
Niche Construction, Sustainability and Evolutionary Ecology of Cancer

by

Irina Kareva

A Dissertation Presented in Partial Ful�llment
of the Requirements for the Degree

Doctor of Philosophy

Approved Decembery 2011 by the
Graduate Supervisory Committee:

Carlos Castillo-Chavez, Chair
James Collins
John Nagy
Hal Smith

ARIZONA STATE UNIVERSITY

May 2012



i

ABSTRACT

In complex consumer-resource type systems, where diverse individuals are intercon-

nected and interdependent, one can often anticipate what has become known as the tragedy

of the commons, i.e., a situation, when overly e�cient consumers exhaust the common re-

source, causing collapse of the entire population. In this dissertation I use mathematical

modeling to explore di�erent variations on the consumer-resource type systems, identifying

some possible transitional regimes that can precede the tragedy of the commons. I then refor-

mulate it as a game of a multi-player prisoner's dilemma and study two possible approaches

for preventing it, namely direct modi�cation of players' payo�s through punishment/reward

and modi�cation of the environment in which the interactions occur. I also investigate the

questions of whether the strategy of resource allocation for reproduction or competition

would yield higher �tness in an evolving consumer-resource type system and demonstrate

that the direction in which the system will evolve will depend not only on the state of the

environment but largely on the initial composition of the population. I then apply the devel-

oped framework to modeling cancer as an evolving ecological system and draw conclusions

about some alternative approaches to cancer treatment.
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PREFACE

This dissertation is devoted to the study of consumer-resource type ecological sys-

tems, characterized by high levels of population heterogeneity, and is aimed to answer ques-

tions that deal with sustainable coexistence with common resource, recognizing early signals

that may precede resource exhaustion due to over-consumption, and possible mechanisms

of intervention that may save the system from collapse. These results are then applied to

viewing cancer as a type of an evolving ecological system, suggesting alternative approaches

to dealing with the disease.

The dissertation is organized as follows: methodology, and speci�cally, a way to

reduce otherwise in�nitely dimensional systems of di�erential equations to �nite dimension-

ality in order to be able to study parametrically heterogeneous systems of ODEs using the

Reduction theorem, is discussed in Chapter 1. A simple case of application of the Reduction

theorem to a consumer-resource type model is going to be studied in Chapter 2, focusing

particularly on the questions of identi�cation of transitional regimes that a system can go

through when the resource is consumed at a higher rate than it is replenished, potentially

leading to what has become known as a tragedy of the commons. The situation is then

going to be reformulated as a game of prisoner's dilemma, and one way of dealing with the

question of prevention of the tragedy of the commons is going to be discussed in Chapter 3.

In Chapter 4 a case when two possible strategies for interacting with the common resource

are possible will be evaluated with the caveat that in a heterogeneous population, there is

no optimal strategy for avoiding the tragedy of the commons.

In the second part of this dissertation, the ecological framework will be applied to

cancer, evaluating di�erent strategies for interaction with the resources that are available

to cancer cells within the body in Chapter 5, looking at cancer metabolism as a game of

prisoner's dilemma in Chapter 6, at interactions with the immune system in a predator-prey

framework in Chapter 8, and concluding with an overview of how ecological concepts can

be used to forward our understanding and potentially improve cancer treatment in Chapter

9. A brief introduction to agent-based modeling and a sample model dealing with cancer

metabolism is given in Chapter 7. Final conclusions are summarized in Chapter 10.

xix



Chapter 1

INTRODUCTION

On the importance of population heterogeneity

Heterogeneity is one of the major driving forces behind the dynamics of evolving

complex systems. When it is heritable and when it a�ects �tness, heterogeneity is what

makes evolution possible [27, 42]. This comes from the fact that the environment in which

the individuals interact within one community is composed not only of the outside world

(such as the resources necessary for survival, or members of other species) but also of

individuals themselves; thus, selective pressures that are imposed on them come both from

the environment and from each other, and the pressures from each other will be imposed and

perceived di�erently depending in population composition, which in turn may be changing

as a result of these selective pressures.

In a vast majority of conceptual, and often even in descriptive mathematical models

of population dynamics, whether it is in models of predator-prey interactions, spread of

infectious diseases or tumor growth, population homogeneity is the �rst simpli�cation that

is made. It is not treated as homogeneity per se � rather, one assumes that an average

rate of growth or death or infectiousness is a reasonable enough assumption if the system

has already reached some kind of stabilized state of evolutionary development. However, by

ignoring population heterogeneity in such a way, one ends up either ignoring natural selection

or assuming that it has already �done its work�, while natural selection is in fact what drives

the dynamics of most systems that are of interest and importance.

Evolving populations and adaptive environments

In 1932 Sewall Wright introduced a notion of a �tness landscape, which can be

represented as a map, on which the highest �tness (largest di�erence between birth and

death rates) corresponds to the highest elevation. Within this construct the individuals are

evolving in such a way as to �climb� the nearest peak, of which there can be just one (single-

peak, or simple landscape) or many (rugged landscape) [120]. In an evolving complex system,

one can think of environmental changes that stem not only from external forces, such as

competition for the resources, but also from internal forces, such as intraspecies competition,

1
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or cooperation, or other types of interactions, as making the �tness landscape on which

the population evolves dynamic [58]. This has been termed �dancing landscapes� [120] or

seascapes [106,107] and refers to a situation, where �tness peaks, whether single or multiple,

can change over time.

Because the environment in such a framework is dynamic, there exists a type of

constant co-adaptation between the individuals and their environment, which can have a

number of both positive and negative implications [58]. Some general aspects of modeling

this phenomenon are brie�y addressed in the next three Chapters of this dissertation, during

the discussion on niche construction. Possible implications and consequences of such co-

adaptation mechanisms are elaborated on extensively in Chapters 6-9, when the modi�cations

to the tissue microenvironment that are done by cancer cells lead to increased challenges in

disease management and treatment.

On methodology: modeling parametrically heterogeneous systems using the Reduction

theorem for replicator equations

Equation-based models are usually avoided in questions that require modeling high

levels of heterogeneity due to inevitable increase of system dimensionality to the point at

which obtaining any kind of qualitative understanding of the system studied becomes impos-

sible. Consequently, one of the main assumptions typically made in equation based models

is that of population homogeneity, which, while making systems of equations computation-

ally and sometimes even analytically manageable, make them lose many aspects of system

dynamics that come from intraspecies interactions and natural selection. However, the Re-

duction theorem provides a way to overcome this problem of immense system dimensionality

in some selection systems of di�erential equations.

Notation and some de�nitions

Selection system: a mathematical model of an inhomogeneous population, in which

every individual is characterized by a vector-parameter α = (α1, ...,αn) that takes on values

from set A.

Clone xα : set of all individuals that are characterized by a �xed value of parameter

α .
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Total population size: N(t) = ∑A xα if the number of possible values of α is �nite

and N(t) =
´
A xαdα if it is in�nite.

Growth rate of a clone: dxα

dt

Fitness of an individual within the population: dxα

dt /xα

Distribution of clones within the population: Pα(t) =
xα (t)
N(t)

For all expressions of the type ∑A f (α)xα dα

N(t) , standard notation Et [ f ] of the expected

value is used.

General approach

Assume that each individual clone xα in a population studied is characterized by some

parameter value α , which corresponds to a measure of some intrinsic heritable trait, such as

birth rate, death rate, resource consumption rate, etc. Then, since di�erent clones can grow

and die at di�erent rates, the distribution of clones within the population Pα(t) =
xα (t)
N(t) can

change over time due to system dynamics. Consequently, the mean value of the parameter

Et [α], which now becomes a function of time, changes over time as well.

The approach itself requires the following sequence of steps:

1. Analyze autonomous parametrically homogeneous system.

2. Replace parameter α with its mean value Et [α], which is a function of time.

3. Introduce an �escort� system of di�erential equations, which de�ne �keystone� vari-

ables that actually determine the dynamics of the system. (Note: the term �keystone�

is chosen here in parallel to the notion of keystone species in ecology. Just like key-

stone species have disproportionately large e�ect on their environment relative to their

abundance, keystone variables determine the direction in which the system will evolve,

without being explicitly present in the original system).

4. Express the mean of the distributed parameter, which now changes over time due to

system dynamics, through keystone variables. The mean of the parameter can now
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�travel� through the di�erent domains of the phase-parameter portrait of the original

parametrically homogeneous system.

5. Calculate numerical solutions.

Exact rormulation of the Reduction theorem can be found in Appendix. The complete theory

underlying the method can be found in Karev [69,70].

Advantages and drawbacks of the Reduction theorem

One of the most most important properties of the method is that it allows reducing

an otherwise in�nitely dimensional system to low dimensionality.

Like with any method, there are drawbacks to the the Reduction theorem. Most

importantly, the transformation can be done (with some generalizations) only to Lotka-

Volterra type equations of the form x(t)′ = x(t)F(t, f (Et [α]), where x(t) is a vector, α

is a parameter or a vector of parameters that characterize individual heterogeneity within

the population, and where the form of f (Et [α]) is system-speci�c. It can also increase

the dimensionality of the original parametrically homogeneous system at a possible cost of

keystone equations. Finally, the resulting system is typically non-autonomous, so one cannot

do standard bifurcation analysis and has to resort to calculating numerical solutions.

When studying numerical solutions of such parametrically heterogeneous systems,

one can observe trajectories that one could not previously have seen in parametrically ho-

mogeneous systems. This phenomenon results from the expected value of the parameter

�traveling� through the phase parameter portrait, undergoing qualitative phase transitions

as it crosses the bifurcation boundaries. Moreover, now, if there exists a complete bifur-

cation diagram for the speci�c parametrically homogeneous model, one can identify what

boundaries have been crossed during the transition.

One can also not only track the distribution of di�erent clones within the population

as the system evolves but also observe that di�erent initial distribution can lead to di�erent
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trajectories. One can therefore capture this e�ect of sensitivity to initial population compo-

sition both to changes in intrinsic properties of the individuals (such as birth or death rates)

or to changes in the external factors (environment) without observing chaotic behavior. This

results from the fact that di�erent clones have di�erent �tness depending on initial popu-

lation composition, since the selective pressures that are imposed on them result not only

from the external environment but from surrounding clones as well.

Therefore, the Reduction theorem allows for equation-based models to generate com-

plex behaviors by incorporating all the properties of a complex system (heterogeneity, in-

terdependence, interconnectedness and adaptability) without signi�cantly increasing system

dimensionality. Unlike agent-based models, which are the standard computation tool for

studying complex systems, the Reduction theorem does not allow incorporating spatial het-

erogeneity. However, it does have the advantage of formalizing theory through equations

and thus at times being able to get analytical conditions to de�ne bifurcation boundaries.



Chapter 2

TRANSITIONAL REGIMES AS EARLY WARNING SIGNALS

Abstract

In this Chapter a question of �how much overconsumption a renewable resource can

tolerate� is addressed using a mathematical model, where individuals in a paramet-

rically heterogeneous population not only compete for the common resource but can

also contribute to its restoration. Through bifurcation analysis a threshold of system

resistance to over-consumers (individuals that take more than they restore) was identi-

�ed, as well as a series of transitional regimes that the population goes through before

it exhausts the common resource and thus goes extinct itself, a phenomenon known

as �the tragedy of the commons�. It was also observed that 1) for some parameter

domains a population can survive or go extinct depending on its initial conditions, 2)

under the same set of initial conditions, a heterogeneous population survives longer

than a homogeneous population and 3) when the natural decay rate of the common

resource is high enough, the population can endure the presence of more aggressive

over-consumers without going extinct.

Keywords: resource overconsumption, transitional regimes, tipping points, tragedy of

the commons

Introduction

The identi�cation of mechanisms responsible for the observed patterns of coexistence

in populations whose survival is intimately connected to their ability to share a common

resource is central to the study of ecological sustainability. The notion of niche construction

provides but one way to organize and understand how populations can sustainably coexist

with their resources. It is the goal of this Chapter to study this question using a simple

resource-consumer framework.

The term �niche� was �rst introduced by Grinnell in 1917 [56] in his e�orts to describe

how an organism or a population responds to and competes for a common resource. The

6



CHAPTER 2. TRANSITIONAL REGIMES AS EARLY WARNING SIGNALS 7

interactions of organisms or populations with available resources within their niche are not

limited to consumption. Odling-Smee [116] referred to the notion of �niche construction�

in situations where organisms not only adapt in response to environmental pressures (for

example, consuming the resource in the most e�cient manner) but in the process also

modify the environment. These adaptive interactions of consumers with their environment

re-shape the niche to the needs of the communities that share the resource.

The focus of the discussion throughout this dissertation are consumer-producer sys-

tems (C-Ps), where the individuals that compete for resources also contribute di�erentially

to �increases in the size of the pie�. The carrying capacity of C-P systems turns out to be a

function of the adaptive interactions between resources and the C-Ps. For example, through

e�cient handling of nutrients some plant species create and support positive feedback loops

in their ecosystems and consequently, we observe that while in nutrient-poor environments

plants produce slowly-decomposing litter, they grow rapidly and produce easily decomposable

substances in nutrient-rich surroundings [60].

Processes of co-adaptation are observed in social environments as well. Individuals

learn to respond to or get their clues from the �state� of the environment. Understanding

the rami�cations of these co-evolving interactions is particularly relevant to the study of how

systems respond in times of crisis. Adaptive governance systems, for instance, self organize,

drawing on individual characteristics and experiences of the people for the development of

shared policies and principles [43,83,89,145].

The impact of co-evolutionary interactions is often a de�ning force. For example,

earthworm burrows carry organic material into the soil, mixing it with inorganic material,

creating in the process a basis for microbial activity, causing changes in the inner chemistry of

the soil [115,122,139]. The environment (soil) has thus been altered over many generations,

changing the evolutionary landscape and modifying the selective pressures faced by current

generations [115]. Niche is therefore not a static concept but is an adaptive system in itself.

Recently, the question, �How can the 'sustainability' of alternative trajectories of

human-environment interactions be usefully and rigorously evaluated?� was posed [21]. The

need for the development of mathematical frameworks was explicitly addressed: �The central
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goal of such frameworks is to help us understand which uses of the natural environment (seen

as natural capital) generate su�ciently large, wide-spread and long term bene�ts to human

well-being that they can be valued as supporting sustainable development. (Having an answer

to this challenge is what keeps 'sustainability' from being a euphemism for 'environmental

protection.')�.

The ability to understand and predict possible directions in which the consumer-

resource may evolve is crucial in order to successfully achieve sustainable coexistence with

common resources. It has been suggested that bifurcations in dynamical systems can corre-

spond to �tipping points� in complex adaptive systems, which in turn may signal upcoming

crises. The work presented in this Chapter will elaborate on this notion and present a frame-

work within which one could in fact use transitional regimes in a dynamical system as early

warning signs that may signal the need for increased e�orts for resource preservation.

For these purposes a generalized model introduced by Krakauer et al. [75] is used,

in which individuals within a population compete with each other for common renewable

resources. First we investigate the question of the e�ects of the increases of resource

(over)consumption on the entire population, identifying all possible dynamical regimes that

the population can go through as it increasingly depletes its resources. Next, we evaluate

what transitional regimes the population can go through when it is composed of both individ-

uals that invest into the common resource, and those who over-consume. We conclude this

paper with a discussion of the relationship between bifurcations and tipping points, and how

one can use understanding of the system's dynamical regimes and bifurcation boundaries to

forecast approaching collapse.

Model description

Consider the following generalization of the model introduced in [75], where a pop-

ulation of individual consumers xc (from here on referred to as clones) compete for the

common renewable resource ẑ in such a way as to not only consume the resource but to also

be able to contribute to its restoration:
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dxc
dt = rcxc(1− b∑A xc

kcẑ ),

dẑ
dt = γ + e

ẑ+∑c xc
(∑A xc(1− c))−dẑ.

(2.1)

Each clone xc is characterized by a value of the parameter c, with constant per capita birth

rate rc. The per capita death rate is proportional to b∑A xc
kcẑ , where b is the rate of resource

consumption, and k is the e�ciency of resource consumption by each individual xc and A

is the range of possible values of c. In this formulation, b
kc denotes �competition e�ciency�

in obtaining the renewable resource ẑ. Resources ẑ are restored naturally at constant rate γ ,

deteriorate at the rate dẑ and can be replenished by the activity of xc; note that the units

for xc and ẑ are the same (biomass).

The rate of consumption/restoration of the common resource in response to the

activity of xc is modeled by the function e
ẑ+∑A xc

∑c xc(1− c), where ∑A xc(1−c)
ẑ+∑A xc

denotes the

total resource consumption/restoration rate by all the clones xc, given both the competition

with other clones ∑A xc and limitations on total resource accessibility; parameter e denotes

the proportion of total resource that is consumed or restored, which can also be seen as per

resource rate of restoration. One other way to think about this fractional relationship is in

terms of mass action law, or ratio-dependence, i.e. as e(1− c) (∑A xc)/ẑ
1+(∑A xc)/ẑ . As the number of

consumers xc increases, the amount of resource ẑ will increase or decrease depending on the

value of the parameter c≥ 0.

The resource consumption/restoration parameter c is restricted to the interval c ∈

[0,β ], since within the frameworks of this model, the rate of niche-construction can neither

be negative nor in�nite. Letting β = 1 implies that the individuals in the population never

consume more than they produce, making the population completely �altruistic�. Letting

β > 1 allows for the presence of over-consumers in the system, so (1− c) can take on

negative values, which accounts for strictly consumerist behavior.

The solutions to the equation for population growth (for x′c and for N(t)′) always

remain positive. Solutions for the equation for dz/dt can become negative when c > 1+ γ

e ,

since dz
dt |z=0 = γ +e(1−c), which is positive only when c ∈ (0,1+ γ

e ). For the parametrically

heterogeneous system, this condition is modi�ed to be Et [c] ∈ (0,1+ γ

e ), which allows some
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Meaning Range Units

ẑ amount of renewable resource ẑ≥ 0 biomass
xc population of clones competing for the resource xc ≥ 0 biomass
γ intrinsic rate of resource growth independent of xc p≥ 0 resource/time
d per capita rate of natural resource decay d ≥ 0 resource/time
e e�ciency of niche construction/destruction e≥ 0 1/time
r Malthusian growth rate of xc r ≥ 0 1/time/resource
b rate of resource consumption b≥ 0 resource
c rate of resource consumption\restoration c ∈ [α,β ] resource
k e�ciency of resource conversion to population biomass k ≥ 0 clone/resource
N̂ total population size N̂ ≥ 0 biomass
N0 initial population size N0 ≥ 0 biomass
µ parameter of exponential distribution µ 6= 0 n/a

α lower boundary value of parameter c α ≥ 0 n/a

β upper boundary value of parameter c β ≥ 0 n/a

Table 2.1: Summary of variables and parameters used throughout the Chapter.

γ d e r b k N0 z0 µ α β

set 1 1 1 1 1 1 1 0.6 0.1 10 0 2.5

set 2 7.72 22 1 1 1 1 0.6 0.1 10 0 9.12

Table 2.2: Sample parameter values

individuals to have higher value of c, as long as the mean of c remains within the speci�ed

boundary. This condition becomes important when the system is approaching collapse.

All the variables and parameters are summarized in Table 2.1; sample parameter

values used for calculations are given in Table 2.2.

We �rst revisit the analysis of the case involving a population consisting of a single

�average� clone type xc interacting with a renewable resource in order to identify all the

possible dynamical regimes for this system.

Letting N̂(t) denote the total population size of the population leads to the following

simpli�ed version of System (2.1)


dN̂
dt = rN̂(c− bN̂

kẑ ),

dẑ
dt = γ + e (1−c)N̂

N̂+ẑ
−dẑ.

(2.2)
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Analysis of the parametrically homogeneous system

To simplify the analysis of System (2.2), we �rst re-scale it by setting N̂ = A ·N,

ẑ = B · z, t = D · τ . Taking A = B = D = r−1, ψ = k
b , δ = d

r , we end up with the following

system of di�erential equations:


dN
dτ

= N(c− N
ψz),

dz
dτ

= γ + e(1− c) N
N+z −δ z.

(2.3)

The qualitative behavior of System (2.3) depends on the positive parameters c,

γ , δ , e and ψ . Taking ψ = 1 and �xing e, we divide the parameter space into domains

corresponding to topologically di�erent phase portraits of System (2.3) in such way that the

boundaries between the parameter domains correspond to bifurcations of the system.

System (2.3) has a singular point at the origin O(N = 0,z = 0). To handle this

singularity, we consider the following topologically equivalent system of equations, obtained

from System (2.3) via transformation dτ = (N + z)zdτ̃ :


N′ = N(cz−N)(N + z),

z′ = ((γ−δ z)(N + z)+ eN(1− c))z,
(2.4)

The trajectories inside the �rst quadrant Systems (2.3) and (2.4) are topologically

orbitally equivalent everywhere except for the point O, which is an equilibrium point of

System (2.4) for all parameter values but not for System (2.3).

In the next section we show that System (2.4) can have two more non-negative

equilibria, and study structures of all the equilibria.

Null-clines and general structures of non-trivial equilibria.

Five typical cases of null-cline disposition for di�erent values of parameter c (with

all other parameters set to 1 for now) are shown in Figure 2.1. Analysis of System (2.4)

leads to the following statement concerning the existence and characteristics of non-trivial

equilibrium points.
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Figure 2.1: Null-clines of System (2.4) for γ = δ = e = 1, when c is varied. Equilibrium A
exists in sections (a-d) and does not exist in e.

Proposition 1. Assume δ > 0. Then in the �rst quadrant, System (2.4) has

(1) equilibrium point B(N = 0,z = γ

δ
), which is a saddle.

(2) equilibrium point A(N = c
δ
( c(1−c)e

1+c + γ),z = 1
δ
( c(1−c)e

1+c + γ)) for γ

e > c(c−1)
c+1 .

The point A is a topological node, which is stable when γ

e > c(c−1)(c+c2+2δ+cδ )
(1+c)2(c+δ )

> 0

and is unstable when c(c−1)
(1+c) < γ

e < c(c−1)(c+c2+2δ+cδ )
(1+c)2(c+δ )

.

The proof of the Proposition is given in Appendix.

We use Proposition 1 to identify three parameter boundaries (see Figures 2.1 and

2.4) that correspond to qualitatively di�erent phase portraits of System (2.4):

Oγ : γ = 0;Nul : γ

e = c(c−1)
c+1 ;H : γ

e = c(c−1)(c+c2+2δ+cδ )
(1+c)2(c+δ )

.

Crossing the boundary Nul from bottom to top is accompanied by the appearance

of a positive node A; crossing the boundary Oγ leads to the appearance of a saddle B in the

�rst quadrant; the boundary H corresponds to changing of stability of equilibrium A, which is

accompanied by appearance or disappearance of a limit cycle in the phase plane (Andronov-

Hopf bifurcation). Analysis of the model behavior in a neighborhood of equilibrium point A
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Figure 2.2: Bifurcation diagram of the equilibrium point O, shown through blowing-up trans-
formations.

with parameters close to the boundary H is performed in Section .

Structure of the singular point at the origin

The point O is the non-hyperbolic equilibrium of System (2.4), since both eigenvalues

of the Jacobian matrix at the point O are equal to zero. We will apply the �blowing-

up transformation� to analyze this point (for general aspects of this method see [12] and

references within). We show that the orbit structures in a neighborhood of the point O

depend on the parameters in the following way:

Proposition 2. For any positive �xed values of parameters e and δ , parameter

half-plane (γ ≥ 0,c≥ 0) of System (2.4) in a neighborhood of point O is divided into three

domains of topologically di�erent phase portraits (see Figure 2.2). Boundaries between the

domains are Oγ : γ = 0 and K : γ

e = c−1.

The non-trivial asymptote of orbits tending to O is

N =− γ

(1−c)e+γ
z(1+o(1)),

where 0 < γ

e < c−1.
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Figure 2.3: Behaviors of System (2.4) (a) within parameter space close to the boundary
K, corresponding to the separatrix of the �in�nite� equilibrium. (b) within parameter space
close to boundary S, corresponding to the heteroclinic connection of separatrices of the saddle
point B and the saddle-node point O; (c) within parameter space close to the boundary H;
C is the boundary, where stable and unstable cycles annihilate.

The proof of the Proposition is given in the Appendix.

Hopf bifurcation and separatrix bifurcations in the model

Proposition 3

(1) For �xed value of parameter e, System (2.4) has the co-dimension 1 subcritical

Hopf bifurcation in the equilibrium A (see Figure 2.3c, Domains 1 and 2) when parameters

cross the boundary H : ( γ

e =
c(c−1)(c+c2+2δ+cδ )

(1+c)2(c+δ )
) and parameter δ ∈ (0,5+

√
24), and the co-

dimension-1 supercritical Hopf bifurcation when the parameters cross the boundary H and

δ > 5+
√

24 (see Figure 2.3c, Domains 1 and 3).

(2) For c = c∗ = δ−1+
√

1−10δ+δ 2

2 , the co-dimension 2 generalized Hopf (Bautin) bi-

furcation is realized in the equilibrium A of the System (2.4) (see Figure 2.3c, Domains

1,2,3).

The proof of the Proposition is given in Appendix.

Unstable limit cycle that surrounds the stable equilibrium point A (see Figure 2.3,

Domain 1) appears from heteroclinics composed from the separatrices of the saddle point B

and the saddle-node O (see Figure 2.3b), where S is the corresponding parameter boundary.

In our analysis we were able to numerically identify this cycle.

Existence of another heteroclinic bifurcation, corresponding to the appearance of

attracting parabolic sector in a positive neighborhood of equilibrium O of System (2.4) was
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Figure 2.4: Bifurcation diagram of System (2.4) in the (γ,c) and (N,z) phase spaces for �xed
positive parameters e and δ . The non-trivial equilibrium point A is globally stable in Domain
1; it shares basins of attraction with equilibrium O in Domains 2 and 3. The separatrix of O
and the unstable limit cycle that contains point A, serve, correspondingly, as the boundaries
of the basins of attraction. Only equilibrium O is globally stable in Domains 4, which also
contains an unstable non-trivial A, and 5, which contains the elliptic sector. Domain 6
exists only for δ > 5+

√
24, where the stable limit cycle that is in turn contained inside

an unstable limit cycle, shares basins of attraction with equilibrium O. Boundaries between
Domains Oγ,K,S,H,Nul,C correspond respectively to appearance of point B, appearance of
an attractive sector in a neighborhood of O, appearance of unstable limit cycle containing
A, change of stability of equilibrium A via Hopf bifurcations, disappearance of positive A and
saddle-node bifurcation of limit cycles.

shown analytically. This sector appears within parameter values belonging to the boundary K,

for which the separatrix of the �in�nite� equilibrium in the Poincaré coordinates (y= 1
N ,u=

z
N )

reaches O (see Figure 2.3a).

The results are summarized in Table 2.3. For any �xed value of parameter e, (γ,c,δ )-

parameter space of the model is divided into 5 domains of di�erent phase behaviors if pa-

rameter 0 < δ < 5+
√

24, and into 6 domains of di�erent phase behaviors if parameter

δ > 5+
√

24. Schematic bifurcation diagram is presented in Figure 2.4.

Modeling parametric heterogeneity

In the previous section we studied in detail the e�ects of resource overconsumption

on a parametrically homogeneous population, i.e., the population that is composed of a single

�average� consumer type. The system's qualitative behavior in this case will depend solely



CHAPTER 2. TRANSITIONAL REGIMES AS EARLY WARNING SIGNALS 16

Domain Stability Attracting sets Boundary of basin

1 monostability equilibrium A global stability

2 bistability equilibrium A, origin serapartix z = N
c+δ

,N� 1
3 bistability equilibrium A, origin unstable limit cycle

4 monostability origin global stability

5 monostability origin elliptic sector

6 bistability stable limit cycle, origin unstable limit cycle, A

Table 2.3: Summary of possible dynamical regimes of System (2.4); Domain 6 exists only
when δ > 5+

√
24

on the the initial conditions and parameter values, and especially on the initial value of c.

Now, consider a situation, where the population is parametrically heterogeneous with

respect to the value of c, namely, when there are distinct classes of individuals within the

population that consume and restore the common resource at di�erent rates. Mathematically,

this is described by assigning a di�erent value of parameter c to each clone xc.

Let A denote the range of possible values of parameter c. Denote the total population

size to be N(t) = ∑A xc if the number of possible values of c is �nite and N(t) =
´
A xcdc if

it is in�nite. De�ne Pc(t) =
xc(t)
N(t) and Et [c] =

´
cPc(t)dt. Then, applying re-parametrization,

given in Subsection , to System (2.1), we obtain that
´
A xc(1− c) = N−N

´
A cPc(t)dc =

N(1−Et [c]), which yields the following system of equations:


dxc
dt = xc(c− N

ψz),

dz
dt = γ + e(1−Et [c]) N

N+z −δ z.
(2.5)

Let us also introduce a keystone variable q(t), such that dq
dt = N(t)

ψz . Then x′c =

rxc(c−q′). Consequently

xc(t) = xc(0)ect−q(t),

and thus

N(t) =
ˆ
A

xc(t)dc = N0e−q(t)
ˆ
A

ectPc(0)dc = N0e−q(t)M0(t),
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where Pc(0) =
xc(0)
N(0) and M0(t) =

´
∞

0 ectPc(0)dc is the moment generating function (mgf) of

the initial distribution of clones Pc(0) within the population. The frequency of each individual

xc in the population is given by Pc(t) =
xc(t)
N(t) = Pc(0) ect

M0(t)
, which, as one can see, in this case

does not depend on the keystone variable q(t).

From the equations for the moment generating function of the initial distribution

and the frequency of clones xc in the population one can easily calculate the expected value

of c at each time point t:

Et [c] =
ˆ
A

cPc(t)dc =
ˆ
A

cPc(0)
ect

M0(t)
dc =

M0(t)′

M0(t)
. (2.6)

We can now rewrite System (2.1) in the following form:


dN
dt = N(Et [c]− N

ψz),

dz
dt = γ−δ z+ eN

N+z(1−Et [c]),
(2.7)

where Et [c] is de�ned above.

The dynamics of System (2.7) will thereby be fully determined by the mgf of the

initial distribution of individuals xc within the population.

Note that in comparison to the parametrically homogeneous System (2.4), in the

parametrically heterogeneous System (2.7) the �xed value of the parameter c has been

replaced by the expected value of c at each time instant t. It is easy to verify that the rate of

change of Et [c] is equal to the variance of c at each time moment t in accordance to Fisher's

fundamental theorem, so as the system evolves with time, the expected value of c will also

change with each time step, causing it to �travel� through the phase-parametric portrait [69].

Exponential initial distribution

Complete data about initial distribution of clones within the population is not always

available. If this is the case, then, according to [64] and [68], if the mean value of a

non-negative random variable is the only quantity that can be estimated from observations,

then exponential distribution with the estimated mean is the most likely distribution of the
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variable. Moreover, when the values of the random variable are bounded and belong to an

interval, and the mean value of the reproduction rate is again prescribed, then according to

the maximum entropy principle, the initial distribution is a truncated exponential on that

interval (for more details see [68]).

So, let us �rst assume that the value of the parameter c is exponentially distributed

within the population; it can take on values in the range (0,∞). Its mgf is M0(t) =
µ

µ−t ,

where µ is the parameter of the exponential distribution. The mean of c is Et [c] = 1
µ−t , and

so System (2.7) can be rewritten as:


dN
dt = N( 1

µ−t −
N
ψz),

dz
dt = γ−δ z+ eN

N+z(1−
1

µ−t )

(2.8)

In this case the mean value of Et [c]→∞ when µ = t, and so the population becomes

extinct in �nite time.

Truncated exponential initial distribution

Of course, the assumption that parameter c can take on arbitrarily large values is not

realistic, although it does simplify asymptotic analysis. Hence, we proceed to consider the

situation when the value of the parameter c is exponentially distributed within the population

but is bounded on an interval c ∈ [0,β ].

The mgf of truncated exponential distribution is M0(t) = ( µ

eβ µ−1)(
eβ µ−eβ t

µ−t ), where µ

is the parameter of truncated exponential distribution, and β is the boundary value of the

parameter c. System (2.7) in this case becomes


dN
dt = N(t)( βeβ t

eβ t−eβ µ
+ 1

µ−t −
N(t)
ψz(t)),

dz
dt = γ−δ z(t)+ eN(t)

N(t)+z(t)(1−
βeβ t

eβ t−eβ µ
− 1

µ−t )

(2.9)

In case of the truncated exponential distribution, the question of �nding the threshold

of system resistance to overconsumption becomes of particularly interesting. Intuitively,

we would expect that if the parameter c does not surpass the threshold of resistance to

over-consumption, i.e., stays outside of Domains 4 and 5 outlined in Figure 2.4, then the
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Figure 2.5: Comparison of trajectories of Systems (2.3) and (2.7) under di�erent values of c
and [α,β ] respectively. Other parameter values are taken from set 1 of Table 2.2.

population, while evolving towards the highest value of c and favoring the most e�cient

consumers, would nevertheless fail to exhaust its resources. However, if the maximum value

of the parameter c falls beyond the threshold of system resistance to over-consumers, which

was analytically identi�ed in the previous section, then c will eventually reach its maximum

possible value, slipping into one of the trajectories that lead to resource exhaustion and

eventual population extinction (see Figure 2.5b).

A particularly curious and unexpected e�ect can be observed when one varies the

value of the parameter δ , which represents the rate of natural resource decay (in terms of

original parameters, δ = d
r , where d is the per capita rate of resource degradation and r is

the Malthusian growth rate of each clone xc). Parameter δ accounts for the appearance of a

domain of coexistence of two limit cycles (generalized Hopf, or Bautin bifurcation), which can

be observed when δ > 5+
√

24 (a condition that was obtained analytically through calculation

of the �rst Lyapunov value). In this region, a stable limit cycle is trapped between an unstable

limit cycle on the outside and a stable equilibrium point inside. This e�ect can be observed

either when the rate of natural resource decay is very high or when the number of competing

individuals left within a population is very small.

Another question of interest would be to compare the tolerance thresholds of the

parametrically homogeneous and heterogeneous systems. Intuitively we would expect the
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Figure 2.6: System (2.9) with initial truncated exponential distribution on the interval (α,β ),
with parameter values from set 1 in Table 2.2. This is an example of what transitional
regimes the System can go through before the population crashes, with trajectories for the
total population size N(t), total amount of renewable resource z(t) and expected value of
the parameter c on the left, and the change over time of the distribution of various clone
types within the population on the right.

tolerance threshold of the parametrically heterogeneous system to be higher. Even though

in the parametrically heterogeneous system there are more over-consumers present in the

population, there are also more "altruists", or under-consumers (unlike the parametrically

homogeneous system, where all individuals are characterized by a single average value of c).

Indeed, in the parametrically homogeneous System (2.3), as c increases, the to-

tal population size grows until the number of over-consumers becomes so large that they

consume more than the system can support. However, a parametrically heterogeneous pop-

ulation can survive much longer, since the depletion of resources caused by over-consumers

is at least temporarily compensated for by the activity of under-consumers, as can be seen

on Figure 2.5.

