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ABSTRACT  
   

Fixed-pointer moving-scale tape displays are a compact way to present 

wide range dynamic data, and are commonly employed in aircraft and spacecraft 

to display the primary parameters of airspeed, altitude and heading. A limitation 

of the moving tape format is its inability to natively display off scale target, 

reference or 'bug' values. The hypothesis tested was that a non-linear fisheye 

presentation (made possible by modern display technology) would maintain the 

essential functionality and compactness of existing moving tape displays while 

increasing situational awareness by ecologically displaying a wider set of 

reference values. 

Experimentation showed that the speed and accuracy of reading the 

center system value was not significantly changed with two types of expanded 

range displays. The limited situational awareness tests did not show a significant 

improvement with the new displays, but since no functionality was degraded 

further testing of expanded range displays may be productive. 
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Chapter 1 

INTRODUCTION 

Instruments that accurately display a wide range of values have to be 

themselves very large, or if this is not physically possible then the resolution of 

the display has to be reduced, and/or the displayed range has to be reduced, 

and/or secondary vernier scales used. A middle-school science experiment for 

measuring atmospheric pressure illustrates reduction in resolution: a simple 

barometer made of water in a plastic pipe will stand several stories high outside 

the science building whereas one made with mercury in a glass tube will fit in a 

room due to the mercury’s increased density. The resolution of the display is 

reduced, but the mercury device is much more convenient to transport and read. 

Mercury barometers were the first flight instruments, carried aloft in balloons at 

the end of the 18th century by early aeronauts (Chorley, 1979). Even smaller 

than a mercury barometer is a single digital readout from a pressure transducer, 

as now the entire display can be just a few glowing digits. A single digital number 

can be quickly and precisely perceived (Hosman & Mulder, 1997), but limitations 

with single readouts include poorly displaying dynamically changing data 

(Sanders & McCormick, 1993; Rolfe, 1965), problems with making quick 

qualitative estimations (or ‘check readings’) (Sanders & McCormick, 1993; Harris, 

2004), and not allowing for easy comparison with reference values (whereas, for 

example, yesterday’s air pressure can be easily marked on a glass barometer 

tube using a grease pencil or a system limitation for an automobile tachometer 

can be marked with a red line). 

A partial solution to the problem of conveniently displaying data of this 

type is to wrap the strip display into a more compact shape, as seen in aneroid 
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barometers employing round dials. To increase precision in dial displays, a 

second needle can be added that shows more precise values within a restricted 

range indicated by the primary needle; examples of which are the dial caliper and 

the minute hand on a traditional round clock face. A third needle for more 

precision can even be added. The seconds hand on a traditional round clock face 

allows an efficient display of hours, minutes and seconds with a range of 12 

hours – or over 43,000 seconds. Although the round clock face is an elegant 

design, it has long been known there are human factors challenges to reading 

analogue clocks (Grether, 1948). Clock faces and barometers came together 

when the multiple needle concept was used in the two and then three needle 

altimeter (figure 1). 

 

 

    

Figure 1: One, two and three needle altimeters, reproduced from Nicklas, 1958 

  

Altimeters have to display to a resolution of less than 10 feet with a range 

of approximately 45,000 feet for civil jet aircraft, over 60,000 feet in military 

applications and an even greater number for space vehicles. The three needle 

design does accomplish this. However, with the additional demands above that 
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of a time clock (i.e. a display value that that moves in both directions at varying 

rates), coupled with its vital importance to flight safety, the three needle altimeter 

quickly became the subject of much aeronautical concern and research. In one 

early study, multiple-pointer and long-scale instruments were associated with the 

greatest number of serious cases of instrument misreading (Fitts & Jones, 1947). 

In another article difficulties in reading the altimeter and airspeed indicator were 

described by almost half the pilots interviewed (Fitts, Psychology and aircraft 

design: A study of factors pertaining to safety, 1947). Ten years later, a study of 

Indian Air Force pilots and navigators found over 30% of their three-needle 

altimeter readings were wrong (Adiseshiah & Prakash Rao, 1957). Airline pilot 

and human factors researcher David Beaty later called the three-needle 

altimeter, “the most notorious deceiver of all aircraft instruments” (Beaty, 1991, p. 

71). It has been directly implicated in several fatal airliner accidents, including the 

1958 crash of a BOAC Bristol Britannia: 

The accident was the result of the aircraft being flown into ground 

obscured by fog. This was caused by a failure on the part of both the 

captain and the first officer to establish the altitude of the aircraft before 

and during the final descent. . . . The height presentation afforded by the 

type of three-pointer altimeter fitted to the subject aircraft was such that a 

higher degree of attention was required to interpret it accurately than is 

desirable in so vital an instrument. (ICAO, 1962, p. 47) 

The crash of a BEA Vickers Viscount in the same year was officially found 

to be, “caused by the captain flying the aircraft into the ground during the descent 

to Prestwick after misreading the altimeter by 10000ft” (ICAO, 1959, p. 132). Don 

Harris has concluded that, “the altimeter is probably the single instrument that 
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has been responsible for the deaths of more pilots than any other. It has also 

probably attracted almost as much research attention as the [Attitude Indicator]” 

(Harris, 2004, p. 86). 

Walter Grether (1949) performed seminal experiments with nine types of 

displays testing the speed and accuracy of their presentations, and his clear 

results are reproduced here as figure 2. 

