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ABSTRACT  

   

The existing minima for sample size and test length recommendations for 

DIMTEST (750 examinees and 25 items) are tied to features of the procedure that 

are no longer in use. The current version of DIMTEST uses a bootstrapping 

procedure to remove bias from the test statistic and is packaged with a conditional 

covariance-based procedure called ATFIND for partitioning test items. Key 

factors such as sample size, test length, test structure, the correlation between 

dimensions, and strength of dependence were manipulated in a Monte Carlo study 

to assess the effectiveness of the current version of DIMTEST with fewer 

examinees and items. In addition, the DETECT program was also used to 

partition test items; a second feature of this study also compared the structure of 

test partitions obtained with ATFIND and DETECT in a number of ways. With 

some exceptions, the performance of DIMTEST was quite conservative in 

unidimensional conditions. The performance of DIMTEST in multidimensional 

conditions depended on each of the manipulated factors, and did suggest that the 

minima of sample size and test length can be made lower for some conditions. In 

terms of partitioning test items in unidimensional conditions, DETECT tended to 

produce longer assessment subtests than ATFIND in turn yielding different test 

partitions. In multidimensional conditions, test partitions became more similar 

and were more accurate with increased sample size, for factorially simple data, 

greater strength of dependence, and a decreased correlation between dimensions. 

Recommendations for sample size and test length minima are provided along with 

suggestions for future research. 
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Chapter 1 

INTRODUCTION 

Item response theory (IRT) methods were originally developed and have 

traditionally been applied to high-stakes, large-scale testing environments. Such 

environments can be characterized as having potentially large respondent and 

item pools. Low-stakes small-scale testing environments tend to have access to 

fewer respondents items. Despite these tendencies, IRT methods have garnered 

the interest of those working in these settings. Examples of small-scale testing 

environments include applied research, screening measures, or even classroom-

based tests. Although the respondent and item pools may be more limited in these 

contexts, those using the tests are often interested in characterizing the factors 

driving respondents’ item responses.  

 For most applications of IRT, it is assumed that test performance is 

primarily a function of a single dimension. However, it has been argued that test 

performance often depends on factors that potentially have a non-trivial effect 

beyond that of a unidimensional characterization. Non-trivial dimensions, if left 

unaccounted for, lead to the violation of key independence assumptions and may 

hinder many facets of testing such as linking and score reporting. Thus, many 

promising procedures aimed at identifying the presence of unaccounted for 

dimensions have been developed (see Tate, 2003). Given the high-stakes and 

large-scale foundations of IRT, most of these dimensionality assessment 

procedures have been developed and researched assuming respondent and item 

pools that often exceed those used in small-scale contexts. Thus, small-scale test 
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developers are left with little guidance with respect to choosing suitable methods 

for assessing whether a single dimension is sufficient for modeling observed 

response patterns.  

 Although many promising dimensionality assessment procedures are 

available, this work focuses on the performance of the DIMTEST procedure 

(Froelich & Habing, 2008; Froelich & Stout, 2003; Nandakumar & Stout, 1993; 

Stout, 1987) for assessing the assumption of unidimensionality in small-scale 

testing environments. Many extensive Monte Carlo simulation studies have 

shown DIMTEST to perform favorably for many realistic testing conditions. 

Though recommendations pertaining to minima for sample size and test length 

exist for DIMTEST (Gessaroli & De Champlain, 1996; Pyo, 2000), the procedure 

has undergone many changes that potentially render those recommendations 

obsolete. One goal of this research is to update the test length and sample size 

recommendations for the current version of DIMTEST.  

 A second goal is to evaluate the performance of an alternative method for 

partitioning test items into two clusters that are as dimensionally distinct as 

possible. In particular, a specially designed genetic algorithm is used in Zhang 

and Stout’s (1999a) DETECT procedure to identify and characterize maximally 

distinct dimensions. This method is akin to but more exhaustive than the current 

method used in exploratory DIMTEST analyses. Though the genetic algorithm 

has been suggested for partitioning test items into dimensionally distinct clusters 

(Stout, Froelich, & Gao, 2001), the utility of this method for doing so has not 

been investigated empirically.  



  3 

 The remainder of this chapter will be aimed at characterizing fundamental 

concepts pertaining to the current work. Relevant unidimensional and 

multidimensional IRT models and their corresponding assumptions will be 

discussed first. Next, Zhang and Stout’s (1999a, 1999b) theory of conditional 

covariances will be briefly characterized prior to presenting DIMTEST and other 

relevant procedures based on their theory.  

Dichotomous IRT Models 

 Item response models are concerned with modeling a dichotomous 

outcome as function of a possibly vectored latent, or unobserved, characteristic of 

any respondent I (if) and the set of characteristics of any item (ξj) j. In the context 

of educational assessments, a common outcome is Xij = 1 and Xij = 0 for correct 

and incorrect responses, respectively. Although many possible dichotomous 

outcomes exist, IRT models are discussed within the framework of educational 

assessments for the purposes of this work.  

 Unidimensional IRT Models. As mentioned earlier, the majority of IRT 

applications assume examinees’ responses solely depend on a single dimension θ. 

Using representations from Rupp, Templin, and Henson (2010), this situation is 

depicted graphically in Figure 1. Following normal conventions, the circle 

represents a latent variable, and the six squares represent observed variables. The 

lines cutting through the observed variables represent the location of the item (i. 

e., item difficulty). Arrows emanating from θ to the six observed variables 

indicate the direction of dependence. For any examinee, the value of observed 

variables X1,…,X6 depend on their location along θ relative to location of the items 



  4 

along the same continuum. Barring dependencies among respondents (e. g., 

through cheating) or influential, but unaccounted for dimensions, an examinee 

must have more of the characteristic θ than is required by the item in order to 

have a high probability of responding correctly. From a model-based perspective, 

a unidimensional IRT model represents a way to accumulate evidence about and 

summarize student proficiency in terms of a single summary of performance on 

the tasks.  

 

Figure 1. A unidimensional IRT model.  

