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ABSTRACT  

Gels are three-dimensional polymer networks with entrapped solvent 

(water etc.). They bear amazing features such as stimuli-responsive (temperature, 

PH, electric field etc.), high water content and biocompatibility and thus find a lot 

of applications. To understand the complex physics behind gel's swelling 

phenomenon, it is important to build up fundamental mechanical model and 

extend to complicated cases. In this dissertation, a coupled large deformation and 

diffusion model regarding gel's swelling behavior is presented. In this model, 

free-energy of the total gel is constituted by polymer stretching energy and 

polymer-solvent mixing energy. In-house nonlinear finite element code is 

implemented with fast computational capability. Complex phenomenon such as 

buckling and healing of cracked gel by swelling are studied. Due to the wide 

coverage of polymeric materials and solvents, solvent diffusion in gels not only 

follows Fickian diffusion law where concentration map is continuous but also 

follows non-Fickian diffusion law where concentration map shows high gradient. 

Phenomenological model with viscoelastic polymer constitutive and 

concentration dependent diffusivity is created. The model well captures this 

special diffusion phenomenon such as sharp diffusion front and distinctive 

swollen and unswollen region.
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1 INTRODUCTION TO GELS  

1.1. GELS FUNDAMENTALS AND THEIR APPLICATIONS  

 Hydrogel is three dimensional polymer networks that are capable to 

absorb solvents and swells to a certain limit without dissolving (Figure 1.1). There 

are several ways of classification of gels. Among them there are two common 

classifications. One is based on the type of crosslinking that creates the 3D 

network, it could be classified as physical gels and chemical gels. The other one is 

based on the way it is generated; it is classified as natural gel and synthetic gel. 

 

Figure 1.1. Structure representation of a gel 

 Physical gels have weak bonding cross-linked structure. Upon the change 

of the environment, the bonding could be reversible. This type of bonding 

includes hydrogen bonding, van de Waals bonding, ionic bonding. One example 

of this bonding is hydrogen bonding. Gels formed by hydrogen bonding are 

vulnerable to environment, such as subjected to elevated temperature. In this case, 

the physical gel behavior like a liquid when dissolve. Another weak bonding 
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example is coordination bonding. Common class of physical gels are block 

copolymers(Kissel, Li, and Unger 2002, ; Jeong et al. 1997, ; Li et al. 2006). The 

good feature of physical gel is that most of them are thermally reversible.  

 Chemical gels are created by chemical reaction. And it could not be 

dissolve again which become irreversible. The bond formed is mechanically 

strong and stable. They are made by cross-link individual polymer chains. The 

chemical reaction could be initiated by heat, pressure, change in pH, or UV 

radiation, and usually accompany cross-linking agents. As one example, the 

fabrication of a common gel Poly(N-isopropylacrylamide)(PNIPAM) involve the 

following process (Figure 1.2):(Zhao et al. 2008)  

 (1) Monomer(N-isopropylacrylamide), cross-linker (N,N_-

methylenebisacrylamide) and initiator (azobis-isobutyronitrile) is mixed at a 

certain ratio and dissolve in solvent(acetone). 

 (2) The mixed solution is then put into reactors where gelation is 

completed by heating or radiation 

 (3) After a long time of reaction, the PNIPAAm hydrogel is immersed in 

pure water to remove non-reactive materials and dries under vacuum environment.  

 

Figure 1.2. Chemical structure of PNIPAM gel 
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 Chemical gels typically have strong bonding structure. Common types of 

bonding include covalent bonding and coulomb bonding. Chemical gels are 

polymerized by adding crosslinking agent when the polymer monomers are 

synthesized. Usual examples of chemical gels formed by covalent bonding 

include acrylamide gel, poly(ethylene glycol)gel, poly(vinyl alcohol) gel. 

 Another classification is based on the way the polymer is made, it could be 

categorized as natural gel or synthetic gel (Lee and Mooney 2001, ; Slaughter et 

al. 2009). Common natural gels include collagen and gelatin, chitosan, alginate, 

fibrin, agarose and many others. Collagen is tissue-derived natural polymer and is 

the main components of human tissue such as skin and cartilage. Alginate is a 

well-known biomaterial obtained from blown algae and is widely used in drug 

delivery and tissue engineering. 

 Synthetic gels include poly(ethylene glycol) (PEG) and its derivatives, 

poly(vinyl alcohol) (PVA) , polyacrylates, Poly(ethylene oxide) (PEO) and its 

copolymers. For example, PEG-based gels are used extensively in tissue scaffold 

because its biocompatibility and degradation ability. Cell is capable to adhere to 

the 3D gel network and proliferate. 

 Common applications of gel could be summarized as: 

(1) Tissue engineering, where gel is used as tissue scaffold; 

(2) Sustained-release drug delivery systems; 

(3) Sensors, due to their responsiveness to temperature, PH, solvent concentration 

and biological constitute; 

(4) Disposable diapers where they could be used to absorb urine; 
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(5) Contact lenses, made by silicone hydrogels; 

(6) Swellable oil packers. It has rising interests in oil industry that gels, or more 

commonly called swellable elastomers, is used for zonal isolation and to enhance 

oil productivity. 

1.2. MOTIVATION OF STUDY 

 Though the gel has been used for many years, it is surprising to find out 

that the modeling work is still in its preliminary stage, especially from the 

mechanics community. This certainly will pose limits on its applications. 

 The demand to modeling gel swelling/deswelling not only relies on the 

fact that modeling is an important complementary to experiment, as it saves time 

and reduces cost, but also relies on the situation that the underlying physics 

behind swelling need to be understood, from the most fundamental level, to help 

us explain more complicated phenomenon. Taking as gel swelling for example, 

interesting complex swelling patterns are observed, such as buckling(Sultan and 

Boudaoud 2008), creasing(Jin, Cai, and Suo 2011, ; Cai et al. 2010) and 

snapping(Forterre et al. 2005). Without a quantitative characterizing and without 

modeling, we would not be able to see through these phenomena. 

 Another aspect is that the quantitative prediction really matters in a lot of 

applications. For example, in drug delivery systems, George and Abraham(2007) 

have designed a pH-sensitive alginate–guar gum hydrogel crosslinked with 

glutaraldehyde for the controlled delivery of protein drugs, where the release of 

protein drugs from the tested hydrogels was at minimal at pH 1.2 (about 20%) and 
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reaches maximum higher at pH 7.4 (about 90%), precise controlled is required 

and this should be accomplished with the aid of modeling. 

1.3. RESEARCH OBJECTIVE 

 The main objective of the dissertation is to build a “framework” and 

corresponding numerical methods to study gel swelling, and applying this tool to 

study several interesting pattern phenomena with comparison of experiment. This 

framework should consider both the mechanical deformation of the gel polymeric 

network and the diffusion of solvent. And it should couple the deformation with 

the deformation. And due to the fact that the swelling ratio of gel could be very 

large, large deformation analysis is required. Because the various combinations of 

polymer-solvent system exist, the model should be extendable to many different 

scenarios. Those phenomena include, but not limited to: 

 (1) Simple swelling. This is the fundamental of gel swelling. However, 

finite element analysis (FEA) would be able to verify our perception about 

swelling in mind and create a clearer picture. Simple swelling like cubic free 

swelling and creep of swollen gel are starting points for complex swelling. More 

specifically, the study would help to visualize the stress inside the gel body, 

would help to build a time scale associated with diffusion and geometry, would 

tell us that inhomogeneous swelling is common during transient swelling process. 

 (2) Buckling phenomenon of thin-structure gel swelling under constraint. 

Buckling exists commonly in biological systems, for example, tissue growth 

under constraint(Li et al. 2011). The thin gel ring which is confined in the bottom 
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surface and allowed to swelling, produced fascinating buckling patterns after 

swelling. A simple model based on energy method is created and well 

characterize the wave numbers which changes with the geometry. Those studies 

certainly will expand our understanding of buckling phenomena. 

 (3) An interesting phenomena that solvent swelling in gels could “heal” 

the original cracked notch. Through FEA and experimental validation, this 

process could be seen clearly. The crack tip field showed a transition from a 

tensional high stress zone to a compressive zone which indicates that the crack 

has been closed. Potential benefits are obvious, we could wisely choose the 

amount of solvent to repair a damaged structure and improve structure integrity. 

 The present study would be able to build a foundation to study more 

complicated and diverse gel deformation when gel is integrated with other 

functional materials and help to realize more functionality. The present study also 

sheds light on coupled deformation and diffusion modeling, as well as how to 

develop nonlinear numerical solutions to simulate such behavior. The numerical 

package is expected to be applied in more practical industry application. 
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2 THEORIES ABOUT GEL SWELLING  

2.1. INTRODUCTION TO GEL SWELLING AND MECHANICAL 

MODELING 

 Gel swelling is an interest process which involves deformation and solvent 

transport. Biot’s(1941) consolidation model is one of the earliest piece of work in 

study this fluid diffusion in solids. Due to its simplicity, it is still used a lot in soil 

mechanics and various engineering practices. And it applies to gel swelling if 

consider the polymer networks as a solid. Specifically consider the properties of 

the polymer networks, Flory(1953) did a lot of work using thermodynamics 

principles. Flory’s theory starts from the free energy of the polymer solutions 

which is derived from the random walk of the polymer chains. Later, Tanaka et 

al.(1973, ; 1979, ; 1978) did a lot of experiments and theoretical studies on gel 

swelling kinetics. 

2.2. REPRESENTATIVE THEORIES ABOUT GEL SWELLING 

2.2.1 Biot Theory  

 The Biot consolidation theory(1941) is a notorious theory in soil 

mechanics and still used a lot in many engineering disciplines. Because swelling 

in gels shares similar features as fluid transport in soils. The theory could be 

applied into gel swelling modeling as well. The basic assumptions behind Biot’s 

theory contain: 
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(1) The solid skeleton deformation is linear elastic; 

(2) The deformation is small; 

(3) The fluid flow follows Darcy’s law; 

(4) The fluid is incompressible. 

 For a saturated elastic gel, the stress follows  

2ij ij kk ij ijG p        (2.1) 

 Where G  and  are shear modulus and Poisson’s ratio of polymer 

network, 
2

1 2

G






 is lame’s constant. p  is pore pressure. The stress satisfy the 

equilibrium equation 

, 0ij j   (2.2) 

and strain relates to displacement via 

 , ,

1

2
ij i j j iu u    (2.3) 

The above three equations simplifies to 

2 0
1 2

G u v w p
G u

x x y z x

     
      

      
 (2.4) 
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2 0
1 2

G u v w p
G v

y x y z y

     
      

      
 (2.5) 

2 0
1 2

G u v w p
G w

z x y z z

     
      

      
 (2.6) 

The fluid flow follows Darcy’s law, which states that the flux is proportional to 

the gradient of pore pressure, i.e., 

, /i ij kp   (2.7) 

, where k is coefficient of permeability and  is specific weight of water. 

The incompressibility condition for the pore fluid is 

0kk j
t


 


 (2.8) 

Equations (2.7) and (2.8) together generate: 

2 0
u v w k

p
t x y z 

    
     

    
 (2.9) 

Equations (2.4), (2.5), (2.6) and (2.9) are a set of equations regarding 

displacements , ,u v w  and pore pressure p , which could be solved given 

appropriate boundary conditions. 
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2.2.2 THB Theory 

 Tanaka is one of the noted researchers who contributed a lot in the 

development of kinetic of gel swelling. Tanaka, Hocker and Benedek(1973) 

developed a theory about gel swelling known as THB theory. In the THB theory, 

the fluid flow is not considered explicitly. And a frictional coefficient f  is 

introduced to characterize the drag force caused by the relative motion of the 

polymer network through the pore fluid. Equilibrium equation becomes: 

, 0i
ij j

u
f

t



 


 (2.10) 

And  

2ij ij kk ijG      (2.11) 

Under this theory, they derived that the diffusion coefficient is linearly 

proportional to inverse of friction coefficient 

 4 / 3 /D K f   (2.12) 

, which implicate that the swelling time is limited by the friction between the 

friction of the polymer network and fluid. 

 Biot’s theory and THB theory are two simple theories with clear physics 

that could study the fluid flow inside solid such as gel swelling. However, the 

underlying small strain and linear elastic assumption limits their applications, 
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considering that a lot of gels are made of polymers, which undergo large strain 

following hyperelastic or viscoelastic behavior. A more realistic theory is 

developed by Flory from a statistical mechanics perspective. 

2.2.3 Flory Theory 

 Flory(1953) did extensive work in polymer swelling behavior using 

thermodynamic concepts. In his theory, gel is considered as a polymer solution 

which contains solvent molecules and polymer molecules. The Gibbs free energy 

that accompany the deformation of the gel is written as  

m eG G G     (2.13) 

, where mG  comes from the mixing of solvent and polymer and eG  is from the 

elastic deformation.  

The mixing energy is derived as  

 1 2 1ln 1 lnmG kT n n n           (2.14) 

Where k  is Boltzmann constant and   is volume fraction of polymer and 1n  is 

number of solvent molecules and 2n is number of polymer chains.   is a 

dimensionless parameter called polymer-solvent interaction parameter. The elastic 

deformation energy is derived on 3D lattice model taking into account to the end-

to-end distance change of each polymer chain. And the elastic energy is written as 
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 23
1 ln

2
eG NkT       (2.15) 

,where  is elongation of the polymer network and N  is number of polymer 

segments per volume. The osmotic pressure is obtained from the free energy as 

1 1

mA
mixing

GN

v n



 


 (2.16) 

Where  

1 1

eA
elastic

GN

v n



 


 (2.17) 

, mixing  and elastic  are osmotic pressure from mixing energy and elastic energy, 

respectively. Equilibrium is reached when 

0mixing elastic    (2.18) 

Flory’s theory is one of the very successful theories and is extended later to a 

coupled theory stated in the next section. 

2.2.4 Wallmersperger Theory 

 Wallmersperger and coworkers(2004) formulated a theory which takes 

into account the coupling of mechanical, chemical, and electrical effect for ionic 

gels. The basic equations in the theory include Nernst-Planck equation which 
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governs the concentration of ionic species, Poisson equation which governs the 

electrical field and mechanical equilibrium equations. 

 The Nernst-Planck equation is given by 

2 2

2 2
0k k

k k k k k k

c c
D z z c

x x x x

 
 

   
  

   
 (2.19) 

Where kD  and k are diffusivity and mobility of the kth ionic species, kc  and kz

are the concentration and valence of kth ionic species.   is electrical potential, 

which is governed by Poisson’s equation 

2

2
10

N

k k f f

k

F
z c z c

x



 

  
   

  
  (2.20) 

, where F  is Farady constant, 0 is dielectric constant of vacuum and  is relative 

dielectric constant, fz  and fc are the valence and concentration of the fixed 

charged group attached to the gel network. fc  relates to the state of the hydrogel 

by 

 

0
1 f

f

H

c K
c

H K c



 (2.21) 
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Where H  is the local degree of hydration of the hydrogel, 
0

fc is the total 

concentration of the ionizable groups before swelling, K  is dissociation constant, 

Hc  is concentration of hydrogen ions in the gel. 

The gel should also follow the mechanical equilibrium law 

, 0ij j   (2.22) 

, where stress ij here also depends on the osmotic pressure 

 
1

N
h s

k k

k

RT c c


   (2.23) 

, where h

kc  is concentration of gel and s

kc  is concentration of bulk solution. 

 This model is based on fundamental physics laws and provides a 

convenient approach to simulation the ionic gels deformation. However, the 

formulation neglects the interaction between polymer and solvents, which could 

be significant when the osmotic pressure caused by the solvent is large. 

 It should be noted that the above listed model is just a few representative 

models. A lot more theories(Dolbow, Fried, and Jia 2004, ; Durning and Morman 

1993, ; Baek and Srinivasa 2004, ; Ji et al. 2006, ; Doi 2009, ; Lai, Hou, and Mow 

1991) which have important contribution are omitted here. 
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2.3. A COUPLED THEORY ABOUT GEL SWELLING 

 Based on the pioneering work of Biot and Flory, Hong et al.(2008) came 

up with a coupled field theory that couples the gel deformation and solvent 

diffusion. In the theory, the polymeric natural of the network is taken into account 

through thermodynamics and large deformation swelling is considered.  

2.3.1 Kinematics of the Network 

 In this theory, continuum mechanics is used to describe the kinematics of 

the network. The gel moves in a three-dimensional space. Imagine that each 

differential element of the network is attached with a marker. Any configuration 

of the gel can serve as a reference configuration (Figure 2.1). When the gel is in 

the reference configuration, the marker occupies in the space a place with 

coordinates X , which will be used to label the marker. In the reference 

configuration, let  dV X  be an element of volume,  dA X  be an element of area, 

and  KN X  be the unit vector normal to the element of area.  

 At time t , the gel is in the current configuration, and the marker X moves 

in the space to a new place with coordinates x . The functions  ,ix tX  specify the 

kinematics of the network. As usual, the deformation gradient of the network is 

defined as 

 
 ,

,
i

iK

K

x t
F t

X






X
X  (2.24) 
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Deformation gradient F  will be used to characterize the state of deformation of 

an element of the gel. 

 

Figure 2.1. The reference and current configuration with an illustration of two 

ways doing work on a gel 

2.3.2 Conservation of Solvent Molecules 

 Nominal quantities will be used to describe the conservation of the solvent 

molecules. Let  ,C tX  be the nominal concentration of the solvent in the gel in 

the current configuration, namely,    ,C t dVX X  is the number of solvent 

molecules in the element of volume. Let  ,KJ tX  be the nominal flux of the 

solvent in the gel, namely,      ,K KJ t N AX X X  is the number of the solvent 

molecules per unit time migrating across the element of area. Imagine that the 

network is attached with a field of pumps, which inject the solvent into the gel. In 

the current configuration, the pumps inject    ,r t dVX X  number of the solvent 

molecules into the element of volume per unit time, and    ,i t dAX X  number of 
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the solvent molecules into the element of area per unit time.  We assume that no 

chemical reaction occurs, so that the number of the solvent molecules is 

conserved, namely, 

   
 

, ,
,

K

K

C t J t
r t

t X

 
 

 

X X
X  (2.25) 

in the volume of the gel, and 

     , ,K KJ t N i t X X X  (2.26) 

on the part of the surface of the gel where the pumps inject solvent molecules. 

2.3.3 Conditions of Local Equilibrium 

 Let us examine the conditions of local equilibrium. Elements of the gel in 

different locations may not be in equilibrium with each other, and this 

disequilibrium motivates the solvent to migrate. Each differential element of the 

gel, however, is taken to be locally in a state of equilibrium. That is, the migration 

of the solvent is such a slow process that the effect of inertia is negligible, the 

viscoelastic process in the element has enough time to relax, and the solvent in the 

element has enough time to equilibrate with the solvent in the pump attached to 

the element.  Furthermore, the gel is assumed to be held at a constant temperature. 

We characterize the thermodynamic state of the differential element of the gel by 

the deformation gradient of the network,  , tF X , and the chemical potential of 
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the solvent,  , t X . Let  ˆ ,W F  be the free-energy density function of the gel, 

namely,    ˆ ,W dVF X  is the free energy associated with the element of the gel.  

The conditions of local equilibrium requite that the nominal concentration be 

given by 

 ˆ ,W
C






 



F
 (2.27) 

and the nominal stress be given by 

 ˆ ,
iK

iK

W
s

F






F
 (2.28) 

, where the free-energy density function  ˆ ,W F  is prescribed for a gel and 

equation (2.27) and (2.28) constitute the equations of state. 

 Imagine that the network is attached with a field of weights, which apply 

forces to the gel. In the current configuration, the weights apply a force 

   ,iB t dVX X  to the element of volume, namely,  ,iB tX  is the applied forces 

in the current configuration per unit volume of the reference configuration. 

Similarly, the weights apply a force    ,iT t dAX X  to the element of area, 

namely,  ,iT tX  is the applied forces in the current configuration per unit area of 

the reference configuration. The conditions of local equilibrium require that the 
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inertia effect be negligible and that the viscoelastic process in the element be fully 

relaxed, so that 

 
 

,
, 0

iK

i

K

s t
B t

X


 



X
X  (2.29) 

in the volume of the gel, and 

     , ,iK K is t N T tX X X  (2.30) 

on the part of the surface of the gel where forces are applied. 

2.3.4 Kinetics of Migration 

 Nominal quantities are used describe the kinetics of migration. The flux of 

the solvent is taken to be linear in the gradient of the chemical potential of the 

solvent: 

 
 ,

,K KL

L

t
J M

X





 



X
F  (2.31) 

where KLM  is the mobility tensor.  The mobility tensor is symmetric and positive-

definite, and in general depends on the thermodynamic state of the element, 

namely, on local values of the deformation gradient and the chemical potential. 
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 The above theory evolves the configuration of the gel, namely, evolves 

concurrently the two fields  , tx X  and  , t X , once the following items are 

prescribed: 

(1) The initial conditions  0, tx X  and  0, t X  at a particular time 0t ; 

(2) The applied force  ,iB tX  and the rate of injection  ,r tX  inside the gel; 

(3) Either  ,i tX  or  , t X  on the surface of the gel either  ,iT tX  or  , tx X  

on the surface of the gel. 

(4) The free-energy function  ˆ ,W F  and the mobility tensor  ,KLM F . 

, the theory is able to solve the problem given specific material models stated in 

the following paragraph. 

2.3.5 Specific Material Model 

 Within the theory presented in the previous section, a material model is 

specified by the functions  ˆ ,W F  and the mobility tensor. The free energy of 

Flory and Rehner (1943)  is rewritten in the form 

   

   

1ˆ , 3 2log det
2

det
det 1 log det 1

det 1 det

iK iKW NkT F F

kT

v v



 

    

  
        

F F

F
F F

F F

 (2.32) 
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where N is the number of polymer chains in the gel divided by the volume of the 

gel in the reference state, kT  is the temperature in the unit of energy, v  is the 

volume per solvent molecule, and  is a dimensionless parameter characterizing 

the enthalpy of mixing. In writing equation (2.32), the reference configuration is 

taken to be the dry network, and 0   when the solvent is in the pure liquid state 

in equilibrium with its own vapor. 

 Assuming that the small molecules diffuse in the gel and that the 

coefficient of diffusion of the solvent molecules, D  is isotropic and independent 

of deformation gradient and concentration, Hong et al.(2008) expressed the 

mobility tensor as 

 det 1KL iK iL

D
M H H

vkT
 F  (2.33) 

, where iKH  is the transpose of the inverse of the deformation gradient, namely, 

iK iL KLH F  . In writing (2.33) the reference state is taken to be the dry network. 

2.4. DISCUSSIONS ABOUT THE THEORY 

 The theory considers the large swelling of polymer network caused by 

solvent absorption, and has received a lot of attentions(Liu et al. 2011, ; Hong, 

Zhao, and Suo 2010, ; Gernandt et al. 2011, ; Li and Mulay 2011, ; Wong et al. 

2010). Both mechanical equilibrium equation and solvent transport are standard 

equations but extended to large deformation regime. Deformation and diffusion 
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are coupled smartly through the molecular incompressible condition. And the free 

energy of the polymer network comes from thermodynamics. Taking into these 

facts into consideration, the theory is still very neat and allows for numerical 

implementation with limited restrictions. This theory is considered to build a 

framework to study various coupled phenomenon in solvent diffusion in polymers, 

as long as the mechanism is driven by diffusion and the free energy of polymer is 

give. However, it has been noted that this model fits well for small and moderate 

stretching of polymer networks, where the polymer chains follows Gaussian 

statistics (Treloar 2005) .For very large deformation, non-Gaussian polymer chain 

statistics should be used(Chester and Anand 2011, ; Arruda and Boyce 1993). In 

this case, the free energy should be written as:

2 0
0 0

0

1
ln ln ln

sinh sinh 3

L
A B L A B

L L

W N k T N k T J
  

   
   

    
         

   
 

  (2.34) 

Where 
1

0

1

L

L


  
  

 
 and  1L x

 is the inverse of Langevin function 

   1 1cothL x x x   . These considerations help complete the theory instead of 

diminish it. As a direct numerical implementation of the theory, not only in 

equilibrium swelling, but also transient swelling, the numerical method described 

in the next chapter enable the theory to be applied to practical applications.  



23 

3 NUMERICAL SIMULATION OF GEL SWELLING 

3.1. INTRODUCTION TO GEL SWELLING NUMERICAL METHODS 

 There have been several previous efforts to develop finite element 

methods for gels. For example, Westbrook and Qi (2008) and Hong et al.(2009) 

have developed finite element methods for gels in a state of equilibrium. 

Suematsu (1990) conducted the three-dimensional explicit finite element analysis 

to study the pattern formation of swelling gels by introducing a friction constant 

between the polymeric chains and solvents (Tanaka and Fillmore 1979). As 

pointed out by Suematsu et al (1990), this method is not suited for larger systems 

over longer time intervals. Dolbow et al. (2004) used a hybrid eXtended-Finite-

Element/Level-Set Method to study the swelling of gels. Li et al. (2007) used an 

explicit method to alternately solve the coupled problems for gels, namely, the 

deformation of gels is solved after the convergent results for mass transport is 

obtained. Birgersson et al. (2008) conducted transient analysis of temperature-

sensitive two-dimensional gels by using finite element software COMSOL 

Multiphysics. 

 Given various theories and numerical methods, as well as a large number 

of phenomena and applications, ample room exists for more computational work 

to connect principles of mechanics, thermodynamics and kinetics to experiments 

and to molecular models. In particular, a finite element method is developed using 

the free-energy function of Flory (1943) and the kinetic model proposed by Hong 

et al. (2008). Using this model, solvent transport and polymer deformation are 
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solved concurrently. The method will be implemented in an in-house coded 

FORTRAN program and a user material subroutine UMAT in commercial FEA 

software ABAQUS. 

3.2. NUMERICAL IMPLEMENTATION OF COUPLED GEL THEORY 

 In this section, the theory described in chapter 2 is used to develop a 

numerical method. First, the stress and tangential stiffness is presented, and the 

formulation for equilibrium swelling is described, the equilibrium swelling could 

either be implemented in UMAT or the in-house FORTRAN code. Second, the 

transient swelling is realized by adding the diffusion equations, together they 

formed a coupled system of equations regarding the displacement field and 

chemical potential field. The numerical scheme has been tested for different cases 

and showed to be robust.  