 

Figure 2: Performance of various altimeter designs, reproduced from Grether, 

1949 

 

It is seen that the dual counter drum with single pointer design ‘D’ was 

superior to all needle systems in terms of speed and accuracy for both trained 

Army Air Force pilots and novice college students. This design was subsequently 
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used in high-quality mechanical altimeter displays. The experiment also included 

two interesting conceptual designs: 

Altimeter designs G and H are similar in that they simulate a scale moving 

vertically behind a window. An instrument following design G could use 

either an endless tape or drum to present the moving scale, with a 

counter to indicate multiples of 1000 feet. An instrument using design H 

would require a very long tape with a scale covering the desired altitude 

range. (Grether, 1949, p. 365). 

Both these moving tape concepts tested very well for speed and accuracy, 

presenting the required resolution and sense of temporal qualitative movement 

by a employing a moving linear tape and restricting the displayed range. Moving 

scales with fixed pointers do however have the considerable disadvantage when 

compared to a fixed scale and moving pointer that can display the whole range, 

as a quick glance will not yield an approximate picture of system state, see figure 

3 for clock face examples.     

 

Figure 3: Wristwatches With Fixed Pointers and Moving Dials 

 

Ten years after the Grether study, the USAF has a working model of the 

moving tape display constructed using 16-mm movie film. Testing in a Link 
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simulator found the tape display to be workable, but pointers resulted in a 

superior flight performance. Further experimentation with expanded scales and 

more training was recommended (Mengelkoch & Houston, 1958). In 1959 the 

Martin Company did extensive simulator testing of vertical tape instruments, with 

mixed results but predicting with design improvements that they would become 

valuable assets in the cockpit (Mengelkock, 1959). For a review of the primary 

research into vertical instruments see Kearns and Warren, 1962. In 1959 the 

Bulova Watch Company introduced a servo motor driven continuous tape 

altimeter for civil aircraft (figure 4) that looks a lot like design H. The new tape 

altimeter was claimed in company advertisements to, “cut reading time in half 

and virtually eliminate errors,” when compared to the rotary altimeters then in use 

(Altimeter is easy to read, 1959). 

 

Figure 4: Bulova tape altimeter, reproduced from “Altimeter is easy to read,” 1959 

 

The altimeter is not the only flight instrument to suffer from having to 

display a wide range. While early aircraft had fairly limited top speeds, with 

bigger engines and better aerodynamic designs came the problem of displaying 



  7 

a wider range of airspeeds (see Chorley, 1976; Lovesay, 1977; Nicklas, 1958, for 

reviews of many early flight instruments). Though not employing two or three 

needles like the altimeter, by the 1930’s airspeed indicators had needles that 

swept more than 360 degrees of arc (figure 5).  

 

Figure 5: 1930’s Airspeed Indicator, reproduced from Chorley, 1976 

 

Aircraft continued to fly faster and higher; and with a top speed of over 

Mach 2 and capable of altitudes high enough for Edwards’ test pilots to earn their 

astronaut wings, the legendary rocket-powered X-15 exemplifies the problem of 

increased instrument ranges. NASA conducted simulator experiments with X-15 

cockpits equipped with either conventional needle instruments or a vertical-scale 

fixed-index (ACDS) instrument suite with six tapes and found that, “missions can 

be carried out as accurately and successfully with the ACDS panel as with the 

‘standard’ model” (Lytton, 1967, p. 12). It was noted that experienced pilots were 

able to “garner a great deal of information from pointer rates and positions 
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without having to ‘read’ parametric values,” (Lytton, 1967, p. 4) but more 

precision was expected with longer use of the tape displays due to their 

considerable gain in display sensitivity (one instrument had 40 inches of tape 

wound behind the window). 

  A problem with moving tape/fixed pointer displays is possible 

confusion caused by mixing this format of presentation with fixed tape/moving 

pointer displays in the same cockpit (known as the principle of the moving part, 

see Christensen, 1955; Roscoe, 1968; Johnson & Roscoe, 1972). However tape 

displays have been shown to be still readable when used with a variety of other 

instrument formats, and offer the practical advantage of a very compact form. An 

attempt to offer the best of both formats with a contra-moving pointer and scale 

presentation in both tape and circular formats was described but this format 

introduced its own complexities and has not seen service (Hopkin, 1966). 

Sanders and McCormick conclude that: 

Although fixed scales with moving pointers are generally preferred to 

moving scales with fixed pointers, the former do have their limitations, 

especially when the range of values is too great to be shown on the face 

of a relatively small scale. In such a case, certain moving-scale fixed-

pointer designs . . . have the practical advantage of occupying a small 

panel space, since the scale can be wound around spools behind the 

panel face, with only the relevant potion of the scale exposed.” (Sanders 

& McCormick, 1993, pp. 135-136) 

Electro-mechanical moving tape displays for airspeed and altitude entered 

service in transport category aircraft in 1964 with the introduction of the United 

States Air Force C141 aircraft, and were also deployed in the C5 fleet starting in 
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1969 (Hawkins, 1987). The tape-based “Integrated Flight Instrument System” 

(IFIS) was used in several U.S. front-line fighters (e.g. the F-105) developed in 

the 1960’s, as well as in the initial Space Shuttle cockpit (Lande, 1997). 