Discussion

In this Chapter we modify a generalized consumer-producer type model with renew-

able resource that was introduced by [75] in order to investigate two questions: 1) whether a

largely consumerist homogeneous population can nevertheless sustainably coexist with com-

mon renewable resources and 2) whether a heterogeneous population that consists of both

�altruistic� under-consumers and �sel�sh� over-consumers can successfully establish a niche,
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Figure 2.7: System (2.9) with initial truncated exponential distribution on the interval (α,β ),
with parameter values taken from set 2 in Table 2.2. An example of what transitional regimes
the System can go through before the population crashes, with trajectories for the total
population size N(t), total amount of renewable resource z(t) and expected value of the
parameter c on the left, and the graph of the change over time in distribution of various
clone types within the population on the right. Initial conditions fall within the parameter
range of Domain 6 of the phase-parameter portrait of the the non-distributed system. Since
the rate of natural resource decay is high, it takes more time even for the most e�cient
consumer to �get to it�, and so the population survives longer, and the transitional regimes
are more evident.

which in our framework is de�ned as the population maintaining non-zero size without ex-

hausting the commons resource over time, and if it cannot, what dynamical regimes it goes

through before it collapses.

First, we investigated the possible dynamical regimes that can be observed in the

system, when the population is parametrically homogeneous, i.e., when each individual in

the population has the same value of the resource consumption/restoration parameter c.

Our analysis indicates that even when the population consists of a large number of over-

consumers, there is a threshold for system resistance to over-consumers, which is directly

proportional to the average natural growth rate of the resource γ and inversely proportional

to individuals' average e�ciency of niche construction, modeled by the parameter e. Hence,

the system can tolerate more over-consumers if it can restore itself quickly enough or if the

individuals are not overly e�cient in resource consumption.

As the number of over-consumers increases (modeled via increases in the value of
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parameter c), the population goes through a series of transitional regimes (see Figure 2.4)

before it collapses. When the value of c is small, consumers-producers and the resource can

coexist peacefully (stable non-trivial equilibrium point). As c increases, an unstable limit cycle

appears around the stable equilibrium point. Further increases in c drive the dynamics into the

domain, where the non-trivial equilibrium point still exists but is unstable. Interestingly, if the

value of the parameter δ = d
r in the region of oscillatory behavior is above a certain threshold,

speci�cally when the natural resource decay rate d is very high or the rate of growth r of each

individual within the population is small, the system realizes a supercritical Hopf bifurcation,

resulting in coexistence of a stable limit cycle trapped between an unstable equilibrium point

and an unstable limit cycle; both cycles disappear only after passing this region, leaving an

unstable non-trivial equilibrium point. Further increases in c lead to disappearance of the

non-trivial equilibrium from the �rst quadrant, changing the point O(0,0) from a saddle-node

to an elliptic sector, which corresponds to eventual extinction of both the resource and the

population, although in in�nite time.

The system has a non-hyperbolic singular point at the origin that, as the parameters

are varied, changes its structure from a saddle to a stable saddle-node with a sector of

trajectories tending to the origin, to an elliptic sector. As parameters are varied, the non-

trivial equilibrium in the model changes its stability as a result of a �catastrophic� Andronov-

Hopf bifurcation, yielding a parameter region, where an unstable limit cycle divides the

basins of attraction of the non-trivial equilibrium and the origin. No stable oscillations can

be observed, and the system eventually �dies out� because as c increases, an increasing

number of trajectories tend towards the origin. It is the mutual placement of separatrices

that determines the structure of the phase portrait (or in other words, it is the ratio of the

consumer to the resource that determines the existence of the attractive sector at the origin).

Notably, the unstable limit cycle appears from heteroclinic orbits of the origin and the saddle

point B. These are new type of dynamics compared to other models that have a complex

equilibrium point at the origin [10�12,61,76].

Next, a heterogeneous population involving both individuals that contribute to the

growth of common resource and those that consume more than they restore, was considered.
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We reformulated the original system of equations by replacing the �xed parameter c by its

current mean value, which was computed with the help of moment generating function of

the initial distribution of the individuals throughout the population [69].

Within the framework of this problem, the value of c is restricted to the positive half

plane, thus limiting the possible choices of the initial distribution. If the only information

available about c within the population is its mean, then the exponential distribution is a

good choice for an initial distribution since it does not require any additional assumptions.

In particular, according to the principle of maximum entropy or MaxEnt [64, 68], if the

mean value of a non-negative random variable is the only quantity that can be estimated

from observations or other data, then the most likely (the maximum entropy) distribution

of the variable is the exponential with the estimated mean. Moreover, when the values

of the random variable are bounded and belong to an interval, and the mean value of the

reproduction rate is again prescribed, then according to the MaxEnt principle, the initial

distribution is the truncated exponential in that interval [68].

Therefore, we �rst assumed that the parameter c is distributed exponentially within

the population. In this case the parameter c can take on values that by far surpass the

threshold of system resistance to over-consumers. As a result, the clones with an arbitrarily

large parameter value is favored by natural selection at each time point, ensuring extinction of

the population due to resource exhaustion regardless of the initial state of the population or

the resources. Arbitrarily large rates of consumption allowed by the exponential distribution

are clearly unrealistic, since the population goes extinct in �nite time.

Next, we restricted the values of c to a �nite interval, thus assuming truncated

exponential distribution. Intuitively, we would once again expect the population to evolve in

such a way as to favor the most e�cient consumer, i.e. until c reaches its largest possible

value.

Numerical solutions computed for the parametrically heterogeneous model with trun-

cated exponential distribution show that some regimes of the original model are just transi-

tional (see Figures 2.6, 2.7). We observed that even though the boundary for the threshold

of system tolerance to over-consumers is the same for both parametrically homogeneous
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and heterogeneous systems, the time to extinction is longer for the parametrically hetero-

geneous model (Figure 2.5). So, population heterogeneity ensures longer period of survival

both for the population and the resource than would have been observed in a homogeneous

population.

Conclusions

The situation, when overly e�cient consumers over-exploit the common resource in

such a way as to eventually make it useless for everyone, playing out the tragedy of the

commons [57], occurs quite frequently, such as when overly e�cient parasites, bacteria and

cancer cells commit evolutionary suicide by ruining their resource (the host); instances of

the tragedy of the commons have also been observed in microbes [128], slime molds [44],

plants [173], as well as in human populations. These examples are representative of so-called

�tight co-evolution�, where the survival of the population is intimately tied to a particular

resource, as opposed to �di�use co-evolution�, when the population's survival is determined

by interactions with other species and multiple resources [85,87].

It's not always clear that system collapse is approaching, and so one has to learn to

recognize early warning signals, such as increased �ickering and data auto-correlation [137],

in order to try and and prevent the tragedy of the commons. Sche�er [136, 137] suggested

that tipping points in complex systems correspond to bifurcational boundaries in dynamical

systems. Application of Reduction theorem for replicator equations [69] to relevant systems

of ODEs allows to visualize exactly how the system passes through these dynamical regimes

as it evolves. One can see that while changes in population size and the resource over time

may seem to give no cause for alarm, the mean value of the parameter of over-consumption

may signal trouble: the system will be recalibrating towards maximizing c, and as soon as the

bu�er capacity of the resource (in this case it is proportional to natural resource restoration

and decay rates) is exhausted, both the population and the resource collapse (see Figure

2.7).

This can be important for a number of reasons. Firstly, given su�cient understanding

of the system that one may wish to study, one may be able to write a su�ciently conceptually

simple model, where it is possible to analytically �nd bifurcation boundaries. In this case, one
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would know exactly what parameters would need to be manipulated in what combinations

in order to try and avoid the tragedy, if it is still possible.

Secondly, this gives an opportunity to identify another early warning signal of ap-

proaching system collapse in addition to �ickering and increased auto-correlation [137]. One

can try to see what the expected value of the characteristic in question is and match that up

with the corresponding predicted possible dynamical regimes. A challenge here is of course

that even if one can identify the bifurcation boundaries, even if only numerically, it may

not always obvious in which direction the system will evolve, and which clone type will be

favored. The answer to this question is going to be system speci�c and needs to be taken

carefully into account if one is to use these methods in order to make qualitative predictions

about population evolution within any dynamical system.



Chapter 3

PUNISHMENT/REWARD SYSTEM IN PREVENTING THE TRAGEDY OF THE

COMMONS

Abstract

The conditions that can lead to the exploitative depletion of a shared resource, i.e.,

tragedy of the commons, can be reformulated as a game of prisoner's dilemma: while

preserving the common resource is in the best interest of the group as a whole, over-

consumption is in the interest of each particular individual at any given point in time.

One way to try and prevent the tragedy of the commons is through in�iction of punish-

ment for over-consumption and rewarding under-consumption, thus selecting against

over-consumers. The e�ectiveness of various punishment functions in an evolving

consumer-resource system is evaluated within a framework of an in�nitely-dimensional

system of ODEs. Conditions leading to the possibility of sustainable coexistence with

the common resource for a subset of cases are identi�ed analytically using adaptive

dynamics; the e�ects of punishment on heterogeneous populations with di�erent initial

composition are evaluated using the Reduction theorem for replicator equations. Ob-

tained results suggest that one cannot prevent the tragedy of the commons through

rewarding of under-consumers alone - one also needs to implement some degree of

punishment, which may vary depending on the initial distribution of clones in the pop-

ulation.

Keywords: tragedy of the commons, prisoner's dilemma, payo� modi�cation through

punishment, adaptive dynamics, population heterogeneity

Introduction

Complex adaptive systems from ecology and the social sciences are composed of

diverse agents that are interconnected and interdependent [102, 119, 120]. Heterogeneity

within these systems often drives the evolution and adaptability of the system components

enabling them to withstand and recover from environmental perturbations. However, it is also

heterogeneity that makes the appearance and prosperity of over-consumers possible, which

26
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in turn can lead to exhaustion of the common resources (tragedy of the commons [57])

and consequent collapse of the entire population, leading to what has become known as

evolutionary suicide [129].

Elinor Ostrom [117] has focused on the question of avoiding the tragedy of the

commons from the point of view of collective decision making in small �sheries. She ob-

served that the mutually satisfactory and functioning institution of collective action could

be developed in small communities where the possible overconsumption of each individual

made a signi�cant enough di�erence to be immediately noticeable and punishable. This

illustrates a �rst path to prevent the tragedy of the commons: in�iction of punishment/ tax

for over-consumption e�ectively selecting against over-consumers.

Another situation, when the tragedy was successfully avoided, is when the community

introduces some kind of �social currency", where one is rewarded for cooperation with social

status [101, 162]. This can be an example of a second approach to preventing the tragedy

of the commons: bestowing reward/ subsidy to under-consumers.

The dynamics of trade-o�s between personal and population good have been stud-

ied through classical game theory [114,161,165]. However, many of the potentially relevant

results have been obtained for either two-player or in�nite-player games, while intermediate

situations are still poorly understood. We study such models using two recently developed

methods for studying evolving heterogeneous populations through ordinary di�erential equa-

tions: adaptive dynamics [52] and the Reduction theorem for replicator equations [69,70].

This Chapter is organized as follows: �rst we will describe di�erent approaches for

studying the e�ects of punishment and reward on population composition, namely, adaptive

dynamics and the Reduction theorem for replicator equations. Then we apply the two tech-

niques to a variety of punishment/ reward structures, obtaining both analytical and numerical

results for populations that di�er in their initial composition with respect to over- and under-

consumers. The Chapter ends with a reformulation of the obtained results in the context of

the prisoner's dilemma, as well as witha comparison of the two modeling methods.

Model description

Consider the previously studied model of ecological niche construction, where a pop-
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Variable/
Parameter

Meaning Range

xc(t) Individual consumers, characterized by the value of c xc > 0
z(t) Renewable resource z(t)> 0
N(t) Total population size N(t) = ∑c xc(t) N(t)≥ 0

a Severity of enforcement of punishment/reward a≥ 0
c Parameter of resource overconsumption c≥ 0
r Intrinsic growth rate of consumers r ≥ 0
b Rate of resource consumption b≥ 0
k E�ciency of resource consumption k > 0
p Natural resource renewal rate p≥ 0
d Natural resource decay rate d ≥ 0
e Proportion of resource consumed by competing clones e≥ 0
µ Parameter of truncated exponential distribution µ ∈ R

[α,β ] Parameters of Beta distribution α > 0,β > 0

Table 3.1: Summary of variables and parameters of System (3.1)

ulation of consumers-producers x(t) interact with the common dynamic resource z(t) in such

a way as to be able to not only consume the resource but also contribute to its restoration

(see System 2.1 on page 9). Each consumer-producer is characterized by his or her own

intrinsic value of resource consumption/restoration, denoted by parameter c. Now assume

that each over-consumer is punished for over-consumption, or rewarded for restoring the

resource, according to some general function f (c) ∈C1(Ru), which directly a�ects �tness of

each consumer-producer, depending on the value of c. The system thus becomes:



xc︸︷︷︸
clones

(t)′ = rxc(t)( c︸︷︷︸
consumption

−b∑A xc(t)
kz(t)︸ ︷︷ ︸

carrying capacity is dynamic resource

)+ xc(t) f (c)︸ ︷︷ ︸
punishment/reward

′
z(t)︸︷︷︸

resource

= p︸︷︷︸
natural restoration

+ e
∑A xc(t)(1− c)
z(t)+∑A xc(t)︸ ︷︷ ︸

total resource consumption

− dz(t)︸︷︷︸
natural decay

(3.1)

Meaning of all the variables and parameters is summarized in Table 3.1.

No punishment

The case, where f (c) = 0 was previously completely studied in Chapter 2. The results

are summarized in Figure 2.4 on page 15 and can be interpreted as follows: in Domain 1, when

the parameter of overconsumption is small, the population can stably and sustainably coexist
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with the common renewable resource, since no individual is taking more resource than they

restore. In Domain 2, a parabolic sector appears near the origin, decreasing the domain of

attraction of the non-trivial equilibrium point A. The population can still sustainably coexist

with the resource even with moderate levels of over-consumption but the range of initial

conditions, where it is possible, decreases. As the value of c is further increased, the range

of possible initial conditions that allow sustainable coexistence with the common resource

decreases and is now bounded by the unstable limit cycle, which appears around point A from

a loop of separatrices that connect points B and Oin Domain 3, and via generalized Hopf

bifurcation in Domain 6, where the outer unstable limit cycle appears from the separatrix

loop and inner stable cycle arises due to a Hopf bifurcation of point A. Finally, in Domain 4

and 5, population extinction is inevitable due to extremely high overconsumption rates that

the resource can no longer support.

In this Chapter the question of whether punishment for overconsumption can prevent

the tragedy of the commons by selecting against over-consumers using di�erent punishment

functions that directly a�ect individuals' �tness will be investigated. We will also investigate

the degree of e�ectiveness of punishment depending on initial composition of the population

with respect to parameter c. Finally, we will try to investigate the question of whether punish-

ing those who over-consumer or rewarding those who do not, will yield better results. These

questions will be addressed using two recently developed methods for modeling parametri-

cally heterogeneous populations, namely, adaptive dynamics [52] and Reduction theorem for

replicator equations [69,70].

Adaptive dynamics

Adaptive dynamics is a series of techniques that have been developed in the past

twenty years to address questions of system invasibility by rare �mutant� clones. The main

focus of this method is in evaluating whether a mutant will or will not be able to proliferate

in an environment, set up the resident population, using ideas of frequency dependence from

game theory and standard bifurcation analysis [52]. We will use this method to answer

analytically the questions of the intensity of punishment that may need to be imposed on

over-consumers in order to prevent the tragedy of the commons.
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Assume that the population has reached some kind of an equilibrium state, and the

invading over-consumer is very rare. Consider the equation for the dynamics of the rare

mutant xm in an environment set by the resident xres:

x′m
xm

= r(cm−
b(xres + xm)

kz
)+ f (cm). (3.2)

The total population is xm+xres ≈ xres since xm is assumed to be present at such low

frequency that its contribution to the size of the entire population is negligible; f (c) is the

punishment/reward function.

Let x∗res satisfy
dxres

dt = 0, which implies that x∗res =
kz
br ( f (cres)+ rcres). Now introduce

a mutant, such that

dxm

dt
= rxm(cm−b

xm + xres

kz(t)
)+ xm f (cm). (3.3)

When the two subpopulations interact, the outcome of their interaction is determined

by the sign of the dominant eigenvalue of System

dxres
dt = rxres(cr−b xm+xres

kz(t) )+ xres f (cres),

dxm
dt = rxm(cm−b xm+xres

kz(t) )+ xm f (cm),

dz
dt = p+ e xres(1−cres)+xm(1−cm)

z+xres+xm
−dz.

(3.4)

The largest eigenvalue that governs the dynamics of this system at the point xres =

x∗res, xm = 0 is given by λ2 = r(cm− cres)− f (cres)+ f (cm). The two eother eignevalues λ1

and λ3 govern the dynamics on the monomorphic subspace (xres,0,z) and by assumption

have negative real part. Otherwise, the non-trivial resident equilibrium would by de�nition

be unstable, rendering the question of system invasibility irrelevant.

These conditions allow answering the question of �short term� invasibility, i.e., whether

a mutant with arbitrarily di�erent value of cmwill be able to invade the population.

Invasion �tness of the mutant, i.e., the expected growth rate of a mutant in an

environment set by the resident, is given by

lim
T→∞

1
T

ˆ T

0
r(cm−

bxres(t)
kz(t)

)+ f (cm)dt = r(cm−
b
k
(
xres

z
))+ f (cm) = r(cm,Eres) (3.5)
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Figure 3.1: Case 1. Punishment-reward function of the form f (c) = a 1−c
1+c and its e�ects on

population growth.

and the selection gradient, which is de�ned as the slope of invasion �tness and which deter-

mines whether the invasion will be successful (positive sign of the selection gradient predicts

successful invasion), is then given by

D(cm) =
∂

∂cm
r(cm,Er)|[cm=cres] = r+ f ′(cm). (3.6)

These conditions allow answering a question of �long-term� invasibility, i.e., whether a

mutant with a slightly di�erence value of cmwill be able to permanently invade the population

of individuals, characterized by parameter cres.

Another way to derive the same condition is by looking directly at the expression for

λ2, which can be rewritten as r(cm− cres)− f (cres)+ f (cm) = r+ f (cm)− f (cres)
cm−cres

≈ r+ f ′(cm).

The points where selection gradient is zero are known as evolutionarily singular strategies and

are denoted here as c∗res. Stability of c∗res for di�erent types of punishment/reward functions

is discussed below; summary of some of the possible types of c∗res is summarized in Table 3.2.

Di�erent types of punishment/reward functions

Case 1. Moderate punishment\reward.

Consider the case when the punishment function is of the form f (c) = a 1−c
1+c (see

Figure 3.1).

In this case, the PIP can be seen on Figure 3.4a,c, for a = 1 and a = 4. Blue regions

correspond to the case when λ2(cres,cm)< 0, and consequently the mutant cannot invade; red
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Figure 3.2: Selection gradient and pairwise invasibility plots for function of the type f (c) =
a 1−c

1+c . Blue regions correspond to parameter values where the mutant cannot invade; red
regins correspond to parameter values where it can invade. (a) selection gradient, de�ned in
3.6, where a∈ [3−2

√
2,3+2

√
2] (b) PIP for a = 1; the singular strategy c∗res is evolutionarily

unstable and convergence stable (c) PIP for a = 4; the singular strategy c∗res is evolutionarily
unstable and convergence stable. Ths punishment/reward function is not e�ective against
agressive overconsumers.

regions correspond to the case when λ2(cres,cm)> 0, and the mutant can invade. The point

of intersection of the two curves corresponds to a convergence stable (CSS) evolutionarily

unstable strategy, which can be invaded by �mutants� with large enough values of cm.

Modest punishment can therefore protect only from modest over-consumers. How-

ever, severe over-consumers cannot be kept of out the population, as the punishment is not

severe enough.

The selection gradient for this punishment function is D(cm) = r− 2a
(1+cm)2 , which is

equal to zero when cm =
√

2a/r−1, so the mutant can invade, when a > r
2 .

Case 2. Severe punishment\generous reward.

Now consider a case, when the punishment function is of the form f (c) = a(1− c)3

(see Figure 3.3).

The PIP for this functional form can be seen on Figure 3.4 for a = 0.05 and a = 0.14.

Once again, blue regions correspond to the case when λ (cres,cm)< 0, and consequently the

mutant cannot invade; red regions correspond to the case when λ (cres,cm) > 0, and the

mutant can invade.

For this type of punishment/reward function, there is a region where invader can
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Figure 3.3: Case 2. Punishment-reward function of the form f (c) = a(1−c)3 and its e�ects
on population growth

Figure 3.4: Selection gradient and pairwise invasibility plots for function of the type
f (c) = a(1− c)3. Blue regions correspond to parameter values where the mutant cannot
invade; red regins correspond to parameter values where it can invade. (a) selection gra-
dient, de�ned in 3.6, where a < 0.15 (b) PIP for a = 0.05; the singular strategy c∗res is
evolutionarily and convergence stable (c) PIP for a = 0.14; the singular strategy c∗res is evo-
lutionarily and convergence stable. This punishment/reward function is e�ective against
agressive overconsumers.
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invade but unlike the previous case, there is an upper boundary for the possible values of

cm for the invader to be successful. Unlike in the previous case, singlular strategy is stable,

which predictably implies that punishment needs to be severe enough in order to be able to

prevent invasion by overconsumers.

For this type of punishment function, the selection gradient is D(cm) = r−3a(1−c)2,

which is zero when cm = 1±
√ r

3a . One critical threshold is a = r/3. One can see that there

exists a region, where the mutant cannot invade even when the force of the punishment a

is quite small. Perhaps this can be interpreted as the rewards of overconsumption being too

small below the red invasibility zone, and the costs of punishment being too great above the

red invasibility zone.

Moreover, suppose there exists a maximum consumption value Cmax. Then it may

be reasonable to invoke the notion of a relative �size� of the invasibility region,

V =
2
√ r

3a

Cmax
.

From this we can infer that invasion is likely to occur, given random mutations, if

V > 0.5, or in other words when

a <
16
3

r
C2

max
.

Interestingly, from this condition one can infer that invasion becomes more likely as

r increases but less likely with increasing Cmax.

Case 3. Separating punishment and reward.

Finally, consider the following punishment/reward function: f (c) = ρ(1− cη). This

functional form allows separating the in�uence of punishment for overconsumption, which

is increased or decreased depending on the value of parameter η , and reward for undercon-

sumption, which is in�uenced primarily by the value of parameter ρ .

As one can see on Figures 3.5 and 3.6, this type of function behaves like case 1 for

η < 1 and like case 2 for η > 1. These results reiterate the claim that was made in the

previous two cases: punishment needs to be severe enough in order to successfully prevent

invasion by over-consumers.
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Figure 3.5: Pairwise invasibility plots for function type f (c) = ρ(1− cη), η = 0.9. The
e�ectiveness of this function is the same as was for case 1: punishment is not severe enough
to keep over-consumers out of the population.

Figure 3.6: Pairwise invasibility plots for function type f (c) = ρ(1− cη), η = 1.2. The
e�ectiveness of this function is the same as was for case 2: punishment is su�ciently severe
to keep over-consumers out of the population.

The main advantage of adaptive dynamics is that one can get very clear analytical

conditions for the cases when invading mutants are rare. However, what if the initial mutant

is not rare (invasion by a group)? What if there is more than one type of mutant (the system

did not have time to recalibrate before the new mutant came along)? We'll try to address

these questions through application of Reduction theorem for replicator equations.

Modeling parametrically heterogeneous populations using the Reduction theorem

Even though without incorporating heterogeneity one cannot study the e�ects of

natural selection on the system, until recently any attempts to write such models resulted

in systems of immense dimensionality t. However, the proposed approach allows one to

overcome this problem.
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Once again, denote total population size N(t) = ∑A xc. Let us introduce a keystone

variable q(t), which satis�es equation q(t)′ = bN(t)
kz(t) , so that we can rewrite the �rst equation

in System (3.1) in the following form:


xc(t)′

xc(t)
= r(c−q(t)′)+ f (c)

z(t)′ = p−dz(t)+ e N(t)(1−Et [c])
N(t)+z(t)

(3.7)

The dynamics of xc can be explicitly calculated through

xc(t) = xc(0)e−q(t)+t(rc+ f (c)) (3.8)

Total population size is then

N(t) = N(0)
ˆ

c
e−q(t)+t(rc+ f (c))P0(c)dc = N(0)e−q(t)

ˆ
c
et(rc+ f (c))P0(c)dc (3.9)

where Pc(0) =
xc(0)
N(0) , and the current pdf is given by

Pc(t) =
xc(t)
N(t)

=
erc+ f (c)Pc(0)´
et(rc+ f (c))Pc(0)

(3.10)

Now, the expected value of c can be calculated from the de�nition:

Et [c] =
ˆ

c
cPt(c) = N(0)

ˆ
c
c

e−q(t)+t(rc+ f (c))

N(t)
=

´
c cet(rc+ f (c))P0(c)dc´
c et(rc+ f (c))P0(c)dc

(3.11)

where N(t) is de�ned above.

So, the �nal system of equations becomes:


z′(t) = p−dz+ e N(t)(1−Et [c]

N(t)+z(t)

q′(t) = bN(t)
kz(t)

(3.12)

whereN(t), Et [c] and Pc(0) are de�ned above.

The case when f (c) = 0 was investigated in Chapter 2. We observed that although it

takes longer for a heterogeneous population to go extinct, tragedy of the commons eventually
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happens if the maximum value of is high enough. Moreover, one could observe transitional

regimes as was increasing, which can be used to forecast upcoming crisis and start imple-

menting punishment functions.

In the proposed form of the punishment function, in the parametrically homogeneous

system, i.e., when Et [c] is constant, f (c) can be factored into equation x′
x = r(c+ f (c)− bx

kz ),

and consequently, the spectrum of possible dynamical behaviors for this modi�ed but still

parametrically homogeneous system should be qualitatively the same compared to the phase

parameter portrait given in Figure 2.4 and previously studied in Chapter 2. However, while in

the model, considered in Chapter 2, nothing prevented increase of Et [c] up to the maximum

possible value, here we want to investigate possible punishment functions that will prevent

the increase of Et [c] in such a way as to move the system outside of the regions of sustainable

coexistence with the common resource.

Results

We evaluated the e�ectiveness of the moderate (Figure 3.1 on page 31) and severe

(Figure 3.3 on page 33) punishment functions on the dynamics of growth and interaction

with the common resource of a population of over-consumers, whose parameter of overcon-

sumption lies in the range c∈ [0,3]. We evaluated the e�ects of the same type of punishment

on populations with two di�erent types of initial distributions of clones, namely truncated

exponential with parameter µ = 10, and Beta distribution with parameters [α,β ] = [2,2]

and [α,β ] = [2,5] (see Figure 3.7). Parameter values were chosen in such a way as to give

di�erent shapes of the initial distribution of clones within the population. We hypothesize

that the e�ectiveness of punishment will vary depending on the initial composition of the

population, and particularly, that higher levels of punishment/reward will be necessary for ini-

tial distributions, where population composition is spread out further away from small values

of c, such as Beta diustributions with parameters [2,5] and even more so Beta distribution

with parameters [2,2] (see Figure 3.7b) compared to truncaed exponential distribution, where

fewer overconsumers are initially present in the population, and lower frequencies (see Figure

3.7a).. Other parameter values were taken from Table 2.2 on page 10.

First we evaluated the e�ectiveness of the moderate punishment function of type
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Figure 3.7: Initial distributions (a) truncated exponential with parameter µ = 10 (b) Beta
distribution with parameters [α,β ] = [2,2] and [α,β ] = [2,5].

f (c) = a 1−c
1+c ; the severity of punishment is captured through varying parameter a. The

initial distribution was taken to be truncated exponential with parameter µ = 10. We took

parameter a = 0;0.5;1;2 and plotted the changes in xc(t) for various c over time (Figure

3.8), as well as the changes in the total population size and the amount of resource (Figure

3.9). We observed that when the punishment imposed is moderate, overconsumption could

be avoided only when the value of a was very high, i.e., when it is imposed very severely.

Similar results were observed for the cases of Beta distribution with parameters

[α,β ] = [2,2] (see Figures 3.10, 3.11) and [α,β ] = [2,5] (see Figures 3.12, 3.13). However,

the value of a that is necessary to successfully manage over-consumers varied depending on

di�erent initial distributions, indicating that in order to prevent the tragedy of the commons,

one needs to evaluate not only the type of punishment and the severity of its enforcement

but also match it to the initial composition of the population, since one level of punishment

can be e�ective for one initial distribution and not another. (Noticeably, this kind of insight

would be impossible to obtain using just analytical methods of adaptive dynamics).

Next, we conducted the same set of numerical experiments for the more severe

punishment function f (c) = a(1− c)3. We observed that the intensity of implementation

of the more severe punishment function required to prevent the system from committing

evolutionary suicide was much lower than in the previous case for all initial distributions

considered here (see Figures 3.14, 3.15, 3.17, 3.17, 3.18, 3.19). The system was able to
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Figure 3.8: (a) Truncated exponential, moderate punishment (case 1), set 1, a = 0. (b)
Truncated exponential, case 1, set 1, a = 0.5. (c) Truncated exponential, case 1, set 1,
a = 1. (d) Truncated exponential, case 1, set 1, a = 2.

Figure 3.9: Truncated exponential distribution, set 1, case 1, dynamics of the total population
size and total resource with respect to di�erent values of a (di�erent levels of severity of
imposed punishment). One can see that successful management of overconsumers was
possible only when punishment implementation was very high.
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Figure 3.10: (a) Beta distribution with parameters [α,β ] = [2,2], case 1, set 1, a = 0, (b)
a = 1, (c ) a = 2, (d) a = 2.05.

Figure 3.11: Beta distribution with parameters [α,β ] = [2,2], set 1, case 1, dynamics of
the total population size and total resource with respect to di�erent values of a (di�erent
levels of severity of imposed punishment). The value of a that is necessary to manage the
over-consumers and prevent resource over-consumption and the tragedy of the commons is
higher than it was, when the clones in the population were initially distributed according to
truncated exponential distribution.
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Figure 3.12: Beta distribution with parameters [α,β ] = [2,5], set 1, case 1 (a) a = 0, (b)
a = 1, (c) a = 1.5, (a) a = 2.

Figure 3.13: Beta distribution with parameters [α,β ] = [2,5], set 1, case 1, dynamics of the
total population size and total resource with respect to di�erent values of a (di�erent levels of
severity of imposed punishment). One can see that successful management of overconsumers
was possible only when punishment implementation was very high; also, the value of a that
is necessary to manage the over-consumers and prevent resource over-consumption and the
tragedy of the commons is higher than it was, when the clones in the population were initially
distributed according to truncated exponential distribution.
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Figure 3.14: Case 2, set 1, truncated exponential distribution. (a) a = 0, (b) a = 0.1, (c
) a = 0.135, (d)a = 0.2. One can see that with this punishment function, the intensity
of implementation of punishment that is necessary to prevent the tragedy of the commons
is much lower; when a = 0.2, the clones that are able to persist in population under this
punishment function are as over-consumerist as the system can tolerate but at the same
time, they are not so parasitic as to destroy the common resource.

Figure 3.15: Case 2, set 1, truncated exponential distribution. Dynamics of resource and the
entire population size under severe punishment of over-consumers.

support individuals with higher values of over-consumption parameter than in the previous

case but still sustainably coexist with the common resource. In some cases we were also

able to observe brief periods of oscillatory transitional regimes before the system collapsed

(Figure 3.16). This was seen when the punishment was enforced quite strongly but still not
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Figure 3.16: Beta distribution with parameters [α,β ] = [2,2], c ∈ [0,3]. (a) a = 0, (b)
a = 0.1, (c) a = 0.17, (d) a = 0.2. One can see the population going through transitional
regimes before collapse, when the punishment is implemented severely but not quite severely
enough (when a = 0.7). This most probably corresponds to the expected value of parameter
c going through region 3 in the phase parameter portrait of the non-distributed system (see
Figure 4.1).

Figure 3.17: Case 2, set 1. Beta distribution with parameters [2,2]. Changes in total
population size and of the common resource over time.
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Figure 3.18: Beta distribution, parameters [α,β ] = [2,5], c ∈ [0,3]. (a) a = 0, (b) a = 0.1,
(c) a = 0.14, (d) a = 0.2

Figure 3.19: Beta distribution with parameters [α,β ] = [2,5]. Dynamics of resource and
population size over time.

strongly enough (Figure 3.17).

Finally, we evaluated punishment function of the type f (c) = ρ(1− cη), where the

intensity of punishment and reward are accounted for by parameters η and ρ respectively.

We observed that in order to evaluate the expected e�ectiveness of the punishment/reward

system one needs to not only adjust parameters ρ and η (see Figure 3.20) but also be able to

evaluate the expected range of parameter c (see Figure 3.21), since one level of punishment

may be appropriate for one set of initial conditions but not another. r. For instance, as

one can see on Figure 3.21, the time to collapse under �xed values of parameter ρ and η is
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Figure 3.20: f (c) = ρ(1− cη), initial Beta distribution with parameters [α,β ] = [2,2], c ∈
[0,3], η = 1.2.

di�erent for di�erent initial distributions depending on the maximum value of c present in the

initial population. Moreover, in accordance with our hypothesis, indeed the time to collapse

varies depending on the initial distribution of the clones within the population, and the higher

the frequency of overconsumers is in the initial population, the worse the prognosis. For the

examples considered, truncated exponential distribution is more less prone to collapse due to

overconsumption than Beta distribution with parameters [2,5], which in turn is slightly less

prone to collapse than Beta distribution with parameters [2,2].

Discussion

In this Chapter a parametrically heterogeneous mathematical model of consumer-

resource interactions was studied in order to answer the question of whether in�iction of

punishment for over-consumption can successfully prevent, or at least delay, the tragedy of

the commons, i.e., the situation when a shared resource is depleted due to overexploitation.

We evaluated the e�ectiveness of two types of punishment functions, as well as the e�ects

of punishment on heterogeneous populations with di�erent initial composition of individuals

with respect to the levels of resource (over)consumption.

The proposed model was studied analytically in Chapter 2 without incorporating any

punishment/reward for over-/under- consumption. It describes the interactions of a popu-
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Figure 3.21: The importance of evaluating the range of possible values of c f , illustrated
for di�erent initial distribution. Punishment function is of the type f (c) = ρ(1− cη), where
ρ = 0.6, η = 1.2. Initial distributions are taken to be truncated exponential with parameter
µ = 10, and Beta with parameters [2,2] and [2.5]; ρ = 0.6, η = 1.2. The top row corresponds
to c ∈ [0,3]; the bottom row corresponds to c ∈ [0,4].

lation of consumers, characterized by the value of an intrinsic parameter c with a common

renewable resource in such a way that each individual can either contribute to the common

resource (c < 1) or take more than they restore (c > 1). As the value of c increases, the

population goes through a series of transitional regimes from sustainable coexistence with

the resource to oscillatory regime to collapse, eventually committing evolutionary suicide

through exhausting its resources.

