to B6). Base stations are placed at various key locations; one at 

each trauma bay, one near the phone and the other near the computer. Assuming 

that the trauma team members are carrying portable tags, the following are the 

trends seen in the extracted data: 

(i) At time t2: Tags R and N get close to B1. 

(ii) At time t3: Tag N is very close to B5 and Tag R is very close to B6. 
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Figure 6. Scenario: Patient arrival at a trauma unit 

When tags carried by the trauma team converge at a bay, it can be 

assumed that the patient is being examined (t2) and that the patient arrived at the 

unit sometime before t2. If the patient carries a tag as well, at time t1 the data will 

show tag ‘P’ gets close to base station B1. At time t3, the system can 

probabilistically estimate that the nurse was documenting the patient report, and 

that the resident was seeking a phone consult. 

Although the scenario presented is a simplification of the total process, it 

provides a conceptual view of how interaction activities can be tracked using 

proximity information. As a general rule, any interaction and communication 

activity that is accompanied with measurable movement can be captured by this 

system and recognized. Following the same logic, any communication or 

interaction activity that is not accompanied by movement cannot be captured by 
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the automatic analysis system. Additional sensors can give more detailed 

information on some of the activities. Incorporation of audio recording (while 

ensuring privacy of the subject is maintained) would facilitate automated tracking 

of communication between entities. 

 

Activity Recognition using Hidden Markov Models 

In this work, Hidden Markov Modeling is used to analyze the temporal data 

gathered by the tags and recognize known activities. It is a probabilistic modeling 

method used for temporal sequence analysis and model generation, and has been 

widely used in gesture and speech recognition [60, 61]. 

Hidden Markov Models 

A Hidden Markov Model (HMM) is a finite set of states, each of which is 

associated with multidimensional probability distributions. Transitions among the 

states are governed by a set of probabilities called transition probabilities. In a 

particular state an outcome or observation can be generated, according to the 

associated probability distribution. There are three fundamental variables that 

must be determined to generate models of activity; 

(i) Initial state probability, π – This is a set of probabilities πi, which indicates 

the probability of the starting or initial state being i. π can be represented 

by a Nx1 matrix where N is the number of states. 

(ii) Transition probability, A – A set of probabilities Aij where aij indicates the 

probability of the operator transitioning from state i to state j. Hence, A is 

represented by a NxN matrix. 
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(iii) Bias probability, B - a set of probabilities Bi(k) where bi(k) is the 

probability that symbol k is observed at state i. Hence, B is represented by 

an NxM matrix, where N is the number of states and M is the number of 

observation symbols. 

The HMM is then represented as λ = (π,A,B), where the observed 

sequence is modeled as a state machine, wherein the current state is dependent 

only on the previous state. Using HMMs requires solutions to the following basic 

problems; 

(i) Given a model λ = (A,B,π), what is the probability that a given observed 

sequence O belongs to λ, i.e., P(O| λ)? 

(ii) Given, λ = (A,B,π), what is the sequence of states I = {i1, i2, i3, i4 … iT} (T 

is the number of observed symbols) such that P(O, I| λ) is maximized? 

(iii) How can the HMM parameters π, A and B be adjusted so as to maximize 

P(O, I| λ)? This is also known as a training problem or training an HMM. 

The current problem at hand is activity recognition using HMMs. The 

observed sequence, in this case, is temporal data about encounters obtained from 

the tags. In order to develop robust activity HMMs, data that describe controlled 

samples of activity are obtained from the RFID tags. Multiple samples are 

captured for each activity of interest. A database of samples for each activity 

facilitates training the HMMs for each activity, thereby creating a library of 

HMM activity models for each activity. The following are the steps to train and 

test HMMs: 
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(i) Obtain data from tags for specific (marked) activities or motions. This is 

obtained from qualitative data collected (observations and interviews) in 

addition to tag data.  

(ii) Use marked data to set the parameters of the HMM, i.e., train the model 

(iii) Test the HMM, by evaluating if test data are appropriately recognized 

 

Algorithm for Testing HMM (Forward-Backward Method) 

This method defines a variable αt(i) called the forward variable as follows: 

αt(i) = P(O1,O2,O3, … Ot, it= i | λ) 

This is the probability of the partial observation sequence up to the 

position t, At state i at position αt(i) is given by, 

(i) 𝛼! 𝑖 =   𝜋!𝑏! 𝑂! , 1 ≥ 𝑖 ≥ 𝑁 

(ii) For t = 1,2,…T-1, 1 ≥ 𝑗 ≥ 𝑁, 

𝛼!!! 𝑗 = 𝛼! 𝑖 𝑎!,!

!

!!!

𝑏!(𝑂!!!) 

(iii) Then, 

𝑃 𝑂 𝜆 =    𝛼!(𝑖)
!

!!!

 

Step 1 refers to the probability for picking state i and generating O1. The 

probabilities then generated by step 2 represent transitioning from a state at t to a 

state at t+1 and  generating Ot+1. Inductively P(O|λ) is found. A backward 

variable βt(i) is defined as: 

𝑃 𝑂!!!,𝑂!!!,…𝑂! 𝑖! , 𝜆) 
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This is the probability that a sequence from t+1 to T is observed, given the 

state i at time t and λ. 𝛽!(𝑖) is given by, 

(i) 𝛽! 𝑖 =   1, 1 ≥ 𝑖 ≥ 𝑁 

(ii) For t = T-1, T-2, …1, 1 ≥ 𝑖 ≥ 𝑁, 

𝛽! 𝑖 = 𝑎!,!𝑏! 𝑂!!! 𝛽!!!(𝑗)
!

!!!

 

(iii) Then 

𝑃 𝑂 𝜆 =    𝜋!𝑏! 𝑂! 𝛽!(𝑖)
!

!!!

 

Both the forward and backward procedure can solve for P(O|λ) in N2T 

time. Practically a test sequence is divided into two parts by breaking it in the 

middle. The first part is solved using the forward variable and the second part is 

solved using the backward variable. These probabilities are then combined to find 

the probability of a test sequence being close to the given HMM. Since a library 

of HMMs is available, it is possible to find the probability of the test sequence 

being close to each of the HMMs in the library. The HMM that generates the 

highest probability for a test sequence is the winning HMM for the given test 

sequence. 

 

Algorithm for Training HMM (Baum-Welch) 

This method is used in the training phase to find the HMM for a particular 

activity. All the tag data pertaining to a single activity are used to train a HMM 

for that activity.  The function P(O|λ) is called the likelihood function. Assume: 
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𝛾! 𝑖 =   𝑃(𝑖! = 𝑖|𝑂, 𝜆) 

This is the probability of being in state i at time t, given sequence O = 

O1,O2, … ,OT and λ. From Bayes theorem, 

𝛾! 𝑖 =   
𝑃(𝑖! = 𝑖,𝑂|𝜆)

𝑃 𝑂|𝜆 =   
𝛼! 𝑖 𝛽!(𝑖)
𝑃(𝑂|𝜆)  

Where 𝛼!(𝑖) and 𝛽!(𝑖) are the forward and backward variables defined 

previously. A variable 𝜉!(𝑖, 𝑗) is defined as: 

𝜉! 𝑖, 𝑗 =   𝑃(𝑖! = 𝑖, 𝑖!!! = 𝑗|𝑂, 𝜆) 

From the derivations, the following is obtained: 

𝜉! 𝑖, 𝑗 =   
𝛼! 𝑖 𝑎!"𝑏! 𝑂!!! 𝛽!!!(𝑗)

𝑃(𝑂|𝜆)  

It can be seen that summing up 𝛾!(𝑖) from t=1 to T provides the number 

of times state i is visited, or summing up only up to T-1 provides the number of 

transitions out of state i. Similarly, summing 𝜉!(𝑖, 𝑗) from t=1 to T-1, the number 

of transitions from state i to state j is obtained. Therefore, 

𝛾!(𝑖)!!!
!!!  = Expected no. of transitions from i 

𝜉!(𝑖, 𝑗)!!!
!!!  = Expected no. of transitions from i to j 

The re-estimation formulae are as follows: 

𝜋! =   𝛾! 𝑖 , 1 ≥ 𝑖   ≥ 𝑁 

𝑎!,! =   
𝜉! 𝑖, 𝑗!!!