Following the IFIS, small (five-inch rather than eight-inch) tape displays for 

altimeter and airspeed indicators were evaluated by Tapia, Strock, and Intano 

(1975) at the USAF Instrument Flight Center. While the airspeed display was 

found to be adequate for future use, the altimeter display had some problems 

with the lack of range presented by the smaller size of tape. An indication of the 

limitations of tape displays in dynamic flight environments is seen in the mid-

seventies when the USAF moved away from tape displays for heads down 

primary flight displays but retained their use for Head Up Display (HUD) 

symbology, seen for example in the F-15 (Lande, 1997). Air Force research 

presented in 1990 found HUD pointers better in basic flight performance than 

HUD tapes (Ercoline & Gillingham, 1990), and pointers rather than tapes are 

recommended by several sources for HUD applications (for an extensive review 

of HUD issues see Newman, 1995). A reminder that tape displays are also not 

optimum when a pointer can cover the required range was seen in testing of 

several formats for an F-16 vertical velocity indicator (Cone & Hassoun, 1991). 

Civil aviation initially did not to follow the military’s use of moving tape 

presentations. The supersonic Concorde entered service in 1976 with circular 

moving needle instrumentation (Orlebar, 1986). The Boeing 757/767 entered 

service in 1982 pairing of cathode ray tubes (CRTs) for electronic attitude and 

horizontal situation indicators with electro-mechanical moving pointers for 

airspeed and altitude. The Airbus A320 introduced moving tapes with all flight 

instruments presented on two eight-inch CRTs (Coombs, 1990). The Boeing 
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Company conducted extensive research in the mid 1980’s into vertical tape 

instruments, finding some concerns: 

They lacked relationships that were used extensively by pilots in 

performing flight tasks. This perception was strengthened by human 

factors research, which also concluded that, in general, moving scale 

displays are not as effective as moving pointer displays. The design 

constraints for the 747-400 PFD and the controversies that surrounded 

the vertical tape presentation provided a significant challenge to the 

display design engineers. (Konicke, 1988, p. 1) 

Driven by explicit airline demands for the maintenance savings of CRTs over 

electromechanical pointers and the space requirements of matching the Airbus 

eight-inch screens, Boeing eventually chose vertical tapes for the 747-400. Tape 

displays for airspeed, altitude, and often heading have since become standard in 

electronic flight displays both civil and military aircraft (Long & Avino, 2001). 

Aircraft have tapes in both full-size displays (e.g. the Airbus Primary Flight 

Display (PFD), figure 6) and smaller standby or ‘peanut’ displays (e.g. the Airbus 

Integrated Standby Instrument System (ISIS)). The Airbus Primary Flight Display 

is a remarkably consistent presentation for tens of thousands of airline pilots, 

being introduced in 1987 with the A320, and then used essentially unchanged in 

the A318, A319, A321, A330 and A340 aircraft. And even though the A380 

cockpit is supplemented by additional screens, the same presentation is still used 

as the primary flight display in the world’s largest airliner (Vogel, 2009). There are 

more complex presentations in spacecraft, for example the seven tape Space 

Shuttle Multifunction Electronic Display System (MEDS), figure 7. 
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Figure 6: Airbus PFD 

 

Figure 7: Space Shuttle MEDS, from Hayashi, Huemer, Renema, et al., 2005 
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Reviewing the Airbus PFD (figure 6) shows that there are markings on the 

tapes in addition to the unit scales, in the form of system parameter areas and 

pilot-set ‘bugs’. On the airspeed tape the green circle shows current computed 

best glide speed, and on altitude tape the cyan bug is the crew commanded 

altitude. On traditional mechanical airspeed dials colored bands indicate 

operational ranges for flight in different configurations of flaps/slats, average 

performance speeds, and airspeed limitations. Figure 8 shows such a traditional 

airspeed display for a light piston-powered aircraft with a white band for flight with 

flaps down, a green band for flight with flaps up, a yellow band for flight in 

smooth air, and a red maximum airspeed. 

 

Figure 8: Round airspeed dial showing colored bands and limits, reproduced 

from FAA, 2008a 

 

Higher performance aircraft have operational speeds that vary significantly with 

weight, center-of-gravity, density altitude, etc., so pilots will calculate the required 
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speeds and set them on the display using movable ‘bugs’. Don Norman 

described this well: 

Speed bugs are plastic or metal tabs that can be moved over the 

airspeed indicator to mark critical settings. These are very valuable 

cognitive aids, for they transform the task performed by the pilot from 

memorization of critical air speeds to perceptual analysis. The pilots only 

have to glance at the airspeed and instead of doing a numerical 

comparison of the airspeed value with a figure in memory, they simply 

look to see whether the speed indicator is above or below the bug 

position. The speed bug is an excellent example of a cockpit aid. 

(Norman, 1991, p. 4) 

More generally, the bands and bugs can be considered an example of ‘ecological 

interface design’ (Rasmussen & Vicente, 1989), directly displaying the process’ 

relational structure and so serving as an externalized mental model that will 

support knowledge-based processing. This was well described by Edwin 

Hutchins in his work as an ethnographer of cockpits and his expansion of the 

concept of what is a cognitive system: 

Airspeed bugs are involved in a distribution of cognitive labor across 

social space. The speed bug helps the solo pilot by simplifying the task of 

determining the relation of present airspeed to Vref, thereby reducing the 

amount of time required for the pilot’s eyes to be on the airspeed 

indicator. . . . The analog [airspeed indicator] display maps an abstract 

conceptual quantity, speed, onto an expanse of physical space. This 

mapping of conceptual structure onto physical space allows important 

conceptual operations to be defined in terms of simple perceptual 
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procedures. Simple internal structure (the meanings of the regions on the 

dial face defined by the positions of the speed bugs) in interaction with 

simple and specialized external representations perform powerful 

computations. (Hutchins, How a cockpit remembers its speeds, 1995, pp. 

