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ABSTRACT  
   

Water quality in surface water is frequently degraded by fecal 

contamination from human and animal sources, imposing negative implications 

for recreational water use and public safety. For this reason it is critical to identify 

the source of fecal contamination in bodies of water in order to take proper 

corrective actions for controlling fecal pollution. 

Bacteroides genetic markers have been widely used to differentiate human 

from other sources of fecal bacteria in water. The results of this study indicate that 

many assays currently used to detect human-specific Bacteroides produce false 

positive results in the presence of freshwater fish. To further characterize 

Bacteroides from fish and human, the fecal samples were cultured, speciated, and 

identified.  As a result, forty six new Bacteroides 16S rRNA gene sequences have 

been deposited to the NCBI database. These sequences, along with selected 

animal fecal sample Bacteroides, were aligned against human B. volgatus, B. 

fragilis, and B. dorei to identify multi-segmented variable regions within the 16S 

rRNA gene sequence. The collected sequences were truncated and used to 

construct a cladogram, showing a clear separation between human B. dorei and 

Bacteroides from other sources. A proposed strategy for source tracking was field 

tested by collecting water samples from central AZ source water and three 

different recreational ponds. PCR using HF134 and HF183 primer sets were 

performed and sequences for positive reactions were then aligned against human 

Bacteroides to identify the source of contamination. 
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 For the samples testing positive using the HF183 primer set (8/13), fecal 

contamination was determined to be from human sources. To confirm the results, 

PCR products were sequenced and aligned against the four variable regions and 

incorporated within the truncated cladogram. As expected, the sequences from 

water samples with human fecal contamination grouped within the human clade. 

As an outcome of this study, a tool box strategy for Bacteroides source 

identification relying on PCR amplification, variable region analysis, human-

specific Bacteroides PCR assays, and subsequent truncated cladogram grouping 

analysis has been developed. The proposed strategy offers a new method for 

microbial source tracking and provides step-wise methodology essential for 

identifying sources of fecal pollution. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  iii 

DEDICATION 
   

This dissertation is dedicated to my parents, who supported me every step 

of the way, and for their endless patience, encouragement, and sacrifices. 



  iv 

ACKNOWLEDGMENTS  
   

Though the following dissertation is an individual work, I could never 

have achived this without the help, support, guidance, and efforts of many people. 

My deepest gratitude is to my advisor, Dr. Morteza Abbaszadegan, for his support 

and guidance throughout my graduate study. I would like to thank my dissertation 

committee members Dr. Scott Bingham, Dr. Peter Fox, Dr. Jean McLain, and Dr. 

Channah Rock for their invaluable instruction and guidance. I would also like to 

acknowledge Dr. Absar Alum and Dr. Hodon Ryu, for their mentorship and 

training.  Last, but not least, I would like to thank my family for their love, 

support, and encouragement. 

 

  

 

 

 

 

 

 

 

 

 

 

 



  v 

TABLE OF CONTENTS 

          Page 

LIST OF TABLES .................................................................................................... viii  

LIST OF FIGURES .................................................................................................... ix  

CHAPTER 

1    BACGROUND ........................................................................................ 1  

1.1. Introduction .................................................................................. 1  

1.2. Objective ...................................................................................... 3  

2    LITERATURE REVIEW ......................................................................  5  

2.1. Bacteroides Background Information ......................................... 5  

2.1.1. Taxonomy ..................................................................... 5  

2.1.2. Characteristics .......................................................... …8  

2.1.3. Species ....................................................................... .12  

2.1.4. Genome .................................................................... ..18  

2.1.5. Occurrence ................................................................. 22  

2.2. Bacteroides Isolation and Identification Methods .................... 23  

2.2.1. Identification using Culture-based Methods ............. 23  

2.2.2. Identification using Biochemical Methods ............... 25  

2.2.3. Molecular Techniques ................................................ 26  

2.3. Microbial Source Tracking ........................................................ 28  

2.3.1. Library-dependent Methods ....................................... 29  

2.3.2. Library-independent Methods ................................... 29  

 



  vi 

 CHAPTER                                                                                                             Page 

2.3.2 .1. Bacteroides fragilis Bacteriophages 

Detection for MST ................................................... 30  

2.3.2.2. Host Specific Identification for MST ........ 31  

3    INVESTIGATING SPECIFICITY OF FIVE SETS OF PUBLISHED 

HUMAN-SPECIFIC BACTEROIDES PRIMERS WITH FECAL 

DNA FROM FOUR FRESHWATER FISH SPECIES ...............  35  

3.1. Abstract ...................................................................................... 35  

3.2. Introduction ................................................................................ 36  

3.3. Materials and Method ................................................................ 38  

3.3.1. Fish Fecal Sample Collection .................................... 38  

3.3.2. DNA Extraction and PCR .......................................... 38  

3.3.3. Cloning and Sequencing ............................................ 40  

3.4. Results and Discussion .............................................................. 41  

3.4.1. Cross-amplification Testing of Human-Specific 

Assays ................................................................................... 41  

3.4.2. Initial Alignment of Clone Sequences from Fish Fecal 

Bacteria ................................................................................. 42  

3.4.3. Impact on Source-tracking Studies for Water Quality

............................................................................................... 43  

3.5. Conclusions ................................................................................ 44  

 
 
 



  vii 

CHAPTER                                                                                                             Page 

4    ISOLATION OF BACTEROIDES FROM FISH AND HUMAN 

FECAL SAMPLES FOR IDENTIFICATION OF UNIQUE 

GENETIC MARKERS .................................................................. .46  

4.1. Abstract ...................................................................................... 46  

4.2. Introduction ................................................................................ 47  

4.3. Materials and Method ................................................................ 49  

4.3.1. Fish Sample Collection .............................................. 49  

4.3.2. Isolation of Bacteroides using Culture-based 

Techniques ............................................................................ 50  

4.3.3. Bacteroides Identification using Biochemical Methods

............................................................................................... 51 

4.3.4. DNA Extraction and PCR Amplification .................. 52  

4.3.5. Molecular Techniques: Cloning, DNA Sequencing 

and Phylogenetic Tree Construction .................................... 54  

4.4. Results and Discussion .............................................................. 55  

4.4.1. Bacteroides Culturing and API test Results .............. 55  

4.4.2. Phylogenetic Analysis of Partial Bacteroides 16S 

rRNA Gene Sequence from Human and Fish ..................... 61  

4.5. Conclusions ................................................................................ 65  

 
 
 
 
 



  viii 

CHAPTER                                                                                                             Page 

5    A NEW MICROBIAL SOURCE TRACKING STRATEGY USING 

BACTEROIDES 16S rRNA SIGNATURES IN WATER 

SOURCES ......................................................................................  67 

5.1. Abstract ...................................................................................... 67  

5.2. Introduction ................................................................................ 68  

5.3. Materials and Method ................................................................ 71  

5.3.1. Developing a Tool Box Strategy for Source 

Identification ......................................................................... 71  

5.3.1.1. Fecal Sample Collection  ............................ 71  

5.3.1.2. Bacteroides Isolation from Fecal Samples 

using Culture-based Technique ............................... 72  

5.3.1.3. Bacteroides Isolation from Fecal Samples 

using Molecular Techniques ................................... 72  

5.3.1.4. Bacteroides 16S rRNA Gene Sequence 

Alignment and Variable Region Identification ....... 73  

5.3.1.5. Cladogram Construction using Non-

truncated and Truncated Sequences ........................ 74  

5.3.2. Field Testing the Tool Box Strategy.......................... 75  

5.3.2.1. Site Selection Criteria and Field     

Sampling  ................................................................. 76  

5.3.2.2. Procedural Recovery Efficiency  ............... 78  

 



  ix 

CHAPTER                                                                                                             Page 

5.3.2.3. Evaluation of Primer Sets to Amplify Human 

Bacteroides  ............................................................. 79  

5.3.2.4. Detection of  Bacteroides from Field 

Samples by PCR  ..................................................... 80  

5.3.2.5. Cloning and DNA Sequencing of 

Bacteroides from Field Samples ............................. 80  

5.3.2.6. Decision Making Tool Box ........................ 81 

5.4 Results and Discussion ............................................................... 81  

5.4.1. Bacteroides 16S rRNA gene Sequence Alignments . 82  

5.4.1.1. Characterization of Bacteroides from 

Different Fecal Sources: Culture-based and 

Molecular Technique ............................................... 82  

5.4.1.2. Variable Region Identification and Analysis

 .................................................................................. 86  

5.4.1.3. Cladogram Analysis: Non-truncated vs. 

Truncated Cladogram .............................................. 89  

5.4.2. Field Samples Source Identification Results ............. 91  

5.4.2.1. Procedural Recovery Efficiency for 

Detecting Bacteria from Water Samples ................. 91  

5.4.2.2. Specificity of HF134 and HF183 Primers for 

Identifying Bacteroides in Animal Fecal Samples . 92  

 



  x 

CHAPTER                                                                                                             Page 

5.4.2.3. Analysis of PCR and Sequencing Data for 

Field Samples ........................................................... 96  

5.4.2.4. Tool Box and Identification of Sources of 

Fecal Contamination .............................................. 101  

5.5. Conclusions .............................................................................. 107  

REFERENCES  ......................................................................................................  108 



  xi 

LIST OF TABLES 

Table Page 

1.       Species of genus Bacteroides according to ITIS  ................................  13 

2.       Species of genus Bacteroides according to DSMZ .............................  14 

3.       DNA base composition of Bacteroides species  .................................  17 

4.       Genomic characteristics of some Bacteroides isolates .......................  20 

5.       Effect of temperature on decay rate of Bacteroides ............................  32 

6.       List of some of the host specific PCR assays targeting 16S rRNA gene 

of Bacteroides ....................................................................................  33 

7.       List of human-specific Bacteroides genetic markers cross 

           amplified with Bacteroides of other animal ......................................  37 

8.       Assays used to test for PCR amplification of human and fish 

           fecal DNA samples in this study .......................................................  40 

9.       Evaluation of amplification results of the primer sets specific to 

           human Bacteroides on DNA extracted from human and fish 

           samples ..............................................................................................  41 

10.       Assays used to amplify 16S rRNA gene of Bacteroides from 

           human and fish samples .....................................................................  53 

11.     Bacterial species in NCBI Gene Bank homologues to 16S rDNA 

           sequences obtained for this study.. ....................................................  55 

12.     Characterization of Bacteroides species isolated from human and fish 

feces using culture-based and molecular techniques ........................  60 

 



  xii 

Table Page 

13.     Accession numbers for NCBI sequences and study samples aligned to 

identify four variable regions  ...........................................................  74 

14.     Number of cladograms constructed .....................................................  75 

15.     Sources for Bacteroides 16S rRNA gene sequences used in cladogram 

construction ......................................................................................... 75 

16.     Sites selected for field sampling ..........................................................  77 

17.     Primers used to amplify Bacteroides from field samples ...................  80 

18.     Characterization of Bacteroides species isolated from human and 

selected animal feces using culture-based and molecular techniques ...  

85 

19.     Alignment analysis of Bacteroides 16S rRNA gene sequences from 

selected animals compared to human Bacteroides volgatus  ...........  86 

20.     Alignment analysis of Bacteroides 16S rRNA gene sequences from 

selected animals compared to human Bacteroides fragilis  .............  87 

21.     Alignment analysis of Bacteroides 16S rRNA gene sequences from 

selected animals compared to human Bacteroides dorei  ................  87 

22.     Amplification results for HF134 and HF183 primers on fecal samples ..  

95 

23.     Amplification results for HF134 and HF183 primers on field samples ..  

100 

24.     Tool box for source identification .....................................................  103 

25.     List of water samples corresponding to scenarios listed in Table 24  103 



  xiii 

LIST OF FIGURES 

Figure Page 

1.       Placement of Bacteroides genus in Bacteroidetes phylum ...................  7 

2.       Glucose fermentation pathway of B. thetaiotaomicron  .......................  9 

3.       A schematic model of the B. fragilis cell envelope  ...........................  10 

4.       Scanning electron micrograph of B. fragilis (NCTC 9343) ................  11 

5.       Proportions of Bacteroides species seen clinically .............................  15 

6.       Blast atlas of the genome of B. fragilis (NCTC 9343) and B. 

thetaiotaomicron (VPI-5482) ............................................................  19 

7.       Phylogenetic tree based on 16S rRNA sequence ................................  21 

8.       Top picture: B. fragilis cultured on Blood agar. Bottom picture: B. 

fragilis cultured on Bacteroides Bile Esculin agar (BBE) ...............  25 

9.       Gel photograph of PCR amplification using HuBac primers on 

extracted fecal DNA of Nile tilapia and humans ..............................  41 

10.     DNA sequence alignment of PCR amplicons generated using the 

HuBac assay on human and fish fecal samples ................................  43 

11.     Anaerobic bag, inoculated (right) and uninoculated (left) chopped meat 

medium tubes .....................................................................................  51 

12.     API test strip (Rapid ID 32A) used to speciate Bacteroides harvested 

from fish fecal sample .......................................................................  52 

 
 
 

 



  xiv 

Figure Page 

13.     Bacteroides colonies cultured from fish fecal sample on BBE plate .  56 

14.     Phylogenetic relationship of Bacteroides 16S gene sequences (~600 

  and ~1381bp) of clones recovered in this study  ..............................  63 

15.     Sites selected for field testing ..............................................................  78 

16.     Cladograms from cultured Bacteroides using a) non-truncated 

sequences and b) truncated sequences ..............................................  90  

17.    Cladogram from un-cultured Bacteroides a) non-truncated sequences b) 

truncated sequences………………………………………………...91 

18.      Recovery efficiency of E. coli from membrane filtration ................... 92 

19.      DNA Gel photograph of amplicons derived from PCR with HF183 

and Bac708R primers on fecal sample DNA from the animals .......  96 

20.      Gel photograph of PCR products using (a) HF134 and Bac708R 

primers and (b) HF183 and Bac708R primers on DNA extracted from 

field samples ......................................................................................  99 

21.      Tool box flow chart ...........................................................................  102 

22.      Cladogram constructed from truncated 16S rRNA gene sequences 

from human, animal and field samples ...........................................  106



  1 

 
Chapter 1 

BACKGROUND 

1.1.      Introduction 

Monitoring microbial quality of water sources used for drinking, 

irrigation, aquaculture, and recreational activities is a critical task. The majority of 

watersheds used as sources of drinking water and for recreational activities are 

contaminated by microbial pollution. According to an U.S. EPA report, 45% of 

streams and rivers, 47% of lakes and ponds, and 32% of bays and estuaries are not 

clean enough for their final use (USEPA, 2002a). The microbial quality of water 

can be degraded by fecal contamination from point sources (e.g., effluent from 

wastewater treatment plants, raw sewage from sewer overflows, and storm water) 

or from non-point sources (e.g., wildlife or runoff from farms) (Kim et al., 2005). 

Maintenance and management of the microbiological quality of water is very 

important, as contamination of water can cause high risks to human health and 

economic losses due to closure of beaches and shellfish harvesting areas. Fecal 

pollution from both human and animal impose risks to human health from 

exposure to pathogenic bacteria (Baker and Herson, 1999), viruses (Pina et al., 

1998), and protozoa such as Cryptosporidium (Lefay et al., 2000). Waters 

contaminated with human feces are generally considered as a greater risk to 

human health, as they are more likely to contain human enteric pathogens 

(Guzewich and Morse, 1986). Knowing the source of contamination is critical to 

develop effective resource management and, ultimately, solve the problem. 
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Over the past several years scientists have been using members of the 

genus Bacteroides to identify and quantify level of fecal contamination from non-

point sources. They are preferred microbial indicator of fecal pollution due to 

their high abundance in feces (Madigan et al., 2003), low potential to grow in the 

environment (Salyers, 1984; Sghir et al., 2000), and high degree of host 

specificity that likely reflects differences in source animal digestive systems 

(Bernhard and Field, 2000a; Simpson et al., 2004; Dick et al., 2005a). Recently, 

several studies have proposed the existence of human-specific Bacteroides 

genetic markers and developed methods for their detection by conventional and 

quantitative PCR (Bernhard and Field, 2000b; Seurinck et al., 2005; Layton et al., 

2006; Reischer et al., 2007). Since the use of Bacteroides as a fecal source 

identification tool is relatively new, extensive field testing is ongoing to determine 

the specificity of the published assays. Studies that have identified human-specific 

Bacteroides 16S rRNA genetic markers have also reported cross-reactivity of the 

PCR-primers with canine and swine fecal strains (Kreader, 1995; Layton et al., 

2006; Ahmed et al., 2009). 

My recent work has shown cross-amplification of several published 

protocols for the identification of human-specific Bacteroides 16S rRNA genetic 

markers with DNA extracted from fecal samples of fish species (tilapia, catfish, 

trout, and salmon). Although Bacteroides have long been identified as indigenous 

in the intestine of freshwater fish, to date, no fish species has been tested for 

cross-amplification with the published human Bacteroides markers (McLain et 

al., 2009). Non-specificity of the designed human-specific Bacteroides genetic 
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markers and their cross-amplification with fish can lead to false identification of 

the source of fecal contamination in surface water. Hence, to eliminate such a 

problem it is critical to propose a new Microbial Source Tracking (MST) strategy 

by following step-wise methodology.  

1.2.      Objectives 
 

 The main objective of this study is to develop a tool box strategy for 

Bacteroides source identification. Specific objectives covered by each chapter are 

as follows: 

 
• Investigating the specificity of five sets of published human-specific 

Bacteroides primers with fecal DNA from four freshwater fish species. 

o Performing literature review to produce a list of published primer 
sets specific for amplifying human Bacteroides 16S rRNA gene. 

o Selecting standard PCR primers from published literature to 
evaluate their specificity. 

o Collecting human and fish (tilapia, catfish, trout, and salmon) fecal 
samples and performing DNA extraction, purification, and PCR 
amplification. 

o Performing cloning and DNA sequencing to confirm PCR results. 

• Isolation of Bacteroides from fish and human fecal samples for 

identification of unique genetic markers. 

o Culturing Bacteroides isolates from human and fish (tilapia, grass 
carp, blue catfish, channel catfish, and trout) fecal samples on 
Bacteroides Bile Esculin agar selective media.  

o Identifying Bacteroides species by using biochemical tests such as 
API strips and molecular techniques. 



  4 

o Constructing clone libraries of Bacteroides 16S rRNA genes of the 
identified species. 

• Proposing a new MST strategy using Bacteroides 16S rRNA signatures in 

water sources 

o Bacteroides 16S rRNA gene sequence alignment of fish and 
selected animal against human Bacteroides for identification of 
variable regions. 
 

o Developing a tool box strategy based on sequence alignment 
analysis, human-specific PCR assays, and cladogram grouping 
analysis. 
 

o Field testing the strategy by collecting water samples from Central 
AZ source water, ponds, and lakes. 
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Chapter 2 

LITERATURE REVIEW 

2.1.      Bacteroides Background Information 

 The majority of the bacterial community in the mammalian colon is 

comprised of anaerobes and one of the most predominant of these are of the genus 

Bacteroides. This section will go over some background information regarding 

Bacteroides such as their taxonomy, characteristics, species, genome, and 

occurrence. 

2.1.1.   Taxonomy 

 Bacteroides were originally described by Veillon and Zuber (1898) and 

for almost 30 years they were a collection of heterogeneous bacteria which were 

grouped based on a common host and physiological similarities such as being 

obligate anaerobes and gram-negative rods. Soon the physiological heterogeneity 

of this group started to supersede their vague physiological similarities and it led 

to the first scientific description of this group by Castellani and Chalmers (1919). 