First, we identi�ed analytically the conditions leading to the possibility of sustain-

able coexistence with the common resource for a subset of cases using adaptive dynamics.

This method allows to address a question of whether a mutant (in our case, an individual

with a higher value of c ) can invade a parametrically homogeneous resident population of

consumers-producers. We evaluated the e�ectiveness of four types of punishment functions:

linear punishment of the form f (c) = a(1−c); moderate punishment of the form f (c) = a 1−c
1+c ;

severe punishment a(1− c)3, where parameter a denotes the severity of implementation of

punishment on individuals with the corresponding value of parameter c, and function of

the type ρ(1− cη), which allows to separate the in�uence of reward for underconsumption,

primarily accounted for with parameter ρ , and punishment for overconsumption, primarily
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accounted for with parameter η .

We demonstrated that linear punishment is e�ective only until the severity of pun-

ishment\reward matches exactly the per resource growth rate of the population, i.e., when

a≤ r. The severe punishment/generous reward approach is uniformly e�ective, almost irre-

spective of the value of a, and allows invasion of moderate overconsumers only in the small

region of c ≈ 1, when the punishment is not yet severe enough to outweigh the bene�ts of

moderate overconsumption (see Figures 3.16 and 3.19), and the reward does not yet provide

su�cient payo�s in terms of higher growth rates.

Finally, we investigated a functional form of the type f (c) = ρ(1− cη) that allowed

separating the in�uence of punishment overconsumption (parameter η) from that of reward-

ing underconsumption (parameter ρ). Our analysis suggests that just rewarding undercon-

sumers is not enough to prevent invasion by overconsumers and hence one should not expect

to be able to prevent the tragedy of the commons through reward alone (see Figure 3.5 and

3.6). However, an �intervention� can be much more successful if su�cient punishment of

overconsumers is coupled with rewarding of underconsumers (see Figure 3.20).

Adaptive dynamics techniques do not yet allow answering the question of system

invasibility when the mutant is not rare, such as in cases of migration and consequent

invasion by a group. We will address these questions using the Reduction theorem for

replicator equations [69,70].

If each individual consumer is characterized by their own value of the intrinsic param-

eter c, and if this trait value a�ects �tness, then the distribution of clones (a set of individuals

characterized by the same value of c) will change over time due to system dynamics. Con-

sequently, the mean of the parameter will also change over time, a�ecting system dynamics,

since the clones will experience selective pressures not only from the external environment,

competing for the limited resource, but also from each other. The mean of the parameter

can be computed at each time point from the moment generating function of the initial

distribution of clones, which allows to evaluate the e�ectiveness of di�erent types of punish-

ment\reward functions on population composition by tracking how the distribution of clones

changed over time with respect to the mean value of c.



CHAPTER 3. PUNISHMENT/REWARD SYSTEM IN PREVENTING THE TRAGEDY
OF THE COMMONS 48

We once again evaluated the e�ectiveness of the four types of punishment/reward

functions on the evolution of the system depending on the initial distribution of clones

within the population, which were taken to be truncated exponential with parameter µ = 10,

and Beta distribution with parameters [α,β ] = [2,2] and [2,5]. The initial distributions

were chosen in such a way as to give signi�cantly di�erent shapes of the initial probability

density function and should be matched to real data, when it is available. We observed that

depending on the initial distribution, the intensity of implementation of punishment\reward

has to di�er if one is to successfully stop overconsumption, and so in order to be able to

make any reasonable predictions one needs to understand what the initial composition of

the a�ected population is. We hypothesized that the higher the frequency of overconsumers

in the initial population, the more severe the punishment for overconsumption would have

to be, and the more generous the reward; speci�cally, for our examples, we anticipated the

prognosis to be the most favorable for initial truncated exponential distribution, followed by

Beta distribution with parameters [2,5] and then �nally [2,2]. While intuitively obivious, this

e�ect would imply that results obtained analytically from adaptive dynamics can only be

relevant for a subset of cases, i.e. when the invader is rare (such as highly skewed truncated

exponential distribution) but not for the cases of other types of initial distributions.

As anticipated, we observed that severe punishment/generous reward approach was

much more e�ective in preventing the tragedy of the commons than the moderate punish-

ment/reward function, which was particularly important for the cases, when over-consumers

were present at higher frequencies (such as both Beta initial distributions). Speci�cally, we

observed that the level of implementation, a, could be nearly ten times lower for severe pun-

ishment/generous reward system as compared to the moderate punishment function (a≈ 0.2

vs a≈ 2) in order to obtain the same e�ect of selecting against the over-consumers, which

can become a very important factor when there are large costs associated with implemen-

tation of such intervention syustems. This comes not only from the severity of punishment

but also from the fact that moderate punishment allows more time for the over-consumers

to replicate, and thus by the time the punishment has an appreciable e�ect, the population

composition had changed, and the moderate punishment will no longer be e�ective. So, in

punishment implementation one needs to take into account not only the severity of punish-
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ment but also the time window that moderate punishment may allow for the over-consumers

to proliferate. Within the frameworks of the proposed model, moderate implementation

of more severe punishment\reward system is more e�ective than severe implementation of

moderate punishment\reward.

Adaptive dynamics and the Reduction theorem: comparative analysis

In order to address our questions we have used two recently developed methods

for modeling parametrically heterogeneous populations: adaptive dynamics [52] and the

Reduction theorem for replicator equations [69, 70]. Adaptive dynamics allows addressing

the questions of whether a rare �mutant� clone that invade the population using standard

bifurcation theory. The method allows identi�cation of analytical conditions, which can be

conveniently visualized using pairwise invasibility plots (PIPs). However, the method does

not allow addressing questions of system invasibility by clones that are not rare, such as in

cases of invasion by a group.

This question in turn can be addressed using the Reduction theorem for replicator

equations. The method requires the assumption that all �invaders� must be present initially

in the population and fall within some known distribution, and then allows to see which clone

type(s) will be favored over time due to natural selection. The outcome may be di�erent de-

pending on the initial distribution of the clones within the population, as well as on the initial

state of the system, i.e., �xed parameter values. This cannot be taken into account using

adaptive dynamics; however, the system of ODEs that results from the transformation done

using the Reduction theorem is typically non-autonomous; hence no analytical conditions

can typically be obtained using standard bifurcation theory. The two methods therefore can

complement each other; a more detailed comparison of the two methods is given in Table

3.2.

Tragedy of the commons as prisoner's dilemma

The conditions that can lead to the tragedy of the commons can be reformulated as

a game of prisoner's dilemma - while preserving the common resource is in the best interest

of the group as a whole, over-consumption is in the interest of each particular individual. In

the cases, when the decision about the resource is made one individual at a time, tragedy
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Adaptive dynamics Reduction theorem

Goal Model evolution of parametrically heterogeneous populations

Assumptions Clonal reproduction

Separation of evolutionary and ecological time scales

Environment Can be variable and a�ected by changes in population composition
(also known as seascape, or a dancing landscape)

Population Two types: invader and resident Any number of types

Small initial frequency of the
invader

Initial population composition can
be arbitrary

Can introduce new �mutants� All types must initially be present in
the population, even if at a
near-zero frequency

Requires a special form of di�erential equations (x′ = xF(t))
Purpose/

question

Invasion: can a mutant invade the
resident population?

Evolution of a parametrically
heterogeneous system over time
due to natural selection

Uses both theoretical analysis (bifurcation theory) and numerical
solutions

Visual repre-

sentation

Pairwise invasibility plot (PIP) Bifurcation diagram of the
corresponding parametrically
homogeneous system

Concepts Evolutionarily singular strategy:
selection gradient is zero

Evolutionarily singular distribution:
dominance of one type or possible
oscillation between several types
tracked through changes in mean
values

Evolutionarily stable strategy -
singular strategy that cannot be
locally invaded by neighboring
mutants

Distributed evolutionarily stable
state (DESS) - a distribution of
strategies that is resistant to
invasion [15]

Convergence stability - a small perturbation of the population away
from ESS (DESS) will result in those clones having the advantage that
can get the population back to ESS (DESS)

Continuously stable strategy (distribution) - a strategy (distribution)
that is both evolutionarily and continuously stable

Table 3.2: Adaptive dynamics and Reduction theorem
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Figure 3.22: Tragedy of the commons as prisoner's dilemma. The tragedy can be avoided if
the immediate payo�s of all the players are modi�ed through appropriate punishment/reward
function.

of the commons seems to be inevitable. However, Elinor Ostrom [117] observed a number

of cases, when the tragedy could be avoided, if the individuals within the population were

able to communicate with each other. The common thread that runs through many of

her examples is that 1) in small groups the e�ects of overconsumption were immediately

noticeable, since within a small population each individual's actions are more visible than in

larger populations, and 2) punishment was enforced without delay.

From the point of view of game theory, we are dealing with a game of prisoner's

dilemma, and with punishment functions f (c) a�ecting payo�s in such a way as to outweigh

the bene�ts of overconsumption (see Figure 3.22). In this Chapter we were able to demon-

strate that preventing the tragedy of the commons through solely rewarding underconsumers

is unlikely and one also needs to enforce punishment; however, the e�ectiveness of such an

�intervention� is increased when both rewarding and punishment systems are enforced.

In a two-player game of prisoner's dilemma the outcome is easily predicted: the

strategy that gives the individual the higher payo� is going to be favored. However, this

is not necessarily the case when more than two players are involved, since the choices of

individuals may be a�ected not only by their immediate payo�s but also by the actions of

those surrounding them. Therefore, if one is to try and avert the tragedy of the commons
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through punishing over-consumption and rewarding under-consumption, one needs to not

only �nd an appropriate punishment/reward function but also calibrate it to be appropriate

to each individual population.

Alternative punishment/reward systems

Proposed here is just one way to try and modify individuals' payo�s in order to prevent

resource overconsumption - through in�icting punishment or reward that a�ects their growth

rates directly. This approach can be modi�ed depending on di�erent situations to punish or

reward based not just on the intrinsic value of c but on total resource that was consumed by

clone c, i.e., make punishment function of the form f (c,z).

Another approach would be to limit/expand access to the common resource based

on the value of c and impose punishment through making parameter e in the equation for

dz/dt a function of c, i.e., e1 = f (c) or f (c,z). Such a scheme would correspond to making

c a measure of reliability, such as a credit score in �nancial systems.

One can also introduce a policing system, i.e., split the population of consumers

into regular consumers and police. The latter could get rewarded for successfully enforcing

punishment through either faciliated access to the resource, or through direct increase in

growth rates, such as was done in this chapter.

Finally, one can also introduce complementrary cheaper or more easily renewable

resource, i.e., split the resource into two components, and reward consumers for using it,

such as encouraging the use of solar energy or hybrid cars.

The applicability of each approach will of course depend on the particular circum-

stances of each particular situation.



Chapter 4

MIXED STRATEGIES IN RESOURCE ALLOCATION

Abstract

In the previous chapters we have been focusing on the cases when the direction in

which the system will evolve was intuitively obvious, since from the point of view of

maximizing �tness at each time point, it is the most successful over-consumer (i.e.,

an individual with the highest possible value of c) that would be selected. Proposed

here is an alternative model, where the individuals competing for the common resources

have the choice of allocating those resources towards their own reproduction or towards

competition. We demonstrate the importance of individual variation within the system,

emphasizing the claim that there is no one �optimal� strategy that the individuals can

adopt in order to maximize its �tness. We classify the possible dynamic regimes of

the system and demonstrate that if one wants to predict where a system will evolve,

just knowing the rules that govern its dynamics is not enough to make an accurate

prediction. One will also need to know the composition of the population that is

playing by these rules.

Keywords: mixed strategies, resource allocation, individual variation

Introduction

Interactions with resources often determine much of the dynamics of any population,

since there are no unlimited resources available to any population, and since it is successful

competition for the resource that will determine, whether individuals will be able to survive

and reproduce. This consideration in turn raises a question of optimizing resource allocation

strategies for �tness maximization under the constraint of di�erenct selective pressures that

the population may be experiencing at each point in time. The two strategies that that

can be adopted by di�erent species in response to di�erent selective pressures that come

from their environment are either to invest the resources into reproduction, which has been

suggested to be the preferable strategy in unstable environments, or into competition, which

would allow maximizing �tness in more stable conditions [35, 92, 124]. The main criticism
53
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of this theory came from empirical studies: however intuitive the heuristic may seem, the

adaptations that were predicted by either selective strategy were simply not observed in

nature [150�152,168].

The models that were used to make predictions about what environmental conditions

could lead to the dominance of either type of resource allocation strategy assumed population

homogeneity, or at least a level of heterogeneity that would not a�ect the dynamics of the

overall system, since the choice of the dominant strategy was assumed to be determined

solely by the environment. This assumption may be valid if there is su�cient evidence to

believe that the process that is being observed and described takes place on a su�ciently slow

time scale, so that natural selection will simply have had no time to have any serious e�ect

on population dynamics. In this case the assumption of homogeneity is a reasonable enough

simpli�cation. Otherwise, it is reasonable to believe that competition between individuals

within the population poses as much, if not more selective pressures on the entire population

than do interactions with the resources. That is, other members of the population are just as

big a part of the environment as the resource. And if the population composition is changing,

so can the overall dynamics of the population. However, this important aspect of population

dynamics becomes buried under the assumption of homogeneity.

In this paper we construct and study a consumer-producer type model based on two

models previously proposed by [75], where the individuals within a population di�er in their

choice of what proportion of the common renewable resource is allocated towards repro-

duction or competition. Examples of such situations can for instance be clearly observed in

microbial populations, as the bacteria aggregate into bio�lms or disperse depending on envi-

ronmental conditions [23,125]. In this paper we want to investigate the question of whether

either strategy can become intrinsically dominant if a heterogeneous population, where in-

dividuals can choose to invest limited resources primarily into reproduction or competition,

is allowed to evolve over time. Becuase of the importance of both limited resources and

intraspecies competition, we hypothesize that one cannot predict which strategy will come

to dominate over time without understanding both the rules that govern the dynamics of the

system and knowing the initial composition of the population.
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It is important to note that the purpose of this work is not to test what birth,

death, competition or any other rates would render either strategy more or less optimal for

maximizing the population's �tness when consuming a dynamic resource, or to provide a case

study for a speci�c biological system. Instead, we want to construct a conceptual theoretical

framework, where we investigate how the distribution of individuals that can adopt di�erent

strategies evolves over time depending on the initial state of the system. The asymptotic

distribution will show what strategy (if any) will be selected in the process of natural evolution

of the system. The resulting insights can then be �ne-tuned and applied to more speci�c

biological, social or economical systems.

This Chapter is organized as follows: �rst the formulation of the mathematical model

is given. Then, a parametrically homogeneous system is analyzed in order to identify the

possible dynamical regimes of the model. Next, parametric heterogeneity with respect to

strategy choice is introduced. The resulting in�nitely-dimensional system is then reduced

to low dimensionality using the Reduction theorem [69, 70]. The changes in population

composition over time are investigated numerically under the assumption of di�erent initial

distributions of individuals within the population with respect to strategy choices. The

Chapter concludes with a discussion of results and conclusions.

Model description

Consider a heterogeneous population of consumers xα , competing for the common

renewable resource z using two di�erent strategies with di�erent probabilities: the individuals

can either use the resource to invest in high fecundity or to increase environmental carrying

capacity. Each consumer is characterized by its own value of parameter α ∈ [0,1], which

represents the proportion of each strategy that the consumer uses in their interaction with

the resource. That is, the closer α is to zero, the more resource the corresponding individual

uses to invest in fecundity, and the higher the value of α , the more resource in the individ-

ual's disposal goes to increasing the environmental carrying capacity. Since in this model

formulation, the only di�erence between the individuals is the value of parameter α , we �nd

it appropriate to refer to them as α-clones.

When α = 0, each individual of this clone type invests into increasing their fecundity;
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the per capita growth rate is of the form r(c2
z

N+z −φ), where φ is the individuals' average

death rate and N(t) = ∑α xα is the total population size. This growth function can also be

seen as a version of �mass action law�, where population growth is proportional both the

current population size and the amount of total available resource.

When α = 1, each individual of this clone type invests in increasing environmental

carrying capacity. In this case, the per capita growth rate is the logistic-like form r(c1− bN
kz ),

where the carrying capacity is not constant but is rather determined by the amount of the

common dynamic resource z(t). If the individual uses both strategies with the probabilities

α and 1−α accordingly, then the per capita growth rate of each α-clone is α(c1− N(t)
kz(t))+

(1−α)( c2z(t)
N(t)+z(t) −φ).

Derivation of the equation for z′ is given in Chapter 2 on page on page 9.

For the purposes of initial analysis, let us �rst consider the case, when the parameter

is �xed, so that the entire population consists of a single α-clone. (It can be interpreted

as follows: if natural selection has had the time to �pick its winner�, the �nal outcome can

be seen as there being some kind of an �optimal proportion� of each strategy within the

population, if such a proportion exists). This assumption will be relaxed later in the chapter.

In this case, N(t) = xα , i.e., the population is homogeneous with respect to α . The

resulting system becomes:

dN
dt = N(t)α(c1−

N(t)
kz(t)

)︸ ︷︷ ︸
invest in competition

+N(t)(1−α)(
c2z(t)

N(t)+ z(t)
−φ)︸ ︷︷ ︸

invest in proliferation

,

dz
dt = γ−δ z︸ ︷︷ ︸

resource restoration and decay

+eN(t)(
α(1− c1)

N(t)+ z(t)︸ ︷︷ ︸
competitive clones

+
(1−α)(1− c2)

N(t)+ z(t)︸ ︷︷ ︸
proliferative clones

)

︸ ︷︷ ︸
total resource consumed/restored

.
(4.1)

The case, where α = 1, c1≥ 1 was analyzed completely in Chapter 2. The case, where

α = 0, c2 > 0 is brie�y discussed in the Appendix (the model loses biological relevance for

c2 > 1 because trajectories fall outside the positive quadrant for a wide range of initial values).

The values of z are guaranteed to remain in the positive quadrant for e > γ

c2−1+α(c1−c2)
.

Identi�cation and investigation of dynamical regimes that result from a mixture of these two
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strategies with the possibility of having over-consumers in the population is focus of this

chapter.

Analysis

Bifurcation analysis performed on System (4.1) revealed seven possible topologically

non-equivalent types of phase-parameter portraits in the positive half-plane (N,z) andc1, c2,

e,δ , γ-parameter space. Results are also summarized in Figure 4.1, which depicts schematic

slices of complete bifurcation portraits, projected to the planes (α,c1) and (N,z). The

boundary lines correspond to bifurcations of co-dimension 1, and points of intersections of

the lines correspond to bifurcations of higher co-dimensions.

First, we �x α and study the dynamics of the model with respect to variations of

parameter c1, holding all other parameters in the system constant. In Domain 1 of the phase

parameter portrait (when no over-consumption of the resource is allowed, i.e., when c1 < 1,

c2 ∈ (φ ,1)), point A is a global attractor, and the general set of trajectories tend to this point

with time. That is, a niche, which is de�ned here as a state of sustainable coexistence with

a common renewable resource, will successfully be formed regardless of the initial population

size or initial amount of resource available.

Increasing c1 moves us to Domain 2, where there appears a region of bistability.

This implies that successful formation of the niche is going to be possible depending on the

appropriate initial conditions: if the initial population is too large or the initial amount of

the resource is too small, the population will go extinct (see Figure 4.1, e2).

Further increases in c1 move us to Domain 3, where an unstable limit cycle appears

around the stable equilibrium point Aα , thus further shrinking its domain of attraction and

consequently decreasing the range of initial conditions that permit sustainable coexistence

of the population and the resource. So, a niche can be formed successfully but only as long

as the initial conditions fall within the limits delineated by the limit cycle.

In Domain 4, the limit cycle merges with the equilibrium point A, making it unstable.

This implies that any small perturbation from the state of equilibrium will make the population

go extinct.
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Figure 4.1: Bifurcation diagram of the System (1.2), where (a),(b),(c) and(d) represent
(α,c1)-slices of parameter space of the model for e = φ = 1and (e) presents typical (N,z)-
phase portraits whose numeration is identity to those in parameter portraits. In Domain
1, we can observe sustainable coexistence with the common resource, which can also be
interpreted as a successfully formed niche (non-trivial globally attracting equilibrium point
A). In Domain 2, there appears a region of bistability, i.e., a niche will be successfully formed
only depending on the initial population size and the amount of resource. In Domain 3, an
unstable limit cycle is formed around the point A, further shrinking the range of possible
initial conditions that will lead to successful formation of a niche. In Domain 4, point A loses
stability, so any perturbation will lead to population collapse. In Domain 5, the trajectory
becomes an elliptic sector (�the devil's loop�) which implies that a population is bound for
extinction after a su�ciently long amount of time. Domain 6 exists only when the level of
both natural resource restoration and natural resource decay is very high; in this case, the
population can go into a stable oscillatory regime. Finally, Domain 0 corresponds to the
case, when only trivial equilibrium B(0,γ/δ ) is globally attractive, which is of no biological
and dynamical interest.
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Further increasing c1 causes point A to move closer and closer to the origin, �nally

merging with it in Domain 5, which results in the appearance of an elliptic sector (see Figure

4.1, e5) and thus inevitable, albeit delayed, population extinction. Moving into Domains

5 could be interpreted as �the tragedy of the commons'', when overly e�cient consumers

exhaust the common resource and thus cause extinction of the entire population.

Finally, Domain 6 exists for a very narrow range of parameters δ and γ (natural rates

of resource decay and restoration), and only when α is closer 1 than to 0. Within this region, a

regime of stable oscillatory behavior is possible. An interesting e�ect of high natural resource

decay rate is realized here: even though the average level of over-consumption is high, the

resource �slips away� from all individuals alike, regardless of their intrinsic properties, which

allows for the possibility of the sustained oscillatory behavior.

Domain 0 is biologically irrelevant, since it corresponds to the case, when the resource

grows and decays independently of consumers, which within the frameworks of this model

can only happen if the population size is 0.

Also, it is important to note that while the location of the boundaries changes for

di�erent α , the order in which the described dynamical regimes appear remains unchanged.

Bifurcation diagram can be used conceptually to not only understand the possible dynamical

regimes but also to make predictions about possible implications of changes in population

composition, as well as changes in intrinsic properties of individuals within the population.

An important conclusion from the full bifurcation analysis performed on the system is

as follows: while sustainable coexistence with the common resource is possible regardless of

the strategy, the domain of phase parameter space where it can happen decreases as α→ 0.

Thus, in a stabilized population, investment into increasing environmental carrying capacity

would seem to generally be a more successful strategy for sustainable coexistence with the

common resource.

Modeling parametric heterogeneity

Until now we have been assuming that the proportion of clones that adopt either

strategy is �xed, i.e., that α is a constant. It can happen if the system has already had time

to evolve and reach some kind of a steady state, concentrating near the �average� parameter
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value. However, what if the selection process is still ongoing? What if there is no a proper

optimal proportion of each strategy within the population, but rather the population tends

to a distribution of strategies? How will this a�ect system dynamics?

Assume that the initial state of the population can be described by a given dis-

tribution of the parameter α ∈ [0,1], given by Pα(0) =
xa(0)
N(0) . In this case, instead of the

2-dimensional parametrically homogeneous System (4.1), we consider the in�nitely dimen-

sional parametrically heterogeneous system:
dxα

dt = rxα(t)(α(c1− bN(t)
kz(t) )+(1−α)( c2z(t)

N(t)+z(t) −φ)),

dz
dt = p−dz(t)+ re(Et [α](1− c1)+(1−Et [α])(1− c2))

N(t)
z(t)+N(t) .

(4.2)

If the selective forces of the system dynamics are strong enough, we should expect to

see the distribution of clones, Pα(t) =
xa(t)
N(t) to change over time, and the question of what the

�nal distribution will be, or what the transitional regimes will be observed, does not have an

intuitive and predictable answer. This is due to the fact that now the state of the environment

in which the population evolves is determined not only on the amount of resources that the

individuals have to compete for but also by the population composition and individuals

themselves; consequently, di�erent types of clones can impose di�erent selective pressures

on each other, further a�ecting the dynamics. These selective pressures that are imposed on

the population cannot be captured without taking into account population heterogeneity.

The proportion of each type of clone within the population can be tracked through

the expected value of the parameter α , which in the homogeneous system was of course just

a constant but in a parametrically heterogeneous system becomes a function of time. It can

be calculated depending on the initial distribution of α within the population.

Each individual tries to maximize his or her own �tness through allocating the re-

source in such a way as to maximize their �tness, which in the framework of ODEs is

measured as the growth rate per individual, i.e., dxα

dt /xα . If only two clones adhering to 2

pure strategies were interacting, the predominant strategy would be determined only by the

relative value of dxα

dt of each clone at each time point(see Figure 4.2). However, if many

clones are interacting, it is not immediately clear, which strategy will come to dominate
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Figure 4.2: Mixed niches, di�erent growth curves (a) c1 = c2 = 1,φ = 0.01 (b) c1 = c2 =
1,φ = 0.2.

through natural selection, since both population composition and the amount of resources

available would be changing.

In order to investigate this question, let us introduce keystone variables q(t) and g(t)

such that


dq
dt =

z(t)
z(t)+N(t) ,

dg
dt =

bN(t)
kz(t) .

(4.3)

Then the equation for the rate of change of the frequency of each clone xα can be

rewritten as

xα(t)′ = rxα(t)(α(c1−g(t)′)+(1−α)(c2q(t)′−φ)). (4.4)

Integrating both sides of the equation, we get that

xα(t) = xα(0)e[r((αc1−(1−α)φ)t+(1−α)c2q(t)−αg(t))] (4.5)

Then the total population size N(t) becomes:

N(t) =
ˆ

α

xα(t)dα = N(0)
ˆ

α

er(c2q(t)−φ t) · erα((c1+φ)t−c2q(t)−g(t))P0(α)dα

= N(0)er(c2q(t)−φ t) ·M0[r((c1 +φ)t− c2q(t)−g(t))] (4.6)

where N(0) is initial population size, and M0 is the moment generating function (mgf) of

the initial distribution of α in the population, which is a known function if P0 is given. The
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distribution of clones over time is given by

Pα(t) =
xα(t)
N(t)

=
eαΩ(t)

M0[Ω(t)]
, (4.7)

where Ω = r((c1 +φ)t− c2q(t)−g(t)). The mean value of α at time t is

Et [α] =

ˆ
αPt(α)dα =

ˆ
P0(α)

αeαΩ

M0(Ω)
dα =

M′0(Ω)

M0(Ω)
. (4.8)

Putting together all the expressions that have been obtained as a result of these

transformations, we can now reduce inhomogeneous System (4.2) to the following system:

dz
dt = p−dz(t)+ re(Et [α](1− c1)+(1−Et [α])(1− c2))

N(t)
z(t)+N(t) ,

dq
dt =

z(t)
z(t)+N(t) ,

dg
dt =

bN(t)
kz(t) ,

(4.9)

where N(t) is de�ned in 4.6 and Et [α] is the mean value of the parameter α , which can be

calculated from Equation (4.8). Hence, we have reduced the in�nitely-dimensional System

4.2 to a system of only three equations. The keystone variables q(t) and g(t), which were not

present in the original model, are actually the �keystone� quantities that govern the system

dynamics and determine the model solution and all of its the statistical characteristics. The

details on this approach to studying replicator equations can be found in [69,70].

Di�erences in intrinsic properties of the population

In order to investigate, how such a heterogeneous system can evolve over time de-

pending on di�erent initial parameter values, we will consider two di�erent initial distributions

of clones within a population: uniform and truncated exponential (of which uniform distribu-

tion can be considered a special case). The choice of truncated exponential distribution can

be justi�ed through the principle of maximum entropy (MaxEnt): if the mean value of the

random variable is the only quantity that can be estimated from observations or other data,

then the most likely distribution of the variable is exponential with the estimated mean [68].

Given that α is bounded on the interval [0,1], then, according to MaxEnt principle, we should

choose the truncated exponential in this interval as the initial distribution.

Parameter values for the trajectories, illustrated in Figure 4.3a and 4.3c were chosen

explicitly to fall into Domain 1. The two �gures di�er only in the value of parameter φ , which
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Figure 4.3: Trajectories and distribution of clones throughout the completely �altruistic�
population (starting in Domain 1). Even a very slight change in the value of an intrinsic
parameter φ (natural death rate of individuals that invest primarily in fecundity) causes
the system to evolve towards the dominance of one or the other strategy (investment in
fecundity in the top case and investment into carrying capacity in the bottom case). The
total population size and the total amount of resource are virtually the same in both cases.
All parameters held constant at r = 1, e = 1, b = 1, k = 1, N0 = .1, c2 = .2, c1 = .6, d = 1,
p = 1,φ = 0.09. (c-d): all parameters held the same, except φ = 0.14.

is taken to be φ = 0.09 in Figure 4.3a and φ = 0.14 in Figure 4.3c, and nevertheless one can

already observe that the population evolves towards di�erent expected values of α , This is

most evidently re�ected in the graph for how the distribution of clones changes over time

in Figs. 4.3b and 4.3d. This suggests that even a small change in the intrinsic properties

of individuals within the population can have critical e�ect on which way a heterogeneous

population will evolve.

However, the mean value of α does not always reach an equilibrium value, i.e.,

the population does not always tend towards some �xed strategy, whether pure or mixed.

Starting in Domain 6, we can observe that not only do the population size and amount of

resource start oscillating (which corresponds to the system �entering'' inside the domain of

attraction of the stable limit cycle) but so does the Et [α]. So, as the system evolves, no
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Figure 4.4: Trajectories and distribution of clones throughout the population. In this case,
one not only observes stable oscillatory behavior in the amount of resource and total popu-
lation size but also a shift between the two strategies. That is, the population evolves not
towards eventual dominance of just one pure strategy but shifts between two strategies. Ini-
tial distribution is uniform. Initial conditions are such as to fall within Domain 6. Parameters
are r = 1, e = 1, b = .9, k = 1, φ = 1.2, N0 = .1, c2 = 8.75, c1 = 9, d = 24, p = 7.72.

�nal distribution of clones gets �xed over time (Figure 4.4). This suggests that the standard

approach using a �xed value of the parameter α (or its mean value) can yield incorrect

predictions within this domain of the model parameters and, hence, is not justi�ed in general

case.

Di�erences in initial composition of the population

Now we would like to investigate how the changes in initial distribution of clones

will a�ect the direction in which the population will evolve. That is, even if the intrinsic

properties of the individuals within the system are stabilized (that is, birth and death and

resource consumption rates are �xed), what are going to be the e�ects of selective pressures

that are imposed by other individuals in the population? Or in other terms, how will the

evolution of the system be a�ected by the strategic choices made by others?

In Figures 4.5 and 4.6, one can observe the changes in the population size N(t),

resource amount z(t) and the mean value Et [α] over time under di�erent initial distributions,

given that all other initial conditions were the same for both cases.

In Figure 4.5, part (a) corresponds to initial uniform distribution, part (b) to initial

truncated exponential distribution with parameter µ = 1.1, and part (c) to initial truncated
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Figure 4.5: The e�ects of di�erence in the initial composition of the population with respect
to di�erent strategies. Di�erent initial distributions were chosen to be (a) uniform initial
distribution (b) truncated exponential initial distribution, with parameter µ = 1.1 (note:
population crashes after time t = 32) and (c) truncated exponential initial distribution, with
parameter µ = 10.1. Initial conditions are such as to fall within Domain 1. All parameters
held constant at r = 1, e = 1, b = 1, k = 1, N0 = .1, c2 = .2, c1 = .6, d = 1, p = 1, φ = 0.14.
One can see that the initial composition of the population can have dramatic e�ects on the
direction in which the population will evolve over time. (Note: the values of µ were chosen
arbitrarily for illustrative purposes).

Figure 4.6: The e�ects of di�erence in the initial composition of the population with respect
to di�erent strategies. Di�erent initial distributions were chosen to be (a) uniform (b)
µ = 10.1 and (c) µ = 30.1. Other parameters held constant at r = 2, e = 2, b = 1, k = 1,
N0 = .1, c2 = .2, c1 = 2, d = 1, p = 1, φ = 0.05.

distribution with parameter µ = 10.1. One can see that the trajectories look strikingly

di�erent as the population evolves, passing through di�erent regions of the phase-parameter

space. Noticeably, in Figure 4.5b, the population size crashed at t = 32, while in parts a and

c one could observe stable coexistence with the resource. This e�ect is due to the trajectory

moving outside of domain of attraction of the non-trivial equilibrium point A in Figure 4.5b.

Discussion

Ecological systems consist of interdependent diverse entities that can adapt to changes

in their environment. This ability to adapt is rooted in their diversity, as individuals within

the system can a�ect each other and thus also the direction in which the system evolves.
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The ability of individuals to �co-evolve� with their resource has been termed �niche con-

struction� [116], and it is possible if the resource is also dynamic. The study of complex

interactions between a heterogeneous population of individuals that can not only consume

their resource but also contribute to its restoration, and identi�cation of the di�erent regimes

that the system can go through as the population evolves, is the focus of this Chapter. Sus-

tainable coexistence with the common resource (successful formation of a niche) is accounted

for by existence of the non-trivial equilibrium point A. Its coordinates (the population size

and the corresponding amount of common resource available for everyone) change as the

parameters α (proportion of individuals that choose to invest into increasing environmental

capacity) and c1 (niche-construction abilities of the carrying-capacity oriented individuals)

are varied.

At �rst, full bifurcation analysis was performed on the model, where the population

was assumed to be homogeneous. This was done to identify all possible dynamical regimes

in the system to then evaluate the e�ects of natural selection on population heterogeneity

within the same model, i.e., to see how these dynamic regimes will change in a parametrically

heterogeneous system. The obtained bifurcation diagram describes the possible dynamical

regimes of a population that is homogeneous with respect to α .

In order to investigate how a heterogeneous population will behave, we applied the

Reduction theorem, which allows reducing an otherwise in�nitely dimensional System (4.2)

to a 3-dimensional system of non-autonomous ODEs.

The approach can be summarized as follows: assume each individual within the

heterogeneous population is characterized by their own intrinsic value of the parameter α .

Assume also that the individuals can be grouped in such a way as to fall into some distribu-

tion that is known at the initial time moment. Replacing the constant average value of α of

a homogeneous population with an expected value of α at each time moment, which can be

tracked through the moment generating function of the initial distribution, allows observing

the mean ofα moving across (traveling) through the phase parameter portrait as the popula-

tion evolves. This approach to studying the dynamics of the parametrically inhomogeneous

system was justi�ed by the Reduction theorem.
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Several interesting e�ects were observed that allow answering, at least in part, the

questions posed in the beginning of this work. We were able to observe that the direction

in which the population will evolve is largely determined by what domain in the phase pa-

rameter space one starts in. We also showed that the strategy towards which the population

eventually evolves is not always a pure strategy. Moreover, we have been able to observe

regimes when the mean value of α oscillates sustainably, as do population size and amount

of resource (this occurs when the system enters Domain 6). Also, one frequently can observe

oscillatory behavior before a strategy stabilizes and the mean of α reaches an equilibrium.

