
DSP Algorithm and Software Development on the iPhone/iPad Platform

by

Shuang Hu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2012 by the
Graduate Supervisory Committee:

Andreas Spanias, Chair
Kostas Tsakalis

Cihan Tepedelenlioglu

ARIZONA STATE UNIVERSITY

May 2012

ABSTRACT

The ease of use of mobile devices and tablets by students has generated a lot of

interest in the area of engineering education. By using mobile technologies in signal

analysis and applied mathematics, undergraduate-level courses can broaden the scope

and effectiveness of technical education in classrooms. The current mobile devices

have abundant memory and powerful processors, in addition to providing interactive

interfaces. Therefore, these devices can support the implementation of non-trivial sig-

nal processing algorithms. Several existing visual programming environments such as

Java Digital Signal Processing (J-DSP), are built using the platform-independent infras-

tructure of Java applets. These enable students to perform signal-processing exercises

over the Internet. However, some mobile devices do not support Java applets. Fur-

thermore, mobile simulation environments rely heavily on establishing robust Internet

connections with a remote server where the processing is performed.

The interactive Java Digital Signal Processing tool (iJDSP) has been developed

as graphical mobile app on iOS devices (iPads, iPhones and iPod touches). In contrast

to existing mobile applications, iJDSP has the ability to execute simulations directly

on the mobile devices, and is a completely stand-alone application. In addition to a

substantial set of signal processing algorithms, iJDSP has a highly interactive graphical

interface where block diagrams can be constructed using a simple drag-n-drop proce-

dure. Functions such as visualization of the convolution operation, and an interface to

wireless sensors have been developed. The convolution module animates the process

of the continuous and discrete convolution operations, including time-shift and integra-

tion, so that users can observe and learn, intuitively. The current set of DSP functions

in the application enables students to perform simulation exercises on continuous and

discrete convolution, z-transform, filter design and the fast Fourier transform.

The interface to wireless sensors in iJDSP allows users to import data from

wireless sensor networks, and use the rich suite of functions in iJDSP for data process-

i

ing. This allows users to perform operations such as localization, activity detection and

data fusion. The exercises and the iJDSP application were evaluated by senior-level

students at Arizona State University (ASU), and the results of those assessments are

analyzed and reported in this thesis.

ii

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my advisor, Professor

Andreas Spanias, for his invaluable guidance and support. His patience, enthusiasm

and vision helped me achieve more than I ever thought possible.

Next, I would like to express my appreciation to Professors Kostas Tsakalis and

Cihan Tepedelenlioglu for being my supervisory committee. Your advices will benefit

a lot in my academic life.

I would also like to express my deep gratitude to Jinru Liu who built this app,

and taught me the basics of iOS programming.

Thanks to my colleagues and friends who gave me invaluable assistance during

my work and life. Special thanks to Mahesh Banavar, Xue Zhang, Jayaraman Thi-

agarajan, Karthikeyan Natesan Ramamurthy, Alex Fink, Henry Braun, Prasanna Sat-

tigeri, Mohit Shah, Suhas Ranganath, Akhilesh Thyagaturu, Girish Kalyanasundaram,

and Deepta Rajan. Thank you all for assisting me to test and develop the software.

This project supported in part by the NSF jdsp phase 3 grant and the SenSIP

center and NCSS IUCRC. Thanks Sprint Communications and Debbie Vogel, Sprint

SW Manager for providing devices to our project.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER . 1

1 INTRODUCTION . 1

1.1 J-DSP Programming Environment . 2

1.2 DSP Education on iOS Platforms . 3

1.3 Contributions . 4

1.3.1 iJDSP Software Development 5

1.3.2 Hardware Interface to Wireless Sensor Networks 6

1.4 Organization of the Thesis . 8

2 OVERVIEW OF iJDSP ARCHITECTURE 9

2.1 iJDSP Environment and User Interface 9

2.2 System Structure . 13

2.2.1 The Model-View-Controller Paradigm 13

2.2.2 Inheritance . 15

2.2.3 Delegation Mechanism . 16

2.2.4 View Hierarchy and Event Handling 17

3 ALGORITHMS AND IMPLEMENTATIONS 19

3.1 Demo . 19

3.2 FIR Filter Design . 22

3.2.1 Windowing Method . 22

3.2.2 The Parks-McClellan Filter Design 28

3.3 IIR Filter Design . 29

3.4 Verification using MATLAB . 32

4 EXERCISES . 36

4.1 Continuous/ Discrete Convolution . 36

iv

CHAPTER Page

4.2 Frequency Response of LTI system . 38

4.3 Filter Design . 42

4.4 FFT . 48

5 IJDSP HARDWARE INTERFACE . 52

5.1 Overview of Wireless Sensor Networks 52

5.2 Wireless Interfacing iJDSP with the Sensor Motes 54

5.2.1 Interface Design . 55

5.2.2 Writing Operation . 57

5.2.3 Reading Operation . 57

5.3 iJDSP Real-time Exercises Using the Sensor Motes 58

5.4 Improvement . 59

6 ASSESSMENTS . 63

6.1 Convolution Assessment . 63

6.2 DSP Workshop Assessment . 64

7 CONCLUSIONS . 70

7.1 Future Work . 71

REFERENCES . 72

APPENDIX . 75

A ESTABLISH A TCP CONNECTION IN IJDSP 77

A.1 Create an instance of AsyncSocket . 77

A.2 Implement AsyncSocket delegate methods 78

A.3 Send packets to server . 79

A.4 Display packets . 82

B ASSESSMENTS . 86

B.1 Convolution Exercise . 86

B.1.1 Objectives . 86

B.1.2 Introduction . 86

v

CHAPTER Page

B.1.3 Part 1: Continuous Time Convolution 86

B.1.4 Part 2: Discrete Time Convolution 87

B.2 Workshop Exercise . 89

B.2.1 Objectives . 89

B.2.2 Introduction . 89

B.2.3 Part 1: Frequency Response of LTI System 91

B.2.4 Part 2: Filter Design . 93

B.2.5 Part 3: FFT . 96

B.3 Workshop Technique Questions . 98

vi

LIST OF TABLES

Table Page

2.1 User Gesture Recognition. 11

2.2 The Mapping Relationship between the Pointers and the Pins. 16

3.1 Frequency-Domain Characteristics of Windows. 27

3.2 Verify Kaiser Function in iJDSP using MATLAB. 34

3.3 Verify Elliptic Algorithm in iJDSP using MATLAB. 35

4.1 Settings in the Sig Gen block. 44

5.1 Command Content. 57

5.2 Packet Content. 59

6.1 Statistics Based on the General Assessment. Total Number of Students = 36. 64

6.2 Statistics Based on the General Assessment. Total Number of Students = 36. 65

6.3 Statistics Based on the General Assessment fromUndergraduates in EEE407.

Total Number of Students = 19. 66

6.4 Statistics Based on the Concept-specific Assessment from Undergraduates

in EEE407. Total Number of Students = 19. 67

6.5 Statistics Based on the General Assessment from Graduate Students in

School of ECEE at ASU. Total Number of Students = 15. 68

6.6 Statistics Based on the Concept-specific Assessment from Graduate Stu-

dents in School of ECEE at ASU. Total Number of Students = 15. 69

B.1 Settings in the Sig Gen Block. 93

vii

LIST OF FIGURES

Figure Page

1.1 The iJDSP Simulation Environment. 3

1.2 Multidisciplinary Extensions of the J-DSP Programming Environment. . . . 5

1.3 Hardware Platform from Crossbow. 7

1.4 iJDSP Interface with WSN. 7

2.1 Architecture of Views in iJDSP. 10

2.2 The List of Functions Available in iJDSP. 11

2.3 An Example of a IIR Filter Simulation. 12

2.4 The Parameters in the Signal Generator Block. 12

2.5 Impulse Response in the Example. 13

2.6 Flow Chart of iJDSP. 14

2.7 MVC Model of iJDSP. 15

2.8 Class Diagram of Inheritance in iJDSP. 16

2.9 The View of a Part. 16

2.10 Class Diagram of Delegation in iJDSP. 17

2.11 View Hierarchy in iJDSP. 18

2.12 Example of Responder Chain in iJDSP. 18

3.1 Pole-zero and Frequency Response Computation in the PZ Placement Block. 20

3.2 GUI Design of Continuous Convolution. 20

3.3 GUI Design of Discrete Convolution. 21

3.4 The UML Diagram for the Convolution Demo Block. 22

3.5 TheUMLDiagram for the Graphically Animation in the Convolution Demo

Block. 22

3.6 GUI Design of FIR Filter Design Module based on Windowing Method. . . 23

3.7 GUI Design of FIR Filter Design Module based on Kaiser Design. 23

3.8 Rectangular Window. 24

3.9 Rectangular Window. 25

viii

Figure Page

3.10 Hanning Window. 25

3.11 Hamming Window. 26

3.12 Blackman Window. 26

3.13 Kaiser Window with Beta = 3. 26

3.14 The Kaiser Window Changes with Parameter Beta. 27

3.15 The UML Diagram for the FIR Filter Design. 28

3.16 GUI design of FIR Filter Design Module based on Parks-McClellan Algo-

rithm. 29

3.17 Frequency Response of the Parks-McClellan FIR Filter. 29

3.18 GUI Design of IIR Filter Design Module based on IIR Analog Approxima-

tion. 30

3.19 Frequency Response of the Elliptic IIR Filter. 31

3.20 The UML Diagram of IIR Filter Design. 32

3.21 Kaiser MATLAB code. 33

3.22 Elliptic IIR MATLAB Code. 33

4.1 Continous-time Convolution. 37

4.2 Discrete-time Convolution. 37

4.3 Block Diagram for Performing Frequency Response of LTI System. 39

4.4 Poles and Zeros of H1(z). 39

4.5 Impulse Response h1(n). 40

4.6 Poles and Zeros of H2(z). 40

4.7 Poles and Zeros of H3(z). 41

4.8 Frequency Response of H3(z). 41

4.9 Block Diagram of the Cascaded System. 42

4.10 Impulse Response of the Cascaded System. 42

4.11 Block Diagram of the Single System. 43

4.12 Impulse Response of the Single System. 43

ix

Figure Page

4.13 Low-pass Filter Design Using the PZ Placement Block. 44

4.14 Block Diagram for iJDSP Prob2.1. 45

4.15 FFT Magnitude of a FIR Filter Using Windowing Method. 45

4.16 Block Diagram for iJDSP Prob2.2. 46

4.17 Frequency Response of the Park-McClellan Filter. 46

4.18 Frequency Response of the Kaiser Filter. 47

4.19 FFT Magnitudes of IIR filters. 47

4.20 The Signals Generated in the Sig Gen Block. 48

4.21 Block Diagram for iJDSP Prob3.1. 48

4.22 FFT Spectrum of x1(n). 49

4.23 FFT Spectrum of x2(n). 49

4.24 Block Diagram for iJDSP Prob3.2. 50

4.25 FFT Magnitude of 128-point Rectangular Window. 50

4.26 FFT Magnitude of 64-point Rectangular Window. 51

4.27 FFT Magnitude of 128-point Hanning Window. 51

5.1 MICAz. 53

5.2 MTS310CA Sensor Board. 53

5.3 MIB600 Ethernet Interface Board. 54

5.4 Local Area Network for iJDSP and the Sensors. 54

5.5 TCP Socket Protocols. 55

5.6 GUI Design in iJDSP to Interface WSN. 56

5.7 Flowchart of establishing a TCP connection in iJDSP. 58

5.8 Flowchart of reading operation in iJDSP. 60

5.9 Block Diagram for Frequency Analysis of Sensor Data. 61

5.10 Real-time Plots of Incoming Sensor Data. 61

5.11 FFT Magnitude of a Microphone Sensor Signal. 62

5.12 Use a Server to Access Sensor Data Remotely. 62

x

Figure Page

6.1 The iJDSP Workshop in March 2012. 65

B.1 Circuit Given for Prob 1.1. 86

B.2 Discrete Signals to be Convolved. 88

B.3 Discrete Signals to be Convolved. 88

B.4 iJDSP Example of a Filter Simulation. 90

B.5 Block Diagram for iJDSP Prob. 1.1. 92

B.6 Block Diagram for iJDSP Prob. 2.1. 94

B.7 Block Diagram for iJDSP Prob. 2.2. 95

B.8 The User-defined Signals. 96

B.9 Block Diagram for iJDSP Prob. 3.1. 97

B.10 Block Diagram for Question 2. 98

B.11 Signals for Question 7. 100

xi

Chapter 1

INTRODUCTION

The use of software applications with interaction capabilities presents huge potential

for instructors to stimulate students interest, in addition to enhancing traditional class-

room teaching. By incorporating innovative components such as animations, real-time

demonstrations, audio and video features, those software applications can complement

the teaching materials. The importance of interactivity in knowledge acquisition and

cognitive skills development has been emphasized by educators [1, 2]. In [3], the au-

thors compared several web applications, and observed that education tools typically

require a higher degree of interactivity in order to enhance learning potential. Most

of the current popular interactive software applications [4–7] are characterized by rich

user interaction and a friendly visual programming interface to fully engage the user

for an efficient learning experience. Furthermore, web-based educational tools are an

integral part of modern day classroom and distance learning frameworks.

Employing software tools in STEM (Science, Technology, Engineering and

Mathematics) edcuation has facililated improved student interest in engineering courses.

In particular, it has impacted the delivery of advanced courses such as Digital Signal

Processing (DSP), by allowing students to demonstrate and learn the application of

mathematical principles in the real world. Several illustrative simulations and pro-

gramming enviroments have been developed over the last decade. In order to enable

students to perform DSP labs over the Internet, the authors in [8] developed J-DSP, a

visual programming environment. J-DSP was designed as a zero footprint, standalone

Java applet that can run directly on a browser. Several interactive laboratories have

been developed and assessed in undergraduate courses.