!!!

𝛾! 𝑖!!!
!!!

 

𝑏! 𝑘 =   
𝛾!(𝑖)!

!!!,!!!!

𝛾!(𝑗)!
!!!
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These are the updated parameters for the new HMM. Therefore the 

algorithm proceeds as follows. Obtain the initial HMM. Calculate A, B and π. 

Estimate P(O|λ) until reaching a sequence length t. Re-estimate the model and the 

likelihood function. These steps are done repeatedly until the likelihood function 

is maximized. 

Once a library of HMMs is built with one HMM for each activity, using 

the algorithms described, models can be developed and tested. As with any 

method, HMM-based activity recognition has certain advantages and 

disadvantages. The key disadvantage of HMMs lies in the fact that the amount of 

data that is required to train an HMM is very large. Another issue with HMMs is 

that they require positive data to train with, i.e., in order to effectively train an 

HMM to recognize a class of activities, researchers require a carefully constructed 

training set that best describes the activity. However, these disadvantages are 

outweighed by the capability of a trained HMM to handle variations in the style of 

execution of an activity. Activities can be performed in a different manner in 

critical care environments, and it is important that the model of activities accounts 

for these variations. By training the HMM system in this manner, it is possible to 

recognize the motion and some communication activities regardless of the 

deviations. In addition, HMMs scale well, since they can be trained to learn 

activities incrementally. New activities can be trained for without affecting 

models of previously learned activities. For these reasons, HMM was chosen for 

the development of activity models and activity recognition. 
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System Evaluation 

The experiment conducted evaluates that the accuracy of   the HMM-based 

activity recognition system in recognizing clinical activities involving movement 

patterns in a lab setting (setup depicted in Figure 7). Accuracy, in this work, is 

measured as the ratio of the number of correctly identified test sequences to the 

total number of test sequences. 

 

Figure 7. Test setup for simulated clinical activities 

 

Evaluation Setup 

In order to test the HMM-based activity recognition system, commonly occurring 

movement-based tasks in the trauma unit were identified; an example being 
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“physician moving to phone for a consult”. These activities were then simulated 

in a lab setting.  

The setup for the testing involved the creation of a 20 ft. by 20 ft. grid in a 

lab setting (setup depicted in Figure 7). Six base stations (depicted by black solid 

circles) are placed in predefined locations (Base 1 and 4 at Entry/Exit points 2 and 

1 respectively; Bases 2 and 3 at Beds 1 and 2; Base 5 at the phone on nurse 

station; Base 6 at the computer on the nurse station). This is congruous with base 

station setup in the real-world scenario. 

 

Data Collection 

A total of 15 trauma activities (listed in Table 2) were simulated in a lab setting, 

with 10 tags and 6 base stations. Multiple samples of each activity were captured 

using the RFID tags. Each sample involved a tagged entity (researcher) following 

the movement pattern prescribed for the activity and was performed with 10 times 

with 10 different tags, totaling 100 samples for each activity. This ensured 

sufficient randomization of activity movements, accounting for inter-tag 

variability as well. Out of the 100 samples gathered for each activity, 50 samples 

were used to train the HMM for activity recognition, and the other 50 were used 

as a testing set to evaluate the algorithms’ accuracy. A total of 1500 movement 

samples (15 activities x 10 samples x 10 tags) were gathered for this experiment.  
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Table 2. Activity list and corresponding clinical descriptions 

 

For each RFID tag-base pair or tag-tag pair an encounter is recorded every 

3 to 4.5 seconds. These data are captured in a time-modulated manner, i.e., 

encounter information is communicated by detecting differences in the time of the 

encounter rather than the frequency. This results in a sparse matrix when 

considering the entire tag-base station configuration. Figure 8 depicts a sample of 

the matrix generated. The encounters of a tag X with base stations A, B and C 

(gray filled boxes) are shown in a 60-second-long timeline. Linear interpolation is 

used to fill missing data in this sparse matrix. While this methodology provides an 
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RSSI value for all base stations at all instances, it adds some noise to the system 

that may affect the overall activity recognition accuracy. 

 

Figure 8. Sparse matrix of tag-base encounters 

 

Results 

Figure 9 summarizes the recognition accuracy for the 15 motion patterns (A1 to 

A15) elucidated in Table 2. 

 

Figure 9. Hidden Markov Model (HMM) based activity recognition results 
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A mean recognition accuracy of 87.5% was obtained, with a maximum of 

90.5% and minimum of 84.5%. The analysis of the incorrectly classified test 

samples revealed that misclassifications were a result of variations in the training 

set. As discussed previously, HMMs must be trained on a well-controlled sample 

that best represents the activity. Obtaining training data from real-world scenarios 

is bound to have variations that may compromise the quality of models generated. 

Additional sensors such as accelerometers could be utilized in conjunction with 

RFID tags to improve the activity recognition rates. 

 

Study Limitations 

The primary challenges to training HMMs for various activities lie in: (i) 

developing a controlled set of samples that best represent the activity being 

modeled, and (ii) the current limitations of RFID tags. The linear interpolation 

adopted for dealing with missing data introduces further errors into the system. 

The recognition accuracy of the system can be improved by: (i) increasing the 

sampling frequency of tags, (ii) using alternate methods of interpolation to fill the 

sparse matrix, and (iii) incorporating accelerometers with existing tags to refine 

data describing the movement. Since the current experiments were conducted in a 

lab setting, further evaluation and testing with multiple tags in critical care units 

would be required to complete the validation of this system. 

A key limitation of this approach lies in reliance on movements and 

patterns of movements. Such an approach will noticeably miss the activities when 

the entities are not moving. However, in an environment such as critical care, a 
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large percentage of activities do involve movements. An observer can capture 

activities that do not involve movements.  

Although this system eases the burden on the observer (who can then 

capture high-level cognitive details of examination and leave the low level 

activity details to the automated system), in order to capture non-movement based 

activities in complex systems, and a classification of activities of interest is 

required. This research deals with studying adaptive behaviors in complex 

systems. The following chapter presents preliminary research in the development 

of a classification schema for deviations in trauma critical care. 
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DEVIATIONS FROM STANDARDS IN COMPLEX SYSTEMS 

From the initial days when there was a simple doctor-patient relationship, 

healthcare today has expanded to include a multitude of factors that increase the 

complexity of the system. In order to cope with this complexity, clinicians tend to 

develop ad-hoc adaptations to function in an effective manner. It is these 

adaptations or “deviations” from expected behaviors that provide insight into the 

processes that shape the overall behavior of the complex system. In this chapter, a 

theoretical framework for assessing clinicians’ deviations is presented. 

 

Preliminary Classification of Deviations in Trauma Care 

Deviations can be broadly defined as steps performed that are not on an accepted 

pre-defined standard. For the analysis of deviations in trauma care, the 

appropriate guideline or standard available is ATLS [51]. The preliminary 

classification is based on field observations of 10 cases conducted in a Level-1 

trauma unit at Banner Good Samaritan Medical Center [62]. 

Deviations can be broadly classified as errors, innovations, and proactive 

and reactive deviations. Whereas errors are defined as deviations that potentially 

impact patients and their treatment outcome negatively, innovations are deviations 

from the protocol that may positively affect the patient’s outcome. In addition to 

errors and innovations, there are some deviations that do not directly impact 

patient outcomes but rather are actions demanded by the dynamic nature of the 

complex environments. Deviations performed in reaction to patient-specific 

actions or condition changes are classified as reactive deviations, while steps 
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taken to improve the efficiency of the trauma care by anticipating future needs are 

classified as proactive deviations. Using this analytic framework, individual (or 

unit) deviations identified using ATLS protocol for “Initial Assessment and 

Management” (detailed in Table 1), are classified to answer the following 

questions: 

(i) How often do the trauma team members deviate from standard practice? 