 The most general form of the item response function (IRF) commonly 

found in practice is the 3-parameter logistic (PL) as given by: 
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where aj, bj, and cj denote the discrimination, difficulty, and lower-asymptote 

(sometimes referred to as pseudo-guessing) parameters for item j, respectively. 

Notably, applying constraints on particular item parameters yield more restricted 

models. Fixing cj = 0 while continuing to allow aj to vary for each of J items 
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yields the 2-PL. Further restricting Equation 1 such that all a-parameters are equal 

yields the 1-PL model.  

Multidimensional IRT Models. Multidimensional IRT (MIRT) models 

extend the unidimensional models above; Figure 2 depicts the general structure of 

MIRT models. There are two new features in the multidimensional representation 

that were not necessary in the unidimensional representation. First, the curved 

arrow indicates the possibility of correlated dimensions. Second, solid arrows 

signify that performance on an item depends on one dimension exclusively while 

dashed arrows indicate that performance on an item depends on more than one 

dimension.  

When tests are best characterized as reflecting multiple dimensions, it may 

be desirable for items to be exclusive indicators of one dimension. Tests 

consisting of such items are said to be factorially simple. The notion of factorially 

simple tests may be relaxed to factorially complex tests (Zhang & Stout, 1999a). 

Complex structure allows for items to be dependent on multiple dimensions. 

Using the language from the factor analytic framework, items load on multiple 

dimensions. When simple structure does not hold, it may be that approximate 

simple structure holds, where items have strong loadings on one dimension and 

trivial, but non-zero, loadings on other dimensions. Having said that, since the 

criteria for what counts as a trivial loading can be fairly subjective, the more 

general term “complex structure” will be used throughout this work to simply 

refer to data structures that do not follow a simple structure model.  
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Figure 2. General representation of MIRT models.  

Though various forms of MIRT exist, compensatory models are the most 

widely used. The 3-PL compensatory MIRT model is formally given by: 
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where aj = (aj1,…, ajM) denotes the vector of discrimination parameters; θi = 

(θi1,…, θiM) denotes the vector of M examinee characteristics; cj denotes the 

lower-asymptote (pseudo-guessing) parameter; and dj denotes a scalar related to 

the item difficulty (Reckase, 1985, 1997). Like their unidimensional counterparts, 

multidimensional models are hierarchically related. Fixing cj = 0 yields the 2-PL 

MIRT model, and fixing all elements in aj  as equal yields a1-PL MIRT model.  

Conditional Independence in IRT Models 

Local, or conditional, independence (LI) is a central assumption of item 

response models. To satisfy the LI assumption, responses to test items must be 

statistically independent given examinees possibly vectored set of attributes θ and 

the characteristics of the items, 
jξ . The LI assumption is formally given by: 



  7 

 .),|(),|,...,(
1

1 ∏
=

=
J

j

jiijjiiJi XPXXP ξθξθ  (3) 

Local dependence occurs (LD) when LI is violated. As a short list, possible 

sources of LD include other examinee characteristics, speededness, fatigue, and 

passage dependence. More generally, finding statistical evidence of LD implies 

that some dimension beyond that conditioned on effects how some, or all, 

examinees respond to some, or all, items (Yen, 1993). Additional dimensionality 

includes both those that are cognitively meaningful and those that constitute as 

“nuisance” dimensions. Nuisance dimensions might involve, for example, 

unintended consequences of test design (e. g., speededness) and/or peculiarities of 

the item(s) (Ip, 2000; Stout, 1987).  

Investigating LD is essential prior to accepting an IRT model as a tool for 

characterizing student proficiency. The presence of unaccounted for LD may 

result in imprecise estimates of person and item parameters (Ackerman, 1987; 

Yen, 1993) which can in turn threaten estimates of information and standard 

errors of estimates, test equating and linking, the reporting of scores and precision 

of scores, and ultimately, the interpretation and use of scores (Birnbaum, 1968; 

van der Linden, 1996; Yen, 1993). Given the pervasive influence of LD, 

identifying substantial LD is of the utmost importance prior to further 

measurement activities.  

Weaker Forms of LI. Equation 3 is often referred to as strong local 

independence (SLI). Unlike weaker forms of LI, satisfying SLI requires that all 

bivariate and higher-order dependencies are accounted for by θi and 
jξ ; weaker 
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forms of LI are concerned with bivariate associations. Often cited forms that are 

weaker than SLI include weak local independence (WLI; McDonald, 1994) and 

essential independence (EI; Stout, 1987).  

 Weak local independence, also called pair-wise independence, is often 

investigated in practice in place of SLI. A set of items is considered pairwise 

independent if:  

 ,0),|,cov( ' =jiijij XX ξθ  for all θ and 1 ≤ j < 'j ≤ J (4) 

where cov denotes covariance. Since WLI does not account for higher-order 

dependencies, it is not mathematically sufficient for SLI (Zhang & Stout, 1999b). 

However, WLI is thought to be empirically sufficient for SLI when working with 

real datasets; although higher-order dependencies are possible, they are unlikely 

when WLI holds (McDonald, 1994). Central to the procedure of interest for this 

research—DIMTEST—is the weaker notion of EI (Stout, 1987).  

 Two key differences separate EI from the stronger SLI and WLI forms. 

First, the average conditional covariances should be small and become smaller as 

J approaches infinity. Test items are viewed as EI if: 

 
0

2

|)|,cov(|' '
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for all θ
'
 as J ∞→ . Additionally, while SLI and WLI involve conditioning on 

dominant and minor (i. e., all) dimensions, only dominant dimensions (denoted θ
'
 

above) are of interest for EI (Stout, 1987, 1990). This viewpoint is akin to the 

factor analytic tradition of dimensionality assessment; dimensions characterized 



  9 

by a single or relatively few items tend to be psychometrically uninteresting while 

dimensions characterized by many items are of greater substantive interest (Stout, 

1987). The minimum number of dominant dimensions necessary to produce an EI 

model is termed the essential dimensionality; essential unidimensionality is 

achieved when a single dominant dimension (θ
'
) is sufficient (Nandakumar & 

Yu, 1996).  