However, sustained oscillations can in fact signal that population collapse is approaching,

since this most often occurs when the trajectory passes through Domain 2 (unstable limit

cycle) to Domain 4 (unstable node), and from there either to directly to the origin (immediate

extinction), or to Domain 5 (elliptic sector).

Full bifurcation analysis of System (4.2) reveals analytically that the population can

sustainably coexist with the resource for all 0 < α ≤ 1. The parametric space of sustain-

able coexistence with the resource decreases if α decreases from α = 1 to α = 0, which

can be interpreted as suggestive of the fact that investment into environmental carrying

capacity would generally be a more successful strategy for sustainable coexistence with the

common resource. However, this observation does not necessarily hold for heterogeneous

systems: starting with di�erent initial distributions, even within the same domain on the

phase-parameter portrait, can lead to di�erent system behaviors and di�erent strategies be-

ing favored by natural selection in the long run. We could observe it by calculating numerical

solutions of the system, with uniform initial distribution of strategies within the population,

and truncated exponential initial distribution (parameter α bounded on the interval [0,1])

with di�erent parameters of the distribution (Matlab code used is available upon request).

As one can see in Figures 4.4 and 4.5, even when everything else is equal, the direction in

which the system will evolve depends greatly on the initial distribution.

Some empirical examples

Examples of population heterogeneity and intraspecies interactions driving the pop-

ulation towards one or the other strategy can be observed in many systems and on many

levels of selection.
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On the molecular level, Voytek and Joyce [163] reported that continuous in vitro

evolution can be observed as 2 di�erent �species� of RNA enzymes are made to compete

against each other for common limited resources (in this case substrates). In the described

experiment, the substrates were necessary for ampli�cation of RNA. The authors observed

that as the system evolved, so did the enzymes, whose biochemical characterization revealed

distinct di�erences in their strategies: enzymes that invested in being e�cient rather than

proliferative, reacted with the substrate nearly hundredfold faster than the other; highly

proliferative selected enzymes, while not as reactive, produced 2-3 times more progeny.

Elser et al. [39] investigated the question of resource management at the cellular

level, looking particularly at competition for the common resource among di�erent types of

tumors. The authors found that in some tissues, such as in colon and lung, the environment

is such as to promote selection of most rapidly proliferating clones, while conditions in other

organs may favor the clones with lower mortality rate. This suggests that even within the

same tumor, di�erent conditions might favor evolution towards di�erent strategies, an idea,

which will be investigated in detail in Chapter 5. This, of course, is only possible because

of tumor heterogeneity, i.e., the fact that tumors are genetically heterogeneous, composed

of populations of genetically diverse cells [63,100,153] that in addition to competing for the

common resources also impose selective pressures on each other.

Another example of selection on the cellular level has been shown by Chikatsu et

al. [19]. The authors studied two types of rat embryo �broblasts and were able to observe

that not only did conditions in the culture a�ect selection in cell clones with respect to

growth strategy but also that presence of one type of clones a�ected �tness of another type

of clones under the same environmental conditions.

On the organismal level, distinct ecological strategies emerge and evolve in unicel-

lular organisms like bacteria. Denef et al. [33] observed that in natural acidophilic bio�lm

communities two genotypic groups of Leptospirillum bacteria are unequally represented in the

bacterial population during di�erent stages of colonization. At the early stages of coloniza-

tion, the environmental resources (compatible solutes) are directed towards osmoprotection

(increasing environmental carrying capacity), while in the successive stages more resources
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are redirected towards metabolism and investing in fecundity.The importance of intraspecies

variation and its e�ects on biodiversity has also been documented in multicellular organisms,

such as forest trees [20], malaria mosquitoes [134], hylid frogs [1], Eurasian badgers [93], as

well as in human social �ecological systems� [53].

These empirical observations, coupled with the theoretical predictions of the con-

ceptual model that was proposed here, lead us to make the following important conclusion:

when predicting where the system will evolve, just knowing the rules that govern its dynamics

might not be enough to make a more or less accurate prediction. One needs to also know

the composition of the population that is playing by these rules. This is true even in the

case of perfect information, i.e., when every individual in the population knows the rules and

plays to maximize his or her own �tness.

Conclusions

Variability that is heritable and that a�ects �tness is what makes natural selection

possible. In any ecological system, the environment is composed not only of the resource but

also of other individuals in the same population, which may often impose no less of a selective

pressure than the pressures of resource limitations or interactions with the members of other

populations and even of other species. Therefore, if one wants to make predictions about

any evolving system, one has to take into account population heterogeneity � assumption of

homogeneity is an oversimpli�cation.



Chapter 5

BIOLOGICAL STOICHIOMETRY IN TUMOR MICROENVIRONMENT

Abstract

In this chapter the conceptual framework, developed in Chapter 4, is applied to cancer.

Whatever the intrinsic properties each individual cell within the tumor may possess,

it �rst needs to survive before it can turn to proliferation. Depending on nutrient

availability, tumor as a whole may evolve towards primarily competitive or proliferative

phenotype. According to the growth rate hypothesis (GRH), increased phosphorus avail-

ability in the ecosystem, such as tumor microenvironment, may shift evolution within

the tumor towards a more proliferative and thus potentially more malignant phenotype.

Here we show that limiting phosphorus availability thus might promote intracellular

competition within the tumor, delaying disease progression, using an in�nitely dimen-

sional system of ordinary di�erential equations that are reduced to low dimensionality

using the Reduction theorem. We also show that tumors respond di�erently to changes

in their microenvironment depending on initial distribution of clones within the tumor,

regardless of its initial size, which suggests that composition of the tumor as a while

needs to be evaluated in order to maximize therapy e�cacy.

Keywords: tumor heterogeneity, growth rate hypothesis, resource allocation, microen-

vironment manipulation

Introduction

One can think about cancer as an ecological system: a tumor is a heterogeneous

population of cells that compete for space and nutrients with each other and with somatic

cells in the environment of the human body [25, 71, 100, 109]. Whatever the cells' intrinsic

properties may be, whether it is increased proliferation or low mortality, they need nutrients

to survive before they can proliferate and further invade the body.

Carbon is the main energy source for all cells and is required for cell survival before

proliferation. Phosphorus is the source of cell building materials for the cells, going into

70
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creating DNA, RNA, ribosomes, etc. And even more importantly, unlike other microelements,

it is not replaceable. Experimental evidence suggests that indeed, when the amount of

phosphorus in the tumor microenvironment goes up, so does tumor growth [65]. However, it

seems like it is not just the absolute amounts of carbon and phosphorus that are important

for cell growth; instead, it is a stoichiometric ratio of carbon to phosphorus that the cell is

sensitive to. In fact, it has been proposed that increased availability of phosphorus relative to

carbon favors expansion of fast growing organisms, a conjecture that has become known as

the growth rate hypothesis (GRH) [38] and which has been partially experimentally validated

for cancer cells [39].

Tumors are complex adaptive systems, composed of interconnected and interdepen-

dent genetically diverse cells. Adaptive ecosystems are too complex to be controlled but

changing the environment in which its inhabitants interact may give a way to harness the

system, directing its evolution in the more desired direction. In order to maximize their �t-

ness, i.e., the overall growth rates re�ected through the di�erence between birth and death

rates, and depending on selective pressures from the environment, individuals within one

population can invest either in increasing their fecundity (proliferative clones) or in competi-

tion. Proliferative clones would be investing primarily in maximizing their growth rates, while

competitive clones would be investing in minimizing their death rates. Now assume that a

tumor is a population of cells, where each individual cell is characterized by its own strategy

choice (competitive or proliferative). Since the entire population in itself is heterogeneous,

di�erent strategies may be represented in di�erent proportions at di�erent times, depending

on the selective pressures that the population experiences as a whole. The clones that invest

primarily in reproduction may be favored under one set of micro-environmental conditions,

making the tumor more proliferative, and clones that invest primarily in competition and

not proliferation could be favored under another set of micro-environmental conditions. In

this Chapter we would like to investigate what these micro-environmental conditions may be

from an ecological perspective, and how/whether this understanding can be used to design

better cancer therapies.

In this Chapter a mathematical model is used to evaluate the e�ects of stoichiomet-
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ric ratio of carbon to phosphorus on tumor growth and in particular, we will try to evaluate

whether manipulation of this ratio can direct evolution of the tumor towards primarily com-

petitive or proliferative phenotype.

Model description

Let us assume that the tumor cell population is composed of cell clones that use the

common resources z, which will be de�ned and discussed in detail in subsection , to invest

either primarily in reproduction or in competition. The subpopulation of more proliferative

clones is assumed to grow at rate rp
z

N+z2 and die at some constant rate d1. The functional

form for the growth term is chosen in such a way as to incorporate the assumptions that

1) all the available resource is directly invested into increasing the number of cells and 2)

that there exists some optimal relationship between carbon and phosphorus, such that excess

P would in fact slow down cell growth, as was observed in other ecosystems [13]. This is

accounted for in the model with z2. The growth rate of more competitive clones is accounted

by the functional form rc(1− N
z ), where the amount of resource, which in itself is a dynamic

variable, determines the carrying capacity for this subpopulation.

Now let us introduce parameterα ∈ [0,1], which represents the proportion of total

resources z that are used to invest in competition, thus e�ectively leaving (1−α) proportion

of total resources for proliferation. Total population size is then given by N(t) = ∑A xα , and

the equation to describe the dynamics of the entire cell population becomes

dxα

dt
= xα(t)(αrc(1−

N(t)
z(t)

)︸ ︷︷ ︸
competitive

+(1−α)rp(
z(t)

N(t)+ z(t)2 −d)︸ ︷︷ ︸
proliferative︸ ︷︷ ︸

total cell growth

) (5.1)

where N(t) = ∑α xα .

Each clone xα(t) within the population tries to maximize its �tness by investing

the available resources z(t) either in increasing reproduction or decreasing mortality. As the

population grows and/or as environmental conditions change (i.e., z(t) changes), the clones

are selected depending on the strategy that maximizes their overall growth rate, re�ected

through the value of dxα(t)/dt. The transitional regime in terms of population composition

with respect to the strategies occurs at the intersection point of the two growth functions,
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Figure 5.1: Schematic representation of the interaction between the two growth strategies.
Depending on the amount of resource z, either the competitive or the proliferative strategy
clones have higher growth rates. At the intersection of the two curves neither strategy
gives the clones an advantage, regardless of the distribution of clones in the population (i.e.,
regardless of the value of α).

i.e., when z(t)
N(t)+z(t)2 −d = 1− N(t)

z(t) , which occurs when

N(t) =
z(t)
2rc

(rc +d− rcz(t)+
√

d2 +2drc(1+ z(t))+ rc(−4rp + rc(1+ z(t)2))

At this point neither growth strategy gives a competitive advantage to either clone type.

Composite resource and biological stoichiometry

In order to evaluate the e�ects of di�erence in elemental composition of the environ-

ment on growth and proliferation of its inhabitants, a simple ratio of carbon to phosphorus

has been previously used [13, 38, 103]. However, while this functional form may be valid for

the cases when the amounts of C and P are comparable, it becomes invalid at the extremes,

i.e., when either of the elements is orders of magnitude more abundant than the other. More-

over, it predicts the same impact on growth rates regardless of whether there is very little

of either element, or when there is a lot, which is not plausible. In order to address these

two issues we propose using not the simple ratio of C : P but a saturation function of the

form z = CP
C+P . When the amounts of carbon and phosphorus are comparable, this function

can be approximated by the traditionally used C : P; however, this particular functional form

also allows to make more plausible predictions and eliminate inconsistencies that would have

otherwise been observed when the amounts of C and P are very di�erent.

The full model

The equations for the changes in extracellular and intracellular phosphorus concen-

trations are derived from chemostat equations (see, for instance, [81]). The extracellular
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phosphorus is replenished from the blood stream at a rate g2(P0−Pex), is consumed by the

cells based on concentration di�erences between extracellular and intracellular P at a rate

mN( Pex−Pin

k2+Pex−Pin ) and is replenished also through cell death at a rate dNPin. Extracellular

phosphorus is consumed at a rate mN( Pex−Pin

k2+Pex−Pin ), and the di�erences in resource uptake

rates by di�erent clones are captured through the term m = mp(1−α)+mcα. The absolute

amounts of nutrients are then recalculated into concentrations, yielding the following system

of equations:



dxα

dt = xαFα(t)

dPex

dt = g2(
P0−Pex(t)

N(t)
)︸ ︷︷ ︸

external in�ow

−m
Pex(t)−Pin(t)

k2 +(Pex(t)−Pin(t))
−Pex(t)Et [F ]︸ ︷︷ ︸

chain rule︸ ︷︷ ︸
phosphorus uptake by the cells

+ dPin(t)︸ ︷︷ ︸
P recycled from dead cells

dPin

dt = m
Pex(t)−Pin(t)

k2 +(Pex(t)−Pin(t))
− Pex(t)Et [F ]︸ ︷︷ ︸

term derived from chain rule︸ ︷︷ ︸
phosphorus uptake by the cells

(5.2)

where

z = CinPin

Cin+Pin

Fα(t) = αrc(1−
N
z︸ ︷︷ ︸

competitive

)+(1−α)rp(
z

N + z2 −d)︸ ︷︷ ︸
proliferative︸ ︷︷ ︸

total cell growth

,

m = mp(1−α)︸ ︷︷ ︸
proliferative

+ mcα︸︷︷︸
competitive︸ ︷︷ ︸

rate of phosphorus uptake by all cells

,

Et [F ] = Et [α]rc(1− N
z )+(1−Et [α])rp(

z
N+z2 −d),

Et [α] = ∑αxα

N(t) .

Detailed derivation of the model is given in Appendix. The conceptual structure of

the model is captured in Figure 5.2 and the meanings of all variables and parameters are



CHAPTER 5. BIOLOGICAL STOICHIOMETRY IN TUMOR MICROENVIRONMENT 75

Figure 5.2: Diagram of mechanism described in System 5.2

Parameter Meaning Range

α Proportion of competitive cells in the population α ∈ [0,1]
rc Growth rate of competitive cells rc > 0
rp Growth rate of proliferative cells rp > 0
d Natural cell death rate d > 0
g2 Scaling constant for P in�ow g2 > 0
P0 Gradient constant for amount of external P in�ow P0 > 0
k2 Saturation constant for P uptake by the cells k2 > 0
h Scaling constant for optimal C:P ratio h > 0

mc Phosphorus uptake rate of competitive cells mc > 0
mp Phosphorus uptake rate of proliferative cells mp > 0

m = mc(α)+mp(1−α) Total carbon uptake rate m > 0
Cin Concentration of intracellular carbon Cin > 0

Table 5.1: Summary, brief description and range of all parameters in System 5.2
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summarized in Table 5.1.

Modeling parametric heterogeneity

Since the goal of the proposed model is to evaluate the changes in external nutrient

supply, and particularly variations of parameter P0 on the changes in the distribution of cell

phenotypes within the tumor, we need a way to measure how the composition of the cell

population changes over time. Assume that di�erent clones within the tumor are represented

in di�erent proportions depending on the value of parameter α , falling within some initial

known distribution. If the choice of strategy with respect to interactions with the resource

(investing in competition or proliferation) a�ects �tness, then each subpopulation of clones,

characterized by α , is going to be growing at di�erent rates. Consequently, the distribution

of clones within the entire cell population will be changing over time, and so will the expected

value of α . In its current form, System 5.2 is in�nitely dimensional. However, let us introduce

keystone variables q(t) and g(t) such that
q(t)′ = rc(1− N(t)

z(t) )

g(t)′ = rp(
z(t)

N(t)+z2(t))

(5.3)

Then the equation for the total population of cells xα(t) can be rewritten as

dxα(t)
xα(t)

= αq′(t)+(1−α)(g′(t)−d) (5.4)

Integrating equation 5.4 yields the following explicit expression for xα in terms of keystone

variables g(t) and q(t) :

xα(t) = xα(0)eαq(t)+(1−α)(g(t)−dt) (5.5)

Then the full population size becomes

N(t)=
ˆ

α

xα(t)dα =N(0)
ˆ

α

eg(t)−dteα(q(t)−g(t)+dt)Pα(0)dα =N(0)eg(t)−dtM0[q(t)−g(t)+dt]

(5.6)

where Pα(0) =
xα (0)
N(0) and M0 is the mgf of P0, so that the �nal distribution of clones over

time becomes

Pα(t) =
xα(t)
N(t)

=
eα(q(t)−g(t)+dt)

M0[g(t)−q(t)+dt]
(5.7)
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With these transformations, the otherwise in�nitely-dimensional System 5.2 can now be

rewritten as a system of four non-autonomous ODEs:

Pex(t)
dt = g2(

P0−Pex(t)
N(t) )−m Pex(t)−Pin(t)

k2+(Pex(t)−Pin(t)) −Pex(t)Et [F ]+dPin(t)

Pin(t)
dt = m Pex(t)−Pin(t)

k2+(Pex(t)−Pin(t)) −Pex(t)Et [F ]

dq(t)
dt = rc(1− N(t)

z(t) )

dg(t)
dt = rp(

z(t)
N(t)+z2(t))

(5.8)

where the mean value of parameter α is given by

Et [α] =

ˆ
αPα(t)dα =

ˆ
α

eα(q(t)−g(t)+dt)

M0[g(t)−q(t)+dt]
=

M′0[g(t)−q(t)+dt]
M0[g(t)−q(t)+dt]

, (5.9)

and total population size is de�ned above. Population composition with respect to strategy

choice can now be tracked through changes in the mean of α such that the higher the value

of Et [α], the more competitive clones there are in the population, and therefore the fewer

cells remain that will invest primarily into proliferation.

Results

First we evaluated the hypothesis that increased phosphorus in�ow could shift pop-

ulation composition towards more proliferative phenotype. This is measured through the

expected value of parameter α as P0 is increased. The higher the value of α , the larger the

proportion of cells that invest primarily in competition. The initial conditions are taken to be

N0 = 2, Pex(0) = 10, Pin(0) = 9, Et [α] = 0.05, q(0) = g(0) = 0 and all the parameter values

are taken to be d = .03, rp = .2, rc = .2, mp = .2, mc = .2, P0 = 10, h = 1, k2 = 1.1, g2 = 1,

unless indicated otherwise. Numerical solutions were calculated until tmax = 6000. The initial

distribution was taken to be truncated exponential on the interval α ∈ [0,1]. Matlab2010a

code used is available upon request.

Numerical solutions to System (5.8) support our hypothesis that increasing avail-

ability of extracellular phosphorus indeed creates an environment that favors expansion of

more proliferative clones, which is re�ected in the changes in the expected values of α , and

which can also be observed in the changes in the density Pα(t) (see Figure 5.3). When the

value of P0 is increased beyond 30, one can observe unexpected transitional regimes. The

population size �rst decreases brie�y and then increases again, now composed of a di�erent
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Figure 5.3: The higher the rate of external P in�ow, the longer it takes for the population
to go back to primarily competitive phenotype until �nally it just remains composed mostly
of proliferative clones, with short-lived �bursts� of competitiveness.

type of cell clones, as can be evaluated through the changes in the mean of α . Finally, the

most unexpected e�ect is observed when P0 > 40. In this case one starts to see oscillations

in population composition and size over time in such a way that the population composition

never returns to primarily competitive phenotype. Interestingly, this e�ect is only observed

then proliferative clones grow according to Holling type III function (exhibit the property of

futile metabolism at very high ratio of C to P); assumption of Holling type II functional form

(regular saturation function), i.e., when N′1 = rpN1(
z

N+z −d), did not predict saltatory tumor

growth regardless of the concentration of extracellular phosphorus.

This e�ect can be seen also in Figure 5.4, where the changes in the mean value of α

are recorded over time with respect to varying P0; one can clearly see that while at low P0 the

population always eventually returns to predominantly competitive phenotype (Et [α]→ 1 ),

at very high P0 it remains composed primarily of proliferative clones (Et [α]→ 0).
Di�erences in growth rates and nutrient uptake rates

We evaluated changes in population dynamics in response to di�erences in nutrient

uptake rates for both clone types. When more competitive clones have higher nutrient uptake

rates, it does not a�ect their growth rate signi�cantly, since growth limitations are imposed by

carbon availability, which in our model is kept constant (Figure 5.6). However, interestingly
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Figure 5.4: Changes in the mean of α vs time vs external phosphorus in�ow.

and counter-intuitively, when proliferative clones have higher nutrient uptake rates, it does

not give them a competitive advantage. This e�ect can be explained in the following way:

even though more proliferative clones take up more phosphorus, unless they have enough

carbon to meet the energy demands for proliferation, they cannot use it, thus engaging in

what can be termed �futile metabolism�. The model suggests that proliferative clones seem

to be most successful when their uptake rates match those of competitive clones, and so

targeting phosphorus transporters would in fact promote proliferative phenotype rather than

hinder it.

Next, we evaluated the e�ects of changes in intrinsic growth rates of either clone

type on the overall population composition (Figure 5.6). Even though predictably, increasing

growth rates of more competitive clones shifted the population composition towards being

dominated by competitive phenotype, the overall �nal population size remained the same

regardless of population composition. This suggests that the size of the tumor is not a

good predictor of population composition, and the distribution of clones within the tumor

needs to be evaluated, since depending on the initial distribution of clones the tumor may

respond di�erently to any micro-environmental changes, whether it is nutrient availability or

the presence of therapeutic agents.

Di�erent initial distributions

Since tumors are evolving heterogeneous systems, the overall composition of cell

population may vary over time, and hence the population as a whole may respond di�erently
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Figure 5.5: Changes in the mean of a and the full population size at P0 = 20 with respect
to di�erences in growth rates. As one can see, it is possible for the population composition
to be very di�erent without it being re�ected in the overall population size.

Figure 5.6: Changes in the mean of a and the full population size at P0 = 50 with respect to
di�erences in nutrient uptake ratesAs one can see, proliferative clones are either practically
una�ected or at a loss regardless of the relative values of parameters mc and mp, which
suggests that targeting phosphorus transporters might in fact give advantage to proliferative
clones regardless of which clone type may have this adaptation.
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to the same set of micro-environmental conditions. We evaluated this e�ect through varying

the initial distribution of clones within the population. We observed that under exactly the

same set of initial conditions and under high �xed rate of phosphorus in�ow, the population

as a whole may or may not evolve towards to more proliferative phenotype, depending on the

initial distribution of cell clones in the population with respect to α (Figure 5.7). Speci�cally,

we observed that the higher the proportion of more proliferative clones in the population,

the more phosphorus is required to shift population composition towards being dominated

by a more proliferative phenotype. This is due to the fact that the direction in which the

system evolves depends not only on the external factors but also on population composition,

since cells within the population impose as much of a selective pressure on each other as is

imposed on them by their extrinsic environment.

This result suggests the following therapeutic approach: one can �rst try to quantify

level of heterogeneity within the tumor with respect to competitive vs. proliferative pheno-

type and based on this information evaluate the extent of micro-environmental manipulation

that would be necessary to shift the composition of the tumor away from the proliferative

phenotype.

Discussion

Tumors are adaptive ecological systems. They consist of heterogeneous populations

of cells that compete with each other and with somatic cells for space and nutrients, both of

which can be limited. Whatever properties the cells may have acquired through mutations,

they �rst need nutrients to survive, and may adapt di�erent strategies to achieve this goal.

Speci�cally, they can choose to invest the available resources primarily in proliferation or in

competing with each other. Competitive cells might be getting too distracted with com-

petition thus investing less energy and resources in proliferation, which could delay disease

progression. Depending on the environment, in which these interactions occur, one might

be able to shift the overall population composition towards one or the other phenotype.

We propose focusing on phosphorus as one of the key elements of the cell microen-

vironment, and speci�cally, on stoichiometric ratios between phosphorus and carbon, which,

according to the growth rate hypothesis (GRH), may determine which clone type will be
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Figure 5.7: Evolution of the system under the same set of initial conditions (P0 = 40) but
with di�erent initial distributions of clone types within the population. The results suggest
that just knowing the state of tumor microenvironment is not enough to be able to predict
in which direction the population will evolve � one must also know the composition of the
population.

favored by natural selection as the system evolves over time [38]. We hypothesize that in-

creased availability of phosphorus in the cell microenvironment might shift cell population

composition within the tumor towards a more proliferative and thus potentially malignant

phenotype. The hypothesis is tested using an in�nitely dimensional system of ODEs, which

is reduced to low dimensionality using the Reduction theorem for replicator equations [69].

We assume that each cell within the population is characterized by a value of param-

eter α ∈ [0,1], where α = 1 corresponds to using the resource to invest solely in competition,

i.e., maximizing their �tness through decreasing death rates, and α = 0 corresponds to using

the resource to invest solely in proliferation, i.e., maximizing their �tness through upregu-

lating growth rates, with the possibility of the full spectrum of mixed strategies. Changes

in population composition are tracked through the changes in the mean value of α as the

system evolves over time.

We were able to demonstrate that indeed, increased in�ow of extracellular phosphorus

promotes a shift towards more proliferative phenotype largely in accordance to GRH, which
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was also experimentally suggested by [39], where the authors found that in some tumors

the intracellular concentration of phosphorus was indeed signi�cantly higher than both in

other tumors and in somatic cells. It is possible that di�erent tumors that were sampled

by the authors having been evolving towards the more competitive or more proliferative

phenotype depending on micro-environmental conditions in each particular organ of tumor

origin. Evolutionary and ecological perspective on tumor development also suggests that

sampling a tumor at just one time point might not give accurate information about the stage

of development of the tumor since it is an evolving system that changes both genotypically

and phenotypically over time.

We were also able to observe an interesting e�ect at very high concentrations of

extracellular phosphorus: both tumor size and composition �uctuated but not in a steady os-

cillatory manner. Instead, the population composition evolved primarily towards proliferative

phenotype but with occasional temporary appearance of more competitive cells (Figure 5.4);

in terms of tumor size, these bursts correspond to temporary decreases in the total popula-

tion size (see Figure 5.3). A possible clinical manifestation of this e�ect could be salutatory

tumor growth, which can be observed in several tumor types, such as breast cancer [130,169]

and hemangioblastomas [3, 5, 148]. In our model, the concentration of metabolically avail-

able carbon is assumed to be constant, simulating the conditions in the brain. Our model

thus proposes an explanatory mechanism in terms of changing composition of cells within

the tumor, which can manifest itself as �uctuations in tumor size. Even though within the

frameworks of our model this e�ect comes from increased nutrient availability, it is possible

that these �uctuations that come from changes in cell composition can be caused by other

micro-environmental changes that are not yet understood. Also, interestingly, this e�ect of

salutatory tumor growth could be observed only if the assumption of futile metabolism was

incorporated, i.e., when growth rate of proliferative clones started to decrease if the amount

of phosphorus available per carbon was too high. It was not observed under the assumption

of stabilized growth rate (Holling type II growth function vs Holling type III).

We also evaluated the e�ects of upregulation of nutrient transporters on the direction

in which the cell population evolved. We observed that increasing nutrient uptake rates of the
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competitive clones did not give them much of a competitive advantage, since their growth

is limited also by carbon concentration, which was held constant. However, unexpectedly,

increasing nutrient uptake rates of proliferative cells achieved the e�ect of actually putting

proliferative clones at a disadvantage (Figure 5.6). This could be explained by the fact

that after taking up more phosphorus than they can use, which could also be restricted by

availability of carbon in the cell microenvironment, the cells might be starting to engage

in what can be seen as �futile metabolism�, i.e., wasting energy on pumping out excess

phosphorus instead of proliferating. Proliferative clones were demonstrated to have the

highest advantage when their rates of nutrient uptakes were matched by those of competitive

clones, suggesting that targeting phosphorus transporters therapeutically would be counter-

productive. Instead, one should attempt to encourage even more competition between tumor

cells so that the resources that are available to the cells are spent on competing and not on

proliferating or developing therapeutic resistance.

Next, we evaluated the e�ects of changing growth rates of di�erent cell types. We

observed that while population composition with respect to each strategy may be vastly

di�erent, depending on which clone type has a higher growth rate, the �nal population size

that was reached was the same regardless of population composition (Figure 5.6). The

signi�cance of this observation lies in the fact that the entire cell population may respond

very di�erently to changes in microenvironment depending not on its size but on its initial

composition.

We evaluated the e�ect of changes in the microenvironment on population compo-

sition when di�erent clones are present in di�erent proportions at the initial time moment.

We observed that under the same set of micro-environmental conditions, the cell population

did or did not evolve towards the more proliferative phenotype, depending on how many

of the proliferative clones there were initially present in the population (Figure 5.7). More

speci�cally, the more skewed the initial distribution of clones was to α = 1, the more extra-

cellular phosphorus was required to shift population composition towards a more proliferative

phenotype. This e�ect is due to population heterogeneity: if the cell population were ho-

mogeneous, a micro-environmental perturbation would have a clear-cut bifurcation point,
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i.e., one would be able to predict exactly when the population will or will not start evolving

towards either strategy. However, since the population is heterogeneous, the �tness of each

cell is a�ected not only by the availability of resource and by its intrinsic properties but also

by what properties other cells have and how many of them there are, and so the population as

a whole may respond di�erently to the same micro-environmental perturbation. Therefore,

any predictions about system dynamics that are made without taking into account population

heterogeneity are likely to be incorrect. Consequently, in order to be able to direct evolution

of the system through micro-environmental manipulations, one needs to understand not only

the properties of the individual cells but the composition of the cell population as a whole.

This e�ect could also account for why the same treatment for the same cancer type

may be e�ective for one patient and not the other: it is not only the type of tumor that

matters and not only the microenvironment within the person but also cell composition

within the tumor itself. It should be taken into account when devising and revising therapies,

since the tumors evolve during therapeutic intervention much faster than before them due

to increased selective pressures imposed by the therapy on all cancer cells.

Tumor dormancy

One possible manifestation of what has been termed here �the competitive pheno-

type� is tumor dormancy. Crocker et al. [26] make the following distinction between the two

types of cancer cells that may be classi�ed as dormant: solitary dormant cells that are believed

to be quiescent, de�ned by lack of both proliferation and apoptosis, and micrometastastatic

dormant cells characterized not by the absence of proliferation and apoptosis but by their

balance. It is these latter cells that we believe could be interpreted within the frameworks of

the proposed model as exhibiting competitive phenotype.

Several mechanisms have been proposed to explain what could disturb the cells out of

their dormant state, since it seems like a very large proportion of them can remain dormant

throughout a person's lifetime [2, 26, 159]. It's been proposed that they can be kept in

the dormant state by immune system [132, 155], lack of angiogenesis [2, 111, 112], surgery

that disturbed the microenvironment [32], trauma [112], or through remaining in prolonged

G phase [159]. Our model suggests that another, perhaps complimentary, mechanism of
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disturbance of tumor cells out of the dormant state could come from nutrition and speci�cally,

the relative amounts of carbon and phosphorus in the diet.

Cancer metabolism and the lesser of the two evils

One other possible more competitive phenotype in cancer cells could be directly re-

lated to how cells metabolize not phosphorus but glucose. Ordinarily, for glucose metabolism

any cell in the body can use either the slower more e�cient oxygen-dependent aerobic

metabolism, which yields approximately 30 ATPs per glucose molecule, or faster less ef-

�cient oxygen-independent glycolysis, which yields 2 ATPs per glucose molecule and lactic

acid as a byproduct, depending on oxygen availability. However, many cancer cells persist in

using glycolysis even in the areas of ample oxygen supply (a phenomenon known as Warburg

e�ect), presumably because lactic acid in su�cient quantities creates a microenvironment

that is toxic to somatic cells, making cancer cells better competitors [50]. (This question is

explored in more detail in Chapter 6)

Increased glycolysis has its drawbacks in possibly promoting metastatic progression

by allowing cancer cells to spread through space freed up by the somatic cells that were

killed by increased micro-environmental toxicity; however, it is possible that this competitive

phenotype is still the lesser of the two evils. One can think of it as a �transitional regime�

� either cells evolve directly towards proliferative phenotype or they can �rst go through the

competitive phase until the conditions are more favorable for high proliferation (see Figure

5.8). So, creating an environment in which cancer cells are encouraged to compete with each

other might result in a slower growing tumor, which would give more time for therapeutic

intervention and thus increase the patients' chances for longer survival.

Conclusions

Tumors are evolving systems. It is their strength as they manage to adapt and survive

cytotoxic therapies. Acquired therapeutic resistance and disease recurrence is a natural

consequence of tumor heterogeneity as cytotoxic therapies wipe out the numerous more

susceptible cancer cells, leaving small subpopulations of resistant cells to grow and expand.

Decades of clinical evidence support the notion that shrinking the tumor does not necessarily

result in the patient living longer and better nearly often enough to not start looking for
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Figure 5.8: A possible scenario of evolving towards competitive phenotype as a �transitionl
regime�.

alternatives to cytotoxic therapies. One such alternative is to try to make cancer a chronic

disease much like what happened with AIDS: the virus cannot be eradicated but AIDS is no

longer a death sentence. Similarly, the goal of cancer therapy should be extending patient life

and improving its quality and not solely trying to kill as many tumor cells as possible, as the

two are not equivalent. Gatenby [48] proposed an analogy from our experience with dealing

with pests: even though pests can often not be eliminated even with the most aggressive

pesticides, sometimes keeping the pest population at a manageable level yields better crop

protection than looking for more toxic poisons.

One can try to use tumor heterogeneity for therapeutic purposes instead of attempt-

ing to �ght and eliminate it, making it also the tumor's weakness. It is conceivable that

creating an environment which favors more competitive rather than more proliferative cell

clones, might allow delaying disease progression. For instance, it has been demonstrated

in mice that keeping the tumor at a constant size using adaptive (rather than constant)

chemotherapy allowed keeping mice alive with tumors inde�nitely [51]. So perhaps a com-
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bination of moderate therapy (not maximum tolerable but minimum necessary), reversing

adaptations that tumors created for themselves [71], such as neutralizing glycolysis induced

acidic microenvironment [131] to prevent metastatic progression, as much as possible, and

controlling nutrition (such as limiting phosphorus and carbon intake) might give cancer pa-

tients a better chance for a longer and better life than intensive cytotoxic therapies.