Over the years different approaches have been used to reorganize this group 

including: physiological characteristics (Holdeman et al., 1984), serotyping 

(Lambe, 1974), bacteriophage typing (Booth, et al 1979), lipid analysis 

(Miyagawa, 1979), oligonucleotide cataloging (Paster et al., 1985), and 5S - 16S 

rRNA sequence comparisons (Johnson, 1978; Paster et al., 1994; Van den Eynde  

et al., 1989; Weisburg et al., 1985). 

Bacteria belonging to phyla Bacteroidetes and Firmicutes are the two 

major groups in the human clone and together make up 95-99% of the gut 
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microbiota (Karlsson et al., 2010). Placement of the genus Bacteroides in the 

phylum Bacteroidetes is shown in Fig 1. In 1986 three newly isolated Bacteroides 

species derived from human feces were described and named as B. caccae, B. 

merdae and B. stercoris (Johnson et al., 1986). In 1989 the Bacteroides genus 

underwent a major revision and was restricted to the type species Bacteroides 

fragilis and closely related organisms based on biochemical and genomic GC 

content (Shah and Collins, 1989). These closely related organisms include B. 

vulgatus, B. thetaiotaomicorn, B. distasonis, B. caccae, B. eggerthii, B. merdae, 

B. ovatus, B. stercoris, and B. uniformis. The restriction of the Bacteroides genus 

to the B. fragilis group resulted in movement of several species from this genus to 

new genera such as Prevotella and Porphyromonas (Shah and Collins, 1990; Shah 

and Collins, 1988). In 1995, B. gracilis was moved from the Bacteroides genus to 

Campylobacter and was renamed as Campylobacter gracilis (Vandamme et al., 

1995). In 2003, B. putredinis was reclassified and was changed to the new genus 

Alistipes (Rautio et al., 2003). More recently, B. goldsteinii, B. distasonis, and B. 

merdae have been excluded from the Bacteroides genus and moved to the new 

genus Parabacteroides (Sakamoto and Benno, 2006). With the advent of 

molecular techniques and 16S rRNA gene sequencing a variety of new species 

have been added to the genus Bacteroides such as: B. nordii, B. salyersai, B. 

plebeius, B. coprocola, and B. massiliensis (Wexler, 2007). Recently, based on 

Bacteroides 16S rRNA gene analysis and protein families and their functional 

content, it has been suggested that Bacteroides pectinophilus and B. capillosus 
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should be removed from Bacteroidetes and placed under the Firmicutes phylum 

(Karlsson et al., 2010). 

Despite improvement in classification over the last several decades, 

Bacteroides species are still known as being heterogeneous and some of the 

species are known to have different protein families and functional content, 

resulting in their displacement from the genus (Karlsson et al., 2010). The 

placement of many of these species into the genus Bacteroides is usually based on 

16S rRNA gene analysis. However, a recent study has suggested that for a more 

detailed and comprehensive view of the phylogenetic relationship between 

species, they should be clustered based on distribution of their protein families 

(Karlsson et al., 2010). 

 

Fig. 1 - Placement of Bacteroides genus in Bacteroidetes phylum. 
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2.1.2.   Characteristics 

 Bacteroides are gram-negative, non-spore forming, saccharolytic, obligate 

anaerobes, and rod-shaped bacteria that play a fundamental role in the processing 

of complex molecules to simpler ones in the host intestine (Madigan et al., 2003). 

These microorganisms are found primarily in the intestinal tracts and mucous 

membranes of warm-blooded animals (Mitsuoka et al., 1965) and certain cold-

blooded animals such as fish (Trust and Sparrow, 1974; McLain et al., 2009). 

Under special circumstances, Bacteroides may be an opportunistic pathogen for 

host species causing intra-abdominal infections, abscess, or even bacteremia 

(Bernhard and Field, 2000a). While B. fragilis makes up only 1-2% of the normal 

flora, it is the most notable pathogen isolated from 81% of anaerobic clinical 

infections (Werner, 1974).  

Like many other bacteria, members of the genus Bacteroides use glucose 

for their energy needs. Bacteroides produce acetate and succinate as the major 

metabolic end products. The glucose fermentation pathway is shown in Fig 2.  
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Fig. 2 - Glucose fermentation pathway of B. thetaiotaomicron. Enzymes; 1, PEP 
carboxykinase; 2, malate dehydrogenase; 3, fumarase; 4, fumarase reductase; 5, 
NADH dehydrogenase; 6, lactate dehydrogenase; 7, pyruvate: 
ferredoxin:oxidoredutase; 8, hydrogenase; 9, phosphotransacetylase and acetate 
kinase; 10, pyruvate carboxylase. PEP, phosphoenolpyruvate; OAA, oxaloacetate. 
Major excreted products are boxed; minor products are in parentheses (Pan and 
Imlay, 2001). 

 
Bacteroides species require exogenous heme and non-heme iron for their 

growth. This is because they lack genes for the heme biosynthetic pathway and 

cannot synthesize tetrapyrrole macrocycle (Holdeman et al., 1984). Although 

dependency on exogenous heme seems disadvantageous to microbes, it is 

interesting that heme-dependent microbes number higher compared to heme-

independent microbes in the lower intestinal tract (Cornelis and Simon, 2010). 

This suggests that heme biosynthesis is not critical for colonization of the colonic 

environment. Under anaerobic conditions in the presence of heme, B. fragilis can 
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generate nearly the double amount of ATP than Escherichia coli per mole of 

glucose (Cornelis and Simon, 2010). This high energy yield is linked to a 

rudimentary heme-induced fumarate reductase and cytochrome b-dependent 

electron transport energy metabolism pathway which uses fumarate as the 

terminal electron acceptor (Fig 2). 

The members of the genus Bacteroides carry a typical gram-negative cell 

envelope that consists of an inner membrane, the periplasmic space, and an outer 

membrane. The outer membrane contains lipopolysaccharide (Fig 3). Bacteroides 

membranes also contain a certain lipid known as sphingolipids as well as a 

mixture of long-chain fatty acids, mainly straight chain saturated, anteisomethyl, 

and iso-methyl branched acids.  

 

 
Fig. 3 - A schematic model of the B. fragilis cell envelope showing: an inner 
membrane (IM) or cell membrane, the periplasmic space (Pe), and an outer 
membrane (OM) containing lipopolysaccharide (orange) that may possess side-
chains (L). Also shown is a thin-type (2 nm diameter) pilus (Pi) with export 
proteins (blue), an outer membrane porin (P) and an efflux pump for expelling 
antibiotics, heavy metal ions, and other noxious products (EP). On capsular 
strains, the large polysaccharide capsule consists of two distinct polysaccharides: 
A and B (Pumbwe et al., 2006). 
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One of the simple methods that provide useful information on bacterial 

morphology is the direct microscopic examination of gram stained smears of 

sample. The typical Bacteroides cellular morphology contains pleomorphic, pale, 

gram negative forms with round ends occurring singularly or in pairs, with 

vacuoles (Holdeman et al., 1977). Fig 4 shows scanning electron micro-graphs of 

B. fragilis. 

 

 

Fig. 4 - Scanning electron micrograph of B. fragilis NCTC 9343. (A) Uncultured 
cells and (B) Cells treated with 0.15% bile salts which resulted in production of 
pili-like appendages (Pumbwe et al., 2006). 

 

One important characteristic of the Bacteroides species is their resistance 

to a variety of antibiotics such as β-lactams, aminoglycosides, erythromycin, and 

tetracycline (Salyers et al., 2004). The resistance of Bacteroides to any of these 

antibiotics can occur due to altered target binding affinity, decreased permeability 

of antibiotics to the microbe cell, or the presence of an inactivating enzyme 

(Rasmussen et al., 1997). “Tetracycline resistance in the Bacteroides is 

attributable, almost exclusively, to the presence of the tetQ gene, which encodes a 

protein that is believed to alter the ribosome target site for the antibiotic” 

(Fletcher et al., 1991). The high level of Bacteroides resistance to antibiotics has 
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raised concerns since there is a possibility that Bacteroides could transmit 

antibiotic resistance genes to other pathogenic bacteria (Salyers et al., 2004). 

Bacteroides have simple nutrient requirements that reflect their 

environment. Most of the Bacteroides species can grow on a medium containing 

fermentable carbohydrates, hemin, vitamin B12, ammonia, carbon dioxide, and 

sulfide, all of which are plentiful in the human colon (Holdeman et al., 1984). 

2.1.3.   Species 

 Among the scientific community there is discrepancy regarding the 

taxonomy of Bacteroides. The Integrated Taxonomic Information System (ITIS) 

(http://www.itis.gov), a partnership of federal agencies and other organizations 

from the United States, Canada, and Mexico with data stewards and experts from 

around the world, has accepted 30 species of genus Bacteroides by 2010 (Table 

1). The German Collection of Microorganisms and Cell Cultures (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)) has three 

times more species of Bacteroides than the ITIS (Table 2). 
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Table 1 - Species of genus Bacteroides according to ITIS 

B. acidifaciens B. fragilis B. polypragmatus 

B. caccae B. galacturonicus B. pyogenes 

B. capillosus B. goldsteinii B. salyersiae 

B. capillus B. helcogenes B. splanchnicus 

B. cellulosolvens B. intestinalis B. stercoris 

B. coagulans B. massiliensis B. suis 

B. coprocola B. nordii B. tectus 

B. coprosuis B. ovatus B. thetaiotaomicron 

B. dorei B. pectinophilus B. uniformis 

B. eggerthii B. pentosaceus B. ureolyticus 

B. finegoldii B. plebeius 
B. vulgates 

B. xylanolyticus 

Source: http://www.catalogueoflife.org/annual-checklist/2010/browse/tree 
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Table 2 - Species of genus Bacteroides according to DSMZ 

Source:http://www.dsmz.de/microorganisms/bacterial_nomenclature_info.php?genus=Bacteroides
&show_all_details=1 
 
 

Most Bacteroides species strains identified to date belong to ten cultivated 

species including Bacteroides vulgatus, B. thetaiotaomicorn, B. distasonis, B. 

caccae, B. eggerthii, B. merdae, B. ovatus, B. stercoris, B. uniformis, and B. 

fragilis (Shah and Colins, 1989). The proportions of Bacteroides species seen 

B. acidifaciens  B. faecis B. microfusus B. salanitronis 

B. amylophilus B. finegoldii B. multiacidus B. salivosus 
B. asaccharolyticus B. fluxus B. nodosus B. salyersiae 

B. barnesiae B. forsythus B. nordii B. sartorii 
B. bivius B. fragilis B. ochraceus B. splanchnicus 
B. buccae B. furcosus B. oleiciplenus B. stercoris 
B. buccalis  B. galacturonicus B. oralis B. succinogenes 
B. caccae B.gallinarum B. oris B. suis 

B. capillosus B. gingivalis B. oulorum B. tectum 
B. capillus B. gracilis B. ovatus B. tectus 

B. cellulosilyticus B. graminisolvens B. pectinophilus B. termitidis 
B. cellulosolvens B. helcogenes B. pentosaceus B. thetaiotaomicron 

B. clarus B. heparinolyticus B. plebeius B. uniformis 
B. coagulans B. hypermegas B. pneumosintes B. ureolyticus 
B. coprocola B. intermedius B. polypragmatus B. veroralis 

B. coprophilus B. intestinalis B. praeacutus B. vulgatus 
B. coprosuis B. levii B. propionicifaciens B. xylanisolvens 
B. corporis B. loescheii B. putredinis B. xylanolyticus 
B. denticola  B. macacae B. pyogenes B. zoogleoformans  
B. disiens B. massiliensis  B.ruminicola 

 

 
B. distasonis 

 
B. melaninogenicus 

B. ruminicola 
sub-spp. 

ruminicola 
brevis 

 

 
B. dorei 

B. melaninogenicus 
sub-spp.  

Intermedius 
Macacae 

 
  

B. eggerthii B. melaninogenicus 
  

B. endodontalis 
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clinically (disease causing) are shown in Fig 5. As shown, B.  fragilis is the most 

common clinically isolated species among Bacteroides. 

 

 

Fig. 5 - Proportions of Bacteroides species seen clinically (Wexler, 2007) 

 

 
Bacteroides species are very diverse, having saccharolytic and proteolytic 

activities. The classification of Bacteroides species can be performed based on 

analysis of acid end products, DNA composition, cell walls, enzymes, and lipids 

(Shah and Collins, 1983). Table 3 shows the DNA composition of the Bacteroides 

species. As shown, Bacteroides fragilis contains Guanine (G) and Cytosine (C) in 

the range of 41 to 44 mol%. Other Bacteroides species belonging to the B. fragilis 

group also contain G+C in the range of 41 to 44 mol%. Some of the species 

belonging to the B. fragilis group have remarkably different DNA composition 

compared to other species within this group and it has been suggested that they 

should be excluded from this genus. Examples are B. praeacutus and B. 

ureolyticus which contain very low G+C (28 to 30 mol%) and B. capillosus and 
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B. mirofusus which contain very high G+C (60 to 61 mol%) (Shah and Collins, 

1983). 
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Table 3 - DNA base composition of Bacteroides species (Shah and Collins, 1983) 

Species 
Mol% 
G+C 

Type Strain 

Bacteroides coagulans 37 ATCC1 29798 
Bacteroides furcosus 34 ATCC 25622 

Bacteroides hypermegas 32-34 NCTC2 10571 
Bacteroides praeacutus 28 ATCC 25539 
Bacteroides termitidis 34 NCTC I1300 

Bacteroides ureolyticus 28-30 NCTC 10941 
Bacteroides asaccharolyticus 50-54 ATCC 25260 

Bacteroides amylophilus 40-42 ATCC 29744 
Bucteroides bivius 40 ATCC 29303 

Bacteroides buccalis 45-46 NCDO3 2354 
Bacteroides denticola 51 NCDO 2352 
Bucteroides disiens 40-42 ATCC 29426 

Bacteroides distasonis 43-45 ATCC 8503 
Bacteroides eggerthii 44-46 ATCC 27754 
Bacteroides fragilis 41-44 ATCC 25285 

Bacteroides yingivalis 45-48 ATCC 33277 
Bacteroides melaninogenicus (subsp. levii‘) 45-48 ATCC 29147 

Bacteroides loescheii 46 ATCC 15930 
Bucteroides macacae 43-44 ATCC 33141 

Bucteroides melaninogenicus (subsp. Intermedius) 40-44 ATCC 25611 
Bacteroides meianinogenicus (subsp. 

Melaninogenicus) 
40-42 ATCC 25845 

Bacteroides orulis 45 ATCC 33269 
Bacteroides oris 42-46 ATCC 33573 

Bacteroides ovatus 39-43 ATCC 8483 
Bacteroides pentosaceus 50-5 1 NCDO 2353 

Bacleroides ruminicola (subsp. Brevis) 50 ATCC 19188 
Bacteroides ruminicola (subsp. Ruminicola) 49 ATCC 19189 

Bacteroides splanchnicus 40 ATCC 29572 
Bacteroides succinogenes 43-49 ATCC 19169 

Bacteroides thetaiotaomicron 40-43 ATCC 29148 
Bacteroides uniformis 45-48 ATCC 8492 
Bacteroides vulgates 40-42 ATCC 8482 

Bacteroides capillosus 60 ATCC 29799 
Bacteroides microfusus 60-6 1 ATCC 29728 
Bacteroides multiacidus 56-58 ATCC 27723 

ATCC1, American Type Culture Collection 
 
NCTC2, National Collection of Type Culture 
 
NCDO3, National Collection of Dairy Organisms 
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2.1.4.   Genome 

 Studying a bacteria species’ genome is important in not only 

classification, but also understanding the organism’s physiology and virulence. 

The Bacteroides genome has been the focus of different research groups in the 

U.S. and Europe. The Wellcome Trust provided funds to the Sanger Institute for 

sequencing the genomes of two Bacteroides fragilis, strains NCTC9343 and 

638R. The project was completed in collaboration with Sheila Patrick (Queen's 

University of Belfast, UK), Garry Blakely (University of Edinburgh, UK), Val 

Abratt of the Department of Molecular and Cell Biology at the University of Cape 

Town (South Africa), Prof. Brian Duerden (University of Wales College of 

Medicine, UK), and Prof. Ian Poxton (University of Edinburgh Medical School, 

UK) (http://www.sanger.ac.uk/). So far, a total of three genome projects have 

been done on two different species of Bacteroides. These genome projects were 

for Bacteroides thetaiotaomicron VPI-5482 (http://cmr.jcvi.org/cgi-

bin/CMR/GenomePage.cgi?org=ntbt01), Bacteroides fragilis YCH46 

(http://cmr.jcvi.org/tigr-scripts/CMR/GenomePage.cgi?database=ntbf03), and 

Bacteroides fragilis NCTC 9343 

(http://www.genedb.org/Homepage/Bfragilis_NCTC9343) (Fig. 6).  
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Fig. 6 - Blast atlas of the genome of B. fragilis NCTC 9343 and Bacteroides 
thetaiotaomicron VPI-5482 (Karlsson et al., 2010). 

 

In addition to the complete genome, partial genomes of several 

Bacteroides isolates are also available. The Broad Institute (a collaborative effort 

of MIT and Harvard) has a Bacteroides group sequencing project, which has 

partial genomic information of 30 species/isolates of Bacteroides (Table 4).  
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Table 4 - Genomic characteristics of some Bacteroides isolates 

Bacteroides Species Size %GC Genes tRNAs rRNAs 

Bacteroides sp. D1 5.98 Mb 41.91 4,785 61 3 
B. sp. D1 Plasmid 1 2.75 Kb 41.64 4 N/A N/A 

Bacteroides sp. 9_1_42FAA 5.58 Mb 42.40 4,824 64 3 
B. sp. 9_1_42FAA Plasmid 1 42.91 Kb 31.90 57 N/A N/A 

Bacteroides sp. 2_2_4 7.09 Mb 42.13 5,947 71 3 
B. sp. 2_2_4 Plasmid 1 5.59 Kb 39.64 12 N/A N/A 
B. sp. 2_2_4 Plasmid 2 2.74 Kb 41.50 4 N/A N/A 
Bacteroides sp. 2_1_7 5.18 Mb 45.08 4,566 66 2 
B. sp 2_1_7 Plasmid 1 2.75 Kb 41.56 5 N/A N/A 

B. fragilis 3_1_12 5.53 Mb 43.63 4,928 63 3 
B. fragilis 3_1_12 Plasmid 1 2.78 Kb 41.50 4 N/A N/A 

Bacteroides sp. D2 6.94 Mb 41.71 5,132 65 4 
Bacteroides sp. D4 5.53 Mb 41.74 4,431 58 3 

Bacteroides sp. 4_3_47FAA 5.45 Mb 42.69 4,615 66 3 
Bacteroides sp. 3_2_5 5.16 Mb 43.21 4,505 65 5 
Bacteroides sp. 1_1_6 6.86 Mb 43.06 5,594 56 4 
Bacteroides sp. 2_1_16 5.24 Mb 43.20 4,609 68 3 
Bacteroides sp. 2_1_22 6 Mb 41.89 4,748 62 2 

Bacteroides sp. 2_1_33B 4.93 Mb 44.87 3,966 70 2 
Bacteroides sp. 3 1 33 FAA 5.42 Mb 42.02 4,667 64 3 

Bacteroides sp. D20 4.49 Mb 46.38 3,652 59 4 
Bacteroides sp. 1_1_14 6.45 Mb 43.26 5,046 61 7 
Bacteroides sp. 3_1_19 5.25 Mb 44.99 4,316 70 10 
Bacteroides sp. 3_1_23 6.52 Mb 41.66 5,012 65 8 
Bacteroides sp. 20_3 5.75 Mb 45.21 4,889 75 11 
Bacteroides sp. D22 6.34 Mb 41.98 5,013 65 8 

Bacteroidetes bacterium str. 
F0058 

2.11 Mb 43.05 1,876 44 5 

Bacteroides sp. 4_1_36 4.64 Mb 46.37 3,729 57 6 
B. eggerthii 1_2_48FAA 4.59 Mb 44.65 3,869 55 7 
Bacteroides sp. 3_1_40A 5.51 Mb 42.58 4,570 70 10 

Source:http://www.broadinstitute.org/annotation/genome/bacteroides_group/GenomeStats.html 
  

The 16S rRNA gene of Bacteroides has been widely used for analysis of 

the diversity of Bacteroides species and differentiating them from neighboring 

species (Karlsson et al. 2010; Paster et al., 1994). In a recent study a phylogenetic 

tree was constructed using the 16S rRNA sequence of 33 Bacteroides, nine 

Prevotella, eight Chlorobium, four Parabacteroides, four Porphyromonas, and 47 

other Genera in the Bacteroidetes/Chlorobi Super phylum (Fig 7). It shows the 
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Bacteroides genus as one large cluster that includes most Bacteroides species; 

however, B. pectinophilus and B. capillosus are clustered in a group distant from 

the other Bacteroides species.   

