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ABSTRACT  

   

Buildings (approximately half commercial and half residential) consume over 

70% of the electricity among all the consumption units in the United States. Buildings are 

also responsible for approximately 40% of CO2 emissions, which is more than any other 

industry sectors. As a result, the initiative smart building which aims to not only manage 

electrical consumption in an efficient way but also reduce the damaging effect of 

greenhouse gases on the environment has been launched. Another important technology 

being promoted by government agencies is the smart grid which manages energy usage 

across a wide range of buildings in an effort to reduce cost and increase reliability and 

transparency. As a great amount of efforts have been devoted to these two initiatives by 

either exploring the smart grid designs or developing technologies for smart buildings, 

the research studying how the smart buildings and smart grid coordinate thus more 

efficiently use the energy is currently lacking.  

In this dissertation, a ―system-of-system‖ approach is employed to develop an 

integrated building model which consists a number of buildings (building cluster) 

interacting with smart grid. The buildings can function as both energy consumption unit 

as well as energy generation/storage unit. Memetic Algorithm (MA) and Particle Swarm 

Optimization (PSO) based decision framework are developed for building operation 

decisions. In addition, Particle Filter (PF) is explored as a mean for fusing online sensor 

and meter data so adaptive decision could be made in responding to dynamic 

environment. The dissertation is divided into three inter-connected research components. 

First, an integrated building energy model including building consumption, storage, 

generation sub-systems for the building cluster is developed. Then a bi-level Memetic 

Algorithm (MA) based decentralized decision framework is developed to identify the 

Pareto optimal operation strategies for the building cluster. The Pareto solutions not only 
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enable multiple dimensional tradeoff analysis, but also provide valuable insight for 

determining pricing mechanisms and power grid capacity. Secondly, a multi-objective 

PSO based decision framework is developed to reduce the computational effort of the 

MA based decision framework without scarifying accuracy. With the improved 

performance, the decision time scale could be refined to make it capable for hourly 

operation decisions. Finally, by integrating the multi-objective PSO based decision 

framework with PF, an adaptive framework is developed for adaptive operation decisions 

for smart building cluster. The adaptive framework not only enables me to develop a high 

fidelity decision model but also enables the building cluster to respond to the dynamics 

and uncertainties inherent in the system. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

In the United States, buildings are responsible for over 70% of electricity 

consumption - approximately half commercial and half residential (Friedman, 2009). 

According to McKinsey Global Institute, the largest opportunities for saving are in the 

residential sector. The fact is between 4 and 20% of energy used for Heating, Ventilating 

and Air Conditioning (HVAC), lighting and refrigeration in building is wasted due to the 

problems with system operation. Therefore, a new concept, net-zero energy (smart) 

building aiming to reduce building primary energy consumption is being promoted by the 

United States Department of Energy. Net-zero energy (smart) buildings refer to the 

buildings that generate as much energy as they consume through efficient technologies 

and on-site power generation. Legislation was recently made establishing targets for all 

commercial buildings for net-zero energy by 2050. As a result, increasing numbers of 

buildings have adopted on-site energy generation devices and increasingly complex 

sensor and control systems.  

Another important technology that is being promoted by many government 

agencies is smart grid technology, which is a network of computers and power 

infrastructures that monitor and manage energy usage, reduce cost and increase reliability 

and transparency. The smart grid technology movement provides the infrastructure (two-

way flow of electricity and information) for distributed management of power 

distribution systems, allowing buildings to be more interactive with the power grid. 

A significant amount of available and alternative energy technologies can be 

directly used to develop smart buildings and implement smart grid concepts. Both 

initiatives urge the building industry to improve their energy efficiency and to have better 
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capabilities to interact with the power grid, and drive research moving from centralized 

operation decisions on a single building to decentralized decisions on a system of 

buildings, termed building cluster which shares energy resources locally and globally. 

Traditionally, buildings have been viewed as mere energy consumers with no negotiation 

power for determining energy price. Today, with the new power grid infrastructure and 

distributed energy resources, buildings can not only consume energy, but they can also 

output energy. With this as my motivation, this dissertation anticipates that next 

generation building systems (Figure 1) will be able to utilize smart grid for the exchange 

of information and to freely form cluster, amongst which buildings (even small 

residential buildings) can share and exchange site-generated energy. This cluster will 

thereby be more resilient to power disturbances, reduce energy cost and energy 

consumption, and improve energy efficiency and environment sustainability. 

 

Figure 1   System architecture for next generation building systems (adopted from (Perez 

& Farnham, 2010)) 
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1.2 Research Overview 

The objective of this dissertation is to develop an adaptive decision framework to 

derive adaptive operation decisions for the next generation building systems to guarantee 

the buildings could quickly respond to the dynamic environment and reduce energy cost. 

In order to achieve these goals, several critical research issues have been identified in this 

dissertation. 

Firstly, most existing literature focuses on operation strategies for one subsystem 

only, that is, HVAC, energy storage or energy generation (see Chapter 2). Considering a 

building is an integrated system as a whole, studying the interactions among the 

subsystems is necessary. So the first challenge issue is:  

1) How to develop an integrated building energy model including building 

consumption, storage, generation sub-systems for the building cluster to make the 

decentralized decision making possible? 

In this dissertation, the using of agent based simulation is explored to study the 

important aspects of a building system which including building consumption, storage 

and generation sub-systems.  

Nowadays, commercial buildings are increasingly using sophisticated energy 

management and control systems (EMCSs) to monitor and control building systems, yet 

building systems routinely fail to perform as designed (Hicks & von Neida, 2000). 

Although the EMCSs are sophisticated, they lack the tools necessary to detect and 

diagnose faults arising in building systems. Furthermore, building designers and 

operators generally overlook the symptoms because of a lack of proper understanding of 

the operation strategies and the symptoms related to system failures. This leads to the 

manual override of operation strategies and gradual erosion of proper system 

performance. Research has demonstrated that energy and operation costs can be greatly 
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reduced by adopting good operation strategies, which utilize building passive and active 

thermal storages, demand response measures, and the dynamic relationship between sub-

systems from a whole-building point of view (see Chapter 2). The significant cost savings 

drive research to explore ways to develop appropriate operation strategy. Some related 

challenging questions are: 

2) Considering each building consists of energy consumption, storage, 

generation sub-systems, when to charge or discharge the storage system or leave it as 

dormant? What is the optimal strategy for a generation system (e.g., power the building 

vs. charge its storage system vs. sell back to the power grid)? How do the buildings 

adjust their HVAC set-point temperature and coordinate with each other on the shared 

energy splitting strategy to reach the win-win goal? 

To address these questions, a bi-level decision framework for building cluster 

operation decisions is developed. A Memetic Algorithm (MA) based model (Hu et al., 

2012) is employed to identify the Pareto optimal operation strategies for the building 

cluster. However, the MA based framework cannot be applied to derive hourly operation 

decisions for the building energy system due to its computational issues. So, another 

research challenging is: 

3) How to improve the computational performance of the decentralized decision 

framework to ensure it is capable to make hourly operation decisions without losing 

solution accuracy? 

Particle Swarm Optimization (PSO) which is capable of deriving good results 

with very low computational cost is employed to improve the performance of the 

decentralized decision framework (Reyes-Sierra & Coello Coello, 2006). In this 

dissertation, two novel particle swarm optimization algorithms are developed to improve 

PSO‘s performance on a diverse set of optimization problems with different properties, 
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and improve PSO‘s robustness to its parameter settings. Then, a multi-objective PSO 

algorithm is developed based on these two novel PSO algorithms to improve the 

computational performance of the decentralized decision framework, and study 

decentralized operation decisions for the building cluster. 

Due to the dynamics and complexity of the building energy system, a good 

operation strategy first requires an accurate model for building system energy usage 

which is currently lacking. The optimal operation decisions should be made in 

responding to the dynamics and uncertainties inherent in the system. Due to the variety 

and diversity of uncertainties and noises in the building system, environment, sensor and 

meter, less research is conducted on developing building operation strategies under 

uncertainty and noise though the importance of this research topic has long existing. The 

research question is: 

4) What is the appropriate approach to handle uncertainties and noises existing 

in the building, environment, sensors and meters? 

This dissertation considers the uncertainties in building energy consumption, 

temperature and solar radiation, noises in sensors and meters, and employs the Gaussian 

mixture sigma point particle filter (GMSPPF) (van der Merwe, 2004) algorithm to 

calibrate the building cluster model with noise measurement data collected from sensors 

and meters. The GMSPPF is integrated with the multi-objective PSO based decentralized 

decision framework to derive adaptive operation decisions for the building cluster to 

guarantee the building cluster could quickly respond to its dynamic environment. 

1.3 Research Contributions 

This section summarizes all the original research contributions this dissertation 

has achieved by addressing all the research issues stated in section 1.2.  
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1) An agent based building cluster model which is less studied in the existing 

literature is developed. This building cluster model enables me to study the interactions 

between multiple buildings, multiple subsystems, shared energy resources, and power 

grid.  

2) A bi-level decentralized decision framework is developed and applied for 

deriving operation decisions for the building cluster model. The derived Pareto operation 

decisions are able to reduce energy cost and consumption, improve energy efficiency and 

environment sustainability, and make the buildings be more resilient to power 

disturbances. 

3) A computationally efficient particle swarm optimization (PSO) is developed. 

The newly developed PSO algorithm performs well on a diverse set of optimization 

problems with different properties. In addition, a generalized intelligent multiple search 

methods selection strategy which could be used to assess multiple search methods is 

developed. Furthermore, two adaptive optimization techniques (e.g., adaptive sub-

gradient method and Cauchy mutation operator) based on particle‘s velocity information 

are developed. 

4) An adaptive parameter tuning mechanism is developed to improve particle 

swarm optimization‘s robustness to the parameter settings which is a common issue for 

most of the existing PSO algorithms. The parameter tuning mechanism could be plugged 

into other PSO algorithms to improve their robustness. 

5) A novel multi-objective particle swarm optimization algorithm is developed 

which is demonstrated to outperform some of the existing multi-objective PSO 

algorithms and multi-objective evolutionary algorithms. 

6) A multi-objective PSO based decentralized decision framework is developed 

which could improve the computational performance of the decentralized decision 
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framework without losing of solution quality. The hourly operation decisions derived 

from this computationally efficient framework could tremendously reduce energy cost 

and consumption. 

7) An adaptive decision framework which integrates the Gaussian mixture sigma 

point particle filter algorithm and multi-objective PSO based decision framework is 

developed to study adaptive operation decisions for the dynamic building energy systems. 

The adaptive decision framework could accurately calibrate the building model, and the 

adaptive operation decisions derived from this framework enable buildings to quickly 

respond to the dynamic environment. 

Finally, the adaptive decision framework can be applied not only in building 

energy system, but also for a wide range of complex dynamic systems decision support, 

such as healthcare delivery management and disease control.  

1.4 Dissertation Organization 

The interconnection of the remainder chapters and questions to be answered are 

shown in Figure 2. 

Chapter 1: Problem statement

How next generation building cluster 

make operation decisions?

building model & 

decision model

computationally 

efficient algorithm

Chapter 3: Augmented particle 

swarm optimization with multiple 

adaptive methods

Chapter 4: Adaptive particle swarm 

optimization

Chapter 5: Augmented multi-

objective particle swarm 

optimization

Chapter 6: Multi-objective PSO based 

decision framework for building 

hourly operation decision

multi-objective 

optimization

algorithm

implementation for 

building system

how to make 

adaptive decision

Chapter 8: Conclusions

Next generation building cluster could

· be resilient to power disturbance

· reduce energy consumption

· save overall energy cost

· improve environment sustainability

Chapter 7: Adaptive decision 

framework for adaptive operation 

decision

Chapter 2: Model & framework 

development

· Integrated building cluster model

· Bi-level decision framework

 

Figure 2   Dissertation organization 

The remainder of this dissertation is organized as follows:  
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Chapter 2 presents the agent based building cluster model and develops a bi-level 

decentralized decision framework. This chapter also includes the literature reviews for 

most of the existing research in the building energy system. 

Chapter 3 reviews most of the existing particle swarm optimization algorithms 

and develops a computationally efficient particle swarm optimization algorithm which is 

termed as PSO-MAM. PSO-MAM is demonstrated to significantly outperform 10 

published PSO algorithms on at least 36 out of 43 test functions. 

Chapter 4 studies how to adaptively change parameter settings of the PSO 

algorithm to improve its robustness. Most of the existing parameter tuning techniques is 

reviewed in this chapter. The adaptive PSO algorithm which is termed as BLOSSM-

APSO is demonstrated to be able to improve the robustness of the PSO algorithm and 

make it insensitive to its parameter settings. 

Chapter 5 extends the single objective PSO algorithms studied in Chapter 3 and 4 

to a multi-objective optimization algorithm. The developed multi-objective PSO 

algorithm which is termed as AMOPSO is demonstrated to significantly outperform the 7 

out of 8 published multi-objective optimization techniques. 

Chapter 6 improves the computational performance of the decentralized decision 

framework by using AMOPSO presented in Chapter 5. The AMOPSO based decision 

framework is able to derive hourly operation decisions, and the operation decisions could 

reduce energy cost and consumption. 

Chapter 7 develops an adaptive decision framework by integrating the Gaussian 

mixture sigma point particle filter (GMSPPF) algorithm with the AMOPSO based 

decision framework presented in Chapter 6. GMSPPF is demonstrated to be able to 

accurately calibrate the building cluster model and buildings could respond to the 

dynamic environment by using the adaptive decision framework. 
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Chapter 8 summarizes the research works in this dissertation and points out some 

future directions in both the application and algorithm development research. 
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Chapter 2 

DECENTRALIZED OPERATION STRATEGIES FOR AN INTEGRATED BUILDING 

ENERGY SYSTEM USING A MEMETIC ALGORITHM 

The emerging technologies in smart building and smart grids drive research 

moving from centralized operation decisions on a single building to decentralized 

decisions on a system of buildings, termed a building cluster which shares energy 

resources locally and globally. However, current research has focused on developing an 

accurate simulation of single building energy usage which limits its application to 

building cluster as scenarios such as energy sharing and competition cannot be modeled 

and studied. This chapter hypothesizes that the study of energy usage for a group of 

buildings instead of one single building will result in a cost effective building system 

which in turn will be resilient to power disruption. To this end, this chapter develops a 

decision model based on a building cluster simulator with each building modeled by 

energy consumption, storage and generation sub modules. Assuming each building is 

interested in minimizing its energy cost, a bi-level operation decision framework based 

on a Memetic algorithm is developed to study the tradeoff in energy usage among the 

group of buildings. One additional metric, measuring the degree of dependencies on the 

power grid is introduced for the analysis. The experimental result demonstrates that the 

bi-level decision framework is capable of deriving the Pareto solutions for the building 

cluster in a decentralized manner. The Pareto solutions not only enable multiple 

dimensional tradeoff analysis, but also provide valuable insight for determining pricing 

mechanisms and power grid capacity. 

2.1 Introduction 

According to the Electric Power Research Institute (EPRI), the electricity 

consumption of the U.S. grew 1.7% annually from 1996 to 2006 with the expectation of 
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total growth through 2030 being 26% (Parks, 2009). Buildings (approximately half 

commercial and half residential) consume over 70% of the electricity among all the 

consumption units (Friedman, 2009). The fact is between 4 and 20% of energy used for 

heating, ventilating and air conditioning (HVAC), lighting and refrigeration in buildings 

is wasted due to problems with system operation. Therefore, extensive researches in the 

past two decades have explored optimal operation strategies including on-site generation 

and storage for smart buildings to reduce energy cost and improve energy efficiency for 

building systems. 

Research on HVAC has employed simulation and mathematical modeling for 

optimal strategies. For example, Fong et al. (2006) develop a simulation-evolutionary 

programming coupled approach to optimize the HVAC control which demonstrates a 7% 

cost savings compared with the existing control methods. Lu et al. (2005) formulate a 

mixed integer nonlinear programming problem and apply a modified genetic algorithm to 

derive the HVAC system optimal control strategy which significantly improves the 

HVAC performance. Wright et al. (2002) and Nassif et al. (2005) study the multi-

objective genetic algorithm to optimize building thermal control and HVAC control 

aiming to minimize energy cost and maximize zone thermal comfort. 

Other than HVAC, recent literature indicates the use of energy storage such as 

thermal mass control strategies can alleviate the energy load and thus potentially reduce 

the energy cost (Braun, 2003). As an example, Keeney and Braun (1996) successfully 

demonstrate pre-cooling of a building can reduce the peaking cooling load, electricity 

demand and energy cost. Hämäläinen and Mäntysaari (2002) employ dynamic goal 

programming to study the tradeoff between energy cost, energy consumption and living 

comfort for the residential house heating system. Braun (2007) and Sun et al. (2006) 

further develop a heuristic near-optimal control strategy for thermal storage systems with 
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dynamic real-time electric rates. The results indicate that the annual cost under this 

control method is close to optimum (less than 2% higher than the minimal costs). Drees 

and Braun (1996) present a rule-based control strategy for a thermal storage system 

which outperforms the conventional control strategy such as chiller-priority and storage-

priority strategies. The monthly electrical cost is near-optimal (less than 3% higher than 

optimum obtained from dynamic programming). Henze et al. (2005) further develop 

model-based predictive optimal control of active and passive building thermal storage 

and successfully achieve 18% and 7% of cost savings compared to the reference case and 

base case which are two testing cases studied in (Henze et al., 2005). Henze and 

Schoenmann (2003), Liu and Henze (2007) demonstrate that the model-free 

reinforcement learning control for the thermal storage system can achieve more cost 

savings than the conventional storage control strategies but less than the predictive 

optimal control strategies. In addition, Liu and Henze (2006a, 2006b) develop a hybrid 

reinforcement learning control approach combining model-based with model-free control 

to locate the optimal control for passive and active thermal storage which can achieve 

8.3% cost savings compared to the base case studied in (Liu & Henze, 2006b). Lee et al. 

(2009) employ the particle swarm algorithm to optimize operations of the ice-storage air-

conditioning system which can minimize the life cycle cost and reduce the CO2 emission. 

Another noteworthy emerging effort is energy generation and the use of energy 

generation on site. For example, Manolakos et al. (2001) develop a simulation-

optimization program to design and control a hybrid energy system which consists of a 

battery, wind generator and photovoltaic module. Rong et al. (2008b) develop an efficient 

and near-optimal planning strategy for the tri-generation system which includes an 

electric power, heat, cooling and storage system using a Lagrangian relaxation based 

algorithm. García-González et al. (2007) optimize the short-term scheduling which is 
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formulated as a mixed integer linear programming problem for hydroelectric generation 

units. Arun et al. (2009) adopt chance constraint programming to optimize the design of a 

battery-integrated diesel generator system and identify the optimum configuration. El-

shatter et al. (2006) design a fuzzy logic control based management system to improve 

the energy efficiency for a hybrid wind/photovoltaic/fuel cell generation system. Henze 

and Dodier (2003) develop a model-free reinforcement learning algorithm which 

outperforms the conventional control strategy to adaptively control a grid-independent 

photovoltaic system which has a collector, storage and load. Rong and Lahdelma (2007) 

develop an envelope-based branch and bound algorithm to derive the long-term planning 

strategy for single-period combined heat and power system. Rong et al. (2008a) further 

study the multi-period combined heat and power system planning using a modified 

dynamic programming approach. 

While promising, most literature focuses on operation strategies for one 

subsystem only, that is, HVAC, energy storage or energy generation. Considering a 

building is an integrated system as a whole, studying the interactions among the 

subsystems is necessary. Secondly, even though there exists research exploring a building 

as a system consisting of subsystems, a majority of the research formulates the decision 

problem for a single building only. Realizing the emerging technologies in multi-energy 

source building (Corrado et al., 2007), net-zero building (Torcellini et al., 2006) and 

smart grid (Parks, 2009), it is becoming urgent critical to develop a decentralized 

decision framework modeling the coordination among a cluster of buildings to obtain 

Pareto decisions which enable tradeoff analysis. There are notable efforts taken in this 

direction. For example, Kiesling (2009) investigates the decentralized coordination 

mechanism to increase energy efficiency through markets, technology and institutions. 

However, to my knowledge, decisions for buildings consisting of multiple interacting 
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subsystems, which coordinate with other buildings and the power grid has been less 

explored. This is probably due to the complexity of the problem which involves both 

subsystems, and cluster of buildings. An even further level of complexity is the varied 

time scales, ranging from models running based on minutes (e.g., energy consumption 

subsystem), to hourly and possibly even daily. Given the complexities discussed above, 

this chapter demonstrates a methodology for modeling the coordination among a cluster 

of buildings. Specifically, with this methodology, decision makers can determine when to 

charge or discharge the storage system or leave it dormant. They can determine an 

optimal strategy for a generation system (e.g., power the building vs. charge its storage 

system vs. sell back to the power grid). Given competing owners in multiple buildings, 

HVAC set-point temperature strategies can be coordinated with each other on the shared 

energy splitting to reach a win-win goal. Finally, decision makers can use the 

methodology to determine how local energy pricing levels and power grid capacity can 

influence the operation of a building cluster. 

This chapter extends the agent-based simulator developed by Hu et al. (2010), 

and develops a bi-level decision framework for building cluster operation decisions. A 

Memetic algorithm (MA) based model is employed to identify the Pareto optimal control 

strategies for the building cluster. The power grid dependency rate (PGDR) is utilized to 

evaluate the Pareto operation strategies. In addition, different pricing mechanisms and 

power capacities are studied to demonstrate the impacts on energy costs for the group of 

buildings. 

This chapter is organized as follows: the building energy model is introduced in 

section 2.2; the decision model is formulated in section 2.3 followed by the detailed 

explanation on the bi-level decentralized framework in section 2.4; the MA based 

framework is discussed in section 2.5; the experimental results in section 2.6 demonstrate 
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how the bi-level decision framework can be used for decentralized decision making. 

Finally, conclusions are drawn in section 2.7. 

2.2 Integrated Building Energy System Simulator 

Kosny et al. (2001) and Zhou et al. (2005) employ thermal mass concept which 

determines the building‘s capability to utilize its structural mass for thermal storage to 

differentiate heavy and light weight/mass buildings. The thermal mass can be modified 

by changing either the thickness or density of the wall material without altering the 

architectural and construction of the building model (Zhou et al., 2005). In this chapter, 

the density of the wall material is changed (Figure 3) to distinguish heavy and light mass 

buildings. 
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Figure 3   Overall schematic of the integrated building energy system 

Table 1   Building system development 

Modules/Parameters Source 

Building Consumption 

Model (module) 

The building cooling load is from a building thermal model. 

Non-cooling load data from (Valenzuela et al., 2000) has 

been appropriately scaled down for this chapter. 

Chiller Model (module) The chiller model is adopted from (Sun et al., 2006). 
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Ice Storage Model 

(module) 

The ice storage model is from (West & Braun, 1999). The 

parameters of the ice tank have been appropriately scaled 

down to make it applicable for this chapter. 

Battery Model (module) The battery model is from (Lu, 2004). 

Photovoltaic Model 

(module) 

The PV-panel model is from (Lu & Yang, 2004). The 

angular losses factor in (Martin & Ruiz, 2001) is employed 

to compute the absorbed solar energy. 

Dry/Wet Bulb 

Temperature (parameter) 

The hourly dry/wet bulb temperature Tdb (°F), Twb (°F) in 

Phoenix are obtained from (NCDC, 2010) 

Solar Radiation on 

Inclined Surfaces 

(parameter) 

The total hourly solar irradiance on the inclined surface with 

slope angle β (degree) and surface azimuth angle ϒ (degree) 

is estimated using the model from (Lorenzo, 2003; Lu, 

2004; NREL, 2010) 

Real-time Pricing Rate 

(parameter) 

Three pricing plans used by Salt River Project (SRP) 

Company (SRP, 2010) are considered in this chapter. 

 

A simplified building cluster consisting of two different mass level - heavy mass 

(HM) and light mass (LM) buildings is then modeled. The two buildings, each having its 

own battery and photovoltaic (PV) panel, share one ice storage system and one base 

chiller. The ice storage system charged by a dedicated chiller is configured in parallel 

with the base chiller. During on-peak hours, the buildings cooling loads are met primarily 

by the ice storage system with the remaining cooling request satisfied by the base chiller. 

The overall schematic of the building energy system configuration is illustrated in Figure 

3 with the arrows denoting the energy flow among each component in the system. 

In this chapter, the PV panel for each building can be in only one of the 

following four states: charging battery, powering building, selling power to grid or being 

dormant. It is assumed that the extra electricity of the PV panel will be wasted when the 

PV panel is at the state of charging battery or powering building. If the electricity 

generated by the PV panel is not sufficient to charge the battery, energy from the power 

grid will be supplied. An integrated simulator using MATLAB® is developed which 

includes five subsystems modules: building consumption model, chiller model, ice 

storage model, battery model, and photovoltaic model. Three parameters are considered: 

dry/wet bulb temperature, solar radiation on inclined surfaces, and real-time pricing rate. 
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The modules are collected from the literature and validated from experiments and the 

parameters are collected from the literature and industry practices for the use of this 

chapter (Table 1). The simulator is a black-box which is used to evaluate the operation 

decisions. The detailed decision model is explained in the next section. 

2.3 Formulation of Building Energy System Decision Model 

In the decision model, three building operation modes (Liu & Henze, 2007) are 

considered for each day: (1) from midnight to the onset of the on-peak period (0am-1pm); 

(2) the on-peak period (1pm-8pm); and (3) from the end of on-peak period to midnight 

(8pm-0am). The building shares the same characteristics (e.g., set-point temperature, 

pricing rate structure, etc.) during the successive hours in each building operation mode. 

2.3.1 Decision Variables 

Each building will control its set-point temperature. The shared ice storage will 

decide when to be charged or discharged to cool the buildings, and how to distribute its 

discharged cooling energy to each building. The decisions will be made for the battery on 

when to be charged or discharged to provide electricity for its served building. The 

decisions for the photovoltaic collector are charging battery, powering building, selling 

power to grid. Let M be the number of buildings, K be the number of modes, Table 2 lists 

the decision variables for building m (m=1,…, M) at building operation mode k (k=1,…, 

K): 

In this chapter, a group of binary intermediate variables BI for the last three state 

variables ( ,is kS , ,

m

bat kS , ,

m

PV kS ) in Table 2 is introduced to simplify the problem 

formulations which is defined as: 

 
 
 

1
2 2 0

2 0 0

S
decimal binary S

BI
decimal binary S











 (2.1) 
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where decimal2binary(.) is commonly available function used to transform the decimal 

number to a binary number, S denotes the three state variables ( ,is kS , ,

m

bat kS , ,

m

PV kS ). Taking 

,

m

PV kS =3 (PV sells power to grid) as an example, S=3, and 2
S-1

=4, by employing function 

decimal2binary(4), BI is 100. Thus, following Eq. (2.1), BI=000, 001, 010, 100 represents 

S=0, 1, 2, 3 respectively. 

Table 2   List of decision variables 

Decision 

Variables 

Description Type 

,

m

sp k
T  Temperature set-point Continuous 

m

k
  Percentage of the energy from 

ice storage to building 

Continuous 

Sis,k State of ice storage Integer (0: dormant; 1: charging; 2: 

discharging) 

,

m

bat k
S  State of battery Integer (0: dormant; 1: charging; 2: 

discharging) 

,

m

PV k
S  State of PV panel Integer (0: dormant; 1: charging battery; 

2: powering building; 3: selling power 

to grid) 

 

2.3.2 Objective Functions 

Let us assume each building has the objective to minimize its energy cost for one 

day, which is written as: 

  , , , ,1 1

kK H m m m m

m p j p j s j s jk j
f R P R P

 
    (2.2) 

where Hk is the number of hours in the building operation mode k (k=1,…, K); ,

m

p jR  and 

,

m

s jR  ($/kWh) are the energy purchase and selling price at time j for building m 

respectively; ,

m

p jP  and ,

m

s jP  (kW) are the purchase energy from power grid and selling 

energy back to the power grid at time j for building m respectively. 

Please note from Figure 3, the power grid supplies energy to the shared cooling 

(base chiller and dedicated chiller) to satisfy the cooling load of each building, and to 

each building to satisfy the non-cooling load. Let us assume for building m at time j, the 
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purchase energy ,

m

p jP  is composed of: 1) ,

m

bch jP (kW) which represents the base chiller 

electrical consumption allocated to building (see Eq. (2.8)); 2) ,

m

dch jP (kW) which is 

electrical consumption for the dedicated chiller allocated to building (see Eq. (2.6)); 3)

,

m

nc jP (kW) which is the building non-cooling electrical consumption. 

 , , , ,

m m m m

p j nc j dch j bch jP P P P    (2.3) 

The building non-cooling electrical consumption includes building itself and 

battery‘s electrical consumption supplied by the power grid, and is determined as 

 
    

    

, , , , , ,

, , , ,

max 2 2 ,0

       max 1 1 ,0

m m m m m m

nc j load j bat j conv bat k PV j inv PV k

m m m m

bat j bat k PV j PV k conv

P P P BI P BI

P BI P BI

 



  

 
 (2.4) 

where ,

m

load jP (kW) is the non-cooling electricity load for building m at time j; ,

m

bat jP (kW) is 

the charging/discharging power of the battery for building m at time j; 
conv is the battery 

AC/DC converter efficiency, which is 0.9 according to its specification in this chapter; 

,

m

PV jP (kW) is the energy generated by the PV panel for building m at time j; 
inv is the PV 

panel inverter efficiency, which is 0.92 in this chapter (Lu, 2004);  , 2m

PV kBI is the 

second digit of ,

m

PV kBI (from right to left). 

Considering dedicated chiller based ice storage and base chiller, there are two 

common control strategies: chiller-priority control where the base chiller is the primary 

cooling provider with the dedicated chiller based ice storage as the secondary, and 

storage-priority control where the dedicated chiller based ice storage is the primary with 

the base chiller being the secondary. Extensive researches have demonstrated that 

storage-priority control can successfully shift the energy cost from on-peak period to off-

peak period when the price rate of the electricity changes thus save more energy costs 

(Braun, 2007; Henze, 2003a, 2003b; Henze, 2004; Henze et al., 2005; Henze et al., 2003; 
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Henze & Schoenmann, 2003; Liu & Henze, 2007; Zhou et al., 2005). Therefore, the 

storage-priority strategy is employed in this chapter. 

The energy request from dedicated chiller (primary cooling provider) is 

determined by the states of the ice tank. That is, the dedicated chiller will request energy 

from the power grid if and only if the ice tank is in charge stage, and the ice tank will 

provide cooling energy for buildings if and only if the ice tank is in discharge stage. Here, 

to realistically model the system, decision variable m

k  is introduced to control the 

percentage of cooling energy allocated to each building (flow control valve 3 and flow 

control valve 4). Considering the daily energy consumption thus cost, m  is introduced to 

denote the daily average percentage of cooling energy allocated to building m. That is, 

    
1 1 1 1 1

k kK H M K Hm m

m k j k jk j m k j
u u  

    
       (2.5) 

The energy request for building m at time j is: 

  , , , 1m

mdch j dedicated j is kP P BI  (2.6) 

where Pdedicated,j (kW) is the electrical consumption for the dedicated chiller at time j; uj 

(Btu/h) is the discharging rate of the ice storage at time j. 

As secondary cooling provider, the base chiller only provides the amount of 

cooling to the building when the ice tank‘s supply is not sufficient. Thus, the cooling 

energy supplied by the base chiller for each building ,

m

b jQ  (Btu/h) is determined by Eq. 

(2.7), and the electrical consumption proportional to the cooling request from the base 

chiller for each building  ,

m

bch jP  is computed in Eq. (2.8). 

   , , ,max 2 ,0m m m

b j c j j is k kQ Q u BI    (2.7) 

 , , , ,1

Mm m m

bch j base j b j b jm
P P Q Q


   (2.8) 
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where ,

m

c jQ (Btu/h) is the cooling load for building m at time j; uj (Btu/h) is the 

charging/discharging rate of the ice storage at time j; Pbase,j (kW) is the electrical 

consumption for the base chiller at time j. 

The electricity selling back to the power grid from building m at time j is 

computed as 

  , , , 3m m m

s j PV j inv PV kP P BI  (2.9) 

Other than energy cost, one additional metric to evaluate the decentralized 

decisions is introduced, which is power grid dependency rate (PGDR). The PGDR is a 

measure of the degree of dependencies of a building to the power grid. For the building 

(e.g., smart building) with on-site generation and storage capability, PGDR metric may 

reflect the resilience of the building to a power disruption. For building m at time j, 

PGDR is defined as 

  , ,

m m m

j p j s j gridPGDR P P P   (2.10) 

where Pgrid (kW) is the power grid capacity. 

2.3.3 Constraints 

(1) Power Grid: The total electricity purchased from the power grid for M 

buildings cannot exceed the capacity of the power grid at each time j. That is, 

 ,1

M m

p j gridm
P P


  (2.11) 

 (2) Building: The building should keep its indoor temperature at a comfort level 

at each time j. 

 ,

m
mL mU

i ji iT T T   (2.12) 

where ,

m

i jT  is the average indoor temperature for building m at time j; mL

iT and mU

iT are 

74°F and 81°F in this chapter. 
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(3) Base chiller: The base chiller load cannot exceed its capacity at each time j. 

 , max,1

M m

b j jm
Q Q


  (2.13) 

where Qmax,j is the chiller capacity at time j. 

(4) Ice Storage: At each building operation mode k, the ice storage system cannot 

be charged if the state of charge is at the maximum level (Eq. (2.14)) and cannot be 

discharged if the state of charge is at the minimum level (Eq. (2.15)). The summed 

percentage of cooling from ice storage to each building cannot exceed one (Eq. (2.16)) 

when the ice storage is in the discharging state. 

     , ,max ,1 max 0,is k is is kBI ceil SOC SOC   (2.14) 

     , , ,min2 max 0,is k is k isBI ceil SOC SOC   (2.15) 

 ,1
(2)

M m

k is km
BI


  (2.16) 

where ceil(.) rounds the element to the nearest integer towards infinity; SOCis,max and 

SOCis,min are maximum and minimum state of charge for the ice storage; SOCis,k is the 

initial state of charge for ice storage at building operation mode k. The state of charge is a 

percentage value in this chapter. 

(5) Battery: At each building operation mode k, the battery cannot be charged if 

the state of charge is at the maximum level (Eq. (2.17)) and cannot be discharged if the 

state of charge is at the minimum level (Eq. (2.18)). 

     , ,max ,1 max 0,m m m

bat k bat bat kBI ceil SOC SOC   (2.17) 

     , , ,min2 max 0,m m m

bat k bat k batBI ceil SOC SOC   (2.18) 

where ceil(.) rounds the element to the nearest integer towards infinity; ,max

m

batSOC and 

,min

m

batSOC  are maximum and minimum state of charge for building m‘s battery; ,

m

bat kSOC
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is the battery‘s initial state of charge for building m at building operation mode k. The 

state of charge is a percentage value in this chapter. 

(6) PV-panel: The PV-panel can charge the battery only when the battery is in the 

charging state (Eq. (2.19)). 

    , ,1 1m m

PV k bat kBI BI  (2.19) 

where m=1,…, M and k=1,…, K. 

Thus, for M buildings, M decision models are introduced with each model having 

the objective function shown in Eq. (2.2) and constraints shown in Eqs. (2.11)-(2.19). A 

decentralized decision framework based on a Memetic algorithm is then introduced to 

ensure M decision models can converge to Pareto solutions. 

2.4 Decentralized Decision Making Framework 

In the bi-level decentralized framework, other than the building agents each 

representing one building with the decision model explained in the section 2.3, a 

facilitator agent is introduced aiming to coordinate the buildings to reach converged 

solutions. This is achieved by deriving a weighted-sum of the buildings‘ objectives as the 

function for the facilitator agent. The facilitator agent then classifies the decision 

variables from the derived objective function into local variables (X) which are controlled 

by each building and coupled variables (Y) which are jointly controlled by more than one 

building. Similarly, the constraints are classified into local constraints which apply for 

each building and system constraints which apply for the group of buildings. Artificial 

coupled variables Z are introduced to decompose the system constraints into separable 

pieces so that each building can solve fully independent sub-problems. Let us assume the 

jth coupled system constraint  1X , ,X ,Yj M jb h can be written as:                 

      1, 1 2, 2 ,X ,Y X ,Y X ,Yj j M j M jb b b h     (2.20) 
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where  1, 1X ,Yjb ,  2, 2X ,Yjb ,…,  , X ,YM j Mb are the constraints local to each building 

respectively. M-1 artificial variables (z1,j,…,zM-1,j) can be introduced as: 

 

 

 

1, 1 1,

1

, ,1

X ,Y

X ,Y

j j

M

M j M j m jm

b z

b h z






 

 (2.21) 
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Figure 4   Bi-level decentralized framework based on MA 

Thus, the coordination function of the facilitator agent has decision variables of 

X, Y and Z. It will employ genetic algorithm (GA) operators including crossover and 
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mutation to explore the global decision space (X, Y, Z) followed by local search (LS) to 

exploit the coupled decision space (Y, Z). The updated decisions are passed to each 

building agent who attempts to ―optimize‖ its own objective over the local variables (X) 

only and feeds the decisions on local variables back to the facilitator agent. At the end of 

each MA iteration, the Pareto filter (Loukil et al., 2007) is applied on the population to 

filter out the dominated solution. The Memetic algorithm based bi-level decision 

framework is illustrated in Figure 4. 