(ii) When clinicians deviate, what are the types of deviations made? 

(iii) How do these types of deviations vary with the experience (level and type) 

of the members of the clinical team? 

In the following section, the initial study conducted on deviations in 

trauma care and the associated results are elucidated. 

 

Methods 

 

Study Site Description 

The field observations for this work were conducted in Banner Good Samaritan’s 

trauma unit, one of 6 Level-1 trauma centers in the Phoenix metropolitan area. 

Approximately 3000 patients are treated annually in this 5-bed unit. The trauma 

center has dedicated hospital resources for the management of trauma patients 

throughout all aspects of care, including initial evaluation and resuscitation, acute 

care and rehabilitation. In addition, the trauma unit collaborates with surgeons 

from neurosurgery, cardiothoracic, vascular, orthopedic, plastics, ophthalmology, 

urology and internal medicine departments to provide the required care for 
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incoming patients. The trauma team (present during every shift) includes 1 trauma 

resident, 2 trauma nurses, 1 trauma attending, 1 anesthesiologist, 1 to 2 junior 

residents, 1 to 2 medical students, and radiology and lab technicians. Trauma 

nurses supporting the trauma leader are experienced registered nurses (RNs) with 

5-10 years of critical care experience. 

 

Data Collection Methodology 

This study was approved by the Institutional Review Board and the informed 

consents were obtained from the participants on each encounter. Field 

observations were gathered by one researcher over a period of 3 months from 

December 2009 to February 2010. Trauma cases that occurred between 9 am and 

9 pm (Monday through Thursday) were observed. The researcher logged 

observations simultaneously as the trauma team treated the patient. All 

observations were gathered unobtrusively. Clarifications about the events that 

occurred were obtained from clinicians between trauma events. 

Within the time period specified, a total of 10 trauma cases were observed 

with 7 attending trauma surgeons (experts), 7 junior trauma residents (novices in 

the first and second year of residency training) and 7 senior residents (in the third 

and fourth year of residency training). The trauma cases were of 2 types; trauma 

A and trauma B (trauma A refers to high criticality cases that require the presence 

of an anesthesiologist, while trauma B cases are those cases that are classified as 

low criticality). Out of the 10 cases observed, eight cases were trauma B cases and 

two were trauma A. 
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Analysis Methods 

The ATLS standard for Initial Assessment and Management was utilized to assess 

these cases for deviations. Irrespective of the types of the cases, all steps of the 

Initial Assessment and Management are required to be followed by the core 

trauma team. This allows for a valid comparison between the 10 trauma cases. 

The analysis of the data was performed by one researcher in collaboration 

with an expert trauma clinician (an attending). Deviations identified (through 

consensus) are classified as errors, innovations, proactive or reactive deviations 

based on the preliminary classification schema. The data set was then analyzed 

using statistical means and interpreted to answer the questions outlined in the 

previous section. Independent group t-test was used to find the differences 

between numbers and types of deviations in trauma A and trauma B cases. A p-

value of p<0.05 was accepted as statistically significant. 

 

Results 

 

Mean Deviations per Trauma Case 

The results are presented as mean (µ) ± standard deviation (σ). Figure 10 depicts 

the mean deviations that occurred in the 10 trauma cases for: (i) trauma A and 

trauma B (9.1 ± 2.14), (ii) trauma A (14 ± 1.41), and (iii) trauma B cases (7.5 ± 

2.79). The mean numbers of deviations in trauma A cases were higher compared 

to the mean deviations in trauma B cases. Typically, trauma A cases involve 
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unstable and unpredictable patients. Consequently, the trauma team makes a 

relatively larger number of deviations to adapt to the dynamic situation at hand. 

 

Figure 10. Mean deviations per trauma case 

 

Deviation Distribution and Trauma Severity 

Figure 11 shows the distributions of (i) errors (trauma A: µ = 1.5 ± 1.06, trauma 

B: µ = 2.63 ± 1.1), (ii) innovations (trauma A: µ = 0.5 ± 0.35, trauma B: µ = 0.75 

± 0.7), (iii) proactive deviations (trauma A: µ = 0.5 ± 0.35, trauma B: µ = 0.38 ± 

0.37), and (iv) reactive deviations (trauma A: µ = 11.5 ± 1.06, trauma B: µ = 4.13 

± 1.15). From Figure 11, it can be seen that errors make up a small percentage 

(26.38%) of the total deviations in the 10 trauma cases. This is an important result 
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from these observations, since it points to the limitations of the current strategy of 

marking most deviations as errors in assuring compliance to a standard. 

 

Figure 11. Deviation distribution in two trauma settings 

The proactive and reactive deviations were significantly higher in trauma 

A when compared to trauma B cases (p<0.05). The critical condition of the 

patients in trauma A cases and the individual nature of the problem cause the 

trauma team to deviate often in order to manage the unique situation at hand. The 

analysis also showed that most of the deviations were reactive in nature, in both 

trauma A and trauma B cases.  This can be attributed to the dynamic nature of the 
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critical care environment. Clinicians are required to react quickly to the changes 

to ensure efficient operation in trauma care. 

 

Deviation Distribution and Clinician Expertise 

Figure 12 depicts the total number of errors and innovations made by core team 

members in the 10 trauma cases observed.  

 

Figure 12. Error and innovation as a function of expertise 

In this study, the experts made no errors as defined in the analytic 

framework. Care givers with lesser expertise (from the 3rd and 4th year resident to 

the 1st and 2nd year residents), made fewer innovations, when compared to the 

experts (attending trauma surgeons). While intermediate clinicians (3rd and 4th 

year residents) made more errors compared to the attendings, novices (1st and 2nd 
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year residents) made more errors than any other group of clinicians. Trauma 

nurses and technicians show little evidence of innovation. Although this low 

frequency of innovation cannot be attributed to a lack of experience, it can be 

hypothesized that within the confines of their roles in interacting with a patient, 

there is not much scope for innovation. Nurses and technicians are trained to 

follow a strict protocol to support the trauma team, and that training may be 

responsible for the observed patterns. 

Figure 13 provides a snapshot of the distribution of proactive and reactive 

deviations within the trauma team. 

 

Figure 13. Proactive and reactive deviations as a function of expertise 

It shows that senior residents make the most reactive deviations (because 

they are performing bulk of the tasks), followed by the trauma nurses. Junior 
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residents who generally assist but may lead a few trauma cases also made a 

significant number of reactive deviations. These observations show that 

leadership role and associated tasks may be connected to generating deviations to 

the protocol. 

 

Study Limitations 

This study provides supportive evidence for the claim that deviations do occur in 

critical care environments and not all deviations are errors. Deviations from the 

standard can be important innovations and are tied to complex decision-making 

and judgment calls at the point of care. The results from this study show that 

expertise of the caregivers and criticality of a patient's condition influence the 

number and type of deviations from standard practice. 

Although this research was a novel approach for assessing protocols and 

guidelines, there were not enough subjects studied to enable tests of significance. 

In addition, errors and innovations were defined in terms of patient outcome. The 

causal effect between deviations and specific patient outcomes may be difficult to 

track in critical care environments. For this reason, there is a necessity to define 

deviations in relation to protocols and guidelines instead. This will also enable 

definitions to be more generalizable to other critical care environments.  
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EXTENDED CLASSIFICATION OF DEVIATIONS IN TRAUMA CARE 

This chapter describes research where deviations from standards are examined as 

a function of expertise and teams in complex critical care environment [63]. This 

work builds on research described in the previous chapter. 