3.2.1 Numerical Derivation of Equilibrium Swelling 

 To start, let’s go back to the previous definition of strain energy density. 

Normalize free energy density W


defined in equation (2.32) by /kT v , i.e.,  

 / /U W kT v


  (3.1) 

And use the notation  detJ  F , the normalized free energy density is 

     1

1
3 2ln 1 ln 1

2 1

J
U Nv I J J J

J J




 
         

 (3.2) 
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Where  

2 2 2

1 1 2 3I       (3.3) 

Is the first strain invariance and  

2 2 2 2

3 1 2 3I J      (3.4) 

is the third strain invariance. 

 For hyperelastic materials, the deviatoric and volumetric part of the 

deformation could be splitted(Bonet and Wood 1997) by introducing 1I , where 

2

2 2 2 3
1 1 2 3 1I J I  



     (3.5) 

In the above formulation,  
1

3 1, 2, 3i iJ i 


  . So the expression for free 

energy density could be transformed 

   
2

3
1

1
3 2ln 1 ln 1

2 1

J
U Nv J I J J J

J J




   
            

 (3.6) 

To avoid the numerical singularities at 1J  , which is unphysical since the gel 

could not be perfectly dry, an small initial swelling configuration is introduced by 

assuming an initial homogeneous swelling 1 2 3 0      , in this case, 

2

1 0 1I I , 3

0J J , 6

3 0 3I I .  
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And the strain energy density also changed to  

     
3

2 3 3 30
1 0 0 0 03 3

0 0

1
3 2ln 1 ln 1

2 1

J
U Nv I J J J

J J

 
    

 

 
            

 (3.7) 

The nominal stress s  depends on the free energy and could be derived from 

equation (2.28): 

1

1

iK

iK iK iK

IU U U J
s

F I F J F

   
  
    

 (3.8) 

Using the following relations: 

1 1 1 1
2 , , ,

6 2
iK ijk KQR iK mQ kR ijk KQR jQ kR ij iK jK

iK iK

I J
F J e e F F F e e F F s F

F F J


 
   

 
 (3.9) 

It is not difficult to obtain that: 

1 3
2 3 303
0 0 03 2 3

0 0

1 1
ln

1
ij ij ij

J
Nv J B Nv

J J J J

 
    

 

  
       

 
 (3.10) 

Where 

2

3
ij iK jKB J F F



  is the left Cauchy-Green tensor. For convenience of later 

study, we could split equation (3.10) by defining a reference chemical potential 

0 .and increment of chemical potential  . 

0

ij ij ij     (3.11)
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Where: 

1 3
0 2 3 0 303

0 0 03 2 3

0 0

1 1
ln

1
ij ij ij

J
Nv J B Nv

J J J J

 
     

 

  
       

 
 (3.12) 

Through the definition of velocity gradient L  and rate of deformation D , 

 
 

1
,

2

T


   


  


u
L D L L

x
 (3.13) 

Variation of ij  would be derived as: 

 
 

1 1

2 23 3
0 0

3 3

0 03 3 3 3

0 0

1

3 3

1 1
2 2

1

kl
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ij kk kk ij
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      
 

   
      

  

   


 

  (3.14) 

Where: 

 
1

2
ijkl ik jl il jk jk il jl ikH B B B B        (3.15) 

The virtue rate of Kirchhoff stress τ  is  J τ σ  and could be decomposed as 

 ij ij ijJ J J       (3.16) 

After some calculations, it is not difficult to find that 
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 

 
 

 

2 2

2 23 3
0 0

2

3 3 3 3
0 0 03 3

0 0

23
3 3 20 3
0 0 03 2 3

0 0

1

3 3

1
2 2

1

1
ln

1

kl
ij ijkl kl mm ij kk

ij kk ij kk

ij kk kj ik ik kj

J Nv J H D D Nv B J D

J J D Nv J B D
J J

J
J D Nv J B W B W

J J J


      

      
 

 
      

 

 
   

 

   


 
       

 

 

  (3.17) 

In the above formulation, virtual rate of spin W relates to velocity gradient via 

 
1

2
ij ij jiW L L     (3.18) 

Actually, because 
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(3.19) 

It is not difficult to find that: 

   
2

2 3
0 kj ik ik kjNv J B W B W J      W σ σ W  (3.20) 

If define tangential modulus ijklC as: 
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 (3.21) 
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Then equation (3.17) could be simplified to a more simple expression 

   ij ijkl kl kj ik ik kjJ JC D J W W          (3.22) 

In the above expression,  ij ijJ    is the Kirchhoff stress rate, on the right 

hand side, the first term represents the stress change due to stretching, and the 

second term represents the stress change due to rotation. 

 It should be noted that the expression of ij  in equation (3.10) and 

tangential modulus ijklC  in equation (3.21) are two key components to write an 

ABAQUS user material subroutine named UMAT. Rui and coworkers(Kang and 

Huang 2010) have also done similar work to develop a UMAT. However, with 

the capabilities in the UMAT, only equilibrium swelling with constant chemical 

potential is able to be studied. In UMAT, chemical potential serves as a state 

variable and only the displacement variables changes. To study the transient 

swelling, chemical potential change should be addressed. 

3.2.2 Numerical Simulation of Transient Swelling 

 First let’s simplify the deformation terms. To study the transient gel 

swelling, we first review some of the fundamental principles in continuum 

mechanics. Define virtual strain as 

1

2

T 


  
  

  

u u
ε

x x
 (3.23) 
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As stated in virtual work principle, the internal energy variation is caused by 

external work done by body force Q  and surface traction t , 

:
V S V

dV dS dV     σ ε t u Q u  (3.24) 

The above equation could be reduced to a set of equation regardingu , by 

moving the right terms to the left, i.e., and the difference produces the residual 

force vector R , i.e., 

  :u
V S V

dV dS dV       R u σ ε t u Q u  (3.25) 

Linearize residual force R  with respect to displacement gives Jacobian matrix 

uuK , i.e., 

 :
V S V

uu

d dV dS dV
d

d d

   

 
  σ ε t u Q u

R
K

u u
 (3.26) 

, where subscript “ uu ” is used to represent that it is the stiffness for the 

displacement variables. 

 Let’s take a look at the body force and surface traction terms in equation 

(3.26). First look at body force term   /
V

d dV d Q u u . Take a common type of 

body force self-weight as an example. Q g , where  is current density and g is 

acceleration due to gravity, in this case, 
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0

0
0 0

V V V V
dV dV dV dV

J


          Q u g u g u g u  (3.27) 

Since g remains constant, the linearization of the above formulation equals zero. 

Then look at the surface traction term   /
S

d dS d t u u . Surface traction t  could 

be decomposed as N x y  t t t t , where 
Nt  is normal component and 

xt , yt are 

two in-plane components. In a simple case where a normal pressure is applied, i.e.,

pt n , where n is current surface normal. Because variation of surface normal is 

nonzero, i.e., 0d n .   /
S

d dS d t u u  is nonzero and contributes to a term 

known as pressure stiffness(Bonet and Wood 1997). 

 However, for most of the applications in the current study, load is applied 

directly on finite element nodes and neither body force loading nor surface 

traction is necessary. Under this circumstance, complex mathematical derivation 

about any term related to body force or surface traction is omitted here. 

The first term on the right hand side of equation (3.26) could be simplified as 

 : : :
V V V

d dV d dV d dV     σ ε σ ε σ ε  (3.28) 

And after some derivation, it could be simplified as 

 : : : : 2
T

V V

d
d dV d d dV


  

   
     

   
 

u u
σ ε ε C ε σ ε ε

x x
 (3.29) 
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, where σ  and C  has already been defined in equation (3.10) and (3.21), 

respectively.  

 The form of equation (3.29) was first used by Nagtegaal et al.(1974) and 

now finds its application in major commercial finite element software for their 

continuum elements formulation since they have been proved to yield fast rate of 

convergence. The difference for the gel is that the Cauchy stress σ  also depends 

on chemical potential. To summarize the discussions above, the Jacobian of the 

displacement field is obtained as 

: : : 2
T

uu
V

d
d d dV


 
   

     
   


u u

K ε C ε σ ε ε
x x

 (3.30) 

 For real numerical situations, the choice of rate of deformation ε  is 

stringent. Standard formulation, which is defined directly from strain-

displacement formulation as in equation (3.23), is not sufficient to deal with 

complex situations. Shear locking and volumetric locking(Bonet and Wood 1997) 

behavior could happen when the material is approaching incompressible limit. 

The elements show unphysical stiffness when get “locked”. In the simulation for 

gel, when it is near dry, it is close to incompressible and subject to the same 

problem. In order to overcome this problem and to develop more general finite 

element formulations, a lot of element technology are available and among them 

B-bar element technology(Hughes 1980) is employed. The B-bar method works 

by treating the volumetric part and deviatoric part of the strain-displacement 
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matrix differently, and is similar to selectively reduced integration method by 

simply modifying the definition of strain. The volumetric strain is averaged over 

all the elements in order to eliminate volumetric locking.  

 To better clarify the idea of B-bar technique. Use 3D brick element as an 

example, the B-Bar formulation would be: 
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,  (3.31) 

where i

i

N
B

X

 



 is standard shape function derivative and 

ˆ /
e e

e e

i

iV V

N
B dV dV

X

 


   is averaged shape function derivative. Write equation 

(3.31) in symbolic form, we have: 

 ε B u  (3.32) 

Where B  is the coefficient matrix in equation (3.31). 
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 Linearize P

uR  with respect to chemical potential increment  , the off-

diagonal coupling stiffness 
PQ

uK   could be obtained as: 

P
PPQ P Q Qu

u k iiQ k

R
K u B N dVd  




        (3.33) 

In the above discussions, the stiffness matrix relates to the deformation part has 

been derived. In the following discussion, the stiffness matrix for the diffusion 

part will be investigated.  

The diffusion equation in reference configuration has been defined previously in 

equation (2.25), and if there is no source contribution, it could be simplified as 

 det 0i

i

jC

t x


 

 
F  (3.34) 

, where 
 det

iK K
i

F J
j 

F
 is the flux defined in the current configuration and 

 1,2, 3ix i   are coordinates in the current configuration. At the same time, ij  

relates to chemical potential by 

i

i

cD
j

kT x


 


 (3.35) 

Applying molecular incompressibility condition  1 detvC  F  and define 

normalized variable i ij vj  and / kT  , we have 
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 det 1

det
i

i

D
j

x

 
 



F

F
 (3.36) 

Then equation (3.34) could be simplified as 

 det 11
0

det

i

i

j

t x

  
 

 

F

F
 (3.37) 

On the surface, the flux should satisfy  

 on i i jj n q S  (3.38) 

Introduce arbitrary test function , multiply equation (3.37) by  , integrate in 

the volume dV  and apply divergence theorem, we have 

 

  det 11
0

det jV V S
dV dV qdS

t


  

   
   

  
  

F
f

F x
 (3.39) 

Residual force vector for chemical potential is: 

 

  det 11

det jV V S
R dV dV qdS

t



  

   
    

  
  

F
f

F x
 (3.40) 

Discretize element chemical potential using shape function PN  and nodal 

chemical potential value P , i.e., P PN  . Then the residual force vector R

could be simplified as  
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01 det det

det j

P
P P P P P P

V V S

N
R N dV dV N qdS

t
   

 
   

   
F F

f
F x

 (3.41) 

Obviously, the residual force vector for chemical potential depends on the 

deformation via location x and deformation gradient det F . 

The corresponding Jacobian matrix for chemical potential term  
PQK  could be 

obtained via linearization of 
PR , i.e.,  

 /

P P

PQ

QQ

dR dR
K

d d x

 


 

 
 

 (3.42) 

Since flux f  depends on chemical potential gradient, we have / 0P QdR d   and 

 

 det 1

det/

P P Q
P P

Q

dR DN N
dVd

d x


 



  
   

    


F

x x F
 (3.43) 

So equation (3.42) simplifies to 

 det 1

det

P Q
PQ P P

DN N
K dVd  

  
   

   


F

x x F
 (3.44) 

At the same time, coupling terms between chemical potential   and displacement 

u  could be derived: 



37 

01 det det

det

P P
PQ P P Q P Q

u k kQ Q Q

k k k

R N
K N dVdu dVdu

u t u u



  
     

   
     

 
F F f

F x
 

  (3.45) 

Where 

1

det

Q

kKQ

k K

N
D H

u X

  
 

  

f

x F
 (3.46) 

And finally, 
PQ

uK  could be finally simplified to 

1 1

det

1

det

Q
PQ P P Q

u kK k
V

K

P Q
P Q

kK k
V

K

N
K N H dVdu

t X

N N
D H dVdu

X

 




 
  

  

   
  

   





F

x x F
 (3.47) 

 To summarize the above derivation, equations (3.30), (3.42), (3.33) and 

(3.47) defines the Jacobian matrices and equations (3.25) and (3.41) defines the 

residual force vector , they together forms the coupled equations to solve for 

displacement and chemical potential increment, i.e., 

u 

  

    
    

    

u u u

u

K K Ru

K K R
 (3.48) 

Equation (3.48) is the fundamental equation to develop an in-house coded 

FORTRAN program named “Gel Swelling Program (GSP)” (see Appendix A). It 

is a fully coupled equation about displacement and chemical potential. Newton 
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iterations are required to finally obtain accurate result. In each numerical iteration, 

the displacement and chemical potential value are updated. Using this program, 

various complex problems could be solved and studied in subsequent chapters. 

3.3. NUMERICAL SWELLING EXAMPLES 

 In this section several numerical examples are studied using the previously 

described numerical method. Again, free-energy density and stress is normalized 

by /kT v  and the chemical potential is normalized by kT . The theory has no 

intrinsic length scale or intrinsic time scale. Let L  be a characteristic length in a 

boundary-value problem and normalize all the other lengths by L , and normalize 

the time by 2 /L D . 

 A representative value of the volume per solvent molecule 28 310 mv   is 

used. At room temperature, 214 10kT   J and in this case 7/ 4 10kT v   Pa . 

The Flory-Rehner free energy density function introduces two dimensionless 

material parameters: Nv  and  . The dry network has a shear modulus NkT  

under the small-strain conditions, with the representative values 4 710 ~10NkT 

2N/m , which gives the range 4 110 ~10Nv   . The parameter   is a 

dimensionless measure of the enthalpy of mixing, with representative values   = 

0 ~ 1.2. For applications that prefer gels with large swelling ratios, materials with 

low values of  are used. In the numerical examples below, the values 310Nv   

and 0.2   are used. Diffusion coefficient for water 10 28 10 m sD    is 

adopted. 
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 The performance of the finite element method is first benchmarked by 

comparing finite element results with those using a finite difference method for a 

creep problem(2008). 

 

Figure 3.1. A fully swelling gel bonded to a rigid substrate and subject to an 

applied weight via a permeable plate 

 Figure 3.1 illustrates a thin layer of a gel immersed in a pure liquid solvent. 

The gel first undergoes free swelling subject to no constraint and no applied 

forces. The swollen gel is then bonded to a rigid substrate, and subject to an 

applied weight. The solvent can migrate out from the top surface of the gel, and 

the gel thins down. The layer will eventually attain a new state of equilibrium. Let 

L  be thickness of the dry network subject to no mechanical forces. This dry and 

undeformed configuration is used as the reference configuration, where a marker 

has the coordinates 1X and 2X  in the plane of the layer, and the coordinate 3X  

normal to the layer and pointing downwards. After free swelling and equilibrating 
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with the pure liquid solvent, the layer swells by an isotropic stretch, 

1 2 3 3.215     . The gel is then bonded to the rigid substrate, and subjected 

to a surface traction, i.e., the weight divided by the area of the dry polymer. When 

the solvent migrates out, 
1  and 

2  remain unchanged, but 
3  changes with time 

and position. The thickness of the gel is taken to be much smaller than the lateral 

dimensions of the gel, such that the field in gel is independent of
1X  and 

2X . The 

functions  3 3,X t  and  3,X t  could be determined. 

 In a finite element model, twenty 8-node brick elements are used. They 

stacked up one on top of another in the direction of the thickness. To model the 

full layer of the gel, vanishing displacements and flux in lateral directions are 

imposed. The top surface of the gel is prescribed with the traction and the 

vanishing chemical potential, while the bottom surface of the gel is prescribed 

with the vanishing displacement and flux. 
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Figure 3.2. Stretch evolution during the creep test 

 

Figure 3.3. Chemical potential evolution during the creep test 

 Figure 3.2 and Figure 3.3 compare the functions  3 3,X t  and  3,X t  

obtained from the finite element method in this paper and that from a finite 

difference method by Hong et al. (2008). As shown in the figures, the agreement 

is good. At the short-time limit, the weight is applied, but the solvent has no time 

to migrate out, so that the stretch is unchanged,  3 3,0 3.215X  , but the 

chemical potential jumps to a value higher than that of the external solvent, 

 3,0 0X  . At the long-time limit, the chemical potential in the gel equilibrates 

with that of the solvent,  3,0 0X  , and the stretch reduces to a new value. 

 As a consequence of the conditions of local equilibrium, the top surface of 

the gel  3 0X   reaches the long-time limit instantaneously, with the vanishing 



42 

chemical potential as fixed by the external solvent. In a short time, the interior of 

the gel is still largely in the state of short-time limit. As the time processes, the 

solvent migrates out gradually, and the entire gel evolves toward the long-time 

limit. 

 The second example is free swelling of a cube of a gel with size L  in the 

dry state is studied. The dry cubic gel is dropped into a solvent bath with all 

surfaces contact with solvent. Because all the surfaces have the same chance to 

absorb solvent and geometrically equivalent, conditions of symmetry are imposed, 

so that only one-eighth of the cube is modeled. 1,000 brick elements with 

chemical potential degree of freedom were used to simulate the whole swelling 

process and Figure 3.4 showed several key steps. 
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Figure 3.4. Different stage of swelling of a quarter of the gel (a) initial shape 

2/ 0Dt L   (c) transient swelling shape at 2/ 3.0Dt L   (c) equilibrium swelling 

shape 2/Dt L   

 Figure 3.4(a) is the initially dry state, with the dimension in all direction 

be the same. Figure 3.4(b) is a transient state relates to 2/ 3.0Dt L   and Figure 

3.4(c) is the state for swelling equilibrium. Again, the figure in Figure 3.4 is only 

one-eighth of the whole geometry, i.e., full cubic. As shown from the swelling 

process, it is observed that the gel first swells to a bowl-like shape, where the 

corner swells more than the center. The reason is because the corner has more 

contact with solvent. And the pulling stress in the center is larger than the corner, 
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which serves as the driven force for the center to match up with the swelling of 

the corner. More intuitively, the dry region (center region) has larger tendency to 

absorb solvent. But at the final stage, i.e., given enough time, the gel swelling 

reaches equilibrium. The final shape is flat which indicates that a homogeneous 

swelling state is reached due to the lack of constraint for this cubic gel. In any 

material point inside the gel, it bears the same amount of swelling along any 

direction. As observed from the swelling process, extensional stress have been 

developed, indicating that the gel have the “tendency” to be stretched, or namely, 

swell. This inhomogeneous swelling process is very common in the swelling of 

gels and have also been observed in experiments(Achilleos et al. 2000). 

3.4. SUMMARY AND DISCUSSIONS 

 In this chapter, the status of numerical methods toward gel swelling is 

introduced. Numerical method for equilibrium gel swelling and transient gel 

swelling is presented. In this method, coupling equation regarding deformation 

and chemical potential change is obtained. Based on this method, an ABAQUS 

user material program UMAT that is capable to study gel equilibrium swelling is 

built and an in-house FORTRAN program named “Gel Swelling Program (GSP)” 

that is capable to study both transient and equilibrium swelling is developed and 

attached in Appendix A. GSP is capable to solve very complex program and 

allows flexibility for future editing. In the gel community, where new applications 

come out rapidly(Xue et al. 2011, ; Costa et al. 2012), it meets the demands of 

numerical tools in swelling simulation. The validity of the numerical method is 
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benchmarked via a creep test problem and visualized by a simple cubic swelling 

example. 
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4 SWELLING INDUCED BUCKLING IN GELS 

4.1. INTRODUCTION TO GEL BUCKLING 

 Buckling instability has been studied extensively for the past few decades 

as one of the most critical structural failure modes (Timoshenko and Gere 1961). 

This conventional theme is recently gaining new attention as a useful way for 

creation and transformation of patterns because buckling is often accompanied 

with large deformation and radical shape change of the structure. Nature has 

already developed such techniques to leverage mechanical instability to create a 

wealth of complex patterns. As biological tissues and organisms grow non-

uniformly or under constraints, plane features transform into rich patterns with 

complexity as found in such examples as wavy edges of plant leaves(Sharon, 

Marder, and Swinney 2004), fine annular patterns in fingerprints(Kucken and 

Newell 2005, ; Liang and Mahadevan 2009), inter-connected creases of brain 

cortex(Bayer and Altman 2005) and buckling of microtubules(Shen 2010, ; Gao 

and Lei 2009, ; Jiang and Zhang 2008). 

 This elegant approach to achieve pattern transformation by harnessing 

mechanical instability has not been much explored until recent progress in 

material science and manufacturing technologies for soft materials such as 

elastomers and hydrogels. Particularly, swelling gels have attracted increasing 

interest because they can actively grow and shrink depending on environmental 

conditions such as humidity, temperature and pH(Beebe et al. 2000, ; Dong et al. 

2006, ; Sidorenko et al. 2007). Hydrogel-based structures, therefore, can 
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spontaneously create and reversibly pose different patterns via buckling without 

the need for external load to trigger mechanical instability. This holds great 

potential in development of self-operating devices with switchable functionalities. 

4.2. EXPERIMENTAL STUDY AND FINITE ELEMENT SIMULATION  

4.2.1 Experimental Study 

 A novel 3D micro-fabrication technology, projection micro-

stereolithography (PμSL)(Sun et al. 2005), is used to fabricate hydrogel micro 

tubes. All the experiments in this chapter are done by Dr. Howon Lee. The bottom 

of the hydrogel tube is fixed to impose constraints against swelling as shown in 

Figure 4.1. 

 

Figure 4.1. Illustration of the ring buckling experimental setup and buckling 

process 

 Characteristic dimensional parameters, ,t h  and D represent thickness, 

height, and diameter of the model structure in dry state, respectively. Subjected to 
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the fixed boundary condition on the bottom, the gel develops inhomogeneous 

stress when allowed to swell. By appropriate selection of dimension, constrained 

swelling can be made to exhibit buckling instability, causing the circular wall to 

transform into wrinkled patterns with different wave numbers. 

 To demonstrate pattern formation, The tubular gel samples are fabricated 

in different dimensions using poly(ethylene glycol) diacrylate (PEGDA). Four 

groups of samples (I-IV) with different levels of normalized thickness /t h  were 

prepared, with group I being thicker and group IV being more slender (upper 

image in Figure 4.2). Each group consists of six samples (i-vi) with different 

levels of normalized height /h D , with the sample i being shorter and the sample 

vi being taller. For swelling experiment, a sample is placed upside down and put 

in the bath with water covered with oil layer on top as illustrated in Figure 4.1. 

Then the sample was brought into contact with water surface for swelling, while 

base substrate part on which the gel tube was fixed stayed in the top oil layer. In 

this way, water can diffuse into the tube wall allowing the sample swell before the 

constraining base relaxes by wetting. Circular tubes transformed into a wide 

variety of rich patterns as swelling proceeded. 
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Figure 4.2. Comparison of finite element simulated buckling pattern and 

experimental buckling pattern. Color bar indicates normalized height of samples. 

 Figure 4.2 presents swelling patterns obtained in the swelling experiment 

from different samples. Images with dark background are experimental results 

and with white background are finite element simulation results. Experiment 
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agrees with simulation very well. These results suggest strong connection 

between the normalized thickness /t h and stability, and between the normalized 

wall height /h D  and buckling pattern. Samples in group I and II had tendency to 

remain stable during swelling, while samples in group III and IV underwent 

mechanical instability and transformed into wrinkled patterns. More interestingly, 

samples with the same normalized height /h D  transformed into instability 

patterns with the number of wrinkles close to each other, regardless of the 

normalized wall thickness /t h . The same trend was observed when the same 

experiment using hydrogel with different stiffness and swelling ratio was repeated, 

confirming that dimension plays a dominant role in spontaneous buckling in 

swelling gel. 

4.2.2 Finite Element Simulation 

 The simulation follows much with the method described in chapter 3. And 

a user material program UMAT implemented in ABAQUS software is used to 

study the gel swelling. In the UMAT, the gel is programmed as a user material 

and chemical potential is an adjustable parameter. Swelling is realized via 

coupled-temperature displacement analysis by changing chemical potential. To 

simulate the buckling process, an initial perturbation analysis is performed to 

generate the buckling wave followed by a subsequent post-buckling analysis to 

produce the final wave shape. 0.1% of the first three buckling modes magnitude 

from a thermal expansion perturbation analysis (expansion ratio=1.75) is added as 

an initial geometric imperfection for the post-buckling analysis. Different small 
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initial imperfection is tested and exhibits no significant influence over the post-

buckling result. This agrees well with the general understanding that initial 

geometric imperfection is merely a “trigger” for post-buckling study. Parameters 

used in the simulation contain / 138 MpaBk T v   for water molecules. And 

43.06 10Nv    corresponds to gel elastic modulus 0.11Mpa . Polymer solvent 

interaction parameter is 0.57  . Degree of swelling is adjusted (based on 

deformation estimation) by increasing chemical potential gradually, from 

/ 2.02kT   ( 0 1.01  ) to / 0kT  (corresponds to 01.75  ) while 

maintaining Nv  and  . Typically 1000~3000 incremental steps in ABAQUS are 

required to complete a single simulation due to the strong divergence occurred. 

Several thousands of 3-D brick elements with temperature degree of freedom 

(C3D8T) are used for most of the calculations and result reaches convergence by 

mesh refinement. Finite element results are shown in Figure 4.2 to compare with 

experiment and showed good agreement as stated before. 

4.3. THEORETICAL FORMULATION 

 In this section, principle behind the pattern formation is explained by 

simple energy analysis and design criteria to control instability pattern is 

presented. 
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Figure 4.3. Model geometry (a) compressed configuration (side view) (b) buckled 

configuration (top view), deflection away from central axis modeled as equivalent 

springs 

 A cylindrical-walled hydrogel tube with diameter D , height h , and wall 

thickness t  is shown in Figure 4.3. Cylindrical coordinate system  , ,r z  is used 

to describe deformation. Fully swollen state is considered as stress-free and zero 

strain energy state. Therefore, any deformation from it increases potential energy 

of the system. The system poses a shape that minimizes the total potential energy. 