2.5 Implementation of Decentralized Memetic Algorithm 

2.5.1 Decentralized Decision Model 

Based on the discussion in section 2.4, the decentralized decision model for the 

building cluster is constructed as shown in Figure 5.  

 

 

 

 
 

 

 

 

Figure 5   Decentralized decision model for building cluster 

The decision variables ,

m

sp kT , Sis,k, and m

k  in Table 2 are the coupled variables Y, 

while the remaining variables in Table 2 are the local variables Xm. The constraints in 

Eqs. (2.11)-(2.16) are system constraints which are handled by the facilitator agent. 

Artificial coupled variables Z are employed to decompose the coupled system constraint 

in Eq. (2.11) as two constraints Eqs. (2.11.1) and (2.11.2) shown in Figure 5. Please note 

it is not necessary to decompose constraints in Eqs. (2.12)-(2.16) since they do not 

Building Agent 2: 

Min  

s.t.  Eqs. (2.17)-(2.19) 

                              (2.11.2) 

       j = 1,…,Hk; k=1,…,K 

Building Agent 1: 

Min  

s.t.  Eqs. (2.17)-(2.19) 

                                          (2.11.1) 

        j = 1,…,Hk; k=1,…,K 

Facilitator Agent: 

Min w1 f1+ w2 f2 

s.t.  Eqs. (2.11)-(2.16)
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contain local variables. The constraints in Eqs. (2.17)-(2.19) are local constraints handled 

by each building agent. 

2.5.2 Solution Representation and Population Initialization 

Real code GA is used to encode the continuous variables and binary code for the 

binary variables. Researchers have demonstrated that utilizing the building thermal mass 

(pre-cooling building), and shifting the peaking load by using a storage system can 

significantly reduce the energy cost (Braun, 2007; Drees & Braun, 1996; Sun et al., 

2006). In this chapter, the set-point temperature ,

m

sp kT  for building m at building operation 

mode k is initialized as follows: 

 

 

, , ,

,

, , ,

2  is prepeak period

otherwise

m L m U m L

sp k sp k sp k
m

sp k
m L m U m L

sp k sp k sp k

T T T r k
T

T T T r

   
 

  

 (2.22) 

where the uniform random number  0,1r  ; ,

m L

sp kT and ,

m U

sp kT are 74°F and 81°F in this 

chapter. 

The state of the ice storage system Sis,k at peak building operation mode k is 

initialized as follows: 

 , ,2 if 0.8;  otherwise 0is k is kS r S    (2.23) 

At off-peak building operation mode k, the state of the ice storage system is 

, , ,2 if 0.2; 1 if 0.2< 0.7;otherwise 0is k is k is kS r S r S      (2.24) 

Partial population initialization strategy (Figure 4) is used to balance the 

exploration and exploitation search capability. At each iteration g, the n worst solutions in 

the population are replaced with new solutions where n is computed as 

    2.6 2exp 1 Pn round g G N     (2.25) 

where round(.) rounds the element to the nearest integer; G is the maximum iterations of 

MA; NP is the population size. 
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The initial population is generated from the feasible solutions after building 

agents check the feasibility of the tentative solutions. 

2.5.3 Fitness Function and Parents Selection 

Different weights are assigned for each solution in the population to realize 

various search directions (Arroyo & Armentano, 2005). The weight combination is 

randomly generated as 

  1       1, ,m m Mw r r r m M     (2.26) 

where the uniform random number  0,1mr  . 

 NP weight combinations will be generated using Eq. (2.26). For each weight 

combination, the solution from the population with best value for the fitness function is 

selected which is defined as 

  
1

X ,Y
M

m m mm
w f

  (2.27) 

2.5.4 Crossover and Mutation 

The 3-points crossover operator is applied which chooses 3 cut points randomly 

for the binary variables. Real-parameter crossover operators (Lozano et al., 2004), which 

take advantage of numerical values, are employed for continuous variables. Given two 

chromosomes  1 1 1 1 1

1 1 1 1X , ,X ,Y ,Z , ,ZM MC 
 
and  2 2 2 2 2

2 1 1 1X , ,X ,Y ,Z , ,ZM MC  , 

the offspring are generated through the following crossover operator as, 

 1 1 2' 1C C C     and  2 2 1' 1C C C    , where  0,1  . 

Note the feasibility of the new generated offspring needs to be checked by each 

building agent. The mutation operation is triggered if a solution is not feasible where a 

new feasible solution is generated to replace the infeasible one. 
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2.5.5 Local Search (LS) 

The facilitator agent applies LS over coupled variables (Y, Z) to improve the 

solutions. The LS adopted in this chapter is the simulated annealing algorithm with 

adaptive neighborhood (Zhao, 2011). As a part of Memetic algorithms, the simulated 

annealing algorithm works as a local optimizer to find the local optimal solutions of the 

weighted system problem. 

First, each building agent evaluates the objective functions and constraints of its 

sub-problems wrt the coupled variables after the local variables are obtained by solving 

the sub-problem. For example, given the coupled variables Y=Y
* and Z=Z

*, the building 

agents solve the sub-problems independently and obtain the optimal values of the local 

variables. 

Let G(.) denote the value of the weighted objective function, S0 denote the best 

solution found so far, Si denote the current solution at iteration i, Sc denote the candidate 

solution, βi is the cooling constant at iteration i, I is the maximum number of iterations of 

the simulated annealing; then the simulated annealing algorithm in the MA based 

decision framework is as follows: 

Step 1. Facilitator agent sets i=1, βi=0.95, and Si=S0 

Step 2. A candidate solution Sc is generated according to the following steps. 

Step 2.1. The state of the ice storage system is the most critical factor impacting 

the weighted system objective value. So here a uniform random number  0,1r 
 
is 

employed to control the convergence speed of the state of the ice storage system. The 

state of the ice storage system will be the same as the state in the best solution S0 when 

 
5

1
0.1

i I
r


 . Otherwise the state of ice storage system will be generated by Eqs. (2.23)-

(2.24). 

Step 2.2. The set-point temperature for building m at building operation mode k 
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Step 2.3. The percentage of energy from the ice storage system to each building 

is generated as: 

 

 

, ,1
,1
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 (2.29) 

where wm is the weight for building m in the weighted system objective; and ,

m

p kR  is the 

average power grid purchase price for the building m at building operation mode k. 

The following function is adopted from (Zhao, 2011): 

     
2

1
, 1

i I
i y y 


     (2.30) 

where ρ is a uniform random number from (0, 1). 

Step 2.4. The artificial coupled variables Z are updated only when at least one of 

the constraints (2.11.1) and (2.11.2) is violated. 

Step 3. Facilitator agent checks the feasibility for the system constraints (2.11)-

(2.16). Each building agent checks the feasibility of constraints (2.17)-(2.19), (2.11.1) or 

(2.11.2), and returns its objective value and constraint feasibility information to the 

facilitator agent. 

Step 4. If G(Sc)<G(S0), then set S0=Sc. If G(Sc)<G(Si), then a move is made, 

setting Si+1=Sc. If G(Sc)≥ G(Si), then a move is made to Sc with probability 

        , expi c i c iP S S G S G S    (2.31) 

If Sc is rejected then Si+1=Si. 
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Step 5. i is set to i+1, βi is set to 0.95βi-1. Go to Step 2 until a stopping criterion is 

met. 

2.6 Experimental Analysis 

The MA based framework is applied to study a simple building cluster (two 

buildings) located in the Phoenix, Arizona area. Since Phoenix is known for hot summers 

when energy usage is critically important, July 21, 2009 is studied as an example day for 

the experiments with data from SRP (http://www.srpnet.com), a local electricity provider. 

2.6.1 Analysis on Pareto Frontier for Decentralized Decision 

The capacity of the power grid is assumed to be 15 kW. The heavy mass building 

applies the time-of-use (TOU) plan and the light mass building adopts the SRP EZ-3 

option plan. In the EZ-3 plan, 3pm-6pm are the peak-hours where the price is much 

higher than the off-peak hours. In the TOU plan, 1pm-8pm are the peak-hours where the 

price is also higher (less than that of EZ-3) than the off-peak hours. During the off-peak 

hours, the price of the EZ-3 plan is relatively lower than that of the TOU plan. The 

following parameters of MA are applied: (1) the MA population size NP is set to 40; (2) 

the maximal number of iteration G for MA is 30; (3) the maximal number of iterations I 

for the simulated annealing is 20. 

The Pareto frontier in the single building energy cost performance space obtained 

by the MA based bi-level decision framework is shown in Figure 6. Five Pareto solutions 

(A, B, C, D, and E) are highlighted for energy costs for the heavy mass building vs. the 

light mass building, where A is (4.97, 9.96), B is (6.38, 8.40), C is (5.19, 9.05), D is 

(6.16, 8.44), E is (5.55, 8.88). A centralized decision model where one optimization 

problem aiming to minimize the summed energy cost of the two buildings is formulated. 

Solution from the centralized model is highlighted as F in Figure 6 where F is (5.27, 

8.99). Solution G (5.13, 10.07) is obtained when the heavy mass building fully controls 
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the ice storage which means the heavy mass building consumes all the energy from ice 

storage and the two buildings cooperate with each other to minimize its own energy cost. 

Solution H (6.93, 8.89) is the case when the light mass building fully controls the ice 

storage. Obviously, solutions G and H are dominated by the Pareto frontier and it will be 

more cost effective if the two buildings share ice storage. Two non-cooperative game 

theoretical approaches (leader/follower) solutions I (5.05, 10.59) and J (6.77, 8.42) are 

also obtained. In the leader/follower case, the leader will make the decisions first with the 

assumption that the follower‘s behavior is rational (Lewis & Mistree, 1998), and then the 

follower will solve its problem subject to the leader‘s decision. Solution I is the case 

when the heavy mass building is the leader and the light mass building is the follower and 

solution J is when the light mass building is the leader and the heavy mass building is the 

follower. Comparing solutions I and J with the Pareto solutions A-E, it is observed that 

these two solutions are dominated by the Pareto solutions, and two buildings will have 

more cost savings when they cooperate with each other to make decisions. 

 

Figure 6   Pareto frontier on energy cost for each building 
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Figure 7   Overall energy cost of two buildings 

In addition, the overall costs of the two buildings for all the Pareto solutions and 

solutions F-J (from Figure 6) are illustrated in Figure 7. Pareto solution C achieves 

minimum total energy cost. This demonstrates that a Pareto solution can achieve the same 

cost effectiveness for the whole system as centralized decision given an appropriate 

weight assigned to each building. Solution H (light mass building fully controls the ice 

storage system) is the least cost effective since the light mass building cannot utilize the 

ice storage efficiently. 

From Figure 6, one may argue if the manager is keen on minimizing the energy 

cost of the heavy mass building (e.g., an apartment complex with more residents), 

Solution A is more preferable than C than E than D than B, and vice versa if the light 

mass building energy costs are to be minimized. Not surprisingly, Figure 7 indicates that 

a centralized decision F is more cost effective than some Pareto solutions for the whole 

system. The Pareto solutions outperform the solutions G-J on the total energy cost. If one 
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centralized optimal solution on the total cost metric, the Pareto analysis enables tradeoff 

analysis on other dimensions, for example, power grid dependency rate (PGDR) (see 

section 2.3.2 for definition). 

The Pareto frontier on the average PGDR metric based on all the Pareto solutions 

on the single building energy cost space in Figure 6 are demonstrated in Figure 8. Since 

the ultimate goal of the smart building cluster is to be resilient to disturbance and robust 

to the power grid, it is assumed less dependence on the power grid will be more 

preferable for the smart building managers. The Pareto frontier on the PGDR 

performance space is denoted as the line in Figure 8. Please note that only solutions C 

and E are Pareto solutions on the PGDR space, and they dominate other Pareto solutions 

on the single building energy cost space. Obviously, solution C (16.53, 23.29) indicates 

the heavy mass building is least dependent on the power grid; and the light mass building 

is most independent from the power grid for solution G (17.65, 22.87). 

 

Figure 8   PGDR for two buildings 
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B 6.38 8.40 17.55 23.34 14.78 

C 5.19 9.05 16.53 23.29 14.24 

D 6.16 8.44 18.29 23.14 14.60 

E 5.55 8.88 17.39 23.13 14.43 

F 5.27 8.99 16.72 23.12 14.26 

G 5.13 10.07 17.65 22.87 15.20 

H 6.93 8.89 17.05 25.26 15.82 

I 5.05 10.59 17.35 24.88 15.64 

J 6.77 8.42 18.37 23.60 15.19 

Recommended Decisions A B C G C 

 

Table 3 summarizes the values for the ten solutions A-J highlighted in Figure 6 

on the three metrics (single building cost; PGDR and total cost). The decisions based on 

these individual metrics are suggested in the last row. It is concluded the MA based bi-

level decision framework is capable of recommending decisions based on different 

performance metrics. 

2.6.2 Decentralized Decision under Different Pricing Mechanisms 

Next, this section studies the impact of different pricing mechanisms on the 

performance of the decentralized decisions, and explores how the decentralized decisions 

may assist building managers in choosing a pricing mechanism. Nowadays, it is common 

that electricity providers are implementing different pricing mechanisms for on-peak and 

off-peak hours. Taking SRP as an example, three pricing mechanisms have been 

implemented: basic plan, SRP EZ-3 plan and time-of-use (TOU) plan. In the basic plan, 

the price is constant. Details of EZ-3 and TOU plans are discussed in section 2.6.1. This 

pricing mechanism has been widely applied across the Phoenix metropolitan area and the 

detailed prices can be found at SRP website. Please note the building‘s decision should 

be highly dependent on its pricing mechanism. That is, during the off-peak period in the 

basic plan, a building should not utilize the storage system and the PV panel should 

power the building. However, during the off-peak period in the EZ-3 plan and the TOU 

plan cost savings should be realized using a storage system and the energy from the PV 

panel being sold back to the grid. 
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Figure 9   Two buildings use the same pricing mechanism 

Different Pareto frontiers when the two buildings use the same pricing 

mechanism are explored in Figure 9. ―Basic vs. Basic‖ in Figure 9 means that both the 

HM building and LM building use the basic plan. It is observed that the EZ-3 plan is the 

least effective, and it is dominated by the basic plan, and the basic plan is dominated by 

the TOU plan. This may be due to the fact that three operation modes are adopted (0am-

1pm, 1pm-8pm and 8pm-0am) in this chapter. Given the peak building operation mode is 

from 1pm to 8pm which is 2 hours earlier than the peak price hours in the EZ-3 plan 

(3pm-6pm), the inefficient usage of the storage system under the EZ-3 plan makes the 

performance unfavorable. Since the pricing plans are set by the energy provider (e.g., 

SRP), one solution is to investigate more building operation modes (e.g., 24 modes on the 

hourly basis). The challenges though lie in the increased complexity of the decision 

model. This motivates me to improve the computational performance of the decentralized 

decision framework to ensure the model is able to generate decisions within the shortened 

time frame in the following chapters. 
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Figure 10   Two buildings use different pricing mechanisms 

The case where the two buildings use different pricing mechanisms is 

demonstrated in Figure 10. ―Basic vs. EZ-3‖ in Figure 10 means HM building uses the 

basic plan and LM building uses the EZ-3 plan, the horizontal and vertical axis represents 

daily energy cost of the HM building and LM building respectively. ―TOU vs. TOU‖ is 

also presented in Figure 10 and it dominates all the other pricing mechanism 

combinations. As in Figure 9, Figure 10 also indicates that the EZ-3 plan is not preferred 

by the two buildings, and the TOU plan is the most preferred by the two buildings. Under 

the TOU plan, the two buildings can utilize the building thermal mass (pre-cooling 

building), and storage system to reduce the energy cost more effectively. In addition, it is 

observed from the experiments that the relative cooling consumption of the HM building 

to the LM building during the on-peak period (1pm-8pm) is much smaller than the pre-

peak period (0am-1pm) which demonstrates that the HM building can shift more cooling 

consumption from the on-peak period to the pre-peak period by using the precooling 

strategy (Zhou et al., 2005). The results from this experiment may help the decision 

maker choose an appropriate pricing mechanism for different buildings (heavy mass vs. 

light mass). In addition, the results indicate the EZ-3 plan is not cost effective from a 

building perspective which may be a limitation of fewer building operation modes (K=3). 
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Therefore, it may be necessary to develop pricing mechanisms with more building 

operation modes which will be explored in the following chapters. 

2.6.3 Decentralized Decision under Different Power Grid Capacities 

In the first set of experiments, the energy from the power grid is assumed to be at 

an unlimited level (15 kW). However, in reality, such an assumption does not always 

hold. Therefore, the effect of three different power grid capacities on the performance of 

the decentralized decisions is further investigated. It is assumed the power capacity for 

the higher level is 12 kW, 10 kW for the medium level and 8 kW for the lower level. The 

three Pareto frontiers for these three capacities are plotted in Figure 11. 

 

Figure 11   Pareto frontiers under four different power grid capacities 
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charged under the lower level capacity. It is not surprising that Pareto solutions from the 

tighter power grid capacity are dominated by those with more capacity. Therefore, my 

immediate next step is to explore the Pareto solutions with three performance metrics 

(single building cost, PGDR, overall cost) for a tighter power grid capacity where 

tradeoff analysis is critical. 

2.7 Conclusions 

Energy usage has attracted national and even international attentions lately. Yet 

academic research and industry practices have focused on either improving the efficiency 

of one sub system of a building or one single building. This chapter takes a systematic 

approach with the hypothesis being a group of buildings jointly sharing energy resources 

locally will be both cost effective and resilient to a power disturbance. To test the 

hypothesis, a hybrid model for building systems which consists of energy consumption, 

storage and generation subsystems is developed. Based on this model, decentralized 

decisions on energy usage for a cluster of buildings are explored. To accomplish this, a 

bi-level decision framework based on MA is developed and different Pareto frontiers are 

generated. The derived Pareto frontier can assist building managers to: 1) make decisions 

on different metrics (e.g. single building cost; PGDR; total cost; etc.); 2) choose pricing 

mechanisms effectively; and 3) increase smart buildings‘ disaster resilience capability. 

With the development of new energy technology, a building cluster concept and 

decentralized energy operation decisions will attract more interest. This chapter makes 

the first attempt to address some important issues related to the research. The research 

outcomes could gain the insights for developing a building management system aiming to 

reduce energy costs and improve building energy efficiency. 

While promising, the bi-level decision framework based on MA is 

computationally expensive due to the number of sub systems being modeled and the large 
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number of decision variables. This may prohibit its application to real time operation 

decisions which are usually made on an hourly (or even less) basis. In the following 

chapters, the particle swarm optimization (PSO) algorithm which is capable of deriving 

good results with very low computational cost (Reyes-Sierra & Coello Coello, 2006) will 

be employed to improve the performance of the decentralized decision framework. With 

the improved performance, the building operation modes could be refined to make it 

capable of hourly decisions, and improve the performance for any pricing mechanisms. In 

addition, uncertainties can be introduced into the energy systems and an adaptive 

decentralized optimization algorithm under uncertainty should be investigated to 

guarantee buildings can respond to this dynamic environment. 
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Chapter 3 

AN INTELLIGENT AUGMENTATION OF PARTICLE SWARM OPTIMIZATION 

WITH MULTIPLE ADAPTIVE METHODS 

Over the last two decades, the newly developed optimization technique - Particle 

Swarm Optimization (PSO) has attracted great attention. Two common criticisms exist. 

First, most existing PSOs are designed for a specific search space thus an algorithm 

performing well on a diverse set of problems is lacking. Secondly, PSO suffers premature 

convergence. To address the first issue, the PSO is augmented via the fusion of multiple 

search methods. An intelligent selection mechanism is developed based on an 

effectiveness index to trigger appropriate search methods. In this chapter, two search 

techniques are studied: a non-uniform mutation-based method and an adaptive sub-

gradient method. The augmented PSO is further improved using adaptive Cauchy 

mutation to prevent premature convergence. As a result, an augmented PSO with multiple 

adaptive methods (PSO-MAM) is developed. The performance of PSO-MAM is tested on 

43 functions (uni-modal, multi-modal, non-separable, shifted, rotated, noisy and mis-

scaled functions). The results are compared in terms of solution quality and convergence 

speed with 10 published PSO methods. The experimental results demonstrate PSO-MAM 

outperforms the comparison algorithms on 36 out of 43 functions. The conclusion is, 

while promising, there is still room for improving PSO-MAM on complex multi-modal 

functions (e.g., rotated multi-modal functions). 

3.1 Introduction 

Particle Swarm Optimization (PSO), which was developed by Kennedy and 

Eberhart in 1995 (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995), is a swarm 

intelligence which mimics a flock of birds that communicate together as they fly. The 

process in PSO involves both social interaction and intelligence so that birds learn from 
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their own experience (local search) and from experiences of others around them (global 

search) (Kennedy & Eberhart, 2001). Although PSO was initially employed for balancing 

weights in neural networks (Kennedy & Eberhart, 1995), it soon became a popular global 

optimizer, mainly for problems in which the decision variables are real numbers 

(Kennedy & Eberhart, 2001). 

Like most population-based algorithms, a pool of individuals which is termed a 

swarm in PSO is employed to search on the solution space. Each individual in the swarm 

is called a particle which moves on the search space directed by three components: 1) its 

previous velocity; 2) its best position (pBest) found so far; 3) the best position (gBest) 

found so far from its neighbors where the neighborhood is defined by the topology. Some 

common topologies include global, local, star network and tree network (Kennedy & 

Mendes, 2002). In this chapter, the global topology is studied which means gBest is the 

best position found so far among all the particles. Research on PSO algorithm 

development can be classified in two general categories. One focuses on the velocity 

update formulation for each particle in order to accelerate the convergence speed or 

maintain diversity of the swarm. For example, PSO with inertia weight (PSO-w) (Shi & 

Eberhart, 1998), PSO with constriction coefficient (PSO-cf) (Clerc & Kennedy, 2002), 

unified particle swarm optimizer (UPSO) (Parsopoulos & Vrahatis, 2004), and dynamic 

velocity-based PSO (PSO-c3dyn) (Garcia-Villoria & Pastor, 2009), just to name a few. 

The second category of PSO research is to investigate different learning strategies on 

exemplar (pBest and gBest) selection for the particle to quickly converge to near-

optimum (if not optimum) solutions. Some examples are fully informed particle swarm 

(FIPS) (Mendes et al., 2004), fitness-distance-ratio-based PSO (FDR-PSO) (Peram et al., 

2003), cooperative PSO (CPSO-H) (van den Bergh & Engelbrecht, 2004), dynamic 

multi-swarm PSO (DMS-PSO) (Liang & Suganthan, 2005), comprehensive learning PSO 
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(CLPSO) (Liang et al., 2006), generalized opposition-based learning PSO (GOPSO) 

(Wang et al., 2011), self-adaptive learning-based PSO (SLPSO) (Wang et al., 2010), 

example-based learning PSO (ELPSO) (Huang et al., 2010), and orthogonal learning PSO 

(OLPSO) (Zhan et al., 2010). Please note the methods reviewed above concentrate on 

PSO techniques only. Some recent research indicates that the performance of PSO (e.g., 

convergence rate, solution quality) could be much improved via a model fusion concept, 

that is, integrating PSO with other search techniques, such as 1) evolutionary operators: 

selection (Angeline, 1998), crossover (Chen et al., 2007), mutation (Andrews, 2006; 

Higashi & Iba, 2003; Thangaraj et al., 2009), etc.; 2) evolutionary algorithms: genetic 

algorithm (GA) (Kao & Zahara, 2008), Memetic algorithm (MA) (Petalas et al., 2007), 

cellular automata (CA) (Shi et al., 2010), etc.; 3) traditional optimization techniques: 

quasi-Newton sequential quadratic programming (SQP) (Plevris & Papadrakakis, 2010), 

Nelder-Mead (NM) simplex search method (Fan & Zahara, 2007), discrete Lagrange 

multipliers method (Mohammad Nezhad & Mahlooji, 2011). 

The large amount of emerging literature implies that PSO has increasingly gained 

popularity. This is supported by extensive experimental studies (Elbeltagi et al., 2005; 

Hassan et al., 2005; Kennedy & Spears, 1998) which have demonstrated that PSO may 

outperform other population-based evolutionary algorithms including genetic algorithms 

(GA), Memetic algorithms (MA), differential evolution (DE), ant-colony optimization 

(ACO) and shuffled frog leaping (SFL) in terms of solution quality and computational 

efficiency on some optimization problems. While promising, it is noted most existing 

PSO algorithms are designed for a specific search space (e.g. multi-modal). For example, 

the comprehensive learning strategy implemented in CLPSO (Liang et al., 2006) achieves 

high-quality performance on complex multi-modal functions due to its effectiveness in 

avoiding local optima while its convergence rate on uni-modal functions is 
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unsatisfactory. To my knowledge, there currently lacks a generalized PSO algorithm that 

performs well across diverse search spaces with different characteristics, such as uni-

modal, multi-modal, non-separable, shifted, rotated, noisy, and mis-scaled. Secondly, 

extensive researches have investigated ways to increase the diversity of the swarm to 

eliminate premature convergence (Andrews, 2006; Angeline, 1998; Chen et al., 2007; 

Garcia-Villoria & Pastor, 2009; Higashi & Iba, 2003; Liang et al., 2006; Thangaraj et al., 

2009; van den Bergh & Engelbrecht, 2004).  

This chapter aims to develop a generalized PSO algorithm that is efficient for a 

diverse set of optimization problems. First an intelligent selection approach is developed 

to identify the appropriate search method to be used based on the quantitative measure of 

its performance. Two search techniques are studied: a non-uniform mutation-based 

method (Michalewicz, 1996) and an extension of a sub-gradient method (Boyd, 2010). 

Next, an extended Cauchy mutation operator (Andrews, 2006) is employed to maintain 

the diversity of the swarm to prevent premature convergence. As a result, a novel PSO 

termed augmented PSO with multiple adaptive methods (PSO-MAM) is developed. 

Extensive comparison experiments are conducted to demonstrate the efficacy of PSO-

MAM.   

This chapter is organized as follows: several existing PSO algorithms are briefly 

reviewed in section 3.2; followed by the detailed explanation on the PSO-MAM in 

section 3.3; the experimental results in section 3.4 demonstrate the effectiveness of the 

PSO-MAM algorithm. Finally, conclusions are drawn in section 3.5. 

3.2 Literature Review 

In the PSO with inertia weight, the velocity and position for particle p at iteration 

i are updated as (Shi & Eberhart, 1998), 

    1

1 1, 2 2,

i i i i i i i i

p p p p p p g pw c r c r       v v p x p x  (3.1) 
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 1 1i i i

p p p

  x x v  (3.2) 

where D-dimensional vector i

pv  is the velocity of the pth particle (  max max,i

p   v V V ), 

Vmax is used to constrain the velocity for each particle and is usually set between 0.1 and 

1.0 times the search range of the solution space (Banks et al., 2007); D-dimensional 

vector i

px  is the position of the pth particle; i

pp  is the best position found so far by the pth 

particle; i

gp  is the best position found so far by the swarm; 1,

i

pr  and 2,

i

pr  represent two 

independent random numbers uniformly distributed on [0, 1]; c1 is the cognitive learning 

factor which represents the attraction that a particle has toward its own success i

pp ; c2 is 

the social learning factor which represents the attraction that a particle has toward the 

swarm‘s best position i

gp ; w is the inertia weight. Over the last decade, many different 

PSO algorithms have been developed to improve performance of the PSO and are 

reviewed in the following sections.   

3.2.1 PSO Variants 

The first area of research concentrates on the PSO formulation (Eqs. (3.1)-(3.2)). 

Shi and Eberhart (1998) add a positive parameter termed as inertia weight w to the 

original version of PSO (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) to 

balance the capability of local search and global search of PSO. Clerc and Kennedy 

(2002) introduce constriction coefficients to prevent explosion and guarantee 

convergence of particles. Different neighborhood topologies are studied in (Kennedy, 

1999), and it is found that a large neighborhood may perform better on simple problems 

and small neighborhoods may be preferred by complex problems. Parsopoulos and 

Vrahatis (2004) develop a unified particle swarm optimizer (UPSO) by combining the 

local version PSO with the global version PSO. Mendes et al. (2004) assume that the 

particle will be affected by all particles in its neighborhood and develop a fully informed 
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PSO (FIPSO). In FIPSO, particle‘s velocity is updated using information for all the 

particles instead of the best one of its neighbors. In the fitness-distance-ratio-based PSO 

(FDR-PSO) (Peram et al., 2003), a new velocity component based on one additional 

selected particle which has higher fitness values and is closer to the updated particle is 

added in the velocity update equation. CPSO-H (van den Bergh & Engelbrecht, 2004) 

uses a one-dimensional swarm to search on each dimension separately and then employs 

a global swarm to integrate these D one-dimensional swarms together. DMS-PSO (Liang 

& Suganthan, 2005) divides the swarm into several small swarms dynamically, 

exchanges information between these swarms and uses various strategies to regroup them 

frequently. 

Another area of focus is to explore the learning strategies for each particle. In 

CLPSO (Liang et al., 2006), a comprehensive learning strategy is developed to ensure 

that every particle‘s personal best position could be learned by other particles with 

probability. This learning strategy can keep the diversity of the swarm and eliminate 

premature convergence. Wang et al. (2011) investigate integrating a generalized 

opposition-based learning (GOBL) strategy with PSO where GOBL is employed to 

render diversified particles. Four PSO based search approaches are simultaneously 

utilized in SLPSO (Wang et al., 2010) with one being selected based on a probability 

derived from a self-adaptively improved probability model. ELPSO (Huang et al., 2010) 

may be one of the first few considering a set of (instead of one) global best particles. By 

doing so, particles can learn from different global best particles which helps avoid 

premature convergence. A first-in-first-out order strategy is employed to update the 

example set when it exceeds its capacity. The particles learn from the global best and 

personal best via orthogonal experimental design in OLPSO (Zhan et al., 2010). 
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In summary, most PSO variants reviewed above are uniquely designed for some 

specific complex problems (e.g. multi-modal functions (Huang et al., 2010; Liang et al., 

2006; Liang & Suganthan, 2005; Wang et al., 2011)). For improved generalization, 

researchers are exploring the integration of PSO with other methods which are reviewed 

in the following section. 

3.2.2 Hybrid PSO 

By employing Gaussian mutation into the PSO, Higashi and Iba (2003) observe 

that PSO with a mutation operator outperforms either Genetic Algorithm (GA) or PSO 

alone on uni-modal and multi-modal functions. Thangaraj et al. (2009) utilize Beta 

mutation to maintain the diversity of the swarm and improve the performance of PSO. 

Andrews (2006) studies the impact of different mutation operators on different test 

functions. Although a mutation operator can keep diversity of the swarm, selection of the 

mutation operator in PSO depends on the nature of the optimization problem. 

Integration of other evolutionary algorithms and optimization techniques with 

PSO is also of interest. For example, Kao and Zahara (2008) develop a method which 

combines GA with PSO for multi-modal function optimization, and demonstrate the 

superiority of the hybrid method in terms of solution quality and convergence rate by 

using 17 multi-modal test functions. The cellular automata (CA) is integrated with PSO 

in the velocity update to avoid premature convergence in (Shi et al., 2010). Integrating 

PSO with a gradient-based quasi-Newton sequential quadratic programming (SQP), 

Plevris and Papadrakakis (2010) demonstrate this hybrid method outperforms other 

existing optimization techniques for global structural optimization. Fan and Zahara 

(2007) explore the integration of PSO with the Nelder-Mead (NM) simplex search 

method for unconstrained optimization. A method based on PSO and discrete Lagrange 
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multipliers is implemented for nonlinear programming problems and is demonstrated to 

be very efficient and robust in (Mohammad Nezhad & Mahlooji, 2011). 

Integrating PSO with other techniques has greatly strengthened PSO‘s capability 

for solving both uni-modal and multi-modal functions. Unfortunately, the performance on 

some complex problems (e.g., rotated, noisy, mis-scaled) is unsatisfactory (Fan & 

Zahara, 2007; Kao & Zahara, 2008; Thangaraj et al., 2009). This is probably due to the 

low convergence speed and/or poor exploitation capability of the techniques integrated 

with PSO. Another issue is integrating PSO with other techniques tends to be difficult for 

implementation, and is more computationally expensive compared to the PSO variants 

reviewed in section 3.2.1. Therefore, several computational efficient techniques are 

studied in this chapter including search techniques for good exploration and exploitation, 

and mutation to avoid premature convergence. The integration of these complement 

techniques will result in an improved PSO.   

3.3 PSO-MAM Algorithm 

As discussed in previous sections, PSO has two criticisms: 1) PSO and most of 

its variants are not guaranteed to perform well on a diverse set of optimization problems; 

2) it suffers premature convergence. Due to the diversity of the search space for different 

optimization problems, the first issue commonly exists in most optimization algorithms. 

To address this issue, a model fusion approach is developed, that is, multiple search 

methods are applied and the one with good performance, measured by the effectiveness 

index (see section 3.3.1.3) will be triggered. In this chapter, for demonstration purpose, 

two single solution based (non-population based) search techniques are studied (detailed 

in section 3.3.1): a non-uniform mutation-based method which may be preferred by 

multi-modal functions due to its capability to explore the search space at the early stage 

(Michalewicz, 1996), and an adaptive sub-gradient method which may be effective for 
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uni-modal functions due to its capability to quickly find a local optimum and fine tune 

the search space (Boyd, 2010). To address the second issue, the use of an extended 

Cauchy mutation operator (see section 3.3.2) is developed to prevent premature 

convergence in the intelligent multiple search methods enhanced PSO. 

M1: PSO 

Module

Start

Randomly initialize position xp, velocity vp, 

Set c1=c2=1.4961 and w=0.7298;

Set i=1, pp=xp;

Calculate pg

Randomly select one search technique

i=i+1

p=1

Update the velocity and position of 

particle p

xp is feasible

Y

Evaluate xp

p=p+1
N
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Y

N

Update  pp, pg

Adopt S1 or not ?
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Module

i>I

End
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Y
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Figure 12   Flowchart of PSO-MAM (―S1‖: non-uniform mutation-based method; ―S2‖: 

sub-gradient method) 

As shown in Figure 12, the PSO-MAM has three modules: 1) PSO module: The 

swarm is randomly initialized with the PSO operator being employed to update the 

swarm. 2) Intelligent multiple search methods module: two search methods (non-uniform 
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mutation-based method and sub-gradient method) are implemented. At each iteration, an 

appropriate search method will be triggered using the roulette wheel selection (see 

section 3.3.1.3). 3) Mutation module: after the further improvement on the best particle, 

the mutation operator is used to update one randomly selected particle. The algorithm 

will stop if the stopping criterion (such as the maximum number of PSO iterations, 

predefined solution accuracy) is satisfied. 

3.3.1 Intelligent Multiple Search Methods 

Like most of the existing optimization algorithms, PSO is not guaranteed to be 

effective for different optimization problems. Therefore, an intelligent multiple search 

methods module is employed to assist PSO and improve its effectiveness for different 

problems. After each PSO iteration, the multi-method search is adopted to improve 

particle i

gx  in the current swarm where g is the index of i

gp  

    1, ,:  argmini i

p p P pg p f p p  (3.3) 

The solution i

gx  will be replaced if it is improved by the multiple search methods 

module. 

3.3.1.1 Non-uniform Mutation-based Method 

In the multi-method search module, one search technique studied is the non-

uniform mutation-based method (Michalewicz, 1996) which is good at searching the 

solution space uniformly (exploration) at the early stage and very locally (exploitation) at 

the later stage (Zhao, 2011). The non-uniform mutation-based method has been 

demonstrated to have the merits of large jumping (exploration) and fine-tuning 

(exploitation) (Zhao, 2011; Zhao et al., 2007). Due to its good balance between 

exploration and exploitation, non-uniform mutation-based method may be preferred by 

multi-modal functions.  
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In the non-uniform mutation-based method, the dth dimension of the solution i

gx  

is randomly picked to be mutated to generate a new solution as 
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where i is the current iteration index of PSO; Ud and Ld are the upper and lower bounds of 

,

i

g dx ; r is a uniform random number from (0, 1). The function Δ(i,y) is defined as 

     1
, 1

b
i I

i y y 


     (3.5) 

where ρ is a uniform random number from (0, 1); I is the maximum number of iterations 

for PSO; b is a system parameter determining the degree of dependency on iteration 

number (non-uniformity). In this chapter, b is set as 1. 