In recent years, the advent of mobile devices has provided a new and powerful

platform for students and distance learners. From 2007, when the first iPhone intro-

duced, the traditional personal computer (PC) market has been affected by the huge

1

growth in the use of the smartphones and tablet PCs. Statistics show that the amount

of Android and iOS units shipped in 2011 is already larger than that of traditional com-

puters units [9]. In the current smartphone market in United States, iPhone operation

system (iOS) from Apple and Android operation system from Google occupies the

major share of the market [10]. Both Apple and Google have developed their online

distribution systems, making it convenient for mobile users to download and update

applications published by third-party developers. This motivates a large number of ap-

plications for iOS and Android devices. A recent survey indicates that, there are about

550,000 apps for iPhone, iPad and iPod touch users in 123 countries worldwide, and

Apple’s App Store has reached more than 25 billion downloads [11].

The large market penetration of mobile devices opens up avenues for using

mobile phone technologies in STEM education. Considerable research has been under-

taken to understand the effectiveness of smartphones and tablets in a classroom setting.

In this thesis, we present a graphical-programming application, iJDSP, to allow simu-

lation of signal processing algorithms on mobile devices. This application features a

simulation environment and a palette of DSP functions, which will allow students to

perform laboratories using iOS devices.

1.1 J-DSP Programming Environment

J-DSP was developed as a standalone Java applet which allows users to run programs

directly on a browser [12]. The primary objective of the J-DSP software was to provide

undergraduate students and distance learners hands on experience with DSP concepts

and to simplify the understanding of complex mathematical procedures [13]. All signal

manipulation functions appear in J-DSP as graphical blocks that are brought into the

simulation environment by a drag-n-drop process. Signal and data flow is established

by simply linking the blocks. Each block contains a dialog window using which the pa-

rameters of the function can be updated dynamically. The students can plot outputs at

various stages of a simulation and thereby understand the signal flow in the implemen-

2

tation. Figure ?? illustrates the J-DSP interface for integrated web-based learning that

can access all the required components such as lecture slides, course notes, audio/video

content, links to websites, animations and software modules. In addition to signal pro-

cessing, JDSP has been successfully extended to multidisciplinary areas such as digital

communications, control systems, genomic signal processing [13], earth systems signal

processing [14], RF power amplifiers [15], and sensor networks [16] (Figure 1.2).

Figure 1.1: The iJDSP Simulation Environment.

1.2 DSP Education on iOS Platforms

The large multi-touch screens and the computing capabilities of mobile devices such

as smartphones and tablet PCs make educational applications more attractive to stu-

dents and fosters student learning. In a recent study on iPad adoption and use in the

classrooms, it was found that smartphones and tablet PCs provide better performance

in terms of mobility, engagement and collaboration [17]. Studies on the adoption of

mobile devices in education indicate that mobile tools have remarkable advantages in

teaching and learning a broad range of subject areas [18–20].

Examples of educational tools on mobile platforms include Star Walk from Vito

Technology Inc. for astronomy [21], the HP 12c Financial Calculator for business [22],

and Spectrogram for analysis of music signals [23]. For signal processing simulations,

3

one of the most popular applications is MATLAB Mobile, which performs simulations

through a traditional command line interface [24]. It provides a lightweight mobile

version of MATLAB that runs on a remote computer via an internet connection. How-

ever, this application does not support a sophisticated graphic user interface (GUI) and

relies heavily on a stable internet connection. Therefore, MATLAB Mobile may not

be the most interactive, practical or portable platform for educational purposes. As a

standalone mobile application, iJDSP not only provides a substantial set of signal pro-

cessing algorithms, but also provides an intuitive interactive GUI that engages users and

supports their learning and understanding. Furthermore, no internet access is required

for running this application. iJDSP is designed exclusively for iOS-based devices such

as iPhone and iPad using Apple’s Xcode IDE and iOS SDK, and is meant as an ex-

tension of JDSP onto mobile platforms. As a mobile version of the JDSP editor [25],

iJDSP has similar color scheme and operation mode in order to make the application

consistent. The main interface is shown in Figure ??. A rich suite of DSP functions is

available in iJDSP including fast fourier transform (FFT), filter design, pole-zero place-

ment, frequency response, sound recorder and player, and several others. Additionally,

a graphical interface that allows users to import and process data harvested by wireless

sensors has been developed in iJDSP.

1.3 Contributions

The underlying architecture of the iJDSP application is designed and optimized for the

iOS platform. There are several challenges involved in the migration of JDSP to an

iPhone operation system (iOS). First, the Java language, which was used to design J-

DSP, is not supported by the iOS system. Native applications on iPhone/iPad platform

are typically developed using Objective-C, C and C++. In order to improve the software

performance, we employed hybrid programming by combining C with the Objective-C

language. Second, the user interface of JDSP is not suitable for mobile users because of

the smaller screen size. Hence, we needed to redesign the user interface to fit the screen.

4

Figure 1.2: Multidisciplinary Extensions of the J-DSP Programming Environment.

In addition, constraints on processors and memory need to be taken into account during

the application design. The processor of iPhone 4S is clocked at 800MHz, and the iPad

2’s is clocked at 1GHz. The amount of random-access memory (RAM) on iPhone 4S

and iPad 2 is 512 MB [26, 27]. Compared to computers, the calculation capability is

limited on iPhone and iPad platforms. Especially during real-time calculations, those

limitations even induce laggy interfaces and errors. This thesis hence details the ef-

forts in developing the iJDSP application. The user interface of iJDSP is exclusively

designed for mobile devices, and assessed by students. 95 percent of users got used to

the environment within 10 minutes.

1.3.1 iJDSP Software Development

DSP algorithms typically involve complicated computations, which is not intuitive for

students to understand. Hence we have developed some animated demonstrations and

functions that are helpful to describe those concepts. We have developed a set of DSP

functions in iJDSP, that are necessary for performing laboratory exercises in a senior-

level DSP course: sampling, convolution, z-transform, FFT and filter design functions.

The set of functions developed as part of this thesis include the user-defined signal

generator, junction, windowing, convolution, animated convolution demo, FIR design

5

(windowing, kaiser, the Parks-McClellan), IIR design, and up/down sampling. Fur-

rthermore, extensive testing and debugging of the entire software has been carried out.

The implementation and the features of these functions will be described in detail in

this thesis. Furthermore, an extensive set of laboratory exercises has been developed

for use in a senior level DSP course. The software and associated exercises have been

fully assessed by students ranging from children to graduates through a series of work-

shops and open house activities. Based on the user feedback, we have improved the

software considerably by optimizing the user interface and incorporating additional

features. The DSP exercises and a detailed analysis of the assessment results are also

included in the thesis.

1.3.2 Hardware Interface to Wireless Sensor Networks

An important limitation of several software applications is the lack of an interface

to work with hardware devices and platforms. Working with inexpensive hardware

can provide students a rich experience in working with real-time data. Associated

paradigms such as data fusion and real-time spectrum estimation are very impressive in

describing the theory along with practical applications of signal processing. The chan-

llenge in building such a hardware interface is to enable real-time computations. The

capability of processor on mobile devices is limited, while real-time calculations typi-

cally consumes system resources. As a result, any algorithm that is implemented must

be optimized to maximize efficiency. The hardware component chosen to expose stu-

dents to real-time processing is a Crossbow mote [28] which is widely used in several

wireless sensor network applications (Figure 1.3).

We have developed a novel interface on iJDSP to interface with the sensor motes

to communicate and acquire real-time data. This interface has been designed using

Objective-C/C and nesC with a user-friendly GUI. As shown in Figure 1.4, iJDSP

communicates with the wireless sensor through a centralized base station via Wifi.

This communication is built under a local area network (LAN) which is established by

6

Figure 1.3: Hardware Platform from Crossbow.

a wireless router. The base station then communicates to the sensor nodes through Zig-

Bee [29], a wireless communication protocol developed for low-cost and low-power

systems.

Figure 1.4: iJDSP Interface with WSN.

Targeted applications areas of such an interface with wireless sensor networks

include research topics in communication, collaborative signal processing, and power-

aware implementations [16].

7

1.4 Organization of the Thesis

This thesis describes development of convolution, FIR filter design, IIR filter design as

well as software to control a sensor network using an iPhone/iPad. This software in-

frastructure is developed in iJDSP to support sensor network experiments and research

on iPhone/iPad. The proposed interface is demonstrated using a real time spectral esti-

mation experiment for acoustic signals on iPhone/iPad. We also developed an extensive

set of DSP laboratory exercises. In the whole development process, the software has

constantly been tested and debugged. The maintenance procedure includes a series of

testing and assessments to gather crash reports as well as feedback in terms of user

experience.

The rest of the thesis is organized as follows. Chapter 2 introduces the back-

ground of iJDSP, and describes the user interface. Furthermore, the system design

pattern and the view architecture used in iJDSP are discussed. Chapter 3 describes

DSP algorithms implemented in iJDSP and presents the implementation detials of the

functions. A description of the associated laboratory exercises is provided in Chapter

4 that includes continuous/ discrete convolution, frequency response, filter design and

FFT. The hardware interface of iJDSP with wireless sensor networks is described in

detail in Chapter 5. This chapter details the development from the aspects of hardware

platforms, socket programming, graphical interface design as well as building real-time

experiments. In Chapter 6, the pedagogy adopted in evaluating the iJDSP application

and the analysis of assessment results are presented. Finally, the extensions of iJDSP

to other platforms, interdisciplinary areas, and further work along with concluding re-

marks are presented in Chapter 7.

8

Chapter 2

OVERVIEW OF iJDSP ARCHITECTURE

In this chapter, we will first introduce the iJDSP environment, and navigate the user

interface. The iJDSP is developed using Xcode IDE, an integrated development en-

vironment developed by Apple Inc. and the iOS SDK, a software development kit

for Apple’s mobile operating system. Then a description of the system architecture of

iJDSP will be given including the Model-View-Controller paradigm, inheritance, and

delegation mechanism.

2.1 iJDSP Environment and User Interface

As a native Cocoa Touch application [30], the iJDSP environment is compatible with

all iOS devices that running iOS later than 3.2. To improve performance, we choose

hybrid programming using C and Objective-C. All algorithms in iJDSP are developed

using standard C in order to achieve high calculation speed compared to Objective-

C and C++ [31]. Objective-C is primary used in building the user interface(UI) on

iOS and extends the C language with more object-oriented features such as class and

messaging [32]. Two separate libraries are used in iJDSP to deal with custom drawing;

Quartz 2D, which is part of the Core Graphics framework [33] and CorePlot, an open

source 2D plot framework [34]. iJDSP is a completely standalone application that can

directly run on mobile devices without the need for a Internet connection. iJDSP also

provides features such as multi-touch gestures, animations and audio processing using

the build-in microphone on iOS devices.

The user interface of iJDSP consists of multiple layers of views. The architec-

ture of the views is shown in Figure 2.1. The views of iJDSP include: (a) a navigation

bar (hidden in main view) for navigating multiple view controllers; (b) a main canvas;

(c) DSP block diagrams; (d) a tool bar for displaying controls; (e) bar button items.

As basic components, the navigation bar and the main canvas are placed at the lowest

layers. The navigation bar is the view of UINavigationController, a control managing

9

Figure 2.1: Architecture of Views in iJDSP.

the navigation of hierarchical content. The main canvas is the workspace where users

perform simulations. It is also capable of handling user gestures shown in Table 2.1.

Upon these layers, a sequence of graphical modules encapsulating DSP functions are

then added as child views (subviews) of the main canvas. The front view is the tool bar

consists of four bar button items: an add button, a trash button, an information button,

and a tip button. The function of each bar button item will be introduced in the next

content. The following part will show how to navigate iJDSP with a simple Filter ex-

ample. After pressing the plus-like button on the bottom bar, a set of functions appears,

as shown in Figure 2.2. Then we select a block named Signal Generator, and press

the “Add” button on the top upper corner. A light grey rectangular block named “Sig

Gen 0” is now shown on the main canvas. Similarly, add a Filter block, a Filter Coeff

10

Table 2.1: User Gesture Recognition.

Gesture Operation
Double tap on a block Open a block to see its property dialogue
Long hold on a block Delete the block
Single tap on a pin Make a connection between blocks

Single tap on a connection Delete a connection between blocks
Hold and drag on a block Move blocks with your fingers

Swipe down/up on the main canvas Hide/show the bottom bar

block and a Plot block on the main canvas. Each block is very easy to move by placing

a finger on it and dragging it to a new location. To delete a block, hold for several

seconds on the corresponding block. A pop-up menu appears. Select “Delete”. To

connect blocks, tap once inside the blue dot on the right side of the Signal Generator

block, then tap once the blue dot on the left side of the Filter block. A black line will be

drawn. The connection in iJDSP is made in the direction of the signal flow (i.e. signal

transmits from an output of a block to an input of another block), otherwise you will

fail making connections and an alert is shown. The block diagram of this filter example

is shown in Figure 2.3.

Figure 2.2: The List of Functions Available in iJDSP.

11

Figure 2.3: An Example of a IIR Filter Simulation.

In what follows, methods to provide parameters for the various blocks are de-

scribed. Double tap on the Sig Gen block. A list that details all parameters to define a

signal such as signal type, gain and pulse width will appear as shown in Figure 2.4.

Figure 2.4: The Parameters in the Signal Generator Block.

Change the signal type to Delta. Then double tap on the Filter Coeff block, and

enter the following filter coefficients: b0 = 1,a0 = 1,a1 = −0.9. Double tapping on

the Plot block will show the impulse response of a first-order causal IIR filter defined

by the difference equation y(n) = x(n)+0.9y(n−1) along with the transfer functions
12

defined as follows,

H(z) =
1

1−0.9z−1 , |z|< 0.9 (2.1)

The closed-form expression for the impulse response is h(n) = 0.9nu(n) and is

shown in Figure 2.5.

Figure 2.5: Impulse Response in the Example.

The process of the iJDSP application is illustrated in Figure 2.6. Once iJDSP

detects a touch event, it will first decide which step should be processed according to

the type of the touch. After completing corresponding operation, iJDSP will go back to

start status to wait detection. Activities such as Establishing/ deleting a connection, and

updating parameters will make re-execution of all the blocks on the data flow. Once

completing reloading data, it will go back to start status as well.