285-6) 

Modern aircraft with extensive digital avionics now calculate most of these 

speeds automatically and present bugs and graphical bands on tape displays 

that dynamically change, sometimes varying rapidly with, for example, g load, 

temperature or aircraft configuration. Figure 9 is a photograph of an Airbus A320 

PFD during a descent out of FL 280 and the top of the airspeed tape shows the 

red-boxed overspeed limitation. Figure 10 is a photograph in the same plane 

taken about one minute later at approximately the same indicated airspeed that 

shows that the overspeed limitation has now moved off-scale (The A320-200 

overspeed limitation in the clean configuration is the lower of 350 KIAS or 0.82 

Mach; the increasing ambient air pressure due to decreasing altitude resulted in 

the indicated airspeed equivalent value of the Mach limitation becoming become 

larger, Hurt, 1965). Although the very important overspeed limitation is little more 

than 40 knots away from the current indicated airspeed, it is now no longer 

visible in figure 10. This limitation was noted by Mejdal, McCauley and Beringer 

(2001): 

Today’s designers are less constrained by technology and do not have to 

present the entire scale or compass or airspeed dial. They now have the 

tempting option of presenting only the current value of the indicator, which 

can easily lead them into designing a poorer interface. (Mejdal, 

McCauley, & Beringer, 2001, p. 45) 
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Figure 9: A320 PFD with Mach overspeed region displayed 

 

Figure 10: A320 PFD with overspeed limitation off scale 
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Not all the reference values disappear; the most important reference 

speeds are presented in an offscale manner (figure 9) when they exceed the 

normal range, but this is not an elegant solution. Understanding the difference 

between that speed and current system state now requires the operator to 

perform mental mathematics, rather than directly seeing the difference. Figure 11 

shows the large number and variety of bugs and airspeed ranges that exist on 

the Airbus, presented in a practically impossible closeness and variety of aircraft 

flight modes for illustrative purposes. It seems clear we have come a long way 

from just presenting one system value on the tape display. 

                  

Figure 11: Airbus airspeed bugs and limitation ranges 
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Figure 12: Airbus Off Scale Bug Presentation 

 

The problem is that bug values can be close to system values, but not 

visible to the operator as they are moved off scale. The current partial solution is 

to present a numerical value offscale (figure 12) but this is limited to one or two 

values and requires cognitive rather than perceptual processing. The thesis 

proposal was that making the tape scale non-linear away from the center 

displayed value would retain the advantages of the current format while 

increasing situational awareness of system values that are presently off scale. 

(Using here mostly the first part of the definition of situation awareness 

“perception of elements in the environment within a volume of time and space” 

proposed by Endsley, 1995.) Modern electronic displays have the computational 

and graphical ability to produce such a display, something that was not possible 

with electro-mechanical tapes. But before presenting the experiment, let us 

review existing research into similar non-linear displays. 
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Chapter 2 
 
FISHEYE MAPPING 
 

Our normal human visual perception of the world is as an undistorted 

uniform linear Euclidean place; one in which as we move our eyes around, lines 

and shapes retain their solid relationships with each other. Differences in retinal 

size of similar looking objects are processed as evidence of an object’s distance 

away from the eye. Using lenses we can create other depictions that have some 

advantages but also add distortions to our accustomed view. Extremely wide-

angle lenses are known as fisheye lenses after Wood, 1906, found that refraction 

of light (governed by Snell’s law) through a still water surface would produce for 

submerged  fish a peculiar circular image of the world above. Fisheye lenses 

have an approximately 180 degree hemispherical field of view, and introduce a 

distinctive compressive distortion away from the center of the frame. Fisheye 

lenses were first put to practical use by meteorologists for panoramic whole-sky 

photographs (Hill, 1924). The first discussion of the use of fisheye views on a 

computer screen is generally cited as William Ferrand’s 1973 Ph.D. dissertation 

(Ferrand, 1973). In 1976, Saul Steinberg drew a New Yorker magazine cover 

(figure 13) that caricatured a New Yorker’s view of the world, perfectly illustrates 

a cognitive continuous focus+overview perspective. This much-imitated cartoon 

shows that fisheye views do not have to be precise geometric transformations, 

but can capture elements of the relationship of parts to a particular worldview. It 

also demonstrates that this approximate fisheye mapping can also be considered 

an exaggerated, but still ecologically recognizable, receding perspective view. 
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Figure 13: Saul Steinberg's 1976 Cartoon 

 

In 1981 George Furnas, then at Bell laboratories in New Jersey, published the 

idea of a fisheye distortion to present detailed information with its larger context. 