Chapter 6

PRISONER'S DILEMMA IN CANCER METABOLISM

Abstract

One possible manifestation of the �competitive� phenotype, discussed in Chapter ??,

deals with the way some tumor cells metabolize glucose. As tumors outgrow their

blood supply and become oxygen deprived, they switch to less energetically e�cient

but oxygen-independent anaerobic glucose metabolism. However, cancer cells maintain

glycolytic phenotype even in the areas of ample oxygen supply (Warburg e�ect). It has

been hypothesized that the competitive advantage that glycolytic cells get over aerobic

cells is achieved through secretion of lactic acid, which is a by-product of glycolysis. It

creates acidic microenvironment around the tumor that can be toxic to normal somatic

cells. This interaction can be seen as a prisoner's dilemma: from the point of view

of metabolic payo�s, it is better for cells to cooperate and become better competitors

but neither cell has an incentive to unilaterally change its metabolic strategy. In this

Chapter a novel mathematical technique, which allows reducing an otherwise in�nitely

dimensional system to low dimensionality, is used to demonstrate that changing the

environment can take the cells out of this equilibrium and that it is cooperation that

can in fact lead to the cell population committing evolutionary suicide.

Keywords: Warburg e�ect, prisoner's dilemma, microenvironment manipulation

Introduction

Cancer can be viewed as a long evolutionary process within one person. Even in

the cases of most severe DNA damage, such as was experienced by the survivors of atomic

bombing in Hiroshima and Nagasaki, it is not until the 50s that one could observe dramat-

ically increased cancer incidence [126]. Damaged cells, whatever properties they may have

acquired, need to survive and proliferate in the tissue, competing with somatic cells for space

and nutrients.

As the primary tumor increases in size, the cells outgrow their blood supply, thus

also losing access to oxygen. This leads to cells in hypoxic areas switching from aerobic
89
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metabolism to glycolysis, a mode of glucose metabolism that is less energetically e�cient,

yielding 2 ATPs instead of approximately 30, but that is faster and, most importantly, unre-

stricted by oxygen. However, tumor cells often continue metabolizing carbon glycolytically

even in the areas of ample oxygen supply [67,72,160]. This has become known as Warburg

e�ect, named after a German biochemist Otto Warburg, who was the �rst to observe it over

�fty years ago [164]. This choice of metabolic strategy does not come from loss of function

of mitochondria � it has been veri�ed that a vast majority of tumor cells have completely

functional mitochondria [166], and the damage that might be occurring is reversible [14].

From the point of view of natural selection, it has been hypothesized that, although

glycolysis is energetically ine�cient, lactic acid that is secreted as its by-product becomes

toxic to healthy tissues, thus making glycolytic cells better competitors at a cost of being

e�cient consumers [49,50]. However, a single cell is not likely to secrete enough lactic acid

to cause signi�cant changes in its microenvironment, i.e., it cannot provide enough �public

goods� to bene�t everyone [123]. The core population of glycolytic cells needs to be large

enough to gain this competitive advantage. Proposed here is a game-theoretical approach

for addressing the question of how such a population could arise.

Game theory in cell metabolism

As advantageous as glycolysis may be to cancer cells as a group, one glycolytic cell

is not enough to generate enough lactic acid to become a successful competitor. Enough

cells need to choose this metabolic strategy in order for the group as a whole to receive the

competitive advantage. However, it is not in the interest of each individual cell to metabolize

carbon glycolytically if all other cells metabolize it aerobically. It would not secrete enough

lactic acid to successfully compete with them and at the same time, it would get nearly 15

times less energy.

In this framework, the problem becomes a version of multi-player prisoner's dilemma.

There are two metabolic strategies: aerobic, which yields 30 ATPs per glucose and no lactic

acid, and glycolytic, which yields 2 ATPs per glucose but yields some lactic acid. The amount

of lactic acid generated by just one glycolytic cell is insigni�cant to cause any damage to

somatic cells. Lactic acid secreted by several cells is enough to shift energetic payo�s, which
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could in part be due to not only decrease in competition but also to the fact that intracellular

stores of nutrients of the cells can be recycled and thus used up by neighboring cells [39,40].

For illustration we currently assume 2 players but in fact many more would need to cooperate

to get this �public goods� e�ect [123]. This becomes a game of prisoner's dilemma if the

payo� for both cells is greater when they both choose the glycolytic strategy, i.e., if [30

ATP < 2+toxicity+reduced competition]. In this case, the aerobic-aerobic equilibrium is in

fact a stable equilibrium of this game, i.e., no cell has an incentive to unilaterally change

its metabolic strategy [110, 138]. So, from the point of view of metabolic activity, one can

argue that aerobic cells are in fact at an evolutionarily steady state [146], and so the tissue

cannot be �invaded� by glycolytic clones.

Nevertheless, �glycolytic invasions� do happen as the Warburg cells migrate out of

the primary tumor into the new environment composed primarily of aerobic cells, where they

theoretically should have no advantage in persisting to metabolize glucose glycolytically. One

explanation for this e�ect could be that they in fact migrate out in groups large enough to

generate enough lactic acid for everyone to receive su�cient �public goods� bene�t.

Another (perhaps complementary) explanation comes from invasion ecology, and

particularly from the work of David Tilman, who argued that invasions of exotic species

are largely facilitated when there are excess resources available in the target habitat for the

invaders to utilize [157, 158]. In the case of aerobic and glycolytic cells, if there are enough

resources in the environment into which the cell migrates out to, then a glycolytic cell will

no longer have to care about its metabolic ine�ciency (�who cares about fuel demands if

gas is cheap?�). That is, from the point of view of payo�s of each metabolic strategy, if the

environment, in which the players interact, changes su�ciently, glycolytic invasion becomes

possible.

To test this hypothesis, a mathematical model is proposed. The change in the com-

position of the population of cells that di�er by their choice of metabolic strategy (glycolysis

vs oxidative phosphorylation) in response to increased carbon in�ow is tracked using a sys-

tem of ordinary di�erential equations. In the model, the growth of aerobic cells is restricted

both by carbon and oxygen, while glycolytic cells are restrained only by carbon. The e�ects
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of changes in oxygen availability, glucose uptake rates, natural cell death rates, cell growth

rates, as well as the initial composition of the cell population are evaluated.

Model description

Suppose that each cell is characterized by a value of parameter α , which represents

the proportion of total carbon that is used aerobically, thus e�ectively leaving (1−α) propor-

tion of total carbon for consumption through glycolysis; xα then denotes a set of all cells that

are characterized by a �xed heritable value of parameter α . The total population size is then

taken to be N(t) = ∑A xα if the number of possible values of α is �nite and N(t) =
´
A xαdα

if it is in�nite.

Glycolysis is less metabolically e�cient and is limited only by glucose supply, denoted

by Cin; aerobic metabolism is more e�cient but is limited both by carbon availability Cin and

by oxygen supply, which is accounted for with parameter β . Each cell xα is thus characterized

by its own intrinsic value of α , allowing to model population heterogeneity with respect to

metabolic strategy.

There are two types of carbon that are taken into account in the model: extracellular

carbon and intracellular carbon. Extracellular carbon Cex is replenished in the tissue microen-

vironment through blood in�ow and also is recycled from intracellular stores of cells that have

died [39,40]. It is consumed by the cells, becoming intracellular carbon, based on di�erences

in concentration between Cin and Cex. Di�erent cells can consume carbon at di�erent rates:

glycolytic cells get less energy per one molecule of glucose, but their rate of carbon uptake

is much greater due to upregulation of glucose transporters in the cell membrane [47]. This

is accounted for by the parameter p = pa(1−Et [α])+ pgEt [α]. The consumed extracellular

carbon is then metabolized by the cells; the higher e�ciency of metabolism by aerobic cells

is accounted for by the parameter ξ .

Taking into account all of these assumptions, the model becomes System
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Figure 6.1: Schematic diagram of the process described in System 6.1



dxα

dt = xα( ra(1−α)
βCin

β +Cin︸ ︷︷ ︸
Cin and O2 lmited aerobic growth

+ rgαCin︸ ︷︷ ︸
Cin limited glycolytic growth

− d︸︷︷︸
death rate

),

dCex

dt = g1(
C0−Cex

N
)︸ ︷︷ ︸

Cex in�ow from blood

−( pgEt [α]︸ ︷︷ ︸
glycolytic cells

+ pa(1−Et [α])︸ ︷︷ ︸
aerobic cells

)
Cex−Cin

k1 +(Cex−Cin)︸ ︷︷ ︸
total Cexuptake based on concentration di�erences

+ Cind︸︷︷︸
natural cell death︸ ︷︷ ︸

Crecycled via cell death

dCin

dt = (pgEt [α]+ pa(1−Et [α]))
Cex−Cin

k1 +(Cex−Cin)︸ ︷︷ ︸
total Cin in�ow based on concentration di�erences

−sCin(raξ (1−Et [α])︸ ︷︷ ︸
Cused aerobically

+ rgEt [α]︸ ︷︷ ︸
Cused glycolitically

).

(6.1)

A detailed model derivation is given in Appendix. The summary and description of

all parameters is given in Table 6.1, and the general overview of the proposed mechanism is

given in Figure 6.1.

Each cell clone xα tries to maximize its �tness by metabolizing glucose either aerobi-

cally or glycolytically. Depending on initial population composition, on intrinsic growth and

death rates, and the amount of carbon available, the clones are selected depending on which

metabolic strategy maximizes their overall growth rate per cell, re�ected through the value

of dxα

xα
/xα . Relative positions of the two growth curves with respect to resource availability
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Variable/Parameter Meaning Range

α proportion of glycolytic cells α ∈ [0,1]
ra growth rate of aerobic cells ra ≥ 0
rg growth rate of glycolytic cells rg ≥ 0
ξ scaling constant to account for higher e�ciency

of aerobic metabolism (2 ATP vs ≈30 ATP)
ξ � 0

β oxygen availability (normal blood oxygen is
20%, hypoxia occurs around 2-5%)

β > 10

d natural cell death rate d ≥ 0
g1 rate of resource consumption g1 ≥ 0
C0 rate of external carbon in�ow (normal carbon

concentration in the blood is ≈ 100mg/100ml)
C0 > 0

k1 saturation constant for carbon uptake by the
cells

k1 ≥ 0

s scaling constant for how much carbon is
metabolized by cells

s ∈ (0,1]

pa rate of carbon uptake by aerobic cells pa ≥ 0
pg rate of carbon uptake by glycolytic cells pg ≥ 0

p =
pg(α)+ pa(1−α)

lower boundary value of parameter c p≥ 0

bα = B−b1α toxicity induced cell mortality bα > 0,b1 <
B
α

Table 6.1: Summary of variables and parameters used throughout the Chapter

N(0) Cex(0) Cin(0) d ra rg pa pg β Et=0[α] s k1 g1

10.0 10.6 1.3 0.03 0.2 0.22 0.1 0.2 15 0.056 0.2 1.1 1.0

Table 6.2: Sample parameter values

Figure 6.2: Relative positions of growth rates for aerobic (x′α = raCin β

β+Cin , solid blue line)

and glycolytic (x′α = rgCin, dashed lines) cell types for di�erent initial states of the microen-
vironment (amount of resource Cinand amount of oxygen β ) and di�erent relative intrinsic
growth rates raand rg of both cell types. One can see that di�erent clone types have higher
�tness relative to each other depending on carbon (Cin) and oxygen (β ) availability and the
values of intrinsic parameters ra and rg.
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are shown in Figure 6.2.

Modeling population heterogeneity

In a heterogeneous population, where each cell is characterized by its own value of

parameter α , the mean number of glycolytic clones Et [α] is a dynamic variable that can

change over time. Therefore, the composition of a heterogeneous population of cells will

also change as a result of the dynamics of other variables and will be di�erent depending

on initial conditions, parameter values, as well as the initial distribution of the clones within

the population. (Note: in the current formulation, System 6.1 is an in�nitely-dimensional

system of ODEs. However, it can be reduced to a �nitely-dimensional system of equations

through addition of two keystone equations. The details of the transformation are described

in Appendix.)

System (6.1) was solved numerically using Matlab R2010a in such a way as to

evaluate, how the composition of the population, tracked through Et [α], changes over time

in response to increasing in�ow of extracellular carbon, achieved through systematic increase

of parameter C0 (external carbon in�ow). The changes in Et [α] in carbon-rich environments

were also evaluated with respect to changes in oxygen levels (parameter β ), glucose uptake

rates (changing relationship between parameters pa and pg), growth rates (ra and rg) and

natural death rates (parameter d).
Results

The initial distribution of clones within the population was taken to be truncated

exponential with parameter α restricted to the interval α ∈ [0,1], and skewed towards α = 0,

i.e., such that the vast majority of cells in the initial population are aerobic. This is to account

for the di�erences in access to the oxygen and nutrients as a result of slight variations in

distance from the blood vessels. Initial conditions and parameter values used for calculating

numerical solutions are summarized in Table 6.2, unless indicated otherwise.

The results of all the calculations are presented using four types of graphs. The

�rst type of graph depicts the changes in the proportion of glycolytic cells in the population

Et [α] over time under variation of parameters that represent intrinsic properties of cells

(proliferation, death, resource uptake rates, etc). On the second type of graph, external



CHAPTER 6. PRISONER'S DILEMMA IN CANCER METABOLISM 96

Figure 6.3: Quantifying the e�ects of di�erences in growth rates of aerobic and glycolytic
cell clones. (a) Changes in the mean number of glycolytic cells Et [α] over time for ra = 0.2,
rg = 0.21,0.22,0.23,0.24 (b) Et [α] at t = 4000 for C0 varied from 5 to 600, evaluated for
ra = 0.2,rg = 0.21,0.22,0.23,0.24 (c) Changes in Et [α] over time with respect to di�erences
in C0 for ra = 0.2,rg = 0.21 (d) Changes in Et [α] over time with respect to di�erences in C0
for ra = 0.2,rg = 0.24

carbon in�ow C0 is varied and the value of Et [α] is recorded at t = 4000 as the values of

intrinsic parameters are varied. This is done to uniformly measure the e�ects of changes in

external factors (nutrient availability) on glycolytic expansion; time point t = 4000 is chosen

arbitrarily. The third type of graph is a 3-dimensional representation of how Et [α] changes

over time under di�erent values of C0. Finally, the fourth type of graph depicts the change

in the distribution of clones with respect to strategy choice, over time.

Growth rates

At �rst the e�ects of changes in intrinsic growth rates were evaluated (see Figure 6.3).

It can be observed that while, naturally, higher growth rates of anaerobic cells will always

lead to increased proportion of glycolytic cells in the population (Figure 6.3a), increases in
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Figure 6.4: Quantifying the e�ects of oxygen availability on the growth of aerobic and
glycolytic cell clones. (a) Changes in the mean number of glycolytic cells Et [α] over time for
β = 2,10,15 (b) Et [α] at t = 4000 for C0 varied from 5 to 600, evaluated for β = 2,10,15
(c) Changes in Et [α] over time with respect to di�erences in C0 for β = 2 (d) Changes in
Et [α] over time with respect to di�erences in C0 for β = 15.

the rates of external carbon in�ow C0 accelerate this process dramatically (Figure 6.3b-d).

Oxygen availability

The e�ects of oxygen availability, accounted for with parameter β , were evaluated

in Figure 6.4, and in particular, the question of whether oxygen deprivation will have more

or less e�ect on glycolytic expansion than increased carbon in�ow. As anticipated, lower β

resulted in faster growth of glycolytic cells (Figure 6.4a). However, increases in carbon in�ow

resulted in nearly as much of glycolytic expansion as was caused by oxygen deprivation (Figure

6.4b-d), which suggests that under nutritionally favorable conditions bene�ts of glycolysis do

indeed outweigh its drawbacks.

Death rates

Next, the e�ects in changes of natural cell death rates were evaluated. Interestingly,

decreasing the value of parameter d actually slowed down glycolytic expansion (Figure 6.5).

That is, lower death rates are in fact less advantageous for glycolytic cells at this stage of
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Figure 6.5: Quantifying the e�ects of natural death rates on the changes in proportion
of glycolytic cell clones in the population. (a) Changes in the mean number of glycolytic
cells Et [α] over time for (b) Et [α] at t = 4000 for C0 varied from 5 to 600, evaluated for
d = 0.04,0.03,0.02,0.01 (c) Changes in Et [α] over time with respect to di�erences in C0 for
d = 0.02 (d) Changes in Et [α] over time with respect to di�erences in C0 for d = 0.04.

tumor development. This e�ect could be due to the fact that higher cell death rates imply

higher cell turnover within the population, thus actually speeding up the selective process.

Lower death rates on the contrary cause a delay in the progression of the evolutionary process.

Nutrient uptake rates

The e�ects of di�erences in nutrient uptake rates were evaluated, since cancer cells

have been observed to consume extracellular carbon much quicker than aerobic cells, with

uptake rates between the two types di�ering as much as 10-20 times [47]. The question

here was whether upregulation of glucose transporters would be enough to give cancer cells

signi�cantly greater selective advantage, everything else being equal. It can be observed in

Figure 6.6 that even thirty-fold increase in the rates of glucose uptake by the glycolytic cells

does not make much of a di�erence in terms of when exactly the rapid increase in the mean

of α will occur. However, it does raise the maximum value that is reached at higher glucose

concentrations. This suggests that upregulation of glucose transporters in glycolytic cells is
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Figure 6.6: Quantifying the e�ects of di�erences in resource uptake rates on the changes in
proportion of glycolytic cell clones in the population. (a) Changes in the mean number of
glycolytic cells Et [α] over time for pa = 0.1, pg = 3,1,0.5,0.1 (note the scale on y-axis) (b)
Et [α] at t = 4000 for C0 varied from 5 to 600, evaluated for pa = 0.1, pg = 3,1,0.5,0.1(note
the scale on y-axis) (c) Changes in Et [α] over time with respect to di�erences in C0 for
pa = 0.1, pg = 0.2 (d) Changes in Et [α] over time with respect to di�erences in C0 for
pa = 0.1, pg = 3.

an adaptation rather than the driving force behind Warburg e�ect, and therefore therapies

targeting glucose transporters would probably not be very e�ective.

Modeling evolutionary suicide

Until now we have been focusing only on the question of whether the increased

availability of nutrients can in fact allow the population of glycolytic cells to expand despite

the metabolic ine�ciency of glycolysis. Now, we would like to consider a case when the

increased number of glycolytic cells in the population yields enough lactic acid to be toxic

to aerobic cells. This is accounted for through adding an extra death term to the equation

that describes the dynamics of the cell population, as well as an additional in�ow term in

the equation for the changes in the concentration of extracellular carbon, accounting for

carbon that is recycled through cell death. On Figure 6.7 one can see that under given

parameter values, the population initially increases in size, but as the proportion of glycolytic
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Figure 6.7: Evolutionary suicide can occur when the proportion of glycolytic cells Et [α]
within the total cell population reaches approximately 10% under given parameter values.
Trajectories depict (a) the changes in the mean value of glycolytic cells in the population
Et [α] (b) extracellular carbon Cex, (c) intracellular carbon Cin, (d) total population size N(t)
over time and (e) the distribution of cell clones Pt [α] changing over time.

cells reaches Et [α]≈ 0.1, the toxicity from lactic acid becomes higher than cell growth rates.

This can be interpreted as the cells committing evolutionary suicide through being overly

good competitors.

Discussion

From the point of view of game theory, tumor cells are playing a game of prisoner's

dilemma both with somatic cells and with each other. If there are no limitations on oxygen

availability, i.e., no severe pressure to choose one metabolic strategy over the other, then

the payo�s for aerobic and glycolytic cells are measured in terms of e�ciency of metabolism

(getting more energy per same amount of glucose) and competitive ability (creating a mi-

croenvironment that will be toxic to competitors). It two cells are playing the game of

prisoner's dilemma, then one can see using aerobic metabolism as �defecting� and glycolytic

as �cooperating� � the cells will get the competitive advantage only if enough of them coop-

erate. However, the stable equilibrium for the game of prisoner's dilemma is for both players

to defect, i.e., for all cells to use aerobic metabolism.

In this particular case one cannot change intrinsic payo�s for the players, i.e., the

amount of ATP that each cell receives when it metabolizes glucose aerobically or glycolyt-

ically. However, one can change the environment in which they interact in such a way as

to minimize the drawbacks of using the �cooperative� strategy. One such way is to supply
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enough resources for the anaerobic cells to not be held back by the ine�ciency of glycolysis.

In order to investigate whether increasing the amount of available nutrients can

in fact push the cells out of the stable equilibrium, a mathematical model is proposed to

track the change in composition of a parametrically heterogeneous population with respect

to the choice of metabolic strategy, i.e., aerobic or glycolytic metabolism. The model is a

three dimensional system of ordinary di�erential equations based on a mathematical model

of a chemostat system [81]. There are three state variables that are being kept track of:

concentration of extracellular carbon, which is constantly replenished from some external

source and is consumed based on di�erence of concentrations between extra and intracellular

concentrations; concentration of intracellular carbon, which is metabolized more e�ciently

by aerobic cells; and a heterogeneous cell population composed of aerobic and glycolytic

cells. The growth of aerobic cells is modeled in such a way as to be constrained both by

carbon and oxygen availability. The growth of glycolytic cells is restrained solely by carbon.

Parametric heterogeneity within the system is captured by assuming that each cell clone

is characterized by an intrinsic value of parameter α , which can range from 0 to 1. The

initial distribution of cell clones is assumed to be truncated exponential on the interval [0,1],

skewed towards α → 0 such that a vast majority of clones in the initial cell population are

aerobic. The change in population composition is tracked through the change in the mean

value of the parameter α , which in this formulation becomes a function of time and thus

changes as the system evolves.

Through computation of numerical solutions one could observe that increased in�ow

of extracellular carbon did indeed cause dramatic changes in the composition of cell popula-

tion over time (Matlab code is available upon request). However, in order to see any changes

in the composition of cell population, glycolytic cells had to have higher growth rates, even if

only slightly. This suggests that while increased nutrient availability cannot induce glycolytic

switch, it can accelerate disease progression. Decreases in oxygen availability in nutrient-

limited environment caused as much of a glycolytic expansion as did dramatic increases in

external carbon in�ow in normoxic conditions (Figure 6.4). It was also demonstrated that

lower death rates actually slowed down tumor progression at this stage of tumorogenesis be-
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cause of slower cell turnover rates; increases in death rates caused dramatic increases in the

rate of glycolytic expansion because of increased cell turnover (Figure 6.5), which suggests

that cytotoxic therapies would in fact speed up cancer progression. Finally, the e�ects of

di�erences in resource uptake rates were evaluated, revealing that even 30-fold increases in

carbon uptake rates by glycolytic clones do not have nearly as much e�ect on the rate of

glycolytic expansion as do increases in external nutrient in�ow.

The two games

Staying within the aerobic-aerobic equilibrium of the metabolic prisoner's dilemma

keeps the tumor (at least temporarily) from switching preferentially to glycolysis, which

would lead to creating toxic microenvironment and facilitating metastatic invasion [49,131].

However, if the environment is changed enough, cells can push away towards glycolytic-

glycolytic strategy (everything else being equal), eventually entering the domain of attraction

of the stable equilibrium of another, larger game, which can lead to evolutionary suicide [129].

Now glycolytic cells that have become numerous enough are cooperating, jointly increasing

the toxicity of the surrounding microenvironment, and becoming more e�cient competitors

as a group, eventually killing the host and consequently killing themselves.

In the model, this is captured through introduction of the additional toxicity term

that captures increased mortality of aerobic cells proportional to the amount of lactic acid

secreted by glycolytic cells. Indeed, one can observe that the cell population initially grows,

peaks and then eventually collapses, going to extinction (see Figure 6.7). So, the either

equilibrium within the same game of prisoner's dilemma can become attracting not because

of the changes in payo�s for each cell but due to di�erent initial composition of the population

of players, which happens solely through natural selection.

Tumors as complex adaptive systems

One way to look at tumors is through the lens of complexity science. Complex

systems are diverse and adaptive, and all parts within them are interconnected and interde-

pendent [102]. Tumors �t this de�nition: they are composed of genetically heterogeneous

cells; they are interconnected and interdependent, competing for resources and space with

each other and with somatic cells; and they are very adaptable to changes in their microen-
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vironment.

Complex systems are not nearly as predictable as just complicated systems (the ones

that have all the characteristics of complex systems except adaptability). They are robust,

and they can generate such phenomena as tipping points, which are thresholds of rapid phase

transitions [102]. For instance, in the proposed system, changes in the cell microenvironment

induced selection for the �cooperative� glycolytic metabolic strategy, which can be viewed

as an example of such a tipping point. This can lead to a rapid increase in the amount of

lactic acid produced, which in turn can lead to a sudden increase in metastatic spread of

the disease due to increased degradation of the extracellular membrane [49]. On a larger

scale, one can think of cachexia, nutritionally irreversible loss of body mass, which is often

observed in terminal cancer patients, as an example of such a tipping point.

Complex systems cannot be controlled but they can be harnessed, that is, even if one

cannot change the intrinsic properties (or in case of game theory, payo�s) of the individual

clones, or agents, in the complex systems, one can sometimes change the microenvironment

in such a way as to direct system evolution in the desired direction (create an environment,

where the players will �want� to choose the strategy that we want them to choose rather

than try to force them to do so). For instance, in the metabolism experiment described here,

it is the changes in the nutrient availability that enabled the shift within the system towards

an otherwise unstable equilibrium (persistence of glycolytic metabolism) by decreasing the

negative e�ect of glycolysis, i.e. low ATP yield, but keeping all of its bene�ts, i.e., better

competitive ability (Figure 6.8).

Reversing the changes that occurred as a result of surpassing a tipping point in

complex systems is usually not possible because of the changes that will have already occurred

to the population composition. That is, it is no longer the same �set of players� that is

interacting, and therefore their threshold is most probably di�erent. However, tipping points

can be anticipated and sometimes even delayed. For instance, several prospective studies

have shown that mortality from cancer was much lower in those individuals that had higher

muscle mass, regardless of their body mass index (BMI), even though the incidence of cancer

was the same (see, for instance, [62, 170]). From the point of view of cell metabolism, this
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Figure 6.8: Changes in the microenvironment can lead to changes in population composition,
which in turn can lead to the population evolving away from the dominant aerobic-aerobic
�defecting� strategy, which keeps the system stable, to glycolytic-glycolytic �cooperation�,
which can eventually lead to evolutionary suicide (cancer killing the patient and thus killing
itself).

could be due to the fact that muscle cells have higher energy demands than other somatic

cells, thus �beating� the glycolytic cells to the nutrients, delaying progression of the disease.

So, while exercising will not a�ect the probability of the person getting cancer in the �rst

place, it may reduce the risk of dying from it by pushing o� the metabolic tipping point,

surpassing which leads to cancer progression.

Conclusions

Tumors are complex adaptive systems that consist of a large number of diverse,

interconnected and interdependent cells that compete for space and nutrients both with the

somatic cells and with each other. One of the measures of tumor diversity could be the type

of metabolic strategy that the cell uses for converting glucose to energy: aerobic metabolism

has a higher ATP yield and can be seen as an evolutionarily stable metabolic strategy, while

glycolysis has a lower ATP yield but it increases the cells' competitive abilities through

creating a toxic microenvironment. Tumor cells upregulate glycolysis even in the areas of
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ample oxygen supply (Warburg e�ect). It is hypothesized that the bene�ts of increased acidity

of the microenvironment give a large enough payo� to glycolytic cancer cells to overcome

the ine�ciency of glycolysis. However, glycolytic cells can get this advantage only if enough

of them simultaneously use this strategy.

While it is not possible to change the intrinsic energetic payo�s for these cells, chang-

ing the microenvironment through providing increased amounts of nutrients can achieve this

by decreasing the negative e�ects of glycolysis (compensating for low ATP yield by providing

more carbon) without a�ecting the bene�ts (increased competitive ability through elevated

lactic acid production). Here we demonstrate that while availability of excess nutrients can-

not induce the glycolytic switch, it facilitates disease progression when some glycolytic cancer

cells are already present in the population.

It is a common viewpoint that somatic cells always cooperate and cancer cells are

the ones that defect, rebelling against cell cooperation within the tissue. However, from the

point of view of game theory, choosing aerobic metabolism is in fact a stable �defect-defect�

equilibrium in the multi-player game of prisoner's dilemma. And it is the dominance of

the defecting strategy that stabilizes the tissue, preventing (as long as possible) occasional

glycolytic cooperators from committing evolutionary suicide.



Chapter 7

AGENT-BASED MODELING OF COMPLEX SYSTEMS. WARBURG EFFECT.

Abstract

The purpose of this small chapter is to introduce brie�y the method of agent-based

modeling, demonstrate some of the results that can be obtained through this type of

imitative models, and to provide a connecting link that has motivated research done in

Chapter 6.

Keywords: agent-based modeling, Warburg e�ect, growth rate hypothesis

Brief introduction to agent-based modeling

Agent-based models (ABMs) are a computational tool that allows running in silico

simulations of complex systems. Unlike equation-based models, the output of ABMs is not

exact numerical solutions but simulations.

ABMs consist of entities (agents) of various types that display interdependent behav-

iors and are embedded in a network. Each agent is assigned a set of rules that will determine

the nature of the agent's interactions with other agents and with the environment. The rules

may be �xed, or may change in response to changes in the agents' changing environment.

In many ABMs, the agents take discrete actions, such as moving to di�erent loca-

tions, cooperating or defecting, joining or exiting a particular activity, etc. The actions of

the agents are typically �threshold based�, i.e., the agent's behavior remains the same until

some threshold is met; once the threshold is surpassed, the agent changes its behavior.

The nature and intrinsic properties of agents, as well as the rules that determine their

behavior, is conventionally summarized in an ODD (Overview, Design concepts and Details)

protocol [54].

While agent-based modeling is not used in this dissertation, a sample model that

could potentially be used to address some of the similar questions is formulated in this

106
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section.

An agent-based model of cancer metabolism

Consider a situation, when there exists a core population of cells in the population

that maintain glycolytic phenotype in normoxic conditions. To survive and reproduce, both

aerobic and glycolytic cells require energy sources. The two resources that we will focus on

are carbon and phosphorus. Carbon is metabolized much more e�ciently by the aerobic cells

(30 ATPs vs 2 ATPs for same amount of carbon) [143]. Phosphorus, although not a direct

requirement for metabolism, is necessary for reproduction of both types of cells, as it goes

into ribosomes and making of RNA and DNA, which was discussed in detail in Chapter 5.

A byproduct of carbon metabolism by glycolytic cells is lactic acid, which can be

toxic to aerobic cells. Once a cell dies, it releases its inner stores of carbon and phosphorus

into the surrounding microenvironment, where they can be taken up by the nearby cells. The

rate of uptake is determined by di�erences in intra and extracellular concentrations of carbon

and phosphorus (concentration gradient).

Moreover, as was discussed in detail in Chapter 5, according to the growth rate

hypothesis (GRH), there exists a ratio of carbon to phosphorus that is optimal for cell

reproduction. When C:P is below this threshold, the cell reproduces most e�ciently. When

it is above this optimality threshold, the cell is forced to spend metabolic energy to pump

out excess phosphorus rather than to spend it on reproduction and metabolism.

All of these considerations are summarized in Table 7.1

Questions that could be of interest are:

1. Is the competitive advantage obtained through eliminating competition through lactic

acid secretion su�cient for glycolytic cells to out-compete aerobic cells? If so, under

which conditions?

2. Is there a minimum population size of glycolytic cells that needs to be present for them

to be able to remain in the population?

3. Is there a maximum population size of glycolytic cells, after which competition does
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Aerobic Glycolytic

Metabolism advantage e�ciency (≈30 ATP per
glucose molecule)

increased competitive
ability (lower sensitivity to

lactic acid)

disadvantage decreased competitive
ability (increased

sensitivity to lactic acid)

ine�ciency (2ATP per
glucose molecule)

mechanism
of nutrient
uptake

based on di�erences in intracellular and extracellular
concentrations of C and P

Survival limitations need su�cient O2 and C;
sensitive to lactic acid

need su�cient C

Reproduction limitations appropriate C : P
speci�cs excessive P leads to futile metabolism (waste of C

without increase in reproduction)

crowding
(optional)

will not reproduce if there
are too many neighbors in

the environment,
regardless of C : P

oblivious to crowding;
reproduction limited only

by C : P

Table 7.1: Summary of assumptions necessary for building an agent-based model of Warburg
e�ect.

not yield enough of a competitive advantage to outweigh the bene�ts of metabolic

e�ciency?

4. Under what conditions do resource limitations promote selection either for reproduction

or for survival?

To address these questions, we propose an agent-based model that will track the evolution

of glycolytic cells within a population of aerobic cells as the cells compete for carbon and

phosphorus to be used for survival, metabolism and reproduction.

Overview, Design concepts and Details (ODD) protocol

The process takes place on a lattice grid. Each microenvironment is characterized by

carbon, phosphorus and lactic acid concentrations. Each cell is characterized by intracellular

carbon and phosphorus concentrations. As of right now we assume normoxic conditions (as
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we want to investigate the e�ect of persistence of the glycolytic phenotype even when plenty

of oxygen is present) and so we will not keep track of oxygen concentrations.

Once the cell is on the microenvironment, it �rst needs to survive (check minimum

carbon and lactic acid concentrations). If the survival criteria are not met, the cell dies,

releasing its inner stores of carbon and phosphorus into the microenvironment. If it has

survived, it needs to eat (uptake extracellular carbon and phosphorus to balance out with

intracellular C and P concentrations).

After eating, the cell evaluates if it can reproduce by checking the intracellular C:P

threshold. If the appropriate conditions are met, an aerobic cell will use some carbon and

phosphorus and will divide. A glycolytic cell, in addition to this, will consume 2-3 times more

of its inner stores of the resource and will secrete some lactic acid into its microenvironment,

which will then di�use to neighboring microenvironments. If the C:P criterion was not passed,

the cell will use inner carbon to pump out inner phosphorus without reproducing.

At each time point the following sequence of steps is performed:

A. Survival

a. Check inner carbon threshold

i. If inner carbon is too low, die and release inner car-

bon and phosphorus into microenvironment; otherwise,

proceed to metabolism

b. Check lactic acid threshold

i. If inner lactic acid concentration on the microenviron-

ment about the threshold, die and release inner carbon
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and phosphorus into microenvironment; otherwise, pro-

ceed to metabolism

c. Cells can also die naturally at some intrinsic rate

B. Metabolism

a. When a cell eats, it takes up carbon and phosphorus from the patch

i. Takes up half of extracellular carbon and phosphorus

ii. A glycolytic cell takes up much more carbon and phos-

phorus than an aerobic cell

iii. When a glycolytic cell eats, it secretes some lactic acid,

which is then di�used into neighboring patches

C. Reproduction

a. Aerobic cell will not reproduce if the number of cells on the patch

is greater than some number

b. To reproduce, the cell needs to check the C:P ratio

i. If it is below a threshold, divide inner carbon and phos-

phorus in half and hatch 1, letting the new cell occupy

a neighboring patch at random; mutate the threshold of

resistance to lactic acid

ii. If it is above the threshold, set half inner carbon and

phosphorus, add the pumped out phosphorus to the mi-

croenvironment but do not divide
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D. Microenvironment

a. Lactic acid, as well as extracellular carbon and phosphorus di�use

to neighboring patches

b. The shade of the color of the patch is determined by lactic acid

presence: the lighter the patch, the more lactic acid there is there.