 Relationship between LI and Dimensionality. The presentation of LI 

has thus far aimed to establish the link between LI and the number of underlying 

dimensions. However, the relationship between LI and the underlying 

dimensionality is more general in that finding evidence of LD is akin to finding 

evidence that the dimensionality is underspecified (Ip, 2001). Clearly, a model is 

underspecified if there are too few dimensions in the model to account for the 

covariance among observables. The dimensionality of a model can also be 

underspecified even if the “correct” number of dimensions is included. For 

example, Levy and Svetina (2011) showed that fitting a factorially simple model 

to data that were factorially complex resulted in violations of LI holding constant 

the number of dimensions. Although the correct number of dimensions was 

specified, unmodeled dependencies between items and the underlying dimensions 

resulted in violations of LI.  

Conditional Covariance-Based Dimensionality Assessment 

Zhang and Stout’s conditional covariance theory (CCT; 1999a, 1999b) is 

the common foundation for the three procedures relevant to the current work: 

DIMTEST, DETECT, and CCPROX/HCA. The non-parametric CCT framework 
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was developed as an alternative to parametric approaches to dimensionality 

assessment. Parametric approaches to dimensionality assessment make additional 

assumptions beyond those required for assessing dimensionality via CCT. 

Dimensionality assessment via CCT only requires monotonicity (P(Xij = 1 | θi →  

1 as θi ∞→ ); assumptions about the distribution of θi or the particulars of the 

IRFs (e. g., guessing) are not made. The form of the IRF for CCT is Zhang’s 

(1996) generalized m-dimensional compensatory model as given by: 

 )θ()|1(
1

m∑
=

−==
M

m

jjmjiij baHXP θ  (6) 

where Hj is any non-decreasing function (i. e., monotonicity); the aj and bj terms 

retain their usual meaning. This form of the IRF represents a more general form 

of the common logistic and other (e. g., normal ogive) compensatory MIRT 

models. In particular, whereas the common versions of compensatory models 

assume a specific form of the IRF, Hj in the generalized compensatory model is 

arbitrary.  

 The central features of CCT-based dimensionality assessment include the 

item, unidimensional test composites for each dimension in the test space, and 

total test composite as measured by the total test score (Stout et al., 1996; Zhang 

& Stout, 1999a). Items cluster together to yield the weighted unidimensional 

composites corresponding to each dimension in the test space, and the total test 

composite represents the unit-weighted aggregate of all unidimensional 

composites in the test space. Each of these features of a test can be represented 

geometrically by vectors as shown in Figure 3, which shows a two dimensional 



 

test. The total test composite is denoted by 

corresponding to the two dimensions are denoted

associated with each dimension are shown as vectors clustered around 

Figure 3. Geometric representation of a two

Two key features of the vectors reveal the dimensional structure of the 

test: the angle relative to the 

for all vectors represents the direction of maximum discrimination. Ideally, the 

direction of all θC1 items would be aligned with the 

would be aligned with the 

simple structure and orthogonal dimensions. Figure 3 depicts a test structure that 

is non-ideal but more likely to occur with real test data. As shown by the 

θC2 vectors deviations from the 

is, the dimensions are oblique to each other rather than orthogonal.  Importantly, 

even with oblique dimensions, a simple structure model would obtain if all items 

were identically aligned with the respective unidimensional composite vectors 
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test. The total test composite is denoted by θTT; unidimensional composites 

corresponding to the two dimensions are denoted by θC1 and θC2; and the items 

associated with each dimension are shown as vectors clustered around θC

 

Geometric representation of a two-dimensional test.  

Two key features of the vectors reveal the dimensional structure of the 

the angle relative to the θ1 axis and length. The angle relative to the θ

for all vectors represents the direction of maximum discrimination. Ideally, the 

items would be aligned with the θ1 axis, and all θC2 items 

ed with the θ2 axis; this situation would result in a model with 

simple structure and orthogonal dimensions. Figure 3 depicts a test structure that 

ideal but more likely to occur with real test data. As shown by the θ

vectors deviations from the θ1 and θ2 axes, the dimensions are correlated; that 

is, the dimensions are oblique to each other rather than orthogonal.  Importantly, 

even with oblique dimensions, a simple structure model would obtain if all items 

cally aligned with the respective unidimensional composite vectors 

; unidimensional composites 

; and the items 

C1 and θC2.  

Two key features of the vectors reveal the dimensional structure of the 

axis and length. The angle relative to the θ1 axis 

for all vectors represents the direction of maximum discrimination. Ideally, the 

items 

axis; this situation would result in a model with 

simple structure and orthogonal dimensions. Figure 3 depicts a test structure that 

ideal but more likely to occur with real test data. As shown by the θC1and 

axes, the dimensions are correlated; that 

is, the dimensions are oblique to each other rather than orthogonal.  Importantly, 

even with oblique dimensions, a simple structure model would obtain if all items 

cally aligned with the respective unidimensional composite vectors 
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(Zhang & Stout, 1999a).  Since item vectors are spread around the respective 

unidimensional composites, however, the test shown in Figure 3 follows a model 

with complex structure. That is, all items measure one dimension best and have 

smaller loadings on the other dimension.  

From the CCT perspective, the directionality of item vectors has 

implications for quantifying the extent of multidimensionality. Taken relative to 

the direction of the θTT vector, any two items with directions on the same side of 

θTT will exhibit a positive conditional covariance; any two items with directions 

on opposite sides θTT will exhibit a negative conditional covariance; and if either 

item from a pair is aligned with θTT, the conditional covariance will be zero 

(Zhang & Stout, 1999a). Referring back to Figure 3, all items on the same side of 

θTT will be positively related. Therefore, the covariance among all pairs of θC1 

items will be positive conditional on θTT as will the covariance among all pairs of 

θC2 items. Any pair of items taken from opposite clusters, however, will result 

have a negative covariance conditional on θTT.  