With the given boundary condition, there are two possible configurations for the 

swollen tube to adopt in order to accommodate expanded geometry in the original 

dimension: compression and buckling. The elastic energy for each configuration 

is analyzed to predict stability as well as post-buckling pattern. 
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4.3.1 Stable Configuration 

 For stable configuration, cross-section of the tube remains circular with 

the radius being a function of height only. It is assumed that radius is linearly 

varying from the dry radius / 2R D  at the fixed bottom to the fully swollen 

radius R  at the top as shown in Figure 4.3 (a). Then, radius can be written as 

   1 1
z

r r z R
h


 

    
 

 (4.1) 

Since only in-plane compression is involved, total elastic energy in the stable 

configuration is obtained as 

 21 1

2 24
stableU E dV EDth b     (4.2) 

Where  
1

1 1
r R z

z
R h






 

   
      

  
 is strain in circumferential direction 

and      
2

1 1/ 3b      . 

4.3.2 Buckled Configuration 

 Once the structure becomes mechanically unstable, it buckles and creates 

wrinkles along its circumference. Due to the confinement of the tube at its bottom 

surface, the gel tube swells more near its upper end than near its bottom end. Two 

parts of energy should be considered in this case. The first part is the elastic 

energy due to the wavy bending along the circumferential direction. This energy 
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contribution increases with bucking mode because the wall undergoes more 

bending with large curvature in higher buckling mode. This part of energy is 

referred to circumferential energy. The second part is the elastic energy due to the 

deflection of the wall in axial direction. As the gel swells more near its free upper 

end than near its confined bottom, the gel wall has to deflect outwards or inwards 

in axial direction depending on the position on the wave. This energy contribution 

decreases with buckling mode because higher buckling mode results in smaller 

wave amplitude in given length, thus less deflection in axial direction is necessary. 

This part of energy is referred to axial energy. It should be noted that the name of 

energy is purely for purpose of analysis and simplification. With the two energy 

contributions working together, there exists an optimum buckling mode that 

yields minimum total potential energy. 

 The closed form wave amplitude could also be derived. In order to 

describe the wavy pattern of buckled configuration in an analytical form, one 

should be able to express the wave amplitude with known variables. Assuming 

that wavy pattern follows sinusoidal function along the circumference, amplitude 

of sinusoidal wave for given contour length can be calculated and obtained in a 

closed form using approximation for the elliptic integral (Luke 1968).  
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Figure 4.4. Given arc-length of sinusoidal wave function, wave amplitude 

becomes smaller as wave number increases 

Given overall wave contour length, wave amplitude is inversely proportional to 

the number of waves as shown is Figure 4.4. First, radius on the top end of the 

wrinkled tube could be written as 

 , cosr z h R A n     (4.3) 

where A  is amplitude of the wave to be determined and n  is mode number, i.e. 

the number of waves along the circumference. The contour length of the waves 

could be integrated as  

 
/2 22

0
4

n

L n dr rd


   (4.4) 

Substituting equation (4.3) into equation (4.4) under small strain assumption, and 

using the approximation for elliptic integral given by (Luke 1968)  
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   
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The arc-length of the wave can be obtained by 

 
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2
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

 
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 
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 
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   
  

   


 (4.6) 

From stable buckling, the contour length is 

2L R  (4.7) 

Combine eqns. (4.6) and (4.7), solve for  yields 

 
D

A a
h

  (4.8) 

Where  
2

2
1

3
a 



 
  

 
. 

 Then wrinkled radius at the free top end (i.e. z h ) can be now expressed 

with given parameters as follows. 

   
2

, 1 cosr z h R a n
n

  
 

   
 

 (4.9) 

A
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 The elastic energy for buckled configuration could be derived as follows. 

Radial wave amplitude varies with height and here we assume that it follows a 

bending profile of cantilever beam subjected to point load at the free end, 

   2 33 / 2z h z h , where h  is the height of the cantilever beam and z  is the 

specific location along the height direction. Then, radius of wrinkled cross-section 

can be written as  

   
 2

3

32
, 1 cos

2

z h z
r z R a n

n h
  

  
  

  
 (4.10) 

Elastic energy from bending along the circumferential direction is obtained by 

(Landau 1986) 

 3 2

2 21 11

2 140
c

Et a h
U EI dV n

D

 
   (4.11) 

where 
3

12

t Rd
I


  and 

 2

2 2

,1 r z

R










 are bending moment of inertia and 

curvature of the wave. Note that energy is proportional to 2n , which means that 

lower mode is energetically favorable. 

 Next, elastic energy along the axial direction is considered. This part of 

energy is modeled as bending of a set of cantilever beams surrounding the central 

axis. For simplicity, equivalent springs for cantilever beams are introduced as 

shown in Figure 4.3(b). Then each spring undergoes stretching by the distance to 
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the neutral circumferential line, which is the wave amplitude at each point, 

 ;r r z h R    . From beam theory, equivalent spring constant of each 

cantilever beam is given by (Timoshenko and Woinowsky-Krieger 1959) 

3

34
eq

Et Rd
k

h


  (4.12) 

Energy for the wall is obtained by integration of energy of each individual 

cantilever beam: 

 
 3 3 2

2

3 2

1 1

2 16
a eq

Et D a
U k r

h n

 
    (4.13) 

Note that the energy in this case is inversely proportional to 2n , which means that 

higher mode is energetically favorable. Combining Eq. (4.11)and Eq.(4.13), total 

elastic energy for buckled configuration, therefore, is given by 

 

 

3 2

2

4 2

11 1 1

140 16 /
unstable c a

Et ha
U U U n

D nh D

   
    

  

 (4.14) 

Minimization of unstableU  will give an optimum mode number n  for buckling. It is 

interesting to find that two terms are proportional to 2n  and 21/ n , respectively. 

The former is from circumferential bending (lower energy for lower mode) and 

the latter is from axial deflection (lower energy for higher mode). We find that 

this opposite dependence on mode number from two energy contributions brings 
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the system to a certain buckling mode in the event of buckling. Moreover, it is 

surprising to see that dimensional parameters involved in this competition in the 

bracket in (4.14) are h and D only. In other words, other parameters such as t ,  

and E  have no impact on the determination of buckling mode. This trend is 

verified by experiments shown in Figure 4.2. Once the tube buckles, the buckling 

mode does not depend on t , but only on /h D . 

 

Figure 4.5. Potential energy as a function of height diameter ratio for different 

buckling mode 

 Figure 4.5 plots the total potential energy for different possible buckling 

modes as a function of /h D . We can clearly see that for each /h D , there is a 
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mode number n  which brings the potential energy to the minimum, suggesting 

corresponding buckling patterns for given dimension. Taking 0
unstable

U n    

yields  

   

1

435 1 0.944

44
n

h D h D

 
   
 

 (4.15) 

The actual buckling mode number n  is an integer, its value is either n n   or 

n n   , depending on which one gives lower potential energy. “    ” and “    ” 

represent the floor and ceiling functions which map a real number to its largest 

previous or smallest following integer, respectively. 
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Figure 4.6. Critical swelling ratio as a function of thickness height ratio 

 Between stable and buckled state, the system chooses the configuration at 

the lower energy level. Instability index is defined as follows to characterize 

relative magnitude of the energy levels, 

 
2

1
( )stable

unstable n n

U
c

U t h
 



    (4.16) 

Where        235 /11 / 6 /c b a       is a swelling factor increasing 

monotonically with  . 1   means stable unstableU U , thus the system opts to 

buckle, while 1   means stable unstableU U , thus the system remains stable. This 

result implies that stability is determined by the square of the aspect ratio of tube 

wall /t h  and swelling ratio . This also matches well with the result found in the 

literature(Mora and Boudaoud 2006) ( 2 20.867cr t h   ). cr  required to trigger 

buckling instability is plotted as a function of the wall aspect ratio in Figure 4.6, 

suggesting that slender walled tube becomes mechanically unstable at smaller 

swelling ratio. 
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Figure 4.7. Critical thickness height line divides upper stable region and shaded 

unstable region below 

 Figure 4.7 is a stability map that can predict stability and buckling pattern 

together. With the horizontal and vertical axes representing /h D  and /t D , 

respectively. Any tube geometries can be mapped onto this plot. For given 

equilibrium swelling ratio   , corresponding critical wall aspect ratio  /
cr

t h  for 

instability from equation (4.16) can be represented by a straight line drawn from 

the origin. The shaded area under this line is unstable region where 1  , hence 

samples fall into this region are expected to buckle. The slope of this boarder line 

increases with  , making the unstable region larger. Furthermore, since buckling 

mode depends only on /h D  as shown in equation (4.15), the buckling mode 
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number can be determined based on the horizontal position of the sample on this 

map. Collectively, stability of the swelling gel tube as well as buckling pattern 

can be predicted together from this plot. In Figure 4.7, the critical stability line is 

drawn for 1.5  . Samples on the same sloped line (I-IV) have the same 

instability index. Instability indices defined by equation (4.16) for each line are 

0.25, 0.55, 2.18, and 4.98, respectively, which means that group I and II above the 

stability line should remain circular while group III and IV below the stability line 

are expected to create wrinkles. This prediction agrees with experimental result 

shown in Figure 4.2, except for a few cases of II-(i-iii) (in the dotted circle). 

 From equation (4.15), it is suggested that samples aligned on the same 

vertical line (i-vi) should transform into patterns in the same buckling mode 

regardless of t. This was also experimentally observed in Figure 4.2. Samples on 

the same column in Figure 4.2 have the same /h D  and their buckling modes are 

close to each other. The small difference across different groups should come 

from the thickness effect. For samples with thick wall, in-plane strain energy 

along the circumferential direction should also be considered, whereas this term is 

negligible for thin wall tube buckling where only out-of-plane strain energy along 

the circumferential direction is dominant. The experimental results for buckling 

mode numbers are plotted in Figure 4.8.  
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Figure 4.8. Buckling mode number for different height over diameter values for 

unstable sample 

Instability patterns from samples spanning a wide range of dimension collapse 

well around theoretical prediction. This shows that we demonstrated full control 

over the pattern of gel tubes formed by mechanical instability.  

4.4. DISCUSSIONS 

 In summary, well-controlled wrinkle formation of confined hydrogel tube 

using swelling-induced circumferential buckling are produced. Simple theory 

based on elastic energy is built and suggests that key dimensional parameters 
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sensitive to stability and buckling pattern formation are thickness to height ratio 

and height to diameter ratio, respectively. Experimental results showed good 

quantitative agreement with theoretical prediction as well as FEM simulation. In 

this study, it has been demonstrated that spontaneous formation of complex 

patterns can be achieved in a controlled manner by making use of mechanical 

instability of hydrogel. Furthermore, reversible nature of swelling and shrinking 

of hydrogel offers unique opportunities to develop versatile devices with tunable 

properties. It is believed that the study on buckling of swelling gels will contribute 

to increasing the breadth of possible application of soft materials in many 

emerging fields where complex morphologies and dramatic pattern shift are of 

critical importance, such as tissue engineering. 
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5 SWELLING INDUCED CRACK CLOSURE IN GELS 

5.1. INTRODUCTION TO FRACTURE OF GELS 

 Gels are soft materials where the three dimensional polymer network is 

immersed in a typical liquid environment. The dual attributes of a solid and a 

liquid, their environmental sensitivities and some other superior properties, such 

as biocompatibility, biodegradability and non-toxic nature make the gel a material 

of choice in nature and in engineering for a variety of applications, from our daily 

life(Pilnik and Rombouts 1985), sustained drug delivery(Qiu and Park 2001), 

tissue engineering scaffolds(Drury and Mooney 2003), and oil industry(Gomez, 

Mamora, and Lilledal 2002, ; Kleverlaan, van Noort, and Jones 2005). Though 

some recent improvements on strengthening of gels have been made by double-

networking(Gong et al. 2003), many gels are mechanically fragile(Levental, 

Georges, and Janmey 2007). Thus, it is important to understand the fracture 

behavior of gels. 

 Recently, the fracture behavior of gels has aroused some interests in the 

soft materials community. Hui et al.(2003) have found that unlike hard materials, 

soft elastomers showed a blunted crack shape. Krishnan et al.(2008) numerically 

studied the crack tip field of elastomers in mode I fracture and showed different 

stress singularities compared with linear elastic materials. Solvent also plays an 

important role in gel fracture. It affects crack propagation dynamics, as evidenced 

by Baumberger(2006) and Seitz et al.(2009) 

 This chapter studies another aspect of the influence of the solvent on gel 
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fracture. The solvent swells the gel and thus modifies the stress distribution within 

the gel. Under this circumstance, swelling-induced healing occurs. This chapter 

studies the healing process using finite element simulations and experiments.  

5.2. SIMULATION OF THE CRACK CLOSURE PROCESS 

 The finite element simulation follows the method described in chapter 3, 

using the in-house FORTRAN program as attached in APPENDIX A. Part of the 

simulation is accomplished using a user-defined hyperelastic material (UHYPER) 

in ABAQUS(Hong, Liu, and Suo 2009). 

 Parameters 0.001Nv   and 1.13   are used in most of the simulations, 

which give the equilibrium swelling ratio 1.1eq  . Here the relatively smaller 

swelling ratio is used for the sake of easier convergence and less computational 

efforts. As discussed earlier, the characteristic time scale is given by 
2 /repL D , 

where repL  is the characteristic length in a boundary value problem. In the 

following simulation, all lengths are normalized by repL  and the time is 

normalized by 
2 /repL D . 

 Figure 5.1 illustrates the geometry of model. The boundary conditions are 

vanishing displacement at the rightmost (

     1 2 3/ 2 / 2 / 2 0u x L u x L u x L      ) and a prescribed displacement 

load is applied at / 2x L  and y W  , i.e.,  2 0/ 2,u x L y W u     and 

 2 0/ 2,u x L y W u      . In order to study the stress and displacement fields 

at the crack tip before and after the solvent is applied, a two-step process is used. 
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In the first step, a dry gel (i.e., chemical potential    ) is subjected to a 

displacement load 
0u  at / 2x L  and y W  , respectively. Then a droplet of 

solvent (chemical potential 0  ) is applied at the crack tip ( 0x y  ) while the 

prescribed displacement remains at / 2x L   and y W  . Thus, in the second 

step, the fields of displacement of chemical potential of the gel will evolve. The 

displacement 3u is set to be zero. 

 

Figure 5.1. A gel model with a rectangle geometry 2W L  is used in the analysis. 

Prescribed displacements 0u are applied at the upper and lower left corners of the 

model. 

 

Figure 5.2. Finite element mesh for half of the global model with a rectangle 

geometry W L . The symmetric displacement boundary conditions are applied at 
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0Y   and 0X  . 

 

Figure 5.3. Finite element mesh for the submodel near the crack tip. The center of 

the circle is the crack tip and the radius of the submodel is R . 

 The symmetry of the model is utilized and Figure 5.2 shows a 

representative mesh that contains 3,861 three-dimensional brick elements. The 

symmetric boundary conditions are applied at 0Y   and 0X   and the crack 

faces are traction free. This model is considered as the global model. We take a 

circular domain of radius R  centered at the crack tip as our submodel (Figure 5.3) 

to obtain finer resolution at the crack tip. The submodel is subjected to a 

prescribed displacement boundary condition provided by the global model. In the 

following simulation, we take 80L   and 20W   and the size of the submodel 

R  is 21.25 10 . The submodel zone contains 28,950 three-dimensional brick 

elements. A very fine mesh is used near the crack tip. Thus, the largest element 

size is approximately 2.0 (Figure 5.2) and the smallest element size is 51.3 10  

(Figure 5.3), which provides a ratio of 510  between the largest element size to 
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smallest element size. Efforts are made to ensure that elements have an aspect 

ratio close to 1. Mesh refinement and comparison of different meshes have 

ensured that the numerical results are accurate. 

 

Figure 5.4. The distribution of normalized vertical stress  / /yy Bk T v . Ahead of 

the crack tip for dry gel subjected to different loading 0 0.1u  , 0.4, 0.8 and 1.6. 

 Figure 5.4 shows the normalized vertical stress (  / /yy Bk T v ) of the dry 

gel versus the normalized distance to the crack tip X  , ahead of the crack tip 

during the first step for four sets of prescribed load, 0 0.1u  , 0.4, 0.8, and 1.6. It 

is observed that for smaller loading (e.g., 0 0.1u  ), the stress profile follows a 

straight line with slope -1/2 near the crack tip, this is known as square root 

singularity in linear elastic fracture mechanics stating that stress varies as -1/2 

order of the distance from the crack tip. As the increase of the load, the stress 
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around the crack tip ( 41 10X   ) is evaluated and shows a stronger singularity 

compared with linear elasticity. This stronger singularity has been attributed to the 

effect of hyperelasticity(Krishnan, Hui, and Long 2008, ; Hui et al. 2003). As 

away from the crack tip, the stress still shows -1/2 singularity and a transition 

exists. The following simulations use 0 0.1u   for the sake of computational 

simplicity, though similar results have been found for large prescribed 

displacement (e.g., 0 0.4u  ). 

 Solvent is then dropped at the crack tip in the second step. The wetting 

process is simulated using the submodel mesh. The nodes on the outer half circle 

are subjected to the displacement field obtained from the global mesh and the 

symmetric boundary conditions are applied along the crack extension. Since the 

solvent will swell the elements, stiff spring elements are employed to prevent 

element penetration through the symmetric axis ( 0Y  ). Thus, in the second step, 

some regions of the crack faces do not have traction free boundary conditions 

depending on the swelling of the gel. 
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Figure 5.5. Contour of the normalized vertical stress  / /yy Bk T v  at 

2/ 0.31Dt R  . The tensile stress at the original crack tip is reduced and the 

location of crack tip does not change. 
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Figure 5.6. Contour of the normalized vertical stress  / /yy Bk T v  at 

2/ 1.53Dt R  . The compressive stress appears at the original crack tip and the 

location of crack tip changes 

 

Figure 5.7. Contour of the normalized vertical stress  / /yy Bk T v  at 

2/ 2.15Dt R  . A compressive zone appears around the original crack tip and the 

location of crack tip moves further 

 Figure 5.5 to Figure 5.7 show the stress contours near the crack tip at 

different time after the solvent droplet is applied at the crack tip. In order to have 

a fair comparison, the same scale bar is used in all the contours. Since the 

submodel is used in this simulation, the radius of the submodel R  is chosen as the 

representative length. As shown in Figure 5.5 at 2/ 0.31Dt R  , the tensile stress 

still dominates the stress field at the crack tip, though the stress level is slightly 

diminished because of the swelling of the crack tip. At 2/ 1.53Dt R   as shown in 
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Figure 5.6, the tensile stress has been further reduced and the stress at the original 

crack tip turns to compressive. The stress singularity at the crack tip disappears. It 

is also interesting to note that due to the swelling of the crack tip, the crack is 

healed as a new crack tip ( 41.293 10X    ) is generated to the left of the 

original crack tip. Since the new crack tip is generated by the swelling of the gel 

but tensile load, the stress singularity does not exist at the new crack tip. The 

swelling induced healing in some polymers have been observed(Toohey et al. 

2007). Figure 5.7 shows that as time evolves, at 2/ 2.15Dt R  , the crack 

continues to close and the new crack tip has travelled to 0.00163X   . The 

compressive stress at the original crack tip increase and creates compressive zone 

near the original crack tip. In the present analysis, the influence of the submodel 

to the global model is assumed to be insignificant so that the time is limited to a 

point at which the swelling is still localized near the crack tip and does not affect 

the global model. The entire crack closure process is still foreseen based on the 

trends shown in Figure 5.5 to Figure 5.7. 

 The localized swelling at the crack tip results in a tensile to compressive 

stress transition and crack closure. After very short time since the solvent is 

applied at the crack tip, the crack tip does not have time to swell such that the 

tensile stress still dominates (Figure 5.5). As swelling goes, material near to the 

crack tip absorbs large amount of solvent and generates an inhomogeneous 

swelling field. Swelling at the crack tip releases the tensile stress and even turns it 

to a compressive stress as the swollen elements push each other (Figure 5.6). This 

process repeats and generates a compressive zone near the original crack tip, as 
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shown in Figure 5.7.  

 

Figure 5.8. Normalized vertical stress  / /yy Bk T v  at the original crack and the 

location of the crack tip versus the normalized time ( 2/Dt R ). 
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Figure 5.9. Crack opening profile  yu X  at different time ( 2/Dt R ). 

 The evolution of stress at the original crack tip and the position of the new 

crack tip with time are also studied and shown in Figure 5.8. It is found that it 

only takes a short time to release the tensile stress at the original crack tip and 

change it to compressive stress. This suggests that even a small amount of solvent 

present at the crack tip will help to eliminate the stress singularity at the crack tip. 

Once the stress at the original crack tip turns to compressive, the crack starts to 

close. It is also observed that once the crack closure is initiated, the location of 

new crack tip evolves approximately linearly with time. In other words, a constant 

crack healing speed occurs in the present analysis. The same constant healing 

speed is also observed in experiment when Poly(methyl methacrylate) swelled in 

co-solvent of methanol and ethanol(Hsieh, Yang, and Lee 2001). 

 The constant crack closure speed can be explained by the crack opening 

yu  at different time 2/Dt R  shown in Figure 5.9. The crack opening yu  at 

2/ 0Dt R   corresponds to the case of the dry gel. It is observed that the crack 

opening profile significantly changes at the onset of crack healing (time 

2/ 1.53Dt R  ). Once the crack healing starts, for equal time interval (

2/ 0.62Dt R  ), the crack opening profiles are self-similar with approximately 

equal separation in X . Thus, the crack healing is propagating with a constant 

speed in a similar manner as that of the stress wave.  

 We also study the effect of the equilibrium swelling ratio of a gel on the 

crack healing. Thus the static simulations are conducted here. The global model is 
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subjected to the previously mentioned loading. The obtained displacement fields 

are applied to the submodel as the prescribed displacement boundary conditions. 

Then the crack closure is studied in the submodel. Gels with different equilibrium 

swelling ratio have been used and relative crack healing (healed length versus 

submodel size) is plotted as a function of equilibrium swelling ratio in Figure 

5.10. It can be observed that a very small swelling ratio is insufficient to heal the 

crack. As the equilibrium swelling ratio increases, the percentage of the healing 

increased drastically. When equilibrium swelling ratio is 1.1 (i.e., the equilibrium 

swelling ratio used in the previous analysis), most of the crack has been healed. 

This result suggests that for a given crack, a corresponding equilibrium swelling 

ratio exists to ensure that the crack can be healed completely by gel swelling. The 

equilibrium swelling ratio depends on the polymer crosslink density, the polymer-

solvent affinity, and the ambient humidity as well. 
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Figure 5.10. Percentage of healed crack versus equilibrium swelling ratio eq  

5.3. EXPERIMENTAL STUDY 

 Despite that the involvement of the solvent decreases the fracture 

toughness of the gel as shown in Baumberger et al.’s experiement(2006), the 

swelling of the gel may compensate this decrease and still lead to crack closure as 

shown in the simulation and to be shown in the following experiments. All the 

experiment in this chapter should be credited to Dr. Kyle Yazzie when he was 

completing his ph.D. supervised by Prof. Nikhilesh Chawla. 

 The solvent aided self-healing process of gel was validated by experiments 

as well. A Poly(ethylene glycol) diacrylate(PEGDA) gel slab with 15mm in 

length and 10mm in width was prepared. The gel was prepared with the solution 

containing a 1:1 (by weight) mixture cross-linker of PEGDA and polyethylene 

glycol(PEG), together with 2 wt% photoinitiator, Irgacure 819. The solution was 

put in a petri dish and exposed to ultraviolet light with wavelength 365 nm. Both 

sides were exposed for 15 seconds to ensure uniform crosslinking. Equilibrium 

swelling ratio of the gel was measured to be 1.3. The square, dry, PEGDA gel 

stab is cut by a razor blade to create a crack, followed by 0.4 mm displacement 

loading as illustrated in Figure 5.1. A drop of water was then dropped in the crack 

tip. Then the digital image correlation (DIC) technique was used to measure the 

displacement and to calculate the strain field. DIC uses a correlation algorithm to 

compare successive images of a deforming speckle pattern. The speckle pattern is 

applied to the sample surface, and provides a high contrast pattern that can be 



79 

easily correlated by the DIC algorithm. The algorithm computes a displacement 

field based on local correlation of the positions of individual speckles. The 

speckle pattern was applied to the gel specimen surface as follows. The gel 

surface was coated with a thin layer of white matte-finish spray paint. Black 

matte-finish spray paint was sprayed on the white base coat to create a stochastic 

pattern of speckles on the order of 200 m  wide, or about 4 pixels by 4 pixels in 

area. The test was recorded by taking 8-bit tiff images. The strain produced in the 

specimen during the tensile test was analyzed by importing the 8-bit tiffs into 

commercially available digital image correlation software (ARAMIS, Trillion 

Quality System, Plymouth Meeting, PA, USA). 

 

Figure 5.11. Strain field right after the square gel slab is subjected to a 

displacement loading 0 0.4 mmu   
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Figure 5.12. Strain field at 1 minute after adding solvent 

 

Figure 5.13. Strain field at 10 minutes after adding solvent 

 

Figure 5.14. Strain field 30 minutes after adding solvent 
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 Figure 5.11 to Figure 5.14 show the strain field at different time after the 

water droplet is applied at the crack tip. At 0t   (Figure 5.11), i.e., the prescribed 

displacement load is just applied, and a high tensile strain field is observed around 

the crack tip. One minute after the water droplet is applied at the crack tip (Figure 

5.12), part of the original crack has been closed and the strain field around the 

original crack tip is reduced. Ten minutes later (Figure 5.13), most of the crack 

has been closed due to swelling. Thirty minutes later (Figure 5.14), the healing 

process is complete and the strain field is tremendously reduced. The 

experimental healing process directly proved that the solvent were able to swell 

the crack tip of the gel and finally heal the crack, and at the same time, reduce the 

high stress zone near the original crack tip. 