3.3.1.2 Adaptive Sub-gradient Method 

The sub-gradient method (Boyd, 2010) is extended with adaptive step size 

derived from the particle velocity information. The sub-gradient method for 

unconstrained problems is equivalent to the gradient based method when the objective 

function is differentiable. Like the gradient based method, the sub-gradient method could 

find a local optimum very fast and exhibit good exploitation capability (Plevris & 

Papadrakakis, 2010). Therefore, the sub-gradient method could strengthen PSO‘s search 

capability for uni-modal functions. In the sub-gradient method, a new solution 'i

gx  is 

generated as 

 'i i i

g g i g x x γ  (3.6) 

where i

gγ  is the sub-gradient of the objective function; 
i is the step size. The sub-

gradient of the objective function is evaluated as the gradient of the function if the 

gradient is available, otherwise the sub-gradient will be approximated by the 
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Simultaneous Perturbation Stochastic Approximation (SPSA) method (Spall, 1992). The 

solution generated by Eq. (3.6) may not be effective, such as, i

gγ may be too small at the 

early stage which could trap the solution in the local optimum too early (e.g., Griewank 

function, Salomon function), and i

gγ may be too large at the later stage which will make 

the exploitation speed of sub-gradient method slower than PSO‘s exploitation speed (e.g., 

Schwefel P2.22 function). Therefore, the velocity i

gv  of particle i

gx  is adopted to 

constrain the sub-gradient i

gγ  to avoid this ineffectiveness and balance the sub-gradient 

method‘s exploration and exploitation capability. In this chapter, instead of using a pre-

defined step size, the step size 
i  according to i

gv  is defined, that is, 

 
2 2

i i

i g g  v γ  (3.7) 

where 
2

x  is the Euclidean norm of vector x. 

3.3.1.3 Intelligent Selection Strategy 

To implement the intelligent selection, the effectiveness index i

s
 is introduced 

which measures the performance of the sth search method at iteration i:  

 '  search method is used at iteration 

0 otherwise

i i i th

g g gi

s

f f f s i


 
 



 (3.8) 

where i

gf  and 'i

gf are the fitness value of i

gp  before and after the multi-method search 

respectively (please note a minimization problem is studied in this chapter). An execution 

probability i

sprob  is assigned to each search method to determine the probability that the 

sth method will be adopted for the following iteration i+1. The execution probability 

i

sprob  is calculated as 
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where ns is the number of iterations that the sth method is adopted; I is the maximum 

number of PSO iterations; S is the number of search methods implemented in PSO-MAM 

which is 2 in this chapter; N is the minimal required execution number for each search 

method which is set as 50 in this chapter. It is observed from Eq. (3.9) that each search 

method has an equal probability to be selected at the early stage, and the effective search 

method tends to be preferred iteration by iteration. The effective search method is 

selected by roulette wheel selection based on the search method‘s execution probability.  

3.3.2 Cauchy Mutation 

As shown in Figure 12, for the cases that a new solution is introduced by the 

search methods, the mutation module is ignored. Otherwise, extended Cauchy mutation is 

employed to increase the diversity of the swarm. The Cauchy mutation operator is studied 

here due to its capability in generating a larger range of jump steps compared to other 

operators, e.g., Gaussian mutation. In the extended Cauchy mutation operator, a 

randomly selected dimension d of a randomly selected particle m will be mutated as 

  , ,'i i

m d m d ix x cauchy    (3.11) 

where 
i  is the scale parameter of Cauchy distribution. A notable issue of the constant 

scale parameter is that the mutation scale may be too large at the later stage which will 

impair the exploitation capability (Yao et al., 1999). Secondly, the mutation of the 

particle may not be consistent with the scale of the particle movement. Thus, in this 

chapter, 
i  should have two properties: 1) ensure the magnitude of the mutation is at the 

same scale as the particle movement; 2) enable larger moves at the earlier stage and 
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smaller moves as the process evolves. At iteration i, the velocity vector i

pv  of each 

particle p is obtained. Let 
2

i

pv  denotes the moving distance for particle p, then a P 

dimensional moving vector is generated as 1 2 2
, ,i i

P
 
 

v v . To satisfy the first property, 

 1 2 2
, ,i i

i P  
 

v v  (3.12) 

To satisfy the second property, 

   2 i I
k P i I


   (3.13) 

as i increases, k nonlinearly increases from 1 to P. 
i
 
is set as the kth largest component 

from vector 1 2 2
, ,i i

P
 
 

v v . As a result, at the current iteration i, the jump magnitude is 

at the same scale as the particles movement. Secondly, the use of k ensures the mutation 

jump is picked in accordance with i. 

3.4 Experimental Analysis 

To fully test the performance of PSO-MAM, 31 functions are collected from 

(Iwasaki et al., 2006; Liang et al., 2006; Salomon, 1996; Wang et al., 2010; Yao et al., 

1999) and 10 PSO methods from the literature are implemented for comprehensive 

comparisons. The general formulas of these 31 test functions are listed in Appendix A 

where    z M x o , o is employed to shift the global optimal solution of the original 

function from the center of the search range to a new location and the orthogonal rotated 

matrix (Salomon, 1996) M is used to increase the complexity of the function by changing 

separable functions to non-separable functions without altering the shape of the function. 

Vector o is 0 if the function is non-shifted and matrix M is a D-dimensional identity 

matrix if the function is non-rotated. The function name, search range, optimal solution 

and features are described in Table 4. For fair comparison, the complexity of the sub-
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gradient calculation is measured by the equivalent number of function evaluations for the 

sub-gradient calculation (SGFE) which is determined as the total number of floating point 

operations (FLOP) for the D-dimensional sub-gradient calculations divided by the 

floating point operations (FLOP) of the objective function evaluation. 

 
,1 g d

D

fd
SGFE FLOP FLOP

 
   (3.14) 

where FLOP is the output of ―flops‖ function in MATLAB®; 
,g d

FLOP  is the number of 

floating point operations for calculating the sub-gradient of the objective function f on 

xg,d; FLOPf is the number of floating point operations for calculating the objective 

function f. 

The 31 test functions in Table 4 are divided into six groups (see section 3.4.3): 1) 

6 uni-modal non-rotated functions (f1~f6); 2) 6 uni-modal rotated functions (f7~f12); 3) 11 

multi-modal non-rotated functions (f13~f23); 4) 4 multi-modal rotated functions (f24~f27); 

5) 2 noisy functions (f28~f29); 6) 2 mis-scaled functions (f30~f31). 

Table 4   Features of the 31 test functions (Note: ―Md‖ denotes ―modality‖; ―U‖ denotes 

―uni-modal‖; ―M‖ denotes ―multi-modal‖; ―Sp‖ denotes ―separable‖; ―Sf‖ denotes 

―shifted‖; ―Rt‖ denotes ―rotated‖; ―Ny‖ denotes ―noisy‖; ―Ms‖ denotes ―Mis-scaled‖) 

No

. 

Func. Name Search 

Range 

Opt. 

Solution z* 

Features 

Md Sp Sf Rt Ny Ms 

f1 Shifted Sphere [-100, 100]D 0
 U Y Y N N N 

f2 Shifted Schwefel P2.22 [-10, 10]D 0 U N Y N N N 

f3 Shifted Schwefel P1.2 [-100, 100]D 0 U N Y N N N 

f4 Shifted Schwefel P2.21 [-100, 100]D 0 U Y Y N N N 

f5 Shifted Rosenbrock [-100, 100]D 1 U N Y N N N 

f6 Shifted Step [-100, 100]D [-0.5, 0.5) U Y Y N N N 

f7 Shifted Rotated Sphere [-100, 100]D 0
 U N Y Y N N 

f8 Shifted Rotated Schwefel P2.21 [-100, 100]D 0 U N Y Y N N 

f9 Shifted Rotated Rosenbrock [-100, 100]D 1 U N Y Y N N 

f10 Shifted Rotated Tablet [-100, 100]D 0 U N Y Y N N 

f11 Shifted Rotated Ellipse [-100, 100]D 0 U N Y Y N N 

f12 Shifted Rotated Diff Power [-100, 100]D 0 U N Y Y N N 

f13 Schwefel [-500, 500]D 420.9687 M Y N N N N 

f14 2D minima [-5, 5]D -2.9035 M Y N N N N 

f15 Shifted Rastrigin [-5, 5]D 0 M Y Y N N N 

f16 Shifted Noncontinuous 

Rastrigin 

[-5, 5]D 0 M Y Y N N N 

f17 Shifted Ackley [-32, 32]D 0 M N Y N N N 

f18 Shifted Griewank [-600, 600]D 0 M N Y N N N 

f19 Weierstrass [-0.5, 0.5]D 0 M Y N N N N 
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f20 Shifted Salomon [-100, 100]D 0 M N Y N N N 

f21 Schwefel P2.13 [-π, π]D α M N N N N N 

f22 Shifted Penalized 1 [-50, 50]D -1 M N Y N N N 

f23 Shifted Penalized 2 [-50, 50]D 1 M N Y N N N 

f24 Rotated 2D minima [-5, 5]D -2.9035 M N N Y N N 

f25 Shifted Rotated Griewank [-600, 600]D 0 M N Y Y N N 

f26 Rotated Weierstrass [-0.5, 0.5]D 0 M N N Y N N 

f27 Shifted Rotated Salomon [-100, 100]D 0 M N Y Y N N 

f28 Shifted Noise Schwefel P1.2 [-100, 100]D 0 U N Y N Y N 

f29 Shifted Rotated Noise Quadric [-100, 100]D 0 U N Y Y Y N 

f30 Shifted Rastrigin10 [-5, 5]D 0 M Y Y N N Y 

f31 Shifted Rastrigin100 [-5, 5]D 0 M Y Y N N Y 

 

3.4.1 Parameter Settings for the Compared PSO Algorithms 

Experiments are conducted to compare the performance of 10 existing PSO 

algorithms in the literature with PSO-MAM. The compared PSO algorithms and their 

parameter settings are:  

1) PSO with inertia weight (PSO-w) (Shi & Eberhart, 1998): w=0.9-0.5i/I, 

c1=c2=2; 

2) PSO with constriction factor (PSO-cf) (Clerc & Kennedy, 2002): w=0.729, 

c1=c2=1.49445; 

3) Local version of PSO with inertia weight (PSO-w-local) (Kennedy & Mendes, 

2002): w=0.9-0.5i/I, c1=c2=2; 

4) Local version of PSO with constriction factor (PSO-cf-local) (Kennedy & 

Mendes, 2002): w=0.729, c1=c2=1.49445; 

5) Unified PSO (UPSO) (Parsopoulos & Vrahatis, 2004): w=0.729, 

c1=c2=1.49445; 

6) Weighted fully informed particle swarm (wFIPS) (Mendes et al., 2004): 

w=0.729, c1=c2=2; 

7) Fitness-Distance-Ratio based PSO (FDR-PSO) (Peram et al., 2003): w=0.9-

0.5i/I, f1=f2=1, f3=2; 

8) Cooperative PSO (CPSO-H) (van den Bergh & Engelbrecht, 2004): w=0.9-

0.5i/I, c1=c2=1.49; 
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9) Comprehensive learning PSO (CLPSO) (Liang et al., 2006): w=0.9-0.7i/I, 

c1=c2=1.49445; 

10) Dynamic multi-swarm PSO (DMS-PSO) (Liang & Suganthan, 2005): 

c1=c2=1.49445, w=0.729, n=6, m=5; 

11) PSO with multiple adaptive methods (PSO-MAM): c1=c2=1.4961, w=0.7298; 

where i is the current iteration index, and I is the maximum number of iteration. 

Additional parameter settings for PSO-w, PSO-cf, PSO-w-local, PSO-cf-local, UPSO, 

wFIPS, FDR-PSO, CPSO-H and CLPSO are the same as (Liang et al., 2006).  

3.4.2 Performance Metrics 

To evaluate the overall performance in regards to both the solution quality and 

computing cost, the metrics success performance (SP) and success rate (SR) are adopted 

from (Auger & Hansen, 2005). For the cases where SPs are not available, the fitness 

value (Auger & Hansen, 2005) is used. The mean value of the fitness value, mean value 

of SP, and SR over 30 independent runs are recorded. A run during which the algorithm 

achieves a solution at the fixed accuracy level within the maximum number of function 

evaluations is considered to be successful. In this example, the accuracy level is set to be 

10-5. The success rate (SR) is defined as  

 # of successful runs total # of runsSR   (3.15) 

The success performance (SP) is the number of function evaluations for the algorithm to 

reach the fixed accuracy level. The mean of SP is defined as (Auger & Hansen, 2005) 

      maxmean 1 mean # of func. eval. for successful runsSP SR SR FE    (3.16) 

where FEmax is the maximum number of function evaluations. 

3.4.3 Comparison Experiments for 30 Dimensional Functions 

This section attempts to test PSO-MAM‘s capability for a diverse set of 

optimization problems. The 31 test functions studied in this section have 30 dimensions, 
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the population size is set to be 30 and the maximum number of function evaluations is set 

to be 300,000. The statistical comparison of the PSO-MAM with the other ten PSO 

algorithms uses a two-tailed t-test with 58 (2x30-2) degrees of freedom at a 0.05 level of 

significance. The t-test of two compared algorithms is based on the success performance 

if at least one algorithm has 100% success rate. Otherwise the t-test is based on the 

fitness value. Values ―+‖, ―=‖ and ―-‖ in the column ―h‖ in Table 5~10 denote PSO-

MAM performs significantly better than, almost the same as, and significantly worse than 

the compared algorithm, respectively. 

3.4.3.1 Uni-modal Non-rotated Functions 

In the first set of experiments, 6 uni-modal and non-rotated functions are studied 

(see Table 4). The optimization results are summarized in Table 5. Please note column SP 

is blank when there is no successful run among the 30 runs (SR=0). 

Table 5   Optimization results for uni-modal non-rotated functions 

Algorithms Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h 

 Shifted Sphere (f1) Shifted Schwefel P2.22 (f2) Shifted Schwefel P1.2 (f3) 

PSO-w 2.21E-28 176162 100 + 9.55E-16 176346 100 + 2.47E-02  0 + 

PSO-cf 1.77E-27 14517 100 + 1.41E-13 28835 100 = 1.73E-22 103109 100 + 

PSO-w-local 2.02E-27 219943 100 + 5.63E-16 221545 100 + 2.80E+03  0 + 

PSO-cf-local 6.84E-30 24389 100 + 0.00E+00 31038 100 = 1.16E-09 198400 100 + 

UPSO 0.00E+00 15708 100 + 0.00E+00 20956 100 - 5.47E-11 183693 100 + 

wFIPS 5.21E-27 79319 100 + 2.46E-14 107719 100 + 1.91E+00  0 + 

FDR-PSO 1.26E-30 99527 100 + 0.00E+00 101755 100 + 2.55E-18 186429 100 + 

CPSO-H 2.42E-12 95478 100 + 2.71E-07 201064 100 + 4.96E+03  0 + 

CLPSO 0.00E+00 92887 100 + 0.00E+00 107976 100 + 2.17E+02  0 + 

DMS-PSO 7.15E-30 24082 100 + 0.00E+00 30186 100 = 1.10E+00  0 + 

PSO-MAM 0.00E+00 1823 100  0.00E+00 28252 100  3.58E-27 48344 100  

 Shifted Schwefel P2.21 (f4) Shifted Rosenbrock (f5) Shifted Step (f6) 

PSO-w 2.86E-01  0 + 4.97E+01  0 + 1.00E-01 186372 90 + 

PSO-cf 3.08E-10 167606 100 + 9.74E+00  0 + 1.56E+01  0 + 

PSO-w-local 1.18E+00  0 + 6.42E+01  0 + 0.00E+00 191646 100 + 

PSO-cf-local 2.16E-09 186927 100 + 1.38E+01  0 + 0.00E+00 12408 100 + 

UPSO 1.54E-05 571530 50 + 1.13E+01  0 + 0.00E+00 8943 100 + 

wFIPS 4.97E-05  0 + 2.85E+01  0 + 0.00E+00 33422 100 + 

FDR-PSO 4.11E-04  0 + 1.46E+00 8975940 3.33 + 3.00E-01 169571 76.7 + 

CPSO-H 7.98E-05  0 + 2.95E+01  0 + 0.00E+00 8709 100 + 

CLPSO 5.35E-01  0 + 3.71E+00  0 + 0.00E+00 55895 100 + 

DMS-PSO 9.53E-12 154354 100 + 2.80E+01  0 + 0.00E+00 11696 100 + 

PSO-MAM 5.77E-16 5953 100  5.33E-28 57994 100  0.00E+00 853 100  
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It is observed that PSO-MAM achieves the best success rate and convergence 

speed (success performance) for 5 out of 6 the uni-modal non-rotated functions. 

Compared to other PSO algorithms, PSO-MAM is the most reliable algorithm (shown 

from 100% success rates for six functions) and can achieve a satisfactory result quickly 

(shown from small values of success performance). Starting with the good solution 

derived by the PSO module, the intelligent multiple search methods module can exploit 

the solution space of the uni-modal function to fine-tune the solution quickly. The 

performance of PSO-MAM on shifted Schwefel P2.22 (f2) is comparable with UPSO. 

3.4.3.2 Uni-modal Rotated Functions 

In the second set of experiments, 6 uni-modal rotated functions are tested (see 

Table 4). The optimization results are summarized in Table 6. 

Table 6   Optimization results for uni-modal rotated functions 

Algorithms Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h 

 Shifted Rotated Sphere (f7) Shifted Rotated Schwefel P2.21 (f8) Shifted Rotated Rosenbrock (f9) 

PSO-w 1.96E-28 176633 100 + 4.72E-03  0 + 6.26E+02  0 + 

PSO-cf 6.40E-29 14618 100 + 5.87E-13 128094 100 + 4.94E+02  0 = 

PSO-w-local 2.46E-27 220891 100 + 1.45E-01  0 + 4.23E+02  0 + 

PSO-cf-local 5.05E-30 24307 100 + 4.28E-13 135275 100 + 8.94E+01  0 + 

UPSO 8.41E-31 15833 100 + 4.10E-08 196394 100 + 3.95E+01  0 + 

wFIPS 4.98E-27 79141 100 + 1.16E-06 262428 100 + 5.67E+01  0 + 

FDR-PSO 0.00E+00 99737 100 + 8.49E-07 237174 96.7 + 2.40E+01  0 + 

CPSO-H 3.05E-12 93277 100 + 5.52E+00  0 + 2.54E+02  0 = 

CLPSO 0.00E+00 93487 100 + 1.05E-01  0 + 2.99E+01  0 + 

DMS-PSO 7.15E-30 24111 100 + 1.03E-12 143619 100 + 4.35E+01  0 + 

PSO-MAM 0.00E+00 1903 100  0.00E+00 5816 100  3.99E-01 83480 90  

 Shifted Rotated Tablet (f10) Shifted Rotated Ellipse (f11) Shifted Rotated Diff Power (f12) 

PSO-w 4.47E+02  0 + 2.49E-04 2990170 10 + 7.78E-06 229806 96. 7 + 

PSO-cf 2.87E+01  0 + 3.39E-25 62506 100 + 2.18E-13 26680 100 + 

PSO-w-local 1.89E+03  0 + 4.87E+04  0 + 1.95E+06 864481 33.3 + 

PSO-cf-local 2.87E+02  0 + 2.43E-17 129467 100 + 4.92E-13 39895 100 + 

UPSO 1.06E+03  0 + 1.01E-21 108496 100 + 1.19E-13 30406 100 + 

wFIPS 1.21E+03  0 + 8.83E-03  0 + 8.44E-11 102229 100 + 

FDR-PSO 2.20E+02  0 + 1.22E-25 163049 100 + 3.91E-14 103330 100 + 

CPSO-H 1.52E+04  0 + 4.53E+03  0 + 1.13E+07 1043833 23. 3 + 

CLPSO 4.68E+02  0 + 1.08E+02  0 + 7.62E-09 173461 100 + 

DMS-PSO 3.93E+01  0 + 4.15E-10 212431 100 + 4.03E-12 45216 100 + 

PSO-MAM 0.00E+00 2777 100  2.62E-26 24077 100  8.56E-16 5014 100  

 

For uni-modal rotated functions, PSO-MAM is the most reliable algorithm 

(shown from large success rates) and can achieve a satisfactory result quickly (shown 
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from small mean values of success performance) especially on the shifted rotated 

Rosenbrock function (f9) and the shifted rotated Tablet function (f10). PSO-MAM 

outperforms other PSO algorithms on all 6 of these functions both in terms of 

convergence speed and solution quality. 

3.4.3.3 Multi-modal Non-rotated Functions 

In the third set of experiments, 11 multi-modal non-rotated functions are 

explored (see Table 4). The optimization results are summarized in Table 7.  

Table 7   Optimization results for multi-modal non-rotated functions 

Algorithms Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h 

 Schwefel (f13) 2D minima (f14) Shifted Rastrigin (f15) 

PSO-w 1.09E+03  0 + 4.71E+00  0 + 2.01E+01  0 + 

PSO-cf 2.92E+03  0 + 1.12E+01  0 + 7.26E+01  0 + 

PSO-w-local 5.16E+03  0 + 4.57E-10 200131 100 + 2.93E+01  0 + 

PSO-cf-local 2.18E+03  0 + 7.01E+00  0 + 4.23E+01  0 + 

UPSO 3.65E+03  0 + 8.07E+00  0 + 6.87E+01  0 + 

wFIPS 2.37E+01 220819 80 + 4.08E-01 269664 60 + 2.80E+01  0 + 

FDR-PSO 3.10E+03  0 + 1.06E+01  0 + 2.84E+01  0 + 

CPSO-H 2.37E+02 8783760 3.33 + 4.57E-10 37136 100 + 9.95E-02 117335 90 + 

CLPSO 1.70E-08 95772 100 + 4.57E-10 75820 100 + 0.00E+00 159419 100 + 

DMS-PSO 2.43E+03  0 + 3.61E+00 4228670 6.67 + 7.16E+00  0 + 

PSO-MAM 1.70E-08 67656 100  4.57E-10 17094 100  0.00E+00 62187 100  

 Shifted Noncontinuous Rastrigin (f16) Shifted Ackley (f17) Shifted Griewank (f18) 

PSO-w 7.57E+00 2968630 10 + 3.10E-14 192348 100 + 2.12E-02 1004104 26.7 + 

PSO-cf 4.08E+01  0 + 1.53E+00 1222345 20 + 2.44E-02 715564 30 + 

PSO-w-local 1.66E+01  0 + 2.34E-14 239791 100 + 5.91E-03 442035 56.7 + 

PSO-cf-local 6.07E+00 715855 36.7 + 6.39E-15 34510 100 + 8.19E-03 257348 56.7 + 

UPSO 7.09E+01  0 + 3.55E-15 22997 100 + 1.89E-03 85077 83.3 + 

wFIPS 4.16E+01  0 + 2.52E-14 117343 100 + 0.00E+00 98894 100 + 

FDR-PSO 7.63E+00  0 + 1.85E-14 109428 100 + 1.26E-02 625812 36.7 + 

CPSO-H 2.33E-01 158412 80 + 3.03E-07 199111 100 + 2.07E-02 621219 36.7 + 

CLPSO 0.00E+00 167351 100 + 8.05E-15 118336 100 + 0.00E+00 121255 100 + 

DMS-PSO 3.80E+00 377190 63. 3 + 3.55E-15 34502 100 + 0.00E+00 29281 100 + 

PSO-MAM 0.00E+00 58468 100  0.00E+00 20411 100  0.00E+00 3971 100  

 Weierstrass (f19) Shifted Salomon (f20) Schwefel P2.13 (f21) 

PSO-w 1.01E-01 308081 73.3 - 3.81E-01  0 + 8.65E+04  0 + 

PSO-cf 7.61E+00  0 + 5.90E-01  0 + 1.61E+05  0 + 

PSO-w-local 0.00E+00 238863 100 - 3.13E-01  0 + 7.02E+04  0 + 

PSO-cf-local 7.27E-01 874227 26.7 = 2.33E-01  0 + 6.26E+04  0 + 

UPSO 4.22E-01 635110 33.3 = 5.37E-01  0 + 1.09E+05  0 + 

wFIPS 0.00E+00 167853 100 - 2.00E-01  0 + 1.22E+04  0 = 

FDR-PSO 1.07E-01 950523 26.7 = 3.50E-01  0 + 1.38E+04  0 = 

CPSO-H 9.88E-05  0 + 1.37E+00  0 + 2.74E+04  0 + 

CLPSO 0.00E+00 142057 100 - 2.32E-01  0 + 1.01E+04  0 = 

DMS-PSO 0.00E+00 48357 100 - 2.00E-01  0 + 1.01E+04  0 = 

PSO-MAM 9.50E-05 553944 43.3  0.00E+00 11539 100  9.41E+03  0  

 Shifted Penalized 1 (f22) Shifted Penalized 2 (f23)  

PSO-w 2.07E-02 249245 80 + 2.20E-03 257914 80 +     

PSO-cf 3.74E-01 361848 46.7 + 2.76E-01 317006 50 +     

PSO-w-local 6.91E-03 246538 93.3 + 1.83E-03 301082 83.3 +     

PSO-cf-local 1.21E-01 224849 60 + 2.17E-03 84526 83.3 +     
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UPSO 2.76E-02 86255 83.3 + 7.32E-04 39932 93.3 =     

wFIPS 1.08E-29 61000 100 + 3.42E-28 69452 100 +     

FDR-PSO 3.46E-03 99463 96.7 + 1.10E-03 124916 90 +     

CPSO-H 1.98E-14 38407 100 + 1.61E-13 60603 100 +     

CLPSO 1.57E-32 83945 100 + 1.35E-32 89144 100 +     

DMS-PSO 1.57E-32 21791 100 + 5.56E-32 24968 100 +     

PSO-MAM 1.57E-32 15377 100  1.35E-32 13517 100      

 

PSO-MAM outperforms in terms of convergence speed for 10 out 11 multi-

modal non-rotated functions. The performance of PSO-MAM on Weierstrass (f19) is 

inferior to some algorithms (e.g., CLPSO, DMS-PSO, etc.). In addition, PSO-MAM 

achieves 100% success rate for all the test functions except functions Weierstrass (f19) 

and Schwefel P2.13 (f21) which have much more complex search spaces. It is argued that 

such search spaces require a specifically designed PSO for high-quality performance. 

Another observation from the experiment is that the step size
 
defined in Eq. (3.7) is 

effective for the two multi-modal functions shifted Griewank (f18) and shifted Salomon 

(f20) since the original sub-gradient method is very easy to trap in the local optimum at 

the early stage. By using velocity to adaptively change the sub-gradient, the adaptive sub-

gradient method is very effective in exploring the search space at early stages without 

damaging the sub-gradient‘s exploitation capability at later stages.
 

3.4.3.4 Multi-modal Rotated Functions 

In the fourth set of experiments, 4 multi-modal rotated functions are studied (see 

Table 4). The optimization results are recorded in Table 8. 

Table 8   Optimization results for multi-modal rotated functions 

Algorithms Fit. Value SP SR(%) h Fit. Value SP SR(%) h 

 Rotated 2D minima (f24) Shifted Rotated Griewank (f25) 

PSO-w 6.71E+00  0 = 1.32E-02 1012572 26.7 + 

PSO-cf 1.02E+01  0 + 1.86E-02 408508 43.3 + 

PSO-w-local 3.75E+00  0 - 7.71E-03 483820 53.3 + 

PSO-cf-local 9.19E+00  0 + 6.65E-03 327566 50 + 

UPSO 9.75E+00  0 + 3.38E-03 154359 70 + 

wFIPS 2.08E+00  0 - 0.00E+00 99049 100 + 

FDR-PSO 1.10E+01  0 + 1.34E-02 708387 33.3 + 

CPSO-H 6.81E+00  0 = 3.42E-02 810937 30 + 

CLPSO 1.89E+00  0 - 4.20E-10 143041 100 + 

DMS-PSO 6.20E+00  0 - 6.57E-04 58795 93.3 + 

PSO-MAM 7.75E+00  0  0.00E+00 3824 100  

 Rotated Weierstrass (f26) Shifted Rotated Salomon (f27) 
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PSO-w 7.33E+00  0 - 3.93E-01  0 + 

PSO-cf 1.25E+01  0 + 5.97E-01  0 + 

PSO-w-local 2.76E+00  0 - 3.01E-01  0 + 

PSO-cf-local 7.40E+00  0 - 2.53E-01  0 + 

UPSO 1.48E+01  0 + 5.47E-01  0 + 

wFIPS 6.31E-02 421625 60 - 1.97E-01  0 + 

FDR-PSO 2.44E+00  0 - 3.43E-01  0 + 

CPSO-H 1.24E+01  0 + 1.30E+00  0 + 

CLPSO 1.37E+00  0 - 2.24E-01  0 + 

DMS-PSO 1.17E-01  0 - 1.97E-01  0 + 

PSO-MAM 9.46E+00  0  0.00E+00 11822 100  

 

For the multi-modal rotated functions, PSO-MAM only outperforms on 2 out of 

4 functions (shifted rotated Griewank function (f25) and shifted rotated Salomon function 

(f27)) which is mainly due to the step size
 

defined in Eq. (3.7). For the other two 

functions, the rotated matrix increases the complexity of the function by changing 

separable functions to non-separable functions, which makes it difficult for the search 

methods implemented in PSO-MAM to search the rotated space instead of the original 

space. It is observed that the well performing algorithms on these functions are all 

designed for the specific search space thus the algorithms perform well on these functions 

and in general perform poorly on most of the other functions (see section 3.4.3.7).    

3.4.3.5 Noisy Functions 

In the fifth set of experiments, 2 noisy functions are tested (see Table 4). The 

optimization results are recorded in Table 9. PSO-MAM outperforms other algorithms on 

these two noisy functions in terms of solution quality. 

Table 9   Optimization results for noisy functions 

Algorithms Fit. Value SP SR(%) h Fit. Value SP SR(%) h 

 Shifted Noise Schwefel P1.2 (f28) Shifted Rotated Noise Quadric (f29) 

PSO-w 1.20E+03  0 + 9.24E-03  0 + 

PSO-cf 7.43E+02  0 + 3.90E-03  0 + 

PSO-w-local 1.38E+03  0 + 2.07E-02  0 + 

PSO-cf-local 1.37E+02  0 = 2.37E-03  0 + 

UPSO 2.69E+03  0 + 1.89E-02  0 + 

wFIPS 2.09E+02  0 + 2.68E-03  0 + 

FDR-PSO 2.52E+02  0 + 7.07E-03  0 + 

CPSO-H 1.76E+04  0 + 1.45E-02  0 + 

CLPSO 2.09E+03  0 + 4.15E-03  0 + 

DMS-PSO 2.34E+02  0 + 3.84E-03  0 + 

PSO-MAM 7.07E+01 1084755 26.7  5.05E-04  0  

 

3.4.3.6 Mis-scaled Functions 
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Two mis-scaled functions are studied in this set of experiments (see Table 4). 

The optimization results are recorded in Table 10. PSO-MAM outperforms on the 2 mis-

scaled Rastrigin functions in terms of convergence speed. 

Table 10   Optimization results for mis-scaled functions 

Algorithms Fit. Value SP SR(%) h Fit. Value SP SR(%) h 

 Shifted Rastrigin10 (f30) Shifted Rastrigin100 (f31) 

PSO-w 2.89E+01  0 + 2.58E+01  0 + 

PSO-cf 1.06E+02  0 + 1.46E+02  0 + 

PSO-w-local 3.92E+01  0 + 3.93E+01  0 + 

PSO-cf-local 5.47E+01  0 + 6.40E+01  0 + 

UPSO 8.91E+01  0 + 1.14E+02  0 + 

wFIPS 5.32E+01  0 + 5.27E+01  0 + 

FDR-PSO 3.61E+01  0 + 5.18E+01  0 + 

CPSO-H 1.33E-01 123673 96.7 + 2.32E-01 243602 76. 7 + 

CLPSO 0.00E+00 176403 100 + 0.00E+00 176792 100 + 

DMS-PSO 9.65E+00 8914706 3.33 + 1.37E+01  0 + 

PSO-MAM 0.00E+00 65171 100  2.43E-15 105302 100  

 

3.4.3.7 Conclusions on Comparison Experiments  

It is observed that PSO-MAM in general outperforms other algorithms on most 

of the test functions. To assess the overall performance, the dominance index is 

introduced to quantitatively measure the PSO algorithm. Considering any two PSO 

algorithms, A and B, algorithm A dominates algorithm B on a function when 1) the 

measure of SP for algorithm A is better than algorithm B when SP is available, or 2) the 

fitness value for algorithm A is better than algorithm B when SP is not available. For 

example, the dominance index for PSO-MAM on the Shifted Sphere (f1) function is 10 

since it dominates the other 10 algorithms in terms of SP. For each algorithm, the total 

number of dominated algorithms on each function is obtained and then the dominance 

rate is computed as the cumulative number of dominated algorithms on the 31 functions 

divided by the ideal case which has 310 (31x10) cumulative dominated algorithms. The 

dominance rate and the overall comparisons between PSO-MAM and other PSO 

algorithms using the t-test are recorded in Table 11. It is observed from Table 11, PSO-

MAM has the largest dominance rate which means PSO-MAM is the most generalized 
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algorithm for diverse functions with different properties. This is also observed from 

comparison results between PSO-MAM and other PSO algorithms using the t-test. 

Table 11   Dominance rate and overall comparisons between PSO-MAM and other 

algorithms 

               Algorithms 

Metrics 

PSO

-w 

PSO

-cf 

PSO-

w-local 

PSO-

cf-local 

UPS

O 

wFI

PS 

FDR-

PSO 

CPS

O-H 

CLP

SO 

DMS-

PSO 

PSO-

MAM 

Dominance Rate (%) 31.9 36.1 24.8 52.6 45.5 56.1 42.6 36.8 57.1 72.6 93.9 

 

t-test 

+ (Better) 28 29 28 27 28 27 28 29 27 26 - 

= (Same) 1 2 0 3 2 1 2 2 1 2 - 

- (Worse) 2 0 3 1 1 3 1 0 3 3 - 

 

3.4.4 Comparison Experiments for 100 Dimensional Functions 

This section attempts to test PSO-MAM‘s applicability for high-dimensional 

optimization problems. The 12 test functions studied in this section are 100 dimensions, 

the population size is set to be 30 and the maximum number of function evaluations is set 

to be 600,000. Values ―+‖, ―=‖ and ―-‖ in the column ―h‖ in Table 12~13 denote PSO-

MAM performs significantly better than, almost the same as, and significantly worse than 

the compared algorithm, respectively. 

3.4.4.1 Uni-modal Functions 

In the first set of experiments, 6 non-shifted and non-rotated uni-modal functions 

(f1~f6 in Table 4) are studied. The optimization results are summarized in Table 12. 

Table 12   Optimization results for 100-D uni-modal functions 

Algorithms Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h 

 Sphere (f1) Schwefel P2.22 (f2) Schwefel P1.2 (f3) 

PSO-w 1.03E-15 483521 100 + 2.89E-11 486954 100 + 2.61E+04  0 + 

PSO-cf 9.86E-39 127805 100 + 1.19E-07 300117 100 + 8.68E+01  0 + 

PSO-w-local 7.06E-08 564487 100 + 1.39E-07 559830 100 + 2.31E+04  0 + 

PSO-cf-local 4.80E-46 113273 100 + 2.37E-29 138214 100 - 8.51E+02  0 + 

UPSO 4.42E-104 54604 100 + 1.07E-60 72416 100 - 1.88E+02  0 + 

wFIPS 4.39E-05  0 + 1.37E-04  0 + 8.41E+04  0 + 

FDR-PSO 2.95E-43 294187 100 + 4.49E-21 311244 100 + 1.03E+02  0 + 

CPSO-H 7.51E-08 379618 100 + 7.81E-05  0 + 3.39E+04  0 + 

CLPSO 1.19E-24 265905 100 + 5.56E-16 301638 100 + 4.79E+04  0 + 

DMS-PSO 1.86E-45 113156 100 + 1.03E-31 125985 100 - 1.27E+04  0 + 

PSO-MAM 0.00E+00 1925 100  1.07E-21 205858 100  1.27E-01 383083 93.3  

 Schwefel P2.21 (f4) Rosenbrock (f5) Step (f6) 

PSO-w 5.35E+01  0 + 2.31E+02  0 + 2.38E+01  0 + 

PSO-cf 3.57E+01  0 + 7.82E+01  0 + 3.10E+03  0 + 

PSO-w-local 4.61E+01  0 + 3.93E+02  0 + 2.03E+00 4452555 13.3 + 

PSO-cf-local 3.83E+01  0 + 1.27E+02  0 + 0.00E+00 186739 100 + 
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UPSO 3.11E+01  0 + 1.06E+02  0 + 0.00E+00 70447 100 + 

wFIPS 1.77E+01  0 + 2.41E+02  0 + 0.00E+00 294083 100 + 

FDR-PSO 1.31E+01  0 + 8.82E+01 17962598 3.33 + 3.53E+01  0 + 

CPSO-H 3.81E+01  0 + 1.44E+02  0 + 0.00E+00 37430 100 + 

CLPSO 9.95E+00  0 + 8.04E+01  0 + 0.00E+00 170966 100 + 

DMS-PSO 6.86E+00  0 + 1.57E+02  0 + 0.00E+00 106491 100 + 

PSO-MAM 1.50E-164 6199 100  1.06E-29 130107 100  0.00E+00 880 100  

 

3.4.4.2 Multi-modal Functions 

In the second set of experiments, 6 non-shifted and non-rotated multi-modal 

functions (f13~f18 in Table 4) are studied. The optimization results are summarized in 

Table 13. 