The CCT perspective provides a strong theoretical framework for 

DIMTEST, DETECT, and CCPROX/HCA. Although DIMTEST is the primary 

interest of this work, the other CCT-based procedures are used for conducting 

exploratory runs of DIMTEST. In particular, each of the methods for partitioning 

items into maximally distinct clusters employs a combination of CCPROX/HCA 

and DETECT. With that, the remainder of this chapter briefly characterizes each 

of these procedures.  
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DIMTEST 

 As mentioned, it is hypothesized for most applications of IRT that a single 

dimension is sufficient to satisfy the LI assumption. The DIMTEST procedure 

subjects the weaker hypothesis of essential independence to a formal test by 

splitting items into two clusters and evaluating their statistical distinctiveness 

(Froelich & Habing, 2008; Stout et al, 2001; Nandakumar & Stout, 1993; Stout, 

1987). One cluster, called the assessment subtest (AT), ideally consists of items 

that are dimensionally homogenous to each other but dimensionally distinct from 

the remaining test items. The second cluster, called the partitioning subtest (PT), 

consists of the remaining items and is used to form ability subgroups as measured 

by the total score across the items that comprise the PT. The splitting of test items 

into the AT and PT can be done using either confirmatory or exploratory methods. 

This work focuses on exploratory methods; exploratory strategies for obtaining 

the AT/PT partition are reviewed after presenting the DIMTEST procedure.  

 In essence, the DIMTEST statistic is the bias-corrected standardized 

difference between the total variability and variability due to a single dimension 

(herein referred to as unidimensional variance). Equation 1.10 in Froelich and 

Stout (2003) indicates that the sum of the difference between the two variance 

estimates across all ability groups results in the total estimated covariance among 

test items. If the total variance is equal to the unidimensional variance, then a 

single dominant dimension accounts for all of the variability in the observed data. 

The conclusion would be that the AT and PT items measure the same single 

dimension. Small deviations between the two variance estimates suggest that 
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minor dimensions may be present, but a single dominant dimension is sufficient 

to satisfy the LI assumption; that is, the data are essentially unidimensional. Large 

deviations provide evidence that the AT and PT subtests measure two distinct 

dimensions. This situation would result in the rejection of the null hypothesis that 

the assumption of EI is satisfied given a single dimension.  

 While the description above captures the essence of the DIMTEST 

procedure, the following steps briefly show the formalized translation. The first 

step, which is also the most crucial, requires that the test items be split into the AT 

and PT subtests. Figures 4a and 4b depict poor and good partitions, respectively, 

for testing the dimensional distinctiveness of ten items with the DIMTEST 

procedure. Blue and red item vectors correspond to items in the θPT and θAT, 

respectively. The length of each item vector represents the composite magnitude 

of the item discrimination, and the angle of the item vector from the�� axis 

represents the composite item direction.  

(a) Poor Partition (b) Good Partition 

  

Figure 4. Possible partitions of items into the AT and PT subtests.   
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 The DIMTEST procedure is more likely to fail to reject the null 

hypothesis of essential unidimensionality for the partition in Figure 4a. The AT is 

clearly not comprised of a set of dimensionally homogenous items; this is seen by 

the spread of the AT items throughout the test space. That is, the AT items are 

heterogeneous in that some items measure θ1 best while others measure θ2 best. In 

addition, the direction of θAT is not differentiable from that of θPT. Put differently, 

the AT items do not measure a dimension that is distinct from the PT items. 

Figure 4b shows a partitioning of AT and PT that would likely result in 

DIMTEST rejecting the null hypothesis of essential unidimensionality. The AT 

items are localized within the test space, indicating that the items homogenously 

measure one dimension. Furthermore, that the angle between the θAT and θPT 

unidimensional composites is wide indicates the measurement of two distinct 

dimensions.  

Calculating the DIMTEST statistic. After obtaining an AT/PT partition 

and forming K ability subgroups based on total PT scores, the DIMTEST statistic 

can be calculated. The total score on the AT subset is given by:  

 ∑
∈

=
J

ATj

ijkik XY  (7) 

where Xijk denotes the response from examinee i from subgroup k for item j. The 

average total score for examinees in subgroup k is calculated as: 
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with Ik denoting the total number of examinees in subgroup k. The usual variance 

estimate of examinee total scores for the kth subgroup is: 
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The estimate of the unidimensional variance for the kth subgroup is given by: 
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where jkp̂  is the estimated difficulty of item j for subgroup k; this value is 

calculated as: 
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The difference between the usual and unidimensional variance estimates for each 

subgroup yields the estimate of the conditional covariance among all item pairs 

for that subgroup. To assess the null hypothesis of essential unidimensionality, the 

total estimated conditional covariance across all subgroups is aggregated and 

standardized. The variance of the estimated conditional covariance for the kth 

subgroup is given by: 
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and 
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Aggregating the estimated conditional covariance and its corresponding variance 

across all K subgroups yields the DIMTEST statistic,  
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The TL statistic tends to be positively biased for short tests for both 

unidimensional and multidimensional tests (Stout, 1987; Stout et al., 2001). 

Keeping in mind that DIMTEST is designed to assess the hypothesis of essential 

unidimensionality, the positive bias can inflate the Type I error rate. That is, the 

DIMTEST statistic may suggest the presence of additional dominant dimensions 

when the test is actually essentially unidimensional. The original formulation of 

DIMTEST corrected this bias with a second assessment subtest (AT2). For each 

item on AT1, an item of approximately equal difficulty from the remaining pool 

of test items was chosen to be on AT2. Using the AT2 items, a second DIMTEST 

statistic (TB) was calculated using the above formulas. The bias-corrected 

DIMTEST statistic is calculated as: 

 
2

BL TT
T

−
=

. 

 (13) 

The T statistic was proven by Stout (1987) to follow a standard normal 

distribution under the null hypothesis of unidimensionality as the number of 

examinees and test items tend to infinity.  
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As stated in Stout et al. (1996), the null hypothesis of essential 

unidimensionality (dE = 1) and alternative hypothesis (dE > 1) tested by 

DIMTEST are: 

H0: PTAT ∪  satisfies essential unidimesionality (dE = 1) and HA: PTAT ∪  fails 

to satisfy dE = 1, respectively. That is, the null hypothesis is that the AT and PT 

both measure the same underlying dominant dimension as measured by total 

score; the alternative is that the items on the AT measure a dimension other than 

that measured by the PT. Formally, the decision reached via the DIMTEST 

statistic T regarding the dimensionality of a test is: 
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That is, the T statistic rendered from the DIMTEST procedure is used to decide 

whether to reject or fail to reject the null hypothesis of essentially 

unidimensionality (dE = 1).   