2.2 System Structure

This part explains the system structure in iJDSP from three aspects: Model-View-

Control model, inheritance, and delegation mechanism.

2.2.1 The Model-View-Controller Paradigm

As a GUI-based application, the design of iJDSP is guided by a concept called Model-

View-Controller (MVC), which aims to logically organize the code and ensure maxi-
13

Figure 2.6: Flow Chart of iJDSP.

mum reusability of the code [35]. As shown in Figure 2.7, iJDSP divides source code

into three parts. Model is the category that consists of all the classes that implement

DSP algorithms. Those DSP algorithms are inherited from a root class called NSOb-

ject. View is made up of all graphs and other elements that user can see and interact

with. All of view objects are inherited from a basic class UIView. Controller is to bind

the model and view together, and manage communication between them. Therefore the

contents of views can be updated according to user actions. Those controller objects

are inherited from UIViewController class. The inheritance pattern will be explained

14

later.

Figure 2.7: MVC Model of iJDSP.

2.2.2 Inheritance

Inheritance is very important to object-oriented programming. The class diagram in

Figure 2.8 describes an inheritance pattern in iJDSP. As a root class in the foundation

framework, NSObject defines some essential methods of an object such as alloc, init

and dealloc to deal with the memory management [36]. Alloc and init methods are

used to allocate memory of an object and declare its ownership. Since Objective-C

does not support garbage collection as Java, we need call dealloc to destroy the object

if we no longer need it. Part is a subclass of NSObject. Part declares a set of general

variables about a block such as partName, parents and children. It also defines common

methods including updateBlock, executeBlock, and setDatawithIndex. In Figure 2.8,

the FIRFilter block inherits those variables and methods from Part. Besides, it defines

private variables such as ftype which refers to the type of filter and private methods

such as FilterDesign which implements algorithms used in FIR filter design.

Each block has parents and children. Either of them is an array consisting

of three pointers which point to its preceding blocks or following blocks. Figure 2.9

shows the view of a part including its three output pins (Pin3, Pin4, Pin5) and three

15

Figure 2.8: Class Diagram of Inheritance in iJDSP.

Table 2.2: The Mapping Relationship between the Pointers and the Pins.

Pin number Pointers
0 parent[0]
1 parent[1]
2 parent[2]
3 children[2]
4 children[0]
5 children[1]

input pins (Pin0, Pin1, Pin2). The corresponding relation between those pointers and

pins is shown in Table 2.2. Any specific function such as SigGen, FFT or FIRFilter is

a subclass of Part. The private variables and methods are defined and implemented in

their own classes.

Figure 2.9: The View of a Part.

2.2.3 Delegation Mechanism

Delegation is another important mechanism applied in iJDSP. Some classes have lim-

ited common behaviors shared with each other. In order to communicate between those

classes, therefore, we describe that relationship with a delegation mechanism [37]. A
16

delegation mechanism applied in iJDSP is illustrated in Figure 2.10. When the user

clicks the save button after editing the parameter, the object AttributeEditor sends a

message, saveforKey, to its delegate PartDetailViewController. PartDetailViewCon-

troller will save that value and show it on the list of parameters. Similarly, once the

user clicks the “Add button, message partAdded will be sent by the PartDetailView-

Controller object to its delegate PartsTableViewController. To implement the request

of partAdded, the PartsTableViewController object asks its delegate RootViewContor-

ller to draw the corresponding part on the main canvas.

Figure 2.10: Class Diagram of Delegation in iJDSP.

2.2.4 View Hierarchy and Event Handling

As a view-based application, iJDSP needs to deal with multiple views and handle dif-

ferent events on them. The view hierarchy is illustrated in Figure xx. The view of

navigation controller (a) and main canvas (b) are located at the bottom. Above the

main canvas, DSP function diagrams (c) are added as subviews of the main canvas. At

the most top is the tool bar and its bar buttons.

This view architecture not only determines the order of views displayed on the

screen, but also the order to handle user actions. The responder chain are defined

in Cocoa’s event-handling machinery is used to handle different user actions. Those

touch events in iJDSP are already listed in Table 2.1 in previous context. Take making

a connection for example. As shown in Figure 2.12, once user single taps on the pin, a

straight line will be drawn on the canvas.

Pin view is the first responder on the chain to handle this touch event. Pin view

does not have corresponding method, then the event is passed along to its viewcon-

troller or superview. In this case, this event is delivered to its parent view called part

17

Figure 2.11: View Hierarchy in iJDSP.

Figure 2.12: Example of Responder Chain in iJDSP.

view. After examining a series of objects on the chain, this event finally arrives in main

canvas’s frame, and drawing method is called. If there is no corresponding processing

methods found in the chain, the event will be discarded in the end.

18

Chapter 3

ALGORITHMS AND IMPLEMENTATIONS

iJDSP has a rich suite of signal processing functions dealing with fundamental issues

in digital signal processing courses including signal representations in discrete-time

domain and z-domain, transform analysis of linear-time-invariant (LTI) system, tech-

niques in digital filter design, multirate signal processing and spectral analysis.

Functions in iJDSP include signal generators, arithmetic operations, and basic

DSP functionality.

• Basic operations: Signal Generator, Junction, Adder, Plot, Convolution.

• Filtering: Filter, Filter Coeff, PZ Plot, PZ2Coef.

• Spectral analysis: Freq Resp, Up Sampling, Down Sampling, FFT(IFFT), Win-

dow, Peak Picking.

• Audio processing: By using build-in microphone in iPhone/ iPad, iJDSP has

capability to deal with real sound. Those functions are MIDI, DTMF, Sound

Recorded and Sound Player.

3.1 Demo

Through animation and visual display of concepts, students are easy to accept knowl-

edge that are not obvious from traditionally static explanations from textbooks or black-

board. There are three demos in iJDSP, frequency response demo, PZ placement, and

convolution demo. The Frequency Response Demo block shows three samples of filters

representing low-pass filter , high-pass filter and band-pass filter respectively. The PZ

Placement block explains the relationship between the frequency response of the filter

and the positions of poles and zeros. By dragging poles and zeros in the pz-plane shown

in the left part of Figure 3.1, we can see corresponding frequency response in real time.

The Convolution Demo block graphically visualizes the convolution process

involving two signals both for the continuous-time and discrete-time signals. Figure
19

Figure 3.1: Pole-zero and Frequency Response Computation in the PZ Placement
Block.

3.2 and Figure 3.3 show the GUI design of the Convolution Demo block. Other than

providing a set of pre-defined sequences, discrete convolution allows users create their

own signals by holding and dragging each sample to the desired amplitude. Therefore

one more view is added after choosing signal types as shown in Figure 3.3.

Figure 3.2: GUI Design of Continuous Convolution.

The continuous-time convolution is defined as followed,

y(t) =
∫ ∞

−∞
x1(τ)x2(t− τ)dτ = x1(t)∗ x2(t) (3.1)

20

Figure 3.3: GUI Design of Discrete Convolution.

The asterisk between x1(t) and x2(t) is the convolution operation [38]. In the

iJDSP, the continuous-time signal is approximated by 121-points of sequence.

The discrete-time convolution is defined by the sum of two sequences,

y[n] =
∞

∑
k=−∞

x1[k]x2[n− k] = x1[n]∗ x2[n] (3.2)

If L1 is the length of the sequence x1[n], L2 is the length of the sequence x2[n]. The

length of sequence y[n] equals to L1 + L2 − 1. The logic design in the convolution

demo is illustrated in the Figure 3.4. ConvSigGen and DiscConvSigGen are used by

ConvDemo to generate instances of input signal.

The graphic convolution design is illustrated in Figure 3.5. ConvDemoDe-

tailViewController call DiscConvPlotViewController for discrete-time convolution and

ConvPlotViewController for continuous-time convolutoin. They get signals generated

from ConvDemoand set the interval time using NSTimer. Hense draw() will be called

by the timer at the scheduled time to refresh the graph. The animation of convolution

is then graphically shown on the screen. An exercise using convolution demo was de-
21

Figure 3.4: The UML Diagram for the Convolution Demo Block.

Figure 3.5: The UMLDiagram for the Graphically Animation in the ConvolutionDemo
Block.

signed and assessed by students from senior-level DSP course. The assessment results

are presented in later chapter, and the exercise is given in Appendix.

3.2 FIR Filter Design

iJDSP supports multiple FIR filter design modules including the FIR Design block,

the Kaiser block and the Parks-McClellan block. Algorithms used in these FIR filter

design modules obey the constraint that the phase of the frequency response is linear

[7]. Based on this constraint, two design techniques, the window method and optimal

minmax method (Parks-McClellan algorithm) are developed.

3.2.1 Windowing Method

As shown in Figure 3.6, the FIR Design block has four user entries defining window

type, order, filter type and cut-off frequencies. After tapping the “Update” button, the

filter coefficients are calculated to best fit the specified parameters. The Kaiser design

22

shown in 3.7 provide three entries including filter type, cut-off frequencies and toler-

ances. The filter order, beta of the Kaiser window and the coefficients are calculated to

fit those specifications by multiplying the Fourier series of the ideal filter with a Kaiser

window. In the following content, algorithms are described in detail.

Figure 3.6: GUI Design of FIR Filter Design Module based on Windowing Method.

Figure 3.7: GUI Design of FIR Filter Design Module based on Kaiser Design.

23

A causal M order FIR filter can be obtained by truncating an ideal non-causal

impulse response of the IIR system with a finite length window w(n),

hFIR(n) = w(n)hd(n−M/2),0≤ n≤M (3.3)

The desired filter is designed using the FS method according to the specifications on

the frequency-selective filter. Typically there are four parameters used to determine a

discrete-time filter, the passband cutoff frequency Wp, the stopband cutoff frequency

Ws, the passband gain variance PB(dB) and the stopband gain variance SB(dB). FIR

filter design in iJDSP provides multiple types of windows. The equations of windows

are defined in Equation 3.4 to Equation 3.9, the corresponding window is plotted in

Figure 3.8 to Figure 3.13 [39].

• Rectangular

w(n) =

⎧⎪⎨
⎪⎩

1, 0≤ n≤M

0, otherwise
(3.4)

Figure 3.8: Rectangular Window.

• Bartlett(Triangular)

w(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n/M, 0≤ n≤M/2

2−2n/M, M/2< n≤M

0, otherwise

(3.5)

24

Figure 3.9: Rectangular Window.

• Hanning

w(n) =

⎧⎪⎨
⎪⎩

0.5−0.5cos(2πn/M), 0≤ n≤M

0, otherwise
(3.6)

Figure 3.10: Hanning Window.

• Hamming

w(n) =

⎧⎪⎨
⎪⎩

0.54−0.46cos(2πn/M), 0≤ n≤M

0, otherwise
(3.7)

• Blackman

w(n) =

⎧⎪⎨
⎪⎩

0.42−0.5cos(2πn/M)+0.08cos(4πn/N), 0≤ n≤M

0, otherwise
(3.8)

25

Figure 3.11: Hamming Window.

Figure 3.12: Blackman Window.

• Kaiser

w(n) =

⎧⎪⎨
⎪⎩

I0(M,β)
I0(β)

, 0≤ n≤M

0, otherwise
(3.9)

Figure 3.13: Kaiser Window with Beta = 3.

26

Table 3.1: Frequency-Domain Characteristics of Windows.

(L+1)-point Window Mainlobe Width Strongest Sidelobe Level (dB)
Rectangular 4π/L+1 -13
Bartlett 8π/L -25

Hamming 8π/L -41
Hanning 8π/L -31

The relationship between windows beamwidth and sidelobe level is shown in

Table 3.1. Compared to the rectangular window, tapered windows such as the bartlett

window have lower sidelobe characteristics but wider mainlobe.

In the Kaiser function, I0 represents the zeroth order modified Bessel function.

Parameter M represents the length of the window. Parameter β controls the shape of

the Kaiser window. It is a rectangular window when β equals to 0. As β increases, the

varying degree of the window becomes larger [38]. This relationship is illustrated in

Figure 3.14.

Figure 3.14: The Kaiser Window Changes with Parameter Beta.

The order of Kaiser filter design is given by,

M =
A−7.95

2.285×2π ×ΔW
(3.10)

27

where the difference between two cutoff frequencies ΔW is defined as ΔW = |Wp−Ws|.

The parameter β in Eq. (3.9) is defined as,

w(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.1102(A−8.7), A> 50

0.5842(A−21)0.4+0.07886(A−21), 21≤ A≤ 50

0, A< 21

(3.11)

A(dB) is defined to be the smaller one between the passband gain variance PB and the

stopband gain variance SB [38].

The block diagram in FIR filter design is shown in Figure 3.15. FIRFilter and

KaiserFilter are inherited from superclass Part. They define parameters interfacing

with views such as window type, filter type, order and coefficients. FIRDesign class

implements FIR design algorithms. The instance of FIRFilter or KaiserFilter uses

methods in FIRDesign to calculate corresponding coefficients.

Figure 3.15: The UML Diagram for the FIR Filter Design.

3.2.2 The Parks-McClellan Filter Design

The GUI interface of the Parks-McClellan block is shown in Figure 3.16. Three entries,

filter type, cut-off frequencies and tolerances, are defined, and then filter coefficients are

calculated using the Min-Max algorithm. The frequency response is shown in Figure

3.17.

In order to minimize the maximum difference between the impulse response

of the designed filter and the ideal filter for a certain filter order M, Parks-McClellan

algorithm is proposed by minimizing the following expression,

max
Ω∈Θ

|P(e jΩ)(Hd(e
jΩ)−|H(e jΩ)|)| (3.12)

28

Figure 3.16: GUI design of FIR Filter Design Module based on Parks-McClellan Al-
gorithm.

Figure 3.17: Frequency Response of the Parks-McClellan FIR Filter.

3.3 IIR Filter Design

IIR filter design is developed upon the approximation of the analog filter using bilinear

transformation. There are four types of IIR filter approximation methods provided in

the IIR Design block, Buttorworth, Chebyshev I, Chebyshev II, and Elliptic [38, 39]

developed in iJDSP. Figure 3.18 shows the user interface of IIR filter design in iJDSP.