 
Fig. 7 - Phylogenetic tree based on 16S rRNA sequence. Bacteroides sequences 
are red except for sequences from B. capillosus and B. pectinophilus which are 
blue; Parabacteroides sequences are orange, and other species are black. 
Bootstrap values indicate the certainty of each cluster (Karlsson et al., 2010). 
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Phylogenetic studies have also used Heat-Shock Protein (HSP) genes such 

as the Hsp60 gene for identification and characterization of Bacteroides species. 

According to a recent study, an analysis based on the Bacteroides Hsp60 gene 

sequence may provide accurate results regarding Bacteroides taxonomy. This 

study suggests that because of the high variability that exists in the Hsp60 gene of 

Bacteroides compared to the 16S rRNA gene, they can be used in the design of 

more specific primers for PCR for the rapid identification of the Bacteroides 

species (Sakamoto et al., 2010). There are also studies in progress using other 

types of genes such as dnaJ, gyrB, recA, and rpoB for Bacteroides 

characterization. 

2.1.5.   Occurrence 

 Based on culture and culture-independent methods it has been shown that 

Bacteroides species account for 20 to 52% of the human fecal flora (Duerden, 

1980; Franks et al., 1998; Hold et al., 2002; Hopkins et al., 2001; Sghir, 2000; 

Suau et al., 1999). Analyses of the 16S rRNA gene clone libraries suggest 

Bacteroides are slightly less abundant in nonhuman fecal flora. “According to a 

study about 11.2% of the phylotypes in a pig fecal clone library were related to 

Bacteroides or Prevotella” (Leser et al., 2001). Another study has found that 

about 18% of the recovered sequences in a clone library of horse fecal DNA 

belong to representatives of the Bacteroidales order (Daly et al., 2001). By 

analyzing 16S rRNA gene sequences derived from the feces of cattle it has been 

found that there are large contributions from Bacteroidales in cattle (Bernhard and 

Field, 2000a; Wood et al., 1998). According to a study, two different obligate 
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anaerobes from the intestinal tracts of freshwater fish species were identified and 

based on morphological, biochemical, and physiological characteristics of 

isolates, as Bacteroides types A and B (Sakta et al., 1981). Although many 

members of the phylum Bacteroidetes have been recovered from the hindgut of 

termites, no true Bacteroides species have been detected thus far from the 

environment (Ohkuma et al., 2002).  

2.2.      Bacteroides Isolation and Identification Methods 

 This section will go over different techniques for Bacteroides isolation and 

identification using culture-based methods, biochemical methods, and molecular 

techniques. 

2.2.1.   Identification Using Culture-based Methods 

 Preliminary identification and inoculation of Bacteroides can be achieved 

by using an appropriate combination of enriched, nonselective, selective, and/or 

differential media. The non-selective isolation of Bacteroides can be 

accomplished on various basal media such as Brucella agar, Brain-heart infusion 

agar, Colombia agar, and Wilkins-Chalgren agar supplemented with 5-10% horse 

or sheep blood and hemin (5 µg/ml) (Summanen et al., 1993). The selective 

isolation of Bacteroides can be achieved on either Kanamycin-Vancomycin 

Laked blood Brucella (KVLB) agar (Summanen et al., 1993) or bile-containing 

media such as Bacteroides Bile Esculin (BBE) agar (Livingston et al., 1978). 

KVLB agar inhibits growth of most facultative anaerobic bacteria while allowing 

selective isolation of mainly Prevotella species and Bacteroides species 

(kanamycin inhibits growth of facultative gram-negatives while vancomycin 
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inhibits gram-positives and Porphyromonas). BBE is selective for isolation of 

most of Bacteroides species including the Bacteroides fragilis group. 

 Utilizing selective media allows rapid presumptive identification of 

Bacteroides species. Samples cultured on BBE plates and incubated anaerobically 

can be examined after 18-36 hours. Bacteroides species usually form colonies 

larger than one millimeter in diameter and surrounded by a brown-black zone due 

to esculin hydrolysis. The B. fragilis group hydrolyze esculin to form dextrose 

and esculetin. This compound reacts with the ferric ions contained within the 

medium, turning the medium around the colonies a dark brown to black color. 

The tolerance to bile and hydrolysis of esculin aids in presumptively identifying 

the B. fragilis group. Esculin can be hydrolyzed by some other microorganisms 

that are bile-resistant and not members of the B. fragilis group. Some examples of 

such microorganisms are Bacteroides splanchnicus, Fusobacterium mortiferum, 

Klebsiella pneumoniae, Enterococcus species, and yeasts (Livingston et al., 

1978). In general, B. fragilis group colonies are two to three millimeters in size, 

while the organisms mentioned above are less than one millimeter in diameter. 

Further examinations such as biochemical tests must be performed to ensure the 

cultured microorganisms are Bacteroides (Finegold et al., 1986; Lennette et al., 

1985). Fig 8 shows cultured Bacteroides on both blood agar and BBE agar. 
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Fig. 8 - Top picture:  B. fragilis pure culture (ATCC #23745) cultured on Blood 
agar. Bottom picture: B. fragilis pure culture (ATCC #23745) cultured on 
Bacteroides Bile Esculin agar (BBE). Photos: ASU Environmental Microbiology 
lab. 

 
2.2.2. Identification Using Biochemical Methods 
 
 Definite identification and differentiation of Bacteroides species can be 

achieved by assays including fermentation of an array of sugars, biochemical 

tests, and the detection of fermentative end products by gas/liquid 

chromatography. “A simplified and rapid scheme for biochemical and 

fermentative identification of bile resistant Bacteroides allows speciation of the 

group within 24 hours after obtaining a pure culture” (Citron et al., 1990). Various 

rapid identification systems for anaerobic bacteria such as Bacteroides also are 

available, such as API 20A, Rapid ID 32A and API ZYM (Biomerieux, Durham, 

NC, USA), Minitek (MT; BBL Microbiology Systems, Cockeysville, Md, USA), 

and An-Ident (Analytab Products Inc, Plainview, NY, USA) systems. Most of 
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these systems work by utilizing several chromogenic substrates for the detection 

of constitutive enzymes. Generally, Bacteroides species can be identified using 

these systems, however, performing additional assays is often recommended since 

some species of Bacteroides cannot easily be distinguished by these phenotypic 

tests.  

2.2.3. Molecular Techniques 
 
 Molecular techniques such as restriction endonuclease digestion, DNA or 

RNA hybridization, PCR, and a combination of these techniques have been 

widely practiced for the identification of Bacteroides species. In the hybridization 

technique, the chromosomal DNA of Bacteroides is extracted and transferred to 

hybridization membrane pre-fixed by species specific DNA fragment probes. 

Using the DNA hybridization approach, accurate identification of B. fragilis in 

experimental blood cultures and quantification of B. thetaiotaomicron, B. 

uniformis, B. distasonis, B. ovatus, and B. volgatus from fecal samples have been 

reported (Groves and Clark, 1987). False positive results due to non-specific 

binding are one of the limitations of this technique (Kuritza and Salyers, 1985). 

 Restriction Endonuclease Analysis (REA) of chromosomes of many 

bacteria, such as Bacteroides has been performed in determining their genetic 

relationship. REA is highly reproducible and accurate. For generating a 

fingerprint of the chromosome, an appropriate restriction endonuclease is utilized 

to digest total genomic DNA, then the resulting digested DNA is electrophoresed 

on an agarose gel. The patterns obtained are used to relate species via Restriction 

Fragment Length Polymorphism (RFLP). One of the limitations of this technique 
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is that occasionally the generated RFLP patterns are too complicated to be 

analyzed. To simplify this, they can be coupled to hybridization techniques that 

use specific DNA probes. “Using this approach, distinct patterns were observed 

for all of the Bacteroides species and each could be easily differentiated” (Smith 

and Callihan, 1992). 

 Analysis of the complex REA of chromosomal DNA profiles is tedious due 

to generation of hundreds of fragments by conventional methods. To resolve this 

complexity, Bacteroides can be differentiated by pulse filed gel electrophoresis 

(PFGE). This technique separates large DNA fragments that are generated with 

rare-cutting restriction endonucleases (Shaheduzzaman et al., 1997). The only 

limitation of this technique is that it cannot resolve bands of nearly identical size 

(Davis et al., 2003). 

 The use of PCR has revolutionized Bacteroides identification by targeting 

their 16S rRNA gene. Bacteroides species can be reclassified based on sequences 

of 16S rRNA. This can be achieved by using several published Bacteroides 16S 

rRNA gene molecular markers. The species specific molecular markers for B. 

eggerthii, B. fragilis, B. ovatus, B. uniformis, B. thetaiotaomicron, and B. volgatus 

have been used for identification of predominant Bacteroides species in the 

human intestine (Miyamoto et al., 2002). 

 Bacteroides species can also be identified by restriction endonuclease 

analysis of PCR amplified DNA. “Analysis of the RFLP patterns generated from 

PCR-amplified 16S rRNA digested with HpaII and TaqI produced profiles that 

allowed identification of all Bacteroides species type strains” (Stubbs et al., 
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2000). Bacteroides speciation by 16S rDNA PCR-RFLP is a rapid and accurate 

approach. A similar methodology was used to examine the 16S rRNA internal 

transcribed spacer region among Bacteroides species (Kuwahara et al., 2001). 

Using this technique, distinctive species-specific RFLP patterns were produced 

and 90 isolates of Bacteroides were differentiated to species level including B. 

fragilis, B. distasonis, B. ovatus, B. eggerthii, B. thetaiotaomicron, B. uniformis, 

and B. volgatus. 

 Limitations of molecular techniques for bacteria identification include a 

lack of sensitivity and specificity of assays, high cost, and high level of expertise 

necessary to perform the techniques (Richards, 1999). 

2.3.      Microbial Source Tracking 
 
 Microbial Source Tracking (MST) is a widely used approach for 

identification of sources responsible for the fecal pollution of water systems 

(Stoeckel, 2005). There are numerous MST techniques available which vary in 

many ways, including costs, level of training, and experience required to 

implement. MST methods can be divided in two groups: Library-dependent 

methods or Library-independent methods (Griffith et al., 2003). Library-

dependent methods begin with making a database by collection and 

characterization of a large number of bacteria from known sources (e.g. humans, 

cows, and wildfowl) and then comparing and contrasting isolates from other 

sources to the database. There are some limitations associated with the library-

dependent technique such as being time consuming and labor intensive. Also, it is 

not known how large the size of the library must be or how similar libraries from 
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different geographical areas are (USEPA, 2005). Library-independent methods 

identify the source of fecal contamination based on detecting host-specific 

markers. 

2.3.1.   Library-dependent Methods 

 Library-dependent methods consist mainly of two types: phenotypic (non-

molecular) and genotypic (molecular) methods. Phenotypic analysis is based on 

cellular or physiological comparisons between the isolates while genotypic 

analysis is based on comparison of DNA sequence between the isolates. The two 

most common phenotypic methods used for MST are antibiotic resistance profiles 

and carbon source utilization. Genotype methods, also referred as fingerprinting 

methods, rely on molecular techniques that isolate the DNA from the microbes 

and characterize differences in the nucleic acid sequence. The genotypic approach 

can target the DNA of the entire organism, particular genes, or a specific DNA 

sequence. The four most common library based genotypic methods are repetitive 

extragenic palindromic (rep)-PCR, randomly amplified polymorphic DNA 

(RAPD) analysis, pulsed field gel electrophoresis (PFGE), and ribotyping. 

2.3.2.   Library-independent Methods 

 Library-independent methods are based on the presence or absence of the 

target organism or gene which does not require a source library. The common 

library independent methods are examining the ratio of fecal coliform to fecal 

streptococci, detection of bifidobacteria, detection of Bacteroides fragilis 

bacteriophages and F+ coliphages, and identification of gene-specific and host 

specific markers. The application of Bacteroides for MST studies is mostly 
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related to Bacteroides fragilis bacteriophage detection and host specific 

identification, which is further discussed in the following section.  

2.3.2.1. Bacteroides fragilis Bacteriophages Detection for MST 
 
 Bacteriophages that infect Bacteroides fragilis strain HSP40 and other 

strains such as RYC2056 are only found in human feces and hence have been 

used as specific indicators of human fecal pollution (Tartera and Jofre, 1987). 

According to a MST study that was performed in Barcelona, Spain, 

bacteriophages that infect Bacteroides fragilis strain HSP40 were detected in 

water contaminated with the fecal matter of humans, and it was revealed that the 

CFU concentration was 5.3x103 per 100 ml of water. Moreover, they discovered 

no Bacterioides fragilis bacteriophages were present in water contaminated with 

fecal matter of wildlife only. Although Bacterioides fragilis bacteriophages were 

present in the water contaminated with human fecal matter, their concentrations 

were low relative to the number of detected coliphages (Tartera et at., 1989). 

An advantage of using Bacteroides fragilis bacteriophages as an indicator 

of fecal contamination is that they do not replicate in the environment (Scott et al., 

2002), minimizing the possibility of false positive results. Additionally, their 

presence in the environment has been found to significantly correlate with the 

presence of human enteric viruses (Jofre et al., 1989). However, the application of 

Bacteroides fragilis bacteriophages to MST studies is limited, since they are 

present in low numbers which cannot be detected (Scott et al., 2002). “It is also 

well documented that Bacteroides host strains vary in their ability to discriminate 

between phages of different sources but also that phage detection by a given host 
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strain varies geographically” (Payan et al., 2005). This means an assay based on 

phage detection would be limited geographically. 

2.3.2.2. Host Specific Identification for MST 

 Host specific PCR assay is one of the commonly used techniques for 

differentiating the source of fecal contamination in environmental samples. The 

application of these target-specific PCR-based assays is culture-independent and 

they require host-specific primers for an array of microbes such as Bacteroides, 

Bifidobacterium, Enterococcus, and viruses. Molecular markers for human and 

animal associated Bacteroides (Bernhard and Field, 2000a,b), human and animal 

associated Bifidobacterium (Nebra et al., 2003), human-specific Enterococci 

faecium species (Scott et al., 2005), and human and animal associated viruses 

(Fong et al., 2005) have been used in MST studies. 

Among different host specific PCR assays, Bacteroides targeted PCR 

assays is the most commonly used for MST studies. The use of Bacteroides as a 

potential fecal indicator was suggested by Fiksdal (1985). The reason that 

Bacteroides was suggested as an indicator for fecal contamination is because they 

have a short survival rate in the external environment due to their strict growth 

requirement and occupy a large portion of fecal bacteria compared to fecal 

coliforms and enterococci (Sghir et al., 2000). 

Environmental factors such as temperature, predators in the water, 

sunlight, and salinity have been tested for their effect on the survival rate of 

Bacteroides species and detection of their molecular markers. Among these 

different factors, temperature has the highest effect (Table 5). A high rate of 
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nucleic acid degradation and Bacteroides die-off has been correlated to higher 

temperatures (Schulz and Childers, 2011., Bell et al., 2009; Kreader, 1998; Okabe 

and Shimazu, 2007; Savichtcheva et al., 2005). Also, there are reports on the 

effect of predators in the environment on Bacteroides die-off (Bell et al., 2009; 

Kreader, 1998; Okabe and Shimazu, 2007). The effect of sunlight on Bacteroides 

survival is still controversial (Bae and Wuertz, 2009; Walters and Field, 2009; 

Walters et al., 2009). Bae and Wuertz (2009) found small decay rates due to light 

at salinity of 33%. Walters and Field (2009) also found small decay rates in 

freshwater microcosms however the reported decay rates were significantly 

different.  Salinity has not shown a major effect on the survival of Bacteroides in 

the environment (Okabe and Shimazy, 2007). 

Table 5 - Effect of temperature on Bacteroides decay rate  

Temperature 
(C) Salinity 

(%) 
Decay Rate* 
Ln (Ct/Co)d

-1 
10 0 -0.856 
20 0 -1.221 
30 0 -1.310 
10 5 -0.759 
20 5 -0.864 
30 5 -0.714 
10 30 -0.182 
20 30 -0.438 
30 30 -0.261 

* Log linear decay rates estimated in Ln (Ct/Co)d
-1 

                          where Ct is the threshold cycle and Co is the  
                          concentration of cells at time zero 
                          (Schulz and Childers, 2011). 
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 Several recent studies have proposed the existence of human-specific 

genetic markers in Bacteroides-Prevotella 16S rRNA gene and have developed a 

method for their detection by conventional and quantitative PCR (Bernhard and 

Field, 2000a,b; Seurinck et al., 2005; Layton et al., 2006; Reischer et al., 2007). 

Additionally, PCR assays targeting the Bacteroides 16S rRNA gene in organisms 

from different hosts such as pig, horse, dog, elk, bovine, and cow have been 

developed as listed in Table 6. 

Table 6 - List of some of the host specific PCR assays targeting 16S rRNA gene 
of Bacteroides 

Host 
References for Previously Designed Host Specific PCR Assays 

Targeting 16S rRNA Gene of Bacteroides 

Human 
Bernhard and Field, 2000a,b; Seurinck* et al., 2005; 

Layton* et al., 2006; Reischer* et al., 2007; Okabe* et al., 2007; Kildare* 
et al., 2007 

Pig Dick et al., 2005a and Okabe* et al., 2007 

Horse Dick et al., 2005a 

Dog Dick et al., 2005b and Kildare* et al., 2007 

Elk Dick et al., 2005a 

Bovine Layton* et al., 2006; Okabe* et al., 2007; and Reischer* et al., 2007 

Cow Kildare* et al., 2007; Bernhard and Field, 2000a,b 

* Real time PCR assays 

 

Since the use of Bacteroides as a fecal source tracking tool is relatively 

new, extensive field testing is ongoing to determine specificity of the published 

assays. Cross-amplification of human-specific Bacteroides PCR molecular 

markers with canine and swine fecal samples has been reported (Layton et al., 
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2006; Kildare et al., 2007; Ahmed et al., 2009). Additionally, cross-amplification 

of human-specific Bacteroides genetic markers with fish fecal DNA was reported 

in my recent work (McLain et al., 2009). The aim of this study is to eliminate the 

problem of cross-amplification and to develop a strategy for the identification of a 

human-specific Bacteroides using molecular techniques. 
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Chapter 3 

INVESTIGATING SPECIFICITY OF FIVE SETS OF PUBLISHED HUMAN-

SPECIFIC BACTEROIDES PRIMERS WITH FECAL DNA FROM FOUR 

FRESHWATER FISH SPECIES 

3.1.      Abstract 

 Understanding the origin of fecal pollution of water is paramount in 

assessing associated health risks and developing effective pollution control 

strategies. Bacteroides genetic markers have been widely used to differentiate 

human sources of fecal bacteria from other sources in natural water. This study 

documents cross-amplification of the Bacteroides 16S rRNA gene from both 

freshwater fish and human fecal samples when using human-specific PCR 

primers. Four out of five protocols previously reported as human-specific assays 

amplified fecal DNA from at least one fish species. Sequencing of PCR products 

from fish fecal DNA using Layton’s primers (HuBac566F and HuBac692R) 

revealed no mismatches to human-specific primers. However, the nucleotide 

sequences of fish fecal clones differed markedly from those of human feces, 

displaying more than 10% mismatches outside of the primer regions, suggesting 

that the fish-related bacteria may consist of different strains. The results indicate 

cross-amplification of current human-specific PCR assays with fish feces, which 

can call into question the use of the published Bacteroides primers in source 

tracking studies of water where fish contribute to fecal load. 
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3.2.      Introduction 
 
 Host specific Bacteroides genetic markers have been widely used in 

Microbial Source Tracking (MST) studies for identifying and quantifying sources 

of fecal pollution in environmental water. The recent advances in PCR technology 

have enabled the development of PCR assays to identify host specific Bacteroides 

16S rRNA gene markers in human and animals (Bernhard and Field, 2000a,b; 

Kildare et al., 2007; Layton et al., 2006; Reischer et al., 2007). Standard PCR 

assays (Bernhard et al., 2000a,b; Dick et al., 2005a,b) and quantitative PCR 

(qPCR) assays (Seurinck et al., 2005; Layton et al., 2006; Kildare et al., 2007; 

Reischer et al., 2007) have been widely used to determine the relative amounts of 

host specific fecal contributions to water samples. 