This allows to track the toxicity of the microenvironment

c. The resources (carbon and phosphorus) in the microenvironment are

renewed completely every once in a while to simulate blood in�ow

Design concepts

Adaptation. There is one adaptive trait in this experiment: the threshold of tolerance

to lactic acid. It is cell-type speci�c and change each time the cell divides.

Fitness. Cell �tness in the model is determined by their birth and death rates. It can

evolve over time as the threshold for lactic acid resistance evolves, thus reducing the death

rate of the corresponding cells.

Prediction. Cells do not have the ability to predict the availability of resources in the

microenvironments.

Sensing. Normal (aerobic) cells sense being crowded and thus do not divide even

when there are ample resources for it available in the microenvironment. Glycolytic cells are

oblivious to space constraints and divide regardless of the number of neighbors present in

the microenvironment, limited only by the resources

Interactions. There are not direct interactions among the cells. All interactions are

indirect via competition for the resources.

Initialization. Some parameter values that gave interesting behaviors are summarized

in Table 2.

Input Data. No external sources are used for input.
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Preliminary observations

1. Naturally, within the frameworks of this model, the crucial parameters are initial carbon

and phosphorus and the threshold for reproduction (C:P)

2. Glycolytic cells are more likely to �gain ground� if there are not too many of them

initially. There seems to exist a threshold for �optimal size� of initial glycolytic popu-

lation. That is, having initially a larger glycolytic population size does not necessarily

guarantee successful tumor growth (does it mean that having a larger glycolytic tumor

is not necessarily scarier?)

3. Some aerobic cells can survive in the regions of hypoxia; they just don't reproduce.

Probably, this is because they can't get to the reproduction-necessary resources like

phosphorus quite as quickly as glycolytic cells but when it comes to survival-necessary

carbon, they are e�cient enough to survive. They developed a strong enough resistance

to lactic acid not to die in this acidic environment.

4. A fully glycolytic population will always eventually die as the cells cannot support

themselves too long on such high energetic demands. This could be one of the reasons

why migration and metastasis have to be selected for.

In the following �gures, red arrows denote aerobic cells, blue arrows denote glycolytic cells.

The lighter the environment, the more toxic it is (the more lactic acid there is on the

microenvironment). For this set of simulations, the reproduction threshold (C:P ratio) was

taken to be 0.4, initial carbon available was 31, initial phosphorus was 96, initial number

of aerobic cells was taken to be 847, and the initial number of glycolytic cells was varied

(parameter values were chosen arbitrarily for illustration purposes).

This simple experiment suggests that there exists an intermediate value of how many

glycolytic cells would need to be present initially in order for the �glycolytic invasion� of the

tissue to be successful. These experiments also suggest that a minimum number of glycolytic
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Figure 7.1: Initial number of glycolytic cells is 36; glycolytic strategy could not be adopted,
and all patches are acid-free or have some acid in low concentrations.

Figure 7.2: Initial number of glycolytic cells is 76. The initial population of glycolytic
cells is large enough to get a collective competitive advantage from increased toxicity. The
microenvironment around the blue (glycolytic) cells is very acidic, which is re�ected through
increased patch brightness.
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Figure 7.3: Initial number of glycolytic cells is 134. In this case, some aerobic cells manage
to adapt to the highly acidic environment, as can be seen by a patch of red (aerobic) cells
among the blue (glycolytic) cells.

Figure 7.4: Initial number of glycolytic cells is 242. In this case, too many glycolytic cells
exhibit extremely high nutrient demands, so they are not able to secure enough nutrients to
survive before producing large amounts of lactic acid, and as a result, they do not survive in
the tissue.
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cells must be present in the cell population in order to be able to observe Warburg e�ect.

The question of how such a core population could have arisen was studied in detail in Chapter

6.



Chapter 8

CANCER-IMMUNE SYSTEM INTERACTIONS AS PREDATOR-PREY

Abstract

In this chapter we turn to yet another aspect of tumor ecology, which deals with the

immune system in the framework of predator-prey type interactions. Despite highly

developed speci�c immune responses, tumor cells often manage to escape recognition

by the immune system, continuing to grow uncontrollably. Experimental work sug-

gests that mature myeloid cells may be central to the activation of the speci�c immune

response. Recognition and subsequent control of tumor growth by the cells of the spe-

ci�c immune response has been suggested to depend on the balance between immature

(ImC) and mature (MmC) myeloid cells in the body. However, tumor cells produce cy-

tokines that inhibit ImC maturation, altering the balance between ImC and MmC. The

focus of the model discussed in this chapter is to study of the potential role of this in-

hibiting mechanism on tumor growth dynamics. A conceptual predator-prey type model

that incorporates the dynamics and interactions of tumor cells, CD8+ T cells, ImC and

MmC is proposed in order to address the role of this mechanism. The prey (tumor) has

a defense mechanism (blocking the maturation of ImC) that prevents the predator (im-

mune system) from recognizing it. The model, a four-dimensional non-linear system of

ordinary di�erential equations, is reduced to a two-dimensional system using time-scale

arguments that are tied to the maturation rate of ImC. Analysis shows that the model

is capable of supporting biologically reasonable patterns of behavior depending on the

initial conditions. A range of parameters, where healing without external in�uences can

occur, is identi�ed both qualitatively and quantitatively, which could be interpreted as

the immune system suppressing dormant cancer cells.

Keywords: cancer, myeloid cells, immune system, time scales, predator-prey

Introduction

Cancer is a general term that encompasses a number of diseases, characterized by

uncontrollable division of cells. Many types of cancer are characterized by the development

of solid tumors - tightly packed conglomerations of rapidly dividing cells; rapidly dividing
116
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and spreading tumors are considered malignant. Cells of malignant tumors eventually invade

surrounding tissues, causing malfunction of internal organs and eventually the patient's death

[105].

The uncontrollable growth and the spread of the cancerous cells, regardless of the

mechanism, is usually deterred by a battery of immune system responses. Cancerous cells

activate the body's innate immune response, which is then followed by activation of the

adaptive (speci�c) immune response [105]. Innate and adaptive immune responses involve

populations of white blood cells, including tumor-speci�c cytotoxic T lymphocytes (CD8+

T cells) and immature and mature myeloid cells [46]. The speci�c immune response then

becomes the dominant force in charge of controlling the growth of a malignant tumor. The

CD8+ T cells, which are part of the adaptive immune response, bind to receptors on the

surface of the tumor cell and release membrane-damaging chemicals, e.g. perforin. This

creates osmotic imbalance inside the cell, forcing it to either swell or shrink. A fraction of

the cells of the adaptive immune response remains in the body for extended periods of time

after tumor growth is halted, accelerating the activation of the immune system, should the

tumor reappear [105].

Each CD8+ T cell is capable of killing numerous tumor cells. Repeated encounters

between the tumor and the CD8+ T cells stimulate further CD8+ T cell production. The

e�ciency of the speci�c immune response is directly tied to the ability of CD8+ T cells to

recognize tumor cells. This process is partially regulated by myeloid cells that produced in the

bone marrow. After a period of maturation, immature myeloid cells (ImC) di�erentiate into

macrophages and dendritic cells, becoming mature myeloid cells (MmC). Both macrophages

and dendritic cells are antigen-presenting cells (APC), that is, they help the immune system

recognize the presence of the tumor cells in the body [82,105].

Experimental studies suggest that maturation of myeloid cells can be partially blocked

by the production of certain cytokines, such as the vascular endothelial growth factor (VEGF),

generated by the tumor cells [78]. The presence of the tumor cells thus slows down the ImC

maturation process, causing ImC to accumulate at the site of the tumor. As a result, the

number of functional APCs in the presence of the tumor gets reduced, and the activation of
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the speci�c immune response decreases dramatically.

A number of mathematical models have been introduced in order to capture the

dynamics between tumor and immune system (see, for instance, [28, 29, 73]); a number of

them have also modeled cancer-immune system interactions in the context of predator-prey.

However, the focus of existing models has mostly been on identi�cation and evaluation of

optimal treatment options. No model to our knowledge has incorporated the maturation

dynamics of ImC on the e�ectiveness of the immune response. So, a predator-prey type

model is introduced where the prey (tumor) has a defense mechanism that allows it to

escape recognition by the predator.

Model description

It is assumed that the tumor grows exponentially in the absence of an immune

response. Consequently, the role of the immune system response is directly tied to the

immune system's ability to deal e�ectively with uncontrolled tumor growth. The activation

of the adaptive immune response arises from the activity of the innate immune response,

such as natural killer (NK) cells [?, 105], a step that is not included in our model, since the

focus is on the dynamics of the activated CD8+ T cells.

It is also assumed that the production of tumor-speci�c CD8+ T cells can only take

place in the presence of tumor cellsincluding tumor cells that were previously killed both

by NK cells and CD8+ T cells. The e�ectiveness of the immune response is limited by

the fact that tumor cells are not always recognized as foreign and therefore can escape

destruction [28,29].

Myeloid cells are constantly being produced in the body. Work by Gabrilovich et

al. [18,46,78,79,108] suggests that a large number of ImC are able to inhibit T cell responses

in cancer patients, while the presence of a large number of MmC stimulates the immune

response, and that impaired balance between ImC and MmC can in fact be viewed as another

one the hallmarks of cancer [78]. In the context of our model, we suggest representation of

this mechanism as a ratio term between MmC and ImC as they come in contact with the

CD8+ T cells.

In their immature state, dendritic cells are phagocytic and reside in peripheral tissues
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to take up pathogens. Upon maturation, triggered by various stimuli such as presence of

the tumor cells, DCs undergo a series of phenotypic changes, which are characterized by

displaying tumor-speci�c antigens on the surface of the dendritic cell. Then they migrate

to lymph nodes. Upon presentation of processed antigens to T cells, the di�erent stimuli

that induce maturation of DCs also determine the production of cytokines that facilitate the

polarization of T cell responses [97].

Mature myeloid cells are central to the ability of CD8+ T cells to recognize tumor

cells as foreign [78,82]. However, their maturation is inhibited by cytokines, such as VEGF,

IL-6 or IL-10, produced by tumor cells. Consequently, immature myeloid cells accumulate in

the body in the presence of the tumor and inhibit the activity of the CD8+ T cells [78].

If we let L(t) denote the population of CD8+ T cells; T (t) - the population of tumor

cells, M1(t) - the population of immature and M2(t) the population of mature myeloid cells

at time t, then some of the relevant dynamics of the immune system response to tumor

growth are captured by the following nonlinear system of di�erential equations:



Ṫ = aT −µT T − eLT M2
M1+M2

,

L̇ = −µLL+ cL2T M2
M1+M2

,

Ṁ1 = Ω−µ1M1− (θ −g T
p+T )M1,

Ṁ2 = (θ −g T
p+T )M1−µ2M2,

(8.1)

In this model it is assumed that the tumor growth is exponential in the absence of

an immune response. Tumor cells die at the per-capita rate µT T or are removed from the

system by the CD8+ T cells. The removal rate is a function of the ratio of mature to the

total number of immature and mature myeloid cells in the blood stream. The production

of L cells is stimulated by coming in contact with the tumor cells at the rate cLT ( M2
M1+M2

)L.

More speci�cally, coming in contact with tumor cells also stimulates cell division of the L

cells, which is accounted for by the appearance of the term L2 in this equation. The natural

death rate of the L cells is denoted by µLL. The rate of recognition of the tumor cells by L

cells increases with the presence of M2 but decreases with the presence of M1 cells. The M2

to M1 +M2 ratio is used to model the impact of both cell populations on the activity of the
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L cells. Clearly, alternative functional relations could and should be explored.

Immature myeloid cells are released in the blood stream from the thymus at the

rate Ω, a parameter that is larger by several orders of magnitude when compared to other

parameters. It is the largest parameter in the system, a crucial fact that is used in model

reduction in the next section. M1 cells die at a rate µ1M1. θ is the maturation rate of M1

under a normal pathway of cell di�erentiation and g M1T
p+T is the rate at which tumor cells

inhibit M1 maturation by producing growth factors and cytokines, such as VEGF.

The parameter g in fact combines two opposing forces that are directly tied to the

presence of tumor in the body. It could be written as g= g1−g2 where g1 is the suppression of

ImC activation caused by the production of VEGF and other maturation-suppressing cytokines

by the tumor; g2 is the increased stimulation of ImC maturation, which is a natural immune

response to the presence of the tumor in the body. Depending on which force dominates,

the overall sign of the parameter g can be positive or negative. Finally, µ2M2 denotes the

per capita natural death rate of MmC.

Full summary of parameter values used in System (8.1) is summarized in Table 8.1.

Table 8.1: Meaning and sample values of parameter values.

Parameter Units Description Value Source
[0.5ex] a day−1 Tumor growth rate 0.432 [29]

µT day−1 Tumor natural death rate 0.02 [29,105]
e cell−1day−1 Rate at which L cells kill tumor cells 2.02 x 10−8 [29, 105]

µL day−1 L cell natural death rate 0.02 [29]
c cell−2day−1 Growth rate of L due to T 1.8 x 10−8 [29]
Ω day−1 Production rate of M1 107 [105]
µ1 day−1 M1 natural death rate 0.02 [29,105]
θ day−1 Activation of M1 0.2 [105]
g day−1 Activation of M1 in response to T 0.0125 no data
µ2 day−1 M2 natural death rate 0.02 [29,105]
p saturation coe�cient of T cells 10 no data

Analysis

Dimensionality reduction using time scale arguments

Antigen-presenting cells, MmC in particular, play a crucial role in ensuring the proper

recognition of the tumor cells by the immune system [46, 78, 79]. MmC activate tumor-
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speci�c T-lymphocytes, such as CD8+ T cells, partially by coming in contact with the tumor

cells and presenting this information to the CD8+ T cells. It has previously been observed

that the number and function of MmC cells are signi�cantly reduced in cancer patients. This

reduction is closely linked to the accumulation of ImC cells in the patient's blood stream while

the presence of MmC cells in tumor tissue may only imply a good clinical prognosis [46].

The process of maturation of ImC cells occurs on a scale of minutes and hours while

the growth and establishment of both tumor and CD8+ T cells can take several days, months

or even years [105]. Normally, the number of MmC cells is greater than the number of ImC

cells, since ImC do not accumulate. However, tumor-induced suppression of ImC maturation

causes ImC to accumulate, skewing the ratio of MmC to ImC in the body. In fact, a 1:1 ratio

or lower has been observed in almost all patients with advanced stages of cancer [78,79].

Taking into consideration the di�erence in rates of maturation and establishment by

ImC and MmC when compared to those of the rates associated with tumor and CD8+ T cell

response, it is assumed that a balance between immature and mature myeloid cells has been

reached before a measurable impact of the interactions between tumor cells and the CD8+

T cells is documented.

Letting x = AT , y = BL, τ =Ct, u1 = E1M1, u2 = E2M2 and ε = 1
Ω
, where Ω is the

largest parameter in the system, we can rewrite system (8.1) as follows:



dx
dτ

= (a−µT )x
C − xy E1eu2

CB(E2u1+E1u2)
,

dy
dτ

= −y µL
C + xy2 E1cu2

ACB(E2u1+E1u2)
,

ε
du1
dτ

= Ω

C (E1−u1
µ1
Ω
− u1

Ω
(θ − x g

Ap+x)),

ε
u2
dτ

= 1
C ((θ − x g

Ap+x)u1
E2
E1
−µ2u2),

(8.2)

where the small parameter ε ≤ 1
24 ≈ 0.01.

The �fast" (u1,u2)-subsystem of (8.2) reaches quasi-steady state at:

u∗1 = E1Ω

µ1+V

u∗2 = E2ΩV
µ2(µ1+V )

(8.3)

where V = θ − x g
Ap+x The equilibrium point (u∗1,u

∗
2) is always globally asymptotically stable
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(see Appendix ?? for proof), which allows us to use Tikhonov theorem [156] (see also

Hoppenstead's theorem [147]) to make the following substitution and reduce our system to

two equations:

Letting

C = a−µT ,A =
−g+θ

pθ
,B =

cpθ

(a−µT )(−g+µ2 +θ)

we get

M2

M1 +M2
=

E1u2

E2u1 +E1u2
=

(−g+θ)(1+ x)
(−g+µ2 +θ)(β + x)

where β = (−g+θ)(µ2+θ)
θ(−g+µ2+θ) .

Making this substitution into System (8.1) we obtain the following system of equa-

tions:

 ẋ = x−αxy 1+x
β+x ,

ẏ = −γy+ xy2 1+x
β+x

(8.4)

where α = e(−g+θ)
θ pc ,γ = µL

a−µT
,β = (−g+θ)(µ2+θ)

θ(−g+µ2+θ) ,x =
T
A ,y =

L
B

Equilibrium stability analysis

System (8.4) has two equilibrium points: O(0,0) and A (γα, β+αγ

α(1+αγ)). The Jacobian

matrix J(x,y) for this system is :

 β 2+x2(1−αy)−β (αy+2x(−1+αy))
(β+x)2 −αx(1+x)

β+x

y2(β+2βx+x2)
(β+x)2 −γ + 2xy(1+x)

β+x


The determinant of the Jacobian matrix at the trivial equilibrium is det =−γ , which

is less than zero. Therefore, the trivial equilibrium is a saddle point.

At the nontrivial equilibrium point A, the determinant of the system is det = γ , which

is always greater than zero; therefore, point A is either a node or a spiral. The trace of the

Jacobian matrix at the non-trivial equilibrium is given by

Tr(J(A)) =
γ(β (1+α(−1+ γ))+α(1+ γ +αγ2))

(1+αγ)(β +αγ)
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Hence, the point A becomes unstable, giving rise to periodic solutions via Hopf

bifurcation. The condition Tr(J(A)) = 0 is satis�ed if

β =
α(1+ γ +αγ2)

α(1− γ)−1
(8.5)

System (8.4) has properties, summarized in Theorem 1.

Theorem 1

In the parameter domain ∆, where α > 0,β > 0,γ ∈ (0,1), there exists a subdomain

∆∗, such that for all α,β , γ ∈ ∆∗,

1) System (8.4) exhibits three generic types of quantitatively di�erent dynamical

behaviors for x,y≥ 0 (see Figure 8.1) which lie within three di�erent domains.

(i) If the point (α,β ,γ) belongs to Domain 1, then System (8.4) has a unique stable

equilibrium point whose basin of attraction is bounded by an unstable limit cycle. (ii) If the

point (α,β ,γ) belongs to Domain 2, then System (8.4) has no stable steady states for �nite

x,y≥ 0.

(iii) If the point (α,β ,γ) belongs to Domain 3, then System (8.4) has an unstable

non-trivial equilibrium point within a unique stable limit cycle whose basin of attraction is

bounded by an unstable limit cycle.

2) (i) The boundary H−between Domains 1 and 2 is determined by (8.5), where

α <
2+ γ−2γ2 +

√
4−3γ2

2γ(1− γ)

which corresponds to a co-dimension 1 subcritical Hopf bifurcation of equilibrium point A.

(ii) The boundary H+ between Domains 1 and 3 is determined by (8.5), where

α >
2+ γ−2γ2 +

√
4−3γ2

2γ(1− γ)

which corresponds to the co-dimension 1 supercritical Hopf bifurcation of equilibrium point

A.

(iii) The boundary D between Domains 2 and 3 corresponds to the co-dimension 1

saddle-node limit cycle bifurcation.
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(3) Bifurcation boundaries H−,H+and D have a common line HD (not shown),

where

α(γ) =
2+ γ−2γ2 +

√
4−3γ2

2γ(1− γ)

β (γ) =
α(γ)(1+ γ + γ2α(γ))

α(γ)(1− γ)−1

For any (α,β ,γ) ∈ HD, System (8.4) exhibits a co-dimension 2 "zero Lyapunov

value" bifurcation.

The proof of Statement 3 is given in the Appendix. Statements 1 and 2 follow from

Statement 3 and from the statement below, which describes the structure of trajectories of

the system in Poincaré coordinates (at in�nity).

Proposition 4 For all values of parameters (α > 0,β > 0,γ ∈ (0,1)) and x,y > 0,

System (8.4) has an equilibrium point Ex (z ≡ 1
x = 0,u ≡ y

x = 0) with a unique hyperbolic

sector, at the �end" of x-axis and an equilibrium point Ey (z ≡ 1
y = 0,v ≡ x

y = 0) with a

hyperbolic sector adjacent to the y-axis and an attractive parabolic sector, at the �end" of

y-axis.

Figure 8.1: Phase-parameter portrait of system 8.4 at γ = γ̃ = 0.47. H− and H+correspond to
boundaries of subcritical and supercritical Hopf bifurcations of co-dimension 1, respectively.
D corresponds to the saddle-node limit cycle bifurcation of co-dimension 1.
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Table 8.2: Values of parameters in α and β in three domains in Figure (8.1)

Parameter Value in Domain 1 Value in Domain 2 Value in Domain 3
[0.5ex] α 7.0 4.0 16.0

β 9.0 6.0 11.0
θ 0.0186 0.028 0.0173
g -0.6314 -0.532 -1.3628
c 1.0 x 10−8 1.0 x 10−8 1.0 x 10−8

µ2 0.02 0.02 0.02
µL 0.2 0.2 0.2

Noticeably, the values of the parameter g are negative because g is a combination of two opposing

forces, written as g = g1−g2. g1 is the rate at with which the tumor blocks maturation of M1. g2 is the rate

at which the presence of tumor cells stimulates the body's own immune responses. If g1 > g2, then g > 0

and the only behavior that exists in the system is uncontrollable tumor growth. If g1 < g2 (i.e, immune

system surpasses the attempts of tumor cells to block it), then g < 0, and the possibility for regimes when

the immune system will can over cancer exists.

The proof of Proposition 4 is omitted. For the method (Newton diagram) used in

the proof, see [9, 12].

Discussion

In this work we incorporate the dynamics of immature and mature myeloid cells in

the model of cancer-immune system interactions in an attempt to explore how the ratio

between ImC and MmC cells could in�uence the e�ectiveness of the immune response.

The parameters used in numerical simulations come from a number of sources. The

values of the parameters for the equations for T and L come from [28, 29]. The values

for birth and death rates of M1 cells were estimated from [105]. Finally, the value of the

parameter g was guessed since to our knowledge there is no exact experimental information

that would allow us to measure the rate at which tumor cells inhibit M1 maturation.

The system can be reduced from four equations to two equations using Tikhonov

theorem [156] and time scale arguments. The �equivalent" system has only one non-trivial

equilibrium. The value of parameter β can be expressed as β = (θ−g)(µ2+θ)
θ(µ2+θ−g) . Recall that the

ImC maturation parameter g is a combination of two opposing forces and can be written as

g = g1−g2, where g1 is the suppression of ImC activation that is caused by the production

of VEGF and other maturation-suppressing cytokines by the tumor cells, and g2 represents
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stimulation of ImC maturation, which is a natural response of the immune system to the

presence of the tumor in the body. If the overall value of g > 0, then the suppression

of ImC maturation overpowers, and so the value of β < 1. In this case the non-trivial

equilibrium point is unstable regardless of the values of other parameters, which corresponds

to uncontrollable tumor growth (see Domain 2 in Figure 8.1).

However, when g < 0, it is the stimulation of the immune system by the tumor that

overpowers. In this case the value of the parameter β > 1. In this case, it is the parameter

α = e(−g+θ)
θ pc , which corresponds to the e�ectiveness of interactions between the activated

CD8+ T cells that determines the behavior of the system. Notice, that its value is also

directly tied to the value of the parameter g. In particular, one can identify a region on the

parametric space (see Domain 1 in Figure 8.1) where the equilibrium point gains stability.

Moreover, there is a small region around the stable equilibrium point, de�ned by an unstable

limit cycle, where the solutions of the system will in fact go to a steady state. The appearance

of an unstable limit cycle corresponds to a subcritical Hopf bifurcation. However, if the initial

conditions are outside of the limit cycle, the tumor will start growing uncontrollably. The

full phase-parametric portrait of the system is given in Figure 8.1. Some of the analytical

conditions, necessary for a subcritical Hopf bifurcation to occur are given in Appendix.

The observed dynamics suggest that recovery without treatment is only possible in a

very small region which depends directly on the initial state of the patient's immune system

and the stage of disease progression.

Conclusions

In this Chapter we introduce a system of four nonlinear ordinary di�erential equations

to model the interactions between tumor and immune system cells. The prey (cancer) has a

defense mechanism that allows it to escape recognition by the predator (immune system). In

the context of our model it is the maturation of myeloid cells, which are crucial for activation

of the immune system that is targeted by cancer cells in their e�ort to avoid recognition.

In the absence of treatment, if the immune system is weak, the growth of cancer

cells is unrestrained. However, if the number of cancer cells in the body is low enough,

and the immune system is su�ciently stimulated, then there exists a small region of initial
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conditions, where a patient's recovery without treatment can occur. Moreover, we have been

able to analytically de�ne a boundary of this region through a combination of parameters

that govern the dynamics of myeloid cell maturation. In fact, we found, both numerically

and analytically, a small region around a �xed point (low number of cancer cells) that is

de�ned by an unstable limit cycle. If the initial conditions are inside the limit cycle, the

solution converges to a stable �xed point, which indicates controlled tumor growth. Initial

conditions outside this limit cycle lead to uncontrollable tumor growth. In other words, if the

immune system is weak, cancer cells may grow unrestrained and stochastic e�ects may move

us outside the limit cycle, into the region of uncontrollable growth. On the other hand if the

number of cancer cells is su�ciently small and the immune reaction is strong enough, then

the existence of this small region of parameter space guarantees the possibility of recovery

(no uncontrollable growth) without treatment.

One other possible interpretation of observed dynamical regimes deals with tumor

dormancy: it has been hypothesized that there exist a number of non-proliferating tumor

cells that are repressed by the activity of the immune system [132, 155], which within the

frameworks of the proposed model corresponds to remaining within Domains 1 or 3 of the

phase parameter space (Figure 8.1). Falling out of the domain of attraction of non-trivial

equilibrium A results in uncontrollable tumor growth.

Since the maturation of myeloid cells and its e�ects on tumor growth are the key point

in the proposed model, and since the observed behavior corresponds to the expected general

dynamics of the disease, the next question to address becomes: �What factors in�uence

maturation of myeloid cells and what can be done in order to prevent the tumor cells from

blocking the activity of the immune system?". There are several possibilities for future

investigations. It seems that blocking VEGF (one of the cytokines that is produced by tumor

cells that seems to block maturation of ImC) does not help restore the maturation rate

of ImCs [45]. However, production of VEGF seems to be stimulated by the presence of a

particular molecule called Stat3, and blocking Stat3 has been shown to restore the maturation

rate of ImCs ( [74, 113, 172]). This is only one of many questions that can be investigated

further and incorporated into future models.



Chapter 9

WHAT CAN ECOLOGY TEACH US ABOUT CANCER?

Abstract

In 2008, Pienta et al introduced the term �ecological therapy� for cancer treatment,

and in particular, emphasized that destruction of the microenvironment would be more

e�ective than just killing the species inhabiting it. Proposed here is an expansion on

the idea of ecological therapy of cancer, incorporating 1) literature on species invasion,

i.e., that a right cancerous clone needs to be at the right place at the right time to

actually invade its environment and 2) the literature on niche construction, i.e. the idea

that once a tumor is formed, tumor cells they modify their microenvironment (niche

construction) by changing pH through glycolysis, secreting growth factors and recruiting

tumor-associated macrophages (TAMs) to promote their growth, activating �broblasts,

evading predation from immune system, making the cancer that much more di�cult to

eradicate. Paleontological literature suggests that the largest mass extinctions occurred

when environmental stress that would weaken the population was coupled with some

pulse destructive event that caused extensive mortality. So, rather than, or at least in

addition to killing the cells, one would also need to target the niche that they created

for themselves.

Keywords: cancer ecology, niche construction, ecological therapy

Cancer as an ecological system

Over the past decade it has been increasingly recognized that a tumor is not ge-

netically homogeneous but is rather composed of many genetically diverse cancer cells

[63, 149, 153]. If variability in the population is heritable and if it a�ects �tness, then

the system is going to evolve, leading to competition for space and common resources and

resulting in di�erent clones being selected for or weeded out of the population due to natural

selection. Genomic heterogeneity is one of the major reasons why we see acquired thera-

peutic resistance, since cytotoxic therapy inevitably selects for resistant cells by applying a

severe selective pressure on the entire heterogeneous cell population. Moreover, heterogene-
128
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ity within even premalignant lesions has been shown to be indicative of a worse prognosis

for the patient [100]. At the same time, prognosis for young cancer patients is typically

more favorable, which can be attributed in part to the fact that younger tumors are less

heterogeneous and hence are less likely to become resistant to therapy.

Another consequence of tumor heterogeneity is the possibility of so-called �evolu-

tionary suicide� [129] � in their quest for higher growth rates, lower death rates, increased

competitiveness and with their ability to migrate out and colonize distant organs, cancer cells

defy �cooperation� with somatic tissue, eventually killing the host and thus killing themselves.

This evolutionary experiment is run within each cancer patient, sometimes leading to cancer

cells committing evolutionary suicide at the expense of the host.

From an ecological perspective, one can look at this process as an attempt of new

species (cancer cells), which have di�erent metabolic and reproductive strategies compared

to the �resident� population (somatic cells) to invade a new habitat (tissue). Successful

invasion will result in the formation of a primary solid tumor. Such perspective might be able

to provide a di�erent viewpoint, allowing us to draw parallels with other ecological systems

to �nd answers to such questions as �under what conditions can invasions occur?�, �how do

invading species adapt to and modify their environment?�, and most importantly, �what can

be done to eradicate them?�

Mechanisms of species extinction

The mechanisms by which species in nature go extinct can generally be subdivided

into two distinct categories � extrinsic factors, such as habitat modi�cation, change in nutri-

ent supply and interactions with predators, and intrinsic factors, such as any change in the

genotype, which eventually results in changes in the phenotype.

Intrinsic factors typically re�ect how the species have been adapting to their environ-

ment over long evolutionary time scale. From an evolutionary game theory point of view, the

individuals within the population have been moving towards an evolutionarily stable strategy

(ESS), i.e., a state when no individual within the population has an incentive to change their

�strategy� in their interactions with the environment. As a result, theoretically, once the ESS

is adopted in the population, natural selection alone becomes insu�cient to allow invasion
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by a new mutant. (It is important to note that being at an ESS does not imply highest

�tness in the sense of the largest di�erence between birth and death rates. It only implies

resistance to invasion.)

However, invasions do happen. One of the frequent ways by which species can go

extinct is when a more e�cient or more proliferative competitor invades their habitat much

like cancerous cells can invade and start outcompeting healthy cells in the tissues. Research

in the area of invasion ecology has been focused particularly on this question.

Habitat invasion and cancer

A number of mechanisms have been proposed to explain why some habitats are

more or less susceptible to invasion, of which habitat modi�cation is most often the common

denominator [34,135,158]. Invasion can be facilitated when the �native� populations are more

specialized towards their niche, while the invaders are �generalists� � perhaps less e�cient

in some aspects when compared to the natives but capable of taking on multiple roles

and exploiting multiple resources [16, 121]. Another, perhaps complementary, theory comes

from David Tilman, whose research focus has primarily been on the questions of ecosystem

stability and the e�ects on it of biodiversity. He suggests that more diverse ecosystems

are less susceptible to invasion because greater biodiversity ensures more complete resource

utilization [157,158]. Incomplete resource utilization allows for the formation of a new niche,

which can be occupied by invaders. And, if the new niche has been available for an extended

period of time, invaders will not only have time to �nd and occupy it but will also be able

to �co-evolve with it�. This phenomenon is known as niche construction [116], and it refers

to a situation when the niche gets modi�ed due to the metabolic activity of its occupants.

The adaptations could also be di�erent: an invader can modify the niche to be better suited

for them than for any other species, or they can exploit the niche in such a way as to

make it uninhabitable by anyone, inducing increased migration (which could be an ecological

explanation for the formation of metastases).

When it comes to cells within a tissue, one can argue that they are at an evolutionarily

stable state, and thus should not be prone to invasion by a cell that adapts a di�erent

metabolic or reproductive strategy. Another way of thinking about the �normal� state of
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cells in the tissue is that they are at an adaptive peak [96]. Therefore, in order for a

cancerous clone to invade the population of healthy cells, something must take the healthy

cells �o� of the adaptive peak�.

DeGregori suggests that aging is one such mechanism by which the somatic cells

gradually slide o� of the adaptive peak, allowing for the invasion of cancerous clones [31,59,

96]. It is possible that aging-associated decline in functionality of cells, tissues, organs, caused

by both intrinsic cell mechanisms, such as accumulated mutations, as well as damage caused

by extrinsic factors, such as exposure to carcinogens, could be reducing �tness of the resident

cell population over time. Some studies also suggest that mitochondrial function declines

with age, possibly due to the accumulated damage from exposure to reactive oxygen species

(ROS) over individual's life span [6,8,36,77,88,144]. Since most of aerobic metabolism occurs

in mitochondria, decline in mitochondrial function would cause loss of �tness advantage for

somatic cells. If for cancer initiation, one needs to not only have the right cancer clone

(identi�cation of what makes the right clone is the focus of molecular study of cancer

genetics) but also have it in the right place at the right time, aging could provide the ever

increasing window of that �right time�.

Niches in the human body

It is of course not completely clear what de�nes a niche for a cell population in a

human body. If one were to continue with the ecological analogy, one would have to include

in the de�nition nutrients (glucose, phosphorus, iron, lipids and other materials necessary for

cell growth and reproduction), space (including extracellular matrix, which is often destroyed

by tumors) and predators (cells of the immune system), as well as other microorganisms, such

as gut or skin bacteria. The niche would also be characterized by such factors as pH, blood

�ow and rates at which cell metabolic products, dead cells, as well as external chemicals,

such as certain carcinogens, are being washed out from the tissue. Other inhabitants of

the niche, in this case the somatic cells, are of course also part of the environment. So,

a signi�cant modi�cation in either of these components could hypothetically allow for the

creation of a new niche that a budding primary tumor can occupy.
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Interactions with the predator: the immune system

Many tumors are characterized by increased in�ammation [24, 30, 55, 95]. It is pos-

sible that while the immune system is �ghting an infection, immune cells secrete growth

factors that premalignant cells also partake in, thus creating new growth factor rich microen-

vironment [66, 133] If the in�ammation, and thus in�ow of growth factors, continues long

enough, it can give the few cancerous clones the boost they need to start growing. A sub-

sequent decrease in the in�ammatory response may not be enough to stop the tumor from

growing once the process has been initiated, since some tumors either learn to secrete their

own growth factors (the so-called hormone-secreting tumors like pituitary adenoma), or learn

to manipulate other cells to secrete growth factors for them. A striking example of the latter

is the existence of tumor-associated macrophages (TAMs) that accumulate preferentially in

the poorly vascularized regions of tumors [55,84,94] and secrete cytokines that actually pro-

mote tumor growth [30,66,94,167]. Moreover, not only can these cytokines promote tumor

growth but they have also been known to suppress activation of CD8+T cells that are most

e�cient in tumor elimination [46,78,79,104,127].