5.4. DISCUSSION OF GEL CRACK CLOSURE 

 In summary, this study shows that the presence of a solvent at the crack tip 

swells the gel and releases the tensile stress around the crack tip. Crack closure 

occurs due to gel swelling and the fraction of crack healing depends on the 

equilibrium swelling ratio of a gel. Future work on the solvent involved gel 

fracture, such as the evolution of stress field at the crack tip as solvent diffuses 

using the asymptotic analysis would be of interest. This work also sheds some 

light on the practical application of self-healing, though the actual healing process 

is a much more complicated process that involves polymerization of the healing 

agent assisted by a catalyst(White et al. 2001). However, one critical step in 

healing is to bring the cracked faces in contact(Wool 2008, ; Wang et al. 2010) 
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and the present analysis provides a means to analyze this problem. Once the crack 

faces come into contact, subsequent healing steps may involve molecular 

interdiffusion(Wool and Oconnor 1981) or reversible bonding(Wu, Meure, and 

Solomon 2008) such as ionic bonding and hydrogen bonding. Moreover, 

swelling-induced self-healing may provide an alternative way for heat(Chen et al. 

2002) or light(Burnworth et al. 2011) based healing. In this spirit, healing by 

solvent swelling is a promising way to improvXe the structural integrity of gels, 

to extend product lifetime, and to broaden their applications. 
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6 CASE II DIFFUSION-MODELING AND EXPERIMENT 

6.1. INTRODUCTION TO CASE II DIFFUSON 

 As stated in previous chapters, there are many efforts to develop 

mechanics theories to capture the coupled deformation and diffusion of gels 

(Tanaka and Fillmore 1979, ; Durning and Morman 1993, ; Dolbow, Fried, and 

Jia 2004, ; Tsai, Pence, and Kirkinis 2004, ; Li et al. 2007, ; Hong, Zhao, and Suo 

2010). A recent work by Hong et al. (2008) developed a rigorous framework to 

describe the coupled large deformation and diffusion in gels. The deformation of 

the polymeric network was described by the deformation gradient F  that maps 

the material point from a reference configuration to a current configuration. From 

a free-energy function of Flory and Rehner (1943), the gel stress was calculated as 

the work conjugate with respect to the deformation gradient F . The kinetic law of 

diffusion follows the Fickian law and was presented in a rigorous manner by 

differentiating the different configurations. This theory was used to study some 

interesting phenomena(Zhou et al. 2010, ; Kim, Yoon, and Hayward 2010, ; Zhao, 

Hong, and Suo 2008) and a few numerical tools were developed based on it 

(Zhang, Zhao et al. 2009, ; Hong, Liu, and Suo 2009). 

 The dynamic behavior of gels is controlled by the deformation of the 

polymeric network (e.g., physical gels that exhibit phase transitions (An, Solis, 

and Jiang 2010)) and/or diffusion of the solvent into the polymeric network. It is a 

complex and interesting problem to accurately describe the diffusion of solvents 

into a polymeric network. This interest has been last for several decades. For most 
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glassy polymers, at temperatures far above the glass transition temperature of the 

polymer, the diffusion follows Fickian law. However, near or below the glass 

transition temperature, a non-Fickian behavior was observed. One particular 

instance of non-Fickian diffusion is Case II diffusion which is characterized by a 

sharp diffusion front that separates the swollen rubbery part and the dry glassy 

part of the polymer (Alfrey, Gurnee, and Lloyd 1966). Many solvent/polymer 

systems exhibit the Case II diffusion behavior, for example, methanol diffusion in 

Poly(methyl methacrylate) (Weisenberger and Koenig 1990), acetone in 

poly(vinyl chloride) (Perry et al. 1994), dioxane in polystyrene (Ilg et al. 1994) 

and iodoalkane into polystyrene (Gall, Lasky, and Kramer 1990). 

 Our recent experiment also clearly shows the sharp front when the solvent 

diffuses into a polymeric rod. We prepared a poly(ethylene glycol) diacrylate 

(PEG-DA) gel rod by photo-polymerization. Crosslinking density of PEG-DA gel 

was controlled in such a way that the transparent gel in dry state becomes white 

and opaque when it swells, facilitating the visual distinction between dry and wet 

area. The PEG-DA rod was brought into contact with a droplet of deionized (DI) 

water on the tip. Then water started to diffuse into the polymer network, creating 

a visible boundary indicating the location of diffusion front. This experiment was 

carried out in oil bath to prevent possible evaporation of water through the side 

wall of the wet part, ensuring that solvent migration is primarily in the direction 

along the axis only. The locations of the diffusion front and the tip of the rod were 

measured by a digital camera over the course of diffusion process. 
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 Many efforts have been made to develop various models for case II 

diffusion based on different assumptions and physical pictures (Astarita and Sarti 

1978, ; Hui et al. 1987, ; Fu and Durning 1993, ; Govindjee and Simo 1993, ; 

Edwards and Cohen 1995, ; Argon, Cohen, and Patel 1999, ; El Afif and Grmela 

2002, ; Durning and Tabor 1986, ; Rossi, Pincus, and Degennes 1995, ; Lee and 

Kim 1992). A meaningful mechanism to explain the case II diffusion is the 

competition between the rate of relaxation of the polymeric network and the 

diffusion of solvent into the network. Thomas and Windle (1982) adopted this 

physical picture and modeled the gel as a viscous material and suggested that both 

the viscosity and diffusivity depend on solvent uptake, which has been 

qualitatively and quantitatively verified by experiments (Lasky, Kramer, and Hui 

1988, ; Gall, Lasky, and Kramer 1990, ; El Afif and Grmela 2002). Wu and 

Peppas (1993) improved Thomas and Windle’s model by modeling the gel as a 

viscoelastic material via a Maxwell model. 

 Given various theories and complexity of the coupled large deformation 

and diffusion, as well as a large number of applications, ample room exists for 

more theoretical work to connect principles of mechanics, constitutive relations of 

polymeric network, and kinetics of diffusion to experimental characterization and 

to validation. Specifically, we will develop a rigorous mechanics model to 

describe the deformation of the network, constitutive relations, equilibrium, and 

kinetic of diffusion, in the framework of continuum mechanics. The parameters 
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involved are experimentally measured and the model is validated by comparing 

with experiments. 

6.2. A PHENOMENOLOGICAL MODEL 

6.2.1 Configurations and Field Variables 

 Let  I, II, IIIAX A   and  1,2,3ix i   denote the coordinates of a 

material point in the reference configuration (e.g., dry state) and current 

configuration (e.g., swollen state), respectively. The mapping between the two 

configurations is given by the deformation gradient F as 

 
 ,

,
t

t





x X
F X

X
 (6.1) 

Here  , tX  is used to emphasize that this variable x  is under Lagrangian 

description and has temporal ( t ) dependence. 

 The corresponding gradient operators in the reference and current 

configurations are denoted by 


  and 


 , respectively, 

,A i

A iX x

  
   

 
e e  (6.2) 

where  I, II, IIIA A e  and  1, 2, 3i i e  are unit vectors along coordinate axes 

AX  and ix , respectively. Field variables can be expressed in both configurations 
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as subjected to “push-forward” and “pull-back” operations defined by F  or its 

related operators. 

 The mechanical forces do the work and deform the gel. In the current 

configuration, the stress traction t  per unit area on the surface a does the work 

and deforms the gel with displacement u  and stress σ  (the body force is ignored 

here). The gel stress σ  in the current configuration is given by 

def P σ σ I  (6.3) 

where def
σ  is the gel stress due to the deformation of the polymeric network, P I  

is the osmotic pressure due to the migration of the solvent molecules, and I  is the 

identity tensor. Hong et al. (2008) used the similar form by introducing the 

Lagrangian multiplier. The counterpart of the stress in the reference configuration 

is the second Piola-Kirchhoff stress T  given by 

  1det T   T F F σ F  (6.4) 

and the gel stress due to the deformation of the polymeric network is then def
T . 

Here  det F  is the determinant of F . 1
F  and T

F  are the reciprocal and the 

reciprocal transpose of deformation gradient F , respectively. 

 The chemical potential   pumps solvent molecules into the polymeric 

network. In the current configuration, the solvent volume fraction, i.e., volume of 
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the solvent molecules per unit volume, is given by  , t X , and the flux is 

expressed by  , tj X . Here it should be emphasized that both   and j  are not 

Eulerian description but updated Lagrangian description since specific materials 

points are fixed as clearly indicated by X . Thus in the current configuration, the 

volume of the solvent molecules in a volume element dv  is dv and the change of 

solvent volume due to the migration of solvents crossing an area element da in the 

gel per unit time is i id j n da j a , where n  is the unit vector of an area element. 

 In the reference configuration, the volume fraction (per unit volume V ) is 

 , t X  and the flux is  , tJ X . Thus the volume of the solvent molecules in a 

volume element dV  is dV and the change of solvent volume due to the 

migration of solvents crossing an area element dA  in the gel per unit time is 

K Kd J N dA J A , where N is the unit vector of an area element. It should be 

noted that the variables in the current and reference configurations actually 

describe the identical physics, i.e., 

volume of solvent molecules : ,

volume change due to diffusion crossing an area element: .

dv dV

d d

 

  j a J A
 (6.5) 

Therefore, the variables defined in two configurations are related through the 

deformation gradient and Nanson’s formula, 

 det  F  (6.6) 
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and 

    1det detT    J F j F F F j  (6.7) 

6.2.2 Principle of Virtual Work: Equilibrium Equations and Boundary Conditions 

 The equilibrium equations and boundary conditions are established from 

the principle of virtual work in this section. The principle of virtual work in the 

current configuration can be established via the virtual velocity  v and the virtual 

rate of deformation 
1

2
  

  
    

 
d v v  as 

   :
v a

dv da   σ d t v  (6.8) 

Apply the divergence theorem, the equilibrium equations and traction boundary 

conditions in the current configuration can be established as 

0,  or def P
  

   σ σ  In volume v  (6.9) 

 n σ t  On area a  (6.10) 

 The corresponding principle of virtual work in the reference configuration 

can be obtained by replacing the virtual rate of deformation d  with virtual rate 

of the Green strain  
1

2

T  E F F I  in the left-hand side of Eq. (6.8) as 
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 : N
V A

dV a dA 
 

 
 

 T E t v  (6.11) 

where   
1

1 2det T

Na     F N F F N  is the area ratio /da dA  from the Nanson’s 

formula. Thus the equilibrium equations and boundary conditions in the reference 

configurations are 

     0,  or  detT def T T P
  

      T F T F F F  in V (6.12) 

T

Na  N T F t  on A (6.13) 

6.2.3 Mass Conservation Law 

 Due to the invariance of framework, it is convenience to express the 

conservation law in the reference configuration, while its counterpart in the 

current configuration can be obtained by transformation of configurations. In the 

reference configuration, the variation of the volume of solvent molecules with 

time is due to the flux across the area, as expressed by 

   , ,
A

t dV t dA
t


  

  X J X N  (6.14) 

Because Eq. (6.14) holds for any choice of the volume, using the divergence 

theorem, the conservation law in the differential form can be obtained as 
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   , , 0t t
t


  


X J X  in V  (6.15) 

The number of solvent molecules across an interface provides the boundary 

condition of the mass conservation law, i.e., 

   , ,t J t J X N X  on A (6.16) 

where  ,J tX  is the prescribed flux across the surface. 

6.2.4 Constitutive Relation of the Polymeric Network 

 

Figure 6.1. Standard Linear Solid viscoelastic model 

 Glassy polymers have time-dependent viscoelastic behavior. Viscous and 

viscoelastic models have been adopted (e.g., by Thomas and Windle 1982, ; 

Durning 1985, ; Wu and Peppas 1993) to describe the polymeric network in gels. 

The standard linear solid (SLS) model (also known as the Zener model) is the 

simplest model to describe both creep and stress relaxation for viscoelastic 

material. A pictorial representation of the SLS model is shown in Figure 6.1, in 
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which a linear combination of two linear springs (
rG  and 

mG ) and a dashpot ( ) 

represents elastic and viscous components, respectively. The constitutive relation 

is given by 

 m m r
m r

G G G
G G

t t

 
 

 

 
   

 
 (6.17) 

, where the material parameters rG  and mG  are the modulus, and   is the 

extensional viscosity. 

 To extend this one-dimensional small-deformation constitutive relation to 

three-dimensional large deformation, one needs to consider the objective rate in 

large deformation and the nonlinear springs for the polymeric network. Because 

of the invariance of the framework, the rate of second Piola-Kirchhoff stress T  

with respect to time is objective; therefore, we here use the second Piola-

Kirchhoff stress T  and only express the constitutive relations in the reference 

configuration. The counterpart in the current configuration can also be obtained 

by introducing some objective stress rates (e.g., Truesdell stress rate), though it is 

complicated and omitted here. 

 The constitutive relation for polymeric materials is usually nonlinear, with 

pictorial representation of nonlinear springs, is given by 

def W



T
E

 (6.18) 
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 Various models are available to express this nonlinearity, such as Neo-

Hookean model, Mooney-Rivlin model, and Flory’s model. Here we adopt the 

Flory’s model, in which the strain energy is given by 

    1 33 ln
6

E
W I I     C C  (6.19) 

Where E  is the modulus of the dry polymer, and   1,2,3iI i C  is the i
th

 

invariance of the right Cauchy-Green tensor T C F F . The second Piolar-

Kirchhoff stress def
T  is then obtained as 

   11 2

3 3

def E E   T I C E  (6.20) 

where 1
C  is the inverse of C , and 

   1 11

2

  E I C  (6.21) 

is the Alamnsi strain tensor. By the analogy of Newton’s law of viscous 

deformation, the constitutive relation for viscous materials can be expressed as 

 1
2

3

def

t









E
T  (6.22) 

Combining Eqs. (6.17), (6.20) and (6.22), the three-dimensional, large-

deformation viscoelastic constitutive relation is given by a SLS-typed model: 
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 
 

 
1

1
def

m m r
m r

G G G
G G

t t 


 

   
 

T E
T E  (6.23) 

The relaxed modulus (i.e., long-time limit) is given by rG  and the short-time limit 

is given by r mG G . Therefore, the gel stress due to the deformation of polymeric 

network at the long-time limit is 

 1def

rG


T E  (6.24) 

and the short-time limit 

   1def

m rG G


 T E  (6.25) 

The relaxation time of the gel is given by 

relax

mG


   (6.26) 

6.2.5 Diffusion Law 

 The diffusion is driven by the gradient of the chemical potential(Feynman, 

Leighton, and Sands 1964), i.e., 

D

kT






  j  (6.27) 
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, where D  is the diffusivity (unit length
2
/time), 23 11.38 10 JKk     is the 

Boltzmann constant and T  is temperature. The chemical potential (per solvent 

molecule) in the gel is given by 

   
2

ln 1 1kT Pv          
 

 (6.28) 

,where the first term is from the mixing between the polymeric network and 

solvents (Flory 1953),  is the Flory interaction parameter; and the second term 

denotes the external work done by the osmotic pressure P on a solvent molecule 

with unit volume v . An equivalent form was also adopted by Hong et al.(2008). 

Then the flux is explicitly expressed as 

  12
1 1 2

defv
D

kT




 

  
    

  
j σ  (6.29) 

where 

  12 1 1 2
D

D D
kT

 
 




   


 (6.30) 

is the mutual diffusivity (Wu and Peppas 1993) and the equilibrium equation Eq. 

(6.9) has been applied. Flux is driven by both the gradient of gel stress resulted 

from the deformation of the polymeric network and the volume fraction of solvent. 

The mutual diffusivity 12D  is the pre-factor of the gradient of volume fraction of 

solvent to the flux. 
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 Suggested by Thomas and Windle (1982) and Wu and Peppas (1993), the 

mutual diffusivity 12D  has a strong dependence on the solvent concentration and 

can be expressed in an exponential form as 

 12 0 exp dD D a   (6.31) 

where 0D  is the diffusivity of solvent into the dry polymer and  0da   is a 

phenomenological parameter that describes the solvent concentration dependence. 

Comparison between Eq. (6.30) and Eq. (6.31) suggests that the diffusivity D  is 

also a function of solvent concentration. The empirical expression (6.31) will be 

characterized in the next section and the phenomenological parameter da  will be 

measured. 

The flux defined in the reference configuration can be obtained by 

   

 
 

1

1 1

12

det

det 2
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kT 





 

  
                   

  

F F T F

J F F
F

 (6.32) 

Here the ideal mixing is assumed, i.e., there is no volume change during the 

diffusion process, which gives 

 det 1 F  (6.33) 



97 

In other words, both polymer and solvent molecules are incompressible during the 

mixing process but the gel is compressible. 

6.2.6 Time Scales 

 Besides the intrinsic relaxation time scale (Eq. (6.26)) due to the 

viscoelastic effect of the polymeric network, there also exists another time scale, 

the diffusion time scale defined by  

 

2 2

12 0 exp
diffusion

d

L L

D D a



   (6.34) 

where L  is the characteristic length scale. A more practically meaningful 

definition is the diffusion time scale in the region where the polymeric network 

reaches the equilibrium swelling state, 

 

2

,

0 exp
diffusion eq

d eq

L

D a



  (6.35) 

where eq  is the solvent volume fraction at the equilibrium swelling state. 

 Following Vrentas et al. (1975), Vrentas and Duda (1977), and Wu and 

Peppas (1993), a differential Deborah number is defined as 

 0

2

,

exp d eqrelax

diffusion eq m

D a
De

G L

 


   (6.36) 
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, which is the ratio of the relaxation rate in the glassy polymer region (i.e., without 

solvent or dry state) and the characteristic diffusion time. The differential 

Deborah number provides a simple means to identify the diffusion process. For 

example, in case II diffusion, the relaxation time in the glassy polymer region is 

much longer than the diffusion time in the rubbery region; thus the Deborah 

number is greater than unity. On the other hand, if the polymer is elastic, i.e., no 

extensional viscosity ( 0  ), the relaxation time is zero, which gives a vanishing 

Deborah number and therefore corresponds to Fickian diffusion. 

6.3. EXPERIMENTS: PARAMETERS CHARACTERIZATION 

 The model presented in Section 6.2 involves a set of parameters, including: 

(1) Young’s modulus of the dry polymer rG  and mG , 

(2) Extensional viscosity of the polymer  , 

(3) Diffusivity of the solvent into the dry polymer 0D , 

(4) Solvent-dependent diffusion constant da . 

 In order to validate the theory and practically utilize the theory on 

applications, this section presents the experiments to quantitatively characterize 

these parameters. Compression test was carried out to measure the viscoelastic 

material parameters (1) and (2). MRI was used to measure solvent diffusivity in 

polymer network, i.e., parameters (3) and (4). 
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6.3.1 Material Synthesis 

 All the experiments here are done by Dr. Howon Lee. Porous PEG-DA 

hydrogel was synthesized by mixing PEG-DA prepolymer (MW575, Sigma 

Aldrich) with PEG (MW200, Sigma Aldrich) in a weight ratio of 1:3 followed by 

addition of 0.5%wt. of photo-initiator (phenylbis(2,4,6-trimethylbenzoyl) 

phosphine oxide, Sigma Aldrich) for photo-polymerization under UV illumination 

( 365 nm  ). Not being polymerized, PEG contributes to reducing crosslinking 

density by occupying intermolecular space between PEG-DA during photo-

polymerization, resulting in low modulus and large swelling ratio. 

6.3.2 Viscoelastic Material Characterization 

 Modulus rG and mG  and viscosity    were measured by 

compression test as shown in Figure 6.2. Gel disks were made for compression 

test. 1 mm gap between two glass slides was filled with prepolymer solution. 

Sample was photo-polymerized for 10 s in UV oven, followed by another 10 s 

exposure after flipping over for uniform crosslinking. Then the film was punched 

to obtain a set of gel disks. Samples were put in acetone bath for rinse for 3 hours 

to remove remaining uncrosslinked PEG after polymerization. The gel samples 

were allowed to dry for 1 hour in a vacuum desiccator. 
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Figure 6.2. Experimental setup for compression test to measure viscoelastic 

parameters 

 A dry gel disk was compressed between two parallel glass plates, one of 

which is fixed and the other is connected to a load cell and then to a computer-

controlled stage, as illustrated in Figure 6.2. Oil is applied between the sample 

and the compression plates for lubrication to facilitate lateral expansion of the 

sample under compression. 

 For time dependent material properties of the polymer, ramp-and-hold 

compressive stress input was applied and time varying stress was measured and 

fitted to the response of SLS model to obtain the moduli rG  and mG , and 

extensional viscosity  . Ramp-and-hold compressive strain input is described as 

0 0

0 0 0

( )
( )

( )

b t t t
t

b t t t



 


 (6.37) 
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,where 0b  is a pre-factor and 0t is the time when the loading stops to change. From 

the constitutive relation of SLS model Eq. (6.17), stress response to input Eq. 

(6.37) is obtained as 

   
 

 
0

0 00 1 1relax relax

t tt

r relax m r relax m
G t G e G t t G e H t tt b

 
 

 

      
    

           
 

  (6.38) 

where the relax time relax  is given by Eq. (6.26) and  H x  is the Heaviside 

function. 

 Stress data was read from the load cell and then fitted to Eq. (6.38) to 

extract Young’s modulus rG  , mG  and viscosity of the polymer  . Obtained 

values of the viscoelastic parameters are 2.90 MparG  , 0.58MpamG   and 

6 23.91 10 N s/m   . 

6.3.3 Diffusivity Characterization 

 Magnetic resonance imaging (MRI) provides a unique opportunity to 

quantify diffusion properties. Being able to non-invasively characterize diffusion 

behavior, MRI has been a powerful method to probe biological samples 

(Johansen-Berg and Behrens 2009). Recently, use of MRI has been extended to 

studies of gels as a tool for measuring diffusion behavior of solvent molecules in 

polymer network(Naji, Chudek, and Baker 2008). Because concentration 
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dependent diffusivity 
12D  plays a crucial role in the present model, MRI is 

employed in this work to probe in situ water diffusivity in PEG-DA gels. 

 For concentration dependent diffusivity, gel samples with different solvent 

concentration was needed. Instead of using many different gels samples with 

different solvent concentration to acquire as many as possible concentration data 

points, a gel sample with varying solvent concentration was prepared. The sample 

preparation is shown in Figure 6.3. 

 

Figure 6.3. Tapered sample preparation procedure to create solvent concentration 

gradient in swollen hydrogel 

 A tapered cylindrical master was fabricated by projection micro-

stereolithography(Sun et al. 2005), using hard polymeric material, hexanediol 

diacrylate (HDDA) (step 1). Thin metal layer was coated on the master (step 2), 

 

dry       fully swollen   
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followed by silane treatment for easy demolding process (step 3). Then 

poly(dimethylsiloxane) (PDMS) was poured and cured for 4 hours at 80ºC to 

make transparent complementary mold (steps 4-6). The PDMS mold was filled 

with prepolymer solution and illuminated for 10 s in UV oven, followed by 

another 10 s exposure after flipping over for uniform crosslinking. A gel rod was 

then retrieved out of the PDMS mold (step 7) and put in acetone bath for rinse for 

3 hours, followed by 1 hour dry in a vacuum desiccator. This tapered gel rod was 

then inserted into a glass tube and let swell in water for MRI measurement. Taper 

dimension was designed in such a way that thicker side fits to the glass tube in dry 

state, whereas the thinner side fits to the glass tube in fully swollen state. 

Therefore, once the gel swells inside the MRI glass tube, continuous solvent 

concentration gradient was created along the gel sample axis because one side of 

the gel is fully swollen, whereas the other side of the gel sample remained almost 

dry due to the confinement from the MRI glass tube (step 8). 

 Local diffusivity and water concentration profile in the gel sample was 

measured by nuclear magnetic resonance (NMR) scanner (600MHz). The local 

diffusivity was determined using a standard pulsed field gradient spin-echo 

sequence with different diffusion sensitivity factors (Raguin et al. 2006). The 

local water concentration was measured via two spin-echo images with long 

repetition time (TR) to eliminate T1-weighting and two values for echo time (TE) 

in order to account for T2-weighting. Continuous profile of diffusivity and water 

concentration was obtained by taking the cross sectional MRI image along the 
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axial direction. Acquired local water concentration and diffusivity at each point 

was mapped to construct the diffusivity profile as a function of water 

concentration, as shown in Figure 6.4. 

 

Figure 6.4. Local diffusivity and water concentration measurement result. The 

result is fitted to phenomenological diffusivity function to obtain diffusivity 

parameters 

This curve was fitted to Eq. (6.31) to obtain diffusivity of the solvent into the dry 

polymer 0D  and solvent-dependent diffusion constant da . A reasonable good 
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agreement is observed when the following values are used, 

12 2

0 1.94 10 /D m s   and 17.34da  . 

6.3.4. Flory Interaction Parameter 

 Flory interaction parameter   can be calculated by the experimentally 

measured equilibrium swelling ratio eq . The equilibrium swelling is reached at 

the long-time limit, at which 0σ , 0   and eqF I . Using Eqs. (6.3), (6.4), 

(6.24), and (6.28) and eliminating P , we obtain that 

3 3 3 6

1 1 1 1
ln 1 0

2

r

eq eq eq eq eq

G kT

v



    

    
            

     

 (6.39) 

, which can be used to determine the Flory interaction parameter  . A gel disk 

that was prepared following the same procedure for compression test was used to 

measure the swelling ratio. The diameter of the gel disk was measured in dry state 

and in full swelling state in water at the room temperature to obtain the 

equilibrium swelling ratio, 1.75eq  . For room temperature 214.14 10 JkT   , 

and for water molecules 28 30.3 10 mv   , which gives / 138 MPakT v   

Combined with previously measured modulus 2.90MParG  , , solve equation 

(6.39) and the Flory interaction parameter could be obtained as 0.456  . 
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6.4. A DIFFUSION EXAMPLE 

 Using the measured materials parameters previously, we apply the model 

to study gel rod swelling examples and compare with experiments. PEG-DA 

polymer synthesized for this study dramatically changes optical property from 

transparent to opaque as it swells. This helps visualize the evolution of interface 

between dry and wet regions in diffusion experiment. 

 The solvent diffuses into a rod from two ends, as illustrated in Figure 6.5. 

2L  is the initial length of the rod. Denote 1X and 2X  as the material coordinates 

in the cross section of the rod, and 3X  as the material coordinate in the length 

direction defined at the center of the rod and pointing upwards. The solvent 

diffuses from the top ( 3X L ) and bottom ( 3X L  ) to the center ( 3 0X  ). 