 The current DIMTEST procedure no longer uses AT2 to remove the 

positive bias from the TL statistic. The AT2 tended to not remove enough of the 

bias when the AT1 items were homogenous in terms of difficulty and/or had large 

discriminations (Nandakumar & Stout, 1993; Stout et al., 2001). In addition, since 

the power of DIMTEST increases as the test length increases, selecting items 

purely for the purpose of bias removal seems wasteful. The current DIMTEST 

procedure removes bias via a bootstrapped DIMTEST statistic. The bootstrapping 

procedure begin with estimating unidimensional IRFs based on the observed data; 

based on the estimated IRFs, unidimensional data sets are generated; and a 
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DIMTEST statistic is calculated for each generated data set. Then, the average 

DIMTEST statistic across the simulated data sets, GT  , is used to remove bias 

from the TL statistic; the new bias-corrected DIMTEST statistic, as shown in Stout 

et al. (2001), is given by: 
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TT
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11+

−
=  (14) 

This version of DIMTEST, which is used in this study, has been shown to have 

greater power while maintaining control of the Type I error rate than earlier 

versions using the FAC and AT2 (Finch & Habing, 2007; Froelich & Habing, 

2008; Stout et al., 2001).  

Strategies for Partitioning Test Items 

The DIMTEST procedure can either be conducted in a confirmatory or 

exploratory manner. Users with substantively-based hypotheses can conduct 

DIMTEST as a confirmatory analysis by manually selecting items for the PT and 

AT. Users can also conduct DIMTEST as an exploratory analysis by obtaining the 

test partition using statistical methods. The use of conditional covariance-based 

exploratory methods is one focus for this work. Although DIMTEST can be a 

powerful confirmatory dimensionality analysis tool, the typical user will often use 

DIMTEST in an exploratory fashion. Notably, users with substantive hypotheses 

can also benefit from exploratory analyses in two key ways. First, an exploratory 

approach may yield a test partition that is in agreement with substantive 

hypotheses; this finding would provide empirical evidence for the user’s intuition 

about the underlying dimensionality of the test. Second, an exploratory approach 
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can also suggest alternative test partitions that may yield additional insights into 

underlying test dimensionality. While any approach thought to be suitable for 

partitioning into two unidimensional item sets (Stout, 1987), the exploratory 

approaches used in this work are based on the same conditional-covariance based 

framework from which DIMTEST was developed. In particular, a conditional 

covariance-based hierarchical clustering procedure and Zhang and Stout’s 

(1999b) DETECT index form the basis of the both of the exploratory methods 

investigated. Accordingly, key features of these two procedures are discussed 

prior to presenting the two conditional-covariance based exploratory test 

partitioning methods.  

CCPROX/HCA. For the exploratory methods considered here, a 

hierarchical clustering procedure as described by Roussos, Stout, and Marden 

(1998) serves as the basis for finding candidate test partitions. The clustering 

procedures used in this work consist of two key steps. First, an item-level 

proximity matrix is obtained based on a conditional covariance-based measure of 

proximity (CCPROX) as given by: 
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where ', jj
S  denotes examinees total score excluding items Xj and Xj’ , and �� 

denotes the number of examinees with ', jj
S  (Stout et al., 1996). The second step is 

to conduct the agglomerative hierarchical cluster analysis (HCA). At the 

beginning of the HCA, all items are one object in J clusters; at the end of the 

HCA, all items comprise a single J object cluster. For all iterations in between the 
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beginning and end points, items are combined into multiple object clusters based 

on (a) the item-level proximity matrix and (b) the linking method used to 

calculate the proximity between clusters.  

 Roussos et al. (1998) described and investigated four linking methods, 

three of which are pertinent to the subtest selection methods used in this work. 

The three relevant linking methods for calculating the proximity between clusters 

include single link (Florek, Lukaszewicz, Perkal, Steinhaus, & Zubrzycki, 1951), 

complete link (McQuitty, 1960), and unweighted pair-group method of averages 

(UPGMA; Sokal & Michener, 1958). The single link algorithm calculates the 

minimum value of proximity for all pairwise item proximities among all objects 

between clusters; in contrast, the complete link algorithm calculates the maximum 

value of proximity for all pairwise item proximities among all objects between 

clusters; and the UPGMA calculates the average pairwise proximity among all 

objects between clusters. Irrespective of the chosen linking method, clusters 

yielding the smallest value of the proximity measure are combined together with 

the other clusters left unaffected.  

The CCPROX/HCA procedure is built into the two algorithms for 

partitioning test items (which are described below). Within these algorithms, the 

CCPROX/HCA procedure serves as a basis for finding candidate partitions that 

best approximate simple structure, the situation that yields the greatest chance for 

DIMTEST to correctly find true departures from essential unidimensionality. 

However, CCPROX/HCA does not provide the two cluster AT/PT partition 

needed for DIMTEST. More generally, when and if the true underlying structure 
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of the test is found via CCPROX/HCA, the program provides no indication that 

this has occurred. For both subtest selection methods, candidate partitions are 

supplied to the DETECT program (discussed next) to search for the test partition 

that indeed maximizes the degree of multidimensionality underlying a test.  

DETECT. For a given partition of items into clusters, denoted P, Zhang 

and Stout’s (1999b) theoretical DETECT index quantifies the extent to which 

observed data exhibit multidimensionality. The theoretical DETECT index D(P, 

θTT) is formally given by: 

 ( ) [ ]∑ ≤<≤−
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where ', jj
δ assumes a value of 1 if items j and 'j are part of the same cluster and -1 

otherwise. The fundamental goal of DETECT is to find the partitioning of a test 

that maximizes the scatter of items away from the unidimensional composite θTT. 

This partition, which is also deemed the true structure, will uniquely yield the 

highest value of the DETECT index for the observed data. The value of the 

DETECT index associated with this partition is called DETECTmax.  