There are four entries including IIR type, filter type, cut-off frequencies and tolerances

provided in this interface. The frequency response of Elliptic IIR filter is shown in

Figure 3.19.

29

Figure 3.18: GUI Design of IIR Filter Design Module based on IIR Analog Approxi-
mation.

The specifications of IIR filter are determined by normalized passband cutoff

frequencyWp, normalized stopband cutoff frequencyWs, gain at passband edge PB, and

gain at stopband edge SB. A typical design pattern of IIR filter is described here: (1)

determine the filters order according to the given parameters; (2) calculate the desired

cutoff frequencies of the filter; (3) find stable s-domain poles; (4) calculate z-domain

poles and zeros; (5) apply transformations to obtain the desired filter from the prototype

low-pass filter.

The forms of M-order analog lowpass filter with a desired cutoff frequency wc

and a ripple tolerance β are given by,

30

Figure 3.19: Frequency Response of the Elliptic IIR Filter.

• Butterworth

|Ha(w)|
2 =

1
1+(w

wc
)2M

(3.13)

• Chebyshev type I

|Ha(w)|
2 =

1

1+(η2T 2
M

w
wc
)

(3.14)

• Chebyshev type II

|Ha(w)|
2 =

1

1+(η2TM
wp
w)

−1

(3.15)

The function TM(w) in Eq.(3.14) and Eq.(3.15) is theMth-order Chebyshev poly-

nomial defined by,

TM(w) = cos(Mcos−1w) (3.16)

• Elliptic

|Ha(w)|
2 =

1

1+(η2U2
M

wp
w)

(3.17)

The function of UM(w) is a Jacobian elliptic function [39], also called the Rational

Normalized Function [40]. Elliptic filter can use the smallest order to meet the same

specifications.

The mapping from analog domain frequency ω to digital domain frequency W

is indicated by,

ω = tan
W
2

(3.18)

31

Then we could find the cutoff frequency wc and s-domain poles pk. By applying

bilinear transform, z-domain poles can be determined from the stable s-domain poles,

s=
z−1
z+1

(3.19)

After getting a prototype lowpass digital filter, a digital-to-digital transforma-

tion needs to be applied in order to get desired filter. Given a prototype lowpass filter

HLP(w), the desired filter is,

Hd(z) = HLP(v
−1), v−1 = F(z−1) =±

M

∏
k=1

z−1−ak
1−akz−1 (3.20)

The implementation of IIR filter design is described by class diagram shown

in Figure 3.20. Four algorithms used in IIRFilter are implemented in Butterworth,

Chebyshev, Chebyshev2, and Elliptic respectively. Expect butterworth, the other three

algorithms need to use matrix operations defined in UtilityFunction.

Figure 3.20: The UML Diagram of IIR Filter Design.

3.4 Verification using MATLAB

MATLAB is used to verify results from i-JDSP. We will examine the performance of

filter design blocks. For FIR filter, we take Kaiser as an example, using MATLAB and

iJDSP respectively to design a lowpass FIR filter with following specifications,

0.9≤ |H(e jΩ)| ≤ 1.1, 0≤ Ω ≤ 0.25π

|H(e jΩ)| ≤ 0.056, 0.5π ≤ Ω ≤ π
(3.21)

32

Corresponding MATLAB code is given in Figure 3.21, and the performance compar-

isons betweenMATLAB and iJDSP in terms of Pole-zero plane and frequency response

are shown in Table 3.2.

Figure 3.21: Kaiser MATLAB code.

Take an elliptic IIR filter design as another example. Given a lowpass filter with

following specifications,

• Passband Cutoff frequency: 0.4π ; Stopband Cutoff frequency: 0.6π ;

• Tolerance in passband: 1dB; Tolerance in stopband: 45dB.

MATLAB code is as well given in Figure 3.22. The performance comparisons are

shown in Table 3.3.

Figure 3.22: Elliptic IIR MATLAB Code.

33

Table 3.2: Verify Kaiser Function in iJDSP using MATLAB.

Experiment MATLAB iJDSP

PZ Plot

Freq. Resp.
Magnitude

Freq. Resp.
Phase

34

Table 3.3: Verify Elliptic Algorithm in iJDSP using MATLAB.

Experiment MATLAB iJDSP

PZ Plot

Freq. Resp.
Magnitude

Freq. Resp.
Phase

35

Chapter 4

EXERCISES

The object of this exercise is to provide hands-on experiences on iJDSP that help stu-

dents get familiar with the environment and learn how to establish DSP simulations

on this platform. This exercise is developed according to JDSP online laboratory ex-

ercises [8, 12]. It consists of four parts covering continuous/discrete convolution, z-

transform, frequency response of LTI system, poles and zeros on the z-plane , filter

designs, and Fast Fourier Transform. The laboratory exercises are typically performed

after the students are introduced basic concepts of related filed in their lecture sessions.

4.1 Continuous/ Discrete Convolution

This exercise introduces the concepts of continuous and discrete time convolution and

enables students to visualize the demonstrations in iJDSP. To begin with students are

asked to analytically compute impulse responses obtained by convolving two signals.

Then the Convolution Demo block in iJDSP is used to demonstrate the effect of causal-

ity in continuous convolution. For a given set of input signals, the Convolution Demo

block animates the convolution procedure and plots the resulting impulse response on

the same plot screen. Figure 4.1 illustrates an example of convolving a sinc signal and

a rectangular signal. The black plot in Figure 4.1 is the convolution result. The students

are asked to make observations on the convolution results in the following cases:

1. Causal rectangular and non causal rectangular.

2. Causal rectangular and causal rectangular.

3. Non-causal rectangular and non causal sinc.

The Convolution Demo block also provides the discrete-time convolution. In this part

of the exercises, the students compare the results obtained by sampling two continuous

signals and performing discrete convolution, with the result obtained by sampling the

36

Figure 4.1: Continous-time Convolution.

convolution result obtained by convolving the two continuous signals directly. Further-

more, students are asked to sample the impulse response of a system and the given input

signal. Use these sampled signals to perform a discrete time convolution, and compare

with the result of the continuous-time convolution of the analog signals. Figure 4.2

shows the simulation between two discrete signals.

Figure 4.2: Discrete-time Convolution.

37

4.2 Frequency Response of LTI system

The exercise aims to help the students understand the concept of linear-time-invariant

(LTI) system and z-domain representations of the impulse response of a LTI system, as

well as the relationship between the pole-zero plot and the frequency response.

First of all, the students are asked to perform three typical digital filters with

given transfer functions.

•

H1(z) =
1−0.45z−1+0.55z−2

1−1.7z−1+0.6z−2 (4.1)

•

H2(z) = 0.06+0.0876z−1−0.3z−2+0.375z−3−0.3z−4+0.0876z−5+0.06z−6

(4.2)

•

H3(z) =
−0.8+1.62z−1−1.8z−2+ z−3

1−1.8z−1+1.62z−2−0.8z−3 (4.3)

H1(z) represents an unstable LTI system. H2(z) is a high-order FIR filter. H3(z)

is a all-pass filter. Those three functions are used to varify rootFinder algorithm which

is applied to find poles and zeros. Besides, by examining poles and zeros of each

system, students can learn how the poles and zeros take effect on system’s stability.

They also can differ filter types by performing simulations. Establish the block diagram

shown in Figure 4.3.

Type the corresponding filter coefficients in the Filter Coeff block. To see the

poles and zeros in the z-plane, double-tap the PZ Plot block. To see the impulse re-

sponse of the system, set ”Delta” signal in the Sig Gen block, and double tap on the

Plot block to see the simulation result.

The poles and zeros of H1(z) is shown in Figure 4.4.

To perform a LTI system in iJDSP, the students need to determine the impulse

response h(n)in discrete-time domain, and the coefficients a and b from the z-transform
38

Figure 4.3: Block Diagram for Performing Frequency Response of LTI System.

Figure 4.4: Poles and Zeros of H1(z).

of the system’s impulse response. The impulse response h1(n) corresponding to H1(z)

is shown in Figure 4.5.

Figure 4.5 indicates the impulse response of H1(z) is not absolutely summable.

Meanwhile, student can observe that one of poles in Figure 4.4 is outside the unit circle.

Therefore, student can conclude that the causal filter H1(z) is not BIBO unstable due to

the ROC of H1(z) doesn’t include the unit circle.

Similarly, the poles and zeros of H2(z) and H3(z) are shown in Figure 4.6 and

Figure 4.7.

The frequency response of the all-pass filter H3(z) is shown in Figure 4.8.

39

Figure 4.5: Impulse Response h1(n).

Figure 4.6: Poles and Zeros of H2(z).

The second problem aims to learn the face that the LTI systems in cascade or

parallel configurations can be combined into a single system [38]. Students are asked

to perform a cascaded system using two filters, and then reconstruct the system using

only one filter. The cascaded system is illustrated in Figure 4.9, and the single system

is shown in Figure 4.11. The corresponding impulse response is shown in Figure. The

cascaded system is given in the form of the convolution of two causal sequences shown

in Eq. (4.4)

y(n) =
n

∑
k=0

akbn−k (4.4)

According to Figure 4.10 and Figure 4.12, students can verify that the impulse

40

Figure 4.7: Poles and Zeros of H3(z).

Figure 4.8: Frequency Response of H3(z).

responses of the two systems are equal.

The third problem related to LTI system is to design a filter by placing poles

and zeros in the z-plane. The PZ Placement block enables the user to place poles and

zeros graphically in the z-plane and analyze the corresponding frequency response in

real time. Poles and zeros are added as conjugate pairs, and no more than 5 pairs can

be entered. Graphical manipulation of poles and zeros is achieved through “Add Pole,

“Add Zero and “Reset buttons on the left part of the screen. Users can place and move

poles and zeros pairs. As you move the poles and zeros, the frequency response will

be immediately updated. Adjust the location of the poles and zeros until the desired

response is obtained. Note that poles near the unit circle give rise to spectral peaks
41

Figure 4.9: Block Diagram of the Cascaded System.

Figure 4.10: Impulse Response of the Cascaded System.

and zeros near the unit circle create spectral valleys in the magnitude of the frequency

response. Students are asked to design a low-pass filter using two sets of zero pairs and

one pole pair with roughly approximate cutoff frequency of Ωc = π/4. One example of

the design can be done as shown in Figure 4.13.

4.3 Filter Design

The exercise includes three problems which aim to study the knowledge of window,

compare different design methods for FIR filter and IIR filter. There are four associated

filter design blocks, Kaiser, FIR Design, Parks-McClellan and IIR Design, can be used
42

Figure 4.11: Block Diagram of the Single System.

Figure 4.12: Impulse Response of the Single System.

in iJDSP.

The purpose of the first question is to verify the property that tapered windows

have better behaved sidelobs and hence better behaved ripple effect relative to the rect-

angular window.

Students are asked to use a Sig Gen block, a Window block, and an FFT block

to design a causal lowpass filter from the ideal impulse response hd(n) = 0.2sinc(πn
5),

i.e.,

hFIR(n) = w(n)hd(n−L/2), 0≤ n≤ L (4.5)

43

Figure 4.13: Low-pass Filter Design Using the PZ Placement Block.

Table 4.1: Settings in the Sig Gen block.

Signal Type Amplitude Pulsewidth Periodic Period Time Shift Freq.
Sinc 0.2 120 NO 10 30 0.2

The corresponding setting in the Sig Gen block is given in 4.1

The iJDSP block diagram should look like Figure 4.14. Take 256-point FFT of

the impulse response. Set the size of window to be 60. Tapered windows have better

behaved sidelobes and hence better behaved ripple effect relative to the rectangular

window. Students can verify this property by checking FFT magnitude of Rectangular

window and Bartlett (Triangular) window respectively. The simulation result is shown

in Figure 4.15.

We also ask students to compare performance of FIR design by using window-

ing method and the Parks-McClellan algorithm. The Parks-McClellan block and the

Kaiser block is used to design FIR filters with following specifications,

• Filter Type: low-pass filter

• Cut-off frequencies:

44

Figure 4.14: Block Diagram for iJDSP Prob2.1.

(a) Rectangular (b) Bartlett

Figure 4.15: FFT Magnitude of a FIR Filter Using Windowing Method.

Passband cutoff frequencyWp1 = 0.25π

Stopband cutoff frequencyWs1 = 0.4π

• Tolerances:

PB= 1dB

SB= 40dB

A sample of the block diagram is shown in Figure 4.16.

In order to compare those two methods, students are asked to check frequency

response and order of each design. The comparison is given in Figure 4.17 and Figure

4.18. They also can check the filter’s order in corresponding blocks, and find that

Parks-McClellan algorithm has lower order to achieve the same specifications.

The last task in filter design is to design an IIR filter with the following specifi-

cations,
45

Figure 4.16: Block Diagram for iJDSP Prob2.2.

(a) Magnitude (b) Phase

Figure 4.17: Frequency Response of the Park-McClellan Filter.

• Filter Type: Low-pass

• Cut-off frequencies:

Passband cutoff frequencyWp1 = 0.4π

Stopband cutoff frequencyWs1 = 0.6π

• Tolerances:

PB= 1dB

SB= 45dB

The design can be done using the IIR Design block in iJDSP. Connect the output

46

(a) Magnitude (b) Phase

Figure 4.18: Frequency Response of the Kaiser Filter.

of the IIR block to the Freq Resp block to plot the frequency response. Compare

the frequency response of the IIR filter using the four design techniques respectively,

Butterworth, Chebyshev I, Chebyshev II, and Elliptic. The comparison is shown in

Figure 4.19.

(a) Butterworth (b) Chebyshev I

(c) Chebyshev II (d) Elliptic

Figure 4.19: FFT Magnitudes of IIR filters.