Table 13   Optimization results for 100-D multi-modal functions 

Algorithms Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h Fit. Value SP SR(

%) 

h 

 Schwefel (f13) 2D minima (f14) Rastrigin (f15) 

PSO-w 5.35E+03  0 + 9.67E+00  0 + 2.71E+02  0 + 

PSO-cf 1.30E+04  0 + 1.20E+01  0 + 4.06E+02  0 + 

PSO-w-local 2.43E+04  0 + 2.80E+00  0 + 1.35E+02  0 + 

PSO-cf-local 1.17E+04  0 + 1.07E+01  0 + 3.42E+02  0 + 

UPSO 1.42E+04  0 + 1.09E+01  0 + 3.69E+02  0 + 

wFIPS 7.35E+03  0 + 9.52E-01  0 + 6.52E+02  0 + 

FDR-PSO 1.53E+04  0 + 1.14E+01  0 + 1.82E+02  0 + 

CPSO-H 7.26E+02  0 + 4.93E-10 121058 100 + 1.87E-08 334370 100 = 

CLPSO 8.69E+01 1036318 43.3 = 4.57E-10 192621 100 + 1.74E-12 474926 100 + 

DMS-PSO 1.57E+04  0 + 8.98E+00  0 + 1.09E+02  0 + 

PSO-MAM 1.30E+02 1079515 43.3  4.57E-10 83337 100  0.00E+00 343494 100  

 Noncontinuous Rastrigin (f16) Ackley (f17) Griewank (f18) 

PSO-w 3.14E+02  0 + 4.90E-02 577046 96.7 + 1.45E-02 1380485 40 + 

PSO-cf 2.00E+02  0 + 1.11E+01  0 + 3.45E-01 5547540 10 + 

PSO-w-local 1.35E+02  0 + 1.56E-03  0 + 3.45E-03 745122 76.7 + 

PSO-cf-local 1.32E+02  0 + 2.09E+00 8570790 6.67 + 3.01E-02 708736 50 + 

UPSO 4.36E+02  0 + 2.72E+00  0 + 2.51E-02 236835 76.7 + 

wFIPS 6.50E+02  0 + 9.36E-04  0 + 3.66E-05  0 + 

FDR-PSO 1.14E+02  0 + 8.55E-02 377887 93.3 + 1.44E-02 891283 50 + 

CPSO-H 1.90E-08 323361 100 = 3.94E-05  0 + 8.18E-03 707520 63.3 + 

CLPSO 2.67E-01 649019 80 + 2.14E-13 324157 100 + 0.00E+00 276899 100 + 

DMS-PSO 6.32E+01  0 + 1.40E-14 165089 100 + 5.11E-03 300265 76.7 + 

PSO-MAM 0.00E+00 308480 100  0.00E+00 71993 100  4.81E-17 5505 100  

 

3.4.4.3 Conclusions on Comparison Experiments  

It is observed that PSO-MAM in general outperforms other algorithms on most 

of the 100-dimensional test functions.  

Table 14   Overall comparisons between PSO-MAM and other algorithms on t-tests 

         Algorithms 
t-test Results 

PSO-
w 

PSO-
cf 

PSO-w-
local 

PSO-cf-
local 

UP
SO 

wFI
PS 

FDR-
PSO 

CPS
O-H 

CLP
SO 

DMS-
PSO 

+ (Better) 12 12 12 11 11 12 12 10 11 11 
= (Same) 0 0 0 0 0 0 0 2 1 0 
- (Worse) 0 0 0 1 1 0 0 0 0 1 
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From Table 14 which summarizes the overall comparisons between PSO-MAM 

and other PSO algorithms using the t-test, it demonstrates that PSO-MAM is significantly 

better than other algorithms on 9 functions, is comparable on 2 functions, and is inferior 

to PSO-cf-local, UPSO, and DMS-PSO on 1 function. 

3.5 Conclusions 

An augmented PSO algorithm with multiple adaptive search methods, PSO-

MAM, is developed in an attempt to overcome the following disadvantages of PSO: 1) 

PSO and most of its variants are not guaranteed to perform well on a diverse set of 

optimization problems; 2) it suffers premature convergence. By intelligently selecting the 

effective search method to enhance PSO, the intelligent multi-method search module is 

effective in improving solution quality for both uni-modal and multi-modal functions. 

The extended Cauchy mutation operator is efficient in guaranteeing diversity of the 

swarm. The experiment conducted in this chapter demonstrates that PSO-MAM is 

superior to the existing PSO algorithms in terms of solution quality and convergence 

speed for not only diverse problems with different properties but also high-dimensional 

problems. My contributions lay into three aspects: 1) develop a generalized PSO 

algorithm which performs well on a diverse set of optimization problems; 2) develop a 

generalized intelligent multiple search methods selection strategy which could be used to 

assess multiple search methods; 3) develop an adaptive sub-gradient method and Cauchy 

mutation operator based on a particle‘s velocity information. 

Comparing with CLPSO and DMS-PSO, the performance of PSO-MAM on 

functions which have very complex search spaces (e.g. rotated multi-modal functions) 

should be improved. In the future, PSO-MAM will be comprehensively compared with 

some competitive PSO algorithms (e.g., ELPSO (Huang et al., 2010), SLPSO (Wang et 

al., 2010)) on more test functions (e.g., mis-scaled, noisy). In addition, like other 
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evolutionary algorithms, the performance of PSO also depends on its parameter settings. 

Enhancing particle swarm optimization with an adaptive parameter tuning mechanism to 

improve its robustness is the second approach to improve particle swarm optimization‘s 

performance which will be studied in the next chapter. 
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Chapter 4 

A BI-LOCAL SEARCHES AND MUTATION BASED ADAPTIVE PARTICLE 

SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) has attracted much attention and has been 

applied to many scientific and engineering applications in the last decade. However, 

inherited from PSO, the performance of PSO heavily depends on its three parameters: the 

two learning factors and inertia weight. In this chapter, firstly, a bi-local searches and 

mutation based PSO algorithm (BLOSSM-PSO) is developed by using the multiple 

methods concept from the chapter 3, and then a parameter tuning mechanism is 

developed to adaptively change the three parameters to improve PSO‘s robustness. A 

new PSO algorithm, BLOSSM-Adaptive PSO (BLOSSM-APSO) is developed which is 

expected to be more robust than BLOSSM-PSO. The performance of BLOSSM-APSO is 

comprehensively evaluated on 31 functions and it is compared with ten published PSO 

methods and BLOSSM-PSO. The conclusions are (1) BLOSSM-APSO outperforms the 

ten PSO methods on 23 functions, has comparable performance for 4 functions, and 

underperforms for 4 functions on solution quality and/or convergence speed; (2) 

BLOSSM-APSO improves BLOSSM-PSO on solution quality and/or convergence speed 

for 29 out of 31 functions, and is more robust than BLOSSM-PSO. 

4.1 Introduction 

Inspired by the social cooperative and competitive behavior of bird flocking and 

fish schooling, Kennedy and Eberhart developed a new optimization technique called 

Particle Swarm Optimization (PSO) in 1995 (Eberhart & Kennedy, 1995; Kennedy & 

Eberhart, 1995). Similar to other evolutionary algorithms (EAs), PSO is a stochastic and 

population based meta-heuristic algorithm which is particularly effective on optimization 

problems that are partially irregular, noisy, stochastic and dynamic. The main differences 
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between PSO and other EAs are twofold. First, most EAs such as genetic algorithms and 

Memetic algorithms use explicit selection functions, PSO adopts leaders to guide the 

search of each particle in the swarm (Reyes-Sierra & Coello Coello, 2006). Secondly, 

most EAs employ the competitive strategy, that is, individuals compete with each other 

on a ‗survival of the fittest‘ basis for inheritance. In PSO, the particles cooperate with 

each other and explore the search space directed by a combination of the swarm‘s 

previous best (gBest) and their own previous best (pBest), with an additional stochastic 

element (Banks et al., 2007). The differences have allowed PSO to be successfully 

applied to various industry applications (Engelbrecht, 2006).  

In general, the performance of PSO is affected by swarm size (Poli et al., 2007) 

and swarm neighborhood topology (Janson & Middendorf, 2005; Kennedy, 1999; 

Kennedy & Mendes, 2002; Liang & Suganthan, 2005; Parsopoulos & Vrahatis, 2004; 

Reyes-Sierra & Coello Coello, 2006). For example, Liang and Suganthan (2005) 

dynamically divide the swarm into several small swarms which can interact with each 

other. A dynamic hierarchy is used to define the neighborhood topology in (Janson & 

Middendorf, 2005). The local and global topology structures are combined together in the 

unified particle swarm optimizer (UPSO) (Parsopoulos & Vrahatis, 2004). Recently, 

notable efforts are devoted to studying the impact of exemplar learning strategy (selection 

of gBest and pBest) on the performance of PSO (Huang et al., 2010; Liang et al., 2006; 

Mendes et al., 2004; Peram et al., 2003; van den Bergh & Engelbrecht, 2004; Wang et al., 

2011; Wang et al., 2010). In FIPS (Mendes et al., 2004), the particles are allowed to learn 

from all the particles instead of the best one in its neighborhood. A third particle other 

than the personal best and swarm best is selected to guide the movement of a particle 

based on the fitness-distance-ratio (Peram et al., 2003). Considering a multi-dimensional 

search space problem, CPSO-H first locates and searches the exemplar for each 
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dimension independently, the joint solution is evaluated for the multi-dimensional space 

(van den Bergh & Engelbrecht, 2004). In CLPSO (Liang et al., 2006), the particle learns 

from other particle‘s personal best and no swarm best is used. Two learning strategies - 

standard PSO learning and generalized opposition-based learning (GOBL) are 

alternatively applied based on a dynamically updated probability (Wang et al., 2011). The 

particles can self-adaptively learn from four PSO based search approaches 

simultaneously in SLPSO (Wang et al., 2010). A set of multiple swarm best particles are 

selected to guide the movement of particles in ELPSO (Huang et al., 2010). 

A common issue for PSO in general, is that its performance is heavily dependent 

on the three parameters: cognitive learning factor c1, social learning factor c2 and inertia 

weight w (Clerc & Kennedy, 2002; Fernandez Martınez & Garcıa Gonzalo, 2008; Jiang 

et al., 2007; Kadirkamanathan et al., 2006; Ozcan & Mohan, 1998; Ozcan & Mohan, 

1999; van den Bergh, 2002). Realizing a number of researchers has successfully studied 

different parameter tuning mechanisms to improve the performance (Chatterjee & Siarry, 

2006; Eberhart & Shi, 2001; Jiao et al., 2008; Juang et al., 2010; Ratnaweera et al., 2004; 

Shi & Eberhart, 1999; Shi & Eberhart, 2001; Shu & Li, 2009; Yamaguchi & Yasuda, 

2006; Zhan et al., 2009), here the multiple methods concept is adopted from the chapter 3 

to develop a bi-local searches and mutation based PSO algorithm (BLOSSM-PSO), and 

then develop an adaptive parameter tuning mechanism to enhance BLOSSM-PSO. The 

new algorithm is termed as BLOSSM-APSO. The basic idea is to pull one randomly 

selected particle close to the gBest to reduce the large jumps effect from the Cauchy 

mutation. Aiming to minimize the distance between the selected particle and the gBest, 

the parameter tuning problem is formulated as a convex optimization and the sub-

gradient method (Boyd, 2010) is employed to adaptively change the parameters (see 
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section 4.3.3). It is expected that BLOSSM-APSO is more robust than BLOSSM-PSO as 

it is less sensitive to the initial parameter settings. 

This chapter is organized as follows: several existing parameter tuning 

mechanisms are briefly reviewed in section 4.2; followed by the detailed explanation on 

the BLOSSM-APSO in section 4.3; the experimental results in section 4.4 demonstrate 

the effectiveness of the BLOSSM-APSO. Finally, conclusions are drawn in section 4.5. 

4.2 Literature Review 

In the PSO with inertia weight, the velocity and position for particle j at iteration 

i are updated as (Shi & Eberhart, 1998) 

    1

1 1, 2 2,

i i i i i i i i

j j j j j j g jw c r c r       v v p x p x  (4.1) 

 1 1i i i

j j j

  x x v  (4.2) 

where j denotes the jth particle in the swarm; D-dimensional vector i

jv  is the velocity of 

the jth particle (  max max,i

j   v v v ), vmax is used to constraint the velocity for each 

particle and is usually set between 0.1 and 1.0 times the search range of the solution 

space (Banks et al., 2007); D-dimensional vector i

jx  is the position of the jth particle; i

jp  

is the best position found so far by the jth particle; i

gp  is the best position found so far by 

the swarm; 1,

i

jr  and 2,

i

jr  represent two independent random numbers uniformly distributed 

on [0, 1]; c1 is the cognitive learning factor which represents the attraction that a particle 

has toward its own success i

jp ; c2 is the social learning factor which represents the 

attraction that a particle has toward its neighbors‘ best position i

gp ; w is the inertia 

weight. Cognitive learning factor c1 impacts the local search ability while the global 

search ability is influenced by the social learning factor c2. Large inertia weight w enables 
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particles to move at a high velocity and perform extensive exploration, and small inertia 

weight enhances the exploitation ability (Poli et al., 2007). 

Over the last decade, two different theoretical models (deterministic and 

stochastic) have been developed to study the impacts of PSO parameters on the 

performance of PSO. In the deterministic model, the stochastic components r1 and r2 in 

Eq. (4.1) are ignored. By using the deterministic model, Clerc and Kennedy (2002) prove 

that the particle will converge to a stable point 

    1 2 1 2j j gc c c c  x p p  (4.3) 

when c1+c2<4 for the PSO algorithm without inertia weight w. Different from (Clerc & 

Kennedy, 2002), van den Bergh (2002) studies the PSO with inertia weight and 

concludes that the particles will converge to the stable point in Eq. (4.3) when 

  1 20 1    and   2 1w w c c      (4.4) 

And the particles will become divergent if the conditions in Eq. (4.4) are not satisfied. 

Kadirkamanathan et al. (2006) employ the Lyapunov stability analysis method to 

study the stability of particles with stochastic components and conclude that the sufficient 

condition for stability of the particles is 

    
2

1 20 1    and   2 1 1w c c w w       (4.5) 

Due to the restriction of the Lyapunov function, this condition is conservative 

(Kadirkamanathan et al., 2006). Using stochastic process theory to analyze the particle 

trajectory of the stochastic model, Jiang et al. (2007) demonstrate that the expectation of 

particle position is guaranteed to converge to the stable point in Eq. (4.3) when 

  1 20 1    and     0 4 1w c c w       (4.6) 

The theoretical results for the two models provide general guidelines on 

parameter settings for PSO. The actual settings of the parameters however still rely on 
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empirical studies with respect to the optimization problem formulation. To reduce the 

sensitivity of PSO to its parameter settings, researches (Chatterjee & Siarry, 2006; 

Eberhart & Shi, 2001; Jiao et al., 2008; Juang et al., 2010; Ratnaweera et al., 2004; Shi & 

Eberhart, 1999; Shi & Eberhart, 2001; Shu & Li, 2009; Yamaguchi & Yasuda, 2006; 

Zhan et al., 2009) have also attempted to develop parameter tuning rules which can be 

classified into two categories: 1) simple rule based parameter tuning where linear, non-

linear functions or fuzzy rules are explored; 2) self-learning adaptive parameter tuning 

which considers the current evolutionary state in the parameter tuning. Each mechanism 

is reviewed in the following sections. 

4.2.1 Simple Rule based Parameter Tuning 

Shi and Eberhart (1999) show that the performance of PSO can be greatly 

improved by linearly decreasing the inertia weight as 

  max max minw w w w i I    (4.7) 

where wmax and wmin are usually fixed as 0.9 and 0.4; i is the current iteration number; and 

I is the maximum number of iterations. In addition, Jiao et al. (2008), Chatterjee and 

Siarry (2006) improve performance of PSO by tuning the inertia weight according to 

non-linear functions which are expressed as 

    0 0,    0,1 ,    1.001,1.005iw w u w u    (4.8) 

   min max min

n nw w w w I i I     (4.9) 

where n is the non-linear modulation index (Chatterjee & Siarry, 2006). A random 

function is implemented in (Eberhart & Shi, 2001) to tune the inertia weight as 

  0.5 0,1 2w random   (4.10) 
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A fuzzy rule based tuning mechanism is developed in (Shi & Eberhart, 2001) to modify 

the inertia weight. Ratnaweera et al. (2004) update the learning factors c1 and c2 using the 

same functions as Eq. (4.7). 

Although a simple rule based parameter tuning mechanism can improve 

performance of PSO for several problem instances, the performance on a broader 

spectrum of problems is unsatisfactory (Chatterjee & Siarry, 2006; Eberhart & Shi, 2001; 

Jiao et al., 2008; Ratnaweera et al., 2004; Shi & Eberhart, 1999; Shi & Eberhart, 2001). 

Another criticism as in (Chatterjee & Siarry, 2006; Jiao et al., 2008), is that additional 

parameters may be needed for this mechanism. 

4.2.2 Self-learning Adaptive Parameter Tuning 

Juang et al. (2010) develop an adaptive fuzzy PSO termed as AFPSO where the 

inertia weight is altered according to Eq. (4.7) and the two learning factors c1 and c2 are 

changed according to the three fuzzy rules: let df denote the difference between the best 

fitness for two consecutive iterations, c1 and c2 are changed as: 1) c1 is big and c2 is small 

when df is small; 2) c1 is medium and c2 is medium when df is medium; 3) c1 is small and 

c2 is big when df is big. Zhan et al. (2009) employ the evolutionary state estimation 

method to identify the evolutionary states of the swarm as exploration, exploitation, 

convergence and jumping out, and develop an adaptive parameter tuning method as: 1) 

increase c1 and decrease c2 at the exploration state; 2) increase slightly c1 and decrease 

slightly c2 at the exploitation state; 3) increase slightly c1 and increase slightly c2 at the 

convergence state; and 4) decrease c1 and increase c2 at the jumping out state. The inertia 

weight is modified as 

      2.61 1 1.5 0.4,0.9    0,1fw e f      (4.11) 
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where f is the evolutionary factor implemented in (Zhan et al., 2009). The adaptive 

particle swarm optimization is demonstrated to outperform other existing PSO algorithms 

for most problem instances.  

Please note the methods reviewed above (Juang et al., 2010; Zhan et al., 2009) 

provide the interval values with a fuzzy guideline (e.g., slightly increase, slightly 

decrease) for the changes. To explicitly quantify the parameter tunings, Yamaguchi and 

Yasuda (2006) assign c1 and c2 for each particle, and update c1 and c2 using the following 

equations 

  1

1, 1, 1 1,

i i i i i

j j j jc c cbest c     (4.12) 

  1

2, 2, 2 2,

i i i i i

j j j jc c cbest c     (4.13) 

where 1

icbest  and 2

icbest  are parameters for the global best particles at iteration i; i

j  is 

selected from two values 0 and 2/I. Shu and Li (2009) introduce a piecewise function 

F(.), called the adjustment function, to adaptively change parameters w, c1 and c2 as 

  1

1 2

i i

j jw w F w     (4.14) 

 1 1i i i

j g jf f    (4.15) 

where 1i

gf   and 1i

jf   are the fitness value for the best particle and particle j at iteration i-

1. Experiments though show that (Shu & Li, 2009; Yamaguchi & Yasuda, 2006) are 

effective on only a few instances (<4 functions). In this chapter, the parameters will be 

adaptively and explicitly tuned to improve PSO‘s performance for diverse functions. 

4.3 BLOSSM-APSO Algorithm 

Two common criticisms for PSO and its variants are: 1) PSO is not effective for 

high dimensional functions especially for multi-modal functions, and most improved 

PSOs are not guaranteed to perform well on functions with different properties; 2) it 
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suffers premature convergence. To address these issues, the multiple methods concept 

from the chapter 3 is adopted to develop a bi-local searches and mutation based PSO, 

termed (BLOSSM-PSO) (see sections 4.3.1 and 4.3.2). First, two local searches: a non-

uniform mutation based method (Michalewicz, 1996) which may be preferred by uni-

modal functions and a sub-gradient method (Boyd, 2010) which may be preferred by 

multi-modal functions are studied. Next, a Cauchy mutation operator is incorporated to 

prevent premature convergence. As discussed in (Clerc & Kennedy, 2002; Fernandez 

Martınez & Garcıa Gonzalo, 2008; Jiang et al., 2007; Kadirkamanathan et al., 2006; 

Ozcan & Mohan, 1998; Ozcan & Mohan, 1999; van den Bergh, 2002), PSO‘s 

performance is highly impacted by its three parameters: the cognitive learning factor c1, 

the social learning factor c2 and the inertia weight w. Therefore, an adaptive parameter 

tuning mechanism is developed to enhance the robustness and the performance of 

BLOSSM-PSO. The BLOSSM-APSO is shown in Figure 13 which has four modules: 1) 

PSO module: The swarm is randomly initialized with the PSO operator being employed 

to update the swarm. 2) Bi-Local searches module: two local search methods (non-

uniform mutation based method and sub-gradient method) are implemented. At each 

iteration, an appropriate local search method will be triggered based on the dynamic 

selection criteria. The initial local search method is the non-uniform mutation based 

method (ls_indicator=0) which may perform well at the early search in PSO. 3) Mutation 

module: after the local searches on the best particle, the mutation operator is used to 

update one randomly selected particle. 4) Parameter tuning module: the three parameters 

for one randomly selected particle will be changed by the adaptive parameter tuning 

mechanism (see section 4.3.3). The algorithm will stop if the stopping criterion (such as 

the maximum number of PSO iterations, predefined solution accuracy) is satisfied. 
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Figure 13   Flowchart of BLOSSM-APSO (―LS1‖: non-uniform mutation-based method; 

―LS2‖: sub-gradient method) 

4.3.1 Local Searches 

In the bi-local searches, let the current best solution i

gx  be 

   1argmini i

g j P jf x x  (4.16) 
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Two local search approaches which combine the non-uniform mutation based method 

(Michalewicz, 1996) and sub-gradient based method (Boyd, 2010) are studied. The non-

uniform mutation based method (Michalewicz, 1996) is good at searching the solution 

space uniformly (exploration) at the early stage and locally (exploitation) at the later 

stage (Zhao, 2011). The non-uniform mutation based method has been demonstrated to 

have the merits of large jumping (exploration) and fine-tuning (exploitation) (Zhao, 2011; 

Zhao et al., 2007). In addition, the non-uniform mutation based method does not require 

the problem instance to have analytical functions. The second local search method is the 

sub-gradient method (Boyd, 2010) which is an iterative method for solving convex 

minimization problems and is also applicable for non-convex problems. Like gradient 

based methods, the sub-gradient method exhibits good exploitation capability around the 

neighborhood of the local or global optimum (Plevris & Papadrakakis, 2010). The sub-

gradient method for unconstrained problems is equivalent to the gradient based method 

when the objective function is differentiable. 

In the non-uniform mutation based method, the dth dimension of the current best 

solution i

gx  is randomly picked to be mutated to generate a new solution as 
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where i is the current iteration number of PSO; Ud and Ld are the upper and lower bounds 

of ,

i

g dx ; r is a uniform random number from (0, 1). The function Δ(i,y) is defined as 

     1
, 1

i I
i y y 


     (4.18) 

where ρ is a uniform random number from (0, 1); I is the maximum number of iterations 

for PSO. In the sub-gradient method, a new solution 'i

gx  is generated as 
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 'i i i

g g i g x x g  (4.19) 

where i

gg  is the sub-gradient of the objective function; 0.61i i  is the step size used in 

this chapter. Solution 'i

gx
 
generated by Eq. (4.19) may be ineffective (infeasible or local 

exploitation) at the beginning of PSO iterations. Therefore, one additional solution ''i

gx  is 

generated by  

 
 

2
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i
g ggi i

g g i i
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U Lg

x x
g

 (4.20) 

if  2.8 2expr i I  , where Ug and Lg are the upper and lower bounds of i

gx ; r is a 

uniform random number from (0, 1); i is the current iteration number of PSO; I is the 

maximum number of iterations for PSO. 

The exploration ability of the non-uniform mutation based method benefits 

BLOSSM-APSO on multi-modal functions, but may slow the convergence speed on uni-

modal functions. The sub-gradient method is good at exploiting the search space, but 

tends to be trapped in the local optimum for some functions (e.g. Schwefel, 2D minima 

function). Therefore, a dynamic selection mechanism is introduced to balance the 

exploration and exploitation capability of BLOSSM-APSO. Let i

gf  be the fitness value 

for i

gp  at current iteration i, the fitness evolutionary state β and solution evolutionary 

state  are introduced which are defined as 

  1 1i i i i

g g gf f f      (4.21) 

   1 1

1, , , , ,mini i i i

d D g d g d g dx x x  

    (4.22) 

When the changes on either state are small for one local search method, the alternative 

local search method is triggered for the next iteration. 
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4.3.2 Cauchy Mutation 

To keep the diversity of the swarm, in hopes of accelerating the converging speed 

(non-premature), the Cauchy mutation operator is adopted which is demonstrated to be 

able to assist the particle by having a large jump out of its local optimum (Andrews, 

2006). At iteration i, a particle j is randomly picked to be mutated if 2

i   where the 

mutation threshold ε2=10-4. The dimension d which has a minimum value defined in Eq. 

(4.22) is mutated as 

    , ,' 0.1i i i

j d j d d dx x cauchy U L      (4.23) 

where Ud and Ld are the upper and lower bounds of ,

i

j dx ; and ηi is the mutation scale 

parameter which is defined as 
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 (4.24) 

4.3.3 Adaptive Tuning 

As discussed in (Yao et al., 1999), the large jumps from Cauchy mutation may be 

detrimental when the current search position is close to the neighborhood of the global 

optimum. In order to minimize this effect, this section attempts to pull some particles 

close to the best solution found so far (gBest) and minimizes the distance between these 

particles and gBest. Instead of using the same parameters for all particles, each particle is 

allowed to adjust its parameter. Therefore, different parameters may be adopted by 

different particles. In order to reduce the computational time spent on parameter tuning, 

at iteration i, the distance between one randomly selected particle i

jx  and the gBest i

gp  is 

minimized. Taking i

jw , 1,

i

jc  and 2,

i

jc  as decision variables, a convex optimization problem 

is formulated as: 
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It is intuitive that the three constraints in Eq. (4.25) satisfy the particle stability 

conditions expressed in Eq. (4.6). The sub-gradient method (Boyd, 2010) is employed to 

solve the convex optimization problem formulated in Eq. (4.25). Taking i

jw  as an 

example, it can updated as described in the following equation 

 
1 1 1

j

i i i i

j j j ww w g     (4.26) 

where 1i

j   and 
1

j

i

wg 
 are the step size and sub-gradient of the objective function in Eq. 

(4.25) at iteration i for particle j. Since the objective function in Eq. (4.25) is derivable, 

the derivative of 1i

distf   evaluated at 1i

jw   is used as 
1

j

i

wg 
. The optimal step size when the 

optimal value *

distf  of the convex objective function is known is Polyak‘s step size (Boyd, 

2010) which is computed as 

         1, 2,

2 2 2
1 1 * 1 1 1

j j j

i i i i i

j dist dist w c cf f g g g          (4.27) 

Since the optimal value *

distf  is always 0, the parameters w, c1 and c2 are updated using 

Eqs. (4.26), (4.28) and (4.29) 

 
1,

1 1 1

1, 1, j

i i i i

j j j cc c g     (4.28) 
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i i i i
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where 
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      (4.31) 
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2,

1 1 1 1

, , 2, , ,1
2

j

Di i i i i i

c j d g d j g d j dd
g x p r p x   


      (4.32) 

and ,

i

j dx  is the dth component of i

jx . 

4.4 Experimental Analysis 

Thirty-one test functions are collected from the literature (Iwasaki et al., 2006; 

Liang et al., 2006; Salomon, 1996; Wang et al., 2010; Yao et al., 1999). The general 

formulas of these 31 test functions are listed in Appendix A where    z M x o , o is 

employed to shift the global optimal solution of the original function from the center of 

the search range to a new location and the orthogonal rotated matrix (Salomon, 1996) M 

is used to increase the complexity of the function by changing separable functions to non-

separable functions without altering the shape of the function. Vector o is 0 if the 

function is non-shifted and matrix M is a D-dimensional identity matrix if the function is 

non-rotated. The function name, corresponding general formula, search range on the x-

space and the optimal solution z* on the z-space of each test function is listed in Table 

15. The global optimal objective values for these 31 test functions are 0. The equivalent 

number of function evaluations for sub-gradient calculation, SGFE, is determined as the 

total number of floating point operations (FLOP) for the D-dimensional sub-gradient 

calculations divided by the floating point operations (FLOP) of the objective function 

evaluation. 

  1 d

D

g fd
SGFE ceil FLOP FLOP


   (4.33) 

where ceil(.) rounds the element to the nearest integer towards infinity; FLOP is the 

output of the ―flops‖ function in MATLAB®. 

The 31 test functions in Table 15 are divided into six groups: 1) 6 uni-modal non-

rotated functions (scaled and non-noisy); 2) 6 uni-modal rotated functions (scaled and 

non-noisy); 3) 11 multi-modal non-rotated functions (scaled and non-noisy); 4) 4 multi-



  82 

modal rotated functions (scaled and non-noisy); 5) 2 noisy functions; 6) 2 mis-scaled 

functions. 

Table 15   Thirty-one benchmark functions 

Category No. Name Formula Search Range Optimal Solution z* 

 

Uni-modal 

Non-rotated 

Functions 

f1 Shifted Sphere FSphere [-100, 100]D 0 

f2 Shifted Schwefel P2.22 FSchwefel2.22 [-10, 10]D 0 
f3 Shifted Schwefel P1.2 FSchwefel1.2 [-100, 100]D 0 
f4 Shifted Schwefel P2.21 FSchwefel2.21 [-100, 100]D 0 
f5 Shifted Rosenbrock FRosenbrock [-100, 100]D 1 
f6 Shifted Step FStep [-100, 100]D [-0.5, 0.5) 

 

Uni-modal 

Rotated 

Functions 

f7 Shifted Rotated Sphere FSphere [-100, 100]D 0 

f8 Shifted Rotated Schwefel P2.21 FSchwefel2.21 [-100, 100]D 0 
f9 Shifted Rotated Rosenbrock FRosenbrock [-100, 100]D 1 
f10 Shifted Rotated Tablet FTablet [-100, 100]D 0 
f11 Shifted Rotated Ellipse FEllipse [-100, 100]D 0 
f12 Shifted Rotated Diff Power FDiffpower [-100, 100]D 0 

 

 

 

 

Multi-

modal Non-

rotated 

Functions 

f13 Schwefel FSchwefel [-500, 500]D 420.9687 
f14 2D minima F2Dminima [-5, 5]D -2.9035 
f15 Shifted Rastrigin FRastrigin [-5, 5]D 0 
f16 Shifted Noncontinuous Rastrigin FNoncRastrigin [-5, 5]D 0 
f17 Shifted Ackley FAckley [-32, 32]D 0 
f18 Shifted Griewank FGriewank [-600, 600]D 0 
f19 Weierstrass FWeierstrass [-0.5, 0.5]D 0 
f20 Shifted Salomon FSalomon [-100, 100]D 0 
f21 Schwefel P2.13 FSchwefel2.13 [-π, π]D α 
f22 Shifted Penalized 1 FPenalized1 [-50, 50]D -1 
f23 Shifted Penalized 2 FPenalized2 [-50, 50]D 1 

Multi-

modal 

Rotated 

Functions 

f24 Rotated 2D minima F2Dminima [-5, 5]D -2.9035 
f25 Shifted Rotated Griewank FGriewank [-600, 600]D 0 
f26 Rotated Weierstrass FWeierstrass [-0.5, 0.5]D 0 
f27 Shifted Rotated Salomon FSalomon [-100, 100]D 0 

Noisy 

Functions 

f28 Shifted Noise Schwefel P1.2 FNoiseSch1.2 [-100, 100]D 0 

f29 Shifted Rotated Noise Quadric FNoiseQuadric [-100, 100]D 0 

Mis-scaled 

Functions 

f30 Shifted Rastrigin10 FRastrigin10 [-5, 5]D 0 
f31 Shifted Rastrigin100 FRastrigin100 [-5, 5]D 0 

 

4.4.1 Performance Metrics 

In the experiments, the population size is set to be 30 and the maximum number 

of function evaluations is set to be 300,000. For all test functions, the algorithms carry 

out 30 independent runs. To evaluate the overall performance in regards to both the 

solution quality and computing cost, the metrics success performance (SP), success rate 

(SR), and fitness value are adopted from (Auger & Hansen, 2005). A run during which 

the algorithm achieves the fixed accuracy level within the maximum number of function 

evaluations is considered to be successful. In this example, the accuracy level is set to be 

10-5. The success rate (SR) is defined as  

 # of successful runs total # of runsSR   (4.34) 
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The mean of the success performance (SP) is defined as (Auger & Hansen, 2005) 

      maxmean 1 mean # of func. eval. for successful runsSP SR SR FE    (4.35) 

4.4.2 Comparison between BLOSSM-APSO and 11 PSO Algorithms 

Experiments are conducted to compare twelve PSO algorithms including ten 

collected from literature, BLOSSM-PSO and the BLOSSM-APSO on 31 test functions 

with 30 dimensions using two metrics, fitness value and success performance (SP). The 

compared PSO algorithms and their parameter settings are:  

1) PSO with inertia weight (PSO-w) (Shi & Eberhart, 1998): w=0.9-0.5i/I, 

c1=c2=2; 

2) PSO with constriction factor (PSO-cf) (Clerc & Kennedy, 2002): w=0.729, 

c1=c2=1.49445; 

3) Local version of PSO with inertia weight (PSO-w-local) (Kennedy & Mendes, 

2002): w=0.9-0.5i/I, c1=c2=2; 

4) Local version of PSO with constriction factor (PSO-cf-local) (Kennedy & 

Mendes, 2002): w=0.729, c1=c2=1.49445; 

5) Unified PSO (UPSO) (Parsopoulos & Vrahatis, 2004): w=0.729, 

c1=c2=1.49445; 

6) Weighted fully informed particle swarm (wFIPS) (Mendes et al., 2004): 

w=0.729, c1=c2=2; 

7) Fitness-Distance-Ratio based PSO (FDR-PSO) (Peram et al., 2003): w=0.9-

0.5i/I, f1=f2=1, f3=2; 

8) Cooperative PSO (CPSO-H) (van den Bergh & Engelbrecht, 2004): w=0.9-

0.5i/I, c1=c2=1.49; 

9) Comprehensive learning PSO (CLPSO) (Liang et al., 2006): w=0.9-0.7i/I, 

c1=c2=1.49445; 
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10) Dynamic multi-swarm PSO (DMS-PSO) (Liang & Suganthan, 2005): 

w=0.729, c1=c2=1.49445, n=6, m=5; 

11) Bi-Local searches and mutation based PSO (BLOSSM-PSO): w=0.7298, 

c1=c2=1.4961; 

12) Bi-Local searches and mutation based adaptive PSO (BLOSSM-APSO): 

adaptively change w, c1, c2; 

where i is the current iteration number, and I is the maximum number of iteration. 

Additional parameter settings for PSO-w, PSO-cf, PSO-w-local, PSO-cf-local, UPSO, 

wFIPS, FDR-PSO, CPSO-H and CLPSO are the same as (Liang et al., 2006). 