He considered the situation of conventional computer windows displaying long 

lists of files: 



  20 

The interface design problem amounts to deciding what parts of a large 

structure to show. . . . Current techniques generally involve a simple "flat 

window" view, showing consecutive lines of the file, with some 

mechanism for scrolling. In this arrangement, a small local piece of the 

structure is shown and the person has control over moving that locality 

over the structure. The problem with this method is that often the meaning 

or importance of local information derives from its position in a larger 

context. It is important to stay oriented, i.e., to understand where in the 

global picture this locality fits. The purely local views provided by standard 

flat windowing do not support this. (Furnas, 1981, p. 1) 

He proposed using the metaphor of the fisheye lens: 

A very wide angle, or fisheye, lens used at close distance shows things 

near the center of view in high magnification and detail. At the same time, 

however, it shows the whole structure – with decreasing magnification, 

less detail -- as one gets further away from the center of view. There are 

several motivations for this approach. First, one typical reason people 

examine a structure is that they are interested in some particular detail. At 

the same time, they need context, i.e., some sense of global structure, 

and where within that structure their current focus resides. The idea is 

therefore to present detailed local regions, but to present selected 

important parts of the global structure as well. (Furnas, 1981, p. 1-2) 

Furnas’s idea of viewing files was demonstrated in the 1981 paper by a fisheye 

view of the paper itself, shown here as figure 14: 
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Figure 14: Fisheye file view, reproduced from Furnas, 1981 

 

A similar Bifocal Display was described by Spence and Apperley (1982) in a 

paper that foretold much of the look and feel of Apple iPad and Microsoft Surface 

human/computer interfaces. A number of applications of fisheye views have 

since been created in several domains, and the practical possibilities are 

increasing in tandem with the processing speed and graphical clarity of modern 

computers. Examples include viewing a computer program (Furnas, 1986), the 

3D visualization of a file system (Robertson, Mackinley, & Card, 1991), graphs 

(Sarkar & Brown, 1992), graphics-based aircraft maintenance data (Mitta & 

Gunning, 1993), surveillance (Lie & Toet, 1998), battlefield maps (Mountjoy, 

Ntuen, Converse, & Marshak, 2000), internet browsing (Yang, Chen, & Hong, 

2003) and PDA calendars (Bederson, Clamage, Czerwinski, & Robertson, 2004). 

Fisheye views have been implemented for interactive environments where the 

system, as well as the viewpoint, is subject to change (Churcher, 1995). The first 

large-scale implementation of fisheye-type distortions was on the dock bar of 
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Apple’s OS X (figure 15), which is visually appealing but has caused some 

problems with target acquisition (Cockburn, Karlson, & Bederson, 2008). 

 

Figure 15: Mac OS X Dock Icon Panel 

 

Figure 16 shows how a more modern graphical treatment of a fisheye text 

view looks in the relatively simple application of a user scrolling up and down a 

long menu list (compare to the constant font size of Figure 14). The Furnas 

fisheye is reported to have significant advantages over linear presentations in 

several applications (Hollands, Carey, Matthews, & McCann, 1989; Donskoy & 

Kaptelinin, 1997; Benderson, 2000). The fisheye distortion is one of many 

possible non-linear distortions that eliminate spatial and temporal separation by 

displaying the focus within the context in a single continuous view, for an 

excellent review of these focus+context constructs see Cockburn, Karlson and 

Bederson, 2008. 
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Figure 16: Fisheye menu views with multiple focus lengths, reproduced from 

Benderson, 2000 

 

The tested tape display takes the form of this non-linear presentation, but 

inverts the relationship of the static and moving parts. The user does not move 

the focus up and down, but rather the tape moves up and down over a fixed 

central pointer. The reasoning is however the same; the fisheye presentation 

allows a detailed undistorted local view of the current system value while 

retaining relationship information to multiple, more global, system maxima and 

minima limits displayed with increasing compression as distance from the center 

increases. These other data can be dynamically represented on the tape display, 

and are viewable when they change values even without movement of the 

system value. Current tape displays only allow this for values visible within the 
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limited range of the tape window, a limitation recognized by several authors. 

Hutchins writes: 

As technology changes, there is always a danger of discarding useful 

properties that were not recognized in the replaced technology. In their 

current form, the airspeed tapes that have replaced round-dial 

instruments in the state-of-the-art cockpits defeat some of the perceptual 

strategies of pilots. The new instruments offer few perceptually salient 

cues that pilots can map to their concept of fast/slow in the performance 

envelope of the airplane. This requires pilots to read the displayed speed 

as a number and to subject the representation of that speed to further 

symbolic processing in order to answer the questions that were answered 

simply by looking at the earlier display. (Hutchins, 2000, p. 69) 

Harris, 2004, noted, “the windowed design can be quite poor at providing the 

pilots with anticipatory information. On the electromechanical counter-counter 

altimeter, the altitude ‘bugs’ were always visible.” (p. 87). Although new displays 

have been tested before entering service into aircraft, the aircraft cockpit may not 

yet be fully mature. Billings, 1997, reported that there were, “disquieting signs in 

recent accident investigation reports that in some respects our applications of 

aircraft automation technology may have gone too far too quickly, without a full 

understanding of their likely effects on human operators.” (p.34). Glass cockpits 

allow designers to present huge amounts of data, indeed: 

Information management technology has all but erased the problem of 

insufficient data in the system. Data, however, is not information. It 

becomes information only when it is appropriately transformed and 
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presented in a way that is meaningful to a person who needs it in a given 

context. (Billings, 1997, p. 42) 

Being able to present more bug and reference values graphically on the tape 

display would fit the principle of proximity compatibility (Wickens & Carswell, 

1995; Wickens & Andre, 1990), a concept that is broken by (the common current 

solution) displaying important values numerically next to a graphic tape. 