 Because of the utilization of the molecular Bacteroides methodology, 

extensive testing of potential sources of fecal contamination in surface water for 

cross-amplification with markers identified as human-specific has resulted in both 

enhanced specificity and increased scientific acceptance of the MST tool. Several 

recent studies have evaluated specificity of human-specific Bacteroides genetic 

markers by testing human markers against feces from domestic animals, livestock, 

and bird and mammal wildlife (Kildare et al., 2007; Ahmed et al., 2009; Layton et 

al., 2006) (Table 7). 
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Table 7 - List of human-specific Bacteroides genetic markers cross amplified with 
Bacteroides of other animals  

Human-Specific 
Bacteroides Primer Sets 

Host Species Bacteroides DNA 
Amplified  

References reporting 
cross amplification 

HuBac1 Cat, Cow, Dog, Duck , Horse, 
Pig, and Sheep 

Kildare et al., 2007; 
Layton et al., 2006 

BacHum2 Dog, Horse, Pig, and Sheep Ahmed et al., 2009 

BacH3 Dog, Goat, and Sheep Ahmed et al., 2009 

HF1834 Cat and Dog Kildare et al., 2007 

HF1345 Dog Ahmed et al., 2008 

HuBac1: Designed by Layton et al., 2006 
 
BacHum2: Designed by Kildare et al., 2007 
 
BacH3: Designed by Reischer et al., 2007 
 
HF1834: Designed by Seurinck et al., 2005 
 
HF1345: Designed by Bernhard and Filed., 2000a 
 

 For several decades, Bacteroides have been identified as indigenous 

microflora in the intestine of freshwater fish (Trust and Sparrow, 1974). 

Obviously, fish contribute to the fecal load in many natural water systems, but to 

date no fish species has been tested for cross-amplification with published human 

Bacteroides markers. The primary objective of this portion of the study is to 

evaluate the specificity of five sets of published human-specific Bacteroides 

primers with fecal DNA extracted from four freshwater fish species (tilapia, 

catfish, trout, and salmon). 
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3.3.       Materials and Method 

3.3.1.   Fish Fecal Sample Collection 

 Fresh fecal samples were collected from human and fish sources. The Nile 

tilapia (Oreochromis niloticus) fecal sample was collected from an aquaculture 

laboratory at the University of Arizona Maricopa Agricultural Center (Maricopa, 

AZ, USA). Fecal pellets were manually collected from the water of the main 

aquaculture tank and placed into sterile centrifuge tubes having 20 ml sterile 1X 

phosphate-buffered saline (PBS).The collection of fecal samples from North 

American Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus 

mykiss) involved removing individual fish from tanks and manually expressing 

feces into centrifuge tubes containing 20 ml sterile PBS. Collected feces samples 

were shipped immediately on ice. The source of salmon and trout feces were the 

USDA-ARS National Cold Water Marine Aquaculture Center, Franklin, ME and 

the USDA-ARS National Center for Cool and Cold Water Aquaculture, Leetown, 

WV, respectively. For fecal collection from channel catfish (Ictalurus punctatus), 

one fish was placed into a clean 30-gallon cooler filled with sterile water at the 

University of Arizona Environmental Research Laboratory (Tucson, AZ, USA). 

The fish was removed after several hours and the water was filtered to collect 

feces. 

3.3.2.   DNA Extraction and PCR 

 Approximately 0.5 g wet fecal sample was subjected to DNA extraction 

using the Zymo Fecal DNA Kit (ZymoResearch, Orange, CA) according to 

manufacturer’s protocol. Following the DNA extraction, standard PCR was 
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performed on extracted DNA samples using five primer sets (Table 8). All PCR 

reactions were performed using a Promega GoTaq® Green Master Mix (Promega 

Corp., Madison, WI, USA) with primer concentrations shown in Table 8 and 45-

60 ng extracted target DNA in 25 µl reaction mixture. PCR was performed using 

a Gene Amp PCR System 9700 (PE Applied Biosystems, Foster City, CA) and 

the reaction mixtures were incubated for 5 min at 95o C and then subjected to 35 

cycles consisting of 30 s at 95o C, 45 s at 60o C, and 30 s at 72o C ending with a 

final extension time of 5 min at 72o C. The reaction mixtures were stored at 4o C 

until they were analyzed by agarose gel electrophoresis. Agarose gel 

electrophoresis was performed in1.5% agarose gels containing 0.5µl of SYBR 

safe DNA gel stain (Invitrogen) per ml. The gels were electrophoresed for 1 h at 

constant voltage of 100V and were analyzed by a Kodak Gel Logic 112 Digital 

Imaging System (Carestream Molecular Imaging, New Haven, CT, USA). 
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Table 8 - Assays used to test for PCR amplification of human and fish fecal DNA 
samples in this study 

 
Assay 

Primer 
Concentration 

(nM) 

Expected Product 
Size 
(bp) 

 
References 

HuBacF & HuBacR 600 123 Layton et al., 2006 

BacHumF & 

BacHumR 
40 81 Kildare et al., 2007 

BacHF & BacHR 200 118 Reischer et al., 2007 

HF183F & HF264R 200 82 Seurinck et al., 2005 

HF134F & HF654R 400 521 
Bernhard & Field., 

2000b 

 
3.3.3.   Cloning and Sequencing 

 To identify primer sites within amplified DNA, amplicons generated from 

human and fish DNA samples using HuBac primers were subjected to cloning and 

DNA sequencing analysis. Ampilicons were first purified with the QIAquick PCR 

purification kit (Qiagen Sciences. Calencia, CA, USA) and ligated into TOPO® 

plasmid vectors  (Invitrogen Life Technologies, Carlsbad, CA, USA) and 

screened for inserts using standard PCR and the methods of (Chung et al., 2006). 

Positive clones using HuBac primers produced a 203-bp PCR product containing 

the 123-bp DNA insert and the 80-bp flanking regions of the plasmid vector. 

Once plasmid inserts were confirmed they were directly sequenced using an 

automated ABI Prism 3730 DNA Analyzer (Applied Biosystems). Obtained 

sequences were aligned with ClustalX software (Thompson et al., 1994) and their 

identity was verified using the Blast program of the Gene Bank database (NCBI). 
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3.4.      Results and Discussion 

3.4.1.   Cross-amplification testing of human-specific assays 

 Five sets of primers previously reported as human-specific Bacteroides 

were evaluated for cross-reactivity against Bacteroides in fishes’ feces and they 

are presented in Table 9. Results of PCR amplification using HuBac primers on 

Nile tilapia and human samples are shown in Fig 9. 

 

 

 

 

 

 

 
 
Fig. 9 - Gel photograph of PCR amplification using HuBac primers on 
extracted fecal DNA of Nile tilapia (Lanes 1and 2) and humans (Lanes 3 
and 4). Both fecal sources show expected 123-bp PCR products. Lane 5: 
negative control (water template); Lane 6: 50-bp DNA ladder. 

 
 
 
 
 

Table 9 - Evaluation of amplification results of the primer sets specific to human 
Bacteroides on DNA extracted from human and fish samples 

 Source of Fecal DNA 
Assay Human Tilapia Catfish Trout Salmon 
HuBac + + + + + 

BacHum + - - + - 
BacH + + + + - 
HF183 + - - + - 
HF134 + - - - - 

The + symbol denotes generation of PCR product of expected size, while – symbol shows samples 
without expected sized PCR product. 
 

200 bp 
100 bp 

1       2        3       4        5      6      
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PCR amplicons of DNA extracted from human feces using the noted 

primer sets resulted in bands of the expected size. These results were taken as 

presumptive for successful performance of published protocols. When each of 

these protocols were tested on DNA extracted from fish fecal samples, HuBac 

primers amplified all fish samples tested and BacHum, BacH, and HF183 primer 

sets amplified at least one of the Bacteroides samples collected from fish species 

(Table 9). The HF134 primer set did not amplify DNA samples from fish species. 

Performed assays suggest that HF134 may provide accurate results in fish-laden 

water. However, there are reports of cross-amplification of this primer set with 

fecal DNA from dogs (Ahmed et al., 2009). Therefore, it is highly recommended 

to also include fish fecal samples in screening potential cross-amplification in 

MST studies. 

3.4.2.    Initial alignment of clone sequences from fish fecal bacteria 

 To identify primer sites within the amplified region of DNA template, the 

amplicons generated using the HuBac primers were cloned and sequenced. 

Alignment results of DNA sequences (123-bp) amplified with HuBac primers 

from human and fish (tilapia) fecal DNA are shown in Fig 10. As illustrated in 

Fig 10, HuBac primer sequences in the amplified regions are 100% homologous 

to forward and reverse primers. Also shown in Fig 10, nucleotide sequences of 

clones from fish fecal samples differed markedly from those of human feces, 

displaying >10% mismatches outside of the homologous primer sites. Although 

random misincorporations of nucleotides, resulting in nucleotide substitution, can 

happen by Taq DNA polymerase, the existence of more than eight mismatches 
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within the 55 nucleotide region, excluding the primer, suggest that the fish related 

fecal bacteria are different strains than those of humans. Observed cross reactivity 

of the HuBac primers with fish feces in PCR did not result from contamination of 

the fish fecal samples with human feces. 

 

           

Fig. 10 - DNA sequence alignment of PCR amplicons generated using the HuBac 
assay on human and fish fecal samples. Highlighted regions indicate mismatches 
between human and fish Bacteroides. 

 
3.4.3.    Impact on source-tracking studies for water quality 

 Accurate identification of the source of fecal pollution in surface water is 

critical for corrective actions to control fecal pollution. To date, many human-

specific Bacteroides genetic markers are published in literature, and they only 

have been examined for cross-reactivity against DNA extracted from feces of 

animals such as canines, swine, cats, and horses. Cross-amplification of HuBac 

primers with cattle and swine have been reported (Layton et al., 2006; Kildare et 

al., 2007; Ahmed et al., 2009). Additionally there are reports of significant cross-

amplification of BacHum, HF183, BacH, and HF134 human-specific primers with 

dog feces (Kildare et al., 2007; Ahmed et al., 2009). Cross-amplification of 

human-specific assays in dog and cat feces has been reported in several additional 

studies (Ahmed et al., 2008; Kildare et al., 2007). 

Human 

Fish 
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Although bacteria of the genus Bacteroides have long been identified as 

indigenous in the intestine of freshwater fish, to date, no fish species have been 

tested for cross-amplification with any published human Bacteroides markers. 

Fish contribute to fecal load in many natural water systems. Non-specificity of 

designed human-specific Bacteroides molecular markers and their cross-

amplification with fish fecal microbes can lead to falsely identifying the source of 

fecal contamination in surface water; hence, to enhance current microbial source 

MST, the accuracy of existing human-specific Bacteroides assays must be 

improved. For the first time, the findings of this study documents the importance 

of including fish samples for cross-evaluation studies, which will help to 

eliminate a major potential source of error in MST studies (McLain et al., 2009) 

3.5.      Conclusions 

• This study showed cross-amplification of published human-specific 

Bacteroides 16S rRNA genetic markers with fecal DNA from a freshwater 

fish species. 

o HuBac primers amplified DNA from all fish tested. 

o BacHum, BacH and HF183 amplified fecal DNA from at least one 

fish species. 

o The HF134 human-specific assay did not amplify fecal DNA 

extracted from any of the fish. However there are reports of cross-

amplification of this human-specific Bacteroides primer with dog 

fecal samples. 
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• The results indicate that fish samples must be included in screening of 

potential fecal sources in MST studies utilizing human-specific assays. 
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Chapter 4 

ISOLATION OF BACTEROIDES FROM FISH AND HUMAN FECAL 

SAMPLES FOR IDENTIFICATION OF UNIQUE GENETIC MARKERS 

 
4.1.      Abstract 

 Bacteroides genetic markers have been used to identify human fecal 

contamination in natural water, but recent work (Chapter 3) confirmed cross-

amplification of several human-specific Bacteroides assays with fecal DNA from 

fish. Fish are often natural inhabitants of water bodies under study and thus, these 

results highlight the need for identification of genetic markers that are unique to 

human Bacteroides. Bacteroides Bile Esculin (BBE) agar was used to isolate 

Bacteroides from fish and human fecal samples. The isolated colonies were 

identified to species level using Rapid ID 32A API® strips. For each of the 

identified isolates, 16S rDNA was amplified and sequenced to aid in identification 

of unique markers to be utilized for development of more stringent human-

specific assays. In human feces, B. vulgatus was dominant, comprising 75% of 

isolates, whereas in tilapia feces, B. eggerthii was dominant (66%). Bacteroides 

from grass carp, channel catfish and blue catfish may include B. uniformis, B. 

ovatus, or B. sterocoris. Phylogenic analyses of the 16S rRNA gene sequences 

showed distinct Bacteroides groupings from each fish species, while human 

sequences clustered with known B. vulgatus. None of the fish isolates showed 

significant similarity to Bacteroides sequences currently deposited in NCBI. As a 

result, this study expands the current sequence database from cultured fish 
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Bacteroides. Such data are essential for identification of unique genetic markers 

in fish Bacteroides that can be utilized in differentiating fish and human fecal 

contamination in water samples. 

4.2.       Introduction 

 Bacteroides are frequently used as microbial indicators for tracking the 

sources of fecal pollution using genotypic methods. They are preferred because of 

their limited potential for growth in the environment, which means that identified 

genetic markers are proportional to actual fecal contamination. In addition, 

Bacteroides make up a significant portion of the fecal bacterial population and 

have high degree of host specificity (Bernhard and Field, 2000a). 

Bacteroides is the predominant bacterial group in the complex intestinal 

flora of almost all warm-blooded animals (Mitsuoka et al., 1965) and have also 

been identified in the intestine of cold-blooded animals such as fish (Trust and 

Sparrow, 1974; McLain et al., 2009). Recent research efforts have shed some light 

on the taxonomy and epidemiology of Bacteroides (Falagas and Siakavellas, 

2000), but due to their strict requirement for anaerobic conditions and abstruse 

nutritional needs, Bacteroides have been difficult to culture under laboratory 

conditions. Therefore, little is known about the ecology of this bacterial group and 

its distribution in the intestines of humans and animals.  

Isolation and culture of Bacteroides from intestinal material can be 

achieved under anaerobic conditions using variety of selective media such as 

Bacteroides Bile Esculin (BBE) agar (Livingston et al., 1978) and non-selective 

media such as blood agar with hemin and vitamin K (Summanen et al., 1993). To 
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aid in characterization of cultured isolates to the genus or species level, 

biochemical tests such as API® strips can be used (Jenkins et al., 1991). Molecular 

techniques including Polymerase Chain Reaction (PCR) have also aided in the 

study of Bacteroides, and sequence analysis of their 16S rRNA gene has enabled 

researchers to characterize previously unknown isolates and increase current 

understanding of their distribution in the intestinal flora of different animals 

(Wood et al., 1998; Bernhard and Field, 2000a,b;  Leser et al., 2001). 

To date, approximately 90 species of Bacteroides have been reported; 

however, the majority of isolated Bacteroides belong to following cultivated 

species: B. vulgatus, B. thetaiotaomicorn, B. caccae, B. eggerthii, B. fragilis, B. 

ovatus, B. stercoris, and B. uniformis (Shah and Collins, 1989). Of these known 

species, three (B. coprocola, B. uniformis and B. vulgatus) have been shown to be 

dominant in human feces (Li et al., 2009). Bacteroides in animal guts have not 

been well-characterized, and more so in fish feces. Trust and Sparrow (1974) 

identified Bacteroides in the intestine of freshwater fish, and Sakta et al. (1981) 

reported the isolation of two obligate anaerobes from fish intestines and classified 

them as Bacteroides type A and B based on morphological, biochemical and 

physiological characteristics. However, Bacteroides type A has since been 

reclassified as Cetobacterium somerae based on the work of Tsuchiya et al. 

(2008). 

Recent work (Chapter 3) showed cross-amplification of several published 

assays targeting human-specific Bacteroides 16S rDNA molecular markers with 

fecal DNA from four fish species (tilapia, catfish, trout and salmon) (McLain et 
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al., 2009), suggesting the possibility that fish fecal Bacteroides  are 

phylogenetically closely related to Bacteroides in human feces.  Since fish may 

inhabit environmental water often tested for the presence of human fecal 

contamination, it is critical to address the potential for phylogenetic relatedness of 

fish and human Bacteroides. This information will contribute to the current 

database of Bacteroides phylogenetics and may allow identification of unique 

genetic markers in human and/or fish fecal DNA to eliminate misidentification of 

sources of fecal contamination. 

 To investigate this possibility, Bacteroides isolates from human and fish 

fecal samples were cultured. Following biochemical testing to classify the 

Bacteroides isolates, the 16S rDNA gene was amplified, and the amplicons were 

sequenced to determine genetic relatedness of Bacteroides isolates from human 

and fish feces. Ultimately, this work will aid in the development of molecular 

assays that will differentiate human and fish Bacteroides. 

4.3.      Materials and Methods 

4.3.1.   Fish Sample Collection 

 Fresh fecal samples were collected from fish and human subjects. Nile 

tilapia (Oreochromis niloticus) feces were collected from aquaculture laboratory 

at the University of Arizona, Maricopa Agricultural Center (Maricopa, AZ, USA). 

Fecal pellets were collected manually from the water in the main aquaculture tank 

and placed into sterile centrifuge tubes containing 20 ml sterile 1X phosphate-

buffered saline (PBS). The fecal sample of Grass carp (Ctenophyaryn 

godonidella), blue catfish (Ictalurus furcatus), and channel catfish (I. punctatus) 
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were provided by the USDA-ARS Catfish Genetic Research Lab (Stoneville, MS, 

USA). These samples were collected by removing individual fish from tanks and 

manually expressing feces into centrifuge tubes containing 20 ml sterile PBS. The 

tubes containing fecal samples were shipped on ice to the environmental 

microbiology laboratory at ASU. Rainbow trout (Oncorhynchus mykiss) fecal 

samples were also collected, using manual fecal expression, from the Page 

Springs Fish Hatchery, Arizona Game and Fish Department (Phoenix, AZ, USA). 