The statistical comparison of the BLOSSM-APSO with the other eleven PSO 

algorithms uses a two-tailed t-test with 58 degrees of freedom at a 0.05 level of 

significance. Values ―+‖, ―=‖ and ―-‖ in the column ―h‖ in Table 16~21 denote 

BLOSSM-APSO performs significantly better than, almost the same as, and significantly 

worse than the compared algorithm, respectively. The first value in column ―h‖ is the t-

test result on the fitness value and the second value is on the success performance. 

4.4.2.1 Uni-modal Non-rotated Functions 

In the first set of experiments, 6 uni-modal and non-rotated functions are studied 

(Table 15). The optimization results are summarized in Table 16. Please note column SP 

is blank when there are no successful runs among the 30 runs (SR=0). 

Table 16   Optimization results for uni-modal non-rotated functions 

Algorithms Fitness Value SP SR (%) h Fitness Value SP SR (%) h 

 Shifted Sphere (f1) Shifted Schwefel P2.22 (f2) 

PSO-w 2.21E-28 176162 100 -/+ 9.55E-16 176346 100 -/+ 

PSO-cf 1.77E-27 14517 100 =/+ 1.41E-13 28835 100 -/- 

PSO-w-local 2.02E-27 219943 100 =/+ 5.63E-16 221545 100 -/+ 

PSO-cf-local 6.84E-30 24389 100 -/+ 0.00E+00 31038 100 -/- 

UPSO 0.00E+00 15708 100 -/+ 0.00E+00 20956 100 -/- 

wFIPS 5.21E-27 79319 100 +/+ 2.46E-14 107719 100 -/+ 

FDR-PSO 1.26E-30 99527 100 -/+ 0.00E+00 101755 100 -/+ 

CPSO-H 2.42E-12 95478 100 +/+ 2.71E-07 201064 100 +/+ 

CLPSO 0.00E+00 92887 100 -/+ 0.00E+00 107976 100 -/+ 

DMS-PSO 7.15E-30 24082 100 -/+ 0.00E+00 30186 100 -/- 

BLOSSM-PSO 5.65E-24 3063 100 =/+ 7.00E-07 89113 100 +/+ 

BLOSSM-APSO 1.02E-27 1978 100  1.62E-08 44613 100  
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 Shifted Schwefel P1.2 (f3) Shifted Schwefel P2.21 (f4) 

PSO-w 2.47E-02  0 +/+ 2.86E-01  0 +/+ 

PSO-cf 1.73E-22 103109 100 +/+ 3.08E-10 167606 100 +/+ 

PSO-w-local 2.80E+03  0 +/+ 1.18E+00  0 +/+ 

PSO-cf-local 1.16E-09 198400 100 +/+ 2.16E-09 186927 100 +/+ 

UPSO 5.47E-11 183693 100 +/+ 1.54E-05 571530 50 +/+ 

wFIPS 1.91E+00  0 +/+ 4.97E-05  0 +/+ 

FDR-PSO 2.55E-18 186429 100 +/+ 4.11E-04  0 +/+ 

CPSO-H 4.96E+03  0 +/+ 7.98E-05  0 +/+ 

CLPSO 2.17E+02  0 +/+ 5.35E-01  0 +/+ 

DMS-PSO 1.10E+00  0 +/+ 9.53E-12 154354 100 +/+ 

BLOSSM-PSO 5.00E-14 45998 100 +/- 1.61E-08 25400 100 +/- 

BLOSSM-APSO 4.76E-26 53849 100  4.81E-16 32949 100  

 Shifted Rosenbrock (f5) Shifted Step (f6) 

PSO-w 4.97E+01  0 +/+ 1.00E-01 186372 90 =/+ 

PSO-cf 9.74E+00  0 =/+ 1.56E+01  0 +/+ 

PSO-w-local 6.42E+01  0 +/+ 0.00E+00 191646 100 =/+ 

PSO-cf-local 1.38E+01  0 =/+ 0.00E+00 12408 100 =/+ 

UPSO 1.13E+01  0 =/+ 0.00E+00 8943 100 =/+ 

wFIPS 2.85E+01  0 +/+ 0.00E+00 33422 100 =/+ 

FDR-PSO 1.46E+00 8975940 3.33 =/+ 3.00E-01 169571 76.7 +/+ 

CPSO-H 2.95E+01  0 +/+ 0.00E+00 8709 100 =/+ 

CLPSO 3.71E+00  0 =/+ 0.00E+00 55895 100 =/+ 

DMS-PSO 2.80E+01  0 +/+ 0.00E+00 11696 100 =/+ 

BLOSSM-PSO 1.14E+01 119612 83.3 =/= 0.00E+00 1271 100 =/= 

BLOSSM-APSO 9.08E+00 118691 83.3  0.00E+00 1260 100  

 

BLOSSM-APSO outperforms the other 10 algorithms on 5 out of 6 functions 

except the shifted Schwefel P2.22 function (f2) in terms of convergence speed (success 

performance). BLOSSM-APSO converges faster than the 10 algorithms on shifted 

Sphere function (f1) and shifted Rosenbrock (f5) function with comparable solution 

quality (fitness value). Comparing BLOSSM-APSO with BLOSSM-PSO, it is observed 

that BLOSSM-APSO could improve solution quality for 5 out of 6 functions and 

convergence speed for 4 out of 6 functions. Particularly, BLOSSM-APSO tremendously 

improves the convergence speed for shifted Schwefel P2.22 (f2) function whose search 

space is fully coupled. And the success performance value is comparable with the best 

value (20956) which is obtained by UPSO algorithm. For shifted Schwefel P1.2 (f3) and 

shifted Schwefel P2.21 (f4) functions, BLOSSM-APSO improves the solution quality 

within a comparable convergence speed. 

4.4.2.2 Uni-modal Rotated Functions 

In the second set of experiments, 6 uni-modal rotated functions are tested (Table 

15). The optimization results are summarized in Table 17. 
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Table 17   Optimization results for uni-modal rotated functions 

Algorithms Fitness Value SP SR (%) h Fitness Value SP SR (%) h 

 Shifted Rotated Sphere (f7) Shifted Rotated Schwefel P2.21 (f8) 

PSO-w 1.96E-28 176633 100 -/+ 4.72E-03  0 +/+ 

PSO-cf 6.40E-29 14618 100 -/+ 5.87E-13 128094 100 =/+ 

PSO-w-local 2.46E-27 220891 100 +/+ 1.45E-01  0 +/+ 

PSO-cf-local 5.05E-30 24307 100 -/+ 4.28E-13 135275 100 +/+ 

UPSO 8.41E-31 15833 100 -/+ 4.10E-08 196394 100 =/+ 

wFIPS 4.98E-27 79141 100 +/+ 1.16E-06 262428 100 +/+ 

FDR-PSO 0.00E+00 99737 100 -/+ 8.49E-07 237174 96.7 =/+ 

CPSO-H 3.05E-12 93277 100 +/+ 5.52E+00  0 =/+ 

CLPSO 0.00E+00 93487 100 -/+ 1.05E-01  0 +/+ 

DMS-PSO 7.15E-30 24111 100 -/+ 1.03E-12 143619 100 +/+ 

BLOSSM-PSO 1.50E-22 2874 100 =/+ 2.64E-08 27601 100 +/- 

BLOSSM-APSO 9.77E-28 2041 100  4.32E-16 32847 100  

 Shifted Rotated Rosenbrock (f9) Shifted Rotated Tablet (f10) 

PSO-w 6.26E+02  0 +/+ 4.47E+02  0 +/+ 

PSO-cf 4.94E+02  0 =/+ 2.87E+01  0 +/+ 

PSO-w-local 4.23E+02  0 +/+ 1.89E+03  0 +/+ 

PSO-cf-local 8.94E+01  0 +/+ 2.87E+02  0 +/+ 

UPSO 3.95E+01  0 +/+ 1.06E+03  0 +/+ 

wFIPS 5.67E+01  0 +/+ 1.21E+03  0 +/+ 

FDR-PSO 2.40E+01  0 =/+ 2.20E+02  0 +/+ 

CPSO-H 2.54E+02  0 =/+ 1.52E+04  0 +/+ 

CLPSO 2.99E+01  0 +/+ 4.68E+02  0 +/+ 

DMS-PSO 4.35E+01  0 +/+ 3.93E+01  0 +/+ 

BLOSSM-PSO 1.60E+01 209194 66.7 =/= 2.23E-23 105678 100 +/+ 

BLOSSM-APSO 9.76E+00 132059 80  2.23E-25 75981 100  

 Shifted Rotated Ellipse (f11) Shifted Rotated Diff Power (f12) 

PSO-w 2.49E-04 2990170 10 =/+ 7.78E-06 229806 96.7 =/+ 

PSO-cf 3.39E-25 62506 100 =/+ 2.18E-13 26680 100 -/+ 

PSO-w-local 4.87E+04  0 +/+ 1.95E+06 864481 33.3 +/+ 

PSO-cf-local 2.43E-17 129467 100 +/+ 4.92E-13 39895 100 -/+ 

UPSO 1.01E-21 108496 100 +/+ 1.19E-13 30406 100 -/+ 

wFIPS 8.83E-03  0 +/+ 8.44E-11 102229 100 +/+ 

FDR-PSO 1.22E-25 163049 100 =/+ 3.91E-14 103330 100 -/+ 

CPSO-H 4.53E+03  0 +/+ 1.13E+07 1043833 23.3 =/+ 

CLPSO 1.08E+02  0 +/+ 7.62E-09 173461 100 +/+ 

DMS-PSO 4.15E-10 212431 100 +/+ 4.03E-12 45216 100 -/+ 

BLOSSM-PSO 2.42E-16 46759 100 =/+ 6.73E-11 16850 100 +/+ 

BLOSSM-APSO 8.33E-23 46053 100  1.46E-11 14632 100  

 

BLOSSM-APSO outperforms the 10 algorithms on all six functions in terms of 

convergence speed, and 3 out of 6 functions in terms of solution quality. The solution 

quality is comparable with the 10 algorithms on shifted rotated Sphere (f7), shifted rotated 

Ellipse (f11) and shifted rotated Diff Power (f12). Comparing BLOSSM-APSO with 

BLOSSM-PSO, BLOSSM-APSO improves solution quality for all the uni-modal rotated 

functions, and improves convergence speed for 5 out of 6 functions. BLOSSM-APSO is 

more reliable than BLOSSM-PSO on the shifted rotated Rosenbrock (f9) function. 

4.4.2.3 Multi-modal Non-rotated Functions 
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In the third set of experiments, 11 multi-modal non-rotated functions are 

explored (Table 15). The optimization results are summarized in Table 18. 

Table 18   Optimization results for multi-modal non-rotated functions 

Algorithms Fitness Value SP SR (%)  h Fitness Value SP SR (%) h 

 Schwefel (f13) 2D minima (f14) 

PSO-w 1.09E+03  0 +/+ 4.71E+00  0 +/+ 

PSO-cf 2.92E+03  0 +/+ 1.12E+01  0 +/+ 

PSO-w-local 5.16E+03  0 +/+ 4.57E-10 200131 100 =/+ 

PSO-cf-local 2.18E+03  0 +/+ 7.01E+00  0 +/+ 

UPSO 3.65E+03  0 +/+ 8.07E+00  0 +/+ 

wFIPS 2.37E+01 220819 80 +/+ 4.08E-01 269664 60 +/+ 

FDR-PSO 3.10E+03  0 +/+ 1.06E+01  0 +/+ 

CPSO-H 2.37E+02 8783760 3.33 +/+ 4.57E-10 37136 100 =/+ 

CLPSO 1.70E-08 95772 100 =/+ 4.57E-10 75820 100 =/+ 

DMS-PSO 2.43E+03  0 +/+ 3.61E+00 4228670 6.67 +/+ 

BLOSSM-PSO 1.70E-08 86946 100 =/= 4.57E-10 18163 100 =/= 

BLOSSM-APSO 1.70E-08 77792 100  4.57E-10 17731 100  

 Shifted Rastrigin (f15) Shifted Noncontinuous Rastrigin (f16) 

PSO-w 2.01E+01  0 +/+ 7.57E+00 2968630 10 +/+ 

PSO-cf 7.26E+01  0 +/+ 4.08E+01  0 +/+ 

PSO-w-local 2.93E+01  0 +/+ 1.66E+01  0 +/+ 

PSO-cf-local 4.23E+01  0 +/+ 6.07E+00 715855 36.7 +/+ 

UPSO 6.87E+01  0 +/+ 7.09E+01  0 +/+ 

wFIPS 2.80E+01  0 +/+ 4.16E+01  0 +/+ 

FDR-PSO 2.84E+01  0 +/+ 7.63E+00  0 +/+ 

CPSO-H 9.95E-02 117335 90 =/= 2.33E-01 158412 80 +/= 

CLPSO 0.00E+00 159419 100 =/+ 0.00E+00 167351 100 =/+ 

DMS-PSO 7.16E+00  0 +/+ 3.80E+00 377190 63.3 +/+ 

BLOSSM-PSO 0.00E+00 119597 100 =/= 0.00E+00 137889 100 =/= 

BLOSSM-APSO 0.00E+00 108706 100  0.00E+00 122212 100  

 Shifted Ackley (f17) Shifted Griewank (f18) 

PSO-w 3.10E-14 192348 100 =/+ 2.12E-02 1004104 26.7 +/+ 

PSO-cf 1.53E+00 1222345 20 +/+ 2.44E-02 715564 30 +/+ 

PSO-w-local 2.34E-14 239791 100 =/+ 5.91E-03 442035 56.7 +/+ 

PSO-cf-local 6.39E-15 34510 100 =/- 8.19E-03 257348 56.7 +/+ 

UPSO 3.55E-15 22997 100 =/- 1.89E-03 85077 83.3 +/+ 

wFIPS 2.52E-14 117343 100 =/+ 0.00E+00 98894 100 -/+ 

FDR-PSO 1.85E-14 109428 100 =/+ 1.26E-02 625812 36.7 +/+ 

CPSO-H 3.03E-07 199111 100 +/+ 2.07E-02 621219 36.7 +/+ 

CLPSO 8.05E-15 118336 100 =/+ 0.00E+00 121255 100 -/+ 

DMS-PSO 3.55E-15 34502 100 =/- 0.00E+00 29281 100 -/+ 

BLOSSM-PSO 8.74E-07 88067 100 +/+ 7.59E-15 12577 100 +/+ 

BLOSSM-APSO 8.55E-12 56538 100  1.73E-15 8473 100  

 Weierstrass (f19) Shifted Salomon (f20) 

PSO-w 1.01E-01 308081 73.3 =/+ 3.81E-01  0 +/+ 

PSO-cf 7.61E+00  0 +/+ 5.90E-01  0 +/+ 

PSO-w-local 0.00E+00 238863 100 =/+ 3.13E-01  0 +/+ 

PSO-cf-local 7.27E-01 874227 26.7 +/+ 2.33E-01  0 +/+ 

UPSO 4.22E-01 635110 33.3 +/+ 5.37E-01  0 +/+ 

wFIPS 0.00E+00 167853 100 =/+ 2.00E-01  0 +/+ 

FDR-PSO 1.07E-01 950523 26.7 =/+ 3.50E-01  0 +/+ 

CPSO-H 9.88E-05  0 +/+ 1.37E+00  0 +/+ 

CLPSO 0.00E+00 142057 100 =/+ 2.32E-01  0 +/+ 

DMS-PSO 0.00E+00 48357 100 =/- 2.00E-01  0 +/+ 

BLOSSM-PSO 1.24E-05 530459 53.3 +/+ 3.08E-11 24194 100 +/= 

BLOSSM-APSO 0.00E+00 105011 100  0.00E+00 21162 100  

 Schwefel P2.13 (f21) Shifted Penalized 1 (f22) 

PSO-w 8.65E+04  0 +/+ 2.07E-02 249245 80 +/+ 

PSO-cf 1.61E+05  0 +/+ 3.74E-01 361848 46.7 +/+ 

PSO-w-local 7.02E+04  0 +/+ 6.91E-03 246538 93.3 =/+ 

PSO-cf-local 6.26E+04  0 +/+ 1.21E-01 224849 60 +/+ 

UPSO 1.09E+05  0 +/+ 2.76E-02 86255 83.3 =/= 

wFIPS 1.22E+04  0 +/+ 1.08E-29 61000 100 -/+ 
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FDR-PSO 1.38E+04  0 +/+ 3.46E-03 99463 96.7 =/+ 

CPSO-H 2.74E+04  0 +/+ 1.98E-14 38407 100 =/= 

CLPSO 1.01E+04  0 +/+ 1.57E-32 83945 100 -/+ 

DMS-PSO 1.01E+04  0 =/+ 1.57E-32 21791 100 -/- 

BLOSSM-PSO 9.04E+03 8793708 3.33 =/= 7.24E-18 35015 100 +/= 

BLOSSM-APSO 6.33E+03 8800622 3.33  2.50E-27 34605 100  

 Shifted Penalized 2 (f23)     

PSO-w 2.20E-03 257914 80 +/+     

PSO-cf 2.76E-01 317006 50 =/+     

PSO-w-local 1.83E-03 301082 83.3 +/+     

PSO-cf-local 2.17E-03 84526 83.3 +/+     

UPSO 7.32E-04 39932 93.3 =/=     

wFIPS 3.42E-28 69452 100 +/+     

FDR-PSO 1.10E-03 124916 90 =/+     

CPSO-H 1.61E-13 60603 100 +/+     

CLPSO 1.35E-32 89144 100 -/+     

DMS-PSO 5.56E-32 24968 100 -/+     

BLOSSM-PSO 2.41E-28 12612 100 =/=     

BLOSSM-APSO 2.29E-28 11687 100      

 

Comparing BLOSSM-APSO with the other 10 algorithms, BLOSSM-APSO is 

inferior to DMS-PSO on shifted Ackley (f17), Weierstrass (f19) and shifted Penalized 1 

(f22) functions. Comparing BLOSSM-APSO with BLOSSM-PSO, BLOSSM-APSO is 

superior to BLOSSM-PSO on 7 out of 11 functions in terms of solution quality, and 10 

out of 11 functions on success performance. The success performance on Schwefel P2.13 

(f21) function is almost the same. Taking functions shifted Ackley (f17) and Weierstrass 

(f19) as an example, the performance of BLOSSM-PSO on these two functions is poorer 

than the other 10 algorithms. It is observed that BLOSSM-APSO converges much faster 

than BLOSSM-PSO. The success performance (56538) on shifted Ackley (f17) function is 

comparable to the best value (22997) obtained by UPSO algorithm. BLOSSM-APSO 

achieves 100% success rate on Weierstrass (f19) and raises its rank from 6th to 2nd among 

the 10 algorithms. 

4.4.2.4 Multi-modal Rotated Functions 

In the fourth set of experiments, 4 multi-modal rotated functions are studied 

(Table 15). The optimization results are summarized in Table 19. 

Table 19   Optimization results for multi-modal rotated functions 

Algorithms Fitness Value SP SR (%)  h Fitness Value SP SR (%) h 

 Rotated 2D minima (f24) Shifted Rotated Griewank (f25) 

PSO-w 6.71E+00  0 =/= 1.32E-02 1012572 26.7 +/+ 

PSO-cf 1.02E+01  0 +/= 1.86E-02 408508 43.3 +/+ 
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PSO-w-local 3.75E+00  0 -/= 7.71E-03 483820 53.3 +/+ 

PSO-cf-local 9.19E+00  0 +/= 6.65E-03 327566 50 +/+ 

UPSO 9.75E+00  0 +/= 3.38E-03 154359 70 +/+ 

wFIPS 2.08E+00  0 -/= 0.00E+00 99049 100 -/+ 

FDR-PSO 1.10E+01  0 +/= 1.34E-02 708387 33.3 +/+ 

CPSO-H 6.81E+00  0 =/= 3.42E-02 810937 30 +/+ 

CLPSO 1.89E+00  0 -/= 4.20E-10 143041 100 =/+ 

DMS-PSO 6.20E+00  0 =/= 6.57E-04 58795 93.3 =/+ 

BLOSSM-PSO 7.57E+00  0 =/= 9.38E-15 19916 100 +/= 

BLOSSM-APSO 6.89E+00  0  3.83E-15 9284 100  

 Rotated Weierstrass (f26) Shifted Rotated Salomon (f27) 

PSO-w 7.33E+00  0 =/= 3.93E-01  0 +/+ 

PSO-cf 1.25E+01  0 +/= 5.97E-01  0 +/+ 

PSO-w-local 2.76E+00  0 -/= 3.01E-01  0 +/+ 

PSO-cf-local 7.40E+00  0 =/= 2.53E-01  0 +/+ 

UPSO 1.48E+01  0 +/= 5.47E-01  0 +/+ 

wFIPS 6.31E-02 421625 60 -/- 1.97E-01  0 +/+ 

FDR-PSO 2.44E+00  0 -/= 3.43E-01  0 +/+ 

CPSO-H 1.24E+01  0 +/= 1.30E+00  0 +/+ 

CLPSO 1.37E+00  0 -/= 2.24E-01  0 +/+ 

DMS-PSO 1.17E-01  0 -/= 1.97E-01  0 +/+ 

BLOSSM-PSO 8.06E+00  0 =/= 8.76E-11 24670 100 +/= 

BLOSSM-APSO 8.02E+00  0  0.00E+00 21791 100  

 

Comparing BLOSSM-APSO with BLOSSM-PSO, BLOSSM-APSO outperforms 

BLOSSM-PSO on these four multi-modal rotated functions in terms of both solution 

quality and convergence speed. However, the improvements on rotated 2D minima (f24) 

and rotated Weierstrass (f26) are very small, and the performance of BLOSSM-APSO on 

these two complex functions is still inferior to other algorithms designed for the specific 

search space (multi-modal rotated space). 

4.4.2.5 Noisy Functions 

In the fifth set of experiments, 2 noisy functions are tested (Table 15). The 

optimization results are summarized in Table 20. 

Table 20   Optimization results for noisy functions 

Algorithms Fitness Value SP SR (%) h Fitness Value SP SR (%) h 

 Shifted Noise Schwefel P1.2 (f28) Shifted Rotated Noise Quadric (f29) 

PSO-w 1.20E+03  0 +/= 9.24E-03  0 +/= 

PSO-cf 7.43E+02  0 +/= 3.90E-03  0 -/= 

PSO-w-local 1.38E+03  0 +/= 2.07E-02  0 +/= 

PSO-cf-local 1.37E+02  0 =/= 2.37E-03  0 -/= 

UPSO 2.69E+03  0 +/= 1.89E-02  0 +/= 

wFIPS 2.09E+02  0 +/= 2.68E-03  0 -/= 

FDR-PSO 2.52E+02  0 +/= 7.07E-03  0 =/= 

CPSO-H 1.76E+04  0 +/= 1.45E-02  0 +/= 

CLPSO 2.09E+03  0 +/= 4.15E-03  0 -/= 

DMS-PSO 2.34E+02  0 +/= 3.84E-03  0 -/= 

BLOSSM-PSO 3.31E+00  0 -/= 4.89E-03  0 -/= 

BLOSSM-APSO 8.98E+01  0  6.68E-03  0  
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Unlike other functions, BLOSSM-APSO is inferior to BLOSSM-PSO on the two 

noisy functions. The parameter tuning mechanism accelerates the convergence speed of 

the particles to the global best solution which may be the worst particle among the swarm 

without considering noise. Although BLOSSM-APSO underperforms BLOSSM-PSO on 

noisy functions, it is still the most effective algorithm among the 10 algorithms on shifted 

noise Schwefel P1.2 (f28) function. 

4.4.2.6 Mis-scaled Functions 

Two mis-scaled functions are studied in this set of experiments (Table 15). The 

optimization results are summarized in Table 21. 

Table 21   Optimization results for mis-scaled functions 

Algorithms Fitness Value SP SR (%) h Fitness Value SP SR (%) h 

 Shifted Rastrigin10 (f30) Shifted Rastrigin100 (f31) 

PSO-w 2.89E+01  0 +/+ 2.58E+01  0 +/+ 

PSO-cf 1.06E+02  0 +/+ 1.46E+02  0 +/+ 

PSO-w-local 3.92E+01  0 +/+ 3.93E+01  0 +/+ 

PSO-cf-local 5.47E+01  0 +/+ 6.40E+01  0 +/+ 

UPSO 8.91E+01  0 +/+ 1.14E+02  0 +/+ 

wFIPS 5.32E+01  0 +/+ 5.27E+01  0 +/+ 

FDR-PSO 3.61E+01  0 +/+ 5.18E+01  0 +/+ 

CPSO-H 1.33E-01 123673 96.7 =/+ 2.32E-01 243602 76.7 +/+ 

CLPSO 0.00E+00 176403 100 =/+ 0.00E+00 176792 100 -/+ 

DMS-PSO 9.65E+00 8914706 3.33 +/+ 1.37E+01  0 +/+ 

BLOSSM-PSO 4.60E-09 119764 100 =/+ 8.54E-08 161883 100 +/+ 

BLOSSM-APSO 7.40E-14 98376 100  2.18E-14 101300 100  

 

BLOSSM-APSO outperforms BLOSSM-PSO and the 10 PSO algorithms on the 

2 mis-scaled Rastrigin functions in terms of convergence speed, and is comparable with 

CLPSO on solution quality. 

4.4.2.7 Conclusions on Comparison between BLOSSM-APSO and 11 PSO Algorithms 

It is observed the BLOSSM-APSO in general outperforms the other algorithms 

on most of the test functions. The dominance relation (Reyes-Sierra & Coello Coello, 

2006) is employed to comprehensively compare BLOSSM-APSO with the 11 PSO 

algorithms. The dominance relation for two algorithms A and B is defined as: algorithm 

A is said to dominate algorithm B when A is significantly better than B on at least one 

performance metric without sacrificing on any other metrics. Algorithm A is dominated 
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by algorithm B when A is significantly worse than B on at least one performance metric 

without improvement on any other metrics. Algorithm A and B are Pareto when A 

significantly outperforms B on at least one performance metric and significantly 

underperforms B on at least one other metric. The overall comparison between 

BLOSSM-APSO and other 11 algorithms is summarized in Table 22. It is observed that 

BLOSSM-APSO is better for improvement on convergence speed than solution quality. 

From the dominance relation, it is observed that BLOSSM-APSO is the most 

effectiveness algorithm among the 12 algorithms. 

Table 22   Overall comparisons between BLOSSM-APSO and other 11 algorithms 

                         Algorithms 

 

Metrics (t-test results) 

PSO

-w 

PSO

-cf 

PSO

-w-

local 

PSO-

cf-

local 

UP

SO 

wF

IPS 

FDR-

PSO 

CPS

O-H 

CLP

SO 

DMS-

PSO 

BLOS

SM-

PSO 

 

Fitness 

Value 

+ (Better) 21 21 22 21 21 21 17 22 11 16 14 

= (Same) 7 6 6 5 6 3 9 9 10 6 15 

- (Worse) 3 4 3 5 4 7 5 0 10 9 2 

Success 

Performa

nce (SP) 

+ (Better) 27 26 27 25 23 27 27 24 27 23 11 

= (Same) 4 4 4 4 6 3 4 7 4 4 17 

- (Worse) 0 1 0 2 2 1 0 0 0 4 3 

Dominan

ce 

Relation 

+ (Dominates) 26 27 28 23 24 24 25 28 21 19 15 

= (Same) 5 2 1 5 5 4 5 3 7 6 14 

- (Dominated) 0 2 2 3 2 3 1 0 3 6 2 

 

To quantitatively evaluate the effectiveness and generality of BLOSSM-APSO, 

the dominance rate for each algorithm is employed which is computed as the cumulative 

number of dominated functions by this algorithm comparing with the other 11 algorithms 

divided by the ideal case which has 341 (31x11) cumulative dominated functions. The 

total number of functions where algorithm B is dominated by algorithm A is recorded in 

the column A row B in Table 23. It is observed from Table 23 that BLOSSM-APSO has 

the largest dominance rate, and is the most generalized algorithm for diverse functions 

with different properties. BLOSSM-APSO improves the generality of BLOSSM-PSO by 

increasing the dominance rate from 71.0% to 76.2%. 

Table 23   Dominance relations for twelve algorithms 

         Algorithms 

Algorithms 

PSO-

w 

PSO-

cf 

PSO-

w-

local 

PSO-

cf-

local 

UPS

O 

wFIP

S 

FDR-

PSO 

CPS

O-H 

CLP

SO 

DMS

-PSO 

BLO

SSM

-PSO 

BLOS

SM-

APSO 
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PSO-w - 12 7 20 16 20 19 11 25 27 26 26 

PSO-cf 15 - 15 18 11 19 15 13 18 20 25 27 

PSO-w-local 16 13 - 21 18 23 19 14 29 29 26 28 

PSO-cf-local 8 7 8 - 10 14 10 11 16 19 24 23 

UPSO 14 12 12 15 - 16 14 10 17 20 26 24 

wFIPS 7 10 4 13 11 - 11 7 12 20 22 24 

FDR-PSO 8 7 8 16 12 14 - 11 17 24 26 25 

CPSO-H 13 15 10 18 16 20 15 - 22 21 26 28 

CLPSO 5 9 1 10 11 13 9 6 - 20 20 21 

DMS-PSO 2 6 2 7 9 5 3 7 8 - 19 19 

BLOSSM-PSO 1 1 3 3 2 5 3 0 4 7 - 15 

BLOSSM-APSO 0 2 2 3 2 3 1 0 3 6 2 - 

Dominance Rate (%) 26.1 27.6 21.1 42.2 34.6 44.6 34.9 26.4 50.1 62.5 71.0 76.2 

 

4.4.3 Robustness Comparison 

In the experiments conducted in section 4.4.2, it is observed that BLOSSM-

APSO outperforms BLOSSM-PSO and the other 10 algorithms for most of the 31 

functions. As discussed in the previous sections, the adaptive parameter tuning 

mechanism implemented in BLOSSM-APSO is capable of reducing the parameter effect 

and improving BLOSSM-PSO‘s robustness. Therefore, seven different initial parameter 

settings are selected which are listed in Table 24 to test the robustness of BLOSSM-

APSO. For comparison, the robustness of BLOSSM-PSO is also tested. In the 

experiments, the population size is set to be 30 and maximum number of function 

evaluations is set to be 300,000. For all test functions, the algorithms carry out 30 

independent runs, and the mean and standard deviation of fitness value, success 

performance, and success rate are recorded for t-test. 

Table 24   Seven different initial parameter settings for robustness testing 

No. Parameter Settings 

IPS1 w=0.7298, c1=c2=1.4961 

IPS2 w=0.7298, c1=c2=2 

IPS3 w=0.7298, c1=2.5, c2=0.5 

IPS4 w=0.7298, c1=0.5, c2=2.5 

IPS5 w=0.9, c1=c2=1.4961 

IPS6 w=0.4, c1=c2=1.4961 

IPS7 random initial 

 

A two-tailed t-test with 58 degrees of freedom at a 0.05 level of significance is 

employed to test the difference of BLOSSM-APSO on these seven different initial 

parameter settings, and the number of functions that BLOSSM-APSO performs 
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significantly the same in terms of solution quality and success performance on different 

initial parameter settings is recorded in Table 25. For example, ―30‖ in the row ―IPS2‖ 

and column ―IPS5‖ in Table 25 denotes that BLOSSM-APSO under the second 

parameter setting performs the same as BLOSSM-APSO under the fifth parameter setting 

for 30 out of 31 functions. The robustness testing result for BLOSSM-PSO is recorded in 

Table 26. It is observed that the performance of BLOSSM-APSO under different initial 

parameter settings is almost the same. BLOSSM-APSO increases the robustness of 

BLOSSM-PSO and reduces the sensitivity of BLOSSM-APSO to its parameter setting. 

Table 25   Robustness of BLOSSM-APSO 

 Fitness Value Success Performance (SP) 

IPS1 IPS2 IPS3 IPS4 IPS5 IPS6 IPS7 IPS1 IPS2 IPS3 IPS4 IPS5 IPS6 IPS7 

IPS1 - 31 31 31 31 31 31 - 31 31 31 31 31 31 

IPS2 31 - 31 31 30 31 31 31 - 31 31 29 30 31 

IPS3 31 31 - 31 29 31 31 31 31 - 30 31 30 31 

IPS4 31 31 31 - 30 31 31 31 31 30 - 30 31 31 

IPS5 31 30 29 30 - 30 30 31 29 31 30 - 31 31 

IPS6 31 31 31 31 30 - 31 31 30 30 31 31 - 31 

IPS7 31 31 31 31 30 31 - 31 31 31 31 31 31 - 

Table 26   Robustness of BLOSSM-PSO 

 Fitness Value Success Performance (SP) 

IPS1 IPS2 IPS3 IPS4 IPS5 IPS6 IPS7 IPS1 IPS2 IPS3 IPS4 IPS5 IPS6 IPS7 

IPS1 - 15 16 18 6 14 19 - 11 12 16 21 12 10 

IPS2 15 - 18 17 9 12 20 11 - 16 22 21 16 15 

IPS3 16 18 - 25 12 15 20 12 16 - 15 21 15 16 

IPS4 18 17 25 - 9 18 20 16 22 15 - 21 18 11 

IPS5 6 9 12 9 - 7 18 21 21 21 21 - 20 23 

IPS6 14 12 15 18 7 - 20 12 16 15 18 20 - 9 

IPS7 19 20 20 20 18 20 - 10 15 16 11 23 9 - 

 

4.5 Conclusions 

In this chapter, a bi-local searches and mutation based adaptive particle swarm 

optimization (BLOSSM-APSO) is developed which is demonstrated to be effective for 

diverse functions with different properties. The adaptive parameter tuning mechanism 

implemented in BLOSSM-APSO is able to change the three parameters in PSO, and 

attempt to pull one randomly selected particle close to the gBest. The experiments 

conducted in this chapter demonstrate that the BLOSSM-APSO is able to improve the 

performance of bi-local searches and mutation based particle swarm optimization 
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(BLOSSM-PSO) on 29 out of 31 of the test functions. The BLOSSM-APSO is more 

robust to the settings of the three parameters in PSO than BLOSSM-PSO. 

Due to the stochastic elements in noisy functions, BLOSSM-APSO may pull the 

particle close to a pseudo gBest and underperform BLOSSM-PSO on the noisy function. 

Therefore, the parameter tuning mechanism should be more intelligent to avoid this issue. 

Although BLOSSM-APSO outperforms BLOSSM-PSO on multi-modal rotated 

functions, its performance still could be improved comparing it with CLPSO and DMS-

PSO. Some complex engineering problems such as product design, building energy 

system operation decisions, transportation problems should be used to test the 

effectiveness of BLOSSM-APSO. 
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Chapter 5 

AN AUGMENTED PARTICLE SWARM OPTIMIZATION FOR MULTI-OBJECTIVE 

OPTIMIZATION 

Particle Swarm Optimization (PSO) has achieved great attentions over the last 

decade due to its commendable performance on diverse applications, majority of which 

are constructed for single objective problems. When applying PSO to multi-objective 

problems though, the performance is less satisfactory. One reason may be that the PSO 

algorithms are not generalized enough to simultaneously handle diverse functions with 

different properties which commonly exist in multi-objective optimization (MOO). 

Therefore, an augmented PSO algorithm for MOO is developed, termed AMOPSO which 

employs bi-local searches to handle diverse functions, a crowding distance based 

archiving technique to maintain non-dominated solutions found during the search 

process, Cauchy mutation to prevent premature convergence, and a parameter tuning 

mechanism to adaptively change parameter settings of PSO and improve robustness of 

PSO. The performance of AMOPSO is evaluated on 19 problems by comparing with 4 

representative multi-objective evolutionary algorithms and 4 published multi-objective 

PSOs using three metrics - generational distance (GD) which measures Pareto solution 

accuracy, maximum spreading (MS) which measures diversity of the Pareto frontier and 

spacing (S) which measures the distribution of Pareto solutions on Pareto frontier. 

Comparing AMOPSO with the 8 algorithms, the conclusions are (1) AMOPSO performs 

well on GD and MS measures, but less satisfactory on S. (2) AMOPSO strongly 

outperforms the existing 4 multi-objective PSOs and 3 MOEAs, and moderately 

outperforms MOCell (cellular genetic algorithm).  
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5.1 Introduction 

Particle swarm optimization (PSO) which mimics a flock of birds that 

communicate together as they fly is a newly developed bio-inspired algorithm (Eberhart 

& Shi, 1998). PSO has been demonstrated to outperform other evolutionary algorithms 

(e.g., genetic algorithm, Memetic algorithm) in terms of solution quality and 

computational efficiency on some single objective optimization problems (Elbeltagi et al., 

2005; Hassan et al., 2005; Kennedy & Spears, 1998). A large number of PSO variants 

have further been developed for some special single objective problems (e.g., multi-

modal, non-separable, etc.). 