 

Figure 6.5. Gel rod with length 2L  swelling from two ends to the center 

Solvent

Solvent
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 Because the dimension in the in-plane direction is much smaller than L , 

the stretches in the in-plane direction keep symmetric 
1 2   and only depend on 

3X , i.e.,  1 1 3,X t  . The stretch in 
3X  direction is  3 3 3,X t  . The non-

vanishing Alamnsi strain is          1 1 2

11 3 22 3 1

1
, , 1

2
E X t E X t 

     , 

     1 2

33 3 3

1
, 1

2
E X t 

   ; and the incompressibility condition of dry polymer 

and solvent molecules (Eq. (6.33)) becomes 2

1 31    . Then the constitutive 

equations (Eq. (6.23)) are specified to 

   3 211
11 1 1 11

2

def
defm m r

m r

G G GT
T G G

t
  

 

 
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
 (6.40) 
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def
defm m r

m r

T G G G
T G G

t
  

 

 
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
 (6.41) 

The gel stress is given by 

11 22 11

3

3
33 332

1

1 def

def

T P

T P

 







  

 

 (6.42) 

In lateral directions and 3X  direction, tractions are free, which leads to 

11 22 33 0     . Eliminating P  from Eq. (6.42) and the relation 
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2 2

1 11 3 33

def defT T   is obtained. Combining Eqs. (6.40) with Eqs. (6.41), we obtain 

that 

1 3     (6.43) 

and then apply the incompressibility condition is 3 1   . The polymer 

constitutive relation Eq. (6.41) becomes 

 
   

33
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def
defm m r

m r

T G G G
T G G

t  

  
     

    

 (6.44) 

The mass conservation law Eq. (6.15) becomes 
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

 (6.45) 

Two differential equations (6.44) and (6.45) evolve two fields,  33 3,defT X t  and 

 3,X t , which could be solved with appropriate initial conditions and boundary 

conditions as illustrated below. 
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 At time 0t  , the rod rests at a stress-free state and is completely dry; so 

that the initial conditions are 

   33 3 3,0 0, ,0 0defT X X    (6.46) 

The traction-free boundary condition holds all the time at the end. And this 

boundary condition corresponds to  33 , 0L t  . Once the solvent contacts the 

rod at the end ( 3X L ), the exchange of solvent molecules between the external 

solvent and the rod occurs in a rate much faster than the diffusion process of 

migrating solvent molecules into the rod. Therefore, the chemical equilibrium 

remains unchanged all the time at the top, i.e.,  , 0L t  . Combining these two 

boundary conditions and Eqs. (6.28) and (6.42), we eliminate P  and obtain 

   
33

1/3 2

1
ln 0

1 11 1

defT kT

v

  
     

     

 (6.47) 

at the boundary 3X L  over any time t . This is a time-dependent equation for 

 3,X t  because 33

defT  is governed by Eq. (6.44). At the short-time limit, apply 

Eq.(6.25), the elasticity of the gel responses instantaneously so that we could 

obtain 

   
1/3 2

1 1 1
ln 0

2 1 1 11 1

m rG G kT

v

     
        

          

 (6.48) 
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Equation (6.48) provides a nonlinear equation to determine the boundary 

condition  ,0L . Substitute this boundary condition into the constitutive 

relation Eq. (6.44) and the boundary condition for 33

defT  is obtained as 

    2/3

33 ,0 1 1 ,0
2

def m rG G
T L L


      (6.49) 

Note that the boundary conditions here (  ,0L  and  33 ,0defT L ) differ from the 

common boundary conditions that remain at any time t . Specifically, these 

boundary conditions only hold at the beginning 0t   . In fact, this type of 

boundary condition is common in viscoelastic problems. With time evolves, the 

viscosity comes into play in the evolution of   and 33

defT . The symmetric 

boundary conditions at the center ( 3 0X  ) are 

   33

3 3

0, 0,
0, 0

deft T t

X X

 
 

 
 (6.50) 

 The partial differential equations (6.44) and (6.45) subjected to the 

aforementioned initial and boundary conditions are solved numerically, 

specifically by finite difference method.  
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Figure 6.6. Water diffuses inside a PEGDA rod. Transparent polymer becomes 

white when it gets wet. A sharp boundary separating dry and wet region is clearly 

observed. 

 The experiment was conducted using the gel rod configuration as shown in 

Figure 6.6. Water diffused from the bottom to the top of the gel rod with length 

468μmL  . Unswollen region was transparent and swollen region was opaque. 

There exists an apparent boundary separates the unswollen region and swollen 

region. The boundary moved upward almost at a constant velocity until the full 

rod became swollen. The boundary is so called “sharp front”. Also from Figure 

6.6 and from the comparison of unswollen region and swollen region, we can also 

see that the volumetric swelling ratio of the gel is large, which indicates that large 

deformation should be considered and that the volumetric change of the polymer 

network is negligible compared with the whole volume change of the gel which is 

mostly caused by the change of the water content.  
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Figure 6.7. Normalized concentration distributions at different location for several 

time intervals, sharp diffusion fronts are observed. 

 Based on the model we proposed previously, and the parameters measured, 

we are able to simulate the diffusion process using the evolution equations (6.44)

and equation (6.45) with the aid of finite difference discretization. Figure 6.7 plots 

the normalized concentration profile  3, / eqX t   with respect to the location 

measured from the original gel rod. In this example, equilibrium swelling ratio

1.75eq   corresponds to 4.36eq   by the relation of 
3 1   . Multiple lines 

are plotted at equivalent time interval 42 seconds. It shows that there is a sharp 

transition differentiating the wet region (with concentration close to the 

equilibrium value) and the dry region (with zero concentration), which defines the 
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sharp front. With time evolving, the front moves inside the gel and eventually the 

wet the entire gel. 

 

Figure 6.8. Sharp front location as a function of time 

 The sharp front location as a function of time is plotted in Figure 6.8. 

Simulation results are compared with experiments and showed good agreement. 

The slope is close to linear but not exactly because the diffusion is not ideally 

case II diffusion. The length is normalized by the total original length of the gel 

rod which is 468μmL  . After about 900 seconds, the entire gel rod is swollen, 

which gives a constant speed about 0.52 μm/s .  
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 After swelling, the total length of the rod changed. The new gel rod length 

could be obtained by integration 

   
1/3

3 3
0

1 ,
L

l t X t dX     (6.51) 

 Figure 6.9 compares the normalized length profile   /l t L  calculated from 

Eq. (6.51) and measurement from experiments. It also showed reasonably good 

agreement between experiment and simulation, which again validates the theory. 

 

Figure 6.9. Normalized gel rod length as a function of time 
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6.5. SUMMARY AND DISCUSSIONS 

 In this chapter, a coupled large deformation model for case II diffusion is 

presented. The total stress of the gel is separated to polymer network stress and 

solvent osmotic pressure. The polymer network stress relates to the strain via a 

viscoelastic standard linear solid model which contains both elastic and viscous 

components. Solvent flow in the polymer network is governed by diffusion 

equation with diffusion coefficient strongly depends on the solvent concentration. 

Under large deformation regime, the solvent flux depends both on local solvent 

concentration gradient and local polymer stress gradient. Diffusion time scale is 

compared with polymer relaxation scale to investigate the underlying principle 

that the case II diffusion could be explained by the lag of the polymer relaxation. 

Compression test and MRI experiment are conducted to measure the parameters 

introduced in the model. Simulation results are compared with experiment results 

and showed good agreement. Sharp diffusion front is observed and solvent 

diffusion along a gel rod follows almost a constant speed. All these facts validate 

the theory. 

 The modeling and simulation of case II diffusion in gels enhance our 

understanding of solvent diffusion in polymers, not only phenomenological, but 

also physically. In fact, given the fact that the variety of different types of 

polymers and solvent exist, a large part of solvent diffusion in polymers is 

anomalous diffusion(De Kee, Liu, and Hinestroza 2005) which is a diffusion type 

between Fickian diffusion and case II diffusion, both of whom are ideal cases. 
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Tunable parameters such as concentration dependent diffusivity would allow the 

theory to consider more general cases. As a simple example, the numerical 

simulation of the gel rod diffusion also encourages further investigation in the 

numerical simulation of the anomalous diffusion and numerical simulation will 

certainly aid the design process for gel devices. 
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7 CONCLUSIONS 

7.1. SUMMARY AND DISCUSSIONS 

 In this dissertation, the material about gels and their applications are 

introduced. Specifically, the swelling of gels is an interesting topic that deserves 

extensive attention. During the swelling process, the volume of the gel is changed 

by adding more solvent that expands the original gel polymer network. This is a 

coupled deformation and diffusion process and various theories are proposed to 

solve, each with their different advantages and limitations. In chapter 2, we listed 

several theories with simple format and clear physics. Among them include Biot 

theory, THB theory, Flory’s theory and Wallmersperger theory. At the same time 

we introduced a coupled theory proposed by Hong et al.(2008). In the theory, 

physically simple equations such as equilibrium equation for the whole gel and 

diffusion equation for solvent are introduced. In the theory, two processes occur 

simultaneously: solvent diffusion and polymer network stretching. Solvent 

diffusion is governed by diffusion law and polymer network stretching is 

governed by mechanical equilibrium. Surprisingly, common physical properties 

such as crosslink density of the polymer network and polymer affinity with the 

solvent come in the model through two key parameters. And they dominate the 

degree of swelling. Stress inside the gel is derived by a free energy based on 

Flory’s theory which takes into account both the polymer stretching and polymer 

solvent mixing. Diffusion equation is considered in the large deformation regime 

where the actual diffusion coefficient depends on deformation. Deformation and 
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diffusion is correlated directly via an molecular incompressibility condition which 

states that the polymer network is incompressible and the volumetric change is of 

the gel is caused by the amount of solvent that enters. Then in chapter 3, 

numerical methods are introduced to implement the coupled theory. Starting from 

the free energy, Cauchy stress which depends on chemical potential is derived and 

tangential modulus are obtained through the rate of stress. These two parameters 

come into an ABAQUS user material code (UMAT) and an in-house coding as 

well and they are capable to solve equilibrium swelling problems where the 

solvent properties chemical potential does not change. By considering the 

diffusion equation which evolves the time change of the chemical potential, the 

in-house program is extended to be able to study the transient swelling of gels and 

has been applied to study a creep problem for benchmark and a free swelling of a 

cubic. 

  In chapter 4, the swelling of a ring confined in the bottom surface is 

investigated. It showed that buckling would happen given appropriate conditions. 

A simple model based on energy minimization is conducted and showed a 

correlation between the criterion for buckling, wavenumber if buckled and the 

geometry of the ring. Finite element analysis is conducted to verify experiment 

and testify the model. In chapter 5, the in-house finite element code is applied to 

study the swelling-induced healing in gels. Solvent are dropped to the crack tip of 

a gel slab which is originally subjected to tensile loading. The gel near the crack 

tip absorbs water and swells and finally closes the gap between the crack surfaces. 
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This process is also visualized by experiment. The healing study showed a 

promising way to reduce the stress singularity of fractured gels through adding 

solvent and to estimate the time to heal an existing crack. In chapter 6, a diffusion 

model is proposed to consider the diffusion of solvent in some glassy polymers 

near the glass transition temperature. In this model, instead of consider the 

diffusion as fickian-diffusion where the diffusion map is continuous, a 

concentration dependent diffusion law is proposed and is able to predict the 

diffusion which has discontinuous diffusion map called case II diffusion. In case 

II diffusion, a sharp diffusion front separates the swollen region and the 

unswollen region. The model assumes that the swollen region has much larger 

diffusion coefficient than the unswollen region and has been validated by 

experimental measurement. In this case, the solvent flux both depends on 

concentration gradient and stress gradient. A viscoelastic material constitutive 

relation is used for the polymer network, which is believed to be more practical 

for polymers. Applying this model, the reason behind the case II diffusion is 

explained by the physics that the polymer network relaxation time is slow 

compared with the solvent diffusion time, thus it blocks the diffusion and 

accumulate a lot of solvent once a near a relaxed polymer segment. In this way, 

the sharp front is created near the newly relaxed polymer segment. Simulation 

results is compared with experimental result for a rod swelling experiment and 

showed good agreement. Sharp concentration profile and near-constant diffusion 

front is predicted as well. This study bridges the gap for different combinations of 

polymer-solvent diffusion, which spans from Fickian diffusion to anomalous 
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diffusion to case II diffusion. Under these circumstances, a clear picture is created 

for coupled large deformation and diffusion modeling. By providing specific 

diffusion law, by providing the specific polymer constitutive, the model is able to 

simulate the diffusion of solvent in polymers. 

7.2. FUTURE WORK 

 The present study provides a method to study various swelling 

phenomenon related to swelling of gels. Given the fact that different kinds of gels 

with different polymer network properties and transport laws for the solvent, 

future work are encouraged to extend the current large deformation model to be 

able to simulate different polymer-solvent systems. Another aspect is from the  

application side, the current model is expected to study fascinating swelling 

phenomenon, such as swelling-induced surface instability(Kang and Huang 2010), 

buckling and creasing(Cai et al. 2010), programmable gel(Zhang, Guo, and Zhang 

2011), swelling under constraint and loading(Zhang, Zeng et al. 2009) and so on. 

Temperature-sensitive gel and pH-sensitive gel are two most widely used 

categories of gels in real applications. Theories regarding temperature-sensitive 

gel(Chester and Anand 2011, ; Cai and Suo 2011) and pH-sensitive 

gel(Marcombe et al. 2010) are developed, subsequent extension of the current 

numerical method to these theories should enable more applications be studied. 

The fracture characteristic regarding gel is studied(Baumberger, Caroli, and 

Martina 2006, ; Baumberger and Ronsin 2010) but still require further study. 

Though so many modeling and simulation toward gel have been performed in 
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recent years, it is believed that it is far from maturity. Multi-physics nature of this 

smart material is expected to attracting increasing attention in the near future.  
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GEL SWELLING PROGRAM (GSP) 
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Note: The FORTRAN program is used study the coupled large 

deformation and diffusion in gels. The example used in the program is a free 

swelling example with 27 elements, 1/8 of a whole cubic (6*6*6 in dimension), 

with initial homogeneous swelling ratio 1.01. Compaq FORTRAN complier is 

used with IMSL library. For parallel implementation, PARDISO, MUMPS (with 

MPI) solver is available. 

Copyright goes to Prof. Hanqing Jiang’s group and the reader is 

responsible for his/her own result. Any questions regarding this program should 

go to Prof. Jiang by email and this program is highly expected to be used in gel 

community to study interesting swelling phenomenon. 

 C--------------------------------------------------------------------------------------- 

 PROGRAM MAIN 

C ---use compaq fortran imsl library--- 

 USE IMSL 

 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 OPEN (1,FILE='PARS.TXT') 

C ---NTOTAL: Total Nodes 

C ---NELEM:  Total Elements 

C ---NDISBOU_DEF: #of displacement boundaries 

C ---NDISBOU_DEF: #of diffusion boundaries 

 READ 

(1,*)NTOTAL,NELEM,NDISBOU_DEF,NDISBOU_DIFF 

 CLOSE(1) 

c ---MCRD: 3 dimensional problem--- 

C ---NNODE: # of nodes in each element 

 MCRD=3 

 NNODE=8 

 NDOFEL=MCRD*NNODE 

 

 CALL 

MAINPROGRAM(NTOTAL,NELEM,MCRD,NNODE,NDOFEL, 

     &  NDISBOU_DEF,NDISBOU_DIFF) 

 

 END 

 

c ---Main Program for gel swelling--- 

 SUBROUTINE 

MAINPROGRAM(NTOTAL,NELEM,MCRD,NNODE,NDOFEL, 

     &  NDISBOU_DEF,NDISBOU_DIFF) 

 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 ALLOCATABLE:: GLB_COORDS(:,:),GLB_COORDS_NEW(:,:) 

      ALLOCATABLE:: GLB_FORCE_DEF(:),GLB_STIFF_DEF(:,:) 

     ALLOCATABLE:: GLB_FORCE_DEF_T(:),GLB_STIFF_DEF_T(:,:) 
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 ALLOCATABLE:: U_DEF(:),U_DEF_T(:) 

 ALLOCATABLE:: DIS_DEF(:),U_DIFF_T(:) 

 ALLOCATABLE:: NBP_DEF(:),DNBP_DEF(:) 

 ALLOCATABLE:: NBP_TOTAL(:),DNBP_TOTAL(:) 

      ALLOCATABLE:: GLB_FORCE_DIFF(:),GLB_STIFF_DIFF(:,:) 

      ALLOCATABLE:: 

GLB_FORCE_DIFF_T(:),GLB_STIFF_DIFF_T(:,:) 

 ALLOCATABLE:: U_DIFF(:) 

 ALLOCATABLE:: DIS_DIFF(:) 

 ALLOCATABLE:: NBP_DIFF(:),DNBP_DIFF(:) 

 ALLOCATABLE:: GLB_STIFF_UT_T(:,:) 

 ALLOCATABLE:: GLB_STIFF_TU_T(:,:) 

 ALLOCATABLE:: GLB_FORCE_TU_T(:) 

 ALLOCATABLE:: GLB_STIFF_TT_T(:,:) 

 ALLOCATABLE:: GLB_STIFF_TOTAL_T(:,:) 

 ALLOCATABLE:: GLB_STIFF_TOTAL(:,:) 

 ALLOCATABLE:: GLB_FORCE_TOTAL_T(:) 

 ALLOCATABLE:: GLB_FORCE_TOTAL(:) 

 ALLOCATABLE:: DIS_TOTAL(:) 

 ALLOCATABLE:: GLB_STIFF_TOTAL_BACKUP(:,:) 

 ALLOCATABLE:: EVAL(:) 

 ALLOCATABLE:: GLB_STRESS(:,:) 

 

 DIMENSION NODE_IN_ELEMENT(NELEM,NNODE) 

 DIMENSION SIGMA_OLD(NELEM,NNODE,6) 

 DIMENSION SIGMA(6) 

 DIMENSION SIGMA_NEW(NELEM,NNODE,6) 

 DIMENSION SIGMA_NEW2(NELEM,NNODE,6) 

 DIMENSION 

ELE_STIFF_DEF(NDOFEL,NDOFEL),ELE_FORCE_DEF(NDOFEL) 

 DIMENSION 

ELE_COORDS_DEF(MCRD,NNODE),ELE_U_DEF(NDOFEL) 

 DIMENSION ELE_DU_DEF(NDOFEL) 

 DIMENSION DISBOU_DEF(NDISBOU_DEF,3) 

 DIMENSION ELE_COORDS_DEF2(MCRD,NNODE) 

 DIMENSION ELE_COORDS_DEF0(MCRD,NNODE) 

 DIMENSION 

ELE_STIFF_DIFF(NNODE,NNODE),ELE_FORCE_DIFF(NNODE) 

 DIMENSION 

ELE_COORDS_DIFF(NNODE),ELE_U_DIFF(NNODE) 

 DIMENSION ELE_DU_DIFF(NNODE) 

 DIMENSION DISBOU_DIFF(NDISBOU_DIFF,2) 

 DIMENSION ELE_COORDS_DIFF2(NNODE) 

 DIMENSION ELE_COORDS_DIFF0(NNODE) 

 DIMENSION FTHETAU_T(NNODE) 
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 DIMENSION AKTHETATHETA_T(NNODE,NNODE) 

 DIMENSION AKTHETAU_T(NNODE,3*NNODE) 

 DIMENSION AKUTHETA_T(3*NNODE,NNODE) 

 DIMENSION SIGMA_NODE(8,6) 

 LOGICAL   JFORCE,JFLUX 

 

 NTDIM_DEF=NTOTAL*MCRD 

 NDIM_DEF=NTDIM_DEF-NDISBOU_DEF 

 NTDIM_DIFF=NTOTAL 

 NDIM_DIFF=NTOTAL-NDISBOU_DIFF 

 NTDIM_TOTAL=NTDIM_DIFF+NTDIM_DEF 

 NDIM_TOTAL=NDIM_DIFF+NDIM_DEF 

 

 ALLOCATE 

(GLB_COORDS(NTOTAL,MCRD+1),GLB_COORDS_NEW(NTOTAL,MCRD

+1)) 

 ALLOCATE (GLB_FORCE_DEF(NDIM_DEF)) 

 ALLOCATE (GLB_STIFF_DEF(NDIM_DEF,NDIM_DEF)) 

 ALLOCATE (GLB_FORCE_DEF_T(NTDIM_DEF)) 

 ALLOCATE (GLB_STIFF_DEF_T(NTDIM_DEF,NTDIM_DEF)) 

 ALLOCATE (GLB_STIFF_UT_T(NTDIM_DEF,NTDIM_DIFF)) 

 ALLOCATE (GLB_STIFF_TU_T(NTDIM_DIFF,NTDIM_DEF)) 

 ALLOCATE (GLB_FORCE_TU_T(NTDIM_DIFF)) 

 ALLOCATE (GLB_STIFF_TT_T(NTDIM_DIFF,NTDIM_DIFF)) 

 ALLOCATE 

(GLB_STIFF_TOTAL_T(NTDIM_TOTAL,NTDIM_TOTAL)) 

 ALLOCATE 

(GLB_STIFF_TOTAL(NDIM_TOTAL,NDIM_TOTAL)) 

 ALLOCATE (GLB_FORCE_TOTAL_T(NTDIM_TOTAL)) 

 ALLOCATE (GLB_FORCE_TOTAL(NDIM_TOTAL)) 

 ALLOCATE (NBP_TOTAL(NTDIM_TOTAL)) 

 ALLOCATE (DNBP_TOTAL(NTDIM_TOTAL)) 

 ALLOCATE (U_DEF(NTDIM_DEF)) 

 ALLOCATE (U_DEF_T(NTDIM_DEF)) 

 ALLOCATE (DIS_DEF(NDIM_DEF)) 

 ALLOCATE (NBP_DEF(NTDIM_DEF)) 

 ALLOCATE (DNBP_DEF(NTDIM_DEF)) 

 ALLOCATE (GLB_FORCE_DIFF(NDIM_DIFF)) 

 ALLOCATE (GLB_STIFF_DIFF(NDIM_DIFF,NDIM_DIFF)) 

 ALLOCATE (GLB_FORCE_DIFF_T(NTDIM_DIFF)) 

 ALLOCATE 

(GLB_STIFF_DIFF_T(NTDIM_DIFF,NTDIM_DIFF)) 

 ALLOCATE (U_DIFF(NTDIM_DIFF)) 

 ALLOCATE (U_DIFF_T(NTDIM_DIFF)) 

 ALLOCATE (DIS_DIFF(NDIM_DIFF)) 
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 ALLOCATE (NBP_DIFF(NTDIM_DIFF)) 

 ALLOCATE (DNBP_DIFF(NTDIM_DIFF)) 

 ALLOCATE (DIS_TOTAL(NDIM_TOTAL)) 

 ALLOCATE 

(GLB_STIFF_TOTAL_BACKUP(NDIM_TOTAL,NDIM_TOTAL)) 

 ALLOCATE (EVAL(NDIM_TOTAL)) 

 ALLOCATE (GLB_STRESS(NTOTAL,7)) 

 

C ---Read initial coordinates--- 

 OPEN(1,FILE='XYZ.TXT') 

 DO WHILE(.NOT.EOF(1)) 

  READ(1,*) II,GLB_COORDS(II,1),GLB_COORDS(II,2), 

     &  GLB_COORDS(II,3),GLB_COORDS(II,4) 

 ENDDO 

 CLOSE(1) 

C ---Read element information--- 

 OPEN(1,FILE='ELEMENT.TXT') 

 DO WHILE(.NOT.EOF(1)) 

  READ(1,*) 

II,NODE_IN_ELEMENT(II,1),NODE_IN_ELEMENT(II,2), 

     &NODE_IN_ELEMENT(II,3),NODE_IN_ELEMENT(II,4), 

     &NODE_IN_ELEMENT(II,5),NODE_IN_ELEMENT(II,6), 

     &NODE_IN_ELEMENT(II,7),NODE_IN_ELEMENT(II,8) 

 

 ENDDO 

 CLOSE(1) 

C ---Read Boundary conditions--- 

 NBP_DEF=0 

 DNBP_DEF=0.D0 

 NBP_DIFF=0 

 DNBP_DIFF=0.D0 

 OPEN (1,FILE='BOUNDARY.TXT') 

C ---DEFORMATION BOUNDARY---  

  DO I=1,NDISBOU_DEF 

  READ (1,*) 

DISBOU_DEF(I,1),DISBOU_DEF(I,2),DISBOU_DEF(I,3) 

  N1=IDINT(DISBOU_DEF(I,1)) 

  N2=IDINT(DISBOU_DEF(I,2)) 

  NBP_DEF((N1-1)*MCRD+N2)=1 

  DNBP_DEF((N1-1)*MCRD+N2)=DISBOU_DEF(I,3) 

  ENDDO 

C ---DIFFUSION BOUNDARY---  

  DO I=1,NDISBOU_DIFF 

  READ (1,*) DISBOU_DIFF(I,1),DISBOU_DIFF(I,2) 

  N1=IDINT(DISBOU_DIFF(I,1)) 
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  NBP_DIFF(N1)=1 

  DNBP_DIFF(N1)=DISBOU_DIFF(I,2) 

  ENDDO 

 CLOSE(1) 

 

 NBP_TOTAL=0 

 DNBP_TOTAL=0.D0 

 DO I=1,NTDIM_DEF 

  NBP_TOTAL(I)=NBP_DEF(I) 

  DNBP_TOTAL(I)=DNBP_DEF(I) 

 ENDDO 

 DO I=1,NTDIM_DIFF 

  NBP_TOTAL(I+NTDIM_DEF)=NBP_DIFF(I) 

  DNBP_TOTAL(I+NTDIM_DEF)=DNBP_DIFF(I) 

 ENDDO 

 

C ---PRES: Initial swelling---- 

 PRES=1.01D0 

 ANV=4.833333333D-3 

 CHI=0.5190137858D0 

C ---ANV AND CHI VALUE GIVES LAMBDA_EQ=1.75 

C ---with this ANV,CHI AND PRES, 

C ---Initial chempoten=-2.066806650--- 

C ---Unit: Length=mm,Time=minute-- 

C ---DD: Diffusion coefficient--- 

C ---D=8*10^(-10)m^2/s--- 

C ---DTIME: total time--- 

C ---Multi-time increments is required but omitted--- 

C ---for simplicity of author understanding---- 

C ---NITERATION: Iteration number--- 

 DD=0.048D0 

 DTIME=1D2 

 U_DEF=0.D0 

 U_DIFF=0.D0 

 NITERATION=1 

 

 OPEN(400,FILE='Message.TXT') 

10 CONTINUE 

C ---JFORCE,JFLUX: Convergence indicatior--- 

 JFORCE=.FALSE. 