 In practice, the value of DETECTmax and the test structure that produces it 

is often unknown. When conducting as an exploratory analysis, the partition 

yielding DETECTmax is searched for via a genetic algorithm (Zhang & Stout, 

1999b). As a starting point for the algorithm, the results from three 

CCPROX/HCA analyses are supplied as parents; the three parents are found via 

the single link, complete link, and UPGMA linking methods. For each parent, J/5 

of the items are “mutated” by cycling the J/5 items through all possible cluster 
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memberships that differ from their original clusters. Each crossing of the mutated 

items into different clusters represents a new generation, and the DETECT index 

is calculated for each new generation. If the DETECT index for the new 

generation is larger than the previous generation, then the partition associated 

with the new generation is declared as DETECTmax. The key idea underlying the 

genetic algorithm is to calculate the DETECT index for many possible cluster 

solutions towards the end of searching for the partition that yields DETECTmax. 

Further details about the algorithm can be found in Zhang and Stout’s (1999b) 

original work.  

The exploratory DETECT program can suggests up to a maximum of 10 

dominant dimensions, but the algorithm will terminate if fewer dimensions are 

found to yield DETECTmax. With that said, users also have the option to set the 

maximum number of dimensions to fewer than 10. The current work pursues the 

DETECT genetic algorithm as an alternative method for obtaining an AT/PT 

partition that maximizes the possibility of finding evidence of additional 

dimensionality when it is indeed present. This was achieved by setting the 

maximum of number of dimensions to two and therefore searching for the two 

cluster test partition that yields DETECTmax.  

 Conditional Covariance-Based Subtest Selection Methods. The two 

conditional covariance-bases subtest selection methods relevant to the current 

work include the DETECT genetic algorithm (described above) and Froelich and 

Habing’s (2008) ATFIND program. The ATFIND program and the exploratory 

version of DETECT are similar in that both programs involve a two-stage 
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partitioning method that includes (a) finding candidate partitions via 

CCPROX/HCA and then (b) finding the partition that yields the highest value of 

DETECT. However, there are key differences between ATFIND and the 

exploratory version of DETECT. First, restrictions placed on the minimum test 

length for ATFIND are not in place for DETECT. The ATFIND program requires 

a minimum of 15 PT items and four AT items and therefore cannot be used with 

fewer than 19 items. Second, the two-stage partitioning method is operationalized 

with less rigor using the ATFIND program than with DETECT. The ATFIND 

program first conducts a CCPROX/HCA analysis using only the UPGMA linking 

method (as described above) to find candidate partitions that are supplied to 

DETECT. Then, the DETECT index is calculated for each potential AT/PT 

partition. The AT for each potential test partitions includes between four and half 

of the items on the test; the remaining items serve as the PT. Unlike the DETECT 

genetic algorithm, the items are not “mutated” to search for DETECTmax.  

Hypotheses 

 The existing research on DIMTEST (reviewed further in the following 

chapter) and features of the conditional covariance-based framework suggest key 

variables that are hypothesized to affect performance. They hypotheses relating 

the variables of interest to the performance of DIMTEST are discussed in this 

section.  

 Sample Size and Test Length. It is hypothesized that neither sample size 

nor test length will affect performance for true unidimensional conditions. In true 

multidimensional conditions, however, it is expected that power will become 
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higher with increases in sample size and/or test length. As reviewed in greater 

detail in the following chapter, research on earlier versions of DIMTEST suggest 

that the procedure is a reliable test of the null hypothesis of essential 

unidimensionality with a minimum of 750 examinees and 25 items. It is 

hypothesized that the current version of DIMTEST will yield sufficiently high 

power without compromising Type I error rates with fewer examinees and/or test 

items than required for previous versions.  

Strength of Dependence. The item discrimination parameter is a measure 

of the strength of relationship of an item on the latent variable(s); this will herein 

be referred to as the strength of dependence.  It is hypothesized that the strength 

of dependence will not affect the performance of DIMTEST in true 

unidimensional conditions. However, it is hypothesized that power will be 

positively related to increases in the strength of dependence.  

 Correlation between Dimensions. It was hypothesized that power will be 

decrease to the extent that the correlation between dimensions increases holding 

all else constant.  

 Test Structure. Holding all else constant, deviations from simple 

structure are hypothesized to decrease power.  

 AT Selection Method. It is of interest to compare the performance of 

DETECT and ATFIND in terms of selecting AT items. The two methods were 

hypothesized to similarly yield similar rejection rates across all conditions in both 

unidimensional and multidimensional conditions. For tests consisting of fewer 

than 19 items, only DETECT was be used to select AT items. The hypotheses 
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stated earlier pertaining to sample size, test length, the strength of dependence, the 

correlation between dimensions, and test structure also apply to the DETECT-

only conditions.   

Summary 

The performance of the DIMTEST procedure (Stout, 1987; Froelich & 

Habing, 2008) has been well-documented for large-scale testing conditions. In 

small-scale contexts, however, recommendations for the use of DIMTEST (and 

dimensionality assessment in general) are relatively sparse. Existing 

recommendations, which will be reviewed in the second chapter, generally pertain 

to older versions of the DIMTEST procedure. The current DIMTEST procedure 

employs a combination of theoretically consistent methods, namely 

CCPROX/HCA and DETECT, to obtain the AT/PT partition and removes bias 

from the statistic with a bootstrapping technique. As discussed in the next chapter, 

the new version of DIMTEST has empirically demonstrated better performance 

than previous versions in that the Type I error rate remains closer to or lower than 

the nominal value of α and marked increases in power have been achieved for 

even less ideal testing conditions (Finch & Habing, 2007; Froelich & Habing, 

2008). This goal of this study is extend research on the current DIMTEST 

procedure by providing recommendations for its use in small-scale testing 

conditions.  