During the last ten years, extensive researches are conducted to study PSO for 

multi-objective optimization (MOO) problems (Alvarez-Benitez et al., 2005; Bartz-

Beielstein et al., 2003; Coello Coello & Lechuga, 2002; Coello Coello et al., 2004; 

Daneshyari & Yen, 2011; Fieldsend, 2004; Fieldsend & Singh, 2002; Goh et al., 2010; 

Ho et al., 2005; Hu et al., 2003; Huang et al., 2006; Janson & Merkle, 2005; Leong & 

Yen, 2008; Li, 2003; Lian, 2010; Liu et al., 2007; Liu et al., 2008; Mostaghim & Teich, 

2003a, 2003b, 2004; Nebro et al., 2009a; Omkar et al., 2008; Pulido & Coello Coello, 

2004; Raquel & Naval Jr., 2005; Ray & Liew, 2002; Reyes-Sierra & Coello Coello, 

2005; Salazar-Lechuga & Rowe, 2005; Srinivasan & Seow, 2003; Tripathi et al., 2007; 

Villalobos-Arias et al., 2005; Wang & Yang, 2009, 2010; Yapicioglu et al., 2007; Yen & 

Leong, 2009; Zhao & Suganthan, 2011; Zielinski & Laur, 2007) due to its simplicity for 

implementation and good performance. As a result, a number of multi-objective PSO 

algorithms are developed. In general, the algorithms can be classified in two categories. 

The first category employs effective approaches (e.g., archive technique, Pareto ranking 

approach, etc.) which are utilized in existing multi-objective evolutionary algorithms 

(MOEAs) to study MOO problems (Alvarez-Benitez et al., 2005; Bartz-Beielstein et al., 
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2003; Coello Coello & Lechuga, 2002; Coello Coello et al., 2004; Fieldsend & Singh, 

2002; Goh et al., 2010; Li, 2003; Mostaghim & Teich, 2003b; Omkar et al., 2008; Raquel 

& Naval Jr., 2005; Ray & Liew, 2002; Reyes-Sierra & Coello Coello, 2005; Salazar-

Lechuga & Rowe, 2005; Srinivasan & Seow, 2003; Wang & Yang, 2009). For example, 

non-dominated sorting PSO (NSPSO) (Li, 2003) adopts a fast non-dominated sorting and 

sharing approach to maintain non-dominated solutions which is used in non-dominated 

sorting genetic algorithm (NSGA-II) (Deb et al., 2002); MOPSO developed in (Coello 

Coello et al., 2004) employs a hyper-cubes based adaptive grid technique to produce a 

well-distributed Pareto frontier; crowding distance approach is used in MOPSO-CD 

(Raquel & Naval Jr., 2005) to select global best solution and maintain non-dominated 

solution set; vector evaluated PSO (VEPSO) (Omkar et al., 2008) which is inspired by 

vector evaluated GA (VEGA) utilizes M (# of objectives) sub-swarms to search the M 

objectives separately; the multi-objective PSO algorithm developed in (Wang & Yang, 

2009) uses a preference order scheme to identify the best compromise which is more 

efficient than Pareto ranking scheme; CCPSO (Goh et al., 2010) adopts competitive and 

cooperative co-evolutionary technique which explicitly models the co-evolution of 

competing and cooperating species to solve the multi-objective optimization problems. 

The second category is to augment PSO methods with focuses being on the exemplar 

learning, parameter tuning so it can be applied to MOO problems (Daneshyari & Yen, 

2011; Ho et al., 2005; Hu et al., 2003; Huang et al., 2006; Janson & Merkle, 2005; Leong 

& Yen, 2008; Lian, 2010; Liu et al., 2007; Mostaghim & Teich, 2004; Nebro et al., 

2009a; Pulido & Coello Coello, 2004; Tripathi et al., 2007; Yen & Leong, 2009; Zhao & 

Suganthan, 2011; Zielinski & Laur, 2007). For example, a modified dynamic 

neighborhood topology is used in the multi-objective PSO algorithm which is utilized in 

(Hu et al., 2003); the exemplar of each particle is selected based on a set of sub-swarms 
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(Janson & Merkle, 2005; Pulido & Coello Coello, 2004); CLMOPSO (Huang et al., 

2006) is an extension of comprehensive learning PSO (CLPSO (Liang et al., 2006)) for 

multi-objective problems; time variant MOPSO (TV-MOPSO) (Tripathi et al., 2007) 

adaptively changes PSO‘s parameter settings; dynamic population multiple-swarm is 

used in MOPSO (Leong & Yen, 2008); cultural-based MOPSO (Daneshyari & Yen, 

2011) adaptively changes PSO parameter settings using a cultural framework; two local 

bests are selected in MOPSO (2LB-MOPSO) (Zhao & Suganthan, 2011), just to name a 

few. 

While great efforts have spent on exploring the application of PSO and 

extensions for multi-objective problems, the dominating performance of PSO on single 

objective problems does not extend to multi-objective PSOs. Indeed, it is observed that 

some multi-objective PSOs underperform other MOEAs (Goh et al., 2010; Nebro et al., 

2009a; Wang & Yang, 2010; Zhao & Suganthan, 2011). This may be due to the facts 

that: (1) it is most likely multi-objective problems consist of different objectives with 

different properties, and the PSO algorithms used in multi-objective PSOs may not be 

generalized to handle diverse functions; (2) effective diversity preserved mechanisms for 

PSO are currently lacking. Such mechanisms are not only able to eliminate premature 

convergence issue in PSO but also able to keep diversity in Pareto frontier; (3) the 

performance of multi-objective optimization techniques may not only depend on their 

solution pools (particles in PSO, chromosomes in GA, etc.) but also some other issues, 

such as non-dominated solutions retaining and spreading approaches (Reyes-Sierra & 

Coello Coello, 2006). 

To address the issues, an augmented PSO for multi-objective problem is 

developed, termed AMOPSO which consists of four modules: (1) bi-local searches: non-

uniform mutation based method (Michalewicz, 1996) and sub-gradient method (Boyd, 
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2010) are employed to accelerate the convergence speed and improve solution quality for 

diverse functions; (2) an archiving strategy is implemented to maintain the non-

dominated solutions found during the evolution process and the crowding distance 

method is employed to guarantee the non-dominated solutions are well spread along the 

Pareto frontier; (3) Cauchy mutation (Andrews, 2006) is adopted to avoid premature 

convergence; and (4) a parameter tuning mechanism is developed to adaptively change 

the parameters and thus improve the robustness of PSO. Extensive experiments are 

conducted to test the performance of AMOPSO and compare its performance with 

existing methods collected from literature. 

This chapter is organized as follows: related background on MOO, PSO, and 

multi-objective PSO are briefly reviewed in section 5.2; followed by the detailed 

explanation on the AMOPSO in section 5.3; the experimental results in section 5.4 

demonstrate the effectiveness of the AMOPSO algorithm, and conclusions are drawn in 

section 5.5. 

5.2 Background Information 

This section briefly reviews the backgrounds related to this chapter. The 

generalized formulation of multi-objective optimization is introduced in section 5.2.1, 

followed by PSO presented in section 5.2.2. The issues and the corresponding solution 

techniques for multi-objective PSOs are reviewed in section 5.2.3. 

5.2.1 Multi-objective Optimization and Pareto Optimality 

The general multi-objective optimization problem is formulated as follows: 

 
       1 2min  , , ,

s.t.  

T

Mf f f   



x
f x x x x

x X

 (5.1) 

where x is a D-dimensional decision variable, X is the feasible decision space and M is 

the number of objective functions. 
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MOO aims to find a set of optimal tradeoff solutions termed as Pareto optimal set 

since it is impossible to find a single solution which optimizes all the objective functions 

simultaneously. A solution 
* x X  is Pareto optimal iff there does not exist another 

solution, x X , such that    *f x f x , and    *

m mf fx x  for at least one function. 

The Pareto optimal set is the set of all Pareto optimal solutions, and the corresponding set 

of objective vectors is the Pareto optimal frontier. 

5.2.2 Particle Swarm Optimization 

In single objective PSO (Shi & Eberhart, 1998), the velocity and position for 

each particle j at iteration i are updated according to the following equations 

    1

1 1, 2 2, ,

i i i i i i i i

j j j j j j g j jw c r c r       v v p x p x  (5.2) 

 1 1i i i

j j j

  x x v  (5.3) 

where j denotes the jth particle in the swarm; D-dimensional vector i

jv  is the velocity of 

the jth particle (  max max,i

j   v v v ), vmax is used to constraint the velocity for each 

particle and is usually set between 0.1 and 1.0 times the search range of the solution 

space (Banks et al., 2007); D-dimensional vector i

jx  is the position of the jth particle; i

jp  

(pBest) is the best position found so far by the jth particle; ,

i

g jp  (gBest) is the best 

position found so far by particle j‘s neighbors; 1,

i

jr  and 2,

i

jr  represent two independent 

random numbers uniformly distributed on [0, 1]; c1 is the cognitive learning factor which 

represents the attraction that a particle has toward its own success i

jp ; c2 is the social 

learning factor which represents the attraction that a particle has toward its neighbors‘ 

best position ,

i

g jp ; w is the inertia weight. Cognitive learning factor c1 impacts the local 

search ability while the global search ability is influenced by the social learning factor c2. 
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Large inertia weight w enables particles to move in a high velocity and perform extensive 

exploration, while small inertia weight enhances the exploitation ability (Poli et al., 

2007). 

5.2.3 Multi-objective Particle Swarm Optimization 

Although PSO has been demonstrated to be effective for single objective 

optimization, three main issues should be considered when extending PSO to multi-

objective optimization (Reyes-Sierra & Coello Coello, 2006): 

 Non-dominated solutions retaining and spreading: how to maintain all the 

non-dominated solutions found during the search process and guarantee the 

solutions are uniformly and smoothly spread on the Pareto frontier? 

 Leader selection: how to select pBest and gBest when considering Pareto 

dominance? 

 Diversity keeping: how to maintain the diversity in swarm and diversity in 

Pareto optimal set? 

The solution techniques employed to address these three issues in the existing 

literatures are reviewed in the following sections. 

5.2.3.1 Non-dominated Solutions Retaining and Spreading 

In the population based multi-objective optimization technique, multiple Pareto 

optimal solutions will be obtained at each iteration. The most commonly used approach 

to maintain the non-dominated solutions found during the search process is to use an 

external archive (Goh et al., 2010; Huang et al., 2006; Janson & Merkle, 2005; Li, 2003; 

Liu et al., 2007; Mostaghim & Teich, 2003a, 2003b; Nebro et al., 2009a; Raquel & Naval 

Jr., 2005; Salazar-Lechuga & Rowe, 2005; Tripathi et al., 2007; Villalobos-Arias et al., 

2005; Wang & Yang, 2009, 2010). The non-dominated solutions will be added in the 

archive, and the dominated solutions in the archive will be removed at the end of each 
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iteration. Some multi-objective PSOs use a secondary external archive for each particle to 

store the particles‘ non-dominated solutions found so far (Fieldsend & Singh, 2002; Ho et 

al., 2005; Reyes-Sierra & Coello Coello, 2005). 

Since the external archive will increase quickly and it will be computationally 

prohibitive to update the external archive at the end of each iteration, some techniques 

attempting to keep less crowded solutions by deleting crowded solutions are employed to 

prune the archive when its size exceeds the capacity. These techniques are not only able 

to bound the archive but also make the non-dominated solutions evenly spread on the 

Pareto frontier. The most commonly used techniques include: 1) adaptive grid (Bartz-

Beielstein et al., 2003; Coello Coello & Lechuga, 2002; Coello Coello et al., 2004; 

Fieldsend & Singh, 2002): the objective space based on all the non-dominated solutions 

in the archive is evenly divided into several regions (hypercubes) and solutions in the 

hypercubes which have less number of solutions will be preferred. This method may be 

computationally expensive especially when the objective space should be frequently 

divided. 2) clustering technique (Mostaghim & Teich, 2003a): the non-dominated 

solutions in the archive are divided into several clusters and the archive is filled by 

selecting a representative individual per cluster. The size and quality of the archive 

depend on the number of clusters. 3) ε-dominance (Mostaghim & Teich, 2003b; Reyes-

Sierra & Coello Coello, 2005): a set of boxes with size ε is defined on the objective space 

and only one non-dominated solution is retained for each box based on ε-dominance. The 

ε-dominance has been demonstrated to be computationally efficient than clustering 

techniques with a comparable convergence and diversity for pruning the archive 

(Mostaghim & Teich, 2003b). However, the size of the archive is impacted by the user 

defined parameter ε. 4) niche count (Goh et al., 2010; Li, 2003; Liu et al., 2007; Salazar-

Lechuga & Rowe, 2005): a neighborhood (niche) with radius 
share

 
for each solution in 
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the archive is defined, and the solution has less neighbors in its neighborhood will be 

preferred. The spread of the final archive depends on the user defined parameter 
share . 5) 

crowding distance (Huang et al., 2006; Nebro et al., 2009a; Raquel & Naval Jr., 2005; 

Zhao & Suganthan, 2011): the non-dominated solutions are sorted according to each 

objective function, and the crowding distance for a solution is the accumulate value of the 

distance between the solution and its two neighbors on each objective space. The 

solutions with large crowding distance values will be kept in the archive.  

In summary, the performances of the first four techniques depend on some 

additional parameters. Therefore, in this chapter, the crowding distance method is 

adopted due to its simplicity for implementation and independency on the additional 

parameters. 

5.2.3.2 Leaders (gBest and pBest) Selection 

Different from single objective optimization, there is a set of leaders could be 

selected by the particles as their pBest and gBest. In the multi-objective PSO, the gBest is 

usually selected from the non-dominated solution set (external archive) by several 

commonly used methods: 1) crowding distance (Li, 2003; Nebro et al., 2009a; Raquel & 

Naval Jr., 2005; Ray & Liew, 2002; Reyes-Sierra & Coello Coello, 2005; Tripathi et al., 

2007; Zhao & Suganthan, 2011): the non-dominated solution with large crowding 

distance is preferred; 2) niche count (Daneshyari & Yen, 2011; Li, 2003; Liu et al., 2007; 

Salazar-Lechuga & Rowe, 2005): the non-dominated solution with small niche count will 

be selected; 3) sigma method (Mostaghim & Teich, 2003a, 2003b, 2004): the sigma 

method aims to let the particles to fly directly towards the Pareto frontier; 4) randomly 

selection (Alvarez-Benitez et al., 2005; Huang et al., 2006; Janson & Merkle, 2005; 

Pulido & Coello Coello, 2004; Yapicioglu et al., 2007; Zielinski & Laur, 2007). 

Comparing with the first three methods, the randomly selection does not need additional 
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calculation, but its performance may be inferior to the first three methods. In order to 

reduce the computational cost on gBest selection, the gBest is selected either randomly or 

according to a randomly generated weighted objective function in this chapter. The 

approaches used for gBest selection are also applicable for pBest selection when there is 

a secondary archive to store the particle‘s non-dominated solutions found so far. The 

pBest will be updated based on Pareto dominance relation between the previous pBest 

and the current particle when no secondary archive available. 

5.2.3.3 Swarm and External Archive Diversity Keeping 

Other than keeping diversity in the swarm to prevent premature convergence, the 

diversity of the external archive should be kept to cover the true Pareto frontier as larger 

range as possible. Most of existing literature adopts mutation or turbulence operator to 

prevent premature convergence (Alvarez-Benitez et al., 2005; Coello Coello & Lechuga, 

2002; Coello Coello et al., 2004; Daneshyari & Yen, 2011; Fieldsend & Singh, 2002; Ho 

et al., 2005; Li, 2003; Liu et al., 2007; Liu et al., 2008; Mostaghim & Teich, 2003a, 

2003b, 2004; Nebro et al., 2009a; Raquel & Naval Jr., 2005; Reyes-Sierra & Coello 

Coello, 2005; Srinivasan & Seow, 2003; Tripathi et al., 2007; Villalobos-Arias et al., 

2005; Wang & Yang, 2009, 2010). The diversity of the swarm could be kept through the 

selection of leaders as discussed in section 5.2.3.2, topology definition, PSO parameter 

tuning (Reyes-Sierra & Coello Coello, 2006), and some techniques discussed in section 

5.2.3.1. 

5.3 AMOPSO Algorithm 

It is observed that the basis (PSO algorithm) in existing multi-objective PSOs 

may not be able to simultaneously handle diverse functions with different properties and 

may suffer from the premature convergence. This may be a reason why multi-objective 

PSO is not guaranteed to be more effective than other MOEAs. In this chapter, an 
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augmented PSO algorithm for multi-objective optimization is developed, termed 

AMOPSO. In the AMOPSO, two local searches are stuided: a non-uniform mutation 

based method (Michalewicz, 1996) which has good exploration capability may be 

preferred by multi-modal functions and a sub-gradient method (Boyd, 2010) may be 

preferred by uni-modal functions due to its good exploitation and quickly finding local 

optimum capability. Next, Cauchy mutation operator (Andrews, 2006) is incorporated to 

prevent premature convergence. Furthermore, an adaptive parameter tuning is developed 

to enhance the robustness of PSO and further improve its performance in terms of 

solution quality and/or convergence speed. Therefore, it is expected that extending this 

generalized and robust PSO to MOPSO which may outperform and/or be comparable 

with other MOPSOs/MOEAs. 

The AMOPSO (shown in Figure 14) has five modules: (1) PSO module: The 

swarm is randomly initialized with the PSO operator being employed to update the 

swarm. (2) Bi-Local searches module (see section 5.3.1): two local search methods (non-

uniform mutation based method and sub-gradient method) are implemented. At each 

iteration, an appropriate local search method will be triggered based on the dynamic 

selection criteria. The initial local search method is the non-uniform mutation based 

method (ls_indicator=0). (3) Archive module (see section 5.3.2): the external archive is 

updated and followed by updating pBest and gBest for each particle. (4) Mutation module 

(see section 5.3.3): the mutation operator is used to update one randomly selected 

particle. (5) Parameter tuning module (see section 5.3.4): the three parameters for one 

randomly selected particle will be changed by the adaptive parameter tuning mechanism. 

The algorithm will stop if the stopping criterion is satisfied.  
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Figure 14   Flowchart of AMOPSO (―LS1‖: non-uniform mutation-based method; ―LS2‖: 

sub-gradient method) 

5.3.1 Local Searches 

A weighted sum objective function f is randomly generated to select a solution to 

be improved by the bi-local searches method. 

 
1

M

m mm
f w f


   (5.4) 
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where  

 
1

' 0.5

0 ' 0.5 and randi( )

1 ' 0.5 and randi( )=

M

m mm

m

r r r

w r M m

r M m


 


   





 (5.5) 

rm and r’ are a uniform random number from (0, 1) and m=1,…,M, randi(M) generates a 

integer number between 1 to M. The weights generated by Eq. (5.5) could balance the 

search ability on both the boundary and middle region of the Pareto frontier, and thus 

promote diversity in the Pareto frontier. Two local search approaches are studied to 

improve the current best solution i

gx  which is defined as 

   1argmini i

g j P jf x x  (5.6) 

The non-uniform mutation based method (Michalewicz, 1996) is good at 

searching the solution space uniformly (exploration) at the early stage and very locally 

(exploitation) at the later stage (Zhao, 2011). The non-uniform mutation based method 

has been demonstrated to have the merits of large jumping (exploration) and fine-tuning 

(exploitation) (Zhao, 2011; Zhao et al., 2007). In addition, the non-uniform mutation 

based method does not require the problem instance to have analytical functions. The 

second local search method is the sub-gradient method (Boyd, 2010) which is an iterative 

method for solving convex minimization problems and is also applicable for non-convex 

problems. Like gradient based methods, the sub-gradient method exhibits good 

exploitation capability around the neighborhood of the local or global optimum (Plevris 

& Papadrakakis, 2010). The sub-gradient method for unconstrained problems is 

equivalent to the gradient based method when the objective function is differentiable. 

In the non-uniform mutation based method, the dth dimension of the current best 

solution i

gx  is randomly picked to be mutated to generate a new solution as 
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where i is the current iteration number of PSO; Ud and Ld are the upper and lower bounds 

of ,

i

g dx ; r is a uniform random number from (0, 1). The function Δ(i,y) is defined as 

     1
, 1

i I
i y y 


     (5.8) 

where ρ is a uniform random number from (0, 1); I is the maximum number of iterations 

for PSO. In the sub-gradient method, a new solution 'i

gx  is generated as 

 'i i i

g g i g x x g  (5.9) 

where i

gg  is the sub-gradient of the function f; 0.61i i  is the step size used in this 

chapter. Solution 'i

gx
 
generated by Eq. (5.9) may be ineffective (infeasible or local 

exploitation) at the beginning of PSO iterations. Therefore, one additional solution ''i

gx  is 

generated by  

 
 

2

''
4

i
g ggi i

g g i i

g




 
U Lg

x x
g

 (5.10) 

if  2.8 2expr i I  , where Ug and Lg are the upper and lower bounds of i

gx ; r is a 

uniform random number from (0, 1); i is the current iteration number of PSO; I is the 

maximum number of iterations for PSO. 

The exploration ability of the non-uniform mutation based method benefits 

AMOPSO on multi-modal functions, but may slow the convergence speed on uni-modal 

functions. The sub-gradient method is good at exploiting the search space, but tends to be 

trapped in the local optimum for some functions. Therefore, a dynamic selection 

mechanism is introduced to balance the exploration and exploitation capability of 
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AMOPSO. When the current local search method is not able to improve i

gx , the 

alternative local search method is triggered for the next iteration. The final solution from 

local search replaces the current best solution i

gx  if it is better than i

gx
 
in terms of Eq. 

(5.4), otherwise it replaces the current worst solution evaluated by Eq. (5.4) if it is better 

than the worst solution. 

5.3.2 Archive and Leader Update 

At iteration i, the external archive and particles‘ leaders will be updated after 

local search. Particle i

jx
 
is discarded if it is dominated by any solutions in the external 

archive. Otherwise it will be added into the external archive and all the solutions in the 

external archive which are dominated by i

jx
 

should be removed from the external 

archive. The first Nmax (capacity of the external archive) non-dominated solutions in the 

external archive which have large crowding distance values will be kept in the archive 

when the size of the external archive exceeds Nmax. The pBest ( i

jp ) for particle j is 

updated as 
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The gBest ( ,

i

g jp ) for particle j is updated as 
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where 
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random(A) means randomly selecting a solution from archive A; f‘ is a randomly 

generated weighted sum objective function; N is the archive size; rm is a uniform random 

number from (0, 1) and m=1,…,M. Please note all the P particles in the swarm use the 

same f‘ function to select gBest. 

5.3.3 Cauchy Mutation 

To keep the diversity of swarm, in hopes of accelerating the converging speed 

(non-premature), the Cauchy mutation operator is adopted which is demonstrated to be 

able to assist the particle by having a large jump out of its local optimum (Andrews, 

2006). At iteration i, the dth dimension of a randomly selected particle j will be mutated as 

    , ,' 0.1i i i

j d j d d dx x cauchy U L      (5.14) 

where Ud and Ld are the upper and lower bounds of ,

i

j dx ; and ηi is the mutation scale 

parameter which is defined as 

   2.61 2max exp ,0.1i i I    (5.15) 

5.3.4 Adaptive Tuning 

As discussed in (Yao et al., 1999), the large jumps from Cauchy mutation may be 

detrimental when the current search position is close to the neighborhood of the global 

optimum. Therefore, the distance between one randomly selected particle i

jx  and its 

gBest ,

i

g jp
 

is minimized. Taking i

jw , 1,

i

jc  and 2,

i

jc  as decision variables, a convex 

optimization problem is formulated as: 
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The sub-gradient method (Boyd, 2010) is employed to solve the convex 

optimization problem formulated in Eq. (5.16). i

jw , 1,

i

jc , and 2,

i

jc  could be updated as 

described in the following equations 

 
1 1 1

j

i i i i

j j j ww w g     (5.17) 

 
1,

1 1 1

1, 1, j

i i i i

j j j cc c g     (5.18) 

 
2,

1 1 1

2, 2, j

i i i i

j j j cc c g     (5.19) 

where 1i

j   and 
1

j

i

wg 
 are the step size and sub-gradient of the objective function in Eq. 

(5.16) at iteration i for particle j. Since the objective function in Eq. (5.16) is derivable, 

the derivative of 1i

distf   evaluated at 1i

jw   is used as 
1

j

i

wg 
. The optimal step size when the 

optimal value *

distf  of the convex objective function is known is Polyak‘s step size (Boyd, 

2010) which is computed as 

         1, 2,

2 2 2
1 1 * 1 1 1

j j j

i i i i i

j dist dist w c cf f g g g          (5.20) 

where the optimal value *

distf  is always 0. 

5.4 Experimental Analysis 

Nineteen test problems are collected from the literature (Huband et al., 2006) 

including five ZDT (Zitzler-Deb-Thiele) problems, seven DTLZ (Deb-Thiele-Laumanns-

Zitzler)-2D problems and seven DTLZ-3D problems. The formulations for these nineteen 

test problems are listed in Appendix B. Please note both ZDT and DTLZ problems are 

widely used as benchmark multi-objective problems in the EA literature (Huband et al., 

2006). 

In the experiments, the problem name, dimension (D), search range, property of 

Pareto frontier, and objective property are listed in Table 27~29. SGFE is determined as 
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the total number of floating point operations (FLOP) for the D-dimensional sub-gradient 

calculations divided by the floating point operations (FLOP) of all the objective function 

evaluation. 

  ,1 1 1m d m

M D M

g fm d m
SGFE ceil FLOP FLOP

  
     (5.21) 

where ceil(.) rounds the element to the nearest integer towards infinity; FLOP is the 

output of ―flops‖ function in MATLAB®. 

5.4.1 Parameter Settings for the Comparison Study 

The detailed algorithms with parameter settings are: 

1) NSGA-II (Deb et al., 2002): population size is 100; crossover probability is 

0.9; mutation probability is 1/D; crossover operator is simulated binary crossover (SBX); 

mutation operator is polynomial mutation; selection operator is binary tournament 

selection; distribution indexes for crossover and mutation operators are 20c   and 

20m  . 

2) PAES (Knowles & Corne, 1999): population size is 1; mutation probability is 

1/D; mutation operator is polynomial mutation; the number of subdivisions of the space 

in the grid is 5. 

3) SPEA2 (Zitzler et al., 2001): population size is 30; crossover probability and 

operator, mutation probability and operator, selection operator, and distribution indexes 

are the same as NSGA-II (Deb et al., 2002). 

4) MOCell (Nebro et al., 2009b): population size is 30; feedback number is 20; 

crossover probability and operator, mutation probability and operator, selection operator, 

and distribution indexes are the same as NSGA-II (Deb et al., 2002). 

5) MOPSO (Coello Coello et al., 2004): population size is 30; 10 divisions for 

the adaptive grid; c1=c2=1.4962; w=0.7298.  
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6) OMOPSO (Reyes-Sierra & Coello Coello, 2005): population size is 30; c1, 

c2=random(1.5, 2.0); w=random(0.1, 0.5). 

7) MOCLPSO (Huang et al., 2006): population size is 30; learning probability Pc 

is 0.1; elitism probability Pm is 0.4; c1=c2=2.05; w=0.729. 

8) 2LB-MOPSO (Zhao & Suganthan, 2011): population size is 30; # of bins is 

10; # of count is 5; c1=c2=2.05; w=0.729. 

9) AMOPSO: population size is 30; adaptively change c1, c2, and w. 

Additional parameter settings for the eight MOO algorithms are the same as 

(Coello Coello et al., 2004; Deb et al., 2002; Huang et al., 2006; Knowles & Corne, 1999; 

Nebro et al., 2009b; Reyes-Sierra & Coello Coello, 2005; Zhao & Suganthan, 2011; 

Zitzler et al., 2001). 

5.4.2 Performance Metrics 

In the experiments, the maximum number of function evaluations is set to be 

30,000. For all test problems, the algorithms carry out 30 independent runs. Three metrics 

are adopted from (Goh & Tan, 2007) to evaluate the performance. All these three metrics 

are calculated based on normalized objective value and a set of reference points which is 

available on (Durillo & Nebro, 2011) is used as true Pareto frontier (PF*). 

1) Proximity Indicator: generational distance (GD) is a metric to measure the gap 

between the true Pareto frontier (PF*) and the approximated Pareto frontier (PF). GD is 

computed as 

 

1 2

2

1

1 PFn

i

iPF

GD d
n 

 
  

 
  (5.22) 

where nPF is the number of solutions in PF; di is the Euclidean distance (in objective 

space) between the ith member of PF and its nearest member of PF*. A low value of GD 

is preferred, which reflects a small gap between PF and PF*. 
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2) Diversity Indicator: a modified maximum spread (MS) is a metric to measure 

how well the PF* is covered by PF. MS is computed as 

    
1 2

2
max max min min

max min
1

max min , max , ,01 M
m m m m

m m m

f F f F
MS

M F F

      
    

  (5.23) 

Where max

mF and min

mF is the maximum and minimum value of the mth objective in PF*;

max

mf and min

mf is the maximum and minimum value of the mth objective in PF. A large 

value of MS is preferred, which reflects that a large area of PF* is covered by PF. 

3) Distribution Indicator: spacing (S) is a metric to measure how evenly the non-

dominated solutions are distributed along the PF. S is computed as 
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1 1

1 1 1
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   (5.24) 

where nPF is the number of solutions in PF; di is the Euclidean distance (in objective 

space) between the ith member of PF and its nearest member of PF. A small value of 

spacing is preferred, which reflects that the members in PF are uniformly distributed. 

The value is the smaller the better for generational distance (GD) and spacing 

(S); the value is the larger the better for maximum spread (MS). 

5.4.3 Comparison Experiments 

5.4.3.1 ZDT Problems 

In the first set of experiments, five two-objective ZDT problems are studied 

(Table 27). The algorithm performances on the three metrics for ZDT problems are 

shown in Figure 15. The horizontal axis is the name of each algorithm (the first three 

characters are used to represent the algorithm), and the vertical axis is the value of each 

metric. Please note ―U‖ and ―M‖ in the last column of Table 27 means uni-modal and 

multi-modal respectively.  
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Table 27   ZDT problems 

Name Dimension 

D 

Search range Frontier 

property 

Objective 

property 

ZDT1 30 [0,1]D Convex f1: U; f2: U 

ZDT2 30 [0,1]D Concave f1: U; f2: U 

ZDT3 30 [0,1]D Disconnected f1: U; f2: M 

ZDT4 10 [0,1] for x1, [-5,5] for x2,…,D Convex f1: U; f2: M 

ZDT6 10 [0,1]D Concave f1: M; f2: M 
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(a)                                           (b)                                           (c) 

Figure 15   Algorithm performance in (a) GD, (b) MS, (c) S for ZDT problems 

In terms of generational distance (GD) which measures solution accuracy, the 

five multi-objective PSOs except MOPSO are comparable with the four MOEAs on 

ZDT1, ZDT2, ZDT3 and ZDT6, and the five multi-objective PSOs underperform the four 

MOEAs on ZDT4. MOPSO is the worst algorithm among these nine algorithms. 

AMOPSO outperforms the four MOEAs on ZDT1, ZDT3, and ZDT6, is comparable with 

MOCell on ZDT2, and is inferior to three MOEAs on ZDT4 problem. AMOPSO 

outperforms the other four multi-objective PSOs on ZDT1, ZDT3, ZDT4 and ZDT6, and 

is comparable with 2LB-MOPSO on ZDT2. The higher solution accuracy of AMOPSO is 

benefited by the more generalized and robust PSO basis. 

On the metric of maximum spread (MS) which measures diversity in the Pareto 

frontier, the five multi-objective PSOs except MOPSO are comparable with the four 

MOEAs on ZDT1, ZDT2, ZDT3 and ZDT6, and the five multi-objective PSOs 

underperform the four MOEAs on ZDT4. MOPSO is the worst algorithm among these 

nine algorithms. AMOPSO is comparable with the four MOEAs on four ZDT problems 

except ZDT4. AMOPSO is the best algorithm among the five MOPSOs on all the five 

ZDT problems. As discussed in section 5.3.1, the weights generated by Eq. (5.5) and 

effectiveness of the local search methods may balance the search on both the boundary 

and middle region of the Pareto frontier, and thus promote diversity in the Pareto frontier. 
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For spacing (S) which measures the distribution of non-dominated solutions on 

the Pareto frontier, the five multi-objective PSOs are comparable with NSGA-II and 

PAES, and underperform SPEA2 and MOCell. Both MOCell and SPEA2 outperform 

AMOPSO on all the five problems. This may be the consequence of the replacement and 

feedback procedure between population and archive in MOCell, and a more complicated 

archive truncation and refill strategy implemented in SPEA2. The simple leader selection 

approach and non-dominated retaining and spreading technique implemented in 

AMOPSO could not guarantee a good performance on the metric of spacing. AMOPSO 

underperforms OMOPSO on the ZDT1, ZDT2 and ZDT3.  

ZDT4 problem has a severe multi-modal landscape and large number of local 

fronts, and is proved to be very difficult for solving. The five multi-objective PSOs are 

inferior to the four MOEAs on this problem, which may be due to PSO‘s fast 

convergence speed.  

5.4.3.2 DTLZ-2D Problems 

In the second set of experiments, seven two-objective DTLZ-2D problems are 

studied (Table 28). The algorithm performances on the three metrics for DTLZ-2D 

problems are shown in Figure 16. The horizontal axis is the name of each algorithm (the 

first three characters are used to represent the algorithm), and the vertical axis is the value 

of each metric. Again, the value is the smaller the better for generational distance (GD) 

and spacing (S); the value is the larger the better for maximum spread (MS). 

Table 28   DTLZ-2D problems 

Name Dimension D Search range Frontier property Objective property 

DTLZ1-2D 30 [0,1]D Linear f1: M; f2: M 

DTLZ2-2D 30 [0,1]D Concave f1: U; f2: U 

DTLZ3-2D 30 [0,1]D Concave f1: M; f2: M 

DTLZ4-2D 30 [0,1]D Concave f1: U; f2: U 

DTLZ5-2D 30 [0,1]D Concave f1: U; f2: U 

DTLZ6-2D 30 [0,1]D Concave f1: U; f2: U 

DTLZ7-2D 30 [0,1]D Disconnected f1: U; f2: M 
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Figure 16   Algorithm performance in (a) GD, (b) MS, (c) S for DTLZ-2D problems 

In terms of generational distance (GD) which measures solution accuracy, the 

four multi-objective PSOs except AMOPSO underperforms the four MOEAs on six 

DTLZ problems except DTLZ6. AMOPSO especially outperforms others on DTLZ1 and 

DTLZ3 which have two multi-modal objective functions. AMOPSO outperforms the four 

MOEAs on five DTLZ problems, and is comparable with SPEA2 and MOCell on DTLZ2 

and DTLZ5. AMOPSO is the best algorithm among the five multi-objective PSOs. 

MOPSO and MOCLPSO are inferior to the other three multi-objective PSOs. This may 

be due to the fact that the standard PSO algorithm in MOPSO is not able to effectively 
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handle multi-dimensional and multi-modal functions, and CLPSO in MOCLPSO is 

developed for multi-modal functions. 

On the metric of maximum spread (MS) which measures diversity in the Pareto 

frontier, seven algorithms except PAES and MOPSO are comparable for six problems 

except DTLZ4. NSGA-II, OMOPSO, MOCLPSO and 2LB-MOPSO cover 100% of the 

true Pareto frontier for DTLZ4. AMOPSO achieves 100% coverage for six problems 

except DTLZ4. 

For spacing (S) which measures the distribution of non-dominated solutions on 

the Pareto frontier, the five multi-objective PSOs underperform and/or are comparable 

with the four MOEAs on six DTLZ problems except DTLZ6. AMOPSO outperforms the 

four MOEAs on DTLZ1, DTLZ3 and DTLZ6. AMOPSO underperforms MOCell and 

SPEA2, and is comparable with NSGA-II and PAES on the other four problems. 

AMOPSO is the best algorithm among the five multi-objective PSOs on DTLZ1, DTLZ3 

and DTLZ4, and is inferior to OMOPSO on the rest four problems. The ε-dominance 

based archive maintaining and crowding distance based leader selection strengthens 

OMOPSO in terms of spacing metric.  

5.4.3.3 DTLZ-3D Problems 

In the third set of experiments, seven three-objective DTLZ-3D problems are 

studied (Table 29). The algorithm performances on the three metrics for DTLZ-3D 

problems are shown in Figure 17. Again, the value is the smaller the better for 

generational distance (GD) and spacing (S); the value is the larger the better for 

maximum spread (MS). 