Proximity compatibility is a movement towards expanding a single perceptual 

object display rather than forcing the human to cognitively integrate several 

inputs (Carswell & Wickens, 1987). The tested fisheye distortion is actually a 

more ecological presentation of airspeed and altitude data, modeling in some 

aspects both receding lines perspective and the fovea with its non-uniform 

distribution of photoreceptors over the retinal surface of the human eye. Furnas 

wrote: 

The fisheye [degree of interest] is implemented in human vision, though 

there is no distortion involved. Spatial resolution on the retina varies 

dramatically, by more than a factor of ten from the fovea to the periphery. 

By garnering detail only in the fovea, extracting a [fisheye] subset, the 

information that must be transmitted to the brain is dramatically reduced, 

and the sensory apparatus made much lighter and more mobile. (Furnas, 

2006). 

The display has a clear central detailed view with the focus on current system 

value, smoothly matched in the peripheral with other system limits in decreasing 

size and detail. Moreover, in the ‘real world’ things do get smaller and less 

detailed as they move further away from us. 
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Mitta and Gunning, 1993, concluded that the, “fisheye presentation 

strategy represents an analytical procedure for simplifying information. A 

simplification procedure of this nature may offer one means of reducing the 

detrimental impact of complex information on human performance.” 

Instrumentation has moved from being initially designed around mechanical 

practicalities (e.g. the pitot pressure driven round airspeed dial), to more human-

centered electro-mechanical presentations (e.g. the tape airspeed indicator), to 

today’s fully electronic computer graphic presentations (e.g. the A320 PFD with 

its dynamic bugs and limitation arcs added to the tape display). We may now be 

overdue for a redesign of these displays to more match human perceptual and 

cognitive abilities. Writing in Science, Hirschfeld (1985) noted that, “more effort in 

display psychophysics will be needed to match instrument output to brain input. 

This includes such things as . . . nonlinear scaling” (p. 288). 

 Linear scales are preferred by regulatory bodies in civil aviation 

(“Linear scales shall be used in preference to nonlinear scales unless system 

requirements clearly dictate non-linearity to satisfy user information 

requirements.” (FAA, 2003, pp. 6-67)), in military aviation (Department of 

Defense, 1999) and nuclear power plant control rooms (Nuclear Regulatory 

Commission, 2002). However, there are already several approved nonlinear 

displays in common cockpit use. Figure 17 shows a pronounced non-linear 

airspeed indicator installed in a high performance sailplane. The degree of arc 

subtended between 80 KIAS and 60 KIAS is about the same as that for between 

300 KIAS and 250 KIAS. Figure 18 shows a Boeing 757/767 airspeed indicator 

that expands the scale for the lower speeds used for take-off and landing 

operations while compressing the scale for higher cruise speeds. (It also shows 
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the four white mechanical bugs set by the pilots and one computer driven 

overspeed limitation moving marker.) 

 

Figure 17: Non-linear airspeed indicator, installed in a high performance sailplane 



  28 

 

Figure 18: Boeing 757/767 airspeed indicator, reproduced from Hutchins, 2000 

 

Figure 19 shows the Airbus instantaneous vertical speed indicator that sits to the 

right of the airspeed tape. It is also markedly nonlinear, being very sensitive for 

the first 1,000 feet per minute of vertical speed then becoming increasingly more 

condensed to 6,000 feet per minute at full-scale deflection. It is this kind of non-

linear presentation that was tested for high range tapes. 
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Figure 19: Airbus instantaneous vertical speed indicator 

 

Although a nonlinear display may initially appear to be overly complex and 

possibly non-intuitive, it can also be considered as an ecological two-dimensional 

mapping of a three-dimensional round display viewed orthogonally from the axis 

of rotation — as for example in the wet compass used on boats and aircraft, 

figure 20. (These devices have the advantage of needing no external power to 

operate, but pose several human factors challenges to sailors and pilots who are 

actually viewing the (fixed in space) tail of the compass through a moving window 

and so have to turn away from the displayed numbers (FAA, 2008b)). Humans 

have become so used to turning combination locks, spinning dials, etc., that 

Apple’s iPhone iOS operating system actually recreates this ‘old-school’ look in 

its user interface, shown in figure 21. The feeling of spinning wheels is quite 

compelling even though there is no actual distortion of the displayed values; 
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rather the shading is all that is required to create the illusion of depth (by 

atmospheric perspective, e.g. Bruce, Green, & Georgeson, 2003) and so imply 

the three-dimensional wheels. Figure 22 shows an EFIS approved for general 

aviation aircraft that has a non-linear mapping for the normally circular compass 

rose. 

 

Figure 20: Wet compass, demonstrating non-linear mapping onto the retinal 

plane of a constantly spaced scale on a curved solid object 

 

Figure 21: Apple iPhone screen showing ‘dials’ display 
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Figure 22: EFIS showing non-circular compass rose, reproduced from TruTrack 

Flight Systems, 2009 

 

The acceptance of some non-linear displays in cockpits, the use of fisheye 

mapping in other domains and the precepts of ecological interface design all 

suggest that a non-linear tape display may be of value for systems with wide-

ranges and dynamic reference values. Over thirty years ago, Stanley Roscoe 

wrote in Human Factors that, “during the 1950s and 60s, many promising flight 

display concepts were advanced that could not be implemented effectively with 

technology available at that time. With the advent of low cost, light-weight, and 

highly reliable microcomputing and display devices, good old ideas can be 

dusted off . . . and seriously considered for operational use.” (Roscoe, 1981, p. 