 

Deviations from Standards and Expertise 

From a cognitive perspective, error, innovation and effectiveness in carrying out a 

protocol is intimately linked with expertise of the clinicians. Patel et al. studied 

the relationship between task difficulty and expertise [64]. The authors employed 

semantic analysis and found that experts were able to use a well-developed 

knowledge base and superior reasoning strategies in clinical reasoning. Patel and 

Groen [65], in another publication, isolated the reasoning process that physicians 

go through when diagnosing a clinical case, using techniques to identify 

knowledge structures. They showed that in medicine, experts tend to follow a top-

down reasoning strategy wherein reasoning from a hypothesis is done to account 

for the case data, which seemed anomalous when compared to other domains. 

This is an important finding from the perspective of studying errors and 

innovations. In other domains wherein experts tend to gather data and assemble 

hypotheses, there is scope for significant amount of trial and error. On the other 

hand, in clinical decision-making, experts more often than not utilize a top-down 

approach to decision making. It has been shown that this methodology when 

combined with experience-driven cognitive constructs results in experts making 
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fewer errors compared to novices. It is plausible that when experts do deviate, the 

deviations are more likely to be innovations. 

Another aspect of cognition that needs to be accounted for is the capability 

of a clinician to generalize the given data into correct diagnoses.  Cognitive 

research in medicine [66] has shown that clinicians can generate different levels 

of mental representations, from the very specific  to the very general. The critical 

factor in determining generality is typically the degree of high-level expertise of 

the clinician, namely, specialized or specific expertise (i.e., knowledge of a 

particular sub-domain of medicine, such as endocrinology or cardiology). Higher-

level representations are generated by these more expert clinicians; whereas 

lower-level and more detailed representations are typically generated by novices, 

or more commonly, intermediate level clinicians (e.g., senior medical students, 

recent graduates, and residents). 

 This condition points to the ability of experts to apply generic rules to a 

given case, giving them extra cognitive resources to apply innovations and limit 

errors. Research has shown that experts as a result of their practice, learn to 

associate individual items in working memory with the contents in long-term 

memory, which result in the development of conceptual organizations in memory 

called retrieval structures [67].  An expert can use these retrieval structures to 

provide selective and rapid access to long-term memory. On the other hand 

novices seem to occupy their working memory and long-term memory resources 

in the details of the case (due to the lack of mature retrieval structures), which 

may be irrelevant. In such type of workload, it may be challenging to innovate, 



  58 

and, depending on the workload, one may make extensive errors, as is the case in 

complex environments. In fact, research confirms that a key element of retrieval 

structures is their use by experts to eliminate irrelevant information [68] freeing 

working memory for innovative thinking. 

In general the literature on clinical expertise, gives clues into the 

underlying mechanisms of the relationship between errors and innovations. One 

area of research that has explored the mechanisms of innovations is study of the 

cognitive basis of creativity [69]. This field explores the cognitive basis 

underlying creative thinking and reasoning. It identifies conditions that lead to 

creativity and innovation and is based on the hypothesis that creativity is 

supported by pre-invention structures and the explanation structures in experts. 

This is a very intriguing model for creativity and cognition, but its relevance to 

complex domains such as trauma care may be limited. In general, the theories 

from creativity tend to focus on a freethinking approach wherein timeliness of 

creativity is not a big factor. On the other hand, in complex environments such as 

trauma critical care, timeliness of decision-making may fundamentally alter the 

innovation process, and it is important to study the mechanisms underlying errors 

and innovations separately. 

 

Deviations from Standards and Team Decision Making 

In critical care settings, teams of care professionals care for patients. These teams 

typically involve clinicians with varying backgrounds and expertise, working in a 

collaborative manner. These teams operate in environments with dynamic social 
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structures [39] and are required to adapt to varying task demands and coordinate 

their efforts to complete activities necessary for task completion  [50]. Team 

decision-making is a key factor that impacts co-ordination between individuals 

involved in the patient care process. 

Cannon-Bowers, Salas and Converse [70] define team decision making as 

a “team process that involves gathering, processing, integrating and 

communicating information in support of arriving at task-relevant decisions”. It is 

a process that requires individuals to apply their expertise to filter data and 

communicate relevant information and recommendations to other team members. 

This can be affected by a number of environmental factors such as situation 

complexity, time pressures, multi-component decisions and evolving (at times 

ambiguous) information [71]. Effective decision-making relies on the emergence 

of shared mental models and cognition among all the providers involved in the 

care process [14]. 

Shared mental models reduce the communication required to co-ordinate 

decisions and activities required to complete a particular task.  The team members 

perceive and interpret situations in a similar manner. This enables the team to 

make decisions and take action effectively.  Providing teams with the tools to 

promote the development of shared mental models and cognition is critical to the 

development of coordinated healthcare delivery. Protocols, standards and 

guidelines are one such set of tools. Analysis of deviations from standards will 

allow researchers to evaluate whether adaptations made by the team members 
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contradict the purpose of the guideline and consequently compromise patient 

safety or quality of care. 

 

Extended Framework for Deviations from Standard Practice 

Figure 14 depicts the hierarchy for an extended classification of deviations. 

 

Figure 14. Extended classification of deviations in trauma care 

In previous research [62], deviations were classified as (i) errors, (ii) 

innovations, and (iii) proactive  and (iv) reactive deviations. Further examination 

showed that deviations could also be classified by how they affected the trauma 

care (Classification 2), and how many members were involved in making the 

decision (Classification 3). In this section, the previous classification of deviations 
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is revisited (providing more concrete definitions for the ideations of error and 

innovation) and an extended classification is presented. 

 

Classification Schema 1 

 

Deviations as Errors 

An error is defined as a deviation from the standard, if it: (i) violated a prescribed 

order of activities with a negative impact on workflow, (ii) resulted (directly or 

indirectly) in compromising patient care, or (iii) resulted in an activity being 

repeated due to failure in execution or a loss of information. Examples of errors 

encountered in the trauma cases observed in this study include:  

• A resident completed the secondary survey prior to ordering chest and 

pelvis x-rays. Consequently, obtaining these x-rays for diagnosis was 

delayed. In this case, the sequence in which the tasks were performed 

violated the order prescribed in the ATLS standard. Since this deviation 

caused a delay in receiving information critical to treating the patient in a 

timely manner (and thereby negatively impacting workflow), it was 

classified as an error.  

• A junior resident attempted to remove the spine board before the patient’s 

spine was cleared (confirmed not to be injured). This deviation directly 

compromised patient care and consequently was classified as an error. 

• The lab technician needed to redraw a sample for blood work when 

additional tests were ordered. The previous sample had been discarded. A 
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lack of communication within the team resulted in this deviation. While 

not as severe as the previous error, the repetition of a task by a team 

member due to a failure in communication was classified as an error. 

 

Deviations as Innovations 

Innovations are defined as deviations that potentially benefit the individual, team 

or patient by bringing novelty to the situation at hand [72]. Some examples of 

innovations identified in this study are given below: 

• A patient required a translator in order to communicate with the resident. 

The team was unable to find a translator. The attending asked the trauma 

nurse to see if the patient’s family could help. The patient’s sibling was 

able to come into trauma facility and act as a translator. This allowed the 

resident to continue with his examination, leading to successful 

assessment and treatment of the patient. The standard protocol of seeking 

an in-house translator was violated. A novel step (that resulted in a 

positive outcome) was introduced in the workflow, which qualifies as an 

innovative deviation. 

• A patient was nervous about the damage done to his face due to an 

accident. In order to calm the patient, the nurse provided him with a small 

mirror so that he could assess the damage for himself. The patient then 

relaxed. For such a case, the guideline provides no instruction on how to 

deal with a difficult patient. The clinician deviated by introducing an 
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action outside the scope defined by the guideline to successfully care for 

the patient.    

• The resident examined a patient’s leg injury (in fewer than 15 seconds), 

and ordered an x-ray of the extremity along with chest and abdomen x-

rays.  By introducing a brief examination of the injury site, the resident 

was able to anticipate a future need and advance a step in the standard. 

The results were relayed back to the team more promptly than if the 

prescribed order of steps had been followed. The introduction of a novel 

step that resulted in a positive outcome on the workflow was considered to 

be an innovation.  