 JFLUX=.FALSE. 

 

 DIS_DEF=0.D0 

 DIS_DIFF=0.D0 

 GLB_FORCE_DIFF_T=0.D0 
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 GLB_STIFF_DIFF_T=0.D0 

 GLB_FORCE_DEF_T=0.D0 

 GLB_STIFF_DEF_T=0.D0 

 GLB_STIFF_TU_T=0.D0 

 GLB_STIFF_UT_T=0.D0 

 GLB_STRESS=0.D0 

 

 DO JELEM=1,NELEM !START ELEMENT LOOP 

  DO II=1,NNODE 

   NODE=NODE_IN_ELEMENT(JELEM,II) 

   DO JJ=1,MCRD 

   

 ELE_COORDS_DEF0(JJ,II)=GLB_COORDS(NODE,JJ) 

   

 ELE_COORDS_DEF(JJ,II)=GLB_COORDS(NODE,JJ) 

     &    +(U_DEF(JJ+MCRD*(NODE-1)))/2.D0 

C ---Strain is defined in t+delta_t/2--- 

   

 ELE_COORDS_DEF2(JJ,II)=GLB_COORDS(NODE,JJ) 

     &    +(U_DEF(JJ+MCRD*(NODE-1))) 

    ELE_U_DEF(JJ+MCRD*(II-

1))=U_DEF(JJ+MCRD*(NODE-1)) 

    ELE_DU_DEF(JJ+MCRD*(II-

1))=U_DEF(JJ+MCRD*(NODE-1)) 

   ENDDO 

   

 ELE_COORDS_DIFF(II)=GLB_COORDS(NODE,4) 

    ELE_DU_DIFF(II)=U_DIFF(NODE) 

  ENDDO 

C ---Get element stiffness and force vector--- 

  CALL 

UEL_DEF(ELE_FORCE_DEF,ELE_STIFF_DEF,NDOFEL,MCRD,NNODE, 

     &   NITERATION,JELEM,NELEM,DTIME, 

     &  

 ELE_COORDS_DEF,ELE_COORDS_DEF2,ELE_COORDS_DEF0, 

     &  

 ELE_DU_DEF,ELE_U_DEF,ELE_DU_DIFF,ELE_COORDS_DIFF, 

     &   AKTHETAU_T,AKUTHETA_T, 

     &  

 ELE_FORCE_DIFF,ELE_STIFF_DIFF,PRES,SIGMA_NODE, 

     &   ANV,CHI,DD) 

C ---Experience:ignore off-diagonal terms gives  

C ---faster rate of convergence a lof of times--- 

    AKTHETAU_T=0.D0 

    AKUTHETA_T=0.D0 
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C ---GET NODE STRESS FOR EACH ELEMENT--- 

            DO II=1,NNODE 

              NODE=NODE_IN_ELEMENT(JELEM,II) 

      

GLB_STRESS(NODE,7)=GLB_STRESS(NODE,7)+1.D0 

    DO J=1,6 

    

 GLB_STRESS(NODE,J)=GLB_STRESS(NODE,J) 

     &     +SIGMA_NODE(II,J) 

    ENDDO 

    ENDDO 

 

  DO I1=1,NNODE 

   DO IMCRD1=1,MCRD 

    N1=(I1-1)*MCRD+IMCRD1 

   

 NODE1_G=(NODE_IN_ELEMENT(JELEM,I1)-1)*MCRD+IMCRD1 

       

GLB_FORCE_DEF_T(NODE1_G)=GLB_FORCE_DEF_T(NODE1_G) 

     &    +ELE_FORCE_DEF(N1) 

    DO I2=1,NNODE 

     DO IMCRD2=1,MCRD 

      N2=(I2-1)*MCRD+IMCRD2 

     

 NODE2_G=(NODE_IN_ELEMENT(JELEM,I2)-1)*MCRD 

     &      +IMCRD2 

     

 GLB_STIFF_DEF_T(NODE1_G,NODE2_G)= 

     &     

 GLB_STIFF_DEF_T(NODE1_G,NODE2_G) 

     &      +ELE_STIFF_DEF(N1,N2) 

     ENDDO 

    ENDDO 

   ENDDO 

  ENDDO 

 

  DO I1=1,NNODE 

   

 NODE1_G=NODE_IN_ELEMENT(JELEM,I1) 

       

GLB_FORCE_DIFF_T(NODE1_G)=GLB_FORCE_DIFF_T(NODE1_G) 

     &                         +ELE_FORCE_DIFF(I1) 

   DO I2=1,NNODE 

    

 NODE2_G=NODE_IN_ELEMENT(JELEM,I2) 
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 GLB_STIFF_DIFF_T(NODE1_G,NODE2_G)= 

     &     

 GLB_STIFF_DIFF_T(NODE1_G,NODE2_G) 

     &      +ELE_STIFF_DIFF(I1,I2) 

   ENDDO 

  ENDDO 

 

  DO I1=1,NNODE 

   DO IMCRD1=1,MCRD 

    N1=(I1-1)*MCRD+IMCRD1 

   

 NODE1_G=(NODE_IN_ELEMENT(JELEM,I1)-1)*MCRD+IMCRD1 

    DO I2=1,NNODE 

    

 NODE2_G=NODE_IN_ELEMENT(JELEM,I2) 

    

 GLB_STIFF_UT_T(NODE1_G,NODE2_G)= 

     &    GLB_STIFF_UT_T(NODE1_G,NODE2_G) 

     &     +AKUTHETA_T(N1,I2) 

    ENDDO 

   ENDDO 

  ENDDO 

 

  DO I1=1,NNODE 

   NODE1_G=NODE_IN_ELEMENT(JELEM,I1) 

  

 GLB_FORCE_TU_T(NODE1_G)=GLB_FORCE_TU_T(NODE1_G) 

     &    +FTHETAU_T(I1)  

   DO I2=1,NNODE 

    DO IMCRD2=1,MCRD 

     N2=(I2-1)*MCRD+IMCRD2 

    

 NODE2_G=(NODE_IN_ELEMENT(JELEM,I2)-1)*MCRD 

     &      +IMCRD2 

    

 GLB_STIFF_TU_T(NODE1_G,NODE2_G)= 

     &    GLB_STIFF_TU_T(NODE1_G,NODE2_G) 

     &      +AKTHETAU_T(I1,N2) 

    ENDDO 

   ENDDO 

  ENDDO 

 

 ENDDO !END ELEMENT LOOP 

C ---Assemble global stiffness and force--- 
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 GLB_STIFF_TOTAL_T=0.D0 

 GLB_FORCE_TOTAL_T=0.D0 

 

 DO I=1,NTDIM_DEF 

  DO J=1,NTDIM_DEF 

  GLB_STIFF_TOTAL_T(I,J)= 

     & GLB_STIFF_TOTAL_T(I,J)+GLB_STIFF_DEF_T(I,J) 

  ENDDO 

  DO J=1,NTDIM_DIFF 

  GLB_STIFF_TOTAL_T(I,J+NTDIM_DEF)= 

     &

 GLB_STIFF_TOTAL_T(I,J+NTDIM_DEF)+GLB_STIFF_UT_T(I,J) 

  ENDDO 

  GLB_FORCE_TOTAL_T(I)=GLB_FORCE_DEF_T(I) 

 ENDDO 

 

 DO I=1,NTDIM_DIFF 

  DO J=1,NTDIM_DEF 

  GLB_STIFF_TOTAL_T(I+NTDIM_DEF,J)= 

     &

 GLB_STIFF_TOTAL_T(I+NTDIM_DEF,J)+GLB_STIFF_TU_T(I,J) 

  ENDDO 

  DO J=1,NTDIM_DIFF 

 

 GLB_STIFF_TOTAL_T(I+NTDIM_DEF,J+NTDIM_DEF)= 

     & GLB_STIFF_TOTAL_T(I+NTDIM_DEF,J+NTDIM_DEF) 

     &    +GLB_STIFF_DIFF_T(I,J) 

  ENDDO 

 

 GLB_FORCE_TOTAL_T(I+NTDIM_DEF)=GLB_FORCE_TOTAL_T(I

+NTDIM_DEF) 

     &    +GLB_FORCE_DIFF_T(I) 

 ENDDO 

C ---Apply BCs by elimination approach--- 

 GLB_STIFF_TOTAL=0.D0 

 GLB_FORCE_TOTAL=0.D0 

 

 IROW=1 

 DO I=1,NTDIM_TOTAL 

  I1=NBP_TOTAL(I) 

  IF(I1.NE.1) THEN 

  

 GLB_FORCE_TOTAL(IROW)=GLB_FORCE_TOTAL_T(I) 

   ICOLUMN=1 

   DO J=1,NTDIM_TOTAL 
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    J1=NBP_TOTAL(J) 

    IF(J1.NE.1) THEN 

    

 GLB_STIFF_TOTAL(IROW,ICOLUMN)= 

     &      GLB_STIFF_TOTAL_T(I,J) 

     ICOLUMN=ICOLUMN+1 

    ELSE 

     IF(NITERATION.EQ.1) THEN 

     

 GLB_FORCE_TOTAL(IROW)=GLB_FORCE_TOTAL(IROW) 

     &      -

DNBP_TOTAL(J)*GLB_STIFF_TOTAL_T(I,J) 

     ENDIF 

    ENDIF 

   ENDDO 

   IROW=IROW+1 

  ENDIF 

 ENDDO 

 

C ---Calculate the eigenvalue of stiffness --- 

 GLB_STIFF_TOTAL_BACKUP=GLB_STIFF_TOTAL 

 CALL 

DEVLSF(NDIM_TOTAL,GLB_STIFF_TOTAL_BACKUP,NDIM_TOTAL,EV

AL) 

C ---Find minimum---  

 EIGEN_MIN=1D10 

 DO I=1,NDIM_TOTAL 

  IF(EVAL(I).LT.EIGEN_MIN)THEN 

   EIGEN_MIN=EVAL(I) 

  ENDIF 

 ENDDO 

C ---Add penalty to diagonal of stiffness--- 

 FACTOR=3.D0 

 DO I=1,NDIM_TOTAL 

  GLB_STIFF_TOTAL(I,I)=GLB_STIFF_TOTAL(I,I) 

     &    +FACTOR*DABS(EIGEN_MIN) 

 ENDDO 

C ---Solve the equation--- 

 CALL 

DLSLRG(NDIM_TOTAL,GLB_STIFF_TOTAL,NDIM_TOTAL 

     &         ,GLB_FORCE_TOTAL,1,DIS_TOTAL) 

 DEF_MAX=1D-8 

 ICOUNT=1 

 DO I=1,NTDIM_DEF 

  IF(NBP_DEF(I).EQ.1) THEN 
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  ELSE 

  

 IF(DABS(DIS_TOTAL(ICOUNT)).GE.DABS(DEF_MAX)) THEN 

   

 DEF_MAX=DABS(DIS_TOTAL(ICOUNT)) 

   ENDIF 

   ICOUNT=ICOUNT+1 

  ENDIF  

 ENDDO 

 

 DIFF_MAX=1D-8 

 ICOUNT=1 

 DO I=1,NTDIM_DIFF 

  IF(NBP_DIFF(I).EQ.1) THEN 

  ELSE 

   IF(DABS(DIS_TOTAL(ICOUNT+NDIM_DEF)) 

     &  .GE.DABS(DIFF_MAX)) THEN 

   

 DIFF_MAX=DABS(DIS_TOTAL(ICOUNT+NDIM_DEF)) 

   ENDIF 

   ICOUNT=ICOUNT+1 

  ENDIF  

 ENDDO 

 

 ICOUNT=1 

 DO I=1,NTDIM_DEF 

  IF(NBP_DEF(I).EQ.1) THEN 

   U_DEF(I)=DNBP_DEF(I) 

  ELSE 

   U_DEF(I)=U_DEF(I)+DIS_TOTAL(ICOUNT) 

   ICOUNT=ICOUNT+1 

  ENDIF 

 ENDDO 

 

 ICOUNT=1 

 DO I=1,NTDIM_DIFF 

  IF(NBP_DIFF(I).EQ.1) THEN 

   U_DIFF(I)=DNBP_DIFF(I) 

  ELSE 

  

 U_DIFF(I)=U_DIFF(I)+DIS_TOTAL(ICOUNT+NDIM_DEF) 

   ICOUNT=ICOUNT+1 

  ENDIF 

 ENDDO 
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c ---Max displacement and chem potential correction--- 

 WRITE(400,*)' NITERATION= ',NITERATION 

 WRITE(400,*)' DEF_MAX= ',DEF_MAX 

 WRITE(400,*)' DIFF_MAX=',DIFF_MAX 

C ---Simple convergence judgement--- 

 IF(DABS(DEF_MAX).LE.1D-5)  JFORCE=.TRUE. 

 IF(DABS(DIFF_MAX).LE.1D-5) JFLUX=.TRUE. 

 

60 FORMAT(10F20.10) 

61 FORMAT(8I6) 

 

 OPEN(600,FILE='STRESS_TecplotFormat.DAT') 

 IF(JFORCE.AND.JFLUX.AND.NITERATION.GT.2)THEN 

    DO I=1,NTOTAL 

    DO J=1,6 

  

 GLB_STRESS(I,J)=GLB_STRESS(I,J)/GLB_STRESS(I,7) 

    ENDDO 

     ENDDO 

  

  WRITE(600,*)' TITLE="Gel Swelled Shape"' 

  WRITE(600,*)' 

variables="x","y","z","CHEM","sxx","syy","szz", 

     &    "syz","sxz","sxy"' 

  WRITE(600,*)'ZONE 

N=',NTOTAL,',E=',NELEM,',F=FEPOINT,ET=BRICK' 

  DO I=1,NTOTAL 

   WRITE(600,60) 

     &U_DEF((I-1)*MCRD+1)+GLB_COORDS(I,1)+U_DEF_T((I-

1)*MCRD+1), 

     &U_DEF((I-1)*MCRD+2)+GLB_COORDS(I,2)+U_DEF_T((I-

1)*MCRD+2), 

     &U_DEF((I-1)*MCRD+3)+GLB_COORDS(I,3)+U_DEF_T((I-

1)*MCRD+3), 

     &U_DIFF(I)+GLB_COORDS(I,4), 

     &GLB_STRESS(I,1),GLB_STRESS(I,2),GLB_STRESS(I,3), 

     &GLB_STRESS(I,4),GLB_STRESS(I,5),GLB_STRESS(I,6) 

  ENDDO 

  DO I=1,NELEM 

    

WRITE(600,61)NODE_IN_ELEMENT(I,1),NODE_IN_ELEMENT(I,2), 

     &       

NODE_IN_ELEMENT(I,3),NODE_IN_ELEMENT(I,4), 

     &       

NODE_IN_ELEMENT(I,5),NODE_IN_ELEMENT(I,6), 
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     &       

NODE_IN_ELEMENT(I,7),NODE_IN_ELEMENT(I,8) 

  ENDDO 

  STOP 

 ELSE 

   NITERATION=NITERATION+1 

   GOTO 10 

 ENDIF ! END OF IF (JFORCE) 

 END 

 

 

 SUBROUTINE 

UEL_DEF(RHS_T,AMATRX_T,NDOFEL,MCRD,NNODE, 

     & NITERATION,JELEM,NELEM,DTIME, 

     

&COORDS,COORDS2,COORDS0,ELE_DU_DEF,ELE_U_DEF,DTEMP,TEM

P, 

     &AKTHETAU_T,AKUTHETA_T, 

     &RHS_DIFF_T,AMATRX_DIFF_T,ALAMBDA0,SIGMA_NODE, 

     &   ANV,CHI,DD) 

 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 

 PARAMETER (IPNML=8) 

 DIMENSION RHS(NDOFEL),AMATRX(NDOFEL,NDOFEL) 

 DIMENSION 

RHS_T(NDOFEL),AMATRX_T(NDOFEL,NDOFEL) 

      DIMENSION U(NDOFEL),DIS_T(MCRD,NNODE) 

 DIMENSION 

ELE_DU_DEF(3*NNODE),ELE_U_DEF(3*NNODE) 

 DIMENSION DTEMP(NNODE),TEMP(NNODE),DTEMPDX(3) 

 DIMENSION 

COORDS(MCRD,NNODE),COORDS0(MCRD,NNODE) 

 DIMENSION COORDS2(MCRD,NNODE) 

 DIMENSION DELTAM(3,3) 

 DIMENSION DMATRIX(6,6),CMATRIX(3,3,3,3) 

 DIMENSION POINTS2(IPNML,4),POINTS(IPNML,4) 

 DIMENSION XI(3),XI3(3) 

 DIMENSION SF2(NNODE),SF3(NNODE) 

 DIMENSION DSFDX0(NNODE,MCRD) 

 DIMENSION 

DSFDX2(NNODE,MCRD),DSFDX3(NNODE,MCRD) 

 DIMENSION DG(3,3),DGI(3,3),DG2(3,3),DGI2(3,3),DG2I(3,3) 

 DIMENSION B_VOL2(NNODE,3),B_TOTAL2(6,3*NNODE) 
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 DIMENSION 

DBAR1(3*NNODE,3*NNODE),DBAR2(3*NNODE,3*NNODE) 

 DIMENSION 

DBAR3(3*NNODE,3*NNODE),DBAR4(3*NNODE,3*NNODE) 

 DIMENSION 

DBAR5(3*NNODE,3*NNODE),DBAR6(3*NNODE,3*NNODE) 

 DIMENSION 

TN1(3*NNODE,3*NNODE),TN2(3*NNODE,3*NNODE) 

 DIMENSION 

TN3(3*NNODE,3*NNODE),TN4(3*NNODE,3*NNODE) 

 DIMENSION 

TN5(3*NNODE,3*NNODE),TN6(3*NNODE,3*NNODE) 

 DIMENSION AKL(3*NNODE,3*NNODE) 

 DIMENSION 

AKNL1(3*NNODE,3*NNODE),AKNL2(3*NNODE,3*NNODE) 

 DIMENSION 

AKTHETAU(NNODE,3*NNODE),AKTHETAU_T(NNODE,3*NNODE) 

 DIMENSION 

AKUTHETA(3*NNODE,NNODE),AKUTHETA_T(3*NNODE,NNODE) 

 DIMENSION SIGMA(6) 

 DIMENSION SIGMA_MAT(3,3) 

 DIMENSION BBAR(3,3),DG2BAR(3,3),HMAT(3,3,3,3) 

 DIMENSION DISTGR(3,3),DSTRAN(6) 

 DIMENSION 

RHS_DIFF(NNODE),AMATRX_DIFF(NNODE,NNODE) 

 DIMENSION 

RHS_DIFF_T(NNODE),AMATRX_DIFF_T(NNODE,NNODE) 

 DIMENSION AKTHETATHETA(NNODE,NNODE) 

 DIMENSION AKTHETATHETA_T(NNODE,NNODE) 

 DIMENSION FLUX(3),TEMPDX(3) 

 DIMENSION 

SIGMA_GAUSS(IPNML,6),SIGMA_NODE(NNODE,6) 

 DIMENSION GMAT_INV(8,8) 

 

C ---IDENTITY MATRIX--- 

 DELTAM=0.D0 

 DELTAM(1,1)=1.D0 

 DELTAM(2,2)=1.D0 

 DELTAM(3,3)=1.D0 

 

 DCHEM_AVG=0.D0 

 DO I=1,NNODE 

  DCHEM_AVG=DCHEM_AVG+DTEMP(I) 

 ENDDO 

 DCHEM_AVG=DCHEM_AVG/DBLE(NNODE) 
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 CHEM0_AVG=0.D0 

 DO I=1,NNODE 

  CHEM0_AVG=CHEM0_AVG+TEMP(I) 

 ENDDO 

 CHEM0_AVG=CHEM0_AVG/DBLE(NNODE) 

 

      DO INODE=1,NNODE 

  DO IMCRD=1,MCRD 

  

 DIS_T(IMCRD,INODE)=ELE_U_DEF(IMCRD+MCRD*(INODE-1)) 

  ENDDO 

 ENDDO 

 

 CALL GET_POINTS (IPNML,POINTS) 

 CALL GET_POINTS2(IPNML,POINTS2) 

 

 B_VOL2=0.D0 

 EL_VOL2=0.D0 

 DETJAC2_AVG=0.D0 

 

 DO IPOINT=1,IPNML 

  XI=POINTS(IPOINT,1:3) 

  WEIGHT=POINTS(IPOINT,4) 

     CALL 

GRADIENT(NNODE,COORDS2,XI,DETJAC2,SF2,DSFDX2, 

     &   DG2,DGI2,JELEM,DIS_T,COORDS0,DSFDX0) 

  DO I=1,NNODE 

   DO J=1,3 

   

 B_VOL2(I,J)=B_VOL2(I,J)+DSFDX2(I,J)*WEIGHT*DETJAC2 

   ENDDO 

  ENDDO 

  EL_VOL2=EL_VOL2+WEIGHT*DETJAC2 

  DETJAC2_AVG=DETJAC2_AVG+DETJAC2 

 ENDDO 

 

 B_VOL2=B_VOL2/EL_VOL2 

 DETJAC2_AVG=DETJAC2_AVG/DBLE(IPNML) 

 

 RHS_T=0.D0 

 AMATRX_T=0.D0 

 RHS_DIFF_T=0.D0 

 AMATRX_DIFF_T=0.D0 

 AKTHETAU_T=0.D0 
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 AKUTHETA_T=0.D0 

 SIGMA_GAUSS=0.D0 

 SIGMA_NODE=0.D0 

 DO IPOINT=1,IPNML !Integration loop 

  XI=POINTS(IPOINT,1:3) 

  WEIGHT=POINTS(IPOINT,4) 

C ---Lumped matrix is used,Gaussian point value is  

C ---replaced by nodal value--- 

  XI3=POINTS2(IPOINT,1:3) 

     CALL 

GRADIENT(NNODE,COORDS,XI3,DETJAC,SF3,DSFDX3, 

     &   DG,DGI,JELEM,DIS_T,COORDS0,DSFDX0) 

     CALL 

GRADIENT(NNODE,COORDS2,XI,DETJAC2,SF2,DSFDX2, 

     &   DG2,DGI,JELEM,DIS_T,COORDS0,DSFDX0) 

C ---B-BAR Matrix--- 

 B_TOTAL2=0.D0 

  DO I=1,6 

   DO J=1,3*NNODE 

    J_TEMP=MOD(J,3) 

    IF(MOD(J,3).EQ.0)J_TEMP=3 

    IF(I.LE.3)THEN 

     IF(J_TEMP.EQ.I)THEN 

      IF(MOD(J,3).NE.0)THEN 

    

 B_TOTAL2(I,J)=(B_VOL2(J/3+1,J_TEMP) 

     &     -DSFDX2(J/3+1,J_TEMP))/3.D0 

     &     +DSFDX2(J/3+1,J_TEMP) 

      ELSE 

    

 B_TOTAL2(I,J)=(B_VOL2(J/3,J_TEMP) 

     &     -DSFDX2(J/3,J_TEMP))/3.D0 

     &     +DSFDX2(J/3,J_TEMP) 

      ENDIF 

     ELSE 

      IF(MOD(J,3).NE.0)THEN 

    

 B_TOTAL2(I,J)=(B_VOL2(J/3+1,J_TEMP) 

     &     -DSFDX2(J/3+1,J_TEMP))/3.D0 

      ELSE 

    

 B_TOTAL2(I,J)=(B_VOL2(J/3,J_TEMP) 

     &     -DSFDX2(J/3,J_TEMP))/3.D0 

      ENDIF 

     ENDIF 
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    ENDIF     

    IF(I.EQ.4)THEN 

     IF(J_TEMP.EQ.2)THEN 

     B_TOTAL2(I,J)=DSFDX2(J/3+1,3) 

     ENDIF 

 

     IF(J_TEMP.EQ.3)THEN 

     B_TOTAL2(I,J)=DSFDX2(J/3,2) 

     ENDIF 

    ENDIF      

  

    IF(I.EQ.5)THEN 

     IF(J_TEMP.EQ.1)THEN 

     B_TOTAL2(I,J)=DSFDX2(J/3+1,3) 

     ENDIF 

 

     IF(J_TEMP.EQ.3)THEN 

     B_TOTAL2(I,J)=DSFDX2(J/3,1) 

     ENDIF 

    ENDIF 

    IF(I.EQ.6)THEN 

     IF(J_TEMP.EQ.1)THEN 

     B_TOTAL2(I,J)=DSFDX2(J/3+1,2) 

     ENDIF 

 

     IF(J_TEMP.EQ.2)THEN 

     B_TOTAL2(I,J)=DSFDX2(J/3+1,1) 

     ENDIF 

    ENDIF 

   ENDDO 

  ENDDO 

 

 DG2=DG2*(DETJAC2_AVG/DETJAC2)**(1.D0/3.D0) 

 DET=DG2(1,1)*DG2(2,2)*DG2(3,3) 

     &-DG2(1,1)*DG2(2,3)*DG2(3,2) 

     &-DG2(2,1)*DG2(1,2)*DG2(3,3) 

     &-DG2(2,1)*DG2(1,3)*DG2(3,2) 

     &+DG2(3,1)*DG2(1,2)*DG2(2,3) 

     &-DG2(3,1)*DG2(2,2)*DG2(1,3) 

 DG2I(1,1)= (DG2(2,2)*DG2(3,3)-DG2(2,3)*DG2(3,2))/DET 

 DG2I(1,2)=-(DG2(1,2)*DG2(3,3)-DG2(1,3)*DG2(3,2))/DET 

 DG2I(1,3)=-(DG2(1,3)*DG2(2,2)-DG2(1,2)*DG2(2,3))/DET 

 DG2I(2,1)=-(DG2(2,1)*DG2(3,3)-DG2(2,3)*DG2(3,1))/DET 

 DG2I(2,2)= (DG2(1,1)*DG2(3,3)-DG2(1,3)*DG2(3,1))/DET 

 DG2I(2,3)=-(DG2(1,1)*DG2(2,3)-DG2(1,3)*DG2(2,1))/DET 
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 DG2I(3,1)=-(DG2(2,2)*DG2(3,1)-DG2(2,1)*DG2(3,2))/DET 

 DG2I(3,2)=-(DG2(1,1)*DG2(3,2)-DG2(1,2)*DG2(3,1))/DET 

 DG2I(3,3)= (DG2(1,1)*DG2(2,2)-DG2(1,2)*DG2(2,1))/DET 

 DO I=1,3 

  DO J=1,3 

  DG2BAR(I,J)=DET**(-1.D0/3.D0)*DG2(I,J) 

  ENDDO 

 ENDDO 

 BBAR(1,1)=DG2BAR(1, 1)**2.D0+DG2BAR(1, 

2)**2.D0+DG2BAR(1, 3)**2.D0 

 BBAR(2,2)=DG2BAR(2, 1)**2.D0+DG2BAR(2, 

2)**2.D0+DG2BAR(2, 3)**2.D0 

 BBAR(3,3)=DG2BAR(3, 3)**2.D0+DG2BAR(3, 

1)**2.D0+DG2BAR(3, 2)**2.D0 

 BBAR(1,2)=DG2BAR(1, 1)*DG2BAR(2, 1)+DG2BAR(1, 

2)*DG2BAR(2, 2) 

     &+DG2BAR(1, 3)*DG2BAR(2, 3) 

 BBAR(1,3)=DG2BAR(1, 1)*DG2BAR(3, 1)+DG2BAR(1, 

2)*DG2BAR(3, 2) 

     &+DG2BAR(1, 3)*DG2BAR(3, 3) 

 BBAR(2,3)=DG2BAR(2, 1)*DG2BAR(3, 1)+DG2BAR(2, 

2)*DG2BAR(3, 2) 

     &+DG2BAR(2, 3)*DG2BAR(3, 3). 