47

4.4 FFT

In the laboratory of the fast Fourier transform (FFT), different fundamental issues of the

FFT are examined. Problem 1 studies the symmetries in the time domain and frequency

domain, and describe how these symmetries affect the FFT spectrum [38]. Students are

asked to set up the two signals as shown in Figure 4.20 using the block diagram in

Figure 4.21. x1[n] in Figure 4.20a is an even symmetric signal, and x2[n] in Figure

4.20b is an odd symmetric signal. They are used to examine the imaginary part and

real part of the FFT spectrum.

(a) Signal 1 (b) Signal 2

Figure 4.20: The Signals Generated in the Sig Gen Block.

Figure 4.21: Block Diagram for iJDSP Prob3.1.

48

(a) Real part (b) Imaginary part

Figure 4.22: FFT Spectrum of x1(n).

(a) Real part (b) Imaginary part

Figure 4.23: FFT Spectrum of x2(n).

Problem 2 deals with the issue of resolution and spectral leakage of the FFT. To

begin with students are asked to generate a signal x[n] = 0.4sin(0.25πn)+ sin(0.22πn)

with the length of 128 samples using two Sig Gen blocks and one Adder block shwon

in Figure 4.24.

Use a rectangular window that has length 128 samples to truncate the signal.

Then take 128-point FFT after truncating the signal. In order to verify the property that

the effects of loss of resolution and spectral leakage are controlled by the shape and

length of the window, the students are asked to redo the problem by changing window’s

type and length respectivily. The FFT magnitude with 128-point rectangular window

is shown in Figure 4.25. They need to change the length of the rectangular window to

be 64 samples, and take 128-point FFT. The corresponding FFT magnitude is shown as

Figure 4.26. Then students are asked to change the window type to Hanning, and set

49

Figure 4.24: Block Diagram for iJDSP Prob3.2.

the window length to be 128. The FFT magnitude is shown in Figure 4.27. It is easy to

find that the rectangular window can resolve the closed-spaced frequency components

better than hanning window with the same length, and the length of window can affect

FFT spectrum as well.

Figure 4.25: FFT Magnitude of 128-point Rectangular Window.

50

Figure 4.26: FFT Magnitude of 64-point Rectangular Window.

Figure 4.27: FFT Magnitude of 128-point Hanning Window.

51

Chapter 5

IJDSP HARDWARE INTERFACE

In this chapter, we will describe the development of a hardware interface that enables

iJDSP to communicate with wireless sensors. With the use of this interface, we can per-

form DSP algorithms in iJDSP by receiving real-time acoustic signals such as sound

and light intensity. Furthermore, some interesting applications are able to be imple-

mented on iOS platforms.

5.1 Overview of Wireless Sensor Networks

Wireless sensor networks have been an active research field for several years. Due

to their low power consumption and small size, WSNs are applied in diverse areas.

For example, by measuring parameters such as: temperature, humidity and accelera-

tion, WSNs can monitor volcano activities [41], manage smart building systems [42],

or provide health care [43]. In addition, acoustic sensors can be applied in relative

researches such as speech analysis, acoustic scene characterization, localization and

target tracking [44–47].

The wireless sensor networks we used is based on non-cooperative topology.

In general, there are two kinds of topology in terms of the wireless sensor networks,

non-cooperative WSN and cooperative WSN. Non-cooperative WSN consists of sev-

eral independent nodes and centralized base stations. The ability to process information

is limited by the simple structures of independent nodes. If the central nodes fail, the

entire network will collapse. Cooperative WSN is a distributed control system includ-

ing self-organized nodes, which takes burden off the central node, and hence reduces

bandwidth consumption. Compared to non-cooperative WSN, cooperative WSN im-

proves the reliability of the entire network robustness but the expenditure is increased

as well [48].

The hardware platform is provided by Crossbow Technology [49]. The central

node is the MIB600 (Figure 5.3) programmable board, a base station which has an

52

Ethernet network interface and a embedded full TCP/IP protocol module. The inde-

pendent node consists of a MICAz microprocessor board (Figure 5.1) and a MTS310

sensor board (Figure 5.2). The MICAz microprocessor board has a 2.4 GHz embedded

microprocessor. The maximum supportable data rate is 250kps. There is a standard

51-pin expansion connector on MICAz which is used to connect to the MTS310 sensor

board [50]. The MTS310 sensor board embeds six components including a micro-

phone, a sounder (or buzzer), a photometer, a thermistor, a 2-axis accelerometer and

a 2-axis magnetometer [51]. The applications for wireless sensor networks are de-

veloped using TinyOS, an open source embedded operating system developed for low

power embedded system programming, and nesC, a dialect of the C language used on

TinyOS [45].

Figure 5.1: MICAz.

Figure 5.2: MTS310CA Sensor Board.

53

Figure 5.3: MIB600 Ethernet Interface Board.

5.2 Wireless Interfacing iJDSP with the Sensor Motes

The wireless interface in iJDSP is developed by using TCP socket in Server/Client

model. Before iJDSP communicates with wireless sensor networks, iOS devices need

to get access to the local area network (LAN) which is established by the router first.

In Figure 5.4, MIB600 is assigned a static IP address 129.219.25.71 by PC-based soft-

ware, DeviceInstaller of Lantronix. The routers IP is set to 129.219.25.72. They are

ensured to work in the same network.

Figure 5.4: Local Area Network for iJDSP and the Sensors.

After setting the IP addresses, the TCP/IP connection needs to be established

using socket programming. The communication protocol based on the Client/Server
54

TCP socket is illustrated in Figure 5.5. MIB600 waits for a connection request from

iJDSP. Once the connection is established successfully, a confirmation message will be

sent back to iJDSP by the server. Then iJDSP is able to write and read data seamlessly.

Figure 5.5: TCP Socket Protocols.

5.2.1 Interface Design

Figure 5.6 shows graphical interface design of the Sensor block. It consists of three

panels: (a) Buffering panel; (b) Control panel; (c) Real-time plot panel. The buffering

panel enables users to select buffer size from 32 to 256 samples. The buffer length de-

termines the size of a frame processed with other DSP functions. Once tap the “Update”

button, the corresponding buffer length is saved and passed to the next viewcontroller.

The control panel has five buttons enable connection/disconnection along with

on/off commands to the LED, buzzer, photo sensor, and microphone. Once a button

clicked, the corresponding command is send to the WSN. The commands are shown in

Table 5.1.

55

Figure 5.6: GUI Design in iJDSP to Interface WSN.

The workflow is illustrated in Figure 5.7. In iJDSP, we use AsyncSocket, a

TCP/IP socket networking library to establish TCP connection [52]. The instance of

Asyncsocket is globally accessible after initiating so that the connection keeps alive

during the whole process. Once users click the “Connect” button, iJDSP will create

a socket, and send a request, connectToHost : onPort : error :, to MIB600. After

the socket is connected and ready for reading and writing, it will inform the client by

calling the message onSocket : didConnectToHost : port :. The host address is the

129.Otherwise an error message will be returned to the delegate, and tell it to recon-

56

Table 5.1: Command Content.

Command Description Value
LED ON 1
LED OFF 2

BUZZER ON 3
BUZZER OFF 4
LIGHT ON 5
LIGHT OFF 6
MIC ON 9
MIC OFF 10

nect. Once the connection successfully established, reading and writing operations are

enabled between iJDSP and the MIB600 Ethernet gateway.

To disconnect this TCP connection, the message EndComm will be sent to ter-

minate all writing and reading processes, and flush buffers on those motes. Then dis-

connect the socket by implementing disconnectAfterWriting. This message ensures that

the socket will be disconnected after completing sending EndComm to motes.

5.2.2 Writing Operation

iJDSP sends commands to sensors by calling SendPacketWithNumber : andID :. The

packet architecture is given in Table 5.2. SendPacketWithNumber : andID : attaches

additional information to the raw data including two synchronization bytes which are

used to note the start and end of a packet from the data stream, a type identifier, a

CRC checking, destination address, message handler ID, Group ID and Node ID [45].

The packet will be sent to MIB600 by calling writeData : withTimeout : tag :. In

the reading process, iJDSP keeps acquiring data from MIB600 by calling onSocket :

readDataToLength : withTimeout : tag :.

5.2.3 Reading Operation

iJDSP keeps acquiring data from MIB600 by calling onSocket : readDataToLength :

withTimeout : tag :. The parameter timeout is set to -1 in order to keep the reading oper-

57

Figure 5.7: Flowchart of establishing a TCP connection in iJDSP.

ation alive during the whole process. Once a reading operation is completed within the

allotted time, the socket will implement onSocket : didReadData : withTag : method

to handle the received data. Figure 5.8 illustrates the flowchart of reading operation.

Received data is saved in a buffer with the length determined by the buffering panel.

Then iJDSP analyses the data packet and get ten samples of raw data. Those raw data

is saved in pData and plotted.

5.3 iJDSP Real-time Exercises Using the Sensor Motes

iJDSP enables real-time signal processing experiments using wireless sensors. The fre-

quencies of tones are measured by using FFT as shown in Figure 5.9. The signals in

Figure 5.10 is a real-time recording and plotting of a persons voice in a room. The

sound intensity is measured by a 10-bit analog-to-digital converter (ADC), hence the

58

Table 5.2: Packet Content.

Index Variable Name Description Byte Value
0 SYNC BYTE Identify the start of the packet 0x7E
1 P PACKET ACK ACK required. Receiver will

reply 0x40 in the prefix byte
65

2 seqNo - 13
3 - 4 sData[0],

sData[1]
Destination address 0xFF, 0xFF

5 sData[2] Message ID 8
6 sData[3] Group ID 125
7 - - 93
8 sData[4] Length 11
9 sData[5] Command 1 byte
10 sData[6] Node ID 1 byte
11-12 ttt, ttt1 CRC bytes 2 bytes
13 SYNC BYTE Identify the end of the packet 0x7E

sensor data ranges from 0 to 1024. Peaks shown in Figure 5.10 reflect the person’s

voice, and ripples show the environmental noise. After importing by the Sensor block,

the sensor data is then frame-by-frame processed with the FFT block. The FFT magni-

tude of the incoming sensor data is shown in Figure 5.11. Both frame length and FFT

size in this example are set to be 256. Other than frequency response, other problems

such as spectral leakage, and advanced spectral analysis can be introduced to students

by importing sensor data to other DSP functions in iJDSP.

5.4 Improvement

The hardware interface can be improved from the following aspects. Firstly, to expand

the work area so that users are able to remotely control those motes and acquire sen-

sor data from them, we can replace the wireless router by using a server. The active

work area will not be constrained in a limited space (about 2 or 3 rooms that a LAN

can reach). By establishing sockets in the server shown in Figure 5.12, we can upload

and download sensor data from servers. Secondly, iJDSP can support multi-user col-

laboration. So far, the socket has been developed in a single thread model. Therefore

59

Figure 5.8: Flowchart of reading operation in iJDSP.

MIB600 can only process one connection per time. We can use multi-thread socket pro-

gramming so that multiple connections can be processed simultaneously. In addition,

an increase in the sampling rate can also be achieved. The maximum sampling rate

of MICAz is 400Hz due to the limitation of Zigbee RF module in MICAz. However,

the sampling rate of MICA2 can reach upto 4kHz, which is more suitable for acoustic

research such as sound tracking [47].

60

Figure 5.9: Block Diagram for Frequency Analysis of Sensor Data.

Figure 5.10: Real-time Plots of Incoming Sensor Data.

61

Figure 5.11: FFT Magnitude of a Microphone Sensor Signal.

Figure 5.12: Use a Server to Access Sensor Data Remotely.

62

Chapter 6

ASSESSMENTS

The set of laboratory exercise described in Chapter 4 was evaluated by students at Ari-

zona State University (ASU) during fall 2011 and spring 2012. In fall 2011, iJDSP

was first introduced to EEE407 students. They evaluated the Convolution Demo block

and completed associated exercises using iJDSP. In spring 2012, we organized a work-

shop involving senior level undergraduate students and graduate students to evaluate

the entire software as well as exercises.

Through assessments, we would like to gather an overall subjective opinion

about the application on aesthetics and usability. In addition, we could identify the

impact of employing mobile devices to perform DSP simulations. The assessments

could determine whether the iJDSP platformwas interactive and interesting for students

to learn DSP. The pedagogy adopted for use of iJDSP includes the following, (a) lecture

on the pertinent signal processing concepts, (b) a pre-lab on the concepts involved in the

laboratory exercise, (c) a simulation exercise using iJDSP, (d) post-lab to test student

understanding of the concepts. After exercises, students will evaluate the exercises

as well as the iJDSP application. The evaluation questionnaire includes general DSP

concepts and concept-specific questions in terms of user experience.

6.1 Convolution Assessment

This assessment examined concepts of continuous/discrete-time convolution using the

Convolution Demo block in iJDSP by 36 undergraduates from EEE407 of Fall 2011.

Most of students liked the animation to convolve two signals, and felt it helpful in

understanding the related concepts. Over 75 percent of students would recommend

this application to their colleagues, and they also would like to see the software in

interdisciplinary areas. These results are tabulated in Table 6.1 and Table 6.2.

63

Table 6.1: Statistics Based on the General Assessment. Total Number of Students = 36.

Evaluation Questions Strongly
Agree
(%)

Agree
(%)

Neutral
(%)

Disagree
(%)

Strongly
Dis-
agree
(%)

The contents of this iJDSP exercise
improved your understanding of the
concepts of convolution.

27.8 58.3 13.9 0 0

Performing this iJDSP exercise
improved your understanding of
causality

13.9 63.9 16.6 2.8 2.8

Performing this exercise on the
iPhone/iPad improved your under-
standing of discrete-time convolu-
tion

25 47.3 19.4 8.3 0

If a student colleague is having dif-
ficulty understanding convolution,
would you recommend the iJDSP
convolution demo?

(Yes)
69.5

(No)
8.3

(Maybe)
22.2

– –

Is it more beneficial to use iJDSP
to learn graphical convolution when
compared to other computer-based
tools, such as MATLAB or Lab-
View?