 

Proactive Deviations 

A proactive deviation occurs when (i) an activity is performed (without 

compromising patient care) in anticipation of a future requirement (or lack 

thereof) when treating a patient or (ii) an activity (which may be out of the bounds 

of an individual’s role in the trauma team) is performed in order to correct or 

prevent error occurrence. Some examples of proactive deviations encountered in 

the trauma cases observed include: 

• A radiology technician set up the x-ray sensor board for a chest x-ray prior 

to the trauma arrival, since the trauma team had been notified about the 

nature of the trauma case. 
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• A trauma nurse called the radiology unit to let the unit know that the 

technician would not be required, since the scans had already been taken 

in the previous facility. 

• The trauma nurse reminded a junior resident that c-spine results have to be 

received prior to removal of the spine board. 

 

Reactive Deviations 

Reactive deviations occur when an activity is performed in reaction to an 

unanticipated event or change in patient condition, diagnostic process or treatment 

plans. Examples of reactive deviations found in this study include: 

• A patient was violently reacting to pain and needed to be held down by the 

trauma team in order to complete the primary survey and intubate the 

patient (if necessary). 

• The results of the x-ray ordered were inconclusive. As a result, the 

resident ordered an angiogram. 

• A patient, concerned about his facial injuries, requested a plastics consult. 

The treatment plan had to be altered to accommodate the patient’s request. 

While in this study, errors, innovations, proactive and reactive deviations 

are treated as mutually exclusive, in reality there may exist an overlap between 

these categories. While further investigation is required is assess of the schema 

should be modified to examine inter-relationships between the categories, for this 

exploratory study the categories are treated as mutually exclusive groups. 
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Classification Schema 2 

In addition to classify deviations by the impact they may have on workflow, 

deviations may also be classified by how they impact the steps of the trauma 

standard. Based on the granularity of the step deviated from and the type of 

activity performed, deviations may also be classified as (i) process-related, (ii) 

procedure-related, or (iii) care delivery-related deviations. 

 

Process-related Deviations 

Deviations that may be related to how the guideline is implemented are classified 

as process-related deviations. Examples of process-related deviations include log 

roll not being performed correctly or an x-ray being ordered after the secondary 

survey. In both examples, clinicians deviated from the recommended method for 

guideline implementation. 

 

Procedure-related Deviations 

In contrast to process-related deviations, procedure-related deviations deal with 

how a specific step in the guideline is performed. An example of a procedure-

related deviation is a clinician making an error in stapling a wound. The key 

difference between process- and procedure-related deviations lies in the 

granularity of unit activities in trauma care. Changes in order or presence/absence 

of activities are considered as a process-related deviation, whereas changes made 

to the unit activity itself are procedure-related. 
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Care Delivery-related Deviations 

Any deviation dealing with the care provided to the patient (not specified in 

guidelines) is classified as a care delivery deviation. These deviations include a 

nurse providing a mirror to a patient concerned by facial injuries or providing 

medications for a patient in pain. Whereas procedure related deviations typically 

involve medical interventions, care delivery-related deviations involve activities 

performed that support the trauma team and patient. 

 

Classification Schema 3 

Finally, deviations may be differentiated by the number of trauma team 

members involved in the decision making process that ultimately resulted in the 

occurrence of the deviation. Deviations may be classified as (i) individual, or (ii) 

team deviations.  

 

Individual Deviations 

Deviations initiated by a single clinician are classified as individual deviations. 

Examples of individual deviations include a resident making an error in a 

procedure, or an attending suggested a novel methodology for a step in the 

protocol or a trauma leader proactively performing certain steps in the protocol. In 

each of these cases the deviations were initiated by a decision made by a single 

individual. 
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Team Deviations 

Whereas an individual may initiate many deviations, some deviations occur at the 

team level. Such deviations involve more than one clinician participating in the 

event. For example, a resident may decide on an alternate course of treatment 

based on a discussion with his attending or the team. Such a deviation is classified 

as a team deviation. Table 3, Table 4 and Table 5 summarize the terminology 

involved in classifying deviations as described in this section. 

Table 3. Summary of classification schema 1 
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Table 4. Summary of classification schema 2 

 

Table 5. Summary of classification schema 3 

 

It should be noted that the three types of classification schema are treated 

as independent of one another. A team deviation can be an error or an innovation, 

for example. Such a classification allows researchers to examine the context of 

various types of deviations. This can further the understanding of various factors 

that contribute to deviations. 

In the research described in this chapter the following are explored; (i) 

various types of deviations that occur in trauma care, (ii) how they relate to 

expertise, and, (iii) whether they were initiated by an individual or by a team. The 

following section describes the ethnographic study performed in a Level-1 trauma 

unit and presents the results of applying the described deviation classification 

schema on the various deviations identified. 
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Methods 

Field observations for this work were conducted by one researcher from 

September 2010 to December 2010 at Banner Good Samaritan’s Level-1 trauma 

unit. A total of 20 trauma cases were observed. This, added to the 10 trauma cases 

previously observed, resulted in a total of 30 cases with 15 cases being led by 4th 

or 5th year (senior) residents and 15 cases led by 2nd or 3rd year (junior) 

residents. Out of the 30 cases, 6 cases were categorized as trauma A (patient in 

critical condition) and 23 cases as trauma B (moderate criticality of patient). One 

case was classified as trauma C as it involved a pregnant woman. As patient 

identifiers such as Glasgow coma scale (GCS) and injury severity score (ISS) 

were not captured (the protocol involved shadowing clinicians alone), the 

classification of the trauma is used as a proxy to assess severity of the incoming 

patient. 

The trauma cases were observed by one researcher using the A(x4) model 

[73]. This model requires contextual observations (snapshots) to be captured by 

highlighting 4 key parameters, namely, actors, activities, atmosphere and artifacts. 

Observations captured in this manner provide rich contextual descriptions of the 

situation, which is required for analysis of deviations. 

Each time-stamped observation was compared to the corresponding step in 

the ATLS guideline [51] in order to determine (i) if a deviation had occurred, (ii) 

the type of the deviation and (iii) if the deviation resulted from individual or team-

level processes. The data were analyzed iteratively until the number and type of 
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deviations stabilized. The analysis methodology is similar to the methods 

described in the preliminary analysis of deviations [62].  

This study was approved by the Institutional Review Board and the 

informed consents were obtained from the participants on each encounter. 

 

Results 

A total of 165 deviations were identified from the 30 trauma cases observed. Of 

these deviations, 4 were found to be related to auxiliary activities in trauma care. 

The activities corresponding to these deviations included (i) attendings teaching 

residents specifics of trauma care, and (ii) clinicians gathering evidence in trauma 

cases that resulted from criminal activities. These deviations are unrelated to 

trauma team expertise or guideline implementation. Consequently they were 

omitted from the analysis. 

The 161 remaining deviations are described categorically using the 

variables (i) training of the resident leading trauma care (Variable - Leader), (ii) 

role played by clinician initiating the deviation in the trauma team (Variable – 

Role), (iii) phase of the trauma standard at which the deviation took place 

(Variable – Phase), (iv) deviation type based on classification schema 1 (Variable 

– Class1), (v) deviation type based on classification schema 2 (Variable – Class2), 

and (vi) deviation type based on classification schema 3 (Variable – Class3). The 

severity of the trauma case was not considered as a variable as a disproportionate 

number of trauma B cases were observed compared to trauma A during the 

duration of the study.   
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For each pair of variables, Chi-square analysis was performed to tease out 

relationships that may exist. Table 6 summarizes the results of pair-wise 

relationship tests conducted for the variables described. Significant relationships 

(p-value <0.05) are indicated by bold font. 

Table 6. Chi-square p-values of pair-wise relationships between variables 

 

From Table 6 it is seen that (i) expertise of the trauma leader, (ii) the phase 

in which the deviation occurs, and (iii) the role played by the clinician have 

significant relationships with types of deviations made. There is also an indication 

of a strong association between classification schema 1 and schema 2. It should be 

noted that near-significant relationships are found between classification schema 

3 and schemas 1 and 2. This indicates a possible relationship that may need 

additional data to verify its validity. In the following sections, the individual 

significant relationships are further characterized. 