4.3.2.   Isolation of Bacteroides using culture-based techniques  

 In the laboratory, isolation and identification of Bacteroides proceeded as 

described in Wadsworth-KTL Anaerobic Bacteriology Manual (Jousimies-Somer 

et al., 2002) and the Manual of Clinical Microbiology (Jousimies-Somer et al., 

2003) with little modifications. First, fecal samples (from 20 ml sterile PBS) were 

streaked onto two types of media: blood agar with hemin and vitamin K and BBE 

agar (Hardy Diagnostics, Santa Maria, CA, USA). The streaked culture plates 

were placed in Bio-BagTM Type A systems (BD-Diagnostic Systems, Franklin 

Lakes, NJ, USA) to maintain an anaerobic atmosphere and incubated at 37° C. 

Each Bio-Bag contained aresazurin oxygen reduction indicator to ensure 

anaerobicity during incubation. BBE plates were examined after three days and 

colonies with representative morphology and color to Bacteroides (gray, circular 

and raised colonies; approximately 1 mm in diameter), were randomly selected 

and subcultured onto chopped meat medium (Hardy Diagnostics) and incubated 

under anaerobic conditions at 37° C for 24 h to obtain high cell counts. Fig 11 

shows an example of the chopped medium and the biobag used in this experiment. 
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Fig. 11 - Anaerobic bag, inoculated (right) and uninoculated (left) 
chopped meat medium tubes. The tubes were inoculated using colonies 
from BBE plate to obtain culture for API strip procedure. 

 
4.3.3.    Bacteroides Identification using Biochemical Methods 

 Bacteroides isolates were subcultured in chopped meat medium to obtain 

higher number of cells required for the biochemical identification procedure using 

API® Rapid ID 32A strips (Biomerieux, Durham, NC, USA) to further identify 

the isolates to the species level. Rapid ID 32A is a standardized system for 

identification of anaerobic bacteria utilizing 29 miniaturized enzymatic tests.  

Each enzymatic reaction is identified via a colorimetric assay, and patterns of 

color development are compared to a database of patterns from known 

Bacteroides species, resulting in “percentage relatedness” of the unknown isolate 

to the known Bacteroides species. The API® test was performed according to 

manufacturer’s instructions, with the exception that instead of harvesting colonies 

directly from blood agar and suspending it in the API® suspension buffer, higher 

cell density was achieved by centrifugation of the Bacteroides grown in the 

chopped meat medium and suspension of the resulting pellet in API® buffer. Fifty 
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µl of suspended cells were loaded into miniaturized wells (cupules) on the API® 

strip, each containing a different substrate used to determine the metabolic 

capabilities of the isolates. Inoculated strip were incubated at 37° C for 4 h 

followed by addition of specific reagents resulting in color formation. “Percentage 

relatedness” to known Bacteroides species was determined using color coding in 

accordance to manufacturer instructions and APIweb™ identification software. B. 

fragilis (ATCC# 23745) served as a positive control strain for both culturing and 

the API® test. An example of the API strip used in this experiment is shown in Fig 

12. The API® strips were selected as an identification tool since it is a practical 

and easy to use, uses direct bacterial cells and offers a large and robust database 

which is accessible through the Internet-based APIweb™ service. 

 

 

Fig. 12 - API test strip (Rapid ID 32A) used to speciate Bacteroides harvested 
from fish fecal sample 

 
4.3.4.   DNA Extraction and PCR Amplification 

 To compare the 16S rDNA sequences from the Bacteroides cultured from 

human and fish feces, PCR, cloning and sequencing were performed. Isolates 

identified as Bacteroides using API® strips were grown in chopped meat medium 

to obtain a high cell density, and DNA was extracted from 1 ml of the culture 

using the Zymo Fecal DNA Kit (Zymo Research, Orange, CA, USA). Standard 
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PCR was performed on all culture-identified Bacteroides species from humans 

and fish. Bacteroides16S rDNA from human isolates were amplified using the 

primers of Bernhard and Field (2000b) (Table 10). This PCR assay produces a 

longer product size (~534 bp) compared to other human-specific Bacteroides PCR 

assays, and has also been shown not to amplify fish Bacteroides (McLain et al., 

2009). For fish fecal DNA, a combination of a universal forward primer (Kane et 

al., 1993) and a reverse primer shown to amplify fish Bacteroides (McLain et al., 

2009) were used to generate longer sequences of the 16S rRNA gene  (~755 bp). 

To align longer segments of 16S rDNA from the Bacteroides isolates, universal 

primers (Kane et al., 1993) were used to obtain product size of ~1381bp. 

 

Table 10 - Assays used to amplify 16S rRNA gene of Bacteroides from human 
and fish samples 

Assay 
Expected 
Amplicon 
Size (bp) 

Reference 

HF134F:5′-GCCGTCTACTCTTGGCC-3′ 
HF654R:5′-CCTGCCTCTACTGTACTC-3′ 

534 Bernhard and 
Field, 2000b 

11f: 5′-GTTTGATCCTGGCTCAG-3′ 
HuBac692r:5′CTACACCACGAATTCCGCCT-3′ 

755 
Kane et al., 1993; 

Layton et al., 
2006 

11f1: 5′-GTTTGATCCTGGCTCAG-3′ 
1392r1:5′-ACGGGCGGTGTGTAC-3′ 

1381 Kane et al.,1993 

1Universal Primers 

All PCR reactions were performed using a Promega GoTaq® Green 

Master Mix (Promega Corp., Madison, WI, USA) with either 600 nM (11f and 

HuBac692r and11f and 1392r) or 400 nM (HF134F and HF654R) primer 

concentrations in 25 µl final volume. PCR was performed using a Gene Amp 
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PCR System 9700 (PE Applied Biosystems, Foster City, CA) with a temperature 

profile: 5 min at 95o C; 35 cycles of 30s at 95o C, 45s at 60o C and 30s at 72o C; 

and a final extension of 5 min at 72o C. PCR products were visualized using 

electrophoresis on 1.5% agarose gels containing 0.5µl/ml of SYBR safe DNA gel 

stain (Invitrogen Life Technologies, Carlsbad, CA, USA) for 1 h at 100V and 

were analyzed by a Kodak Gel Logic 112 Digital Imaging System (Carestream 

Molecular Imaging, New Haven, CT, USA). 

4.3.5.   Molecular Techniques: Cloning, DNA Sequencing and Phylogenetic Tree     

            Construction 

 The 16S gene amplicons from the identified species were cloned and 

sequenced. The amplicons were purified using a QIAquick PCR purification kit 

(Qiagen Sciences. Calencia, CA, USA) and ligated into TOPO® plasmid vectors 

(Invitrogen) following the manufacturer’s instructions. Clones were screened for 

inserts using the standard PCR methods of Chung et al. (2006). Screening targeted 

the expected product size, plus the 80 bp flanking regions of the plasmid vector. 

 Plasmid inserts were directly sequenced using an automated ABI Prism 

3730 DNA Analyzer (Applied Biosystems). The 16S rDNA obtained sequences 

were blasted using the NCBI Gene Bank (http://www.ncbi.nlm.nih.gov/) to 

identify Bacteroides spp. with homologues sequences currently available in NCBI 

database (Table 11). The BLAST search resulted in the identification of B. 

vulgates, B. eggerthii, B. graminisolvens and Cetobacterium somerae as a 

possible match. Thereafter, a thorough literature review identified the following 

Bacteroides species to be dominant in animal feces: B. vulgatus, B. 
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thetaiotaomicorn, B. caccae, B. eggerthii, B. fragilis, B. ovatus, B. stercoris, and 

B. uniformis. The accession numbers for these species reported in the literature 

were used to retrieve sequence data from the Gene Bank. The sequence data from 

this study and the sequence data retrieved from the Gene Bank were used to 

generate phylogenetic tree for identifying the relatedness of Bacteroides isolates 

from this study with the isolates reported in the literature.  

 

Table 11 - Bacterial species in NCBI Gene Bank homologues to 16S rDNA 
sequences obtained for this study. 

NCBI available sequences for cultured 
isolates 

NCBI available sequences for uncultured 
isolates 

Bacteroides vulgates ATCC (8482) 
(CP000139.1) (99%) 

 
Bacteroides eggerthii (AB510700.1) (89%) 

 
Bacteroides graminisolvens (AB547643 ) 

(94%) 
 

Cetobacterium somerae from common carp 
(AB353124) (99%) 

Bacterium from human fecal sample 
(EF404383) (99%) 

 
Bacterium from yellow catfish (Pelteobagrus 

fulvidraco) (GQ360025.1) (99%) 
 

Bacterium from Chinese mitten crab 
(DQ856503.1) (98%) 

 
Bacterium from zebra fish (HM778680) (99%) 

 

4.4.        Results and Discussion 

4.4.1.    Bacteroides culturing and API® test Results 

 After three days of incubation under anaerobic conditions, most of the 

bacterial cultures from human and fish fecal samples appeared as gray, entire 

(unbroken), circular, raised colonies. Those displaying this morphology and 

greater than 1mm in diameter were presumptively identified as Bacteroides 

(Livingston et al., 1978). Media surrounding the colonies displayed a brown to 
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black color resulting from the hydrolysis of esculin within the media and the 

production of insoluble iron salts (Fig 13). 

 

 

Fig.13 - Bacteroides colonies cultured from fish fecal sample on BBE plate 

 

The colonies from each BBE plate resulted in positive identification of 33-

75% of Bacteroides species (Table 12). Of the Bacteroides isolates from human 

feces 75% were identified as B. vulgatus. Moore and Holdman (1974) and Benno 

et al. (1989) also demonstrated that B. vulgatus is one of the dominant 

Bacteroides species in human fecal flora.  

In the case of Nile tilapia, 66% of isolated colonies were identified as B. 

eggerthii. Tentative Bacteroides isolates from grass carp, channel catfish and blue 

catfish did not correspond to previously identified Bacteroides spp. using API® 

strip analysis; however, they were successfully identified to the genus level and 

were narrowed down to three most probable Bacteroides species (B. uniformis; B. 

ovatus; and B. sterocoris).  
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Though bacterial isolates from trout exhibited Bacteroides specific 

characteristics on the BBE plate (Livingston et al., 1978), the API® strip analyses 

identified them as Clostridium perfringens. Alignment of the 16S gene amplicon 

indicated that the isolate is closely related to Cetobacterium somerae isolated 

from common carp (AB353124). This was in agreement with Tsuchiya et al. 

(2008) who concluded that Bacteroides type A recovered from freshwater fish 

intestines are closely related to Cetobacterium somerae. Studies have shown that 

Bacteroides species are divergent. For example, a recent study analyzing the 

genomic information of all the Bacteroides species available in genomic 

databases reported that some of the Bacteroides strains have characteristics 

similar to Clostridium and should be reclassified (Karlsson et al., 2010). 

According to this study, the 16S rRNA gene sequences of B. capillosus share 96-

98% similarity with sequences of Clostridium orbiscindens and should be 

reclassified to genus Pseudo flavonifractor. 

The API® strip was originally developed for clinical applications and since 

the clinical samples contain less diversity of Bacteroides population, the analysis 

is only based on 29 substrates spectrum of metabolic diversity, therefore it 

provides limited applicability for environmental samples. However, for 

environmental isolates of Bacteroides, enzymatic tests based on broader range of 

substrates (up to 133) can provide appropriate bases for proper identification of 

Bacteroides species (Karlsson et al., 2010). Misidentification of divergent 

Bacteroides species in environmental samples is highly likely using API® strips, 

which are primarily designed for clinical applications. However, API® strips are 
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one step closer to the identification of the cultures, which can be further 

characterized using sequencing.  

After API® identification, one Bacteroides isolate from each 

representative fish and human was sequenced and blasted against cultured and 

uncultured 16S rRNA gene sequences in the NCBI Gene Bank Database (Table 

12). The fact that the 16S rRNA gene sequences from cultured fish Bacteroides 

did not match closely to any 16S rRNA gene sequences from cultured Bacteroides 

in the NCBI database is not surprising. Despite reports of isolates of obligate and 

facultative anaerobes from fish (Sakata et al., 1981), the sequences deposited in 

NCBI are most frequently from mammals, and to the best of my knowledge no 

study has reported the cultured isolates of Bacteroides species in the feces of fish 

prevalent in the U.S. water. In addition to the preference for mammalian 

sequences in the NCBI database, fish isolates are extremely rare. This might be 

due to the fact that culturing techniques for isolation of Bacteroides are a tedious 

task to perform. Studies have shown that 60 to 80% of human intestinal 

microflora are difficult to culture and these numbers are  even greater for other 

animal hosts (Hold et al., 2002; Leser et al., 2001).This can explain why most 

bacterial 16S rRNA gene sequences from environmental samples deposited in 

NCBI are based on metagenomics studies and not from isolated colonies. Despite 

these limitations, the genomic samples contained in the NCBI database did aid in 

Bacteroides identification, as isolates from tilapia and trout closely matched an 

uncultured bacterium from yellow catfish and zebra fish (Table 12), providing 
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evidence of the value of culturing techniques to the strengthening of the NCBI 

gene bank database. 
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Table 12 - Characterization of Bacteroides species isolated from human and fish 
feces using culture-based and molecular techniques 

 
Sample Source 

 
Growth 

 
Colony 

Appearance 
on BBE 

Agar 

 
API® Strips1 

(Rapid ID 32A) 

 
% Match of 16S 
sequences from 

Bacteroides 
isolated in this 

study with the16S 
sequences in 

NCBI 2 (reported 
from cultured 

samples) 

 
% Match of 16S 
sequences from  

Bacteroides isolated in 
this study with the 16S 

sequences in NCBI 
(reported from 

uncultured samples / 
metagenomic data) 

Blood     
Agar 

BBE 
Agar

Bacteroides 
fragilis 

(ATCC#23745) 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

Bacteroides fragilis ND (Not Determined) ND 

 
Human 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

 
75% of colonies 

identified on BBE 
agar were Bacteroides 
vulgates (%ID=99.4, 

T = 0.2) 

 
99% match to B. 

vulgates ATCC (8482) 
(CP000139.1) 

 
99% match to uncultured 

bacterium from human fecal 
sample (EF404383) 

 
Nile tilapia 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

 
66% of colonies 

identified on BBE 
agar were Bacteroides 
eggerthii (%ID =99.8, 

T=0.41) 

 
89% match to B. 

eggerthii 
(AB510700.1) 

 
99% match to Uncultured 

bacterium from yellow 
catfish (Pelteobagrus 

fulvidraco) (GQ360025.1) 

 
Grass carp 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

 
33% of colonies 

identified on BBE 
agar were either B. 

uniformis (%ID =59, 
T=0.5), B. ovatus 

(%ID = 32.3, T=0.51), 
or B. stercoris (%ID = 

5.7, T=0.34) 

 
94% match to B. 
graminisolvens 
(AB547643 ) 

 

 
98% match to uncultured 
bacterium from Chinese 

mitten crab (DQ856503.1) 

 
Blue catfish 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

 
66% of colonies 

identified on BBE 
agar were either B. 

uniformis (%ID =59, 
T=0.5), B. ovatus 

(%ID = 32.3, T=0.51), 
or B. stercoris (%ID = 

5.7, T=0.34) 

 
93% match to B. 
graminisolvens 
(AB547643 ) 

 

 
98% match to uncultured 
bacterium from Chinese 

mitten crab (DQ856503.1) 

Channel 
catfish 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

 
33% of colonies 

identified on BBE 
agar were either B. 

uniformis (%ID =59, 
T=0.5), B. ovatus 

(%ID = 32.3, T=0.51), 
or B. stercoris (%ID = 

5.7, T=0.34) 

 
94% match to B. 
graminisolvens 
(AB547643 ) 

 

 
98% match to uncultured 
bacterium from Chinese 

mitten crab (DQ856503.1) 

 
Trout 

 
+ 

 
+ 

 
Gray, Raised, 

Circle, 
Blackish 

coloration in 
the media 

 
66% of colonies 

identified on BBE 
agar were Clostridium 
perfringens (%ID = 

99.9, T = 0.33) 

 
99% match to 
Cetobacterium 

somerae from common 
carp (AB353124) 

 
99% match to Uncultured 
bacterium from zebra fish 

(HM778680 ) 
99% match to Uncultured 

bacterium from yellow 
catfish (Pelteobagrus 

fulvidraco) (GU293182 ) 
API® Strips1:‘T’ denotes reliability of identification test results. For Bacteroides, the API® %ID of 80 or higher it would be valid 
for species identification, whereas below 80% is accurate for the genus level according to manufacturer manual. 
Excellent Identification up to species level (%ID >= 99.9 & T > = 0.75), Very Good Identification to species level (%ID >= 99.0 & 
T > = 0.5), Good Identification (%ID >= 90.0 & T > = 0.25), Acceptable Identification (%ID >= 80.0 & T > = 0).T: Reliability of 
identification test result. 
 

NCBI2: National Center for Biotechnology Information, Gene Bank data base. 
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4.4.2.   Phylogenetic analysis of partial Bacteroides 16S rDNA sequence from   

            human and fish 

 For phylogenetic investigation, a clone library was constructed by 

amplifying (~600bp and ~ 1381bp) the 16S rDNA from Bacteroides isolates from 

human and fish feces. The phylogenetic analyses showed sequences of 

Bacteroides isolates clustered into four clade representing species from human 

and fish samples (Fig 14). Interestingly, it was noted that Bacteroides from 

different fish species were grouped differently. The observed diversity among 

Bacteroides isolates from different fish species can be due to the variation in 

ecological zone from where the fish samples were collected. There are reports 

supporting that microbial diversity in the fish intestinal tract may vary due to 

different environmental conditions such as diet and the type and quality of water 

(Yoshimizu et al., 1980; Austin and Al-Zahrani, 1988; Bergh et al., 1994). 

The phylogenetic analysis shows the sequences from human Bacteroides 

and B. vulgatus in the same clade. It was expected based on the results obtained 

by API® strip tests. This is also in agreement with the literature since B. vulgatus 

is one of the dominant Bacteroides species in human feces (Li et al., 2009). 

Tilapia sequences as well as uncultured Bacteroides from trout clustered together 

with NCBI uncultured bacterium from yellow catfish. Grass carp, blue catfish and 

channel catfish all branched into two separate groups. It was also observed that 

human isolates are closely related to Bacteroides strains from the NCBI Gene 

Bank (B. vulgatus, B. uniformis, B. eggerthii, B. stercoris, B. ovatus, B. caccae, B. 

fragilis, and B. thetaiotaomicron) compared to fish Bacteroides. Fish Bacteroides 
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showed no close match to cultured Bacteroides sequences, illustrating the need 

for expanding the genomic data base for fish Bacteroides in NCBI. 
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Fig. 14 - Phylogenetic relationship of Bacteroides 16S gene sequences (~600 and 
~1381bp) of clones recovered in this study. Sequences presented are from 
cultured Bacteroides isolated in this study from human and fish species (tilapia, 
blue catfish, channel catfish and grass carp) and uncultured Bacteroides obtained 
in this study from fish species (tilapia, catfish and trout) and 10 strains of 
Bacteroides and one strain of Cetobacterium somerae (only designated as 
cultured) obtained from NCBI Gene Back. The NCBI strains in the tree are listed 
with their accession numbers. The numbers next to fish names and human are 
referred to the individual clone within the library. In addition, three uncultured 
Bacteroides (U.B.) from yellow catfish, Chinese mitten crab and zebra fish were 
included from NCBI in this phylogenetic analysis. Uncultured Bacteroides 
obtained in the lab are listed in the tree and starts with (U.B Old). ClustalX 
software was used for generation of this phylogenic tree. 
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To accomplish the objective of this study it was essential to first culture 

Bacteroides from human and fish fecal samples to obtain pure cultures and then 

identify at the species level using API® test strips. In addition, the 16S rDNA 

gene analysis was also a necessary step. Knowing the phylogenetic placement of 

bacterial isolates is a critical step in deciphering molecular markers for their 

specific identification (Spanggaard et al., 1999). 