Table 29   DTLZ-3D problems 

Name Dimension D Search range Frontier property Objective property 

DTLZ1-3D 30 [0,1]D Linear f1: M; f2: M; f3: M 

DTLZ2-3D 30 [0,1]D Concave f1: U; f2: U; f3: U 

DTLZ3-3D 30 [0,1]D Concave f1: M; f2: M; f3: M 
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DTLZ4-3D 30 [0,1]D Concave f1: U; f2: U; f3: U 

DTLZ5-3D 30 [0,1]D Concave f1: U; f2: U; f3: U 

DTLZ6-3D 30 [0,1]D Concave f1: U; f2: U; f3: U 

DTLZ7-3D 30 [0,1]D Disconnected f1: U; f2: U; f3: M 

 

 

 

 

 

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-1

10
0

10
1

10
2

10
3

DTLZ1-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
DTLZ1-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-3

10
-2

10
-1

10
0

DTLZ1-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-2

10
-1

DTLZ2-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DTLZ2-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-4

3.72 3.81 3.70

DTLZ2-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-1

10
0

10
1

10
2

10
3

DTLZ3-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

0.7

0.75

0.8

0.85

0.9

0.95

1
DTLZ3-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-3

10
-2

10
-1

10
0

10
1

DTLZ3-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-8

10
-6

10
-4

10
-2 3.73

3.55

3.67

DTLZ4-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DTLZ4-3D

NSG PAE SPE MOC MOP OMO MCL 2LB AMO

10
-10

10
-5

DTLZ4-3D



  122 

 

 

 

 

                       (a)                                          (b)                                             (c) 

Figure 17   Algorithm performance in (a) GD, (b) MS, (c) S for DTLZ-3D problems 

In terms of generational distance (GD) which measures solution accuracy, the 

four multi-objective PSOs except AMOPSO generally underperform the four MOEAs on 

six DTLZ problems except DTLZ6. AMOPSO outperforms the four MOEAs on four 

DTLZ problems, underperforms the four MOEAs on DTLZ2 and DTLZ7, and is 

comparable with three MOEAs except PAES on DTLZ4. It is observed that AMOPSO is 

the most accurate algorithm among the five MOPSOs for all the seven problems except 

DTLZ4 (underperforms MOPSO) and DTLZ7 (underperforms MOPSO, MOCLPSO). 
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On the metric of maximum spread (MS) which measures diversity in the Pareto 

frontier, AMOPSO performs better than and/or the same as other algorithms on six 

problems. AMOPSO is inferior to NSGA-II, OMOPSO, MOCLPSO, 2LB-MOPSO on 

DTLZ4. 

For spacing (S) which measures the distribution of non-dominated solutions on 

the Pareto frontier, the four multi-objective PSOs except AMOPSO generally 

underperforms the four MOEAs on six DTLZ problems except DTLZ6. AMOPSO 

outperforms the four MOEAs on DTLZ1, DTLZ3 and DTLZ6, underperforms SPEA2 

and MOCell on the rest four problems. AMOPSO outperforms and/or is comparable with 

the other four multi-objective PSOs on the seven problems except underperforms 

MOPSO on DTLZ4 and DTLZ7. 

5.5 Conclusions 

In this chapter, an augmented PSO algorithm for multi-objective optimization 

termed as AMOPSO is developed. The bi-local searches method is employed to handle 

diverse functions with different properties. The diversity of swarm is maintained by a 

Cauchy mutation operator. By incorporating an adaptive parameter tuning, the AMOPSO 

is able to improve the robustness and performance of PSO. The experiments conducted in 

this chapter demonstrate that AMOPSO significantly outperforms the existing 4 multi-

objective PSOs and 3 representative MOEAs, and outperforms MOCell. 

In this chapter, it is observed that AMOPSO performs poor in terms of spacing, 

which may be due to its simple leader selection and non-dominated retaining and 

spreading approaches. A more complicated leader selection and archive maintenance 

strategy should be investigated to enhance AMOPSO. Some complex mathematical 

multi-objective optimization problems such as shifted, rotated, noisy problems, and 

complex engineering problems such as product design, building energy system operation 
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decisions (Hu et al., 2012), transportation problems should be used to test the 

effectiveness of AMOPSO. 
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Chapter 6 

DECENTRALIZED OPERATION DECISIONS FOR SMART BUILDING CLUSTER 

USING A PARTICLE SWARM OPTIMIZATION 

It is becoming urgent critical to develop a decentralized decision framework 

modeling the coordination among a cluster of buildings to obtain Pareto decisions as the 

emerging technology in smart building and smart grid. The smart grid enables bi-

directional communication between the power gird and smart buildings, and the building 

could use other buildings which are connected with this building by the smart grid as a 

local energy buffer. Therefore, in chapter 2, a Memetic algorithm (MA) based decision 

framework is developed which is demonstrated to be capable of deriving the Pareto 

solutions for the building cluster in a decentralized manner, and thus reduce energy cost 

for the building cluster. This chapter attempts to improve the computational performance 

of the decision framework by replacing the MA with a multi-objective particle swarm 

optimization (PSO) presented in chapter 5. The experimental result demonstrates that the 

AMOPSO based decision framework is able to improve the computational performance 

of the decision framework. The multi-objective PSO based framework is capable for 

hourly operation decisions which are able to improve energy efficiency and thus achieve 

more energy cost savings for the smart buildings. 

6.1 Introduction 

In the United States, buildings use approximately 70% of total electricity usage 

and emit approximately 40% of greenhouse gases (GHG) annually (Kleissl & Agarwal, 

2010). The building industry attempts to design an intelligent building termed as ―smart 

building‖ (Hoffmann, 2009) which is able to meet the environment sustainability goal, 

keep occupants safe and comfortable, reduce the energy consumption and cost (Chen et 

al., 2009; Hoffmann, 2009). Although energy efficient building materials and appliances 
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in the smart buildings are capable for energy demand reduction, it is still not sufficient to 

satisfy requirements of smart buildings due to ineffective operation strategies for those 

efficient appliances (Chen et al., 2009; Hoffmann, 2009). Therefore, intelligent and 

effective operation strategies which could achieve greatest energy efficiency are urgently 

needed for smart buildings.    

The initial study of building operation and control research focuses on utilizing 

building thermal mass to achieve cost savings. Pre-cooling building through optimally 

controlling building temperature set-points can significantly reduce energy cost (Braun, 

2003; Braun et al., 2001; Chen, 2001; Henze et al., 2010; Keeney & Braun, 1996). For 

example, the optimal strategy for building thermal mass determined by a dynamic 

programming and on-line simulation based technique is able to significantly reduce 

energy consumption and operating cost (Chen, 2001). A comprehensive review on 

building thermal mass operation strategy research is provided in (Braun, 2003). A near-

optimal building thermal mass control is derived based on full factorial analyses of the 

important parameters impacting the building thermal mass control (Henze et al., 2010).  

As the development in thermal storage techniques, extensive researches 

investigate utilizing both the building thermal mass and thermal storage to reduce energy 

cost. Most of the operation strategies which are derived by mathematical programming, 

simulation and reinforcement learning approaches are demonstrated to outperform the 

conventional control strategy such as chiller-priority and storage-priority strategies 

(Braun, 2007; Drees & Braun, 1996; Henze et al., 2005; Henze & Schoenmann, 2003; 

Lee et al., 2009; Liu & Henze, 2006a, 2006b; Liu & Henze, 2007; Sun et al., 2006). For 

example, the heuristic near-optimal control strategy developed in (Braun, 2007; Sun et 

al., 2006) is based on the optimal operation strategy obtained by dynamic programming. 

A closed-loop optimization technique is employed to derive optimal control strategy in 
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(Henze et al., 2005). Some meta-heuristic algorithms (e.g., particle swarm optimization 

(Lee et al., 2009)) are used to obtain optimal operation strategy. The rule based near-

optimal control strategy is determined from monthly simulation of cooling system (Drees 

& Braun, 1996). The model-free reinforcement learning control strategy is studied in 

(Henze & Schoenmann, 2003; Liu & Henze, 2007) and the hybrid reinforcement learning 

control approaches combining model-based with model-free method are presented in (Liu 

& Henze, 2006a, 2006b). 

Recent research is interested in using optimization techniques to study energy 

generation system design, planning and control, and expects that integrating the energy 

generation system to building could significantly reduce energy consumption and cost. 

For example, the chance constraint programming is employed to optimize the battery-

integrated diesel generator system design (Arun et al., 2009). A mixed integer linear 

programming problem is solved to derive short-term scheduling for hydroelectric 

generation units (García-González et al., 2007). A hybrid energy system which consists 

of a battery, wind generator and photovoltaic module is designed and controlled by a 

simulation-optimization program (Manolakos et al., 2001). The long-term planning 

strategy for single-period combined heat and power system is derived by a branch and 

bound algorithm in (Rong & Lahdelma, 2007), and a modified dynamic programming 

approach is applied on multi-period combined heat and power system planning (Rong et 

al., 2008a). The short-term production plans for hydropower system are developed using 

a multi-stage mixed-integer linear stochastic programming (Fleten & Kristoffersen, 

2008). Several heuristic algorithms are studied in (Kjeldsen & Chiarandini, 2012) to 

derive long-term strategic planning for cogeneration plants. 

While promising, it is observed that in the smart buildings, there are several sub-

systems (e.g., heating, ventilating and air conditioning (HVAC), energy storage system, 
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energy generation system) integrated together. Secondly, the smart grid (Parks, 2009) 

enables bi-directional communication between the power gird and smart buildings, and 

the building could use other buildings which are connected with this building by the 

smart grids as a local energy buffer (SIEMENS, 2009). Therefore, there is an urgent need 

to develop a decentralized decision framework modeling the coordination among a 

cluster of buildings to obtain Pareto decisions which enable tradeoff analysis. In chapter 

2, a decision model based on a building cluster simulator with each building modeled by 

energy consumption, storage and generation sub modules is developed. Assuming each 

building is interested in minimizing its energy cost, a bi-level operation decision 

framework based on a Memetic algorithm (MA) is developed to study the tradeoff in 

energy usage among the group of buildings. The MA based framework is capable of 

deriving the Pareto solutions for the building cluster in a decentralized manner. However, 

it is not able to study the hourly (or even less) basis operation decisions due to its 

computational issue. In this chapter, a multi-objective particle swarm optimization (PSO) 

(see chapter 5) based decentralized decision framework is developed to improve 

computational performance of the decision framework, and study hourly operation 

decisions for the integrated smart building cluster. 

This chapter is organized as follows: section 6.2 formally defines the decision 

problem; the description of PSO and the AMOPSO based decision framework is 

presented in section 6.3; followed by the detail implementation of the decision 

framework in section 6.4. Section 6.5 reports the experimental results, and conclusions 

are drawn in section 6.6. 
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6.2 Problem Definition 

The section briefly reviews the integrated building energy system simulator and 

decision model. The simulator is introduced in section 6.2.1, followed by the decision 

model presented in section 6.2.2. 

6.2.1 Integrated Building Energy System Simulator 

A simplified building cluster consisting of two different mass level - heavy mass 

(HM) and light mass (LM) buildings is modeled. The two buildings, each having its own 

battery and photovoltaic (PV) panel, share one ice storage system and one base chiller. 

The ice storage system charged by a dedicated chiller is configured in parallel with the 

base chiller. During on-peak hours, the buildings cooling loads are met primarily by the 

ice storage system with the remaining cooling request satisfied by the base chiller. The 

overall schematic of the building energy system configuration is illustrated in Figure 3 

with the arrows denoting the energy flow among each component in the system. The 

simulator is a black-box which is used to evaluate the operation decisions. The decision 

model is explained in the following section. 

6.2.2 Building Energy System Decision Model 

In the decision model, the set-point temperature is controlled by each building. 

The shared ice storage will decide when to be charged or discharged to cool the 

buildings, and how to distribute its discharged cooling energy to each building. The 

decisions will be made for the battery on when to be charged or discharged to provide 

electricity for its served building. The decisions for the photovoltaic collector are 

charging battery, powering building, selling power to grid. The objective for each 

building is to minimize its daily energy cost subject to several constraints: 1) power grid 

capacity constraint (see Eq. (6.2)); 2) building comfort level constraint (see Eq. (6.3)); 3) 

base chiller capacity constraint (see Eq. (6.4)); 4) ice storage state constraint (see Eqs. 
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(6.5)-(6.7)); 5) battery state constraint (see Eqs. (6.8)-(6.9)); 6) PV panel state constraint 

(see Eq. (6.10)).  

Let M be the number of buildings, K be the number of building operation modes 

(Liu & Henze, 2007), Hk be the number of hours in the kth building operation mode, then 

the decisions for shared energy provider or building m (m=1,…,M) at building operation 

mode k (k=1,…,K) are expressed by: 1) a set of continuous variables 
,

m

sp k
T  for set-point 

temperature; 2) a set of integer variables Sis,k for ice storage state (0: dormant; 1: 

charging; 2: discharging); 3) a set of continuous variables m

k
  for percentage of energy 

from ice storage to building m; 4) a set of integer variables 
,

m

bat k
S

 
for battery state (0: 

dormant; 1: charging; 2: discharging); 5) a set of integer variables 
,

m

PV k
S  for PV panel state 

(0: dormant; 1: charging battery; 2: powering building; 3: selling power to grid). The 

objective function for each building (see Eq. (6.1)) and all the constraints (see Eqs. (6.2)-

(6.10)) are written as 

  , , , ,1 1
min  ,   1, ,

kK H m m m m

m p j p j s j s jk j
f R P R P m M

 
     (6.1) 
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M m

p j gridm
P P
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     , ,max ,1 max 0,m m m

bat k bat bat kBI ceil SOC SOC   (6.8) 



  131 

     , , ,min2 max 0,m m m

bat k bat k batBI ceil SOC SOC   (6.9) 

    , ,1 1m m

PV k bat kBI BI  (6.10) 

where ,

m

p jR  and ,

m

s jR  ($/kWh) are the energy purchase and selling price at hour j for 

building m respectively; ,

m

p jP  and ,

m

s jP  (kW) are the purchase energy from power grid and 

selling energy back to the power grid at hour j for building m respectively; Pgrid (kW) is 

the power grid capacity; ,

m

i jT  is the average indoor temperature for building m at hour j; 

mL

iT and mU

iT are 74°F and 81°F in this chapter; ,

m

b jQ  (Btu/h) is the cooling energy 

supplied by the base chiller for building m at time j; Qmax,j is the chiller capacity at time j; 

BI is a group of binary intermediate variables to denote the three state variables ( ,is kS ,

,

m

bat kS , ,

m

PV kS ); ceil(.) rounds the element to the nearest integer towards infinity; SOCis,max 

and SOCis,min are maximum and minimum state of charge for the ice storage; SOCis,k is the 

initial state of charge for ice storage at building operation mode k; ,max

m

batSOC and 

,min

m

batSOC  are maximum and minimum state of charge for building m‘s battery; ,

m

bat kSOC

is the battery‘s initial state of charge for building m at building operation mode k. Please 

refer to chapter 2 for the detail explanation of the decision model. 

6.3 Multi-objective PSO based Decision Framework 

Particle Swarm Optimization (PSO) has attracted much attention and has been 

applied to many engineering and optimization problems in the last decade, for example, 

probabilistic traveling salesman problem (Marinakis & Marinaki, 2010), vehicle routing 

problem (Ai & Kachitvichyanukul, 2009), scheduling problem (Allahverdi & Al-Anzi, 

2006; Liao et al., 2007), sequential ordering problem (Anghinolfi et al., 2011), just to 

name a few. In the PSO with inertia weight (Shi & Eberhart, 1998), the velocity and 

position for each particle j at iteration i are updated according to the following equations 



  132 

    1

1 1, 2 2,

i i i i i i i i

j j j j j j g jw c r c r       v v p x p x  (6.11) 

 1 1i i i

j j j

  x x v  (6.12) 

where j denotes the jth particle in the swarm; D-dimensional vector i

jv  is the velocity of 

the jth particle (  max max,i

j   v v v ), vmax is used to constraint the velocity for each 

particle and is usually set between 0.1 and 1.0 times the search range of the solution 

space (Banks et al., 2007); D-dimensional vector i

jx  is the position of the jth particle; i

jp  

is the best position found so far by the jth particle; i

gp  is the best position found so far by 

the swarm; 1,

i

jr  and 2,

i

jr  represent two independent random numbers uniformly distributed 

on [0, 1]; c1 is the cognitive learning factor which represents the attraction that a particle 

has toward its own success i

jp ; c2 is the social learning factor which represents the 

attraction that a particle has toward its neighbors‘ best position i

gp ; w is the inertia 

weight. Cognitive learning factor c1 impacts the local search ability while the global 

search ability is influenced by the social learning factor c2. Large inertia weight w enables 

particles to move in a high velocity and perform extensive exploration, and small inertia 

weight enhances the exploitation ability (Poli et al., 2007). 

In the bi-level decentralized framework, other than the building agents each 

representing one building with the decision model explained in the section 6.2.2, a 

facilitator agent is introduced aiming to coordinate the buildings to reach converged 

Pareto solutions. Firstly, the facilitator agent classifies the decision variables into local 

variables (X) which are controlled by each building and coupled variables (Y) which are 

jointly controlled by more than one building. Similarly, the constraints are classified into 

local constraints which apply for each building and system constraints which apply for 

the group of buildings. Artificial coupled variables Z are introduced to decompose the 
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decomposable system constraints into separable pieces so that each building can solve 

fully independent sub-problems.  

 

Figure 18   Bi-level decentralized framework based on AMOPSO 

Then a Pareto-based multi-objective particle swarm optimization algorithms 

presented in chapter 5 is employed to search on the coupled decision space (Y, Z). The 

local search module is employed to improve the current best particle in the PSO swarm. 
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The updated decisions are passed to each building agent who attempts to ―optimize‖ its 

own objective over the local variables (X) only and feeds the decisions on local variables 

back to the facilitator agent. Then, the Pareto filter (Loukil et al., 2007) is applied on the 

population to filter out the dominated solution, and the particles‘ leaders ( i

jp , i

gp ) are 

updated. The Cauchy mutation is employed to keep diversity of the swarm and an 

adaptive parameter tuning module is used to adaptively change the three parameters in 

PSO. The AMOPSO based decision framework is illustrated in Figure 18. 

6.4 Implementation of Decentralized Particle Swarm Optimization 

The augmented multi-objective particle swarm optimization (AMOPSO) in 

chapter 5 has been demonstrated to outperform existing representative multi-objective 

evolutionary algorithms (e.g., NSGA-II (Deb et al., 2002), PAES (Knowles & Corne, 

1999), SPEA2 (Zitzler et al., 2001), MOCell (Nebro et al., 2009b)) and multi-objective 

particle swarm optimization algorithms (e.g., MOPSO (Coello Coello et al., 2004), 

OMOPSO (Reyes-Sierra & Coello Coello, 2005), MOCLPSO (Huang et al., 2006), 2LB-

MOPSO (Zhao & Suganthan, 2011)) is employed in the decision framework to locate 

Pareto optimal solutions. The detail implementations of AMOPSO algorithm for building 

operation decisions are provided in the following sections. 

6.4.1 Velocity and Position Update in Particle Swarm Optimization 

Researchers have demonstrated that utilizing the building thermal mass (pre-

cooling building), and shifting the peaking load by using a storage system can 

significantly reduce the energy cost (Braun, 2007; Drees & Braun, 1996; Sun et al., 

2006). In this chapter, the set-point temperature ,

m

sp kT  for building m at building operation 

mode k is initialized as follows: 



  135 

 

 

 

, , ,

, , , ,

, , ,

2  is pre-peak period and ' 0.9

 is pre-peak period and ' 0.9

otherwise2

m L m U m L

sp k sp k sp k

m m L m U m L

sp k sp k sp k sp k

m U m U m L

sp k sp k sp k

T T T r k r

T T T T r k r

T T T r

    


    


  

 (6.13)  

where the uniform random number  , ' 0,1r r  ; ,

m L

sp kT and ,

m U

sp kT are 74°F and 81°F in this 

chapter. 

The state of the ice storage system Sis,k at building operation mode k is initialized 

as follows: 

 ,

1  is pre-peak period and 0.9

2  is on-peak period and 0.9

0 otherwise

is k

k r

S k r




 



 (6.14) 

The percentage of energy m

k
  from ice storage to building m is initialized as follows: 
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1
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otherwise0

M

is km m mm
k
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 (6.15) 

The initial population is generated from the feasible solutions after building agents check 

the feasibility of the tentative solutions. 

The set-point temperature ,

m

sp kT  and percentage of energy m

k
  are updated 

according to Eqs. (6.11)~(6.12). The state of the ice storage system is the most critical 

factor impacting the cost for each building. So here a uniform random number  0,1r 
 
is 

employed to control the convergence speed of the state of the ice storage system. The 

state of the ice storage system will be the same as the state in i

gp  when  5 2expr i I  . 

Otherwise the state of ice storage system will be generated by Eq. (6.14). 

6.4.2 Local Search 

A weighted sum objective function f is randomly generated to select a solution be 

improved by the local search. 
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rm and r’ are uniform random number from (0, 1) and m=1,…,M, randi(M) generates a 

integer number between 1 to M. In AMOPSO, two local search methods (non-uniform 

mutation based method (Michalewicz, 1996) and sub-gradient method (Boyd, 2010)) are 

studied to improve the current best solution i

gx  which is defined as 

   1argmini i

g j P jf x x  (6.18) 

Instead of using bi-local searches in this chapter, these two local search methods 

are combined together. The search direction in the non-uniform mutation based method is 

determined by the gradient descent direction. One dimension of set-point temperature 

,

m

sp kT  or percentage of energy m

k
  in the current best solution i

gx  is randomly picked to be 

mutated to generate a new solution. The set-point temperature for building m at building 

operation mode k is updated as 
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where case 1 includes: 1) building comfort level constraint at building operation mode k 

is infeasible; or 2) building operation mode k is pre-peak period and a random number 

 0,1 0.5r   ; or 3) building operation mode k is not pre-peak period and a random 

number  0,1 0.9r   ; case 2 includes: 1) power grid capacity constraint or base chiller 

capacity constraint at building operation mode k is infeasible; or 2) building operation 
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mode k is pre-peak period and a random number  0,1 0.5r   ; or 3) building operation 

mode k is not pre-peak period and a random number  0,1 0.9r   . The percentage of 

energy from the ice storage system to each building is generated as: 

 
 

 

, ,1
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Mm m m m
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 (6.20) 

where wm is the weight for building m in the weighted objective; and ,

m

p kR  is the average 

power grid purchase price for the building m at building operation mode k. The following 

function is adopted from (Zhao, 2011): 

     
2

1
, 1

i I
i y y 


     (6.21) 

where ρ is a uniform random number from (0, 1). The final solution from local search 

replaces the current best solution i

gx  if it is better than i

gx
 
in terms of Eq. (6.16), 

otherwise it replaces the current worst solution evaluated by Eq. (6.16) if it is better than 

the worst solution. 

6.4.3 Archive and Leader Update 

At iteration i, the external archive and particles‘ leaders will be updated after 

local search. Particle i

jx
 
is discarded if it is dominated by any solution in the external 

archive. Otherwise it will be added into the external archive and all the solutions in the 

external archive which are dominated by i

jx
 

should be removed from the external 

archive. The first Nmax (capacity of the external archive) non-dominated solutions in the 

external archive which have large crowding distance values will be kept in the archive 

when the size of the external archive exceeds Nmax. The pBest ( i

jp ) for particle j is 

updated as 



  138 

 

 

 

 

1

 is dominated by  or 

 and  are non-dominated each other, and >0.5

 dominates  or 

 and  are non-dominated each other, and 0.5

i i

j ji

j
i i

j j
i

j
i i

j ji

j
i i

j j

r

r








 





x p
p

x p
p

x p
x

x p

 (6.22) 

The gBest ( ,

i

g jp ) for particle j is updated as 
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where 

   1 1
'

M M

m m mm m
f r r f

 
    (6.24) 

random(A) means randomly selecting a solution from archive A; f‘ is a randomly 

generated weighted sum objective function; N is the archive size; rm is a uniform random 

number from (0, 1) and m=1,…,M. Please note all the P particles in the swarm use the 

same f‘ function to select gBest. 

6.4.4 Cauchy Mutation 

To keep the diversity of swarm, the Cauchy mutation operator is adopted which 

is demonstrated to be able to assist the particle by having a large jump out of its local 

optimum (Andrews, 2006). At iteration i, the dth dimension of the set-point temperature 

,

m

sp kT  or percentage of energy m

k
  from a randomly selected particle j will be mutated as 

    , ,' 0.1i i i

j d j d d dx x cauchy U L      (6.25) 

where Ud and Ld are the upper and lower bounds of ,

i

j dx ; and ηi is the mutation scale 

parameter which is defined as 

   2.61 2max exp ,0.1i i I    (6.26) 



  139 

6.4.5 Adaptive Tuning 

As large jumps from Cauchy mutation may be detrimental when the current 

search position is close to the neighborhood of the global optimum. Therefore, the 

distance between one randomly selected particle i

jx  and its gBest ,

i

g jp  is minimized. 

Taking i

jw , 1,

i

jc , and 2,

i

jc  as decision variables, a convex optimization problem is 

formulated as: 

   

2
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, 2

2
1 1 1 1 1 1 1 1 1 1 1
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1 2
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x p

x v p x p x p  (6.27) 

The sub-gradient method (Boyd, 2010) employed to solve the convex 

optimization problem formulated in Eq. (6.27). i

jw , 1,

i

jc , and 2,

i

jc  could be updated as 

described in the following equations 

 
1 1 1

j

i i i i

j j j ww w g     (6.28) 

 
1,

1 1 1

1, 1, j

i i i i

j j j cc c g     (6.29) 

 
2,

1 1 1

2, 2, j

i i i i

j j j cc c g     (6.30) 

where 1i

j   and 
1

j

i

wg 
 are the step size and sub-gradient of the objective function in Eq. 

(6.27) at iteration i for particle j. Since the objective function in Eq. (6.27) is derivable, 

the derivative of 1i

distf   evaluated at 1i

jw   is used as
1

j

i

wg 
. The optimal step size when the 

optimal value *

distf  of the convex objective function is known is Polyak‘s step size (Boyd, 

2010) which is computed as 

         1, 2,

2 2 2
1 1 * 1 1 1

j j j

i i i i i

j dist dist w c cf f g g g          (6.31) 

where the optimal value *

distf  is always 0. 
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6.5 Experimental Analysis 

The AMOPSO based framework is applied to study a simple building cluster 

(two buildings) located in the Phoenix, Arizona area. Since Phoenix is known for hot 

summers when energy usage is critically important, July 21, 2009 is studied as an 

example day for the experiments with data from SRP (http://www.srpnet.com), a local 

electricity provider. 

6.5.1 Comparison between MA based Framework and AMOPSO based Framework 

In this experiment, the computational performance of AMOPSO based 

framework and MA based framework is compared. Three building operation modes are 

considered: 1) from midnight to the onset of the on-peak period (0am-1pm); 2) the on-

peak period (1pm-8pm); and 3) from the end of on-peak period to midnight (8pm-0am). 

The capacity of the power grid is assumed to be 15 kW. The heavy mass building applies 

the time-of-use (TOU) plan and the light mass building adopts the SRP EZ-3 option plan. 

In the EZ-3 plan, 3pm-6pm are the peak-hours where the price is much higher than the 

off-peak hours. In the TOU plan, 1pm-8pm are the peak-hours where the price is also 

higher (less than that of EZ-3) than the off-peak hours. During the off-peak hours, the 

price of the EZ-3 plan is relatively lower than that of the TOU plan. Other settings are the 

same as chapter 2. The following parameters of PSO are applied: 1) the PSO population 

size NP is set to 30; 2) the maximal number of iteration I for PSO is 60; 3) the archive 

capacity is 50. 

The Pareto frontier in the single building energy cost performance space obtained 

by the AMOPSO based framework is shown in Figure 19. The MA based Pareto frontier 

is also presented in Figure 19 for comparison. In the decision model, most of the 

computational time is spent on calling simulator to compute building cooling load, 

therefore, the number of simulator call is adopted to measure the computational 



  141 

performance of the MA and AMOPSO based framework. The computational time 

(minutes) on a computer (Intel Core i5 3.1 GHz CPU and 4GB memory) is also recorded. 

Three metrics are adopted from (Goh & Tan, 2007; Pulido & Coello Coello, 2004) to 

evaluate the solution performance of the MA and AMOPSO based framework in Table 

30. All these three metrics are calculated based on normalized objective value, and all the 

non-dominated solutions in the MA based Pareto set and AMOPSO based Pareto set are 

used to approximate the true Pareto frontier (PF*). 

1) Error Ratio: error ratio (ER) is a metric to measure the percentage of solutions 

in the approximated Pareto frontier (PF) that are not members of the true Pareto frontier 

(PF*). ER is computed as 

 
1

PFn

i PFi
ER e n


   (6.32) 

where ei=0 if solution i is a member of PF*, and ei=1 otherwise; nPF is the number of 

solutions in PF. A low value of ER is preferred. 

2) Proximity Indicator: generational distance (GD) is a metric to measure the gap 

between the true Pareto frontier (PF*) and the approximated Pareto frontier (PF). GD is 

computed as 

 

1 2

2

1

1 PFn

i

iPF

GD d
n 

 
  

 
  (6.33) 

where nPF is the number of solutions in PF; di is the Euclidean distance (in objective 

space) between the ith member of PF and its nearest member of PF*. A low value of GD 

is preferred, which reflects a small gap between PF and PF*. 

3) Diversity Indicator: a modified maximum spread (MS) is a metric to measure 

how well the PF* is covered by PF. MS is computed as 
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  (6.34) 

where max

mF and min

mF
 is the maximum and minimum value of the mth objective in PF*;

max

mf and min

mf  is the maximum and minimum value of the mth objective in PF. A large 

value of MS is preferred, which reflects that a large area of PF* is covered by PF. 

 

Figure 19   Pareto frontier obtained by the AMOPSO based decision framework 

Table 30   Comparisons between MA based framework and AMOPSO based framework 

 # of simulator 

calls 

Computational 

time (minutes) 

Error ratio 

(ER) 

Generational 

distance (GD) 

Maximum 

spread (MS) 

MA 19200 ~168 0.3000 0.0145 1.0000 

PSO 1883 ~16 0.3778 0.0107 0.8767 

 

It is observed from Table 30 that AMOPSO based decision framework 

significantly reduces the computational cost (lower number of simulator call) and is more 

accurate than MA based decision framework (smaller value of generational distance). 

However, the AMOPSO based decision framework is poor on metrics of error ratio and 

maximum spread. This is also demonstrated in Figure 19 that AMOPSO based decision 

framework performs poor on the boundary of the Pareto frontier. It is due to the fact that 

small number of iterations reduces the chance of local search method to fine tune the 

search space, and thus to improve the solutions on the boundary. 
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6.5.2 Hourly Decentralized Decision 

In section 6.5.1, it is demonstrated that AMOPSO based decision framework is 

able to significantly improve the computational performance without losing solution 

accuracy. This efficient decision framework enables me to explore hourly operation 

decisions. The Pareto frontiers in the single building energy cost performance space 

obtained by the AMOPSO based decision framework for hourly operation decisions and 

the three modes operation decisions (Liu & Henze, 2007) are demonstrated in Figure 20. 

It is observed that the Pareto frontier under three modes is dominated by the Pareto 

frontier of hourly operation decisions. Refining the decision time scale to hourly basis 

allows buildings to use the storage system more effectively, which is able to significantly 

reduce energy cost, and thus achieve more cost savings. 

 

Figure 20   Hourly decentralized operation decisions 

The minimal single building energy cost and total energy cost under three modes 

decisions and hourly decisions are recorded in Table 31. The cost for the two buildings is 

significantly reduced under hourly decisions. 

Table 31   Energy costs for three modes decisions and hourly decisions 

Decision types HM building cost 

($/day) 

LM building cost 

($/day) 

Total cost 

($/day) 

Three modes decisions 5.0161 8.4502 14.2399 

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4
7

7.5

8

8.5

9

9.5

10

Heavy Mass Building Energy Cost ($/day)

L
ig

h
t 
M

a
s
s
 B

u
il
d

in
g

 E
n

e
rg

y
 C

o
s
t 
($

/d
a

y
)

 

 

three modes decisions

hourly decisions



  144 

Hourly decisions 4.7764 7.4813 12.6390 

 

6.6 Conclusions 

The bi-level decision framework based on Memetic algorithm (MA) presented in 

chapter 2 is demonstrated to be capable of deriving the Pareto solutions for the building 

cluster in a decentralized manner. While promising, the decision framework based on 

MA is computationally expensive, which prohibits its application to hourly (or even less) 

basis operation decisions. In this chapter, a bi-level decision framework based on multi-

objective particle swarm optimization (PSO) is developed which is capable of deriving 

good results with low computational cost to improve the computational performance of 

the decision framework. The hourly operation decision obtained by the AMOPSO based 

decision framework enables the buildings to utilize the storage system in a more efficient 

way, reduce energy waste and improve energy efficiency, and thus reduce the energy 

cost. 

Although the AMOPSO based decision framework is capable for hourly 

decisions for building cluster, the decision framework is under deterministic assumption 

which means the uncertainties exist in weather (e.g., temperature, solar radiation) and 

building models, noises in sensors and meters are not considered. In the next chapter, 

some statistical analysis will be conducted to investigate properties of these uncertainties 

and noises, and then the model calibration techniques (e.g., particle filter (Chen, 2003)) 

are integrated with the decision framework to handle these uncertainties and noises. The 

integrated decision framework is expected to accurately calibrate the decision model by 

using on-line data collected from sensors and meters, and guarantee buildings could 

respond to their dynamic environments. 
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Chapter 7 

ADAPTIVE OPERATION DECISIONS FOR SMART BUILDING CLUSTER 

Due to the complexity of uncertainty analysis, the variety and diversity of 

uncertainties and noises in the building system and environment, less research is 

conducted on developing building operation strategies under uncertainty and noise 

though the importance of this research topic has long existing. In this chapter, an adaptive 

decision framework is developed to derive operation decisions for the smart building 

cluster in responding to dynamic environments by considering uncertainties exist in the 

building (e.g., non-cooling load) and environment (e.g., temperature, solar radiation), 

noises exist in sensors and meters. Let L be the decisions generation time length, l be the 

execution time scale, l’ be the calibration frequency, the adaptive decision framework has 

three stages: 1) decisions generation stage: the decision framework presented in chapter 6 

is employed to obtain the operation decisions for the next future L hours; 2) execution 

stage: the first l hours of the obtained operation decisions will be implemented; 3) 

calibration stage: a Gaussian mixture sigma point particle filter (GMSPPF) algorithm is 

launched to calibrate the building cluster model in a l’ hour frequency. The experimental 

result demonstrates that GMSPPF algorithm is able to accurately calibrate the building 

cluster model, and the adaptive decision framework is able to derive adaptive operation 

decisions for the building cluster which could make the buildings quickly responding to 

the dynamic environment, and achieve more cost savings. 

7.1 Introduction 

In the United States, buildings use approximately 70% of total electricity usage 

and emit approximately 40% of greenhouse gases (GHG) annually (Kleissl & Agarwal, 

2010). Building systems routinely fail to perform as designed (Hicks & von Neida, 2000), 

despite their sophisticated energy management and control systems. Between 4 to 20% of 
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energy used for HVAC (Heating, Ventilating and Air Conditioning), lighting, and 

refrigeration in a building is wasted due to problems associated with systems operations. 

It is estimated that proper building energy load control and operation can lead to up to 

40% utility cost savings (Braun, 1990). 

Extensive researches have been conducted to develop efficient operation 

strategies for building system to reduce energy cost and improve energy efficiency. Pre-

cooling building through optimally controlling building temperature set-points can 

significantly reduce energy cost (Braun, 2003; Braun et al., 2001; Chen, 2001; Henze et 

al., 2010; Keeney & Braun, 1996). As the development in thermal storage technique, 

extensive researches investigate utilizing both the building thermal mass and thermal 

storage to reduce energy cost. Most of the operation strategies which are derived by 

mathematical programming, simulation and reinforcement learning approaches are 

demonstrated to outperform the conventional control strategy such as chiller-priority and 

storage-priority strategies (Braun, 2007; Drees & Braun, 1996; Henze et al., 2005; Henze 

& Schoenmann, 2003; Lee et al., 2009; Liu & Henze, 2006a, 2006b; Liu & Henze, 2007; 

Sun et al., 2006). Recent research is interested in using optimization techniques to study 

energy generation system design, planning and control, and expects that integrating the 

energy generation system to building could significantly reduce energy consumption and 

cost (Arun et al., 2009; Fleten & Kristoffersen, 2008; Manolakos et al., 2001). Hu et al. 