 Beyond evaluating the performance of DIMTEST in small-scale testing 

conditions, a second purpose of this study is to evaluate the performance of the 

DETECT genetic algorithm for obtaining an AT/PT partition. This choice is in 
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part motivated by the need for obtaining an AT/PT partition for conditions with 

fewer than 19 items. In addition, given that the DETECT genetic algorithm and 

the ATFIND program share the same logic, it is of interest to compare the two 

methods in terms of selecting AT items for conducting DIMTEST analyses. 
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Chapter 2 

REVIEW OF LITERATURE 

This chapter reviews relevant existing research on the DIMTEST 

procedure and presents the hypotheses for the current work. Although the goals 

and logic of the DIMTEST procedure have remained consistent, aspects of the 

procedure and the resulting test statistic have evolved significantly since Stout’s 

(1987) original work. In particular, the removal of AT2 and replacing FAC with 

ATFIND yield the current version of DIMTEST. Each instantiation of DIMTEST 

can be thought of as being qualitatively different in that recommendations for the 

use of DIMTEST are tied to the version in consideration. From this perspective, 

existing research will be presented in three sections pertaining to each 

instantiation. After presenting the relevant existing research on DIMTEST, the 

hypotheses for the current will be detailed.  

DIMTEST with AT2 and FAC 

 Building off of Stout’s (1987) original work, Nandakumar and Stout 

(1993) proposed a number of changes aimed at establishing a better match 

between the item difficulties for the AT1 and AT2 items and adjusting the 

standard error of the test statistic. With the proposed changes, DIMTEST was 

found to maintain the Type I error rate and achieve greater power than Stout’s 

original formulation. One goal of the proposed changes was to reduce the Type I 

error rate for tests primarily consisting of highly discriminating items. Towards 

that end, the proposed changes resulted in a Type I error rate that was drastically 

reduced compared to DIMTEST without the changes. With respect to sample size 
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and test length requirements, Nandakumar and Stout’s work suggested that 

DIMTEST was a reliable test of essential unidimensionality with 750 examinees 

and 25 items. Notably, at these levels of sample size and test length, power was 

significantly reduced when the correlation between θ1 and θ2 increased from ρ = 

.5 to ρ = .7.  

 Gessaroli and De Champlain (1996) generated data from a 2-PL model to 

compare the performance of their 2
/ DGχ statistic to DIMTEST with the FAC 

program and AT2. Although the Type I error rate never exceeded 8 rejections out 

of 100 independent trials, they found that inflated error rates tended to occur with 

tests comprised of weakly or moderately discriminating items. In 

multidimensional conditions, power was primarily affected by the dominance of 

the second dimension and to a lesser extent by test length. Power tended to be 

lowest with a test length of 15 items
1
with 80% of the items measuring θ1 and 20% 

measuring θ2; increasing the length of the test and/or having strongly 

discriminating items increased power to acceptable levels under normal standards 

(rejecting the null hypothesis 80% of the time when it is false). Given their 

results, and in keeping with previous recommendations (Nandakumar, 1987; 

                                                 
1
While the current version of DIMTEST with ATFIND requires a minimum of 19 items, it is not 

clear from previous research whether test length restrictions were in place with the FAC program. 

The fact that Gessaroli and De Champlain (1996) was able to investigate DIMTEST with as few 

as 15 items may be indicative that the either (a) the FAC program did not impose a constraint on 

the required test length or (b) the authors had access to a version of the program that is not 

available to the typical user. 
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Nandakumar & Stout, 1993; Stout, 1987), Gessaroli and De Champlain suggested 

that DIMTEST with AT2 and FAC should only be used with sample sizes of 750 

examinees and 25 items.  

 Although necessary for the removal of bias, the use of AT2 reduced the 

flexibility of the DIMTEST procedure. In particular, in order to optimize the 

removal of bias from the TL statistic, every AT2 item would ideally be matched to 

an item equal in difficulty to each AT1 item. The goal of doing so was to enhance 

the sensitivity of the test statistic T to sources of dependencies that were not a 

byproduct of the FAC method used for selecting AT1 items. A well-known issue 

of applying linear factor analysis via the FAC program was that items similar in 

difficulty tended to be extracted as a unique factor (McDonald & Ahlawat, 1974, 

Stout, 1987). Bias would not be removed from the DIMTEST statistic to the 

extent that the AT1 items were homogenous in terms of difficulty and distinct 

from the AT2 items. In these cases, DIMTEST was more prone to an inflated 

Type I error rate particularly with small samples and short tests (Nandakumar & 

Stout, 1993; Stout, 1987). With the goal of reducing the Type I error rate, and 

ultimately making DIMTEST more flexible, Froelich and Stout (2003) developed 

the bootstrapping procedure described earlier.  

DIMTEST with Bootstrap Bias Correction and FAC 

 Froelich and Stout (2003) conducted a Monte Carlo simulation study to 

evaluate DIMTEST without AT2 while still including the FAC program. When 
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the size of the assessment subtest (AT) was automatically determined
2
, the Type I 

error rate was consistently below the specified level of significance (α = .05) in 

unidimensional conditions. For multidimensional conditions
3
, Froelich and Stout 

investigated the influence of test structure on the bootrapped version of 

DIMTEST. In the simple structure model, the lowest power was observed with 

750 examinees, 25 items, and highly correlated dimensions (ρ = .7); out of the 

100 replications, 94 of which correctly resulted in a rejection of the null 

hypothesis. When data followed a factorially complex model, the correlation 

between dimensions had a large effect. Using normal conventions, power was 

adequately high when the correlation between dimensions was low (ρ = .3). 

Holding all else constant, increasing the correlation to ρ = .7 resulted in marked 

decreases in power; adequate levels of power were never achieved in conditions 

with test lengths of 25 items. Froelich and Stout concluded that the significant 

drop in power was attributable to a failure of the FAC program to select a 

sufficient number of dimensionally similar items for AT. In light of this view, 

they suggested an alternative method employing HCA/CCPROX and DETECT, 

which eventually became the version of DIMTEST currently in use.  

                                                 
2
 Three levels of AT size were varied in the Type I error study.The three levels included J/4, J/2, 

or the size of the AT was allowed to vary between replications. 