Despite the fact that cultured-based identification of Bacteroides is labor 

intensive procedure, the above strategy is valuable for generating pure culture 

isolates and for presumptive speciation of bacterial isolates. It is acknowledged 

that PCR and subsequent sequencing is an alternative for definitive identification 

of the species of the tested microorganisms, in addition, the amplicons from the 

isolated colonies can be used as a confirmatory tool for identifying environmental 

isolates. Such confirmation is an essential part of quality control and quality 

assurance for unknown samples. The proposed strategy offers a platform to 

identify environmental samples/isolates at a higher confidence level and allows 

subsequent cloning and sequencing to increase the utility of molecular techniques 

by selecting better molecular bio-marker. The use of culture based methods in 

conjunction with molecular techniques such as cloning and sequencing allows 

identifying variable regions and provides a basis for developing a new Microbial 

Source Tracking (MST) method using human-specific Bacteroides molecular 

marker. 
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Nucleotide sequence accession numbers. All of the sequences 

determined in this study have been deposited in the Gene Bank database under 

accession numbers JQ317220 to JQ317269.  

4.5.      Conclusions 

� Human and fish Bacteroides were successfully cultured on BBE agar and 

identified using API® Strip. 

� API® test results indicated that dominant Bacteroides species are as 

follows: 

� Bacteroides vulgatus in human sample 

� Bacteroides eggerthii in Nile tilapia sample 

� Bacteroides uniformis, Bacteroides ovatus, and Bacteroides 

sterocoris in either grass carp, channel catfish or blue catfish 

� From phylogenetic tree analysis, it can be observed that fish sequences 

from this study did not group with sequences of NCBI “cultured” species.  

• Limited available “cultured” sequences in NCBI may be due to the 

difficulties of Bacteroides cultivation. 

• This study will help to fill the gap of the differences between fish 

and human Bacteroides for the characterization of specific genetic 

markers. 

� The strategy of using combined cultured isolates and sequencing in this 

study will provide a basis for developing a new MST method using 

human-specific Bacteroides genetic marker. This is essential since most of 
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the genomic information deposited in NCBI gene bank is based on 

metagenomics. 

� This study expands culture-based sequence database for fish Bacteroides 

which is essential for characterizing the genetic markers of fish 

Bacteroides and separating them from human Bacteroides for future MST 

studies. 
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Chapter 5 

A NEW MICROBIAL SOURCE TRAKING STRATEGY USING 

BACTEROIDES 16S rRNA SIGNATURES IN WATER SOURCES 

5.1. Abstract 

Bacteroides genetic markers have been widely used to differentiate human 

from other sources of fecal bacteria contamination in water. The work presented 

in Chapter 3 indicates that many assays currently used to detect human-specific 

Bacteroides produce false positive results in the presence of fish fecal 

contamination. Bacteroides 16S rRNA gene sequences obtained from fish and 

other selected animals were used to achieve the objective of this study: to develop 

a new Microbial Source Tracking (MST) strategy relying on a human-specific 

Bacteroides genetic marker. 

Bacteroides 16S rRNA gene sequences from fish and selected animals 

were aligned against human B. volgatus, B. fragilis, and B. dorei to identify 

variable regions: region 1 (71-101), region 2 (142-271), region 3 (451-511) and 

region 4 (581-701), within the Bacteroides 16S rRNA gene sequence. Conserved 

sequences between regions were deleted to develop a truncated sequence. The 

non-truncated and truncated sequences were used to construct cladograms. The 

cladogram constructed from truncated sequences show a clear separation of 

human B. dorei from Bacteroides of other sources. The proposed strategy was 

field tested by collecting water samples from central AZ source water and three 

different recreational ponds. PCR using HF134 and HF183 primer sets was 
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performed and sequences from positive reactions were aligned against human 

Bacteroides sequences to identify the source of contamination. 

Based on PCR results, the source of fecal contamination was 

presumptively identified. For the samples tested positive using HF183 primer set 

(8/13), fecal contamination was determined to be from human sources. To 

confirm the results, PCR products were sequenced and aligned against the four 

variable regions and then incorporated within the truncated cladogram. As 

expected, the sequences from water samples with human fecal contamination 

were grouped within the human clade.  

A variability matrix developed after exclusion of conserved sequences 

amongst the four regions was utilized to establish clear groupings for sequences 

within the truncated cladogram, sufficiently differentiating Bacteroides isolates 

from varying host animals. The proposed strategy offers a new method for MST 

and a step-wise methodology essential for identifying sources of fecal pollution is 

provided. 

5.2. Introduction 

Water quality in rivers, ponds, and lakes is frequently degraded by fecal 

contamination from human and animal sources, imposing negative implications 

for recreational uses and public safety (Bernhard et al., 2003). According to the 

U.S Environmental Protection Agency (EPA), the standard method for 

identification of fecal pollution in water is based on cultivation of fecal indicator 

bacteria (FIB) such as Escherichia coli and Enterococci. Although this method 

identifies incidents of fecal pollution in water, it does not identify the source of 
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contamination, hence making fecal pollution control efforts ineffective in many 

situations (Walters and Field, 2009).  

Over the past several years scientists have been using members of the 

genus Bacteroides to identify and quantify the source of fecal pollution via 

molecular techniques (Bernhard and Field., 2000a,b;  Seurinck et al., 2005; 

Layton et al., 2006; Reischer et al., 2007). Bacteroides is potentially an ideal 

target organism for MST studies due to their high numbers in the gut and fecal 

microbiota, inability to survive in oxygenated water, and high degree of host 

specificity (Bernhard and Field, 2000a). Additionally, “Bacteroides has shown to 

correlate with the presence of fecal pathogens such as E. coli O157:H7, 

Salmonella, and Campylobacter” (Walters and Field, 2009).  

Waters contaminated with human feces are generally considered a greater 

risk to human health, as they are more likely to contain human enteric pathogens 

(Guzewich and Morse, 1986). For this reason, identification of human fecal 

pollution in water bodies is critical. Several assays using human-specific 

Bacteroides genetic markers have been developed to identify fecal sources and 

quantify Bacteroides in water (Bernhard et al., 2000a; Seurinck et al., 2005; 

Layton et al., 2006;  Kildare et al., 2007; Reischer et al., 2007). The majority of 

assays used are designed to target B. volgatus from human fecal samples. It is 

known that some members of Bacteroides species such as B. fragilis, B. 

thetaiomicron, and B. volgatus are 100 to 1000 fold more abundant in human 

feces than in animal feces, suggesting that markers from these species are human-

specific (Pei-Ying et al., 2008). In contrast to this idea, according to a study 
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performed by Dick et al. (2005a), many Bacteroides species such as B. volgatus, 

B. uniformis, B. thetaiotaomicron, and B. stercoris may not be useful as targets 

for identification of human fecal contamination. Their assertion/conclusion was 

based on the fact that these Bacteroides species are detected in the feces of non 

human hosts such as dogs, cats, gulls, and pigs when using human-specific 

Bacteroides genetic markers, leading to false positive results. 

In order to eliminate false positive results, the Bacteroides species used for 

human source identification must either not be present or, if present, exist in very 

low numbers within non-human sources. B. dorei is a novel Bacteroides species 

isolated from human feces with 96% similarity to B. volgatus and 93% similarity 

to B. massiliensis based on the 16S rRNA gene (Bakir et al., 2006). To detect B. 

dorei, the HF183 forward primer designed by Bernhard and Field (2000b) can be 

used for presumptive identification; however, it is not reliable to do so without 

verifying the identity of amplified PCR products via sequencing. 

In addition to relying on host-specific Bacteroides genetic markers, source 

tracking can potentially be achieved by performing sequence alignment analysis 

to identify variable regions. Many bacterial 16S rRNA genes contain nine variable 

regions. Based on these variable regions, an assay can be designed to detect the 

sequence of the target organism (Van de Peer et al., 1996). By performing 

Bacteroides 16S rRNA gene sequence alignment from different sources and 

comparing them with human-specific Bacteroides, it is possible to look for unique 

regions within the gene and develop a strategy for source tracking. 
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The cross-amplification of human-specific Bacteroides markers with the 

DNA extracted from fish feces was an unexpected finding (McLain et al., 2009). 

This led to closer examination of fish Bacteroides to avoid false positive results 

when using the proposed strategy. The objective of this study was to develop a 

tool box strategy for Bacteroides source identification relying on PCR 

amplification, variable region analysis, human-specific Bacteroides PCR assays, 

and subsequent truncated cladogram grouping analysis. By following the 

proposed strategy, accurate source identification can be achieved by eliminating 

problems of cross amplification with Bacteroides from non-human hosts, 

particularly with fish and dog. 

 5.3. Materials and Methods 

This section is divided in two parts: 1) development of a tool box strategy 

for Bacteroides source identification, and 2) field testing of the proposed strategy 

for source identification. 

5.3.1. Developing a Tool Box Strategy for Source Identification  

5.3.1.1. Fecal Sample Collection 

Human fecal samples were collected from five healthy adults. Prior to the 

sample collection, the objectives of study were explained to subjects and their 

participation was voluntary. Animal feces were collected from apparently healthy 

animals (4 dogs, 2 cows, 2 horses, 1 cat, 1 pig and 1 duck). Dog samples were 

collected from four different house pets (Golden Retriever and Pomeranian, in 

Tempe, AZ, German Shepherd and English Mastiff in Maricopa, AZ).  Cow 

samples (dairy and beef) were collected from two farms located in Maricopa, AZ. 
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Horses (Arabian and Thoroughbred) and pig (York) samples were collected from 

a farm in Tolleson, AZ. A cat sample from a mixed breed animal was collected 

from a house pet in Maricopa, AZ. A duck fecal sample was collected near a pond 

located in Layton lake community in Gilbert, AZ. All the fecal samples were 

placed into 50 ml sterile centrifuge tubes having 20 ml sterile 1X phosphate-

buffered saline (PBS) at the time of collection and transferred on ice to the 

environmental microbiology laboratory at Arizona State University. 

5.3.1.2. Bacteroides Isolation from Fecal Samples using Culture-based 

Techniques 

To strengthen the data set for cultured Bacteroides from different sources, 

additional human and animal fecal samples were cultured on blood agar 

containing hemin and vitamin K and BBE agar (Hardy Diagnostics, Santa Maria, 

CA, USA) as previously described in Chapter 4. Briefly, colonies with 

Bacteroides characteristics were subcultured in chopped meat medium broth 

(Hardy Diagnostics). Culture samples were subjected to DNA extraction, PCR 

amplification using universal primers (11f and 1392r), cloning, and DNA 

sequencing. Sequences from each sample were blasted against 16S rRNA gene 

sequences from cultured and un-cultured samples in the NCBI Gene Bank 

database. The procedures followed for these analyses are described in Chapter 4. 

5.3.1.3. Bacteroides Isolation from Fecal Samples using Molecular Techniques 

To strengthen the data base of 16S rRNA sequences from un-cultured 

Bacteroides, the fecal samples were subjected to direct DNA extraction and PCR 

amplification. Briefly, PCR assays were performed using a Promega GoTaq® 



  73 

Green Master Mix (Promega Corp., Madison, WI, USA) with primer 

concentration of 10µM (Bac32F and Bac708R) in 25 µl final volume, using a 

Gene Amp PCR System 9700 (PE Applied Biosystems, Foster City, CA) with the 

following temperature profile: 35 cycles of 30s at 94o C, 1 min at 53o C, and 2 min 

at 72o C, with a final extension of 6 min at 72o C (Bernhard and field, 2000a). 

Visualization of PCR products, cloning, and DNA sequencing was performed as 

described in Chapter 4.  

5.3.1.4. Bacteroides 16S rRNA Gene Sequence Alignment and Variable Regions 

Identification 

The 16S rRNA gene sequences of cultured and un-cultured Bacteroides 

from human and animal fecal samples obtained for this study, fish samples 

sequences (Chapter 4), and selected sequences from the NCBI were aligned 

against human B. volgatus, B. fragilis and B. dorei using multi-align interface 

software to identify variable regions within the 16S rRNA gene (Corpet, 1988). 

The variable regions were selected based on having nucleotide differences, which 

was ranged between 2.5 to 78%, when compared to human Bacteroides. The 

sequence accession numbers used for alignment are shown in Table 13. It is 

important to note that some Bacteroides 16S rRNA gene sequences isolated from 

human and animal fecal samples in this study are yet to be submitted to the NCBI 

database and their accession numbers will be included in at a later time.  
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Table 13 - Accession numbers for NCBI sequences and study samples aligned to 
identify four variable regions 

Source Accession numbers  

Human JQ317269, EU722737, and X* 

Cat AY695706 to AY695711, AY859646 to AY859650, X 

Cow 

AY695667 to AY695669, AY859651.1 to AY859655.1, EU573790, EU573797, 
EU573795.1, EU573800.1, EU573803.1, 1,EU573820.1, EU573825.1, EU573830.1, 

EU573832.1, EU573833.1, HM754529.1, HM754520, HM754519, 
AB237845 to AB237858, X 

Dog/ 
Canine 

AY695698 to AY695705, AY859657.1 to AY859661.1, DQ113673, DQ113675.1, 
EU772969, FJ221359.1, FJ221344.1, FJ221365.1, FJ221364.1, FJ221363.1, 
FJ221361.1, FJ221360.1, FJ221300.1, FJ221310.1, FJ221320.1, FJ221330.1, 

FJ221350.1, X 

Duck 
AB666116 , AB666125, AB666136 to AB666138, AB666144, AB666152, 

AB666153 

Fish 
AB592585.1, AB591886.1, AY682067.1, AY682055.1, GQ360025.1, GQ360021.1, 

GQ360021.1, GQ360025.1, JQ317220 to JQ317265, X 

Gull 

AY695712 to AY695716, AY859665.1 to AY859667.1, FJ221200, FJ220311.1, 
FJ221036.1, FJ221000.1, 

FJ221100.1,FJ221110.1, FJ221176.1, FJ221169.1, FJ221178.1, FJ221166.1, 
FJ221190.1, FJ221200.1 

Pig 
AY695689 to AY695697, AY859674.1, AB237860, AB237861, AB237865.1, 

AB237868.1, X 

*Accession numbers will be provided once submission process to NCBI is completed. 
 

5.3.1.5. Cladogram Construction using Non-truncated and Truncated Sequences  

Initially, 4 cladograms were constructed: 1) cultured, non-truncated, 2) 

cultured, truncated, 3) uncultured, non-truncated, and 4) uncultured, truncated 

(Table 14). For truncation, conserved sequences between the four variable regions 

were deleted and variable segments joined, resulting in a DNA segment better 

representative of the genetic variability of Bacteroides from different sources. In 

addition to the four cladograms listed above, a fifth was generated using 

uncultured truncated sequences from human and non-human Bacteroides, with the 

addition of field sample sequences. Bacteroides 16S rRNA gene sequences from 

different sources were used to construct the cladograms as listed in Table 15. 
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Table 14 - Number of cladograms constructed 

Number of Cladograms Type of Cladogram 

1 Cultured, non-truncated 
(Human and non human sources) 

2 Cultured, truncated 
(Human and non human sources) 

3 Uncultured, non-truncated 
(Human and non human sources) 

4 Uncultured, truncated 
(Human and non human sources) 

5 Uncultured, non-truncated 
(Human, non human and field samples) 

 

Table 15 - Sources for Bacteroides 16S rRNA gene sequences used in cladogram 
construction 

Cultured Bacteroides used for 
cladogram construction 

Un-cultured Bacteroides used for cladogram 
construction 

2 Human sources 
5 Fish sources: Tilapia, Trout, Grass 
carp, Blue catfish, and Channel catfish 
2 Dog sources: Pomeranian and Golden 
Retriever 
1 Cow source: Beef cow 

3 Human sources 
2 Fish sources: Tilapia and Catfish 
4 Dog sources: Pomeranian, Golden Retriever, 

German Shepherd, and English Mastiff 
2 Cow sources: Dairy and Beef cows 
2 Horse sources: Arabian and Thoroughbred 
1 Cat source: Mixed breed 
1 Pig source: York 

 

 To examine the validity of the developed truncated cladogram, blind 

samples of Bacteroides 16S rRNA gene sequences in NCBI (Table 13) were 

analyzed using scenario 4, Table 14 for identifying human versus non-human 

sources. The strategy clearly identified the sources listed in the NCBI. 

 5.3.2. Field Testing the Tool Box Strategy  

A tool box strategy for Bacteroides source identification was developed 

including variable region analysis, PCR amplification, and subsequent truncated 
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cladogram grouping analysis. This section outlines the steps that were followed to 

field test the proposed strategy. 

5.3.2.1. Site Selection Criteria and Field Sampling 

To test the field applicability of the proposed tool box strategy for 

Bacteroides source identification, a variety of samples from central AZ source 

water, ponds, and fishing lakes filled with reclaimed water were collected. 

Samples from the Salt River, the Verde River (upstream of Granite Reef Dam 

which is located 22 miles Northeast of Phoenix, AZ, on the Salt River) and the 

CAP (near Granite Reef Dam) were collected. In addition, samples from the 

intake of two drinking water treatment plants (South Tempe (AZ) and Chandler 

(AZ) Drinking Water Treatment Plants) were collected. Samples were collected 

from a pond in Layton Lake community in Gilbert, AZ,  the Riparian Institute in 

Gilbert AZ (1 sample from a pond and 2 samples from a fishing lake), and a pond 

in Pacana Park in Maricopa, AZ. Samples were collected in sterile 1-liter 

polypropylene containers and placed on ice immediately for transport to the 

laboratory. A list of the samples and a map of sampling locations is provided in 

Table 16 and Fig 15. 
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Table 16 - Sites selected for field sampling 

Sampling Location Sampling Date 

Salt Rivera (Upstream of Granite Riff Dam), Mesa, AZ 1/9/2012 

Verde Rivera (Upstream of Granite Riff Dam), Mesa, AZ 1/9/2012 

CAP Canala (Near Granite Riff Dam), Mesa, AZ 1/9/2012 

Salt Riverb (Upstream of Granite Riff Dam), Mesa, AZ 1/29/2012 

Verde Riverb (Upstream of Granite Riff Dam), Mesa, AZ 1/29/2012 

CAP Canalb (Near Granite Riff Dam), Mesa, AZ 1/29/2012 

South Tempe Treatment Plant (South Canal), Tempe, AZ 1/25/2012 

Chandler Treatment Plant (Consolidated Canal), Chandler, AZ 1/24/2012 

Layton Lake Pond, Gilbert, AZ 12/19/2011 

Riparian Pond, Gilbert, AZ 1/28/2012 

Riparian Fishing Lake (South side), Gilbert, AZ 1/28/2012 

Riparian Fishing Lake (East Side), Gilbert, AZ 1/28/2012 

Pacana Park (North side), Maricopa, AZ 2/1/2012 

Pacana Park (East side), Maricopa, AZ 2/1/2012 

(a) Hereinafter a is referred to the samples collected on 1/9/2012 
 
(b) Hereinafter b is referred to the samples collected on 1/29/2012 
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Fig. 15 - Sites selected for field testing 

 
5.3.2.2. Procedural Recovery Efficiency 

The first 200 ml of each collected water sample was concentrated using 

membrane filtration. To examine the consistency of the procedure, following 

recovery of bacterial cells from filters a recovery efficiency test was performed. 