341). The sentiment still rings true, but with today’s electronics we can now 

consider the ‘good old ideas’ from the 1980s. 
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Chapter 3 
 
METHODOLOGY 

 

The study consisted of presenting two versions of expanded range 

displays (and a unchanged control display) to naïve subjects. One of the tested 

displays was a relatively linear distortion from an idea first proposed as the 

Bifocal Display by Spence and Apperley, 1982, which was further developed as 

the Perspective Wall by Mackinlay, Robertson and Card, 1991 (figure 23). It 

provided focus+context with an undistorted center bracketed by two linear planes 

angled away from the viewer. 

 

Figure 23: Perspective Wall, reproduced from Mackinlay, Robertson and Card, 

1991 

 

The second expanded range display was a completely smooth non-linear 

function fisheye presentation simulating the projection of a spherical counter. 

Both had compression in only one dimension, keeping the width of the tape even. 
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The amount of increased range was held essentially constant between the two 

expanded range displays. 

MATERIALS AND INSTRUMENTS 
 

Figure 24 shows two examples of control tapes, alongside the equivalent 

experimental two-tailed non-linear presentations that both increase the displayed 

range by approximately 60%. The fisheye presentation seeks to replicate the 

side view of a cylindrical counter. This gives an increase in range by a factor of 

π⁄2 (≈ 1.57). The perspective wall presentation is split into thirds, with an 

unchanged center and two tails each with a constant compression. A 100% 

compression would have given an increase in range by a factor of 5⁄3 (≈ 1.67), a 

little more than the fisheye view. To hold the range increase constant between 

the two modified displays and to maintain the same partition of the linear 

presentation into thirds, the tails were compressed by 85% to result in a total 

range increase of 1.57, the same as the fisheye. 
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Fisheye 

 

 

 

Perspective Wall 

 

 

 

Control 

 

 

 

Figure 24: Examples of Control and Expanded Non-Linear Tape Displays Used 

in Experiment 
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Using current transport category glass cockpit displays as models, 

airspeed and altitude display were constructed using the computer program 

Paint.net running on a Dell XPS 410 PC with the Windows 7 operating system. 

Extended lengths of just the tape ladder elements were constructed in Paint.net 

with an increase in length of 1.57 times the replica control presentation. Then the 

images were manipulated using a custom written MATLAB program run on the 

same computer with MATLAB R2007a and the MATLAB Image Processing 

Toolbox version 5.4. The images were unchanged in the x-axis. The new tape 

ladder image combined with the unchanging cage elements of the display using 

Paint.net.  

Inquisit 3 Web by Millisecond Software (Inquisit 3.0.6.0) was used to 

deliver the test images and record responses in both controlled laboratory 

conditions and remotely via internet delivery. 

PROCEDURE 

 

Mirroring the classic study by Grether (1949) both accuracy and 

interpretation time for the main system value were recorded, and in addition 

questions about the bugged values were asked and those accuracy and reaction 

times collected. After a short unrecorded practice session, each participant 

completed 36 trials (presented in a randomized order), with each trial consisting 

of viewing five ‘snapshots’ of a tape display, each lasting 500 milliseconds with a 

2 second presentation of a distractor image (1970’s BBC TV test card, figure 25) 

at a central screen location in-between each tape image (to simulate normal 

instrument scanning practices). A typical sequence is shown in figure 26. This 

was followed by timed questions asking the main system value or the bug/limit 
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values. Input was solicited by keyboard selection (1/2/3/4/5) of five possible 

values to allow for timing of responses without conflicting time requirements of 

moving a mouse or typing a three-digit value. The 36 trials each participant 

attempted were divided evenly between the two versions of the moving tape 

(airspeed/altitude), the three types of display (linear/fisheye/perspective wall), 

and direction of movement (up/down). 

 

Figure 25: Distractor image shown for 2 seconds between tape presentations. 

     

Figure 26: Example of Typical Progression (Fisheye/Airspeed/Increasing Values) 

 

PARTICIPANTS 

 

Twenty three (23) participants (7 male, 16 female) completed the 

experiment. All were ASU students who received course credit for participation. 

The only stipulations were normal color vision corrected to 20/20, and a minimum 

age of 18 years. Mean self-reported age was 22.8 (SD 4.5). The experiment was 

considered exempt after review by the ASU IRB, see Appendix A. 
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Chapter 4 

DATA ANALYSIS AND RESULTS 

The 23 participants yielded 828 trials. The reaction times are summarized 

in Table 1. A few of the times are exceptionally long, suggesting participants 

were momentarily attending to other tasks or disengaged from the trial goals. 

Defining exceptional as three standard deviations from the mean resulted in a 

reaction time of 9711 milliseconds, or almost 10 seconds. Eleven of the trials 

(1.3%) exceeded this time, and these data are removed from further analysis. 

 

N Range Minimum Maximum Mean Std. 
Deviation 

828 37005 964 37969 3210 2167 
 

Table1: Summary of Reaction Times (in ms.) 