 BBAR(2,1)=BBAR(1,2) 

 BBAR(3,1)=BBAR(1,3) 

 BBAR(3,2)=BBAR(2,3) 

 TRBBAR=(BBAR(1,1)+BBAR(2,2)+BBAR(3,3))/3.D0 

 

 HMAT=0.D0 

 DO I=1,3 

  DO J=1,3 

   DO K=1,3 

    DO L=1,3 

 HMAT(I,J,K,L)=0.5D0*(BBAR(J,L)*DELTAM(I,K)+BBAR(I,K)

*DELTAM(J,L) 

     &+BBAR(J,K)*DELTAM(I,L)+BBAR(I,L)*DELTAM(J,K)) 

    ENDDO 

   ENDDO 

  ENDDO 

 ENDDO 

C ---IMPORTANT TO USE AVERAGE VALUE!---- 

 CHEM0=CHEM0_AVG 

 DCHEM=DCHEM_AVG 

C ---CMATRIX: Tangential modulus--- 

 CMATRIX=0.D0 
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 DO I=1,3 

 DO J=1,3 

  DO K=1,3 

  DO L=1,3 

 CMATRIX(I,J,K,L)= 

     &ANV*( 

     &ALAMBDA0**2.D0*DET**(-1.D0/3.D0)*HMAT(I,J,K,L) 

     &+1.D0/ANV*( 

     &           ALAMBDA0**3.D0*DLOG((DET*ALAMBDA0**3.D0-

1.D0) 

     &/DET/ALAMBDA0**3.D0) 

     &-CHI/DET**2.D0/ALAMBDA0**3.D0+ 

     & ALAMBDA0**3.D0/(DET*ALAMBDA0**3.D0-1.D0) 

     &-CHEM0*ALAMBDA0**3.D0 

     &          )*DELTAM(I,J)*DELTAM(K,L) 

     &       ) 

     &-DCHEM*ALAMBDA0**3.D0*DELTAM(I,J)*DELTAM(K,L) 

  ENDDO 

  ENDDO 

 ENDDO 

 ENDDO 

C ---Convert C(3*3*3*3)to D(6*6)--- 

 DMATRIX=0.D0 

 DMATRIX(1,1)=CMATRIX(1,1,1,1) 

 DMATRIX(1,2)=CMATRIX(1,1,2,2) 

 DMATRIX(1,3)=CMATRIX(1,1,3,3) 

 DMATRIX(1,4)=CMATRIX(1,1,2,3) 

 DMATRIX(1,5)=CMATRIX(1,1,1,3) 

 DMATRIX(1,6)=CMATRIX(1,1,1,2) 

 DMATRIX(2,1)=CMATRIX(2,2,1,1) 

 DMATRIX(2,2)=CMATRIX(2,2,2,2) 

 DMATRIX(2,3)=CMATRIX(2,2,3,3) 

 DMATRIX(2,4)=CMATRIX(2,2,2,3) 

 DMATRIX(2,5)=CMATRIX(2,2,1,3) 

 DMATRIX(2,6)=CMATRIX(2,2,1,2) 

 DMATRIX(3,1)=CMATRIX(3,3,1,1) 

 DMATRIX(3,2)=CMATRIX(3,3,2,2) 

 DMATRIX(3,3)=CMATRIX(3,3,3,3) 

 DMATRIX(3,4)=CMATRIX(3,3,2,3) 

 DMATRIX(3,5)=CMATRIX(3,3,1,3) 

 DMATRIX(3,6)=CMATRIX(3,3,1,2) 

 DMATRIX(4,1)=CMATRIX(2,3,1,1) 

 DMATRIX(4,2)=CMATRIX(2,3,2,2) 

 DMATRIX(4,3)=CMATRIX(2,3,3,3) 

 DMATRIX(4,4)=CMATRIX(2,3,2,3) 
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 DMATRIX(4,5)=CMATRIX(2,3,1,3) 

 DMATRIX(4,6)=CMATRIX(2,3,1,2) 

 DMATRIX(5,1)=CMATRIX(1,3,1,1) 

 DMATRIX(5,2)=CMATRIX(1,3,2,2) 

 DMATRIX(5,3)=CMATRIX(1,3,3,3) 

 DMATRIX(5,4)=CMATRIX(1,3,2,3) 

 DMATRIX(5,5)=CMATRIX(1,3,1,3) 

 DMATRIX(5,6)=CMATRIX(1,3,1,2) 

 DMATRIX(6,1)=CMATRIX(1,2,1,1) 

 DMATRIX(6,2)=CMATRIX(1,2,2,2) 

 DMATRIX(6,3)=CMATRIX(1,2,3,3) 

 DMATRIX(6,4)=CMATRIX(1,2,2,3) 

 DMATRIX(6,5)=CMATRIX(1,2,1,3) 

 DMATRIX(6,6)=CMATRIX(1,2,1,2) 

C ---Cauchy Stress--- 

 SIGMA_MAT=0.D0 

 DO I=1,3 

  DO J=1,3 

 SIGMA_MAT(I,J)=ANV*( 

     & DET**(-1.D0/3.D0)*BBAR(I,J) 

     &*ALAMBDA0**2.D0 

     &+DELTAM(I,J)/ANV*( 

     &ALAMBDA0**3.D0*DLOG((DET*ALAMBDA0**3.D0-

1.D0)/DET/ALAMBDA0**3.D0) 

     &+1.D0/DET+CHI/DET**2.D0/ALAMBDA0**3.D0-

CHEM0*ALAMBDA0**3.D0 

     &                 )  ) 

     &-1.D0/DET*ANV*DELTAM(I,J) 

     &-DELTAM(I,J)*DCHEM*ALAMBDA0**3.D0 

  ENDDO 

 ENDDO 

 

 SIGMA(1)=SIGMA_MAT(1,1) 

  SIGMA(2)=SIGMA_MAT(2,2) 

 SIGMA(3)=SIGMA_MAT(3,3) 

 SIGMA(4)=SIGMA_MAT(2,3) 

 SIGMA(5)=SIGMA_MAT(1,3) 

 SIGMA(6)=SIGMA_MAT(1,2) 

 DO I=1,6 

  SIGMA_GAUSS(IPOINT,I)=SIGMA(I) 

 ENDDO 

C ---AKL:B^[transpose]*D*B--- 

C ---AKNL1: -2*[sigma]*[delta_epsilon]*[d_epsilon]--- 

C ---AKNL2:[sigma]*[du/dx^[transpose]]*[delta_u/dx]--- 

 AKL=0.D0 
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 DO I=1,3*NNODE 

  DO J=1,3*NNODE 

   DO K=1,6 

    DO L=1,6 

 AKL(I,J)=AKL(I,J)+B_TOTAL2(K,I)*DMATRIX(K,L)*B_TOT

AL2(L,J) 

    ENDDO 

   ENDDO 

  ENDDO 

 ENDDO 

 

 TN1=0.D0 

 TN2=0.D0 

 TN3=0.D0 

 TN4=0.D0 

 TN5=0.D0 

 TN6=0.D0 

 DO I=1,NNODE 

  DO J=1,NNODE 

  TN1(3*(I-1)+1,3*(J-1)+1)=DSFDX2(I,1)*DSFDX2(J,1) 

  TN1(3*(I-1)+2,3*(J-1)+2)=DSFDX2(I,1)*DSFDX2(J,1) 

  TN1(3*I,3*J)            =DSFDX2(I,1)*DSFDX2(J,1) 

  TN2(3*(I-1)+1,3*(J-1)+1)=DSFDX2(I,2)*DSFDX2(J,2) 

  TN2(3*(I-1)+2,3*(J-1)+2)=DSFDX2(I,2)*DSFDX2(J,2) 

  TN2(3*I,3*J)            =DSFDX2(I,2)*DSFDX2(J,2) 

  TN3(3*(I-1)+1,3*(J-1)+1)=DSFDX2(I,3)*DSFDX2(J,3) 

  TN3(3*(I-1)+2,3*(J-1)+2)=DSFDX2(I,3)*DSFDX2(J,3) 

  TN3(3*I,3*J)            =DSFDX2(I,3)*DSFDX2(J,3) 

  TN4(3*(I-1)+1,3*(J-1)+1)=DSFDX2(I,2)*DSFDX2(J,3) 

     &                            +DSFDX2(I,3)*DSFDX2(J,2) 

  TN4(3*(I-1)+2,3*(J-1)+2)=DSFDX2(I,2)*DSFDX2(J,3) 

     &                            +DSFDX2(I,3)*DSFDX2(J,2) 

  TN4(3*I,3*J)            =DSFDX2(I,2)*DSFDX2(J,3) 

     &                            +DSFDX2(I,3)*DSFDX2(J,2) 

  TN5(3*(I-1)+1,3*(J-1)+1)=DSFDX2(I,1)*DSFDX2(J,3) 

     &                            +DSFDX2(I,3)*DSFDX2(J,1) 

  TN5(3*(I-1)+2,3*(J-1)+2)=DSFDX2(I,1)*DSFDX2(J,3) 

     &                            +DSFDX2(I,3)*DSFDX2(J,1) 

  TN5(3*I,3*J)            =DSFDX2(I,1)*DSFDX2(J,3) 

     &                            +DSFDX2(I,3)*DSFDX2(J,1) 

  TN6(3*(I-1)+1,3*(J-1)+1)=DSFDX2(I,1)*DSFDX2(J,2) 

     &                            +DSFDX2(I,2)*DSFDX2(J,1) 

  TN6(3*(I-1)+2,3*(J-1)+2)=DSFDX2(I,1)*DSFDX2(J,2) 

     &                            +DSFDX2(I,2)*DSFDX2(J,1) 

  TN6(3*I,3*J)            =DSFDX2(I,1)*DSFDX2(J,2) 
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     &                            +DSFDX2(I,2)*DSFDX2(J,1) 

  ENDDO 

 ENDDO 

   

 DBAR1=0.D0 

 DBAR2=0.D0 

 DBAR3=0.D0 

 DBAR4=0.D0 

 DBAR5=0.D0 

 DBAR6=0.D0 

 AKNL1=0.D0 

 AKNL2=0.D0 

 

 DO I=1,3*NNODE 

  DO J=1,3*NNODE 

  DBAR1(I,J)=B_TOTAL2(1,I)*B_TOTAL2(1,J) 

     &  +0.25D0*B_TOTAL2(6,I)*B_TOTAL2(6,J) 

     &     +0.25D0*B_TOTAL2(5,I)*B_TOTAL2(5,J) 

  DBAR2(I,J)=0.25D0*B_TOTAL2(6,I)*B_TOTAL2(6,J) 

     &  +B_TOTAL2(2,I)*B_TOTAL2(2,J) 

     &     +0.25D0*B_TOTAL2(4,I)*B_TOTAL2(4,J) 

  DBAR3(I,J)=0.25D0*B_TOTAL2(5,I)*B_TOTAL2(5,J) 

     &  +0.25D0*B_TOTAL2(4,I)*B_TOTAL2(4,J) 

     &     +B_TOTAL2(3,I)*B_TOTAL2(3,J) 

 

 DBAR4(I,J)=2.D0*(0.25D0*B_TOTAL2(6,I)*B_TOTAL2(5,J) 

     &  +0.25D0*B_TOTAL2(5,I)*B_TOTAL2(6,J) 

     &  +0.5D0*B_TOTAL2(2,I)*B_TOTAL2(4,J) 

     &  +0.5D0*B_TOTAL2(4,I)*B_TOTAL2(2,J) 

     &     +0.5D0*B_TOTAL2(4,I)*B_TOTAL2(3,J) 

     &     +0.5D0*B_TOTAL2(3,I)*B_TOTAL2(4,J)) 

 

 DBAR5(I,J)=2.D0*(0.5D0*B_TOTAL2(1,I)*B_TOTAL2(5,J) 

     &  +0.5D0*B_TOTAL2(5,I)*B_TOTAL2(1,J) 

     &  +0.25D0*B_TOTAL2(6,I)*B_TOTAL2(4,J) 

     &  +0.25D0*B_TOTAL2(4,I)*B_TOTAL2(6,J) 

     &     +0.5D0*B_TOTAL2(5,I)*B_TOTAL2(3,J) 

     &     +0.5D0*B_TOTAL2(3,I)*B_TOTAL2(5,J)) 

 

 DBAR6(I,J)=2.D0*(0.5D0*B_TOTAL2(1,I)*B_TOTAL2(6,J) 

     &  +0.5D0*B_TOTAL2(6,I)*B_TOTAL2(1,J) 

     &  +0.5D0*B_TOTAL2(6,I)*B_TOTAL2(2,J) 

     &  +0.5D0*B_TOTAL2(2,I)*B_TOTAL2(6,J) 

     &     +0.25D0*B_TOTAL2(5,I)*B_TOTAL2(4,J) 

     &     +0.25D0*B_TOTAL2(4,I)*B_TOTAL2(5,J)) 
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  ENDDO 

 ENDDO 

 

 DO I=1,3*NNODE 

  DO J=1,3*NNODE 

  AKNL1(I,J)=-2.D0*SIGMA(1)*DBAR1(I,J) 

     & -2.D0*SIGMA(2)*DBAR2(I,J)-2.D0*SIGMA(3)*DBAR3(I,J) 

     & -SIGMA(4)*DBAR4(I,J)-SIGMA(5)*DBAR5(I,J) 

     & -SIGMA(6)*DBAR6(I,J) 

  AKNL2(I,J)=  SIGMA(1)*TN1(I,J)+SIGMA(2)*TN2(I,J) 

     &                +SIGMA(3)*TN3(I,J)+SIGMA(4)*TN4(I,J) 

     &                +SIGMA(5)*TN5(I,J)+SIGMA(6)*TN6(I,J) 

  ENDDO 

 ENDDO 

 

C ---AKTHETAU: K_[chempoten,disp]--- 

C ---AKUTHETA: K_[disp,chempoten]--- 

  AKTHETAU=0.D0 

  AKUTHETA=0.D0 

  TEMPDX  =0.D0 

 

  DO I=1,NNODE 

   DO J=1,3 

  

 TEMPDX(J)=TEMPDX(J)+DSFDX2(I,J)*(DTEMP(I)+TEMP(I)) 

   ENDDO 

  ENDDO 

 

  DO IP=1,NNODE 

   DO IQ=1,NNODE 

    DO I=1,3 

     DO K=1,3 

  AKTHETAU(IP,3*IQ-2)=AKTHETAU(IP,3*IQ-

2)+1.D0/DTIME*SF3(IP) 

     &/DET/ALAMBDA0**3.D0*DG2I(K,1)*DSFDX0(IQ,K) 

     &+(DSFDX2(IP,1)*TEMPDX(1)+DSFDX2(IP,2)*TEMPDX(2) 

     

&+DSFDX2(IP,3)*TEMPDX(3))*DD/DET/ALAMBDA0**3.D0*DG2I(K,1) 

     &*DSFDX0(IQ,K) 

  AKTHETAU(IP,3*IQ-1)=AKTHETAU(IP,3*IQ-

1)+1.D0/DTIME*SF3(IP) 

     &/DET/ALAMBDA0**3.D0*DG2I(K,2)*DSFDX0(IQ,K) 

     &+(DSFDX2(IP,1)*TEMPDX(1)+DSFDX2(IP,2)*TEMPDX(2) 

     

&+DSFDX2(IP,3)*TEMPDX(3))*DD/DET/ALAMBDA0**3.D0*DG2I(K,2) 
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     &*DSFDX0(IQ,K) 

 

 AKTHETAU(IP,3*IQ  )=AKTHETAU(IP,3*IQ  )+1.D0/DTIME*SF3(IP) 

     &/DET/ALAMBDA0**3.D0*DG2I(K,3)*DSFDX0(IQ,K) 

     &+(DSFDX2(IP,1)*TEMPDX(1)+DSFDX2(IP,2)*TEMPDX(2) 

     

&+DSFDX2(IP,3)*TEMPDX(3))*DD/DET/ALAMBDA0**3.D0*DG2I(K,3) 

     &*DSFDX0(IQ,K) 

     ENDDO 

    ENDDO 

   ENDDO 

  ENDDO 

C 

  DO I=1,3*NNODE 

   DO J=1,NNODE 

  AKUTHETA(I,J)=AKUTHETA(I,J)- 

     &      (B_TOTAL2(1,I)+B_TOTAL2(2,I)+B_TOTAL2(3,I))*SF2(J) 

   ENDDO 

  ENDDO 

 

  RHS   =0.D0 

  AMATRX=0.D0 

  DO J=1,3*NNODE 

   DO I=1,6 

   RHS(J)=RHS(J)-SIGMA(I)*B_TOTAL2(I,J) 

   ENDDO 

  ENDDO 

  DO I=1,3*NNODE 

   DO J=1,3*NNODE 

   

 AMATRX(I,J)=(AKL(I,J)+AKNL1(I,J)+AKNL2(I,J)) 

   ENDDO 

  ENDDO 

 

     FLUX=0.D0 

  RHS_DIFF=0.D0       

  DO I=1,3 

  FLUX(I)=-(ALAMBDA0**3.D0*DET-1.D0)/DET 

     &/ALAMBDA0**3.D0*DD*TEMPDX(I) 

  ENDDO 

  DO I=1,NNODE 

   RHS_DIFF(I)=RHS_DIFF(I) 

     &  -1.D0/DTIME*SF3(I)/DET/ALAMBDA0**3.D0 

     &        *(DET*ALAMBDA0**3.D0-1.D0**3.D0) 

     &  +DSFDX2(I,1)*FLUX(1)+DSFDX2(I,2)*FLUX(2) 
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     &  +DSFDX2(I,3)*FLUX(3) 

  ENDDO 

 

  AMATRX_DIFF=0.D0 

  DO I=1,NNODE 

   DO J=1,NNODE 

    DO K=1,3 

  

 AMATRX_DIFF(I,J)=AMATRX_DIFF(I,J)+DSFDX2(I,K) 

     &       *((ALAMBDA0**3.D0*DET-1.D0)*DD/DET 

     &       /ALAMBDA0**3.D0)*DSFDX2(J,K) 

    ENDDO 

   ENDDO 

  ENDDO 

C ---Sum up all integration points--- 

   

AKTHETAU_T=AKTHETAU_T+AKTHETAU*WEIGHT*DETJAC2 

   

AKUTHETA_T=AKUTHETA_T+AKUTHETA*WEIGHT*DETJAC2 

   RHS_T=RHS_T+RHS*WEIGHT*DETJAC2 

   AMATRX_T=AMATRX_T+AMATRX*WEIGHT*DETJAC2 

   RHS_DIFF_T=RHS_DIFF_T+RHS_DIFF*WEIGHT*DETJAC2 

   

AMATRX_DIFF_T=AMATRX_DIFF_T+AMATRX_DIFF*WEIGHT*DETJA

C2 

C ---Get nodal stress from Gaussian point--- 

 CALL GAUSS_INV(GMAT_INV) 

 DO I=1,8 

  SIGMA_NODE(I,1)=SIGMA_NODE(I,1) 

     &  +GMAT_INV(I,IPOINT)*SIGMA_GAUSS(IPOINT,1) 

  SIGMA_NODE(I,2)=SIGMA_NODE(I,2) 

     &  +GMAT_INV(I,IPOINT)*SIGMA_GAUSS(IPOINT,2) 

  SIGMA_NODE(I,3)=SIGMA_NODE(I,3) 

     &  +GMAT_INV(I,IPOINT)*SIGMA_GAUSS(IPOINT,3) 

  SIGMA_NODE(I,4)=SIGMA_NODE(I,4) 

     &  +GMAT_INV(I,IPOINT)*SIGMA_GAUSS(IPOINT,4) 

  SIGMA_NODE(I,5)=SIGMA_NODE(I,5) 

     &  +GMAT_INV(I,IPOINT)*SIGMA_GAUSS(IPOINT,5) 

  SIGMA_NODE(I,6)=SIGMA_NODE(I,6) 

     &  +GMAT_INV(I,IPOINT)*SIGMA_GAUSS(IPOINT,6) 

 ENDDO 

 

 ENDDO ! END OF INTEGRATION LOOP 
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 RETURN 

 END 

 

C ----Calculate shape function and its gradient------- 

 SUBROUTINE 

GRADIENT(NNODE,XYZ,XI,DETJAC,SF,DSFDX, 

     &   DG,DGI,JELEM,DIS_T,XYZ0,DSFDX0) 

 

 IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

 DIMENSION XYZ(3,NNODE),XI(3) 

 DIMENSION 

SF(NNODE),DSFDXI(NNODE,3),DSFDX(NNODE,3) 

 DIMENSION FJAC(3,3),FJACI(3,3),FJAC0(3,3),FJAC0I(3,3) 

 DIMENSION 

DG(3,3),DGI(3,3),XYZ0(3,NNODE),DSFDX0(NNODE,3) 

 DIMENSION DIS_T(3,NNODE),CC(3,3) 

C SF: Shape function(N) 

 SF(1)=(1.D0-XI(1))*(1.D0+XI(2))*(1.D0+XI(3))*0.125D0 

 SF(2)=(1.D0-XI(1))*(1.D0-XI(2))*(1.D0+XI(3))*0.125D0 

 SF(3)=(1.D0-XI(1))*(1.D0-XI(2))*(1.D0-XI(3))*0.125D0 

 SF(4)=(1.D0-XI(1))*(1.D0+XI(2))*(1.D0-XI(3))*0.125D0 

 SF(5)=(1.D0+XI(1))*(1.D0+XI(2))*(1.D0+XI(3))*0.125D0 

 SF(6)=(1.D0+XI(1))*(1.D0-XI(2))*(1.D0+XI(3))*0.125D0 

 SF(7)=(1.D0+XI(1))*(1.D0-XI(2))*(1.D0-XI(3))*0.125D0 

 SF(8)=(1.D0+XI(1))*(1.D0+XI(2))*(1.D0-XI(3))*0.125D0 

C DSFDXI: dN/d_xi or dN/d_eta or dN/d_zeta 

 DSFDXI(1,1)=-(1.D0+XI(2))*(1.D0+XI(3))*0.125D0 

 DSFDXI(1,2)= (1.D0-XI(1))*(1.D0+XI(3))*0.125D0 

 DSFDXI(1,3)= (1.D0-XI(1))*(1.D0+XI(2))*0.125D0 

 DSFDXI(2,1)=-(1.D0-XI(2))*(1.D0+XI(3))*0.125D0 

 DSFDXI(2,2)=-(1.D0-XI(1))*(1.D0+XI(3))*0.125D0 

 DSFDXI(2,3)= (1.D0-XI(1))*(1.D0-XI(2))*0.125D0 

 DSFDXI(3,1)=-(1.D0-XI(2))*(1.D0-XI(3))*0.125D0 

 DSFDXI(3,2)=-(1.D0-XI(1))*(1.D0-XI(3))*0.125D0 

 DSFDXI(3,3)=-(1.D0-XI(1))*(1.D0-XI(2))*0.125D0 

 DSFDXI(4,1)=-(1.D0+XI(2))*(1.D0-XI(3))*0.125D0 

 DSFDXI(4,2)= (1.D0-XI(1))*(1.D0-XI(3))*0.125D0 

 DSFDXI(4,3)=-(1.D0-XI(1))*(1.D0+XI(2))*0.125D0 

 DSFDXI(5,1)= (1.D0+XI(2))*(1.D0+XI(3))*0.125D0 

 DSFDXI(5,2)= (1.D0+XI(1))*(1.D0+XI(3))*0.125D0 

 DSFDXI(5,3)= (1.D0+XI(1))*(1.D0+XI(2))*0.125D0 

 DSFDXI(6,1)= (1.D0-XI(2))*(1.D0+XI(3))*0.125D0 

 DSFDXI(6,2)=-(1.D0+XI(1))*(1.D0+XI(3))*0.125D0 

 DSFDXI(6,3)= (1.D0+XI(1))*(1.D0-XI(2))*0.125D0 

 DSFDXI(7,1)= (1.D0-XI(2))*(1.D0-XI(3))*0.125D0 
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 DSFDXI(7,2)=-(1.D0+XI(1))*(1.D0-XI(3))*0.125D0 

 DSFDXI(7,3)=-(1.D0+XI(1))*(1.D0-XI(2))*0.125D0 

 DSFDXI(8,1)= (1.D0+XI(2))*(1.D0-XI(3))*0.125D0 

 DSFDXI(8,2)= (1.D0+XI(1))*(1.D0-XI(3))*0.125D0 

 DSFDXI(8,3)=-(1.D0+XI(1))*(1.D0+XI(2))*0.125D0 

C     ---JACOBIAN MATRIX: dx/d_xi,etc.--- 

 FJAC=0.0D0 

      DO I=1,3 

    DO J=1,3 

      DO K=1,NNODE 

       FJAC(I,J)=FJAC(I,J)+DSFDXI(K,J)*XYZ(I,K) 

      ENDDO 

    ENDDO 

 ENDDO 

 

 DETJAC=FJAC(1,1)*FJAC(2,2)*FJAC(3,3)-

FJAC(1,1)*FJAC(2,3)*FJAC(3,2) 

     & -

FJAC(2,1)*FJAC(1,2)*FJAC(3,3)+FJAC(2,1)*FJAC(1,3)*FJAC(3,2) 

     & +FJAC(3,1)*FJAC(1,2)*FJAC(2,3)-

FJAC(3,1)*FJAC(1,3)*FJAC(2,2) 

 

C     ---Inverse of Jacobian--- 

 FJACI(1,1)= (FJAC(2,2)*FJAC(3,3)-

FJAC(2,3)*FJAC(3,2))/DETJAC 

 FJACI(1,2)=-(FJAC(1,2)*FJAC(3,3)-

FJAC(1,3)*FJAC(3,2))/DETJAC 

 FJACI(1,3)=-(FJAC(1,3)*FJAC(2,2)-

FJAC(1,2)*FJAC(2,3))/DETJAC 

 FJACI(2,1)=-(FJAC(2,1)*FJAC(3,3)-

FJAC(2,3)*FJAC(3,1))/DETJAC 

 FJACI(2,2)= (FJAC(1,1)*FJAC(3,3)-

FJAC(1,3)*FJAC(3,1))/DETJAC 

 FJACI(2,3)=-(FJAC(1,1)*FJAC(2,3)-

FJAC(1,3)*FJAC(2,1))/DETJAC 

 FJACI(3,1)=-(FJAC(2,2)*FJAC(3,1)-

FJAC(2,1)*FJAC(3,2))/DETJAC 

 FJACI(3,2)=-(FJAC(1,1)*FJAC(3,2)-

FJAC(1,2)*FJAC(3,1))/DETJAC 

 FJACI(3,3)= (FJAC(1,1)*FJAC(2,2)-

FJAC(1,2)*FJAC(2,1))/DETJAC 

C     ---dN/dx, dN/dy,dN/dZ--- 

      DSFDX=0.D0 

 DO I=1,NNODE 

  DO J=1,3 
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   DO K=1,3 

   

 DSFDX(I,J)=DSFDX(I,J)+FJACI(K,J)*DSFDXI(I,K) 

   ENDDO 

  ENDDO 

 ENDDO 

C ---dX/d_xi,dY/d_xi,etc. 