For this test, a known concentration of E. coli was spiked into 200 ml of sterile 

1X PBS and passed through a 0.45 µm pore size membrane filter. The filter was 

then transferred to a 15 ml centrifuge tube containing 10 ml of 1X PBS and 

vortexed for 5 minute to elute the bacteria from it. The vortexed filter was then 

placed on to an m-Endo agar plate to observe how much of E. coli remained on 

the filter. The buffer containing eluted bacteria was then centrifuged for 20 

minutes at 3000 RPM (~ 1863 RCF). After centrifugation, the supernatant was 

discarded and the pellet was suspended in 1 ml of 1X PBS and membrane filtered.  
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These membranes were then plated onto m-Endo agar. These plates were 

incubated at 37o C and enumerated after 24 hours. The number of colonies 

counted on these membranes represented the E. coli cells eluted from the initial 

membrane and these data were used for recovery efficiency calculations. The 

experiment was performed in triplicate and each sample was analyzed in 

duplicate. These recovery efficiency experiments were performed using E. coli as 

a surrogate for Bacteroides due to the difficulty of culturing the latter.  

Due to the satisfactory results from the recovery efficiency test, membrane 

filtration followed by vortexing was deemed an acceptable method for collection 

of Bacteroides cells from field samples. Field samples did not undergo a second 

membrane filtration as cells for DNA extraction were taken directly from the 

solution containing vortexed membranes. 

5.3.2.3. Evaluation of Primer Sets to Amplify Human Bacteroides  

To finalize the selection of the PCR primer sets for the detection of human 

Bacteroides from water samples, the specificity of the two previously known 

human-specific primers (Table 17) were tested using extracted DNA from fish 

and animal fecal samples.  

For the PCR assay, HF134F and HF183F primers were paired with the 

general Bacteroides reverse primer (Bac708R) for two separate reactions 

(Bernhard and field, 2000b). PCR was performed as described previously with the 

following minor changes to primer concentration and temperature profile. 400 nM 

(HF134F), 200 nM (HF183F), and 10 µM (Bac708R) primer concentrations were 

used and temperature profile was altered to: 5 min at 95o C, 35 cycles of 30s at 
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95o C, 45s at 60o C, and 30s at 72o C, and a final extension of 5 min at 72o C for 

both sets of PCR assays. For further analysis, amplicons were purified, cloned, 

and sequenced as described previously.  

Table 17 - Primers used to amplify Bacteroides from field samples 

Primers 
Expected 
Amplicon 
Size (bp) 

Reference 

HF134F: 5′-GCCGTCTACTCTTGGCC-3′ 
HF708R: 5′-CAATCGGAGTTCTTCGTG-3′ 
 

574 
Bernhard and Field, 

2000b 
HF183F:5′ATCATGAGTTCACATGTCCG-3′ 
HF708R: 5′-CAATCGGAGTTCTTCGTG-3′ 

525 

 

5.3.2.4. Detection of Bacteroides from Field Samples by PCR 

Once the specificity of the HF134 and HF183 primer sets were tested on 

extracted DNA from animal fecal samples, they were used on extracted DNA 

from water samples for Bacteroides source identification. DNA was extracted and 

concentrated from 1 ml of field water samples using a Zymo Fecal DNA Kit 

(Zymo Research, Orange, CA, USA). Following DNA extraction, PCR was 

performed as described previously, with the HF183 primer set reactions subjected 

to semi-nested PCR as suggested by Bernhard et al (2003). 

5.3.2.5. Cloning and DNA Sequencing of Bacteroides from Field Samples 

To verify the identity of PCR products obtained using HF134 and HF183 

primer sets, cloning and DNA sequencing were also performed. The amplicons 

generated using the HF134 and HF183 primer sets with field samples were first 

purified for cloning purposes. The majority of the amplicons generated using 

HF134 primer set showed an extra band slightly larger than the expected 
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amplicon size. For these amplicons with double bands, DNA sequencing was 

performed on each band separately.  Each band was cut and removed from the gel 

while on a UV transilluminator using a sterile blade. These pieces of gel 

containing DNA bands were then subjected to purification using a QIAquick gel 

extraction kit (Qiagen Sciences. Calencia, CA, USA). For amplicons showing a 

single band at the expected product size on a DNA gel, purification was 

performed directly on the PCR product using a QIAquick PCR purification kit 

(Qiagen Sciences. Calencia, CA, USA). Cloning and DNA sequencing were 

performed as previously described in Chapter 4. The objectives of cloning and 

DNA sequencing were to verify the identity of amplified sequences and use the 

sequences to construct truncated cladograms as a tool box strategy for MST. 

5.3.2.6. Decision Making Tool Box 

A decision making tool box including PCR amplification, variable region 

analysis, human-specific PCR assay, and subsequent truncated cladogram 

grouping analysis was generated. The tool box is tabulated and discussed in the 

results and discussion section. 

5.4. Results and Discussion 

 The results and discussion is divided in two main sections: Bacteroides 

16S rRNA gene sequence alignments and source tracking results for field 

samples. 
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5.4.1. Bacteroides 16S rRNA Gene Sequence Alignments 

 This section presents the results of the characterization of Bacteroides 

flora from different fecal sources using both culture-based and molecular 

techniques followed by variable region identification and cladogram analysis. 

5.4.1.1. Characterization of Bacteroides from Different Fecal Sources: Culture-

based and Molecular Techniques 

Alignment results of the 16S rRNA gene amplicons indicate that 

Bacteroides isolated from human samples are 99% similar to B. fragilis (Table 

18). Along with B. volgatus and other species, B. fragilis is common in human 

fecal samples and a common cause of intestinal infection due to loss of integrity 

of the bowel mucosa (Busch et al., 1976). The 16S rRNA gene sequence of 

isolated Bacteroides from the cat fecal sample shared 98% sequence identity with 

B. stercoris. These two isolates significantly matched NCBI cultured Bacteroides, 

however, bacteria isolated from other animals did not show this level of similarity 

to Bacteroides. For example, the alignment results from Pomeranian dog feces 

Bacteroides were 99% related to cultured Bacteroides from Tilapia (Chapter 4) 

with the two showing an 89% match to both cultured B. eggerthii and cultured B. 

uniformis. On the other hand, isolated Bacteroides from Golden Retriever dog 

feces was 99% similar to isolated Bacteroides from grass carp and channel catfish 

feces (Chapter 4) and all three shared 94% identity with cultured B. 

graminisolvens. With an assigned cut-off value of 99% sequence homology, 

samples with 89% and 94% similarity to known Bacteroides species were not 

conclusive. For dog fecal samples, culture-based technique identified the isolated 
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bacteria as Bacteroides, however the sequence alignment results cannot be used 

for speciation.    

Bacterial isolates from York pig and beef cow exhibited Bacteroides 

specific characteristics on BBE agar (Livingston et al., 1978), while NCBI 

BLAST analysis indicated that these isolates show homology of 97% for Propioni 

bacterium acnes and 99% for Bacillus cereus, respectively. This can be explained 

by the fact that Bacteroides species could be divergent and may have been 

reclassified as other bacteria species (Karlsson et al., 2010). For example, B. 

merdae was recently reclassified as Parabacteroides merdae (Sakamoto and 

Benno, 2006). As mentioned previously, among the scientific community there is 

discrepancy regarding the taxonomy of Bacteroides. For example, the Integrated 

Taxonomic Information System has accepted 30 species into genus Bacteroides as 

of 2010, while the German Collection of Microorganisms and Cell Cultures has 

three times more species of Bacteroides. 

For horse samples, growth on BBE plate was observed, but colonies did 

not exhibit Bacteroides morphology and were not further analyzed by sequencing. 

For dairy cow and duck samples, growth was seen on blood agar, but not on BBE 

plates. This can be explained by the fact that some species of Bacteroides are 

difficult to culture (Bernhard and Field, 2000b). 

These results demonstrate that, based on culture and Bacteroides 16S 

rRNA gene sequence alignment, no clear conclusion can be made for 

classification of isolated Bacteroides to the species level. This is one of the 

reasons that variable regions were introduced in this study. It is thought that the 
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conserved sequences within 16S rRNA gene may mask the variation between 

different bacteria and by eliminating these sequences a more robust classification 

may be achieved.  
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Table 18 - Characterization of Bacteroides species isolated from human and 
selected animal feces using culture-based and molecular techniques 

 

 
 
 

Sample 
Source 

Growth  
Colony 

Appearance on 
BBE Agar 

% similarity of 16S sequences  

Between Bacteroides 
isolated in this study 
and NCBI1 sequences 
from cultured samples 

Between  Bacteroides 
isolated in this study 
and NCBI sequences 

reported from 
uncultured samples/ 
metagenomic data 

 Blood 

Agar 

BBE 

Agar 

Bacteroides 
fragilis 

(ATCC#23745) 

 
+  

+ Brown colonies with 
blackened media 

 
ND (Not Determined) 

 
ND 

Human + + 
Dark and light brown 

colonies with 
blackened media 

99% match to Bacteroides 
fragilis (AB542764) ND 

 
Cat  

(mixed breed) 

 
+ 

 
+ 

Dark brown colonies 
with blackened media 

 
98% match to Bacteroides 

stercoris (AB510708) 
 

98%  match to uncultured 
bacterium from human 

fecal sample (EF400632) 
and bush dog fecal sample 

(EU772969) 

Dog 
(Pomeranian) 

 
+  

+ 
 

Dark and light brown 
colonies with 

blackened media 

 
89% match to Bacteroides 

eggerthii (AB510700.1) and 
Bacteroides uniformis 

(EU722741) 

99% match to Uncultured 
bacterium from yellow 
catfish (Pelteobagrus 

fulvidraco) (GQ360025) 
and Grass Carp 

(JN032937) 
 

Dog (Golden 
Retriever 

 
+  

+ 
Dark and light brown 

colonies with 
blackened media 

94% match to Bacteroides 
graminisolvens (AB547643) 

98% match to uncultured 
bacterium from Chinese 

mitten crab (DQ856503.1) 

 
Pig (York) 

 
+  

+ 
Slight black 

coloration on media/ 
small and very light 

brown colonies 

97%  match to Propioni 
bacterium acnes gene 

(AB573714.1) 

97%  match to uncultured 
bacterium from 

gastrointestinal specimens 
from human (HQ812348) 

 
Beef Cow 
(Feed Lot) 

 
+ 

 
+ 

 
Dark brown colonies 
with blackened media 

 
99% match to Bacillus 

cereus (JN644555) 
isolated from midgut of 

mosquito 

ND 

 
Horse 

(Arabian) 

 
+ 

 
+ 

Slight black 
coloration on media 
/pale coloration and 

star-like shape 
 

ND ND 

 
Horse 

(Thoroughbred) 

 
+ 

 
+ 

Slight black 
coloration on media 
/big white mucoid 

colonies 

ND ND 

 
Dairy Cow 

 
+  

-  
- 

ND ND 

Duck + - - ND ND 

 
NCBI1: National Center for Biotechnology Information, Gene Bank data base.  
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5.4.1.2. Variable Region Identification and Analysis: 

Using the alignment results, four variable regions were identified based on 

high levels of nucleotide mismatch with three known human Bacteroides isolates. 

The regions are as follows: 1 (nucleotides 71-101), 2 (nucleotides 142-271), 3 

(nucleotides 451-511) and 4 (nucleotides 581-701). The alignment results for 

human isolates of B. volgatus, B. fragilis, and B. dorei are shown in Tables 19, 20, 

and 21, respectively. It was observed that Bacteroides 16S rRNA gene sequences 

from all the animals follow the same trend when it comes to number of nucleotide 

differences in the four regions when aligned versus the three human Bacteroides 

isolates. 

Table 19 - Alignment analysis of Bacteroides 16S rRNA gene sequences from 
selected animals compared to human Bacteroides volgatus 

Sources Nucleotide regions within 16S rRNA gene of human B. volgatus 

Regions of 
 16S rRNA 

Region 1 
71-101 

Region 2 
142-271 

Region 3 
451-511 

Region 4 
581-701 

Cat 
8-18 bp 

in 21 targets 
26-52 bp 

in 21 targets 
15-18 bp 

in 21 targets 
8-39 bp 

in 21 targets 

Cow 
7-21 bp 

in 54 targets 
30-62 bp 

in 54 targets 
13-23 bp 

in 54 targets 
13-38 bp 

in 54 targets 

Dog/Canine 
5-18 bp 

in 43/46 targets 
0 bp in 3/46 

25-51 bp 
in 42/46 targets 

2 bp in 1/49 
0 bp in 3/49 

15-29 bp 
in 42/46 targets 

1 bp in 1/49 
0 bp in 3/49 

9-38 bp 
in 42/46 targets 

1 bp in 1/49 
0 bp in 3/49 

Duck 
5-16 bp 

in 8 targets 
28-50 bp 

in 8 targets 
16-21 bp 

in 8 targets 
13-31 bp 

in 8 targets 

Fish 
5-16bp 

in 36 targets 
29-60 bp 

in 36 targets 
15-21 bp 

in 36 targets 
8-42 bp  

in 32 targets 

Gull 
7-15 bp  

in 12 targets 

24-55 bp 
in 15/19 targets 

0 bp in 4/19 

12-20 bp 
in 16/20 targets 

1 bp in 2/20 
0 bp in 2/20 

8-24 bp 
in 12/16 targets 

1 bp in 1/16 
0 bp in 3/16 

Pig 
6-21 bp 

in 22/23 targets 
1 bp in 1/23 

34-57 bp 
in 23 targets 

12-28 bp 
in 23 targets 

13-42 bp 
in 23 targets 
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Table 20 - Alignment analysis of Bacteroides 16S rRNA gene sequences from 
selected animals compared to human Bacteroides fragilis 

Sources Nucleotide regions within 16S rRNA gene of human B. fragilis 

Regions of 
 16S rRNA 

Region 1 
71-101 

Region 2 
142-271 

Region 3 
451-511 

Region 4 
581-701 

Cat 
9-17 bp 

in 10 targets 
26-43 bp 

in 10 targets 
11-22 bp 

in 10 targets 
13-39 bp 

in 10 targets 

Cow 
4-17 bp 

in 34 targets 
22-56 bp 

in 34 targets 
8-31 bp 

in 34 targets 
10-36 bp 

in 34 targets 

Dog/Canine 
9-16 bp 

in 30 targets 
19-47 bp 

in 30 targets 
11-47 bp 

in 30 targets 
12-44 bp 

in 30 targets 

Duck 
8-15 bp 

in 8 targets 
20-56 bp 

in 8 targets 
15-24 bp 

in 8 targets 
15-34 bp 

in 8 targets 

Fish 
5-12 bp 

in 16 targets 
20-51 bp 

in 16 targets 
13-25 bp 

in 16 targets 
3-45 bp  

in 12 targets 

Gull 
7-16 bp  

in 12 targets 

17-42 bp 
in 17/19 targets 

1 bp in 1/19 
2 bp in 1/19 

11-22 bp 
in 18/20 targets 

0 bp in 2/20 

5-21 bp 
in 14/16 targets 

2 bp in 2/16 

Pig 
9-16 bp 

in 14 targets 
26-56 bp 

in 14 targets 
12-30 bp 

in 14 targets 
18-47 bp 

in 14 targets 

 

Table 21 - Alignment analysis of Bacteroides 16S rRNA gene sequences from 
selected animals compared to human B. dorei 

Sources Nucleotide regions within 16S rRNA gene of human Bacteroides dorei 

Regions of 
 16S rRNA 

Region 1 
71-101 

Region 2 
142-271 

Region 3 
451-511 

Region 4 
581-701 

Cat 
8-16 bp 

in 21 targets 
29-47 bp 

in 21 targets 
14-18 bp 

in 21 targets 
8-38 bp 

in 21 targets 

Cow 
6-19 bp 

in 54 targets 
33-59 bp 

in 54 targets 
11-22 bp 

in 54 targets 
11-38 bp 

in 54 targets 

Dog/Canine 

5-14 bp 
in 42/46 targets 

1 bp in 3/46 
2 bp in 1/46 

9-53 bp 
in 46 targets 

15-28 bp 
in 41/46 targets 

1 bp in 4/46 
0 bp in 1/46 

10-44 bp 
in 41/46 targets 

1 bp in 4/46 
2 bp in 1/49 

Duck 
4-14 bp 

in 8 targets 
30-53 bp 

in 8 targets 
16-21 bp 

in 8 targets 
13-30 bp 

in 8 targets 

Fish 
9-17 bp 

in 36 targets 
39-67 bp 

in 36 targets 
15-23 bp 

in 36 targets 
8-43 bp  

in 32 targets 

Gull 
11-14 bp  

in 8/12 targets 
1 bp in 4/12 

10-62 bp 
in 19 targets 

12-20 bp 
in 16/20 targets 

1 bp in 3/20 
2 bp in 1/20 

8-23 bp 
in 12/16 targets 

1 bp in 3/16 
2 bp in 1/16 
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Pig 
6-20 bp 

in 23 targets 
41-59 bp 

in 23 targets 
12-29 bp 

in 23 targets 
13-43 bp 

in 23 targets 

 

As previously reported, the alignments of several bacterial 16S rRNA 

gene sequences have shown nine separate hypervariable regions (V1-V9) with the 

following breakdowns: V1(nucleotides 69-99), V2 (nucleotides 137-242), V3 

(nucleotides 433-497), V4 (nucleotide 576-682), V5 (nucleotide 822-879), V6 

(nucleotide 986-1043), V7 (nucleotide 1117-1173), V8 (nucleotide 1243-1294), 

and V9 (nucleotide 1435-1465) (Chakravorty et al., 2007). Interestingly the 

identified four variable regions in this study fall within the boundaries of V1, V2, 

V3, and V4. It is known that hypervariable regions V1, V2 and V6 contain the 

highest heterogeneity and can be used for discriminating different bacterial groups 

(Chakravorty et al., 2007).  

Bacteroides from different animals were aligned against human B. 

volgatus and B. fragilis due to their high frequency in human feces (Kreader, 

1995). Table 19 shows the Bacteroides 16S rRNA gene sequences of all listed 

animals have nucleotide differences in all four variable regions when compared to 

human B. volgatus except for dog and gull. This is because Bacteroides species 

such as B. volgatus, B. uniformis, B. thetaiotaomicron, and B. stercoris have 

many similar or identical sequences from non-human hosts (Dick et al., 2005a). If 

the Bacteroides 16S rRNA gene sequence from an unknown source is aligned 

with human B. volgatus and the alignment results show there are zero nucleotide 

differences between the unknown and human sources, then the source of fecal 

contamination can only be narrowed down to human, dog, and gull. 
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Alignment results for human isolated B. fragilis (Table 20) versus the 

listed animals indicate that gull Bacteroides have only one nucleotide mismatch in 

region 2, zero in region 3, and two in region 4, indicating that the Bacteroides 16S 

rRNA gene sequence from gull is almost identical to those of human B. fragilis. 

Because of this, it was also necessary to align Bacteroides 16S rRNA gene 

sequences from the selected animals with a Bacteroides species not prevalent in 

other animals, such as B. dorei (Haugland et al., 2010). Using the nucleotide 

differences data in Table 21, identification of Bacteroides isolates can be 

performed for human or non-human sources, however, dog and gull isolates have 

similar sequences to human B. dorei in regions 1, 3, and 4, but not region 2, 

allowing for human source identification.  