Cancer-induced niche modi�cation

Thus, tumor cells, after invading a newly formed niche, have ample ways to modify it

as to make it suit their particular needs. A possible unifying mechanism could be as follows:

a right cell (exhibiting one or more hallmarks of cancer) has been in the right place (having

access to enough nutrients, such as carbon and phosphorus and other building materials)

at the right time (during cell division or in�ammation, getting access to growth factors, or

simply in an older tissue, where the surrounding cells are not as �t). As the primary tumor

outgrows its blood supply, an increasing number of cells switch to glycolytic metabolism.

Glycolytic cells secrete lactic acid as a by-product of glucose metabolism, creating acidic

microenvironment, which can become toxic to surrounding somatic cells [41,49], thus giving

glycolytic cancer cells competitive advantage even in the presence of oxygen.

Normally, glycolysis is up-regulated only in a hypoxic microenvironment, where pro-

duction of protein HIF-1 is upregulated; under normoxic conditions, its oxygen-sensitive part

HIF-1a is degraded via ubiquitin-proteasome pathway [142]. However, in hypoxia, the pres-
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ence of HIF-1a stimulates production of VEGF and other angiogenesis promoting factors to

stimulate blood �ow and bring in more oxygen to the supposedly hypoxic areas [141].

In the presence of a large enough number of glycolytic cells, an acidic microenviron-

ment is created, in which HIF-1 production is up-regulated, and, what is more important,

HIF-1a, the oxygen sensitive part of HIF-1, is not degraded. Lu et al. [91] provide evi-

dence that lactate and pyruvate regulate hypoxia-inducible gene expression independently of

hypoxia by stimulating the accumulation of HIF-1a at the site. It seems like the function

of von Hippel Landau (VHL) protein, a site of HIF-1a recognition by the proteosomes, is

neutralized both in hypoxic conditions and in the areas of normoxic acidosis, thus allowing

tumors to simulate hypoxia in normoxic conditions [98].

What does this lead to? Corzo et al. [22] showed that when HIF-1 is up-regulated,

activation of CD8+T cells is suppressed, and expression of tumor-associated macrophages

(TAM) goes up. Also, HIF-1, since its primary purpose is to attract oxygen to hypoxic areas,

stimulates production of VEGF, which has a number of di�erent e�ects. For one, VEGF not

only promotes angiogenesis but also down-regulates activation of CD8+T cells, allowing the

tumor to grow unrestrained by the immune system [46].

The process can be summarized as follows (see also Figure 9.1):

1. A mutated cell survives and starts proliferating in the tissue. Faced with decreasing

oxygen availability, cells within the tumor start switching to glycolytic metabolism,

which results in the creation of acidic microenvironment around the tumor.

2. HIF-1 is up-regulated even in normoxic conditions, because VHL protein, a binding cite

for cite for HIF-1a degrading proteosomes, becomes neutralized in areas of hypoxia and

normoxic acidosis, thus allowing the tumor to simulate hypoxia in normoxic conditions.

It has been shown that by-products of glycolysis, lactate and pyruvate, allow up-

regulation of HIF-1 even in normoxia.

3. As the production of HIF-1 increases, activation of CD8+T cells decreases (immune

system evasion), and recruitment of TAMs increases, thus providing more growth
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Figure 9.1: Schematic representation of the possible mechanism of tumor initiation and
progression from an ecological point of view. Tumor initiation corresponds to the mechanism
of species invasion, and is hypothesized to be possible when the environment is permissive, in
particular, when there are excess nutrients (new niche) and when competitors (somatic cells)
are less �t, compared to the invaders. Tumor promotion corresponds to niche colonization and
modi�cation by the invading species through pH alteration, recruitment of growth factors,
etc., as well as avoidance of predators (immune suppression).

factors for tumor cells.

4. As HIF-1 concentration increases, so does the production of VEGF, since the main pur-

pose of HIF-1 is to attract more blood vessels to restore oxygen supply, thus promoting

angiogenesis. VEGF has also been shown to down regulate CD8+T cell activation

through suppression of maturation of antigen presenting cells, such as dendritic cells,

thus also suppressing the anti-tumor immune response.
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Reverse conservation biology and mass extinctions. Lessons from paleontology.

A naturally arising question is then: �If a niche has been created, and if the tumor

cells had had the chance to occupy it and settle in it, how can one get rid of them?� Just

reversing the initial conditions that had led to the formation of the niche might not be

su�cient, since, as it was pointed out above, tumor cells have themselves had the chance

to modify their microenvironment. Just targeting the population of tumor cells would also

simply free up the space and nutrients to be used by the resistant clones, which could have

previously been held back because of space and nutrient limitations, imposed on them by

the less aggressive but more abundant cell clones.

A possible answer to this question comes from paleontology, and in particular, from

the studies performed to analyze the conditions that precede mass species extinctions that

have occurred over the past several million years. Arens and West [4] have suggested based

on their analysis of geologic record of impact factors and continental �ood basalts that mass

extinctions occurred more frequently and were more destructive, when pulse disturbances

(such as marine anoxic incursions) that cause extensive mortality, were accompanied by press

disturbances (such as climate or sea level change) that weakened and destabilized populations

over many generations preceding the pulse disturbance.

In cancer treatment, chemotherapy and radiation therapy act like pulse disturbances

for a population, causing extensive cell mortality, and as a result not only selecting for the

resistant clones but also freeing up the �niche� that can now be easily (or at least much easier

than before) colonized by them. Perhaps, weakening the population through continuous

environmental stress before applying the pulse would be more likely to cause mass extinction

of cancer cells. That is, rather than just kill the tumor cells, one also needs to eliminate their

niche, or at least make it less habitable for those cells that might survive after therapy.

One way to do this could be to reverse the adaptations that the tumor cells made for

themselves. For instance, Robey et al. [131] demonstrated in mouse models of metastatic

breast cancer that neutralizing acidic tumor microenvironment with sodium bicarbonate re-

duced formation of spontaneous metastases, an approach similar to what J. Pepper termed
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�targeting the public goods� [123]. Counteracting the cells' attempts at modifying their

microenvironment poses less of a selective pressure on the cell population and is thus much

less likely to propagate evolution of resistant clones.

Blocking growth factors that facilitate tumor growth would be another approach,

whether tumors secrete them themselves or �steal� them from tricked macrophages [66]. For

instance, vascular endothelial growth factor (VEGF) has been identi�ed to be a key mediator

of angiogenesis in cancer: when tumors start outgrowing their blood supply, they upregulate

VEGF production, which in turns promotes the formation of new blood vessels [17]. Blocking

VEGF receptors in tumors, accompanied by blocking of c-met pathway, has been shown

to halt tumor growth in mouse models [171]. This could be due not only to vasculature

normalization, which has been suggested to actually keep tumors from spreading because

their environment is acceptable enough for them to not need to migrate out, but also due

to the fact that it is through growth factors like VEGF that tumors suppress the activation

of cytotoxic lymphocytes by blocking the maturation of myeloid derived suppressor cells

[46,127]. Thus as a side e�ect, there could be an additional activation of the tumor-speci�c

immune response coming from neutralizing tumor-induced changes in the microenvironment.

It is also important to remember that di�erent processes take place on di�erent

time scales, and so they may be in�uencing each other in less obvious ways than antici-

pated [86, 99]. Biochemical and metabolic reactions take place on the scale of seconds and

minutes, while cell growth and expansion occurs on the scale of days. So, modi�cation of

the environment that changes on one scale might have delayed e�ects on the processes that

take place on a di�erent time scale.

Also, some nutrients can be functionally replaced (di�erent carbon sources), while

some cannot � for instance, nothing but phosphorus can be used for building of DNA,

RNA and ribosomes. Jin et al. [65] conducted an experiment where increased amount of

phosphorus lead to increased tumor growth in mouse models (everything else being equal),

supporting the hypothesis that phosphorus could be a limiting reagent for cell proliferation

[40]. Changing the amount of phosphorus present (through phosphorus enriched diet, for

instance) would change the composition of the cell microenvironment, creating a new niche
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for phosphorus-greedy tumor cells to invade. Glucose transporters are also highly up-regulated

in cancer cells to accommodate the high demand for glucose [47], so a sustained diet that

is high in carbohydrates would also allow cancer cells to not worry about the drawbacks

of glycolysis. Caloric restriction has also been implied to improve mitochondrial function

[90,140], so limiting carbohydrate intake could hypothetically give somatic tissue back their

selective advantage.

While changing what constitutes the �right cell� and the �right time� may not be

possible, the composition of the �right place�, the microenvironment, could potentially be

manipulated. Lessons from ecology suggest that it could be of vital importance both for

disease prevention and for more successful treatment.



Chapter 10

CONCLUSIONS

Complex systems and ODEs

Complexity science has been gaining ground over the last several decades as a possible

mechanism of unifying our understanding of how di�erent parts of the world interact and

in�uence each other, and what e�ects can be expected to come out as a result of these

interactions.

Complex systems involve diverse interactive adaptive agents, whose individual micro-

level behavior can cause macro-level changes, to which they in turn adapt [102, 119, 120].

This notion is very similar to that of ecosystem engineering, also known as niche construction,

where in ecological systems, individuals within populations modify their environment in such

a way as to make it suit them, often eventually co-evolving with it [115, 116]. One of the

frameworks, within which one can evaluate such interactions, is in the context of consumer-

resource interactions, which are the focus of this dissertation.

Until recently in silico modeling of complex systems was only possible with the help

of agent-based models, which involve running simulations of interactions of diverse adapting

individual agents on a lattice grid under the restrictions set by the rules that de�ne the

nature of the agents' interactions with each other and with their environment [102]. Such

experiments allow observing a number of interesting phenomena, such as tipping points,

which are the points of critical transitions in complex systems. Another way to view tipping

points is through the lens of bifurcation theory. In ordinary di�erential equations (ODEs),

tipping points can be seen as corresponding to bifurcation boundaries, which, unlike in

agent-based models, can sometimes even be identi�ed analytically. Normally, incorporating

the level of heterogeneity in ODEs comparable to that of ABMs would result in increasing

system dimensionality to in�nity, thus making qualitative analysis of such systems impossible.

This challenge is overcome in this dissertation through application of the Reduction theorem

for replicator equations [69,70].

Major premise in the Reduction theorem comes from the assumption that each indi-

138
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vidual agent, or clone, within the population studied, is characterized by an individual value

of some intrinsic parameter, such as birth rates, death rates, rates of resource consumption,

etc. Then as the system evolves, di�erent clones are going to impose di�erent selective pres-

sures both on each other and on their environment, and so the distribution of clones with

respect to the parameter values studied will also change over time. The changes in the distri-

bution and in the mean value of the individual characteristic studied can be tracked through

the moment generating function of the initial distribution of clones in the population and

keystone variables. This allows reducing an otherwise in�nitely dimensional system to low

dimensionality, thus enabling one to calculate numerical solutions of the resulting paramet-

rically heterogeneous system of ODEs, making deterministic predictions about the direction

in which this system will evolve. This methodology was used throughout this dissertation in

order to answer the questions about evolution of di�erent types of ecological systems.

Summary of results

Part I. Transitional regimes, prisoner's dilemma and tragedy of the commons in

consumer-resource models.

Evaluation of the notion of correspondence between bifurcation boundaries in ODEs

and tipping points in complex systems was done in Chapter 2. Speci�cally, its focus was on

the question of the e�ects of resource overconsumption on sustainable coexistence with the

common renewable resource of a population of consumers that can not only consume the

resource but are also capable of contributing to its restoration. A series of transitional regimes

were identi�ed analytically, going from sustainable coexistence with the resource to oscillatory

regime to system collapse with the increase of the rate of resource overconsumption. The

system was then allowed to evolve, revealing that while the amount of resource available

and the population size may appear to be stable, evaluation of the distribution of clones

with respect to the rates of resource overconsumption, and speci�cally the values of the

mean value of the corresponding parameter and its position on the bifurcation diagram of

the original system, may reveal a warning signal for an approaching collapse, which would

not be noticeable otherwise.

Next, a naturally arising question of the possible ways of dealing with the problem of

resource overconsumption was investigated in Chapter 3. The problem can be reformulated
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as a game of prisoner's dilemma: while the common resource would be better preserved if

everyone cooperated, it is in the interest of each individual consumer at each time point to

defect and over-consume. This kind of behavior can result in what has become known as the

tragedy of the commons [57], i.e., a situation, when over-exploitation of the resource on the

level of each individual results in eventual collapse of the resource for all of its consumers.

Elinor Ostrom [117,118,162] observed that the tragedy could successfully be avoided

in situations, where the act of overconsumption was immediately noticeable because of small

community size, such as in small �sheries, and immediately punishable, thus altering the

payo�s of all the players in the prisoner's dilemma game in such a way as to make preservation

of the resource a more successful strategy for each individual at each time point (see Figure

3.22).

A series of numerical experiments were then conducted in Chapter 3 to evaluate

di�erent types of punishment functions and di�erent intensities of execution of such pun-

ishment. It was observed that 1) low levels of implementation of severe punishment yield

better results that high levels of implementation of moderate punishment and 2) there exists

no panacea, no optimal punishment function for preventing the tragedy of the commons,

and the level of punishment implementation needs to be adjusted depending on the initial

distribution of over-consumers in the population.

A brief comparative analysis of two methods for modeling parametrically heteroge-

neous populations was also performed in Chapter 3, namely, adaptive dynamics and the

Reduction theorem. Adaptive dynamics [52]is a series of techniques that was developed in

1990s to evaluate the question of whether a �mutant�, in this case an individual with larger

parameter of resource over-consumption, can invade the �resident� population, in this case

under-consumers. This technique allows �nding analytical conditions for the intensity of

punishment implementation for each punishment function, which cannot be achieved with

the use of the Reduction theorem. However, adaptive dynamics does not allow to make pre-

dictions about the situation when the �mutant� is not rare, i.e., in case of such an �invasion�

by a group. This problem can in turn be addressed with the help of Reduction theorem, thus

suggesting that the two methods complement each other (a comparison of both methods is
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summarized in Table 3.2). Unfortunately, neither method allows incorporating spatial struc-

ture of the environment in the modeling process, which for the future could potentially be

addressed with the addition of agent-based models (see Section ).

Next, a situation, where the individuals in the population can choose whether to

allocate their resources to invest in reproduction or in competition was evaluated. This case

is of particular interest, since, unlike in the model, studied in Chapter 2, it is not intuitively

clear, which strategy would give the individuals a higher competitive advantage. The results

of the computations conducted in this Chapter suggest that while in a parametrically ho-

mogeneous population, i.e., a population composed of some �average� consumers, investing

into competition seems to be a more bene�cial strategy, re�ected in the fact that in this

case, a larger domain of the phase-parameter space corresponds to sustainable coexistence

with common resources, in a heterogeneous system one cannot make such conclusions. This

stems from the fact that in such a system, the individuals experience not only the pressures

from the environment in the form of limited resource, but also impose di�erent selective

pressures on each other, which vary depending on the initial distribution of clones in the

population. Therefore, in order to be able to try and predict, which way a system will evolve,

one would need to not only evaluate the rules by which the interactions occur but also who

exactly is playing by these rules.

Part II. Mixed strategies, metabolism and predator-prey interactions in cancer ecology.

In the second part of the dissertation, the notions of niche construction, mixed

strategies and tragedy of the commons as prisoner's dilemma are applied to cancer, which

can be viewed as a complex ecological system, where a population of heterogeneous cells

compete with each other and with somatic cells for common renewable resources, such as

carbon and phosphorus. In Chapter 5, tumor growth was evaluated from the point of view of

resource allocation, used for competition or for proliferation, similarly to the general model

evaluated in Chapter 4. It was hypothesized that manipulation the ratios of carbon (energy

source, necessary for survival) and phosphorus (source of building materials, necessary for

proliferation) may allow shifting the overall composition of the tumor away from the more

dangerous proliferative phenotype and towards a less aggressive competitive phenotype. The

hypothesis was evaluated using a system of ODEs, suggesting that indeed, reduction in
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phosphorus availability may allow shifting tumor composition towards a more competitive

phenotype, emphasizing importance of nutrition for cancer patients.

One possible manifestation of the competitive phenotype can be related to the way

cancer cells metabolize glucose. Any cell can metabolize glucose both aerobically, yielding

approximately 30 ATP per molecule of glucose, and glycolytically, yielding only 2 ATPs. As

the tumor grows, cells become oxygen deprived, switching to glycolysis for survival. However,

it has been observed that cancer cells tend to persist in metabolizing glucose glycolytically

even in the areas of ample oxygen supply, a phenomenon that has become known as Warburg

e�ect. Although it has been hypothesized that lactic acid, which is a by-product of glycolysis,

gives cancer cells the competitive advantage that they lose in ATP yield by creating a mi-

croenvironment that is toxic to somatic cells, one cancer cell cannot generate enough lactic

acid to become an e�cient enough competitor. The question of how a core subpopulation of

Warburg cells could have formed was addressed in Chapter 6, where the situation was refor-

mulated as a game of multi-player prisoner's dilemma: from the point of view of metabolic

payo�s, it is better for cells to cooperate and become better competitors but neither cell has

an incentive to unilaterally change its metabolic strategy. However, changing cell microen-

vironment by increasing glucose availability, through nutrition for instance, allows shifting

population composition towards the �cooperative� glycolytic metabolic strategy by minimiz-

ing the drawbacks of glycolysis (low ATP yield per molecule of glucose), while keeping all of

its bene�ts (increased competitive ability). This incidentally provides another approach to

dealing with the problem of prisoner's dilemma through modifying the environment in which

the interactions occur (see Figure 6.8 on page 104) rather than changing the payo�s of the

players directly, as was done in Chapter 3. Interestingly, from the point of view of metabolic

payo�s, it is the defecting strategy adopted by somatic cells that stabilizes the tissue, and it

is the cooperative strategy adopted by the cancer cells that kills the host.

Another measure of heterogeneity that could be of interest deals with dormant vs.

actively proliferating cancer cells and micrometastases. Clinical and experimental evidence

suggest that human tumors can persist for long periods of time as microscopic lesions that

are in a state of dormancy (non-expanding tumor mass). Several mechanisms have been
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proposed to explain what could stimulate the cells to become proliferative again, including

surgery and trauma induced angiogenic switch and immune suppression. Some details of the

interactions of the latter with cancer cells can in fact be reformulated as predator-prey type

systems, which was investigated in Chapter 8.

Finally, all of these components were put together into one possible approach to

understanding cancer as a complex evolving ecological system, summarized in Figure 9.1 on

page 134 in Chapter 9. A number of ways by which cancer cells modify their microenviron-

ment was discussed (such as altering pH through increased glycolysis), which in turn can

be viewed as one possible manifestation of niche construction. These results emphasize the

importance of paying attention to tumor microenvironment in order to increase chances of

successful treatment.
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The selection system is a mathematical model of an inhomogeneous population, in which

every individual is characterized by a vector-parameter (a1, ...,an) = a that takes on values

from set A. The vector-parameter a speci�es an individual's inherited invariant properties

and does not change with time; the set of all individuals with a given value of the vector-

parameter a in the population is called a-clone.

Let l(t,a) be the density of the population at the moment t over the parameter a,

so that the total population size N(t) =
´
A l(t,a)da and the current population distribution

P(t,a) = l(t,a)
N(t) .

Denote F(t,a) the per capita reproduction rate at the moment t. It is supposed that

the reproduction rate of every a-clone does not depend on other clones but can depend on

a and on some general population characteristics of the system, �regulators�.

The model account for extensive characteristics, which depend on the total size of the

system (as in most population models) and intensive characteristics, which do not depend on

the total size but only on the frequencies of clones within the population (as in most genetic

models). The intensive characteristics have the form:

U(t) =
ˆ
A

u(a)P(t,a)da = Et [u] (A.1)

and the extensive characteristics have the form

V (t) =
ˆ
A

v(a)l(t,a)da = N(t)Et [v] (A.2)

where u,v are appropriate weight functions. The total population size is the most

important regulator.

Overall, the model is speci�ed by some intensive regulators (U1(t), . . .Uk(t)) = U(t)

and some extensive regulators (V1(t), . . .Vm(t)) = V(t). It is assumed that the individual

reproduction rate can depend on these sets of regulators at each time moment. The selection

system under consideration is of the form:

dl(t,a)/dt = l(t,a)F(t,a), (A.3)
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where

F(t,a) =
n

∑
i=1

gi(t,U,V)fi(a) (A.4)

and gi are continuous functions. The initial distribution P(0,a) and the initial population

size N(0) are assumed to be given.

In model (A.3)-(A.4) the regulators and hence the reproduction rate F(t,a) are not

given explicitly but should be computed using the current (unknown) pdf P(t,a) at each time

moment, so in the general case, the model is a nonlinear equation of in�nite dimensionality.

Nevertheless, it can be reduced to a Cauchy problem for the escort system of ODE. To this

end, introduce the generating functional:

Φ(r,λ ) =
ˆ

A

r(a)e
n
∑

i=1
λiφi(a)

P(0,a)da (A.5)

where l= (l1, . . . ln) and r(a) is a measurable function on A.

De�ne auxiliary (keystone) variables as a solution to the escort system of di�erential

equations:

dqi

dt
= gi(t,U∗(t),V ∗(t)), (A.6)

where qi(0) = 0, i = 1, . . . n and

V ∗s (t) = Φ(vs,q(t)),s = 1, . . .m, (A.7)

U∗s (t) =
Φ(us,q(t))
Φ(1,q(t))

,s = 1, . . . k. (A.8)

The dimensionality of the escort system is equal to the number of regulators.

Denote Kt(a) = e∑
n
i=1 qi(t)fi(a).

Reduction theorem.

Let 0 < T ≤∞ be the maximal value of t such that Cauchy problem A.6 has a unique

global solution q(t) at t ∈ [0,T ). Then the functions:

l(t,a) = l(t,0)Kt(a), (A.9)
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Vs(t) =V ∗s (t) = F(vs,q(t)),s = 1, . . .m, (A.10)

Us(t) = F(us,q(t))/F(1,q(t)),s = 1, . . . k (A.11)

satisfy system (A.1)-(A.4) at t ∈ [0,T ).

The total size of the population N(t) = N(0)Φ(1,q(t)); the current distribution of

the system P(t,a) = P(0,a)Kt(a)
E0[Kt ]

.

The general method is simpli�ed in an important case of the reproduction rate

F(t,a) =
n

∑
i=1

gi(t,S)fi(a) (A.12)

with the regulators Si of the forms N(t),Et [fi],N(t)Et [fi] only. In this case one can use

the moment generating function of the joint initial distribution of the variables φi(a) only,

M0(l) = E0[e∑
n
i=1 λiφi(a))] instead of generating functional.

The escort system reads dqi
dt = gi(t,S∗(t)), where Si(t) are de�ned with the help of

the following formulas:

N(t) = N(0)M0(q(t)), (A.13)

Et [fk] = ∂klnM0(q(t)). (A.14)
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Proof of Proposition 1.

Consider the Jacobian J(N,z) at equilibrium points. At the point B it is given by

J(B) =

∣∣∣∣∣∣∣
cγ2

δ 2 0

− γe(c−1)
δ

− γ2

δ

∣∣∣∣∣∣∣
The eigenvalues of the point B are λ1(B) =

cγ2

δ 2 , λ2(B) =− γ2

δ
; therefore, B is a saddle.

J(A) =

∣∣∣∣∣∣∣
− c(γ+c(e+γ)2−c2e)2

δ 2(1+c)
c2(γ+c(e+γ)2−c2e)2

δ 2(1+c)

(c−1)e(c2e−γ−c(e+γ))
δ (1+c)2 − (c5e2−2c4eγ+γ2+3cγ(e+γ)+c3(γ2−3eγ−3e2)+c2(2e2+2eγ+3γ2))

δ (1+c)2

∣∣∣∣∣∣∣
Since Det(J(A)) = c(−c2e+γ+c(e+γ))4

(1+c)2δ 3 > 0, A is a topological node.

Tr(J(A)) = (−c2e+γ+c(e+γ))(ce(−c+c3−2δ+cδ )−γ(c+1)2(c+δ ))
(1+c)2δ 2 .

The trace vanishes at the boundary that consists of two branches: Nul : { γ

e =

c(1−c)
1+c }and H : { γ

e = c(c−1)(c+c2+2δ+cδ )
(1+c)2(c+δ )

}

The boundary Nul corresponds to point A and O coinciding, and boundary H cor-

responds to the Hopf bifurcation accompanied by the change of stability of the equilibrium.

Note that Tr(J(A))> 0 if

Let δ > 0, c > 0. Then Tr(J(A))> Nul for c > 1 and Tr(J(A))< Nul for c < 1.

Indeed, c(c−1)
c+1 < (c−1)c(c+c2+2δ+cδ )

(1+c)2(c+δ )
, so c+c2+2δ+cδ

(1+c)(c+δ ) > 1 for δ > 0.

The Proposition is proven.

Proof of Proposition 2

System (2.4) has two integral manifolds z = 0 and N = 0. According to [12], two blowing-up

transformations

(N,z)→ (N,u =
z
N
),N 6= 0 (B.1)

and
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(v,z)→ (v =
z
N
,z),z 6= 0 (B.2)

are necessary to reveal the structure of a neighborhood of point O in the �rst quadrant.

Applying B.1 to System 2.4 and letting dt→ Ndt, we obtain the system


N′ =−(1+u(c−1)− cu2)N2,

u′ = u(e(1− c)+ γ)+ γu)+Nu(1−δ − (c+δ −1)u− cu2)

(B.3)

The system has equilibria along u-axis (see Figure 2.2) at the points ou(u = 0,N = 0)

and a(u = e(c−1)−γ

γ
,N = 0).

It is easy to see that these equilibria are non-hyperbolic, since both have one zero

eigenvalue. Therefore, formally we cannot directly apply the results that were formulated

in [12] to this problem.

Taking into consideration that we are interested only in non-negative values of N,

let us resolve this problem in the following way. Instead of (B.3) let us consider the system


N′ =−(1+u(c−1)− cu2)N,

u′ = u(e(1− c)+ γ)+ γu)+Nu(1−δ − (c+δ −1)u− cu2),

(B.4)

which is topologically equivalent to System (B.3) on a narrow stripe {N ≥ 0} adjacent to

axis u [37, 154]. Equilibria of System (B.4) located on the u-axis are already hyperbolic.

Eigenvalues of ou are λ1(ou) = (1− c)e+ γ , λ2(ou) = −1. Thus ou is a saddle if

γ

e > c−1 and an attracting node if 0< γ

e < c−1. Eigenvalues of a are λ1(a)=
(1−c)(ce+γ(1+c))

γ2 ,

λ2(a) =−2((1− c)e+ γ). Thus, positive a is a saddle if c > 1 and a repelling node if c < 1.

Applying (B.2) to System (2.4) and letting dt→ zdt we obtain the system


v′ =−v(γ +(e(1− c)+ γ)v)+ z2(δ − c+(δ − c+1)v+ v2,

z′ = z(γ +(e(1− c)+ γ)v)−δ z2(1+ v)
(B.5)
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All equilibria of (B.5) that are located along the axis z = 0 are identical to those of

System (B.3) except at one point ov(z = 0,v = 0). It can be easily veri�ed that ov is a saddle

for any γ 6= 0.

The results of this analysis are summarized in Figure 2.2. Note that the portraits

in domains 2 and 3 are topologically equivalent (although the orbits can have di�erent

asymptotic behavior), so we combine these two domains into one.

Proposition is proven.

Note that Proposition allowed revealing one more parameter boundary of qualita-

tively di�erent behaviors of Model (2.4), de�ned by K : γ

e = c−1,γ > 0.

Proof of Proposition 3

Equilibrium A can change stability via Hopf bifurcation for a range of parameter values that

belong to the surface H.

To understand whether the bifurcation is sub- or supercritical, we compute the �rst

Lyapunov value [7]. We see that

L1 =
(c−1)6c6δ (c+ c2 +2δ − cδ )e6

(1+ c)10(c+δ )5 ,

for γ

e = c(c−1)(c+c2+2δ+cδ )
(1+c)2(c+δ )

).

Thus, L1 > 0 for c2 + c(1−δ )+2δ > 0 and L1 < 0 for c2 + c(1−δ )+2δ < 0. The

former case corresponds to the subcritical Hopf bifurcation, and the latter case corresponds

to the supercritical Hopf bifurcation at dTr(A)
d(γ/e) 6= 0 (see [80]).

For our System,

dTr(J(A))
d(γ/e)

=
1

δ 2 (
c(c3 + c(δ −1)−2δ )e− (1+ c)2(c+δ )γ

1+ c
− (c+δ )(−c2e+ γ + c(e+ γ)))

vanishes for γ

e =
c(2c3+c(δ−2)−3δ+c2δ )

2(1+c)2(c+δ )
, which does not coincide with the condition for boundary

H.
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The �rst Lyapunov value L1 vanishes for c and δ that satisfy c2+c(1−δ )+2δ = 0.

Thus, L1 = 0 when c∗ = 1
2(δ − 1−

√
1−10δ +δ 2), which exists if 0 < δ < 5−

√
24 = 0.1

and δ > 5+
√

24 = 9.9. Since only the values of c > 0 are relevant in the context of the

model, only the second condition is of interest. Then, L1 < 0 if 0 < δ < 5+
√

24 and L1 > 0

if δ > 5+
√

24.

The case L1 = 0 corresponds to the co-dimension 2 Bautin bifurcation if two condi-

tions hold:

(i) dL1
dc (c = c∗) 6= 0,

(ii) L2 6= 0 for L1 = 0, where L2 is the second Lyapunov value of the equilibrium.

In our case,

dL1

dc
=

(c−1)6c6δe6
√

1−10δ +d2

(1+ c)10(c+d)5 .

Therefore, dL1
dc (c = c∗) 6= 0 if

√
1−10δ +δ 2 6= 0.

The second Lyapunov value was calculated using the analytic formulae given in [7].

The sign of L2 is the same as that of the following expression:

L2t =−4+28δ −55δ
2 +7δ

3 +(4−20δ +7δ
2)
√

1−10δ +δ 2,

which is positive for 1−10δ +δ 2 ≥ 0.

So, all the conditions of Bautin theorem are ful�lled.

The Proposition is proven.
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Figure C.1: Phase-parameter portraits of System (4.1) with α = 0 under variation of param-
eter c2: in Domain 0 (where 0 < c2 < φ), only the trivial equilibrium B is an attractor. In
Domain 1, non-trivial equilibrium point A is a global attractor. Domain 2 is a region of bista-
bility: there are two attracting points, A and origin O, whose basins of attraction are divided
by separatrix of point O. Point A is a stable focus, attracting only those trajectories that
fall within its domain of attraction. In Domain 3, an unstable limit cycle is formed around
stable point A, further decreasing its basin of attraction. Finally, in Domain 4, the limit cycle
shrinks, �sits� on the point A, making it unstable. Starting from Domain 2 most trajectories
in fact travel outside of the �rst quadrant, predicting negative population size and resource
amount, thus rendering the model biologically irrelevant in this region of phase-parameter
space.

Critical case when α = 0

The phase-parameter portraits of System (4.1) with α = 0 were topologically similar to those

obtained at α = 1 with the addition of Domain 0. In the original formulation of the model, as

it was given in Krakauer et al. (2009) some trajectories left the �rst quadrant, thus causing

the model to lose biological relevance. Combining the proposed model with the model that

was discussed in the previous chapter eliminated that problem when rescaling the system

through a change of variables z(N + z)dt → dτ resulted in trajectories that were previously

tending to the negative quadrant to tend to origin instead.

Equilibria

In order to simplify analysis, let us �rst make the following change of variables:
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z(N + z)dt→ dτ,

yielding a system of equations that is topologically equivalent to System (4.1) for

N ≥ 0, z≥ 0:


dN
dt = N(α(c1z−N)(N + z)+(1−α)z(c2z−φ(N + z)))≡ F(N,z) = N f (N,z),

dz
dt = z((γ−δ z)(N + z)+ e(α(1− c1)+(1−α)(1− c2))N)≡ F(n,z) = zg(N,z).

(C.1)

For any α , System (C.1) has trivial equilibria O(0,0) and B(0, γ

δ
). The system can also

have one positive non-trivial equilibrium A(N̂α , ẑα), where coordinates(N̂α , ẑα) of non-trivial

equilibrium satisfy equations


α(c1z−N)(N + z)+(1−α)z(c2z−φ(N + z)) = 0

((γ−δ z)(N + z)+ e(α(1− c1)+(1−α)(1− c2))N) = 0
(C.2)

The �rst equation of 4.1 is homogeneous. Letting

z = KαN (C.3)

we get equation for Kα :

(αc1 +(1−α)(c2−φ))K2
α − ((1−α)φ +α(c1−1))Kα −α = 0, (C.4)

which has the unique positive solution

Kα =
(1−α)φ +α(c1−1)+

√
((1−α)φ +α(c1−1))2 +4α (αc1 +(1−α)(c2−φ))

2(αc1 +(1−α)(c2−φ))

(C.5)

if

A(α,c1,c2,φ)≡ αc1 +(1−α)(c2−φ)> 0 (C.6)
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From C.2 and C.3 we get coordinates of non-trivial equilibrium expressed with Kα
N̂α = 1

δKα
(γ + e(1−αc1−c2(1−α)

1+Kα
)

ẑα = 1
δ
(γ + e(1−αc1−c2(1−α)

1+Kα
)

(C.7)

Remark 2.

Kα=0 =
φ

c2−φ
, N̂α=0 =

c2−φ

δφ
(γ + (1−c2)(c2−φ)

c2
), ẑα=0 =

1
δ
(γ + (1−c2)(c2−φ)

c2
)

and

Kα=1 =
1
c1
, N̂α=1 =

c1
δ
(γ + c1(1−c1)

1+c1
), ẑα=1 =

1
δ
(γ + c1(1−c1)

1+c1
)

Structure

Jacobian Jα = (ai j), i, j = 1,2 of System (C.1) consists of elements

a11 = α(−3N2 +2(c1 +φ −1)Nz+(c1− c2 +φ)z2)+ z(c2z−φ(2N + z)),

a12 = N(2c2z−φ(N +2z)+α((c1 +φ −1)N +2(c1 +φ − c2)z),

a21 = z(e(1−α(c1− c2)− c2)+ γ−δ z),

a22 = eN(1−α(c1− c2)− c2)+ γ(N +2z)−δ z(2N +3z)

It is easy to verify that

Det(Jα(B(0,
γ

δ
)) =−(αc1 +(1−α)(c2−φ))γ4

δ 3

and

Trace(Jα(B(0,
γ

δ
)) =

(αc1 +(1−α)(c2−φ)−δ )γ2

δ 2 .