(Yes)
69.5

(No)
19.4

(Maybe)
11.1

– –

6.2 DSP Workshop Assessment

DSP workshop was organized at ASU on March 8th-9th, 2012. 19 undergraduate stu-

dents from EEE407 class and 15 graduate students from School of Electrical, Com-

puter and Energy Engineering (ECEE) in ASU attended this workshop. During the

workshop, they were asked to complete three laboratories covering z-transform, filter

design, FFT and sound related functions (MIDI, DTMF). The completed set of as-

sessments is given in Appendix. Figure 6.1 shows students from the workshop doing

exercises by using iJDSP on iPad and iPhone. Assessments results from undergraduate

students were concluded in Table 6.3 and Table 6.4, and graduate students’ assessments

64

Table 6.2: Statistics Based on the General Assessment. Total Number of Students = 36.

Evaluation Questions Strongly
Agree
(%)

Agree
(%)

Neutral
(%)

Disagree
(%)

Strongly
Dis-
agree
(%)

What do you think about the num-
ber of steps taken to set up the
continuous-time signal convolution
simulation in iJDSP?

(Many)
5.6

(Right)
75

(Few)
19.4

– –

What do you think about the num-
ber of steps taken to set up specific
values for a user-defined signal con-
volution in iJDSP?

(Many)
5.6

(Right)
72.2

(Few)
22.2

– –

Would you like to recommend
iJDSP to your colleagues?

(Yes)
75

(No)
8.3

(Maybe)
16.7

– –

It is more convenient to perform
exercises and simulations on an
iPhone/iPad than on a PC/Laptop?

27.8 25 27.8 19.4 0

We should extend this app to cover
topics in other courses, for example,
physics or mathematics.

33.3 41.7 16.7 5.6 2.7

results were tabulated in Table 6.5 and Table 6.6.

(a) Students from EEE407 (b) Students from SenSIP Center

Figure 6.1: The iJDSP Workshop in March 2012.

Evaluations show that the use of iJDSP appeals to students by intuitive and in-

teractive user interface. More than 66.7 percent of users get used to the environment
65

Table 6.3: Statistics Based on the General Assessment from Undergraduates in
EEE407. Total Number of Students = 19.

Evaluation Questions
Strongly
Agree
(%)

Agree
(%)

Neutral
(%)

Disagree
(%)

Strongly
Disagree

(%)
Performing this exercise, you
learned the concept of cascaded
and parallel configuration of
systems

21.1 31.6 31.6 15.7 0

Do you now understand more
clearly the relationship of the fre-
quency response with the poles and
zeros?

89.5 10.5 0 0 0

The contents of this exercise helped
you understand the concepts of FIR
and IIR filter design.

36.9 52.6 10.5 0 0

After the lab, you know which of
the IIR filters have ripple character-
istic in both stopband and passband.

47.4 31.6 15.8 0 5.2

within 5 minutes. In addition, exercises on the touch screen are interactive and interest-

ing. Students are engaged more in exercises and impressed by performing simulations

using their fingers.

Compared to JDSP, iJDSP is more convenient to users. As a standalone mobile

application, iJDSP takes less time to be loaded from operation system, and it is more

convenient to manipulate diagrams instead of using mouse and keyboard. Furthermore,

those hands-on devices enable users to use iJDSP anywhere and anytime.

iJDSP performance on iPhone and iPad are compared, and the size of screen is

the most important factor affecting the user experiences. iPad has larger workspace to

manipulate diagrams and more easier to enter parameters. For iPhone users, it is more

convenient to carry the device. However, the current software is developed for iPhone

screen, and iPad uses iJDSP in zooming mode. Therefore, those users suggested that

we can develop an high-definition version on iPad exclusively.

66

Table 6.4: Statistics Based on the Concept-specific Assessment from Undergraduates
in EEE407. Total Number of Students = 19.

Evaluation Ques-
tions

Strongly
Agree
(%)

Agree (%) Neutral (%)
Disagree
(%)

Strongly
Disagree

(%)
How long did it
take to get used
to the simulation
environment on
iJDSP?

t <5min

73.7

5min< t <10min

21.1

10min< t <20min

5.2

20min< t <30min

0

t >30min

0

Does the graphic
user interface of
iJDSP appeal to
you?

26.4 63.2 5.2 5.2 0

It is easy to set up
the lab simulations.

68.4 31.6 0 0 0

You feel comfort-
able performing
simulations with
the size of the
screen.

31.6 36.8 10.5 21.1 0

Did you feel com-
fortable with the
processing speed of
the device for all
the exercises?

73.7 26.3 0 0 0

67

Table 6.5: Statistics Based on the General Assessment from Graduate Students in
School of ECEE at ASU. Total Number of Students = 15.

Evaluation Questions
Strongly
Agree
(%)

Agree
(%)

Neutral
(%)

Disagree
(%)

Strongly
Disagree

(%)
Performing this exercise, you
learned the concept of cascaded
and parallel configuration of
systems

53.4 33.3 13.3 0 0

Do you now understand more
clearly the relationship of the fre-
quency response with the poles and
zeros?

100.0 0 0 0 0

The contents of this exercise helped
you understand the concepts of FIR
and IIR filter design.

40.0 46.7 13.3 0 0

After the lab, you know which of
the IIR filters have ripple character-
istic in both stopband and passband.

46.7 46.7 6.6 0 0

The contents of this exercise helped
you understand the introductory
spectral analysis concepts of the
Fast Fourier Transform.

46.7 40.0 13.3 0 0

68

Table 6.6: Statistics Based on the Concept-specific Assessment fromGraduate Students
in School of ECEE at ASU. Total Number of Students = 15.

Evaluation Ques-
tions

Strongly
Agree
(%)

Agree (%) Neutral (%)
Disagree
(%)

Strongly
Disagree

(%)
How long did it
take to get used
to the simulation
environment on
iJDSP?

t <5min

60.0

5min< t <10min

20.0

10min< t <20min

6.7

20min< t <30min

6.7

t >30min

0

Does the graphic
user interface of
iJDSP appeal to
you?

40.0 53.3 6.7 0 0

It is easy to set up
the lab simulations.

53.3 46.7 0 0 0

You feel comfort-
able performing
simulations with
the size of the
screen.

40.0 40.0 13.3 6.7 0

Did you feel com-
fortable with the
processing speed of
the device for all
the exercises?

80.0 20.0 0 0 0

69

Chapter 7

CONCLUSIONS

This thesis describes the development of iJDSP, a highly interactive application that

can be used to perform DSP simulations on mobile phones and tablets. The application

has been developed as a native Cocoa Touch application and has a user-friendly pro-

gramming environment. iJDSP has a rich suite of signal processing functions such as

signal generators, animated convolution demo, digital filters, pole-zero and frequency

response computations, FIR and IIR filter design algorithms, an FFT, and plot func-

tions. The interface is highly intuitive and the block diagrams can be constructed using

a simple drag-n-drop procedure.

iJDSP also has a hardware interface that works with sensor networks, a sys-

tem that consists of several independent nodes and a centralized base station that can

harvest environmental signals from distributed sensors. The wireless interface is devel-

oped based on a TCP socket in Server/Client model, and AsyncSocket, a TCP/IP socket

networking library, is used to implement the socket. iJDSP can communicate with the

sensor motes by initiating a TCP connection through a local area network established

by a wireless router. iJDSP wireless sensor interface enables collaborative sensor signal

processing. The proposed interface has the following features: (a) wireless connection

between sensors and iPad, (b) GUI for the motes on iPad (c) control panel is used to

control the individual sensor motes from the mobile devices, (d) capability to acquire

inputs from multiple sensors: photometer, microphone, thermometer and accelerom-

eter. (e) real-time plots of data acquired through the sensors. (f) sensor data can be

processed frame-by-frame with DSP functions in iJDSP.

iJDSP was evaluated using assessments shown in Chapter 6. Most users found

that the multitouch experience to be impressive and pointed out that the ease of using

iJDSP is the most attractive feature for students. Students asserted that the intuitive

and interactive environment of iJDSP helped them to learn DSP concepts visually and

70

stimulated their learning interests. Besides, iJDSP is faster to load, and easier to ma-

nipulate diagrams compared to JDSP. Students indicated that they would recommend

this application to their colleagues. In addition, they expect a high definition version of

iJDSP exclusively developed for iPad platform.

7.1 Future Work

Enhancing iJDSP with more advanced functions related to image and audio processing

can make the application comprehensive. Furthermore, iJDSP can be extended to in-

terdisciplinary areas by developing versions of the application to perform simulations

pertinent to concepts in biology, communications, control systems, and image process-

ing.

In terms of wireless sensor networks, more applications can be developed by

using the hardware interface we described in this thesis. Targeted applications include

environmental monitoring, security, source localization, tracking and motion detection.

The local network established by routers can be replaced by the Internet so that users

will be able to access and process sensor data remotely. They also can share those data

with others via the Internet. Other than WSNs, this wireless interface can be extended

to other hardware platforms such as Wii motes, Xbox, and Kinect Controller to provide

a better user experience. An interactive GUI could be provided to work with the LEGO

Mindstorm and similar hardware systems.

71

REFERENCES

[1] R. Sims, “Interactivity: A forgotten art?” Computers in Human Behavior.

[2] S.Vosniadou, “How children learn,” 2001.

[3] C. Chou, “Interactivity and interactive functions in web-based learning systems:
A technical framework for designers,” British Journal of Educational Techonol-
ogy, vol. 34, pp. 265–279, 2003.

[4] D. Millard and G. Burnham, “Innovative interactive media for electrical engineer-
ing education,” in IEEE FIE Conference, vol. 3, 2001.

[5] “The infinity project: Engineering education for todays classroom,”
http://www.infinity-project.org/infinity/.

[6] D.J.Brown, M.Covington, and M.L.Swafford, “Mallard: An educational tool for
digital signal processing,” in Asilomar conference on SSC, no. 1, 1996, pp. 231–
235.

[7] M.J.Jackson, D.I.Laurenson, and B.Mulgrew, “Developing and evaluating java-
based educational tools,” in IEEE International Symposium on Engineering Edu-
cation: Innovations in Teaching, Learning and Assessment, 2001, p. 26/1 26/6.

[8] A. Spanias and V. Atti, “Interactive online undergraduate laboratories using J-
DSP,” in IEEE Transactions on Education, vol. 48, November 2005.

[9] “Will android and ios take over the pc market?” http://i-stuff.org/
will-android-and-ios-take-over-the-pc-market/.

[10] “U.s. smartphone market: Whos the most wanted?” http://blog.nielsen.com/
nielsenwire/?p=27418.

[11] “Apples app store downloads top 25 billion,” http://www.apple.com/pr/library/
2012/03/05Apples-App-Store-Downloads-Top-25-Billion.html.

[12] A.Clausen, A.Spanias, A. Xavier, and M. Tampi, “A java signal analysis tool for
signal processing experiments,” in ICASSP, vol. 3, May 1988, pp. 1849–1852.

[13] A. Spanias, N. Chakravarthy, Y. Song, and L. Iasemidis, “Teaching genomics and
bioinformatics to undergraduates using J-DSP,” in Proceedings of ASEE Annual
Conference and Exposition, June 2004.

[14] K. Ramamurthy, A. Spanias, L. Hinnov, and J. Ogg, “On the use of J-DSP in earth
systems,” in Proceedings of ASEE Annual Conference and Exposition, Pittsburgh,
PA, June 2008, p. 4 pages.

[15] R. Santucci, T. Gupta, M. Shah, and A. Spanias, “Advanced functions of Java-
DSP for use in electrical and computer engineering courses,” in Proceedings of
ASEE Annual Conference and Exposition, June 2010.

72

[16] H. Kwon, V. Berisha, V. Atti, and A. Spanias, “Experiments with sensor motes
and Java-DSP,” in IEEE Transactions on Education, vol. 52, no. 2, May 2009, pp.
257–262.

[17] S. Henderson and J. Yeow, “ipad in education: A case study of ipad adoption and
use in a primary school,” in Hawaii International Conference on System Sciences,
2012.

[18] G. Engel, “Using mobile technology to empower student learning,” in 27th An-
nual Conference on Distance Teaching and Learning, 2011.

[19] N. Ostashewski and D. Reid, “ipod, iphone, and now ipad: The evolution of mul-
timedia access in a mobile teaching context,” in Proceedings of World Confer-
ence on Educational Multimedia, Hypermedia and Telecommunications, 2010,
pp. 2862–2864.

[20] N. Ostashewski, D. Reid, and M. Ostashewski, “Mobile teaching and learning
technologies: Ukrainian dance instruction in canada,” in IADIS Mobile Learning,
February 2009, pp. 2862–2864.

[21] “Star walk,” http://vitotechnology.com/star-walk.html.

[22] “hp12c,” http://www8.hp.com/us/en/products/smart-phones-handhelds-calculators/
mobile-apps/app details.html?app=tcm:245-799200&platform=tcm:
245-799129.

[23] “Spectrogram,” http://spectrogramapp.com/.

[24] “Matlab mobile,” http://www.mathworks.com/mobile/.

[25] “The J-DSP Web Page,” http://jdsp.asu.edu.

[26] “iphone 4s,” http://en.wikipedia.org/wiki/IPhone 4S.

[27] “ipad2,” http://en.wikipedia.org/wiki/IPad 2.

[28] “Berkely tinyos porject,” http://webs.cs.berkeley.edu/tos.

[29] “Zigbee alliance,” http://zigbee.org.

[30] Apple Inc., “Cocoa frameworks,” http://developer.apple.com/technologies/mac/
cocoa.html.

[31] Akten. M, “Nsarray vs. c array performance,” http://memo.tv/nsarray vs c array
performance comparison.

[32] Mark, Dalrymplt, and K. Scott, Learn Objective-C on the Mac. Apress, 2011.

[33] Apple Inc., “Quartz 2d programming guide,” https://developer.apple.com/
library/mac/#documentation/graphicsimaging/conceptual/drawingwithquartz2d/
Introduction/Introduction.html.

73

[34] “Cocoa plotting framework for mac os x and ios,” http://code.google.com/p/
core-plot/.

[35] Dave Mark and Jeff LaMarche, Beginning iPhone Development: Exploring the
iPhone SDK. Apress, 2008.