 

The overall correct answer percentages for the three types of display is 

88.9% for the conventional tape, 89.3% for the circular fisheye and 89.5% for the 

linear wall. These differences are not significant F(2,814) = 0.03, p = .975. 

Some of the questions related to the bugs/limits, and some questions 

related only to the main central display. The dataset can be divided to examine 

each type of question separately. The accuracy percentages for main display 

questions are 100% for the conventional tape, 96.7% for the circular fisheye and 

100% for the linear wall. These differences are on the margin of significance 

F(2,272) = 3.05, p = .049. The accuracy percentages for the situational 

awareness questions are 83.3% for the conventional tape, 85.6% for the circular 

fisheye and 84.1% for the linear wall. These differences are not significant 

F(2,540) = 0.17, p = .843. 
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The overall times reaction times (in ms.) for the three types of display are 

3060 (SD 1356) for the conventional tape, 3079 (SD 1277) for the circular fisheye 

and 2972 (SD 1246) for the linear wall. These times are not significantly different 

F(2,814) = 0.53, p = .590. As with the accuracy questions, the main system 

values and the bug/limit values can be examined separately. For just the main 

system question the reaction times (in ms.) are 3076 (SD 1145) for the 

conventional tape, 3098 (SD 1182) for the circular fisheye and 3088 (SD 1193) 

for the linear wall. Clearly any differences here are not significant. It is in fact 

quite remarkable how similar both the average reaction times and their 

distributions are to each other. 

For just the bug/limit situational awareness questions the reaction times 

(in ms.) are 3052 (SD 1453) for the conventional tape, 3069 (SD 1326) for the 

circular fisheye and 2914 (SD 1271) for the linear wall. These results are less 

uniform than the overall reaction times. The bug/limit linear wall sample mean is 

more than 100 ms quicker than the conventional tape or fisheye, and the 

standard deviation of the conventional tape is higher than either expanded 

presentation. However, once again, these differences are not significant F(2,540) 

= 0.42, p = .660. A graphic representation of the data, figure 27, shows the slight 

differences overwhelmed by the overall variance. 
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Figure 27: Box Plot of Bug/Limit Value Reaction Times 

 

The reaction time analysis above includes values for trials in which the 

question was answered incorrectly. A cleaner analysis may be possible by 

removing reaction times associated with incorrect responses. However, the 

resulting overall response times (in ms) show no new pattern: conventional tape 

is 2959 (SD 1297), perspective wall 2934 (SD 1224) and circular fisheye 2959 

(SD 1115). These differences are clearly not significant, F(2,726) = 0.04, p = 

.965. The experiment presented airspeed and altitude displays, the reaction 

times for correct response trials did not significantly vary between these 

presentations: airspeed mean 2869 (SD 1204), altitude mean 3034 (SD 1216), 

F(1,727) = 3.38, p = .066. 
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Chapter 5 

DISCUSSION 

It turns out that we have no nice neat graphs showing significant 

differences. No clear indication that in these tests the expanded range displays 

were better. But, we do have multiple indications that in 828 trials with 23 

participants the expanded range displays did not adversely affect the speed or 

accuracy of retrieval of center system value. If there had been a reduction in the 

basic utility of the new display compared to the current construction then further 

consideration of the expanded range format would extremely hard to 

recommend. 

 

It would be possible to construct a testing scenario that would (almost 

certainly) produce positive results for the expanded range displays. Consider the 

question posed in figure 28 and compare the conventional to the expanded range 

display. This would generate data with a huge effect size and statistical 

significance, but they would be no more informative than asking the truism “does 

a display with greater range show a greater breadth of information?” 
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Figure 28: What is the value indicated by the start of the red warning area? 

 

It would presumably be possible to create an experiment somewhere in-

between the above example and the conducted trials. Such an experiment would 

produce nice looking charts showing statistically significant incremental increases 

in situational awareness. But it is highly questionable that such a construction 

would be a thing of value. 

 

The real-world utility of this type of evolutionary expanded range display 

can only be truly explored by much more sophisticated simulation. The displays 

would have to be more temporally dynamic, and comprise but a part of a more 

complete system that tests speed and accuracy of primary system value and 

situational awareness as components of larger control and management tasks. 

However such simulations are very expensive. The value of the conducted 

experiment is in quickly determining if the new display makes simple 

interpretation of the primary system value poorer and/or slower; and so 

suggesting that any possible gains in situational awareness would be 

compromised by loss of basic function. 
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In this light, results showing no significant difference are positive. 

Empirical experimentation with multiple participants (rather than just an individual 

subjective beauty opinion) shows basic performance is not degraded, and 

suggests further simulation testing is warranted. 

 

Limitations of the methodology include the use of a few static images to 

approximate moving tapes rather than actual moving dynamic displays, and the 

testing of the tapes individually rather than as a total cockpit package. Only the 

first part of Endsley’s (1995) definition of situation awareness (perception of 

elements) is tested, a more complex experiment is required to have participants 

form mental models and show comprehension of meaning and projection of 

status into the near future. The experiment conducted is the first step (element 

development) in the three phases suggested by Weinstein and Ercoline (1993) 

for cockpit display evaluations (the other two being full-scale simulation and flight 

test). Since this testing was successful in showing the new displays do not 

compromise the basic center value function, it would be appropriate to move to 

simulation of moving tapes in a full instrument panel simulator to properly test the 

situational awareness changes for the bug/limit speeds. 
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