 



  72 

Deviations and Expertise of Trauma Leader 

Although no significant difference was found in the frequency of deviations, the 

types of deviations made were found to be related to the experience level of the 

clinician leading the trauma. Chi-square analysis between team leader and 

deviations classified using schema 1 showed significant relationship between 

these variables (Chi-sq = 10.4608, df = 3, p = 0.0150). Figure 15 depicts the 

relationship between the experience level of the trauma leader and errors, 

innovations, proactive and reactive deviations. 

 

Figure 15. Deviations (classification schema 1) and expertise of trauma leader  
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 Trauma cases led by senior residents had more proactive deviations and 

innovations compared to cases led by a junior resident. Errors and reactive 

deviations were found to be greater in cases led by junior residents. These finding 

suggests that (i) trauma leaders with more experience are able to adapt (making 

innovations) to the dynamic environment while minimizing errors, and (ii) 

experience enables leaders to guide a more proactive trauma team. Thus, it can be 

hypothesized that the proactive nature of expert trauma leaders enables them to 

anticipate future needs and possible errors, thereby minimizing resource wastage 

and unnecessary negative impact on patient outcomes.  

A significant relationship was also found between the experience level of 

the team leader and deviations classified using schema 2 (Chi-sq = 7.3179, df = 2, 

p = 0.0258). Figure 16 depicts the relationship between leader expertise and 

process-, procedure-, and care delivery-related deviations. Cases led by junior 

residents had fewer care delivery-related deviations and more procedure-related 

deviations compared to cases led by a senior resident. Junior residents focused 

more on specific procedures. This is indicative of their level of training. Senior 

residents have mastered procedures, and can focus on developing other skills, 

such as communication. The number of process-related deviations was found to 

be similar for the two groups.  
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Figure 16. Deviations (classification schema 2) and expertise of trauma leader  

Finally, Figure 17 depicts the significant relationship (Chi-sq = 83.7175, 

df = 4, p = <0.0001) between role of the clinician in the trauma team (junior 

resident, senior resident, attending, nurse and technician) and expertise of trauma 

leader. Whereas the statistics indicate a strong association between the variables, 

this could largely be attributed to the importance of the trauma leader handing a 

case. As seen in Figure 17, most deviations are made by the leader. Consequently, 

it is difficult to draw conclusions about flexibility of leadership based on the data 
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available. However, it can be seen that the attending plays a larger role in cases 

led by a junior resident. This is expected in a teaching setting. 

 

Figure 17. Deviations (clinician role) and expertise of trauma leader  

 

Deviations and Phases of Trauma Standard Protocol 

Figure 18 shows total number of deviations identified at each key stage in the 

trauma management standard (Phase 1: Trauma Preparation, Primary Survey and 

Resuscitation, Phase 2: X-ray and Diagnostic Studies, Phase 3: Secondary Survey, 

Phase 4: Tertiary Survey and Definitive Care). A greater number of deviations 



  76 

were found to occur in the phases following trauma preparation and primary 

survey and resuscitation (Percentage of deviations in Phase 1: 13.04%, Phases 2-

4: 86.96%). 

 

Figure 18. Total number of deviations in phases of trauma standard 

Using chi-square analysis, a significant relationship was found between 

the phase in the standard and deviations classified using schema 1 (Chi-sq = 

44.255, df = 9, p < 0.0001). As seen in Figure 19, errors occur throughout the 

various stages of the trauma care, whereas innovations only occur once the 

primary survey is completed. This is indicative of the level of adaptability the 
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guideline allows for in the earlier stages of trauma treatment. The primary survey 

is protocol-driven, whereas the secondary survey and definitive care are more 

flexible, allowing the trauma team to deviate and adapt to the case at hand. 

 

Figure 19. Deviations (classification schema 1) and phases of trauma standard  

The key difference between an expert clinician and a novice is that expert 

clinicians deviate within the flexible portions of the guidelines, resulting in 

innovations.  Novices, on the other hand, do not possess the necessary knowledge 

to understand the broader implications of their actions. Deviations made in critical 

steps, such as the primary survey, would result in error. 
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In addition to errors and innovations, it can be seen that more proactive 

deviations occur in the earlier stages of the trauma standard, while reactive 

deviations occur in the tertiary survey and definitive care stages. This is expected. 

As more information becomes available to the team, decisions about care of the 

patient may be altered in a reactionary manner. 

Figure 20 shows the relationship between phases of the trauma standard to 

deviations classified using schema 2 (Chi-sq = 40.0974, df = 6, p < 0.0001). 

 

Figure 20. Deviations (classification schema 2) and phases of trauma standard  
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 The total number of process-related deviations is higher when x-ray and 

diagnostic tests are ordered (27.95% in Phase 2). This indicates that certain steps 

in trauma treatment may be more adaptable than others. Identifying such critical 

steps and monitoring the deviations that occur could provide more information 

that will help direct guideline updates. In addition to the differences in process 

related deviations, it is interesting to note that procedural deviations linearly 

increase as trauma care proceeds through the various phases. This is expected, 

because the initial phases of the trauma care are more focused on examination of 

the patient. Once a diagnosis is made and results from x-rays and diagnostic tests 

are obtained, interventions to treat the patient trauma are performed. It should also 

be noted that supportive care delivery deviations occur largely in Phase 4. In 

Phases 1-3, the focus of the team is in examining the patient. Supportive case is 

usually provided after these phases are completed. 

Figure 21 shows the relationship between phase of trauma standard and 

deviations classified role played by clinician in the trauma team (Chi-sq = 

51.3650, df = 12, p < 0.0001). It can be seen that for each role deviations are 

biased in a certain phase of the standard. For senior residents, most deviations are 

made in Phase 2 (X-ray and Diagnostic Studies), whereas nurses make most 

deviations in care delivery. This indicates the shift in activity control between 

clinicians involved in trauma care. Experienced clinicians (senior residents and 

nurses) also show restraint in the phases in which they deviate. This supports the 

previous statement that expert clinician possess the knowledge base to deviate 

with the flexible portions of the guidelines alone. 
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Figure 21. Deviations (classified by role) and phases of trauma standard 

 

Deviations and Clinician Role in Trauma Team 

Figure 22 and Figure 23 show the total number of deviations made by the 

individual members of the trauma team for classification schema 1 (Chi-sq = 

65.7722, df = 12, p < 0.0001) and classification schema 2 (Chi-sq = 18.5554, df = 

8, p = 0.0174). A statistically significant relationship was found between types of 

deviations and role played by the clinician in the trauma team. Expert clinicians 

made more innovations (attendings: 44.44%, PGY4/5 residents: 33.33%, trauma 
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nurses: 14.81%) when compared to junior residents (7.41%). Junior residents on 

the other hand made a greater number of errors than any other group (63.64%). 

These findings substantiate the preliminary study on errors and innovations [62].  

 

Figure 22. Deviations (classification schema 1) and clinician role 
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Figure 23. Deviations (classification schema 2) and clinician role 

 It can also be seen that most of the deviations performed by residents are 

process- and procedure-related. As mentioned earlier and corroborated by Figure 

23, junior residents’ deviations are more biased towards procedures. It is not 

unusual that deviations made by nurses are predominately care delivery-related. 

Trauma teams have well-defined role boundaries. This enables teams to function 

effectively in chaotic situations. 

Expertise is critical to formation of adaptive teams in trauma critical care. 

The results show that trauma leaders with more experience are able to adapt to the 
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dynamic environment while minimizing errors. Novices, on the other hand, are 

preoccupied by procedural aspects of trauma care and fail to achieve the 

necessary levels of communication needed to facilitate team innovations. Another 

key difference between experts and novices lies in their ability to recover from 

errors and unexpected events. Patel and colleagues [74] showed that experts’ 

knowledge is adapted to recognize familiar patterns of stimuli. However, their 

heuristic reasoning from the pattern recognition strategy may not be effective in 

some complex situations [75]. Experts may make errors, but are adept at 

correcting them before negative consequences occur. Novices on the other hand 

fail to perceive the consequences of their decisions until it is too late [6, 66]. 