[36] Apple Inc., “The objective-c programming language: Objects, classes,
and messaging,” http://developer.apple.com/library/ios/#documentation/cocoa/
conceptual/objectivec/Chapters/ocObjectsClasses.html, Oct 2011.

[37] ——, “Cocoa fundamentals guide: Communicating with objects,”
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/
CocoaFundamentals/CommunicatingWithObjects/CommunicateWithObjects.
html, Dec 2010.

[38] A. Spanias, Digital Signal Processing: An Interactive Approach. Lulu, 2007.

[39] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-time Signal Processing,
second edition. Prentice Hall, 1999.

[40] A. D. Pourlarikas, The Handbook of Formulas and Tables for Signal Processing.
CRC Handbook in Corporation with IEEE Press, 1998.

[41] G. W. Allen, K. Lorincz, and M. Welsh, “Deploying a wireless sensor network on
an active volcano.” IEEE Internet Computing, March/April 2006.

[42] I. Ituen and G. Sohn, “The environment application of wireless sensor networks,”
International Journal of Contents, no. 4, 2007.

[43] J. Chen, K. Kwong, D. Change, J. Luk, and R. Bajcsy, “Wearable sensors for
reliable fall detection.” IEEE-EMBS’05, 2005, pp. 3551–3554.

[44] H. Kwon, V. Berisha, and A. Spanias, “Real-time sensing and acoustic scene
characterization for security application.” IEEE, 2008.

[45] H. M. Kwon, “Acoustic characterization in wireless sensor networks,” Ph.D. dis-
sertation, Arizona State University, December 2009.

[46] T. Ajdler, I. Kozintsev, R. Lienhart, and M. Vetterli, “Acoustic source localization
in distributed sensor networks,” in Conference Record of the Thirty-Eighth Asilo-
mar Conference on Signals, Systems and Computers, vol. 2, November 2004, pp.
1328–32.

[47] A. Swain, “Characterization of acoustic sensor motes for target tracking in wire-
less sensor networks,” Master’s thesis, Arizona State University, December 2006.

[48] H. Qi, S. Iyengar, and K. Chakrabarty, “Distributed sensor networks - a review of
recent research,” Journal of The Franklin Institute, pp. 655–668, 2001.

[49] “Crossbow techonology inc.” http://www.xbow.com.

74

[50] MICAz datasheet, Crossbow Technology Inc.

[51] C. T. Inc., MTS/MDA Sensor Board Users Manual, June 2007.

[52] “Cocoa asyncsocket,” http://github.com/robbiehanson/CocoaAsyncSocket.

75

APPENDIX A

ESTABLISH A TCP CONNECTION IN IJDSP

76

This chapter gives a template of the client program to establish a TCP connection be-

tween iJDSP and the sensor motes. We use AsyncSocket, a TCP/IP socket network-

ing library to efficiently handle data in the communication process including connect-

ing/disconnecting and reading/writing.

A.1 Create an instance of AsyncSocket

After users tap on the “Connect” button, an instance of AsyncSocket is created. At the

same time, we set its delegate to be the viewController. The delegate will respond to

certain operations or errors sent by the socket. If the connection is established success-

fully (this decision is made in the delegate method (void)onSocket:(AsyncSocket *)sock

didConnectToHost:(NSString *)host port:(UInt16)port), the text shown on the “Con-

nect” button will be replaced by “Disconnect”. If users want to disconnect, tap on the

”Disconnect” button. A message EndComm will be sent to the server, and the socket

Client is disconnected after completing writing this message.

1 / / e s t a b l i s h a TCP / IP c o nn e c t i o n

2 − (IBAc t ion) Connec tB tnC l i cked : (id) s e n d e r

3 {

4 i f ([Connect . c u r r e n t T i t l e i s E q u a l T o S t r i n g :@” Connec t ”]) {

5 Connect . e n ab l ed = NO;

6 Connec t . a l p h a = 0 . 5 ;

7 D cn = 0 ;

8 i f (c l i e n t == n i l) {

9 c l i e n t = [[AsyncSocket a l l o c] i n i tW i t hD e l e g a t e

: s e l f] ;

10 [c l i e n t s e tConnec tT imeou t : 2] ; / / s e t t im eo u t t o

be 2 se c f o r c o n n e c t i o n

11 }

12

13

14 }

15 e l s e {

77

16 [Connec t s e t T i t l e :@” Connec t ” f o r S t a t e :

U ICon t r o lS t a t eNo rma l] ;

17 / / c omp l e t e a l l w r i t e o p e r a t i o n s b e f o r e d i s c o n n e c t i n g

18 [s e l f EndComm] ;

19 [c l i e n t d i s c o n n e c tA f t e rW r i t i n g] ;

20 c l i e n t = n i l ;

21 }

22 }

A.2 Implement AsyncSocket delegate methods

The delegate will complete the following methods:

• connect:

(void)onSocket: didConnectToHost: port:

• disconnect when errors occur:

(void)onSocket: willDisconnectWithError:

• disconnect:

(void)onSocketDidDisconnect:

• read:

(void)onSocket: didReadData: withTag:

1 − (void) onSocke t : (AsyncSocket ∗) sock d idConnec tToHos t : (NSSt r ing ∗)

h o s t p o r t : (UIn t16) p o r t {

2 [c l i e n t r eadDa taToLeng th : s i z e o f (UIn t8) wi thT imeou t :−1 t a g : 0] ;

3 Connect . e n ab l ed = YES ;

4 Connec t . a l p h a = 1 ;

5 [Connect s e t T i t l e :@” Di sconnec t ” f o r S t a t e : U ICon t r o lS t a t eNo rma l

] ;

6 }

7

8 / / d i s c o n n e c t TCP / IP c o n n e c t i o n when e r r o r s occur

78

9 − (void) onSocke t : (AsyncSocket ∗) sock w i l l D i s c o n n e c tW i t hE r r o r : (NSError

∗) e r r

10 {

11 NSSt r ing ∗msg = @” Connec t ion r e q u e s t t im e s out , p l e a s e r e t r y ” ;

12 [s e l f showMessage : msg] ;

13 [msg r e l e a s e] ;

14 }

15

16 / / d i s c o n n e c t TCP / IP c o nn e c t i o n

17 − (void) onSocke tD idD i s conne c t : (AsyncSocket ∗) sock

18 {

19 / / D i s connec t s o c k e t

20 [c l i e n t s e tD e l e g a t e : n i l] ;

21 [c l i e n t r e l e a s e] ;

22 c l i e n t = n i l ;

23 }

24

25 / / read da ta from s e r v e r

26

27 − (void) onSocke t : (AsyncSocket ∗) sock d idReadDa ta : (NSData ∗) d a t a

wi thTag : (long) t a g

28 {

29 / / c o n v e r t b y t e s t o i n t

30 UIn t8 tmp1 = ∗ (UIn t8 ∗) ([d a t a b y t e s]) ;

31 D cn = D cn + 1 ;

32 [s e l f Disp l ayPacke tWi t hDa t a : tmp1] ;

33 [c l i e n t r eadDa taToLeng th : s i z e o f (UIn t8) wi thT imeou t :−1 t a g : 0] ;

34 }

A.3 Send packets to server

1 − (void) SendPacketWithNumber : (i n t) c andID : (i n t) i

2 {

3 i n t c r c ;

79

4 i n t e s c a p e P t r ;

5 seqNo = seqNo + 1 ;

6 i n t t t t , t t t 1 ;

7 i n t tmp ;

8

9 i f (seqNo > 256) {

10 seqNo = 14 ;

11 }

12

13 sDa ta [0] = (Byte) 255 ; / / d e s t .

14 sDa ta [1] = (Byte) 255 ; / / d e s t .

15 sDa ta [2] = (Byte) 8 ; / / message i d

16 sDa ta [3] = (Byte) 125 ; / / group i d

17 sDa ta [4] = (Byte) 11 ;

18 sDa ta [5] = (Byte) c ;

19 sDa ta [6] = (Byte) i ;

20

21 e s c a p e P t r = 0 ;

22 c r c = 0 ;

23 t t t = 0 ;

24 t t t 1 = 0 ;

25

26 / / add CRC check i ng

27 e s c aped [e s c a p e P t r ++] = (Byte)SYNC BYTE;

28 c r c = c a l cBy t e (c r c , P PACKET ACK) ;

29

30 e s c aped [e s c a p e P t r ++] = (Byte)P PACKET ACK ;

31 c r c = c a l cBy t e (c r c , seqNo) ;

32 e s c aped [e s c a p e P t r ++] = (Byte) seqNo ;

33

34 f o r (i n t i = 0 ; i < 7 ; i ++) { / / 7 i s t h e l e n g t h o f sData [] ,

c a l c u l a t e CRC f o r each b y t e i n sData

35 c r c = c a l cBy t e (c r c , sDa ta [i]) ;

80

36 e s c aped [e s c a p e P t r ++] = sDa ta [i] ;

37 }

38

39 t t t = (c r c & 0 x f f) ;

40 e s c aped [e s c a p e P t r ++] = (Byte) t t t ;

41

42 t t t 1 = (c r c >> 8) ;

43 e s c aped [e s c a p e P t r ++] = (Byte) t t t 1 ;

44

45 e s c aped [e s c a p e P t r ++] = (Byte)SYNC BYTE;

46

47 f o r (i n t i = 13 ; i > 7 ; i−−) { / / e scaped [14]

48 e s c aped [i] = e sc aped [i −1] ;

49 }

50

51 e s c aped [7] = 93 ;

52

53 @try {

54 f o r (i n t i = 0 ; i < 14 ; i ++) {

55 tmp = e sc aped [i] ;

56 }

57

58 / / Send t o hos t , w r i t e da ta i n b y t e s

59 NSData ∗ d a t a = [NSData d a t aWi t hBy t e s : e s c ap ed l e n g t h :

s i z e o f (e s c aped)] ;

60 [c l i e n t w r i t eDa t a : d a t a wi thT imeou t :−1 t a g : 1] ;

61 }

62

63 @catch (NSExcept ion ∗ e) {

64

65 }

66 @f i n a l l y {

67

81

68 }

69

70 }

A.4 Display packets

We need to get the raw data from the received packet first. Then those data will be sent

to the graph to be plotted in real time.

1 − (void) D i sp l ayPacke tWi t hDa t a : (i n t) p

2 {

3 i n t N id = 0 ;

4 i n t N samples = 0 ;

5 b u f f e r [D cn − 1] = p ;

6

7 i f (p == 126) {

8 i f (P s t a r t)

9 P s t a r t = FALSE ;

10 e l s e

11 P s t a r t = TRUE;

12 }

13

14 i f (P s t a r t) {

15 coun t = coun t + 1 ;

16 }

17

18 e l s e i f (! P s t a r t)

19 {

20 i f (c oun t == Pa c k e t S i z e − 1) {

21 f o r (i n t i = 0 ; i < Pa ck e t S i z e ; i ++) {

22 p a c k e t [i] = b u f f e r [i] ;

23 }

24

25 N id = p a c k e t [7] − p a c k e t [8] ∗ 256 ;

82

26 N samples = (p a c k e t [9] + p a c k e t [1 0] ∗ 256) / 2 ;

27 f o r (i n t i = 0 ; i < Da t aS i z e ; i ++) {

28 pData [i] = p a c k e t [13 + i ∗ 2] + p a c k e t

[14 + i ∗ 2] ∗ 256 ;

29 }

30

31 / / N id r e f e r s t o t h e i d o f nodes , here i s

NODE1

32

33 [s e l f Upda teBuf f e rWi thDa ta : pData] ;

34

35 / / send da ta t o graph , and upda te da ta t o p l o t

36 i f (s t a r t) {

37 f o r (i n t i = 0 ; i < Da t aS i z e ; i ++) {

38 [s e l f s e tDa t a : pData [i] toGraph

: g r aph] ;

39 }

40 }

41

42 D cn = 0 ;

43 coun t = 0 ;

44 }

45 e l s e i f ((b u f f e r [1] == 66) & (coun t > 35))

46 {

47 D cn = 0 ;

48 coun t = 0 ;

49 }

50 e l s e i f (b u f f e r [1] == 64)

51 {

52 D cn = 0 ;

53 coun t = 0 ;

54 }

55 e l s e {

83

56 D cn = 0 ;

57 coun t = 0 ;

58 }

59

60 }

61

62 }

63

64 − (void) s e tDa t a : (i n t) p l o tD a t a toGraph : (P l o tG r aph ∗) p l o t g r a p h

65 {

66 / / s e t t h e incoming da ta t o t h e end o f t h e a r ra y

67 / / upda te t h e a r ra y

68 f o r (i n t i = 0 ; i < 999 ; i ++) {

69 c u r r e n tA r r a y [i] = c u r r e n tA r r a y [i + 1] ;

70 }

71 c u r r e n tA r r a y [9 9 9] = p l o tD a t a ;

72

73 / / upda te graph

74 [g r aph s e tDa t aToP l o t : c u r r e n tA r r a y] ;

75 [g r aph s e tNe e d sD i s p l a y] ;

76

77

78 }

84

APPENDIX B

ASSESSMENTS

85

B.1 Convolution Exercise

B.1.1 Objectives

The first lab will cover both the continuous-time convolution and the discrete-time

convolution concept. After performing this lab, you should be able to analytically

calculate the impulse response and output of a system given an input signal. You should

also be able to visualize the process of discrete and continuous time convolution.

B.1.2 Introduction

To help you visualize these concepts, we have provided the convolution demo block

in iJDSP that will perform the animated convolution of two signals of your choice.

To establish the convolution demo block, tap the “+” button on the left corner of the

navigation bar, and select the Conv Demo. By double tapping the Conv Demo box, you

can choose to operate either continuous-time convolution or discrete-time convolution.

Once this is selected, you can define the signals to be convolved.

B.1.3 Part 1: Continuous Time Convolution

Problem 1.1.

a. Given a circuit shown in Figure B.1. Find analytically the impulse response h(t) of

the system where R= 1000Ω and C = 1000μF .

Figure B.1: Circuit Given for Prob 1.1.

86

b. We obtain Vout(t) by convolving the impulse response and the given input signal.