 FJAC0=0.D0 

      DO I=1,3 

    DO J=1,3 

      DO K=1,NNODE 

       FJAC0(I,J)=FJAC0(I,J)+DSFDXI(K,J)*XYZ0(I,K) 

      ENDDO 

    ENDDO 

 ENDDO 

 

 DETJAC0=FJAC0(1,1)*FJAC0(2,2)*FJAC0(3,3) 

     & -FJAC0(1,1)*FJAC0(2,3)*FJAC0(3,2) 

     & -FJAC0(2,1)*FJAC0(1,2)*FJAC0(3,3) 

     & +FJAC0(2,1)*FJAC0(1,3)*FJAC0(3,2) 

     & +FJAC0(3,1)*FJAC0(1,2)*FJAC0(2,3) 

     & -FJAC0(3,1)*FJAC0(1,3)*FJAC0(2,2) 

 

C     ----d_xi/dX,d_xi/dY,etc.--- 

 FJAC0I(1,1)= (FJAC0(2,2)*FJAC0(3,3)-

FJAC0(2,3)*FJAC0(3,2))/DETJAC0 

 FJAC0I(1,2)=-(FJAC0(1,2)*FJAC0(3,3)-

FJAC0(1,3)*FJAC0(3,2))/DETJAC0 

 FJAC0I(1,3)=-(FJAC0(1,3)*FJAC0(2,2)-

FJAC0(1,2)*FJAC0(2,3))/DETJAC0 

 FJAC0I(2,1)=-(FJAC0(2,1)*FJAC0(3,3)-

FJAC0(2,3)*FJAC0(3,1))/DETJAC0 

 FJAC0I(2,2)= (FJAC0(1,1)*FJAC0(3,3)-

FJAC0(1,3)*FJAC0(3,1))/DETJAC0 

 FJAC0I(2,3)=-(FJAC0(1,1)*FJAC0(2,3)-

FJAC0(1,3)*FJAC0(2,1))/DETJAC0 

 FJAC0I(3,1)=-(FJAC0(2,2)*FJAC0(3,1)-

FJAC0(2,1)*FJAC0(3,2))/DETJAC0 

 FJAC0I(3,2)=-(FJAC0(1,1)*FJAC0(3,2)-

FJAC0(1,2)*FJAC0(3,1))/DETJAC0 

 FJAC0I(3,3)= (FJAC0(1,1)*FJAC0(2,2)-

FJAC0(1,2)*FJAC0(2,1))/DETJAC0 

C ---dN/dX,dN/dY,dN/dZ--- 

      DSFDX0=0.D0 

 DO I=1,NNODE 
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  DO J=1,3 

   DO K=1,3 

   

 DSFDX0(I,J)=DSFDX0(I,J)+FJAC0I(K,J)*DSFDXI(I,K) 

   ENDDO 

  ENDDO 

 ENDDO 

C ---DG: Deformation Gradient F=dx/dX--- 

 DG=0.D0 

 DO I=1,NNODE 

     DG(1,1)=DG(1,1)+DSFDX0(I,1)*DIS_T(1,I) 

  DG(1,2)=DG(1,2)+DSFDX0(I,2)*DIS_T(1,I) 

  DG(1,3)=DG(1,3)+DSFDX0(I,3)*DIS_T(1,I) 

  DG(2,1)=DG(2,1)+DSFDX0(I,1)*DIS_T(2,I) 

  DG(2,2)=DG(2,2)+DSFDX0(I,2)*DIS_T(2,I) 

  DG(2,3)=DG(2,3)+DSFDX0(I,3)*DIS_T(2,I) 

  DG(3,1)=DG(3,1)+DSFDX0(I,1)*DIS_T(3,I) 

  DG(3,2)=DG(3,2)+DSFDX0(I,2)*DIS_T(3,I) 

  DG(3,3)=DG(3,3)+DSFDX0(I,3)*DIS_T(3,I) 

 ENDDO 

 DG(1,1)=1.D0+DG(1,1) 

 DG(2,2)=1.D0+DG(2,2) 

 DG(3,3)=1.D0+DG(3,3) 

c ---Cauchy-Born tensor: C=F^[Transpose]*F--- 

 CC=0.D0 

 DO I=1,3 

  DO J=1,3 

   DO K=1,3 

    CC(I,J)=CC(I,J)+DG(K,I)*DG(K,J) 

   ENDDO 

  ENDDO 

 ENDDO 

 AI3=CC(1,1)*CC(2,2)*CC(3,3)-CC(1,1)*CC(2,3)*CC(3,2) 

     & -CC(2,1)*CC(1,2)*CC(3,3)+CC(2,1)*CC(1,3)*CC(3,2) 

     & +CC(3,1)*CC(1,2)*CC(2,3)-CC(3,1)*CC(1,3)*CC(2,2) 

 

 DETDG=DSQRT(AI3) 

C     ---Inverse of DG: H=F^[-1]--- 

 DGI(1,1)= (DG(2,2)*DG(3,3)-DG(2,3)*DG(3,2))/DETDG 

 DGI(1,2)=-(DG(1,2)*DG(3,3)-DG(1,3)*DG(3,2))/DETDG 

 DGI(1,3)=-(DG(1,3)*DG(2,2)-DG(1,2)*DG(2,3))/DETDG 

 DGI(2,1)=-(DG(2,1)*DG(3,3)-DG(2,3)*DG(3,1))/DETDG 

 DGI(2,2)= (DG(1,1)*DG(3,3)-DG(1,3)*DG(3,1))/DETDG 

 DGI(2,3)=-(DG(1,1)*DG(2,3)-DG(1,3)*DG(2,1))/DETDG 

 DGI(3,1)=-(DG(2,2)*DG(3,1)-DG(2,1)*DG(3,2))/DETDG 
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 DGI(3,2)=-(DG(1,1)*DG(3,2)-DG(1,2)*DG(3,1))/DETDG 

 DGI(3,3)= (DG(1,1)*DG(2,2)-DG(1,2)*DG(2,1))/DETDG 

 

 RETURN 

 END 

 

C -------Normal gaussian point position and weight---- 

 SUBROUTINE GET_POINTS(IP,POINTS) 

 IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

 DIMENSION POINTS(IP,4) 

C --POINTS(*,1:3): location 

C --POINTS(*,1:4): Weight 

 AA=1.D0/DSQRT(3.D0) 

 POINTS(1,1)=-AA 

 POINTS(1,2)= AA 

 POINTS(1,3)= AA 

 POINTS(1,4)= 1.D0 

 POINTS(2,1)=-AA 

 POINTS(2,2)=-AA 

 POINTS(2,3)= AA 

 POINTS(2,4)= 1.D0 

 POINTS(3,1)=-AA 

 POINTS(3,2)=-AA 

 POINTS(3,3)=-AA 

 POINTS(3,4)= 1.D0 

 POINTS(4,1)=-AA 

 POINTS(4,2)= AA 

 POINTS(4,3)=-AA 

 POINTS(4,4)= 1.D0 

 POINTS(5,1)= AA 

 POINTS(5,2)= AA 

 POINTS(5,3)= AA 

 POINTS(5,4)= 1.D0 

 POINTS(6,1)= AA 

 POINTS(6,2)=-AA 

 POINTS(6,3)= AA 

 POINTS(6,4)= 1.D0 

 POINTS(7,1)= AA 

 POINTS(7,2)=-AA 

 POINTS(7,3)=-AA 

 POINTS(7,4)= 1.D0 

 POINTS(8,1)= AA 

 POINTS(8,2)= AA 

 POINTS(8,3)=-AA 

 POINTS(8,4)= 1.D0 
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 RETURN 

 END 

C ------This subroutine ensures gaussian point value-- 

C ------be replaced by nearlest nodal value----------- 

 SUBROUTINE GET_POINTS2(IP,POINTS) 

 IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

 DIMENSION POINTS(IP,4) 

 DOUBLE PRECISION AA 

C ---Approximate to Nodal value--- 

 AA=1.D0 

 POINTS(1,1)=-AA 

 POINTS(1,2)= AA 

 POINTS(1,3)= AA 

 POINTS(1,4)= 1.D0 

 POINTS(2,1)=-AA 

 POINTS(2,2)=-AA 

 POINTS(2,3)= AA 

 POINTS(2,4)= 1.D0 

 POINTS(3,1)=-AA 

 POINTS(3,2)=-AA 

 POINTS(3,3)=-AA 

 POINTS(3,4)= 1.D0 

 POINTS(4,1)=-AA 

 POINTS(4,2)= AA 

 POINTS(4,3)=-AA 

 POINTS(4,4)= 1.D0 

 POINTS(5,1)= AA 

 POINTS(5,2)= AA 

 POINTS(5,3)= AA 

 POINTS(5,4)= 1.D0 

 POINTS(6,1)= AA 

 POINTS(6,2)=-AA 

 POINTS(6,3)= AA 

 POINTS(6,4)= 1.D0 

 POINTS(7,1)= AA 

 POINTS(7,2)=-AA 

 POINTS(7,3)=-AA 

 POINTS(7,4)= 1.D0 

 POINTS(8,1)= AA 

 POINTS(8,2)= AA 

 POINTS(8,3)=-AA 

 POINTS(8,4)= 1.D0 

 

 RETURN 
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 END 

 

C --------------------------------------- 

 SUBROUTINE GAUSS_INV(GMAT_INV) 

 IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

 

 DIMENSION GMAT(8,8),GMAT_INV(8,8) 

 DIMENSION POINTS(8,4),XI(3) 

 

 AA=1.D0/DSQRT(3.D0) 

 POINTS(1,1)=-AA 

 POINTS(1,2)= AA 

 POINTS(1,3)= AA 

 POINTS(1,4)= 1.D0 

 POINTS(2,1)=-AA 

 POINTS(2,2)=-AA 

 POINTS(2,3)= AA 

 POINTS(2,4)= 1.D0 

 POINTS(3,1)=-AA 

 POINTS(3,2)=-AA 

 POINTS(3,3)=-AA 

 POINTS(3,4)= 1.D0 

 POINTS(4,1)=-AA 

 POINTS(4,2)= AA 

 POINTS(4,3)=-AA 

 POINTS(4,4)= 1.D0 

 POINTS(5,1)= AA 

 POINTS(5,2)= AA 

 POINTS(5,3)= AA 

 POINTS(5,4)= 1.D0 

 POINTS(6,1)= AA 

 POINTS(6,2)=-AA 

 POINTS(6,3)= AA 

 POINTS(6,4)= 1.D0 

 POINTS(7,1)= AA 

 POINTS(7,2)=-AA 

 POINTS(7,3)=-AA 

 POINTS(7,4)= 1.D0 

 POINTS(8,1)= AA 

 POINTS(8,2)= AA 

 POINTS(8,3)=-AA 

 POINTS(8,4)= 1.D0 

 

 GMAT=0.D0 

 DO I=1,8 
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  XI(1)=POINTS(I,1) 

  XI(2)=POINTS(I,2) 

  XI(3)=POINTS(I,3) 

  GMAT(I,1)=(1.D0-XI(1))*(1.D0+XI(2))*(1.D0+XI(3))*0.125D0 

  GMAT(I,2)=(1.D0-XI(1))*(1.D0-XI(2))*(1.D0+XI(3))*0.125D0 

  GMAT(I,3)=(1.D0-XI(1))*(1.D0-XI(2))*(1.D0-XI(3))*0.125D0 

  GMAT(I,4)=(1.D0-XI(1))*(1.D0+XI(2))*(1.D0-XI(3))*0.125D0 

  GMAT(I,5)=(1.D0+XI(1))*(1.D0+XI(2))*(1.D0+XI(3))*0.125D0 

  GMAT(I,6)=(1.D0+XI(1))*(1.D0-XI(2))*(1.D0+XI(3))*0.125D0 

  GMAT(I,7)=(1.D0+XI(1))*(1.D0-XI(2))*(1.D0-XI(3))*0.125D0 

  GMAT(I,8)=(1.D0+XI(1))*(1.D0+XI(2))*(1.D0-XI(3))*0.125D0 

 ENDDO 

C ---Inverse of GMAT--- 

 CALL DLSGRR (8,8,GMAT,8,1E-8,IRANK,GMAT_INV,8) 

 

 RETURN 

 END 

----------------Contents within file PARS.TXT-------------------- 

64    27    48    37 

----------------Contents within file XYZ.TXT-------------------- 

 1, 3., 3., 3.,-2.066806650 

 2, 3., 2., 3.,-2.066806650 

 3, 3., 1., 3.,-2.066806650 

 4, 3., 0., 3.,-2.066806650 

 5, 3., 3., 2.,-2.066806650 

 6, 3., 2., 2.,-2.066806650 

 7, 3., 1., 2.,-2.066806650 

 8, 3., 0., 2.,-2.066806650 

 9, 3., 3., 1.,-2.066806650 

10, 3., 2., 1.,-2.066806650 

11, 3., 1., 1.,-2.066806650 

12, 3., 0., 1.,-2.066806650 

13, 3., 3., 0.,-2.066806650 

14, 3., 2., 0.,-2.066806650 

15, 3., 1., 0.,-2.066806650 

16, 3., 0., 0.,-2.066806650 

17, 2., 3., 3.,-2.066806650 

18, 2., 2., 3.,-2.066806650 

19, 2., 1., 3.,-2.066806650 

20, 2., 0., 3.,-2.066806650 

21, 2., 3., 2.,-2.066806650 

22, 2., 2., 2.,-2.066806650 

23, 2., 1., 2.,-2.066806650 

24, 2., 0., 2.,-2.066806650 

25, 2., 3., 1.,-2.066806650 
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26, 2., 2., 1.,-2.066806650 

27, 2., 1., 1.,-2.066806650 

28, 2., 0., 1.,-2.066806650 

29, 2., 3., 0.,-2.066806650 

30, 2., 2., 0.,-2.066806650 

31, 2., 1., 0.,-2.066806650 

32, 2., 0., 0.,-2.066806650 

33, 1., 3., 3.,-2.066806650 

34, 1., 2., 3.,-2.066806650 

35, 1., 1., 3.,-2.066806650 

36, 1., 0., 3.,-2.066806650 

37, 1., 3., 2.,-2.066806650 

38, 1., 2., 2.,-2.066806650 

39, 1., 1., 2.,-2.066806650 

40, 1., 0., 2.,-2.066806650 

41, 1., 3., 1.,-2.066806650 

42, 1., 2., 1.,-2.066806650 

43, 1., 1., 1.,-2.066806650 

44, 1., 0., 1.,-2.066806650 

45, 1., 3., 0.,-2.066806650 

46, 1., 2., 0.,-2.066806650 

47, 1., 1., 0.,-2.066806650 

48, 1., 0., 0.,-2.066806650 

49, 0., 3., 3.,-2.066806650 

50, 0., 2., 3.,-2.066806650 

51, 0., 1., 3.,-2.066806650 

52, 0., 0., 3.,-2.066806650 

53, 0., 3., 2.,-2.066806650 

54, 0., 2., 2.,-2.066806650 

55, 0., 1., 2.,-2.066806650 

56, 0., 0., 2.,-2.066806650 

57, 0., 3., 1.,-2.066806650 

58, 0., 2., 1.,-2.066806650 

59, 0., 1., 1.,-2.066806650 

60, 0., 0., 1.,-2.066806650 

61, 0., 3., 0.,-2.066806650 

62, 0., 2., 0.,-2.066806650 

63, 0., 1., 0.,-2.066806650 

64, 0., 0., 0.,-2.066806650 

----------------Contents within file ELEMENT.TXT-------------------- 

 1, 17, 18, 22, 21,  1,  2,  6,  5 

 2, 18, 19, 23, 22,  2,  3,  7,  6 

 3, 19, 20, 24, 23,  3,  4,  8,  7 

 4, 21, 22, 26, 25,  5,  6, 10,  9 

 5, 22, 23, 27, 26,  6,  7, 11, 10 
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 6, 23, 24, 28, 27,  7,  8, 12, 11 

 7, 25, 26, 30, 29,  9, 10, 14, 13 

 8, 26, 27, 31, 30, 10, 11, 15, 14 

 9, 27, 28, 32, 31, 11, 12, 16, 15 

10, 33, 34, 38, 37, 17, 18, 22, 21 

11, 34, 35, 39, 38, 18, 19, 23, 22 

12, 35, 36, 40, 39, 19, 20, 24, 23 

13, 37, 38, 42, 41, 21, 22, 26, 25 

14, 38, 39, 43, 42, 22, 23, 27, 26 

15, 39, 40, 44, 43, 23, 24, 28, 27 

16, 41, 42, 46, 45, 25, 26, 30, 29 

17, 42, 43, 47, 46, 26, 27, 31, 30 

18, 43, 44, 48, 47, 27, 28, 32, 31 

19, 49, 50, 54, 53, 33, 34, 38, 37 

20, 50, 51, 55, 54, 34, 35, 39, 38 

21, 51, 52, 56, 55, 35, 36, 40, 39 

22, 53, 54, 58, 57, 37, 38, 42, 41 

23, 54, 55, 59, 58, 38, 39, 43, 42 

24, 55, 56, 60, 59, 39, 40, 44, 43 

25, 57, 58, 62, 61, 41, 42, 46, 45 

26, 58, 59, 63, 62, 42, 43, 47, 46 

27, 59, 60, 64, 63, 43, 44, 48, 47 

----------------Contents within file BOUNDARY.TXT-------------------- 

4,2,0.0 

 8,2,0.0 

12,2,0.0 

13,3,0.0 

14,3,0.0 

15,3,0.0 

16,2,0.0 

16,3,0.0 

20,2,0.0 

24,2,0.0 

28,2,0.0 

29,3,0.0 

30,3,0.0 

31,3,0.0 

32,2,0.0 

32,3,0.0 

36,2,0.0 

40,2,0.0 

44,2,0.0 

45,3,0.0 

46,3,0.0 

47,3,0.0 
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48,2,0.0 

48,3,0.0 

49,1,0.0 

50,1,0.0 

51,1,0.0 

52,1,0.0 

52,2,0.0 

53,1,0.0 

54,1,0.0 

55,1,0.0 

56,1,0.0 

56,2,0.0 

57,1,0.0 

58,1,0.0 

59,1,0.0 

60,1,0.0 

60,2,0.0 

61,1,0.0 

61,3,0.0 

62,1,0.0 

62,3,0.0 

63,1,0.0 

63,3,0.0 

64,1,0.0 

64,2,0.0 

64,3,0.0 

 1,2.066806650 

 2,2.066806650 

 3,2.066806650 

 4,2.066806650 

 5,2.066806650 

 6,2.066806650 

 7,2.066806650 

 8,2.066806650 

 9,2.066806650 

10,2.066806650 

11,2.066806650 

12,2.066806650 

13,2.066806650 

14,2.066806650 

15,2.066806650 

16,2.066806650 

17,2.066806650 

18,2.066806650 

19,2.066806650 
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20,2.066806650 

21,2.066806650 

25,2.066806650 

29,2.066806650 

33,2.066806650 

34,2.066806650 

35,2.066806650 

36,2.066806650 

37,2.066806650 

41,2.066806650 

45,2.066806650 

49,2.066806650 

50,2.066806650 

51,2.066806650 

52,2.066806650 

53,2.066806650 

57,2.066806650 

61,2.066806650 

----------------After run, output within Message.txt-------------------- 

  NITERATION=            1 

  DEF_MAX=   1.000000000000000E-008 

  DIFF_MAX=   1.34454935388183      

  NITERATION=            2 

  DEF_MAX=   5.700785991953337E-002 

  DIFF_MAX=  3.929062641978638E-004 

  NITERATION=            3 

  DEF_MAX=   6.881834166439282E-002 

  DIFF_MAX=  2.146335049417928E-003 

  NITERATION=            4 

  DEF_MAX=   7.289915722088940E-002 

  DIFF_MAX=  8.907029093520921E-003 

  NITERATION=            5 

  DEF_MAX=   6.061136080388950E-002 

  DIFF_MAX=  3.042996199181101E-002 

  NITERATION=            6 

  DEF_MAX=   3.672698334132694E-002 

  DIFF_MAX=  9.023256077435543E-002 

  NITERATION=            7 

  DEF_MAX=   3.457737792395722E-002 

  DIFF_MAX=  0.146142877512428      

  NITERATION=            8 

  DEF_MAX=   4.168708381825438E-002 

  DIFF_MAX=  6.618580311989061E-002 

  NITERATION=            9 

  DEF_MAX=   3.580546407053177E-002 
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  DIFF_MAX=  0.123667923664602      

  NITERATION=           10 

  DEF_MAX=   3.895712788978343E-002 

  DIFF_MAX=  6.558145386133224E-002 

  NITERATION=           11 

  DEF_MAX=   3.859201725015116E-002 

  DIFF_MAX=  0.121486359222665      

  NITERATION=           12 

  DEF_MAX=   3.491222162558437E-002 

  DIFF_MAX=  6.857497408053131E-002 

  NITERATION=           13 

  DEF_MAX=   4.573790092790622E-002 

  DIFF_MAX=  0.156643915749655      

  NITERATION=           14 

  DEF_MAX=   3.338172211949230E-002 

  DIFF_MAX=  6.977512270783176E-002 

  NITERATION=           15 

  DEF_MAX=   6.052508138531003E-002 

  DIFF_MAX=  0.213912223031153      

  NITERATION=           16 

  DEF_MAX=   4.183281674576045E-002 

  DIFF_MAX=  6.951118824104617E-002 

  NITERATION=           17 

  DEF_MAX=   6.991832688652218E-002 

  DIFF_MAX=  0.283568179341242      

  NITERATION=           18 

  DEF_MAX=   4.752993776580022E-002 

  DIFF_MAX=  5.323158357892497E-002 

  NITERATION=           19 

  DEF_MAX=   7.823595020782698E-002 

  DIFF_MAX=  0.511299089101092      

  NITERATION=           20 

  DEF_MAX=   5.384947011627144E-002 

  DIFF_MAX=  1.157657990934700E-002 

  NITERATION=           21 

  DEF_MAX=   2.445617065251353E-002 

  DIFF_MAX=  0.131938275488519      

  NITERATION=           22 

  DEF_MAX=   1.606573282730855E-002 

  DIFF_MAX=  0.112782142247387      

  NITERATION=           23 

  DEF_MAX=   2.837500428988920E-002 

  DIFF_MAX=  0.258754151547199      

  NITERATION=           24 

  DEF_MAX=   1.293487858019075E-002 
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  DIFF_MAX=  1.355315574637489E-002 

  NITERATION=           25 

  DEF_MAX=   1.067901630650200E-002 

  DIFF_MAX=  3.713771131218958E-002 

  NITERATION=           26 

  DEF_MAX=   2.603970026547386E-003 

  DIFF_MAX=  6.660145411439699E-003 

  NITERATION=           27 

  DEF_MAX=   1.177731744255397E-003 

  DIFF_MAX=  2.692214005169753E-003 

  NITERATION=           28 

  DEF_MAX=   8.401790022447415E-004 

  DIFF_MAX=  8.494018663051152E-004 

  NITERATION=           29 

  DEF_MAX=   2.627129856315273E-004 

  DIFF_MAX=  1.831343461315394E-004 

  NITERATION=           30 

  DEF_MAX=   1.063054824373539E-004 

  DIFF_MAX=  3.662881408500746E-005 

  NITERATION=           31 

  DEF_MAX=   4.454764287846009E-005 

  DIFF_MAX=  2.103362269162045E-005 

  NITERATION=           32 

  DEF_MAX=   2.631919053788328E-005 

  DIFF_MAX=  1.169264941345573E-005 

  NITERATION=           33 

  DEF_MAX=   1.131124180930603E-005 

  DIFF_MAX=  3.006716813504506E-006 

  NITERATION=           34 

  DEF_MAX=   5.044656430966398E-006 

  DIFF_MAX=  1.835038055722425E-006 