 

Relationship between Classification Schemas 

A significant relationship was also found between classification schema 1 and 

schema 2 (Chi-sq = 25.9012, df = 6, p = 0.0002). Figure 24 depicts this 

relationship. A majority of the proactive deviations were process-related. 

Proactive deviations often involved task advancement. This could account for the 

observed relationship. Since the number of process-related deviations is high, it is 

difficult to assess the nuances of the relationships between other variables. 

However, one observation is that there are no care delivery-related errors. In order 

to assess the validity of this finding, further data collection to increase the sample 

size of trauma cases will be needed. 
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Figure 24. Deviations classified with schema 1 and 2 

 

Study Limitations 

This work attempts to provide definitions and structure to a subjective form of 

analysis. Classifying deviations using the methodology described (based purely 

on observations) is difficult since there may not be enough contextual information 

to make a concrete decision. Video recording of trauma cases or using data 

gathered using the hybrid framework described in this manuscript will enable 

capture of all the activities that take place in trauma care. This will especially be 
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useful in cases where it is difficult to identify the clinicians involved in initiating 

the chain of events that resulted in a particular deviation. 

In addition to data collection methods, the validity and generalizability of 

the classification schema will need to be assessed. Deviations will need to be 

classified by independent raters or coders. Sufficient inter-rater reliability will 

provide concrete support for the value of this work. In addition to validation, the 

current data set does not contain enough examples of team, procedure and care-

delivery type deviations. In order to ascertain if this is because of low sample size 

or the absence of such deviations in general, more trauma cases will need to be 

observed. In the following chapter, research efforts to assess validity and 

completeness of the classification schema are described. 

  



  86 

EVALUATING GENERALIZABILITY OF CLASSIFICATION SCHEMAS 

This chapter describes two independent experiments conducted to assess the 

generalizability of the classification schemas presented. Based on the limitations 

described in the previous chapter, experiments are designed to (i) assess the 

replicability of the classification by independent raters, and (ii) concordance of 

their rating/coding with the original classification. The results of the experiments 

described will help guide future work in this domain. 

 

Replicability of Classification Schemas 

In previous work 30 trauma cases were observed in Banner Good Samaritan’s 

Trauma Center. These observations were de-identified and utilized to develop the 

current classification schema. These observations were used in the experiment to 

assess the replicability of classification by other raters. 

 

Methods 

This study was approved by the Institutional Review Boards of Arizona State 

University and Banner Good Samaritan Medical Center. Fifteen trauma cases 

were randomly chosen from the existing pool of thirty trauma cases. Deviations 

from five of these cases were used for training two raters. The deviations in the 

remaining ten cases served as the test set. The raters chosen for this experiment 

had prior clinical environments experience (having spent 30 to 60 hours observing 

clinicians). Raters with experience were chosen due to the contextual nature of the 

task.   
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The training phases consisted of a PowerPoint® slideshow that provided a 

brief introduction to trauma critical care and the various classification schemas. 

Raters were then asked to code each deviation in the training set (a total of 17 

deviations). After every classification, the answers from the current classification 

were present followed by a discussion about the deviation. Upon completion of 

the training phase, raters proceeded with the test.  

In the test phase, raters were presented with deviations from the 

randomized test cases (a total of 38 deviations). For each deviation, raters marked 

the type of deviation for classification 1, 2 and 3. They were provided with a not 

applicable (N/A) option, if they were unsure of how to classify the deviation. 

Among the 38 deviations, one rater marked N/A for one deviation. This 

sample was omitted from the analysis as an anomaly. Following the coding, the 

data were analyzed to assess (i) inter-rater agreement between the two raters, and 

(ii) concordance with existing classification though a similar agreement measure. 

A simple Cohen’s Kappa statistic was used for the analysis. As the classification 

schema is not ordered, all categories were given the same weight (one).  

There are a number of guidelines available for interpreting Kappa 

statistics. For example, Fleiss’s [76] guidelines consider Kappa >0.75 as 

excellent, 0.40 to 0.75 as fair to good, and < 0.40 as poor agreement. Landis and 

Koch [77], on the other hand present a more granulated scale for measuring 

agreement. They consider Kappa values of 0.81 – 1.00 as almost perfect 

agreement, 0.61 – 0.81 as substantial, 0.41 – 0.6 as moderate, 0.21 – 0.40 as fair, 

0.0 – 0.20 as slight agreement and <0 as poor agreement. Since the nature of the 
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classification task is subjective, the scale proposed by Landis and Koch [77] is 

used to interpret the results of the Kappa tests performed. In the following section 

the results of this experiment are presented. 

 

Results 

 

Inter-rater Agreement for Classification Schemas 

For each of the classification schemas (1: Error, Innovation, Proactive, and 

Reactive; 2: Process, Procedure, and Care Delivery, and 3: Individual and Team), 

the rating or classification provided by the two raters was analyzed using Cohen’s 

Kappa. Table 7 summarizes the statistics for the inter-rater reliability test between 

Rater A and Rater B. 

Table 7. Kappa statistics for test between Rater A and Rater B 

 

There is substantial agreement for classification 1 and 2. However, there is 

moderate agreement for classification schema 3. One reason for this result could 

be the lack of sufficient examples of team deviations in the current data set. 

Another reason could be the difficulty in defining what constitutes a team 

deviation in trauma care. Take, for example, the case where the log roll step in 

trauma care is missed. One could argue that the trauma leader is responsible for 

how trauma care is conducted. Hence is it an individual error. On the other hand, 
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there were a number of other team members who could have prevented the error. 

In that sense it could be a team error. Such a difficulty could be resolved by 

studying individual and team interactions further in trauma care. 

The results of the inter-rater reliability test are promising. For 

classification schemas 1 and 2, the relatively high Kappa score indicates that 

independent raters can use the classification schema. 

 

Concordance with Original Classification 

Table 8 and Table 9 show the results of tests conducted between (i) Rater A and 

the original classification, and (ii) Rater B and the original classification. Rater A 

had very high (almost perfect) agreement with the original classification in all 

three schemas. Such high levels of agreement are unexpected. Rater B, on the 

other hand had substantial agreement for schema 1 and moderate agreement for 

schema 2 and 3.  

Table 8. Kappa statistics for test between Rater A and original classification 

 

Table 9. Kappa statistics for test between Rater B and original classification 
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These results indicate the natural differences between raters. The high 

agreement with rater A and moderate to substantial agreement with rater B 

validates the categories developed to assess deviations. Combined with the results 

of agreement between Rater A and Rater B, this indicates that the classification 

schema is replicable and can be effectively used by other researchers. 

 

Study Limitations 

The key limitation of this study is that raters obtain their contextual information 

from tertiary observations. The process of immersing oneself in an environment 

provides information about several nuances of behavior that may be completely 

missed in written observations. Reproducing the study with data from the hybrid 

framework or video recording of trauma cases will provide the raters with all the 

information they would need to make a classification. It is also possible that the 

Kappa scores will improve even further if raters were provided with 

comprehensive data. 

 Classifying deviations to understand cognitive decision-making processes 

is a very subjective process. One example from the test set is an attending asking 

a nurse if there is a tuberculosis protocol to follow, after it was discovered that the 

patient might be infected. The classification schema stated that it was a proactive 

deviation. Rater A marked it as an innovation and Rater B marked it as a reactive 

deviation. All three cases can be argued. It is a proactive deviation, since the 

attending went out of the bounds of his role in requesting the information 

(possibly in anticipation of steps to follow). It can be considered to be reactive, 
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since it is a common task addition in reaction to the patient being infected (a 

random event). If thought of as a novel task addition that greatly improves patient 

and team safety, then it is an innovation. These arguments are based on (i) what 

the rater finds is accepted, or common behavior, and (ii) what they perceive the 

impact of the deviation might be. Prior to classification and analysis, researcher 

will need to develop a rubric for addressing these two factors.  
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DISCUSSION 

The findings from the research described in this work have a number of scientific 

and practical implications to the field of biomedical informatics. In this section, 

the broad implications of this work are discussed under the themes of (i) protocols 

and guidelines in complex systems, (ii) expertise and innovation, and (iii) training 

clinicians in complex systems.  