5.4.1.3. Cladogram Analysis: Non-truncated vs. Truncated Cladogram 

  By comparing the cladograms generated for cultured Bacteroides (non-

truncated vs. truncated, Fig 16a and 16b) it is seen that the sequences are grouped 

differently. As shown in Fig 16b, human isolates form a separate clade in the 

truncated cladogram, as opposed to the non-truncated cladogram. This 

demonstrates that the truncated cladogram shows a higher degree of separation of 

Bacteroides from human and other sources.   
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                                       (a)                                      (b) 

Fig. 16 - Cladograms from cultured Bacteroides using a) non-truncated sequences 
and b) truncated sequences  

 

 For uncultured Bacteroides, cladograms for non-truncated and truncated 

sequences were constructed (Fig 17). In summary, the separation of Bacteroides 

from different sources is similar for both non-truncated and truncated sequences, 

however, it was determined that the clades for truncated sequences (Fig 17b) are 

more compact by having less sub-clades and shorter distances. Therefore, the 

cladogram generated from truncated sequences will be used as one of the tools for 

visually observing the separation of human fecal contamination from other 

sources. 
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                                       (a)                                      (b) 

Fig. 17 - Cladogram from un-cultured Bacteroides a) non-truncated sequences b) 
truncated sequences 

 

5.4.2. Field Samples Source Identification Results 

5.4.2.1. Procedural Recovery Efficiency for Detecting Bacteria from Water 

Samples 

The recovery of the sample processing method utilized for field sample 

concentration was determined to be between 20-30% (Fig 18). The consistency of 

the method was deemed satisfactory. Due to issues with Bacteroides detection 

methods, E. coli cells were used as a surrogate for this evaluation. It is important 

to note that the objective of this assay was not to develop a new sample collection, 

elution, and detection methodology.  

Horse 

Horse 

Pig 
Cow 
 Dog 
 Cat 

Horse 

Horse 

Pig 
Cow 
 Dog 
 Cat 

 

Pig 

Dog 
Cow 

Human 

Fish 

 
Cow 
Dog 
Pig 

Human 

Fish 



  92 

 

Fig. 18 - Recovery efficiency of E. coli from membrane filtration 

 

5.4.2.2. Specificity of HF134 and HF183 Primers for Identifying Bacteroides in 

Animal Fecal Samples  

As expected, Bacteroides 16S rRNA from human fecal samples were 

amplified using the HF134 primer set along with Bacteroides from dog fecal 

samples (Table 22). This was not surprising since other studies have also reported 

cross amplification of HF134 primer with dog fecal samples (Kildare et al., 2007; 

Ahmed et al., 2008; Ahmed et al., 2009). For further analyses, amplicons from 

human and the dog fecal samples were sequenced and blasted using the NCBI 

database to confirm the PCR results and develop cladograms. Interestingly, the 

sequencing results showed that the HF134 primer set can amplify three different 

Bacteroides species: B. volgatus, B. massiliensis, and B. dorei. According to a 

study, the 16S rRNA gene sequence of B. dorei is 96% similar to B. volgatus and 

93% similar to B. massiliensis (Bakir et al., 2006). The amplification of these 
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three Bacteroides species by the HF134 primer set is possible due to the relative 

similarity of their 16S rRNA gene sequences. 

Sequencing results revealed the presence of B. dorei in two and B. 

volgatus in one of the human fecal samples. Sequencing results from the two dog 

samples indicate the presence of B. massiliensis and B. volgatus. A variable 

matrix (Table 19) was used to identify differences in B. volgatus sequences 

obtained from human and dog samples. Based on the alignment results, no 

differences were observed. This can be explained by the fact that fecal samples 

from pets such as dogs that share proximity with humans may contain identical or 

similar Bacteroides species such as B. volgatus (Dick et al., 2005a). In addition to 

this, the B. massiliensis sequences obtained from dog samples matched 99% to the 

NCBI B. massiliensis 16S rRNA gene sequences isolated from human fecal 

samples. 

PCR results using the HF183 primer set showed that Bacteroides from 4/5 

human and no animal fecal samples were amplified (Table 22 and Fig 19). These 

results were in agreement with other published papers demonstrating that the 

HF183 primer set can be used for human-specific Bacteroides assays (Ahmed et 

al., 2007; Betancourt et al., 2006; Gawler et al., 2007; Griffith et al., 2003; 

Santoro and Boehm, 2007). An explanation for the lack of amplification in 1/5 

human samples could be that B. dorei was not present in the sample; this was 

confirmed by the HF134 primer set resulting in amplification of B. volgatus. 

Since both primers can be used for detecting B. dorei, and this species has been 
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proven to be human-specific, it was decided to utilize both primers from the tool 

box for the source identification of field samples. 
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Table 22 - Amplification results for HF134 and HF183 primers on fecal samples 

 
PCR Results 

Samples 
HF134/Bac708R 

B. volgatus, B. massiliensis &  
B. dorei 

HF183/Bac708R 
B. dorei 

Human 1 
+  

8/8 clones � (B. dorei) 
+ 

Human 2 
+  

8/8 clones � (B. dorei) 
+ 

Human 3 
+  

ND7 + 

Human 4 
+  

ND 
+ 

Human 5 
+  

7/7 clones � (B. volgatus) 
- 

Fish1 1 - - 
Fish 2 - - 
Fish 3 - - 
Fish 4 - - 
Dog2 1 - - 

Dog 2 
+  

4/5 clones � (B. massiliensis) 
1/5 clones � (B. volgatus) 

- 

Dog 3 - - 

Dog 4 
+  

1/1 clones � (B. volgatus) 
- 

Cow3 1 - - 
Cow 2 - - 

Horse4 1 - - 
Horse 2 - - 

Cat5 - - 

Pig6 - - 

Duck - - 
Fish1 1: Cat fish; Fish 2: Tilapia; Fish 3: Grass Carp; Fish 4: Trout 
 
Dog2 1: Pomeranian; Dog 2: Golden Retriever; Dog 3: German Shepherd; Dog 4: English Mastiff 
 
Cow3 1: Beef Cow; Cow2: Dairy Cow 
 
Horse4 1: Arabian Horse; Horse 2:  Thoroughbred 
 
Cat5 1: Mixed breed 
 
 Pig6: York 
  
ND7: Not Determined (sequencing was not performed) 
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Fig. 19 - DNA Gel photograph of amplicons derived from PCR with HF183 and 
Bac708R primers on fecal sample DNA from the following animals: Catfish 
(Lane 1), Tilapia (Lane 2), Grass Carp (Lane 3), Trout (Lane 4), Pomeranian dog 
(Lane 5), Golden Retriever dog (Lane 6), German Shepherd dog (Lane 7), English 
Mastiff dog (Lane 8), Beef cow (Lane 9), Dairy cow (Lane 10), Arabian horse 
(Lane 11), Thoroughbred horse (Lane 12), Cat (Lane 13), Pig (Lane 14), Duck 
(Lane 15). Lane 16: Positive control (human fecal DNA); Lane 17: Negative 
control (DNA free water samples); Ladder: 1k bp. The expected product size is 
525 bp. 

 
5.4.2.3. Analysis of PCR and Sequencing Data from Field Samples 

As shown in Fig 20a, DNA gels of PCR products from reactions using the 

HF134 primer set with DNA from Bacteroides field samples showed bands of the 

expected product size of ~574 bp.  Interestingly, an extra band (~70 bp larger than 

the expected product size) was also observed for 9 out of 13 samples: Salt Rivera 

and Salt Riverb; Verde Rivera and Verde Riverb; CAP Canala and CAP Canalb; 

Chandler Treatment Plant; and Riparian Fishing Lake (South and East side).  

 The PCR assay using the HF183 primer set amplified Bacteroides from 8 

out of 13 water samples: (Salt Riverb, Verde Riverb, CAP Canalb, Layton Lake, 

Riparian Pond, Riparian Lake: South and East side, and Pacana Park Pond) with 

the expected product size of 525 bp (Fig 20b). Since the HF183 primer set was 

Ladder    1        2       3       4        5       6        7        8       9      10      11    12      13      14     15      16     17   Ladder 

  525bp 
  750bp 
  500bp 
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proven to only amplify human-specific Bacteroides genetic markers (based on 

testing results of animal fecal samples and published works), successful 

amplification using the HF183 primer set identified the source as human. For the 

confirmation, an HF183 amplicon (Pacana Park) was sequenced and determined 

to be B. dorei, while grouping with the human clade in a cladogram (Fig 22). 

 As previously discussed, the HF134 primer can amplify B. volgatus, B. 

massiliensis, and B. dorei, therefore, any observed product of the expected size 

could be the result of any combination of the three species in a fecal sample. To 

verify the Bacteroides species in samples, a sequencing step for either single or 

double bands was essential. The sequencing results from the following field 

samples: Salt Rivera, Verde Rivera, CAP Canala, and Chandler Treatment Plant 

revealed that the top bands were the results of non-specific amplification, 

determined by blasting the sequences using the NCBI database. The bottom bands 

were confirmed to be both B. volgatus and B. massiliensis by sequencing. This 

finding is in agreement with the results obtained using the HF183 primer set in 

regard to the absence of B. dorei in the above field samples.  

 A different trend was observed from the sequencing results of the top 

band for Verde Riverb, which indicated the presence of B. dorei and B. 

massiliensis. In addition, for CAP Canalb, B. dorei, B. massiliensis, B. volgatus, 

and non-specific PCR products were observed. For both field samples, the 

sequencing results from the bottom bands revealed the amplified product to be B. 

volgatus. It is believed that observed top bands are the result of non-specific 

amplification and the identified three species may be the results of carryover of 
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residuals from the bottom band. This artifact has been reported from the 

sequencing laboratory at ASU (Scott Bingham, personal communication, 

February 15, 2012). As expected, B. dorei was amplified by both HF134 and 

HF183 primer sets in these samples.  

Two sets of samples were collected from the Salt River, Verde River, and 

CAP Canal, and with only one set having Bacteroides dorei, this event can most 

probably be attributed to human fecal contamination. These samples were taken 

within a 20 day period. During this time, a rainfall event was reported causing 

runoff to rivers carrying human fecal matter. It is also possible that a plume of 

human fecal material was passing through the river at the time of sample 

collection, an event that can occur after discharge of waste water into rivers. 

Additionally, human fecal pollution was observed in water samples collected 

from Layton Lake, Riparian Pond and Fishing Lake, and Pacana Park. The water 

sources for these sites come from reclaimed water, which includes treated 

municipal sewage which may contain human fecal bacterial flora. Due to this fact, 

the detection of human fecal material at these sites was not unexpected. 

Table 23 highlights the data shown in Fig 20 by noting the intensities of 

the DNA gel bands from the latter with positive signs. The final column in Table 

23 shows which field samples were sequenced, truncated, and included in a 

truncated cladogram for confirmation of the source of fecal contamination. 
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Fig 20 - DNA gel photograph of PCR products using (a) HF134 and Bac708R 
primers and (b) HF183 and Bac708R primers on DNA extracted from field 
samples from the following sources: Salt Rivera, Verde Rivera, CAP Canala (Lanes 
1 through 3), Salt Riverb, Verde Riverb, CAP Canalb (Lanes 4 through 6), South 
Tempe Treatment Plant source water (Lane 7), Chandler Treatment Plant source 
water (Lane 8), Layton Lake (Lane 9), Riparian Pond (Lane 10), Riparian Lake 
(Lanes 11 and 12), Pacana Pond (Lane 13). All water samples show the expected 
574-bp PCR products in (a) and 8/13 show the expected product size of 525 bp in 
(b). Lane 14: blank; Lane 15: Positive control (human fecal DNA); Lane 16: 
Negative control (DNA free water samples); Ladder: 1k bp.  

         Ladder    1        2        3         4        5        6        7        8         9      10      11       12      13      14       15     16    Ladder 

         Ladder    1        2         3        4       5         6         7       8        9       10      11      12     13      14       15      16    Ladder 
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Table 23 - Amplification results for HF134 and HF183 primers on field samples 

 
Primers Analysis 

Sampling Location 

PCR (HF134) 

Amplifies B. volgatus, B. 

massiliensis, and B. dorei 

PCR2 (HF183) 

Amplifies B. dorei 

Cladogram 

(Truncated) 

Salta River 
TB1 : ++ 

BB1 : +++ 
- Yes 

Verdea River 
TB: ++ 

BB: +++ 
- Yes 

CAP Canala 
TB: ++ 

BB: +++ 
- Yes 

Saltb River 
TB: + 

BB: ++ 
+++ ND4 

Verdeb River 
TB: ++ 

BB: ++ 
+++ Yes 

CAP Canalb 
TB: ++ 

BB: ++ 
+++ Yes 

South Tempe Treatment Plant 
TB: - 

BB: ++ 
- Yes 

Chandler Treatment Plant 
TB: +++ 

BB: ++ 
- Yes 

Layton Lake Pond 
TB: - 

BB: + 
+++ Yes 

Riparian Pond 
TB: - 

BB: ++ 
+++ ND 

Riparian Fishing Lake (South side) 
TB: + 

BB: ++ 
+++ ND 

Riparian Fishing Lake (East side) 
TB: + 

BB: ++ 
+ ND 

Pacana Park (North side) 
TB: - 

BB: ++ 
+ Yes 

Pacana Park (East side)3 
TB: - 

BB: ++ 
ND ND 

TB1 �Top Band, BB1 �Bottom Band, Positive control is +++ 
 
PCR2 HF183 (Semi Nested PCR) (Positive control is +++) 
 
Pacana Park (East side)3 �Not loaded on the gel 

 
ND4 �Not Determined 
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5.4.2.4. Tool Box and Identification of Sources of Fecal Contamination 

A tool box strategy for Bacteroides source identification utilizing PCR 

amplification and variable region analysis, human-specific PCR assays, and 

subsequent truncated cladogram grouping evaluation was developed. A flow chart 

outlining the procedure for the tool box strategy is shown in Fig 21 and a list of 

possible scenarios for the strategy is displayed in Table 24. The first step in 

source identification is PCR amplification using the HF183 and HF134 primer 

sets. For water samples with PCR positive results using the HF183 primer set 

(scenarios 2, 3, and 5 in Table 24), it is assumed that the source of fecal 

contamination is human. This designation is due to the fact that B. dorei was only 

detected in human and not in any tested animal fecal samples (Table 22). For 

samples with PCR positive results using the HF134 primer set (scenarios 1 and 4) 

the source of fecal contamination can be either human or dog. This is due to the 

fact that B. volgatus and B. massiliensis are presented in both human and dog 

fecal samples (Table 22) and B. dorei is not detected using the HF183 primer set. 

For samples such as these, it is assumed that the source of fecal contamination is 

from a non-human source and sequencing and cladogram analysis are essential for 

final source identification. In the unlikely situation that B. dorei is shown to be 

present by cladogram analysis (but not detected using the HF183 primer set) the 

source will be identified as human.  Data collected from field samples followed 

scenarios 1-4, as shown in Table 25.   
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Fig. 21 - Tool box flow chart 

 

 

 

 

 

 

 

 

 

Note: if HF183 is + � ignore HF134 route 

 Sequencing and Cladogram 
Analysis following Truncation 

If B. volgatus and/or  
B. massiliensis � 
Non-human Source 
Confirmation by 
Grouping in non-Human 
Specific Clade 

PCR Amplification 

If B. dorei �  
Human Source 
Confirmation by 
Grouping in Human 
Clade 

HF134 Primer 

Inconclusive 

+ - 

Human or 
Dog Source 

HF183 primer 

Inconclusive 

+ - 

Human 
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Table 24 - Tool box for source identification 

 
Primers Analysis 

Scenarios 

HF134  
Targets B. 

volgatus, B. 
massiliensis 
and B. dorei 

HF183 
Targets B. 

dorei 

Presumptive 
Results 

Action 
required 

Source 

1 + - 
B. volgatus, B. 
massiliensis 

Sequencing* 
Human or 

Dog 

2 + + 
B. volgatus, B. 
massiliensis, B. 

dorei 
NA Human 

3 
+ 
+ 

+ 

B. volgatus, B. 
massiliensis, B. 
dorei and non-
specific PCR 

product 

NA Human 

4 
+ 
+ 

- 

B. volgatus, B. 
massiliensis 

and non-specific 
PCR product 

Sequencing* 
Human or 

Dog 

5 - + B. dorei NA Human 

6 - - 
Non B. volgatus, B. 

massiliensis,  
and B. dorei 

NA 
Non-

Human 

*PCR product needs to be sequenced, truncated, and analyzed in a truncated cladogram for source 
identification. 
 

Table 25 - List of water samples corresponding to scenarios listed in Table 23 

Scenarios Water samples 

1 Tempe Treatment Plant 

2 Layton Lake, Riparian Pond, and Pacana Park 

3 

Salt Riverb, Verde River b, CAP Canalb, 

and Riparian Fishing Lake (South and East sides) 

4 Salt Rivera, Verde Rivera, CAP Canala 

5 None 

6 None 
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In scenarios 1 and 4, amplicons are sequenced for truncated cladogram 

analysis (Fig 22). This confirmatory step is used to detect B. dorei with the HF134 

primer set. These scenarios did not occur for the field samples collected, however, 

it is believed that the number of environmental samples tested was sufficient for 

the proof of concept and additional sample analysis would be required to develop 

a strategy relying solely on the HF183 primer set. While not included in the 

described protocol, PCR products from scenarios 2 (only Layton Lake) and 3 

(Salt Riverb, Verde Riverb and CAP Canalb) were sequenced, truncated, and 

incorporated in a cladogram (Fig 22). This was done to confirm the grouping B. 

dorei sequences derived from PCR amplification with the HF183 primer set in the 

human only clade. 

The cladogram generated from samples including human, animals, and the 

field samples resulted in seven distinct clades (Fig 22). Four clades were host 

specific, with 2 containing human, 1 containing fish, and1 containing horse only 

Bacteroides.  Two clades grouped several hosts without human and 1 clade 

grouped human and dog Bacteroides together. The two human clades are shown 

in green and the mixed human and dog clade is shown in blue. As expected, 

Verde Riverb, CAP Canalb, Layton Lake, and Pacana Park samples contain 

Bacteroides grouped within the human only clade (shown by red arrows within 

the green human clade). These samples contain B. dorei. Conversely Salt Rivera, 

Verde Rivera, CAP Canala, Chandler Treatment Plant, and Tempe Treatment Plant 

samples contained Bacteroides grouped within the human and dog clade (marked 
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with red arrows within the blue clade). These samples partially aligned with 

human samples, however, due to the fact that B. dorei was not present in these 

samples, it was assumed that the source of contamination is non-human. These 

sequences aligned with dog sequences, conferring the possibility that the source 

of contamination in these sites came from dog feces.  

It is shown that the proposed strategy can differentiate between different 

sources and offers a new method for MST by providing a step-wise strategy tool 

box useful for identifying sources of fecal pollution. 
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Verdeb 
 

 

Fig. 22 - Cladogram constructed from truncated 16S rRNA gene sequences from 
human, animal, and field samples. Field samples (Verde Riverb, Pacana Park, 
Layton Lake, and CAP Canalb) group within the Human1 clade and (Verde Rivera, 
Salt Rivera, CAP Canala, Tempe Treatment Plant, and Chandler Treatment Plant) 
group within the Human and Dog2 clade. 
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5.5 Conclusion 

• A tool box strategy has been developed for Bacteroides source 

identification using PCR amplification and variable region analysis, 

human-specific PCR assays, and subsequent truncated cladogram 

grouping. 

o A variability matrix based on the sequence variance in four regions 

in the Bacteroides 16S rRNA gene has been identified via 

sequence alignment. 

o A cladogram constructed from truncated sequences based on the 

identified variable regions shows a clear separation of human B. 

dorei from Bacteroides of other sources. 

o The presence of B. dorei is a good marker for human fecal 

contamination. 

• Field testing results showed incidence of human fecal contamination in 

Arizona source and reclaimed water. 

• The proposed strategy offers a new method for MST and provides a step-

wise strategy tool box useful for identifying sources of fecal pollution. 
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