Thus point B is a saddle if Det(Jα(B(0,
γ

δ
))< 0 and a stable node if Det(Jα(B(0,

γ

δ
))>

0. Due to condition C.6, we can state that B is a saddle if the model has positive equilibrium

A, and can be a stable node if positive A does not exist. Analysis of expression C.6 shows
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that it is satis�ed for positive coe�cients c1, c2 and α ∈ [0,1]only if c2 < φ (see Domain 0

in Figure C.1).

The expressions for Det(Jα(A(N̂α , ẑα)) and Trace(Jα(A(N̂α , ẑα)) are very complex

but can be simpli�ed using the following Lemma:

If the system of di�erential equations

(a) has non-zero equilibrium A(N0,z0) such that f (N0,z0) = 0,g(N0,z0) = 0, and

(b) function f (N,z) is homogeneous of order n with respect to N,z.

Then

Det(J(N0,z0)) = N fN(zgz +NgN)|(N,z)=(N0,z0),

Trace(J(N0,z0)) = N fN + zgz|(N,z)=(N0,z0) = z(gz− fz)|(N,z)=(N0,z0)

Proof.

Jacobian of the System at point A is f +N fN N fz

zgN g+ zgz


(N,z)=(N0,z0)

=

N0 fN(A) N0 fz(A)

z0gN(A) z0gz(A)

=

N0 fN(A)
−N2

0
z0

fN(A)

z0gN(A) z0gz(A)


The �rst equality follows from the condition (a). The second equality follows from the

Euler property for homogeneous functions, i.e. that f (N,z) : N fN(N,z)+z fz(N,z) = n f (N,z),

and again from condition (a): since f (N0,z0) = 0, then

N0 fN(N0,z0) =−z0 fz(N0,z0),

fz(N0,z0) =
−N0

z0
fN(N0,z0).

Statements are proven.

Applying Lemma 1 to the expression for the Jacobian Jα(A), we obtain Det(Jα(A(N̂α , ẑα))

and Trace(Jα(A(N̂α , ẑα)). Combining the obtained results we prove the following
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Theorem 2.

For any α ∈ [0,1], if condition C.4 holds, the nontrivial equilibrium Aα(N̂α , ẑα), whose coor-

dinates are given in C.5, is a positive non-saddle point. It appears as an unstable node at

the fold surfaces ∆α : Det(Jα(Aα) = 0

∆α : γ/e =
−(1−αc1− c2(1−α))

1+Kα

(C.8)

and changes stability at the Hopf surface Hα : Trace(Jα(Aα) = 0

Hα : γ/e =
−(1−αc1− c2(1−α))

1+Kα

A+2BKα

A+(2B−δ )Kα

(C.9)

where Kα is given in C.3, A = δ − l +α(c1 + l−1), B = A+α +(1−α)c2.

Remark 3.

For α = 1 fold and Hopf surfaces are of the form ∆α=1 = 0 : γ

e = c1(c1−1)
c1+1 , Hα=1 : γ

e =

c1(c1−1)(c1+2δ+c1δ+c2
1)

(c1+1)2(c1+δ )
;

For α = 0 fold and Hopf surfaces are of the form ∆α=0 = 0 : γ

e =
(c2−φ)(c2−1)

c2
, Hα=0 :

γ

e = (c2−φ)(c2−1)((δ−φ)φ+c2(δ+φ))
c2(−φ 2+c2(δ+φ)

).

Non-hyperbolic equilibrium O(0,0)

For analysis of topological and asymptotical structure of the equilibrium in the �rst quadrant

of (N,z)-plane we use methods described in [12]. Let us apply the following change of

variables (also known as the �blowing-up� transformation) to System (C.1):

(N,z)→ (N,u = z/N),N 6= 0,

transforming point (0,0) to the axis u, and changing the independent variable to Ndt = dτ ,

which results in the following system of equations:
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dN
dτ

= N2(α(1+u)(c1u−1)− (1−α)u(φ − (c2−φ)u),

du
dτ

= u((e(1−αc1− (1−α)c2 + γ(1+u))+N(−δu(1+u)−

−α(1+u)(c1u−1)+(1−α)u(φ − (c2−φ)u)))

(C.10)

System (C.10) has two equilibrium points at axis N = 0: u1 = 0 with eigenvalue λ 1
1 =

(1−αc1−(1−α)c2)−γ) and u2 =−e(1−αc1−(1−α)c2)−γ)/γ with eigenvalue λ 2
1 =−λ 1

1 .

Although the second eigenvalue is zero for both points (λ 1
2 = λ 2

2 = 0), their structure can be

strictly de�ned in the positive (N,z)-quadrant using the method described in [12]. Denote

E = e(1−αc1− (1−α)c2)+ γ (C.11)

If E > 0, then only equilibrium (0,u1) belongs to the �rst quadrant and has an

attractive node sector; if E < 0, then two equilibria (0,u1) and (0,u2) belong to the �rst

quadrant; (0,u1) is a saddle and (0,u2) can be a saddle, as well as an attractive node. E = 0

corresponds to merging u1 = u2 = 0. The second change of variables

(N,z)→ (v = N/z,z),z 6= 0 (C.12)

maps point (0,0) to the axis v, and through changing time using transformation zdt = dτ ,

System (4.2) becomes:



dv
dτ

= v(−γ− (e(1−αc1− (1−α)c2)+ γ)v+

+((1+ v)(δ +α(c1− v)+(1−α)(c2−φ(1+ v)))z,

dz
dτ

= z(−(e(1−αc1− (1−α)c2)+ γ)v−δ (1+ v)z)

(C.13)

The equilibrium (v = 0,z = 0) is a saddle (λ1 = γ,λ2 =−γ)

To return to the initial variables, we prove the following statement: Proposition 1.

In System (C.1) for all α ∈ (0,1] and the speci�ed values of other parameters c1, c2, φ > 0,

γ ≥ 0,0< e≤ 1 there exist only three di�erent phase-parameter portraits in the neighborhood
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Figure C.2: A schematic bifurcation diagram of the equilibrium point O for System (C.1)
in the (γ,c1) parameter-and (N,z)- phase spaces for positive �xed values of parameters
e≤ 1,c2 > φ , c2>δ . The parameter space is divided into three domains: Domain 1 contains
hyperbolic sector only, Domain 2 contains hyperbolic and attractive parabolic sectors, in
Domain 3 there exists an elliptic sector (family of homoclinic orbits). The boundary K
between domains 1 and 2 corresponds to the non-local heteroclinic bifurcation; the boundary
Nul between domains 2 and 3 corresponds to disappearance of hyperbolic sector and non-
trivial equilibrium.

of equilibrium point O, which are topologically equivalent to the portraits that are shown in

Figure C.2.

B4. Equilibria �at in�nity�

The structure of equilibrium points �at in�nity� will be studied using the Poincare sphere [7].

(a) Changing variables

(N,z)→ (u = 1/N,v = z/N),N 6= 0 (C.14)

and

dt = u2dτ (C.15)

transforms System (4.2) to
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du
dτ

= u(v(φ(1+ v)− c2)−α((c1 +φ −1)v−1+(c1 +φ − c2)v2)),

du
dτ

= v(v(φ(1+ v)− c2)−α((c1 +φ −1)v−1+(c1 +φ − c2)v2)+

+(1+ v)(γu−δv)− eu(α(c1− c2)+ c2−1))

(C.16)

Equilibrium points of Systems (C.16) for u = 0 are v = 0 satisfy the equation:

(αc1 +δ +(1−α)(c2−φ))v2− (α(1− c1−φ)+φ −δ )v−α = 0 (C.17)

Lemma 2.

Only one of the roots of Equation C.17, v = v∗ (α), can be positive for 0 < α ≤ 1; at α = 0,

v∗ (α = 0) = 0.

Proof.

Rewrite equation C.17 in the form: B(α)v2−A(α)v−α = 0, where A(α) = α(1−

c1−φ)+φ −δ , B(α) = α(c2− c1−φ)+φ −δ − c2. The validity of Lemma 2 is evident if

B(α)> 0. If Bα = 0, then α = c2−φ+δ

c2−φ−c1
, and α ∈ [0,1]⇔ c2−φ +δ ≤ 0 for c1,c2,δ ,φ ≥ 0.

So, Equation C.17 has no positive roots if α 6= 0.

Statement is proven.

It can be veri�ed that eigenvalues of u = v = 0 are λ1 = λ2 = α , and eigenvalues of

u = 0,v = v∗ (α) are

λ1(α) = δv∗ (α)(1+ v∗ (α))> 0,

λ2(α) = −v ∗ (α)(δ − φ +α(c1 + φ − 1)+ 2(c2 +(δ − φ)+α(c1 + φ − c2))v ∗ (α))

Therefore, point u = 0,v = v∗ (α)> 0 is a saddle.

Remark 4.

For α = 1, v∗= 1
c1+δ

and the eigenvalues are λ1 =
δ (c1+δ+1)
(c1+δ )2 , λ2 =− (c1+δ+1)

(c1+δ ) .
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For α = 0, v∗= φ−δ

c2−φ+δ
. If φ > δ , then v∗> 0. The corresponding eigenvalues are

λ1 =
δc2(φ−δ )
(c2+δ−φ)2 , λ2 =

−(φ−δ )2

(c2+δ−φ) .

Note, that system

du
dτ

= u((φ(1+ v)− c2v),

dv
dτ

= e(1− c2)u+(1+ v)(γu−δv)+ v(φ − (c2−φ)v),

which was obtained from the System (C.1) through the change of variables (C.14)

and (C.15), does not have an equilibrium point at u = v = 0 for φ < δ . For φ = δ equilibrium

u = v = 0 is not hyperbolic; it contains hyperbolic sector for positive u,v.

(c) Making the transformation

(N,z)→ (u = 1/z,w = N/z),z 6= 0 (C.18)

and putting it together with expression (C.15), we obtain System



du
dτ

= u(δ (1+w)−u(γ(1+w)− ew(αc1−1+ c2(1−α)),

dw
dτ

= w(δ (1+w)+ c2−φ − γu(1+w)−φw− euw(1− c2)+

+α((φ −w)(1+w)+(c1− c2)(1+ euw)))

(C.19)

This System has the only one new equilibrium (when compared with equation C.16): (u =

0,w = 0). Eigenvalues at this point, namely λ1 = δ , λ2 = αc1 +(1−α)(c2− φ + δ ), are

positive. Thus, it is an unstable node for all α . Combining the results, we get the following

proven statement

Proposition 2.

For α ∈ (0,1] in the �rst quadrant of (N,z)-plane, System (C.1)

(1) has a source at the end N-axis,
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Figure C.3: (a) Only equilibrium B is attractive, (b) equilibrium O is attractive and repelling
simultaneously, no more attracting equilibria, (c) equilibrium O is attractive, other attractive
manifolds have to exist, (d) O is repelling (a saddle), other attractive manifolds must exist.

(2) has a source node at the end z-axis and a saddle point at the end of the axis,

where v∗ (α) is a non-negative root of equation C.17 if α(c2− c1−φ)+φ −δ − c2 > 0,

(3) has a saddle point at the end z-axis if α(c2− c1−φ)+φ −δ − c2 < 0.

Typical structures of the �bounded� �rst quadrant in the (N,z)-plane are presented

in Figure C.3:

Heteroclinis, homoclinics and limit cycles

Heteroclinis and homoclinics

One of the main heteroclinics of System (C.1) is the existence of a trajectory that connects

point O and in�nitely removed saddle point (point �at in�nity�). Its appearance corresponds

to the appearance an attractive parabolic sector in the positive neighborhood of point O; the

boundary K in the phase-parameter portrait (see Figure C.4a) divides these phase portraits.

Another important heteroclinics connection forms when the emergent separatrix of

trivial equilibrium B coincides with the incoming separatrix of equilibrium O. The unstable

limit cycle is generated containing nontrivial equilibrium A (see, Figure C.4b, where paramet-

ric boundary S corresponds to this bifurcation). Elliptic sector in the neighborhood of point
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Figure C.4: Schematic bifurcation diagrams of heteroclinics- and Hopf bifurcations that are
realized in the System (C.1): (a) appearance\disappearance of attractive parabolic sector in a
neighborhood of the origin; (b) appearance/disappearance of unstable limit cycle containing
A, and (c) generalized Hopf bifurcation L1(H) = 0 in a neighborhood of A.

O, shown in Figure C.2 (Domain 3) and in Figure C.3b consists of a family of homoclinics

tending to O with t→±∞

Hopf bifurcations

Equilibrium A of System (C.1) can change stability via Hopf bifurcation for a range of

parameter values that belong to the surface Hα (see equation C.9). To understand whether

the bifurcation is sub- or supercritical, we compute the �rst Lyapunov value L1 [7].

For α = 1, Hα=1 : γ

e =
c1(c1−1)(c1+2δ+c1δ+c2

1)

(c1+1)2(c1+δ )
, and the corresponding �rst Lyapunov

value is L1(Hα=1)∼= (c−1)6c6δ (c2+c+2δ−cδ )
(c+1)10(c+δ )5 . Thus, L1 > 0 for (c2+c+2δ −cδ )> 0 and L1 < 0

for (c2 + c+2δ − cδ )< 0. The former case corresponds to the subcritical Hopf bifurcation,

and the latter case corresponds to the supercritical Hopf bifurcation for dTr(A)
d(γ/e) 6= 0 [80].

The case L1(Hα=1) = 0 corresponds to Bautin (generalized Hopf) bifurcation of co-

dimension 2. It is realized in the System (C.1), α = 1 for large δ ; the schematic bifurcation

diagram is presented in Figure AC.4-c.

Now we consider System C.1 with α = 0; to be more precise, we will analyze direction

of Hopf bifurcation for System (C.1).
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Proposition 3.

Equilibrium A of System (C.1) with α = 0 changes stability only via subcritical (catastrophic)

Hopf bifurcation.

Proof.

Hα=0 : γ

e = (c2−φ)(c2−1)(c2(δ+φ)+φ(δ−φ))
c2(c2δ+φ(c2−φ)) ,

and

N0(α = 0) = (c2−φ)2e(c2−1)
c2(c2δ+φ(c2−φ))

The sign of the �rst Lyapunov quantity L1 is calculated using the formula given

in [7]. We have shown that L1 = lL̂, where l > 0 is some constant, the exact value of which

is unimportant, and L̂1 = δ (−(c2− φ)(c2− φ + δ )+ c2(c2− φ + 2δ ))((c2− 1)(c2− φ)2e−

c2δN0).

It is easy to verify that L̂1 = 0 forδ = 0, δ = −φ(c2−φ)
c2+φ

that are non-positive for

positive N0. L̂1 = 0 also for δ = −φ(c2−φ)
c2−1 , which is negative for the required c2 > φ and

c2 > 1; if c2 < 1 then γ

e = (c2−φ)(1+φ)(c2−1)
c2

< 0. Thus, at this point L1(H)> 0.

The statement is proven.

To summarize, we show that for α = 1, L1(H) = 0 for some parameter values and for

α = 0, L1(H) 6= 0 for all parameter values. By continuity, there must exist some 0 < α∗< 1

such that for 1 ≥ α > α∗ the model has stable limit cycle in some parameter domain and

has no stable limit cycle for 0≤ α < α∗.

Bifurcation diagrams of System (4.1) and interpretation of model dynamics

Based on results formulated in Propositions 1-3 we are able to present the schematic bifur-

cation diagram of System (C.1):

Theorem 3.

(1) For any α ∈ [0,1], positive c1, c2, e, δ , γ-parameter space of System (C.1), can be



APPENDIX C. MIXED STRATEGIES IN RESOURCE ALLOCATION. 181

divided into seven domains of topologically non-equivalent phase portraits with non-negative

coordinates (N,z) (see Figure 4.1 and Figure C.1):

In Domain 0, c2 ∈ (0,φ); only point B(N = 0,z = γ

δ
) is attractive (see Figure C.3-a).

In Domain 1, the only non-trivial equilibrium point Aα(N̂α , ẑα) is attractive; its coordinates

are given in Equation C.7. In Domains 2 and 3, point A shares basins of attraction with

equilibrium point O at the origin. The separatrix of O and the unstable limit cycle that

contains point A serve correspondingly as the boundaries of the basins of attraction. In

Domain 4, only equilibrium O is globally attractive; it contains attractive parabolic sector.

Equilibrium A is positive and unstable. In Domain 5, only point O is globally attractive. It

contains an elliptic sector in its positive neighborhood. In this region, there is no non-trivial

positive equilibrium. Domain 6 exists only for1≥ α > α∗ > 0 (i.e., whenα is closer to 1 than

to 0). It is a domain of bistability. In it there are two attractive manifolds: a stable limit

cycle, which contains an unstable equilibrium point A, and an equilibrium point O at the

origin.

(2) Boundaries between Domains correspond to the following bifurcations in System

(C.1): K and S correspond to heteroclinic connection between point O, an in�nitely removed

saddle point (see Figure C.4a,b), and point B. Boundary H corresponds to the Hopf bifur-

cation (H+ and H− correspond to sub- and supercritical bifurcations respectively). Nul ≡ ∆

corresponds to the appearance of an unstable point A in the positive quadrant. Boundary C

corresponds to the fold bifurcation of limit cycles.

Note that parameter portraits in Figure 4.1 are schematic slices of complete bifur-

cation portraits, projected to the planes (α,c1) and (N,z). The boundary lines correspond

to bifurcations of co-dimension 1, and points of intersections of the lines correspond to

bifurcations of higher co-dimensions.
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The equation for the rate of change of the concentration of extracellular phosphorus.

The concentration of extracellular phosphorus that is available for the cells to consume

is Pex
t = PexN(t), where Pex

t is the absolute number of moles of phosphorus available, Pex

is concentration of phosphorus per cell clone. The in�ow of phosphorus from the blood

stream is accounted for with the term g2(P0−Pex), where P0 is the gradient constant, and

g2 is the rate of in�ow-out�ow. The term is chosen based on standard models that deal

with modeling chemostat [81]. Extracellular phosphorus Pex is absorbed by the cells and is

converted to intracellular phosphorus Pin at the rate p(Pex−Pin) N(t)
k2+Pex−Pin , which accounts

for di�usion of carbon through the cell wall based on the di�erence between intra- and

extracellular phosphorus concentrations; the limitation k2 +Pex−Pin is to account for the

fact that there is only that much phosphorus that a cell can absorb. The di�erence in rates of

phosphorus uptake between competitive and proliferative cells is accounted for through the

term m = ma(1−Et [α])+mgEt [α]. There is also an in�ow of phosphorus that was released

from the cells that died either naturally, coming from the equation for xα . So,

dPex(t)N(t)
dt

=
dPex(t)

dt
N(t)+Pex(t)

dN(t)
dt

= (D.1)

= g2(P0−Pex(t))−mN(t)
Pex(t)−Pin(t)

k2 +(Pex(t)−Pin(t))
+N(t)Pin(t)d (D.2)

Therefore, the concentration of Pex is

dPex

dt
= g2(

P0−Pex(t)
N(t)

)−m
Pex(t)−Pin(t)

k2 +(Pex(t)−Pin(t))
+Pin(t)d−Pex(t)Et [F ] (D.3)

The expression N(t)′

N(t) is derived from the �rst equation and is

N′(t)
N(t)

= Et [F ] = Et [α]rc(1−
N(t)
z(t)

)+(1−Et [α])rp(
z(t)

N(t)+ z(t)2)
−d), (D.4)

where z(t) = CinPin

Cin+Pin .

The equation for rate of change of concentration of intracellular phosphorus.

The total amount of intracellular phosphorus available for the cells of typeα is Pin
t,α = Pinxα ,

where Pin is the concentration of phosphorus per cell. The in�ow of phosphorus into each

cell clone xα is accounted for by the term mxα
Pex−Pin

k2+(Pex−Pin)
. Intracellular phosphorus Pin is
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conserved, i.e., it is not consumed irreversibly as fuel but is used for building DNA, RNA,

ribosomes, etc. The rate of change of total amount of intracellular phosphorus in the cells

of clone type xα is
dPin

t,α

dt
= mxα(t)

Pex(t)−Pin(t)
k2 +(Pex(t)−Pin(t))

(D.5)

Since

dPin
t

dt
=

dPin(t)N(t)
dt

=
dPin(t)

dt
N(t)+Pin(t)

dN(t)
dt

, (D.6)

the rate of change of Pin is

dPin

dt
= m

Pex(t)−Pin(t)
k2 +(Pex(t)−Pin(t))

−Pin(t)Et [F ]. (D.7)
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Model Derivation

A note on notation:

For all expressions of the type ∑A xα (t) f (α)
N(t) we use the standard notation of the expected

value Et [ f (α)] of the function f (α) over the distribution Pα(t) =
xα (t)
N(t) , where N(t) =∑A xα(t)

is the total size of the population if the number of possible values of α is �nite and N(t) =
´
A xαdα if it is in�nite.

Equation for the dynamics of cell clones.

The dynamics of clones xα is governed by the following equation

dxα

dt
= xα(ra(1−α)(

βCin

β +Cin )+ rgαCin−d−bαrgCinEt [α]) (E.1)

where the growth rate of glycolytic clones α is limited only by availability of intracellular

carbon Cin, and the growth rate of aerobic clones (1−α) is limited both by carbon Cin and

oxygen β (for the purposes of this model oxygen in�ow is constant and can thus be modeled

as a parameter). Cells also die at some constant average rate d.

Incorporating e�ects of toxicity of lactic acid on the non-glycolytic cell clones is

accounted for through the additional death term bα =B−b1α , where B and b1 are constants,

and where b1 < B
α

due to restriction on α ∈ [0,1]. This functional form incorporates the

assumption that the more lactic acid the cell produces, the less sensitive to its toxicity it is

(since the clones that produce lactic acid and then immediately die from it cannot persist

in the population). Hydrogen transporters are also up-regulated in cancer cells to pump out

the acid from the cell.

The total amount of lactic acid released per cell is accounted for by the term

∑A rgαxαCin

N(t) = rgCinEt [α], and the cells of type (1−α) that are killed by lactic acid are ac-

counted for with bαxαrgCinEt [α].
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Equation for the dynamics of extracellular carbon.

The concentration of extracellular carbon that is available for the cells to consume is Cex
t =

CexN(t), where Cex
t is the absolute number of moles of carbon available, Cex is concentration

of carbon per cell clone. The in�ow of carbon from the blood stream is accounted for with

the term g1(C0−Cex), where C0 is the gradient constant, and g1 is the rate of in�ow-out�ow.

The term is chosen based on standard models that deal with modeling chemostat [81].

Extracellular carbon Cex is absorbed by the cells and is converted to intracellular

carbon Cin at the rate p(Cex−Cin) N(t)
k1+Cex−Cin , which accounts for di�usion of carbon through

the cell wall based on the di�erence between intra- and extracellular carbon concentrations;

the limitation (k1 +Cex−Cin) is to account for the fact that there is only that much carbon

that a cell can absorb. Parameter p = pa(1−α)+ pg(α), allowing to take into account

the di�erence in glucose uptake rates between aerobic and glycolytic cells. There is also an

in�ow of carbon that was released from the cells that died either naturally or due to being

killed by lactic acid, coming from the equation for xα .

So,

d Cex
t

dt
=

dCex

dt
N +Cex N′

N
= g1(C0−Cex)− p(Cex−Cin)

N(t)
k1 +(Cex−Cin)

+ (E.2)

+cCin
∑
α

xα(d +bαrgCinEt [α]). (E.3)

However, when the population of cells is small, which is the focus of the question, for

which this system was proposed, the increase in the total population size N′ is negligible with

respect to the entire population. Therefore, in this case Cex N′
N → 0, yielding the following

equation for the change in the concentration of extracellular carbon:

dCex

dt
= g1(

C0−Cex

N
)− p

Cex−Cin

k1 +(Cex−Cin)
+Cind +(Cin)2Et [b]Et [α]. (E.4)
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Equation for the dynamics of intracellular carbon

The total amount of intracellular carbon available for the cells of type α is Cin
t,α = Cinxα ,

where Cin is the concentration of carbon per cell. The in�ow of carbon into each cell clone

xα is accounted for by the term p Cex−Cin

k1+(Cex−Cin)
.

Total amount of carbon consumed by the clone xα is s(rgα +(1−α)ra)Cin, where s

is the conversion factor for exactly how much carbon was actually used. How much of it is

going to be used for aerobic or anaerobic metabolism depends on the value of the parameter

α .

So, similarly to the equation for Cex, the equation for Cin becomes

dCin

dt
= p

Cex−Cin

k1 +(Cex−Cin)
− sCin(raξ (1−Et [α])+ rgEt [α]) (E.5)

where p = (pgEt [α]+ pa(1−Et [α])).

Distribution of α

Consider System (6.1), where we assume that each clone is characterized by their own

intrinsic value of the parameter α but where there is no detectable toxicity from lactic acid

(i.e., a case when bα = 0)

Let us introduce keystone variables g(t) and q(t), such that
dq(t)

dt = raβ
Cin

β+Cin ,

dg(t)
dt = rgCin.

(E.6)

Then xα(t)′ = xα(t)((1−α)q′(t)+αg′(t)−δ ).

Consequently,

xα(t) = xα(0)e(1−α)q(t)+αg(t)−δ t (E.7)

Full population size of cells xα is then given by
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N(t) =
ˆ

A
xα(t)dα = N(0)

ˆ
A

eq(t)−δ teα(g(t)−q(t))P0(α)dα = N(0)eq(t)−δ tM0[g(t)− q(t)]

(E.8)

where Pα(0) =
xα (0)
N(0) and where M0(g(t)−q(t)) =

´
∞

0 eα(g(t)−q(t))Pα(0)dα is the moment gen-

erating function (mgf) of the initial distribution of clones Pα(0) within the population. The

�nal distribution would then be given by

Pt(α) =
xα(t)
N(t)

=
eα(g(t)−q(t))

M0[g(t)−q(t)]
(E.9)

System (6.1) thus becomes



dCex

dt = g1(
C0−Cex

N )− p Cex−Cin

k1+(Cex−Cin)
+Cind,

dCin

dt = p Cex−Cin

k1+(Cex−Cin)
− sCin(raξ (1−Et [α]) β

β+Cin − rgEt [α]),

dq
dt = raβ

Cin

β+Cin ,

dg
dt = rgCin.

(E.10)

The expected value of α at each time t is calculated through Equation (E.9):

Et [α] =

ˆ
αPt(α)dα =

ˆ
P0(α)

αeα(g(t)−q(t))

M0[g(t)−q(t)]
dα =

M′0[g(t)−q(t)]
M0[g(t)−q(t)]

. (E.11)

Let us assume that the initial distribution of the clones within the population is

truncated exponential, such that α ∈ [0,1].

For initial truncated exponential distribution with parameter µ , the moment gener-

ating function M0[g(t)−q(t)] is

M0[g(t)−q(t)] =
µ(eµ − eg(t)−q(t))

(eµ −1)(µ− (g(t)−q(t)))
, (E.12)

and expected value of α is calculated by

Et [α] =
eµ − eg(t)−q(t)(g(t)−q(t)−µ−1)
(eg(t)−q(t)− eµ)(g(t)−q(t)−µ)

. (E.13)

The parameter µ � 0 to ensure that the initial distribution of clones within the

population is skewed towards α→ 0, that is, such that the majority of the cells have aerobic

phenotype, which is what is to be observed in the normal tissue.
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For more details on the method see [69,70] and the references within.

Distribution of α , when bα 6= 0

Now consider a case, when there is also increased cell mortality from the lactic acid that

is produced by the glycolytic clones. This is accounted for through the additional death

term bα = B−b1α , where B and b1 are constants, and where b1 <
B
α
due to restriction on

α ∈ [0,1], which also incorporates the assumption that the more lactic acid the cell produces,

the less sensitive to its toxicity it is (the clones that produce lactic acid and then die from

it cannot persist in the population). Hydrogen transporters are also up-regulated in cancer

cells to pump out the acid from the cell.

In order to study this model, we need to introduce a third keystone equation in

addition to System (E.1):

dv
dt

= rgCinEt [α]. (E.14)

Then the equation for x′α becomes

x′α = xα(q′(1−α)+αg′−d− (B−b1α)v′) (E.15)

Integrating this expression yields

xα(t) = xα(0)eq(t)−dt−Bv(t)+α(g(t)−q(t)−b1v(t)). (E.16)

Full population size is then given by

N(t) = N(0)eq(t)−dt−Bv(t)M0(g(t)−q(t)−b1v(t)) (E.17)

and the distribution of clones is given by

Pt(α) =
xα(t)
N(t)

=
eα(g(t)−q(t)−b1v(t))

M0(g(t)−q(t)−b1v(t))
. (E.18)

The full system thus becomes
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dCex

dt = g1(
C0−Cex

N )− p Cex−Cin

k1+(Cex−Cin)
+Cind +(Cin)2Et [b]Et [α],

dCin

dt = p Cex−Cin

k1+(Cex−Cin)
− sCin(raξ (1−Et [α]) β

β+Cin − rgEt [α]),

dq
dt = raβ

Cin

β+Cin ,

dg
dt = rgCin,

dv
dt = rgCinEt [α].

(E.19)

The proposed system is used to address two di�erent questions: 1) whether the

changes in nutrient availability are su�cient to switch population composition towards gly-

colytic phenotype, and 2) whether excessive toxicity from lactic acid can cause the population

to commit evolutionary suicide. For the purposes set out by the �rst question, parameter

bα is taken to be zero. This is done to be able to more clearly see, whether the shift can in

fact occur to a signi�cant enough extent. When bα 6= 0, population extinction due to acid

toxicity occurs too quickly (around Et [α] ≈ 0.1 for the considered parameter values), and

the e�ects of excess nutrients cannot be evaluated very well.
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Global stability of the fast subsystem. The Dulac criterion

Here we prove that there are no periodic orbits in the fast system of (8.2) using Dulac

criterion as follows:

Taking δ = 1
M1
, we have

δṀ1 =
1

M1
(Ω−µ1M1− (θ −g

T
p+T

)M1)

=
Ω

M1
+g

T
p+T

− (θ +µ1)

∂

∂M1
(δṀ1) = − Ω

M2
1

δṀ2 =
1

M1
(−g

M1T
p+T

+θM1−µ2M2),

= −g
M1T
p+T

+θ − µ2M2

M1

∂

∂M2
(δṀ2) = − µ2

M1

∂

∂M1
(δṀ1)−

∂

∂M2
(δṀ2) = − µ2

M1
− Ω

M2
1

The obtained expression is strictly negative in R2
+r {(0,0)}. Hence, there are no periodic

orbits in the system (M1,M2) in R2
+r{(0,0)}.

Global stability of the fast system. Applying Poincaré-Bendixon Theorem

Now, we �nd a condition such that M1(t)+M2(t)≤constant.

Solving Ṁ1 +P1M1 = P2 and Ṁ2 +K1M2 = K2M1,

where P1 =−g T
p+T +θ +µ1, P2 = Ω, K1 = µ2, and K2 =−g T

p+T +θ are positive, we obtain

M1 =
P2

P1
+(M1(0)−

P1

P2
)e−P1t ,

M2 =
K2

K1
+ r1e−K2t + r2e−P1t ,

where r1 and r2 are constants.
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Then,

lim
t→∞

M1(t) =
P2

P1
,

lim
t→∞

M2(t) =
K2

K1
.

Therefore, the (M1,M2)-subsystem of system (8.1) is bounded. Hence, the unique

equilibrium point (M∗1 ,M
∗
2) = ( Ω

µ1+V ,
ΩV

µ2(µ1+V ) is globally asymptotically stable for any V.

Proof of the Theorem 1

Further, we consider a polynomial system, which is orbitally equivalent to (8.4) for positive

x,y and ds = dτ

β+x :


dx
ds = x(β + x)−αxy(1+ x),

dy
ds = −γy(β + x)− xy2(1+ x)

(F.1)

For the parameters α,β ,γ , where β = α(1+γ+αγ2)
α(1−γ)−1 , the real part of eigenvalues

Re(λ1,2) of the Jacobian J(x,y) of (F.1) around equilibrium A(αγ, β+αγ

α(1+αγ)) is equal to zero.

To apply the Andronov-Hopf Theorem [?] we need to check whether non-degeneracy condi-

tions are satis�ed. Since

Re(λ1,2) =
Tr(A)

2
=

γ(β ()1+α(γ−1))+α(1+ γ +αγ2)

(1+αγ)(β +αγ)

we have

dTr(J(A))
2

=
γ(1−α(1− γ))

α(1+αγ)
6= 0

if γ 6= 0,α 6= 1
1−γ

. Thus in the �rst condition of non-degeneracy holds.

To compute the �rst Lyapunov value l1, we need to �x the parameters at the surface

(8.5) and shift A(x0,y0) to the origin:

x→ x− x∗,y→ y− y∗
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The system (F.1) takes the form:

dx
ds = x α(1+γ+αγ2)

1−α(1−γ) −α2γ(1+αγ)y+ x2 1+αγ

1−α(1−γ) −α(1+2αγ)xy−αx2y

dy
ds = x (1+γ)(1+αγ)

(1−α(1−γ))2 − y α(1+γ+αγ2)
1−α(1−γ) + x2 1+αγ

1−α(1−γ) − xy γ+3αγ+αγ2

1−α(1−γ) +

+αγ(1+αγ)y2 + xy2(1+αγ)+ x2y2

(F.2)

This representation of our system of equations allows us to apply the formula given

in [7] to obtain an expression for the �rst Lyapunov value:

l1 =C
1+ γ +α2γ(1− γ)2−α(2+ γ−2γ2)

α2√γ(1+αγ)2

where C is a positive constant. l1 vanishes for α1(γ) =
2+γ−2γ2+

√
4−3γ2

2γ(1−γ)2 and α2(γ) =

2+γ−2γ2−
√

4−3γ2

2γ(1−γ)2 . Both α1(γ) and α2(γ) are positive for γ ∈ (0,1). Moreover, l1 is posi-

tive for α2(γ)< α < α1(γ) and is negative for α > α1(γ), α < α2(γ). It is easily veri�ed that

α that is greater then α2(γ) and β (de�ned by Equation (8.5)) are positive for γ ∈ (0,1).

This proves statement 2i of Theorem 1.

Statement 2ii follows from the fact that β de�ned by (8.5) is negative for α2, and

so only α > α1(γ), where l1 < 0 is suitable.

Thus, for α,β > 0 and γ ∈ (0,1), Hopf bifurcation with zero Lyapunov value occurs

only for:

α = α1(γ) =
2+ γ−2γ2 +

√
4−3γ2

2γ(1− γ)2 (F.3)

β (γ) =
α1(γ)(1+ γ +α1(γ)γ)

α1(γ)(1− γ)−1

The fact that condition of non-degeneracy for this bifurcation holds and that the

third Lyapunov quantity is non-zero for α,β de�ned by Equation (F.3) within γ ∈ (0,1),

was checked numerically using software package LOCBIF (created by Khibnik et al., 1993).

Bautin theorem [80] allows us to demonstrate that the parameters of the bifurcation contain

boundaries corresponding to saddle-node limit cycle bifurcation. This proves statement 2iii

of the theorem. The bifurcation diagram of the bifurcation is shown in Figure 8.1.