 

Protocols and Standards in Complex Systems 

Protocols and standards are important for ensuring process consistency and 

patient safety in healthcare.  It has been shown that linear systems and processes 

are aided by protocol and checklist deployment. For example, Pronovost and 

colleagues showed that implementation of a checklist for central line placement 

decreased the rate of catheter related blood infections from 2.7% to zero in the 

first three months of deployment [78]. Such protocols limit errors by reducing the 

workload on human memory and automating the care process [79]. Most critical 

care environments, however, are characterized by non-linear interactions and 

dynamic emergent behavior [80]. In such environments, clinicians need to make 

dynamic adjustments to protocols and guidelines, in order to adapt to the 

operational conditions and to achieve high accuracy and efficiency. The analysis 

of 30 trauma cases in this work showed that an average of 5.37 deviations occur 

during each case. Therefore, complex systems similar to trauma critical care, 

cannot be treated as a zero-tolerance environments. While protocols and 

guidelines serve to control complexity and errors through standardization, the 
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importance of adapting standards safely to adjust to the environments needs to be 

recognized by clinicians and researchers alike. 

 

Expertise and Innovation 

Protocols and standards are based on observations and evidence gathered from 

practices. New information and novel findings from practice need to be 

incorporated into the guidelines and protocols. So how do such novel ideas get 

generated from practice? When regular or standard patterns do not fit or match the 

current problem, possible alternative ideas get generated. This is the process of 

innovation, and innovation is not possible without deviations. As practitioners 

gain experience in the execution of a task, their performance become increasingly 

smooth and efficient. While developing proficiency with attention-demanding 

complex tasks, some component skills become automatic, so that conscious 

processing can be devoted to reasoning and reflective thought with minimal 

interference in the overall performance. A great deal of experts' knowledge is 

finely tuned and highly automated enabling them to execute a set of procedures in 

an efficient manner. Yet they can perform such tasks in a highly adaptive manner, 

which is sensitive to shifting contexts. 

 The findings from this research showed that expert clinicians (senior 

residents and attending surgeons) do make errors. However, they are able to 

correct errors made before they result in a critical failure. The analysis of 

deviations also showed that the expertise of the trauma team leader impacted the 

types of deviations made. Expert teams were more innovative, compared to teams 
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led by a novice resident. Not only are these finding consistent with emerging 

knowledge about medical errors and expertise [74], it also indicates that expertise 

is critical to the formation of adaptive clinical teams. 

 

Training clinicians in Complex Systems 

There is a strong need for informatics tools that will enable novices to adapt to the 

trauma environment in following certain standards, allowing for fewer errors. The 

classification of deviations could allow for a scientific framework for 

modification of protocols and enable protocol developers to leverage a data-

driven approach to modifications. Currently available tools such as checklists and 

protocols need to allow for note takers to mark and document deviations, errors 

and innovation. In protocol-driven environments, checklists have been found to be 

a valuable tool in minimizing error rates. However, since experts’ deviations are 

important for education and practice, these checklists would have to be flexible 

enough to be automatically updated. For a dynamic environment like trauma, 

these checklists when implemented would need to be adaptable as well. In order 

to develop such a tool, one would need to know the general decision process in 

trauma and the various types of deviations that may occur. Using the 

classification of deviations presented in this work, it may be possible to create 

such a checklist, one that is customized to the expertise and the role of the 

individuals in a trauma team. 

In addition to supporting dynamic checklists, the classification schema can 

also enable the development of simulators driven by real-world data that provide 
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training to maximize innovation and minimize error occurrence. Such an 

educational tool will be critical in developing decision-making skills of residents 

and caregivers. It would allow for a comprehensive evaluation of the skills of the 

caregivers as well as a means to train teams for not only adherence to a protocol 

but enabling recognition of circumstances where innovation is needed. 

The classification schema developed is generic and can be utilized to study 

deviations in other environments where similar complexity is experienced. Such 

environments include emergency departments and intensive care units. 

The recognition of deviations utilizing a schema that classifies deviations 

as errors, innovations and procedural deviations can significantly alter compliance 

procedures. In addition, such a classification can lay the foundations for an 

adaptive framework for the modification of existing protocols. For example, if 

deviations are consistently seen on a particular step in a protocol, then that step 

may have to be re-analyzed. Similarly if innovations are continuously seen and 

replicated in multiple sites, then it could be incorporated into the next version of a 

protocol. Therefore, the analysis of deviations as described in this work can help 

guide efforts to update existing protocols and guidelines in meeting the 

requirements of complex adaptive systems.  
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CONCLUSIONS 

Clinicians deviate from protocols when managing patients. The studies discussed 

in this manuscript show that clinical teams in critical care environments make a 

significant number of deviations per case, and that not all deviations are errors. 

The study of these deviations can provide new insight into how teams operate in 

complex environments and what distinguishes experts from novices. The results 

are in coherence with existing literature on exploring the cognitive basis of 

clinical expertise. It can be hypothesized that existence of retrieval structures in 

experts and top-down information processing allows for time-critical thinking that 

supports innovation by experts. This is supplemented by the information filtering 

that the retrieval structures support. On the other hand, novices are driven by 

bottom-up reasoning mechanisms and, without retrieval structures and filtering, 

are overwhelmed by the data and often make errors. Although only further 

experimentation can investigate this hypothesis, the observations clearly point to 

the plausibility of such mechanisms. 

An analysis of deviations can enable the building of models of expertise 

and workflow that can be then used to design the next generation of effective 

interventions. Interventions could be standardized communication tools, and uses 

of information technology that supports innovations by effective presentation of 

information and cognitive decision support through educational efforts such as 

simulations. Simulations offer an exciting means of teaching clinical caregivers to 

learn how to effectively innovate in complex environments. The Accreditation 

Council of Graduate Medical Education recognizes simulation as an effective 
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means of promoting critical thinking, professionalism and clinical knowledge 

[81]. It is generally seen only as an effective means of promoting standardization 

and adherence to a protocol [82]. This study, however, shows that simulation 

should be used for teaching clinical caregivers the nuances of errors and 

innovations. Simulation offers a safe environment to achieve such goals. 

Simulations that are not just a means of achieving standardization but also help 

develop certain knowledge structure fairly quickly (through practice that would 

make any deviations safer) can be developed.  

The data presented in this paper suggests that there is a strong link 

between innovations, errors and expertise. Expert caregivers deviate from the 

protocol almost as often as novices but make significantly more innovations. This 

seems to suggest that expert have a strong mental model of how and when to 

innovate and can employ their knowledge and application abilities to innovate on 

the fly. Such innovations and recognizing them should be an important part of 

clinical practice as it helps is redesigning protocols and procedures. 

The next steps for this research include studies to explore in detail the 

underlying mechanisms of expertise and innovations in trauma. The 

methodologies described by Arocha and Patel [83] will be employed for these 

studies. Focusing on semantic analysis as a means of studying the innovations 

process in experts and novices will greatly add to the conclusions of this work. 

Semantic analysis will yield important insights into how information is 

assimilated and processed by clinical caregivers. This would be crucial in 

understanding how to develop novel protocols and standards. For example, given 



  98 

the seriality of information as it passes from working memory to long term 

memory [84], one may include markers within the case description that may 

invoke the correct knowledge structures in long-term memory that support 

creativity. Continuation of this research will enable testing such interventions 

(including simulations mentioned above) and evaluating the same. 
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