Find the analytical expression for Vout(t).

Problem 1.2. In this part, we want to investigate how convolution affects causality. A

signal will be considered causal if it is zero for t < 0 and non-causal otherwise.

Be sure to take screenshots of your results so you can submit them later. Dou-

ble tap the Conv Demo block in i-JDSP, and choose Continuous Conv to perform the

convolution of each of the following pairs of signals and then determine whether the

resulting signal is causal or non-causal. Again be sure to save your screenshots.

Perform convolutions of the following 3 pairs of signals using the Continuous

Conv function of Conv Demo block in i-JDSP.

a. causal rectangular and non causal rectangular

b. causal rectangular and causal rectangular

c. causal rectangular and non causal sinc

B.1.4 Part 2: Discrete Time Convolution

The Conv Demo block in i-JDSP can also perform discrete time convolution. Double

tap the Conv Demo box, choose Discrete Conv. To create your own signal, you can

choose type for each signal first. Tap “Update” on the right corner of the navigation bar

and change the value of each sample by holding and dragging it up or down with your

finger. The value of y-axis for each sample is shown on the top-left. The values change

in steps of 0.033 units.

Problem 2.1. Perform convolutions of the following 3 pairs of signals using the Dicrete

Conv function of Conv Demo block in i-JDSP.

a. Convolve a non causal rectangular and non causal sinc.

b. Convolve the following two signals shown in Figure B.2.

c. Convolve the following two signals shown in Figure B.3.
87

Figure B.2: Discrete Signals to be Convolved.

Figure B.3: Discrete Signals to be Convolved.

Problem 2.2. In part 1, problem 1.1 of this lab you found the impulse response of a

system. Now, we want you to sample that impulse response and the given input signal.

Use these sampled signals to perform a discrete time convolution. You can use the

Conv Demo block in i-JDSP and set samples which are smaller than 0.1 to zero.

Is the waveform which results from the discrete-time convolution the same as

(or similar to) what would be obtained by sampling the result of the continuous-time

convolution of the analog signals? Does the sampling rate make a difference?

For sampling rate, use:

88

a. 1 s

b. 250 ms

B.2 Workshop Exercise

B.2.1 Objectives

The objective of this exercise is to provide hands-on experiences on iJDSP. It consists

of three parts covering frequency response of LTI systems, pole/zero locations with the

frequency response, filter designs, and Fast Fourier Transform.

B.2.2 Introduction

All the DSP functions are represented in iJDSP as graphical blocks that are also capable

of handling user gestures.

• Double tap: Open a block to see its property dialog.

• Long hold: Delete a specific block.

• Single tap on a pin: Make a connection between blocks.

• Hold and drag on a block: move blocks with your fingers.

• Swipe down/up: hide/show the bottom bar.

• Tap “+” button: Add blocks.

• Tap trash button: Delete all the blocks at one time.

The z-transform of the impulse response of a LTI system can be written in the following

form:

H(z) =

10
∑
l=0

blz−l

1+
10
∑

m=1
amz−m

(B.1)

This is also known as the transfer function of the system. The am’s and the bl’s are the

filter coefficients of the system with a0 always being equal to one.
89

This part will explain how iJDSP works through a simple example. Open the

iJDSP application on your device. When the welcome page appears press “Start”. Press

the “+” button on the left corner of the navigation bar. Then select Signal Generator,

and a list of parameters about the signal will appear. Tap the “Add” button on the

right corner of the navigation bar to use the default settings for the block. Similarly,

add a Filter block, a Filter Coeff block and a Plot block on your main canvas. You

can then move the established block by placing your finger over it and dragging it to

a new location. To delete a block, place your finger over the block and hold for 3

seconds. When the pop-up menu appears, select “Delete”. To link blocks, tap once

inside the blue dot on the right side of the signal generator box, then tap once the blue

dot on the left side of the filter box. A line will be drawn. Please make the connections

in the direction of the signal flow, otherwise you will get an alert or fail on making

connections. Now, connect the Filter Coeff block and the Plot block to the Filter block

so that your screen looks like Figure B.4.

Figure B.4: iJDSP Example of a Filter Simulation.

Double tap on the Filter Coeff block, and type in the following filter coefficients:

b0 = 1, a0 = 1, a1 =−0.8. Note that to save your current settings, you need to tap the

“Update” button on the upper right corner. Similarly, double tap on the Sig Gen block.

90

Change the signal type to “Delta”, and then “Update” the block. Double tap on the

Plot block, and choose “Amplitude”. You will see the impulse response of a first-order

causal IIR filter defined by the difference equation y(n) = x(n) + 0.8y(n− 1). The

closed-form expression for the impulse response is h(n) = 0.8nu(n). In the Plot block,

a list of specific values is shown by tapping “View Values” button.

B.2.3 Part 1: Frequency Response of LTI System

Problem 1.1. Given the following transfer functions,

•

H1(z) =
1−0.45z−1+0.55z−2

1−1.7z−1+0.6z−2 (B.2)

•

H2(z) = 0.06+0.0876z−1−0.3z−2+0.375z−3−0.3z−4+0.0876z−5+0.06z−6

(B.3)

•

H3(z) =
−0.8+1.62z−1−1.8z−2+ z−3

1−1.8z−1+1.62z−2−0.8z−3 (B.4)

Establish the block diagram shown in Figure B.5: Type the corresponding filter

coefficients in the Filter Coeff block. To see the poles and zeros in the z-plane, double-

tap the PZ Plot block. To see the impulse response of the system, set “Delta” signal in

the Sig Gen block, and double tap on the Plot block to see the simulation result.

• Specify the values of the poles and zeros of H1(z).

• Sketch the impulse response h1(n) corresponding to H1(z).

• Place the poles and zeros in the z-plane for H2(z) and H3(z).

• Sketch the frequency response magnitude (linear scale) of H3(z). What is the

type of this filter (High-pass, Low-pass or All-pass filter)?

91

Figure B.5: Block Diagram for iJDSP Prob. 1.1.

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

Problem 1.2. Consider the following sequence, which is the convolution of two causal

sequences.

y(n) =
n

∑
k=0

akbn−k (B.5)

(a) Implement the cascaded system using one Sig Gen block, two Filter blocks, two

Filter Coeff blocks, and one Plot block for a= 0.5 and b= 0.25.

• Save the screenshot of the impulse response of the system.

• Save the screenshot of the block diagram of the system.

(b) Now create a system using only one filter block such that the impulse response is

also . Again use a = 0.5 and b = 0.25. Verify that the impulse response of this

system is the same as the impulse response of the system in the previous part.

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

Problem 1.3. For this problem, you will design a filter by placing poles and zeros

in the z-plane. The PZ Placement block enables the user to place poles and zeros
92

Table B.1: Settings in the Sig Gen Block.

Sig type Amplitude Pulsewidth Periodic Period Time shift Freq
Sinc 0.2 120 NO 10 30 0.2

graphically in the z-plane and analyze the corresponding frequency response in real

time. Poles and zeros are added as conjugate pairs, and no more than 5 pairs can

be entered. Graphical manipulation of poles and zeros is achieved through “Add Pole”,

“Add Zero” and “Reset” buttons on the left part of the screen. Users can place and move

poles and zeros pairs. As you move the poles and zeros, the frequency response will

be immediately updated. Adjust the location of the poles and zeros until the desired

response is obtained. Note that poles near the unit circle give rise to spectral peaks

and zeros near the unit circle create spectral valleys in the magnitude of the frequency

response. For this problem, keep all plots in dB scale.

Design a lowpass filter using with approximate cutoff frequency of Ωc = π/4 .

Use two sets of zero pairs and one pole pair. This can be a rough approximation.

• Save the screenshot of your design using the PZ Placement block.

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

B.2.4 Part 2: Filter Design

Problem 2.1. We will use a Sig Gen block, a Window block, and an FFT block to

design a causal lowpass filter from the ideal impulse response hd(n) = 0.2sinc(πn
5),

i.e.,

hFIR(n) = w(n)hd(n−L/2), 0≤ n≤ L (B.6)

Set parameters in the Sig Gen block as shown in Table B.1 :

Take 256-point FFT of the impulse response. Set the size of window to be 60.

Tapered windows have better behaved sidelobes and hence better behaved ripple effect
93

relative to the rectangular window. Verify this property by checking FFT magnitude of

Rectangular window and Bartlett (Triangular) window respectively.

The iJDSP block diagram should look like Figure B.6.

Figure B.6: Block Diagram for iJDSP Prob. 2.1.

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

Problem 2.2. Use the Parks-McClellan block and the Kaiser block to design FIR filters

with the following specifications:

Filter Type: low-pass filter

Cut-off frequencies:

Passband (Wp) cutoff frequency: Wp1 = 0.25π

Stopband (Ws) cutoff frequency: Ws1 = 0.4π

Tolerances: PB= 1dB; SB= 40dB.

A sample of the block diagram is shown in Figure B.7.

• Sketch the magnitude and phase plots of the Parks-McClellan in dB scale (using

the Freq. Resp. block).

• Sketch the magnitude and phase plots of the Kaiser in dB scale (using the Freq.

94

Figure B.7: Block Diagram for iJDSP Prob. 2.2.

Resp. block).

• Which of two methods has the lower order? (To see the order of the filter, tap the

“Update” button in the corresponding filter design block.)

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

Problem 2.3. Design an IIR Filter with the following specifications,

IIR filter: Butterworth

Filter type: Low-pass

Cutoff frequencies: Wp1 = 0.4π ,Ws1 = 0.6π

Tolerance in passband: PB= 1.0dB

Tolerance (rejection) in stopband: SB= 45.0dB.

The design can be done using the IIR Design block under the list of functions

in iJDSP. Connect the output of the IIR block to the Freq Resp block to plot the fre-

quency response. Compare the frequency response of the IIR filter using four design

techniques respectively. (Change IIR filter to Butterworth, Chebyshev I, Chebyshev II,

and Elliptic).

95

• Note down the order of each design. Which one will give the lowest order?

• Sketch the frequency response magnitudes in linear scale. (Butterworth, Cheby-

shev I, Chebyshev II, Elliptic)

• Is the phase response linear?

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

B.2.5 Part 3: FFT

Problem 3.1. Set up the two signals as shown in Figure B.8 using the block diagram

in Figure B.9. Examine the FFTs of the following two signals. Choose user-defined

signal type in the Sig Gen block (Pulsewidth = 8). Take 8-point FFT to the output of

the Sig Gen, then plot the signal (Choose “Real” to see the real part of the signal, and

“Imag” to the imaginary part. Tap “View Values” in the Plot block to see the exact

values).

(a) Signal 1 (b) Signal 2

Figure B.8: The User-defined Signals.

• Tabulate and compare the real and imaginary parts of the two signals above (lin-

ear scale). Keep three digits after the decimal point.

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.
96

Figure B.9: Block Diagram for iJDSP Prob. 3.1.

Problem 3.2. Generate a signal x(n) = 0.4sin(0.25πn)+ sin(0.22πn) with the length

of 128 samples using two Sig Gen blocks and one Adder block. Use a rectangular

window that has length 128 samples to truncate the signal. Take 128-point FFT after

truncating the signal.

• Double tap the Plot block to see the FFT magnitude in dB scale.

• Set the length of the rectangular window to be 64 samples. Still take 128-point

FFT. Check whether it takes effect on the FFT magnitude.

• Change the window to a Hanning window that has length 128 samples, and check

the FFT magnitude again. Is the signal resolved precisely?

Did any of the simulations have errors or the program fail to execute (crash)?

Please indicate in details so that we can reproduce the error.

97

B.3 Workshop Technique Questions

These questions are used in pre- and post- labs. They are designed to examine whether

the understanding of signal processing is improved after performing simulations on

iJDSP. Question 1. Given the transfer function for a causal system, which of the state-

ments is CORRECT?

H1(z) =
1

(1−1.2z−1)(1−0.5z−1)
(B.7)

a. H1(z) is unstable.

b. The impulse response of H1(z) is absolutely summable.

c. H1(z) has two poles and one zero.

d. The ROC of H1(z) is |z|< 0.5.

Question 2. The given cascade system shown in Figure B.10 is equivalent to

Figure B.10: Block Diagram for Question 2.

a. 1 system, whose impulse response is the convolution of the impulse responses of

the 2 systems.

b. 1 system, whose impulse response is the sum of the impulse responses of the 2

systems.

c. 1 system, whose impulse response is the product of the impulse responses of the 2

systems.
98

Question 3. As the poles of a causal and stable system move away from the unit circle,

a. the peaks in the frequency response become sharper.

b. the peaks in the frequency response become less sharp.

c. there is no change in the frequency response.

Question 4. Which of the two windows in general has better (lower) sidelobe charac-

teristics?

a. Rectangular

b. Triangular

Question 5. Which of the following IIR filters is monotonic in both stopband and

passband, in terms of the frequency response magnitude in linear scale?

a. The Butterworth filter

b. The Chebyshev type I filter

c. The Chebyshev type II filter

d. The Elliptic filter

Question 6. IIR filters have linear phase.

a. True

b. False

Question 7. Which signal in Figure B.11 has an FFT that is purely imaginary (real part

equals to zero)?

a. x1[n]

b. x2[n]
99

Figure B.11: Signals for Question 7.

c. x3[n]

d. x4[n]

Question 8. Which of the following statements is CORRECT?

a. For a real-valued signal which is odd symmetric around the point k = N/2 (N is the

size of FFT), the imaginary part of FFT is zero.

b. FFT components of a real-valued signal are conjugated symmetric.

c. The FFT of a discrete-time signal is continuous in frequency.

100

Question 9. Which window can better resolve two sine waves which are closely-spaced

in frequency (all windows have the same length)?

a. Rectangular

b. Hanning

Question 10. Which of the following statements is INCORRECT?

a. The rectangular window has a narrow mainlobe but prominent sidelobes.

b. Increasing the FFT size improves the ability of the FFT to resolve closely-spaced

frequency components.

c. The effects of loss of resolution and spectral leakage are controlled only by the

shape of the window.

101