(2012) investigate the operation decisions for the integrated building systems using a 

Memetic algorithm which could reduce energy cost and improve energy sustainability.  

Due to the complexity and highly dynamics of building energy system, the 

challenges to develop an adaptive building operation strategy are:  

1) How to develop an accurate and high fidelity building model for decisions? 
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Past researches show that the accuracy of the building model highly impacts the 

quality of the optimal operation strategies (Liu & Henze, 2004). Liu and Henze (2004) 

investigate the impact of five categories of building modeling mismatch on the 

performance of model-based predictive optimal control of thermal storage with perfect 

prediction of weather conditions, and demonstrate that the mismatch of internal heat gain, 

building construction and energy system efficiency can lead to a significant deviation in 

the optimal operation strategies. Henze et al. (2005) demonstrate that the cost savings for 

the calibrated model are substantial even with imperfect weather forecasts and imperfect 

match building models. The building operation strategy highly depends on the accuracy 

and robustness of the building models. 

Nowadays, three models are implemented to model building energy system: 1) 

―white-box‖ model: requires specification of many physical parameters (Al-Homoud, 

2001; Katipamula & Lu, 2006); 2) ―black-box‖ model: requires a significant amount of 

training data and may not always reflect the actual physical behavior (Aydinalp et al., 

2004; Dong et al., 2005; Ekici & Aksoy, 2009; Mihalakakou et al., 2002; Ozturk et al., 

2004); 3) ―gray-box‖ model: constructs a simplified model with online parameter/state 

estimation to represent the physical behavior of energy system (Braun & Chaturvedi, 

2002; Wen, 2003; Zhou et al., 2008). The accuracy of the ―white-box‖ model is highly 

dependent on the model parameters. Although the accuracy of ―white-box‖ model can be 

improved by real time calibration, it still has more than 20% error in energy consumption 

prediction due to the measurement noise and model imprecision (Pan et al., 2007). The 

quality of ―black-box‖ model is impacted by the accuracy of the training data and 

operation condition coverage of the training data. Although ―gray-box‖ model is robust 

under different operation conditions, its accuracy is also impacted by the measurement 

noises. 
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2) How to predict and quantify uncertainties existing in weather conditions, price 

rate, building parameters and measurements? 

The cost savings and on-peak electrical demand reductions are substantial when 

the weather forecasts are perfect (Henze et al., 2004). Henze et al. (2004) demonstrates 

that the bin predictor gives the smallest errors among TMY2 predictor, same-as-yesterday 

predictor, unbiased random walk predictor and SARIMA predictor. Henze et al. (1997; 

2004) demonstrate that the predictive optimal control strategy outperforms the traditional 

control strategies. Henze et al. (2003b; 1997) summarize that the more accurate the real 

time pricing rate prediction is, the greater cost savings will be achieved. Several 

researches have demonstrated that the solar irradiation follows a Beta distribution (Mefti, 

2003; Youcef Ettoumi et al., 2002), and the wind speed follows a Weibull distribution 

(Lu et al., 2002). 

3) How to develop an effective and efficient algorithm to locate the operation 

strategy under uncertainties? 

The fuzzy theory based mathematical programming (Mavrotas et al., 2008), 

simulation based optimization (Manolakos et al., 2001), chance-constrained 

programming (Arun et al., 2009; Cai et al., 2009), reinforcement learning (Henze & 

Schoenmann, 2003; Liu & Henze, 2006a, 2006b; Liu & Henze, 2007), stochastic 

dynamic programming (Livengood & Larson, 2009) have been employed to derive 

operation strategies under uncertainties. However, these techniques may have some 

issues. For example, the solution quality for the fuzzy theory based mathematical 

programming may be poor; the computation cost for the simulation based optimization is 

high; chance-constrained programming is restricted on the assumption of normal 

distribution for random variables; reinforcement learning is time consuming and its 
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accuracy highly depends on the quality of data; stochastic dynamic programming cannot 

overcome the ‗curse of dimensionality‘ problem. 

To address these issues, this chapter develops an adaptive decision framework to 

study the adaptive operation decisions for the smart building cluster. First, the augmented 

multi-objective particle swarm optimization (AMOPSO) based decision framework 

presented in chapter 6 is employed to study hourly operation decisions for the smart 

building cluster. After implementation of the operation decision, a data fusion technique - 

Gaussian-Mixture Sigma-Point Particle Filter (GMSPPF) (van der Merwe, 2004) is 

launched to calibrate the building model with measurement data obtained from the 

sensors and meters. Then the AMOPSO based decision framework will obtain the 

operation decisions using the calibrated high-fidelity building model. 

This chapter is organized as follows: section 7.2 reviews several existing data 

fusion techniques; the adaptive decision framework is presented in section 7.3; followed 

by the detail descriptions of the building model in section 7.4. Section 7.5 reports the 

experimental results, and conclusions are drawn in section 7.6. 

7.2 Data Fusion Techniques 

The section briefly reviews dynamic state-space model (DSSM) and several date 

fusion techniques for probabilistic inference in DSSM. The DSSM is introduced in 

section 7.2.1, followed by the Kalman filter presented in section 7.2.2, and particle filter 

presented in section 7.2.3. 

7.2.1 Dynamic State-Space Model (DSSM) 

This chapter focuses on the estimation of the states of a discrete-time dynamic 

system given noisy or incomplete measurements. This type of problem could be 

described by a dynamic state-space model (DSSM) which is formulated as 

  1, ,k k k kf x x u v  (7.1) 
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  ,k k khy x n  (7.2) 

where xk is a n-dimension system state vector (unknown) at time k with initial probability 

density p(x0); uk is a l-dimension system input vector (known) at time k; vk is the 

stochastic process noise at time k; f is the state transition function which relates the state 

at the current time k to the next time k+1; yk is a m-dimension measurement vector 

(known) at time k; nk is a p-dimension measurement noise vector (known) at time k; h is 

the measurement function which shows how the current system state relates to the 

measurement. The system states evolve over time as an indirect or partially observed first 

order Markov process according to the conditional probability density p(xk|xk-1), and the 

measurement yk is conditionally independent given the state according to the conditional 

probability density p(yk|xk). The two main data fusion techniques for the system state 

estimation will be reviewed in the following sections. 

7.2.2 Kalman Filter (KF) 

Kalman filter is a well-known and often-used tool for stochastic state estimation 

from noisy measurements (Kalman, 1960). Kalman filter is an optimal, recursive data 

processing or filtering algorithm if both the state transition function f and measurement 

function h are linear, and the process noise vk and measurement noise nk are Guassian 

distributions. Under the linear and Guassian assumptions, the state transition and 

measurement functions could be simplified as 

 
1k k k k  x Ax Bu v  (7.3) 

 k k k y Hx n  (7.4) 

where matrix A is the system state matrix that relates the state at the previous time k-1 to 

the current time k; matrix B relates the control input at previous time k-1 to the current 

time k; matrix H relates the system state to the measurement; the random variables vk and 
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nk are assumed to be white noises with independent normal distributions: 

   0,k kp Nv Q  and    0,k kp Nn R . 

Kalman filter estimates the system states in two stages (Figure 21): 1) time 

update stage: a priori estimate of the system state for the next time is obtained by 

projecting forward the current system states and error covariance; 2) measurement update 

stage: a posteriori estimate of the system states at the current time is obtained by 

incorporating a new measurement into the a priori estimate. 

               Time Update Stage

  A prior state estimation

  A prior state covariance
1

ˆ ˆ
k k k



 x Ax Bu

1

T

k k k



 P AP A Q

             Measurement Update Stage

  Kalman gain

  A posterior state estimation

  A posterior state covariance

 
1

T T

k k k kK


  P H HP H R

 ˆ ˆ ˆ
k k k k kK   x x y Hx

 k k kK  P I H P

 

Figure 21   Two stages in Kalman filter 

Several variants of Kalman filter have been developed to extend the Kalman 

filter for the nonlinear dynamic systems. For example, the extended Kalman filter (EKF) 

(Welch & Bishop, 1995) linearizes the state transition function f and measurement 

function h, and approximates the matrix A and B as the Jacobian matrix of partial 

derivatives of f and h with respect to x. The linearization in EKF may lead to poor error 

covariance updates and in some cases unstable growth of error covariance matrix 

(Evensen, 1992). Instead of linearization, ensemble Kalman filter (EnKF) (Evensen, 

2003) uses Monte Carlo simulation to approximate the nonlinear state transition function 

f. Unlike KF and EKF where the estimation error is analytically propagated from time k-1 

to k, a group of instances, called an ensemble, is used to track the evolution of the system 
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state in EnKF. In EnKF, the mean and covariance of the ensemble, derived from samples, 

are taken as state estimation and error covariance. Other than linearization and sampling 

techniques, Julier et al. (1995) develop the unscented Kalman filter (UKF) which utilizes 

the unscented transformation to estimate the system states and error covariance. UKF is 

demonstrated to consistently outperform the EKF in terms of state estimation accuracy 

and estimate consistency for the same computational cost (Julier et al., 1995; Julier & 

Uhlmman, 1997). Ito and Xiong (2000), Norgaard et al. (2000) develop the central 

difference Kalman filter (CDKF) which is based on the Stirling‘s interpolations formula 

to estimate the system states and error covariance. Both the UKF and CDKF belong to 

the category of sigma point Kalman filter (SPKF) (van der Merwe, 2004). UKF and 

CDKF may be computationally ineffective for high-dimensional dynamic system states 

estimation (van der Merwe, 2004). 

7.2.3 Particle Filter (PF) 

The Gaussian assumption for Kalman filter and its variants does not hold in the 

non-linear non-Gaussian dynamic systems. The particle filter (PF) which uses the 

sequential importance sampling (SIS) technique is developed to handle non-linear non-

Gaussian dynamic system (Carpenter et al., 1999; Gordon et al., 1993). Without 

assumptions for linear and Gaussian, the posterior system states and error covariance are 

approximated by a set of weighted samples in PF. A common problem with SIS particle 

filter is the rapid degeneracy of weights for samples which means only very few particles 

have non-zero importance weights after some iterations (Arulampalam et al., 2002). To 

address this issue, several resampling methods (e.g., sampling-importance resampling, 

residual resampling, etc.) have been implemented to avoid samples with low importance 

weights and multiply samples with high importance weights (van der Merwe, 2004). The 

pseudo-code description of the particle filter with resampling is presented in Table 32. 
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Table 32   Pseudo-code of particle filter with resampling 

For time steps k=0,1,2,… 

   For particle p=1,…,Np, draw the particle 
p

kx  from the proposal distribution  0: 1 0:| ,p p

k k k x x y  

   For particle p=1,…,Np, calculate the importance weight for particle 
p

kx  as 

   
 

1

1

0: 1 0:

| |

| ,

p p p

k k k kp p

k k p p

k k k

p p
w w










y x x x

x x y
 (7.5) 

   For particle p=1,…,Np, normalize the importance weight for particle 
p

kx  as 

1

pNp p p

k k kp
w w w


   (7.6) 

   Multiply/suppress samples 
p

kx  with high/low importance weight 
p

kw  respectively 

   For particle p=1,…,Np, reset 1p p

k k pw w N   

   Output the posterior distribution and system state as 

   1: 1
ˆ |

pN p p

k k k k kp
p w 


 x y x x  (7.7) 

 1: 1
ˆ |

pN p p

k k k k kp
E w x


  x x y  (7.8) 

 

The particle filter‘s performance depends on the selection of the proposal 

distribution  0: 1 0:| ,p p

k k k x x y . Recently, extensive researches focus on improving the 

accuracy of the proposal distribution to improve particle filter‘s performance. For 

example, van der Merwe (2004) develops a sigma point particle filter (SPPF) which uses 

sigma point Kalman filter (SPKF) to accurately estimate the mean and covariance of the 

Gaussian proposal distribution for each particle. For each particle p at iteration k, a SPKF 

algorithm is launched to update the Gaussian proposal distribution for this particle with 

measurement data, and a new particle p

kx  is sampled from the updated proposal 

distribution. The computational cost of SPPF may be high especially for high-

dimensional and complex system states estimation (van der Merwe, 2004). In order to 

reduce the computational cost for the SPPF, van der Merwe (2004) develops a Gaussian 

mixture sigma point particle filter (GMSPPF) which employs a finite Gaussian mixture 

model (GMM) to approximate the posterior density for the system states. At each time k, 

the SPKF is launched to update the mean and covariance of each Gaussian component in 
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the Gaussian mixture model with updated measurement data. A group of new particles is 

sampled from the updated Gaussian mixture model to calibrate the system states at 

current time k and predict the states at next time k+1. The detail description and 

implementation of the SPPF and GMSPPF are provided in (van der Merwe, 2004). Due 

to its good performance in terms of accuracy and computational effectiveness, the 

GMSPPF algorithm is adopted as the data fusion technique in the adaptive decision 

framework. 

7.3 Adaptive Decision Framework 

In this chapter, an adaptive decision framework is developed to study the 

operation decisions for the smart building cluster. Let L be the decisions generation time 

length, l be the execution time scale, l’ be the calibration frequency, the adaptive decision 

framework has three stages: 1) decisions generation stage: the AMOPSO based 

decentralized decision framework presented in chapter 6 is employed to derive Pareto 

operation decisions for the next future L hours; 2) execution stage: one of the Pareto 

operation decisions is selected based on a predefined performance metric (e.g. total 

energy cost), and the first l (l≤L) hours operation decision is implemented; 3) calibration 

stage: the GMSPPF is employed to calibrate the building model with measurement data 

collected in a l’ (l’ ≤l) hour frequency. The updated building model will be incorporated 

into the decision model at the beginning of each decisions generation stage. The three 

stages process in the adaptive decision framework is presented in Figure 22. 
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                                           …...

stage 1: decisions generation (L hours)

stage 2: execution (l hours)

stage 3: calibration (l’ hours)

                                                     ……

stage 1: decisions generation (L hours)

stage 2: execution (l hours)

stage 3: calibration (l’ hours)

step continued ...

time

                                                 ……

stage 1: decisions generation (L hours)

stage 2: execution (l hours)

stage 3: calibration (l’ hours)

…...

 

Figure 22   Three stages process in the adaptive decision framework 

7.3.1 Decisions Generation Stage 

In the last decade, Particle Swarm Optimization (PSO) has attracted much 

attention and has been applied to many engineering and optimization problems. In this 

chapter, the multi-objective particle swarm optimization based bi-level decentralized 

decision framework presented in chapter 6 is adopted to derive Pareto operation decisions 

for the building system. The decision framework presented in chapter 6 has been 

demonstrated to be able to derive hourly operation decisions for the building cluster and 

reduce energy cost for the building cluster. In this chapter, the decision problem studied 

in the decisions generation stage is deterministic. The uncertainties are considered in the 

calibration stage (see section 7.3.3).  

7.3.2 Execution Stage 

In this stage, the operation strategies of first l hours over the L-hour period in the 

decisions generation stage will be implemented. The solutions obtained in the decisions 

generation stage are a set of Pareto solutions, so some utility functions should be adopted 
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in this stage to locate one Pareto solution from the Pareto set as the final decision for the 

first l hours. In this chapter, the utility function is defined as 

 
1

M

mm
F f


   (7.9) 

where M is the number of buildings studied, fm is the energy cost of the L-hour period for 

the mth building. In the execution stage, the solution which minimizes the total energy 

cost (utility function F) for the whole system will be implemented. 

7.3.3 Calibration Stage 

In this stage, the measurement data from sensors and meters will be collected 

every l’-hour to calibrate the current system states and predict the system states for the 

next time. The predicted system states are used as the initial states for the dynamic 

system in the decisions generation stage. The GMSPPF algorithm (van der Merwe, 2004) 

is adopted in the calibration stage. In the GMSPPF, the posterior state density at time k-1 

is approximated by a G-component Gaussian mixture model (GMM) 

    1 1: 1 1 1 1 11
| N ; ,

G g g g

k k k k k kg
p      

 x y x μ P  (7.10) 

and the process and measurement noise densities are approximated by the following I and 

J component GMMs respectively. 

    1 1 1 , 1 11
N ; ,

I i i i

k k k v k ki
p     

 v v μ Q  (7.11) 

    ,1
N ; ,

J j j j

k k k n k kj
p 


 n n μ R  (7.12) 

At each time k, the SPKF will be employed to update the mean and covariance for the 

prior density  1: 1|k kp x y  and posterior density  1:|k kp x y . The detail implementation 

of GMSPPF is provided in (van der Merwe, 2004).  
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7.4 Integrated Building Model and Calibration Model 

7.4.1 Integrated Building Model 

Same as chapter 2, a simplified building cluster consisting of two different mass 

level - heavy mass (HM) and light mass (LM) buildings is modeled. The two buildings, 

each having its own battery and photovoltaic (PV) panel, share one ice storage system 

and one base chiller. The ice storage system charged by a dedicated chiller is configured 

in parallel with the base chiller. During on-peak hours, the buildings cooling loads are 

met primarily by the ice storage system with the remaining cooling request satisfied by 

the base chiller. The overall schematic of the building energy system configuration is 

illustrated in Figure 3 with the arrows denoting the energy flow among each component 

in the system. 

7.4.2 Building Energy System Calibration Model 

The building energy system is a complex dynamic system, and there exist many 

different types of uncertainties in the building system and environment. In this chapter, 

the process uncertainties from three aspects are considered: 1) dry bulb temperature Tdb 

(°F) which is calculated as 

 db db TT T    (7.13) 

where dbT  (°F) is the forecast temperature from the weather station; 
T  is the error 

between the actual temperature and forecast temperature, and is assumed to follow a 

standard normal distribution. 2) clearness index kT which follows a beta distribution 

(Mefti, 2003; Youcef Ettoumi et al., 2002). Given clearness index kT, the total hourly 

solar irradiance on the horizontal surfaces Gth (W/m2) is calculated as 

 
0th TG G k  (7.14) 
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where G0 (W/m2) is the extraterrestrial hourly solar irradiance on the horizontal surfaces. 

3) Pload: building‘s non-cooling electricity load which follows a normal distribution 

(Valenzuela et al., 2000). 

In this chapter, the system states studied in the building energy system are 

summarized in Table 33, and all the available measurements are summarized in Table 34, 

where m=1,…,M and M is the number of buildings studied. It is observed that there are 

18 states, and 8 measurements in this chapter. 

Table 33   System states in the building energy system 

System States Descriptions 

m

iT (°F) air temperature inside the building 

m

ewT (°F) east wall temperature 

m

swT (°F) south wall temperature 

m

wwT (°F) west wall temperature 

m

nwT (°F) north wall temperature 

m

roofT (°F) roof temperature 

m

cQ (Btu/h) building total cooling load 

m

PVP (kWh) total energy generated by PV panel 

m

ncP (kWh) building total non-cooling energy requested from power grid 

Table 34   Measurements in the building energy system 

Measurements Descriptions 

m

iT (°F) air temperature inside the building 

m

cQ (Btu/h) building total cooling load 

m

PVP (kWh) total energy generated by PV panel 

m

ncP (kWh) building total non-cooling energy requested from power grid 

 

The state transition functions (Eqs. (7.15)~(7.18)) and measurement functions 

(Eqs. (7.19)~(7.22)) are defined as 

 , , 1 , 1 , 1 , 1 , 1 , 1 , 1, , , , , ,m m m m m m m

j k j i k ew k sw k ww k nw k roof k db kT f T T T T T T T        (7.15) 
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 , , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1, , , , , ,m m m m m m m m

c k c k Q i k ew k sw k ww k nw k roof k db kQ Q f T T T T T T T              (7.16) 

 , , 1 , 1 , 1,m m m

PV k PV k PV th k db k invP P f G T                                          (7.17) 

      

      

, , 1 , , , 1 , 1 ,

, , , , 1 , 1 ,

max 1 , 1 ,0

       max 2 , 2 ,0

m m m m m m

nc k nc k bat k bat k PV th k db k inv PV k conv

m m m m m

load k bat k conv bat k PV th k db k inv PV k

P P P BI f G T BI

P P BI f G T BI

 

 

  

 

  

  
    (7.18)

 

 , ,

m m m

i k i k TT T    (7.19) 

  , , 1m m m

c k c k QQ Q     (7.20) 

  , , 1m m m

PV k PV k PVP P     (7.21) 

  , , 1m m m

nc k nc k ncP P     (7.22) 

where j=i, ew, sw, ww, nw, roof; fj(.) and fQ(.) are derived from the simulation model of 

the cooling load module, and fPV(.) is derived from the PV panel module in Figure 3. 

 0,1m

T N ,  20,0.01m

Q N ,  20,0.01m

PV N , and  20,0.01m

nc N  are 

measurement noises which are assumed to follow normal distributions; ,

m

bat kP (kW) is the 

charging/discharging power of the battery for building m at time k; 
conv is the battery 

AC/DC converter efficiency, which is 0.9 according to its specification in this chapter; 

inv is the PV panel inverter efficiency, which is 0.92 in this chapter; ,

m

bat kBI  and ,

m

PV kBI  

are the states of battery and PV panel for building m at time k, which are two decision 

variables in the decisions generation stage. 

7.5 Experimental Analysis 

The adaptive decision framework is applied to study a simple building cluster 

(two buildings) located in the Phoenix, Arizona area. Since Phoenix is known for hot 

summers when energy usage is critically important, July 20, 2012 is studied as an 

example day for the experiments with data from SRP (http://www.srpnet.com), a local 
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electricity provider. The heavy mass building applies the time-of-use (TOU) plan and the 

light mass building adopts the SRP EZ-3 option plan. In the EZ-3 plan, 3pm-6pm are the 

peak-hours where the price is much higher than the off-peak hours. In the TOU plan, 

1pm-8pm are the peak-hours where the price is also higher (less than that of EZ-3) than 

the off-peak hours. During the off-peak hours, the price of the EZ-3 plan is relatively 

lower than that of the TOU plan. 

The parameter settings in the adaptive decision framework are: 1) decisions 

generation stage: decisions generation time length L is 24 hours; the PSO population size 

is set to 30; the maximal number of iteration for PSO is 80; and the archive capacity is 

50; 2) execution stage: execution time scale l is 1 hour; 3) calibration stage: calibration 

time frequency l’ is 0.1 hour; sample size for the GMSPPF is 200; number of components 

for the state, process noise and measurement noise GMM are 3, 2, and 1 respectively; the 

initial indoor temperature, wall temperature and roof temperature are 75 °F. In this 

chapter, an emulator is implemented to represent the real case and collect measurement 

data. 

7.5.1 Calibration Result Analysis 

In this experiment, the calibration time frequency is 0.1 hour. The mean square 

error (MSE) is adopted to evaluate the solution performance of GMSPPF for the building 

energy system calibration. The mean square error is calculated based on normalized 

value, which is defined as 

 
  

2

1
ˆ

K

k k kkMSE
K





 x x x

 (7.23) 

where 
kx  is the true state vector, and ˆ

kx  is the posterior state vector at time k. The 

calibration results for the 18 states in Table 33 are demonstrated in Figure 23, and the 

MSE for each state is also presented. It is observed from Figure 23 that most of the states 
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are close to the true states. However, the errors in m

ewT , m

swT , m

wwT , m

nwT  and m

roofT  may be 

large since no measurement data related to these five states is collected. 
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Figure 23   Calibration results for the two buildings 

7.5.2 Operation Decisions using the Adaptive Decision Framework 

In section 7.5.1, it is demonstrated that GMSPPF is able to accurately calibrate 

the building energy system. In this experiment, the impact of the model calibration for the 

building energy system operation decisions is studied.  
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Figure 24   Adaptive operation decisions in the energy cost space 

The Pareto frontiers in the single building energy cost performance space 

obtained by the AMOPSO based decision framework at each hour (six hours are selected 

for demonstration) are demonstrated in Figure 24. The circle points (solutions A~F) 

represent the Pareto decisions selected for implementation at the execution stage. The 

adaptive operation decisions for the heavy mass (HM) building and light mass (LM) 
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building set-point temperature for the day of July 20, 2012 are demonstrated in Figure 25. 

Solutions A~F in Figure 24 are also shown in Figure 25. 

 

Figure 25   Building set-point temperature adaptive decisions 

Table 35   Operation decisions comparison analysis 

Solutions HM building 

cost ($/day) 

LM building 

cost ($/day) 

Total cost 

($/day) 

HM building 

PGDR (%) 

LM building 

PGDR (%) 

Adaptive 

framework 
5.75 7.82 13.57 19.42 24.08 

Case I 5.98 8.04 14.02 19.50 24.62 

Case II  6.27 8.44 14.71 19.81 24.82 

 

In order to demonstrate the effectiveness of the adaptive decision framework, two 

additional sets of operation decisions are obtained: 1) case I: obtaining the operation 

decisions using the adaptive decision framework without calibration (equivalent to 

section 7.3.1 and section 7.3.2); 2) case II: obtaining the operation decisions using the 

adaptive decision framework without calibration, but considering uncertainties studied in 

section 7.4.2. In case II, the AMOPSO based decision framework will study a stochastic 

decision problem instead of a deterministic decision problem. The single building daily 

energy cost, total daily energy cost, power grid dependency rate (PGDR) (Hu et al., 2012) 
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corresponding to these three sets of operations decisions under real case are recorded in 

Table 35. It is observed that the adaptive framework outperforms other two cases in these 

three performance metrics. 

7.6 Conclusions 

Due to the dynamics and complexity of the building energy system, a good 

operation strategy first requires an accurate model for building system energy usage 

which is currently lacking. In this chapter, an adaptive decision framework is developed 

to derive operation decisions for the building energy system considering uncertainties and 

noises existing in the building system, environment, sensors and meters. The adaptive 

decision framework has three stages: 1) the decisions generation stage is capable of 

deriving hourly Pareto operation decision; 2) the execution stage implements one of the 

decisions obtained in the decisions generation stage; 3) the GMSPPF is employed in the 

calibration stage to calibrate the building model. The experimental results demonstrate 

that the GMSPPF is capable of accurately calibrating the building model and the adaptive 

framework will be more cost effective for the building cluster. 

In this chapter, the uncertainties exist in weather (e.g., temperature, solar 

radiation), and noises in measurement (e.g., sensor, meter) are considered. In the future, 

uncertainties in the model itself (e.g., thermal storage, battery) will be incorporated to the 

calibration model. Different time scales for each stage in the adaptive decision 

framework will be investigated. Some uncertainty quantification techniques will be 

employed to accurately derive the parameters for the random distributions considered in 

the calibration stage. 
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Chapter 8 

CONCLUSIONS AND FUTURE RESEARCH 

Two national initiatives (smart building and smart grid) urge the building 

industry to improve their energy efficiency and to have better capabilities to interact with 

the power grid. These initiatives have also driven research moving from centralized 

operation decisions on a single building to decentralized decisions on a group of 

buildings, termed building cluster which shares energy resources locally and globally. 

This dissertation envisions the next generation buildings could be interconnected 

physically or virtually, and they could share energy resources and freely exchange 

information. Several research issues are identified: 1) what is the appropriate building 

model used to derive decision model for operation strategy identification? 2) What is a 

computationally efficient algorithm for building operation decision? 3) How to derive 

decisions for multiple building operation decisions? 4) How to handle dynamics, 

uncertainty and noise exist in the buildings and environment to guarantee the building 

could respond to the dynamic environment? 

In order to address these issues, an adaptive decision framework is developed to 

derive adaptive operation decisions for the building cluster. In chapter 2, an agent based 

building model is developed to obtain decision formulation, and Pareto operation 

decisions for the building cluster are derived using a multi-objective Memetic algorithm. 

The high computational cost for the multi-objective Memetic algorithm drives me to 

develop a computationally efficient algorithm. In chapter 3, a computationally efficient 

particle swarm optimization algorithm is developed which performs well on a diverse set 

of problems (e.g., uni-modal, multi-modal, shifted, rotated, noisy, mis-scaled). The 

augmented PSO with multiple adaptive methods (PSO-MAM) significantly outperforms 

the 10 existing published PSO algorithms on 36 out of 43 test functions. In chapter 4, an 
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adaptive parameter tuning mechanism is developed to adaptively change the parameter 

settings for the PSO algorithm. The newly developed PSO algorithm which is termed as 

bi-local searches and mutation based adaptive particle swarm optimization (BLOSSM-

APSO) is demonstrated to be robust to its parameter settings. In order to apply the PSO 

algorithm for building cluster operation decisions, the BLOSSM-APSO is extended to a 

multi-objective optimization (MOO) algorithm in chapter 5. The augmented PSO 

algorithm for MOO, termed AMOPSO is demonstrated to significantly outperform the 

existing 4 multi-objective PSOs and 3 Mulit-objective evolutionary algorithms and 

moderately outperform MOCell (cellular genetic algorithm). Based on the AMOPSO 

developed in chapter 5, a decision framework in chapter 6 is developed to obtain Pareto 

operation decisions for the building cluster. The AMOPSO based decision framework is 

demonstrated to be able to obtain hourly operation decisions and could achieve more cost 

savings for the building cluster. By considering uncertainties exist in the building systems 

and environment, noises exist in sensors and meters, chapter 7 integrates the Gaussian 

mixture sigma point particle filter (GMSPPF) algorithm with the multi-objective PSO 

decision framework to calibrate the building model with online measurement data. The 

calibrated high-fidelity model is then used for the AMOPSO based decision framework. 

The adaptive decision framework is able to accurately calibrate the building model and 

reduce energy cost. The operation strategies derived from the adaptive decision 

framework enable the buildings to respond to their dynamic environment. 

In the future, more complex dynamic pricing model based on the demand will be 

developed and operation decisions by incorporating this pricing model into the decision 

model will be studied. Other than the uncertainties in weather (e.g., temperature, solar 

radiation), the uncertainties exist in the building model itself (e.g., thermal storage model, 

battery model) will be considered in the calibration stage. In addition, some uncertainty 
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quantification techniques will be employed to accurately derive the parameters for the 

random distributions considered in the calibration stage. Furthermore, after the operation 

strategies for each decision stage are derived, it is necessary to develop an effective and 

smoothness transition trajectory from one time to the followed time since the trajectory 

for changing has direct implications on the system performance and the amount of time 

for each change to be completed. 

From algorithm development perspective, several future efforts are needed. First, 

instead of fusing other techniques with PSO, the advantages of other search techniques 

(e.g., gradient method, non-uniform mutation-based method) will be incorporated into the 

velocity update equation of PSO to improve PSO‘s performance. Secondly, an intelligent 

strategy should be explored to determine when the adaptive parameter tuning will be 

needed. Last but not least, same as the mutation operator is employed to prevent 

premature convergence in the PSO, some equivalent ―mutation‖ techniques could be 

investigated to prevent the rapid degeneracy problem in the particle filter. 
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where 1 1 4,  , , , 0 , 1, ,

D

Penalized i i Di

D

ii

m

i i

i i i i

m
ii

F y y y y
D

u z

k z a z a

y z u z a k m a z a i D

z ak z a


 







      
 



  


       
   





z

 

20) Penalized 2 function 

 
       

    

 

2 21 2

1 11

2
22

1

sin 3 1 1 sin 3

0.1

1 1 sin 2

                   ,5,100,4

D

i ii

Penalized

D D

D

ii

z z z

F

z z

u z

 









    
  

  
    
  







z
 

21) Noise Schwefel P1.2 function 

      
2

1.2 1 1
1 0.4 0,1

D i

NoiseSch ji j
F z N

 

 
  

 
 z

 

22) Noise Quadric function 

   4

1
0,1

D

NoiseQuadric ii
F iz random


 z

 

23) Rastrigin10 function 

      
1

2
1

10 1
10cos 2 10  where 10 , 1, ,

i
D

D
Rastrigin i i i i ii

F a z a z a i D





    z

 

24) Rastrigin100 function 

      
1

2
1

100 1
10cos 2 10  where 100 , 1, ,

i
D

D
Rastrigin i i i i ii

F a z a z a i D





    z
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APPENDIX B  

TEST PROBLEMS FOR MULTI-OBJECTIVE OPTIMIZATION 
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1) ZDT1 

             1 1 2 1 2

1 2,...,

;  1 ;  1 9 1

Optimal solutions *: [0,1],  0

D

dd

D

f x f g x g g x D

x x


      
 

 

x x x x x

x
 

2) ZDT2 

              
2

1 1 2 1 2

1 2,...,

;  1 ;  1 9 1

Optimal solutions *: [0,1],  0

D

dd

D

f x f g x g g x D

x x



      
 

 

x x x x x

x

 

3) ZDT3 

            

     

1 1 2 1 1 1

2

1 2,...,

;  1 sin 10 ;  

1 9 1

Optimal solutions *: [0,1],  0

D

dd

D

f x f g x g x g x

g x D

x x





    
 

  

 



x x x x x

x

x
 

4) ZDT4 

       

     

1 1 2 1

2

2

1 2,...,

;  1 ;  

1 10 1 10cos 4

Optimal solutions *: [0,1],  0

D

d dd

D

f x f g x g

g D x x

x x




   
 

      

 



x x x x

x

x
 

5) ZDT6 

               

     

6 2

1 1 1 2 1

0.25

1 2,...,2

1 exp 4 sin 6 ; 1 ; 

1 9 1 ; Optimal solutions *: [0,1],  0
D

d Dd

f x x f g f g

g x D x x





     
 

     
  

x x x x x

x x

 

6) DTLZ1 

          

     

       

1

1 2, , 1 11 1

1

2

1, , ,...,

0.5 1 ;  0.5 1 1 ;

0.5 1 1 ;  

100 1 0.5 cos 20 0.5

Optimal solutions *: [0,1],  0.5

M M m

m M M m mm m

M

D

d dd M

M M D

f g x f g x x

f g x

g D M x x

x x



 

   



    

  

       
 

 

 



x x x x

x x

x

x

 

7) DTLZ2 
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1

1 1

2, , 1 1 1

2

1

1, , ,...,

1 cos 2 ;  

1 sin 2 cos 2 ;

1 sin 2 ;  0.5

Optimal solutions *: [0,1],  0.5

M

mm

M m

M M m mm

D

M dd M

M M D

f g x

f g x x

f g x g x

x x



 









   



 

 

   

 







x x

x x

x x x

x

 

8) DTLZ3 

       1 2, , ,  are the same as DTLZ2 and  is the same as DTLZ1. 

Optimal solutions are the same DTLZ2.

Mf f f gx x x x

 

9) DTLZ4 

       1 2, , , , and  are the same as DTLZ2, and  ( 1, , 1) 

is replaced by ,  >0 and 100 in this research. 

Optimal solutions are the same DTLZ2.

M m

m

f f f g x m M

x  

 



x x x x

 

10) DTLZ5 

       

      
1 2, , , , and  are the same as DTLZ2, and  ( 2, , 1) 

is replaced by 1 2 2 1 . 

Optimal solutions are the same DTLZ2.

M m

m

f f f g x m M

g x g

 

 

x x x x

x x
 

11) DTLZ6 

        0.1

1 2

1, , ,...,

, , ,  are the same as DTLZ5, and .

Optimal solutions *: [0,1],  0

D

M dd M

M M D

f f f g x

x x




 

x x x x

x  

12) DTLZ7 

      
 

 
   

   

1

1, , 1 1

1, , ,...,

;  1 1 sin 3 ;  
1

1 9 1

Optimal solutions *: [0,1],  0

M m

M m M mm

D

dd M

M M D

f
f x f g M f

g

g x D M

x x




 



   
      

    

   

 





x
x x x x

x

x

x
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APPENDIX C  

COMPARISON STUDY FOR PSO-MAM 
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Table 36   t-test comparison results between PSO-MAM with: 1) PSO with sub-gradient and 

Cauchy mutation only; 2) PSO with non-uniform mutation-based method and Cauchy mutation 

only; 3) PSO-MAM without Cauchy mutation on 31 30-dimensional functions 

Functions PSO with Sub-

gradient & Cauchy 

mutation 

PSO with non-uniform 

mutation & Cauchy 

mutation 

PSO-MAM without 

Cauchy mutation 

1 = + = 

2 = + = 

3 - + - 

4 - + - 

5 = + = 

6 = + = 

7 = + = 

8 - + - 

9 = + = 

10 = + = 

11 - + - 

12 - + = 

13 + + = 

14 + + = 

15 + + + 

16 + + + 

17 + + + 

18 = + = 

19 + = + 

20 = + + 

21 + + = 

22 = + + 

23 - + + 

24 + = = 

25 = + = 

26 = = = 

27 = + + 

28 - + + 

29 + + = 

30 + + + 

31 + + + 

Better (+) 11 28 11 

Same (=) 13 3 16 

Worse (-) 7 0 4 

 

 