3
 For the power study, three methods were used for the selection of AT items. The method closest 

to that of the current exploratory DIMTEST procedure used the FAC program and allowed the 

size of AT to vary between replications. For the sake of comparison to research on the current 

version, only the results pertaining to this method were considered. 
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 It is noteworthy that the performance of Froelich and Stout’s (2003) 

DIMTEST without AT2 was comparable to Nandakumar and Stout’s (1993) 

DIMTEST with AT2. However, the use of the bootstrapping procedure for 

removing bias is more flexible than selecting AT2 items. Whereas the AT2 items 

were chosen based on their similarity to AT1 items in terms of difficulty, the 

bootstrapping procedure is more flexible in that other features of the ICCs, such 

as the estimated discrimination and pseudo-guessing parameters, can be taken into 

account. Overall, the bootstrapping procedure makes the DIMTEST procedure 

more flexible than AT2 while not increasing the Type I error rate or 

compromising power. 

DIMTEST with Bootstrap Bias Correction and ATFIND 

 As mentioned, the current version of DIMTEST removes the need for AT2 

via Froelich and Stout’s (2003) bootrapping method and employs ATFIND, 

which uses a combination of HCA/CCPROX and DETECT, to select AT items. 

Froelich and Habing (2008) conducted a Monte Carlo simulation study to 

compare the performance of the ATFIND and FAC methods for selecting AT 

items; in all conditions, bias in the test statistic was removed with the bootrapping 

procedure. Compared to the FAC program, they found that DIMTEST with 

ATFIND maintained similar control of the Type I error rate while improving 

power, particularly for tests deviating from simple structure with dimensions 

correlated at ρ ≥ .7.  

 Finch and Habing (2007) compared the performance of the current version 

of DIMTEST to other statistics for testing the unidimensionality assumption. 
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They found that DIMTEST generally maintained the Type I error rate and was 

highly powered even with highly correlated dimensions (ρ = .8) with tests as short 

as 15 items
4
. Notably, their smallest sample size condition was 1000 examinees; 

their results suggest that DIMTEST may be a reliable test of the 

unidimensionality hypothesis with fewer items and/or smaller samples. 

                                                 
4
 The version of ATFIND is a constrained version of the program that is not available to typical 

users. Since the typical user cannot release the constraint that at least 19 items are required, it is 

unclear how Finch and Habing (2007) managed to use the program for 15 item tests. This suggests 

that the authors were using a version of ATFIND that is no longer in use or was a modified 

version available to the authors.  
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Chapter 3 

METHODOLOGY 

The goal of this Monte Carlo simulation study was to re-evaluate the 

sample size and test length minima for the current DIMTEST procedure. Drawing 

from previous research, other factors known to affect the performance of 

DIMTEST were also manipulated. In addition to sample size and test length, other 

manipulations included the strength of dependence, and for the power study only, 

the correlation between dimensions and test structure; these manipulations are 

detailed below. Then, the process for conducting DIMTEST is described. Finally, 

the data analytic procedures are described.  

Data Generation 

 Using R 2.13.0 (R Core Team Development, 2011), Equation 2 was used 

to generate dichotomous item responses such that Xij = 1 for a correct response 

and Xij = 0 for an incorrect response. For unidimensional conditions, the 

unidimensional IRT (Equation 1) model was obtained by setting the correlation 

between dimensions and all a-parameters on the second dimension to zero. The c-

parameter was set to zero for all items; that is, all datasets were generated from 

the 2-PL model. Although it is well-recognized that c > 0 is common in practice, 

recent work has suggested that the c-parameter has little impact on the 

performance of the current version of DIMTEST (Finch & Habing, 2007) for the 

sample sizes considered in this work.  

Number of Replications. From an empirical perspective, the goal was to 

determine the number of replications that would be necessary to estimate Type I 
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error rates and power with sufficient precision (i.e., low standard error). Each 

replicate dataset within a condition is an independent trial with a binary outcome 

(0 = do not reject HO, 1 = reject HO); to estimate the rejection rate for a given 

condition, the outcomes are summed and divided by the number of trials to form a 

proportion. Each condition is therefore a representative sample proportion (p) of a 

population proportion that can be characterized by a binomial distribution. The 

standard error (SEp) for the binomial distribution is given by: 
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such that p is the value of the sample proportion and R represents the number of 

replications (i.e., independent trials). Given the expected value of p (denoted p̂ ) 

and the desired standard error of p̂ (
pSE ˆ
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A confidence interval, which is based on the normal approximation to the 

binomial distribution, can also be formed around p̂  such that: 

 pSEZp ˆ2/1
ˆ ×± −α  (19) 

where Z1-α/2 represents the two-tailed critical value associated with the level of α 

chosen for the binomial distribution.  

 The choices of p̂  for Type I error rates and power were chosen based on 

past research on DIMTEST and standards that are common in social science 

research. Accordingly, the Type I error rate was set to α = .05 ( p̂ = .05) and 
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DIMTEST was deemed sufficiently powerful if 80% ( p̂ = .8) of the replicate 

datasets resulted in rejection of a false null hypothesis. Given these values of p̂ , R 

was calculated for different values of
pSE ˆ
. Table 1 shows the resulting values of R 

across the values of 
pSE ˆ
 considered along with 95% and 99% confidence 

intervals around p̂ . Based on these results, it was decided that 
pSE ˆ
 = .0145 struck 

an appropriate balance between precision and available computational resources. 

For the Type I error study and power studies, R = 226 and R = 761, respectively, 

to achieve 
pSE ˆ
 = .0145. To be conservative, the number of replications was set to 

800 for both the Type I error studies and power studies. In effect, the precision 

was greater in the Type I error study (
pSE ˆ
 = . 008) than in the power (

pSE ˆ
 = . 

014) study.  
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Table 1 

Number of Replications (R) Given 
pSE ˆ
with 95% and 99% Confidence Intervals 

(CI) 

 R  q = .05 CI  q = .8 CI 

pSE ˆ
 q = .05 q = .8  95% 99%  95% 99% 

.0200 119 400  [.011 .089] [-.002 .102]  [.761 .839] [.748 .852] 

.0195 125 421  [.012 .088] [.000 .100]  [.762. 838] [.750 .850] 

.0190 132 443  [.013 .087] [.001 .099]  [.763. 837] [.751 .849] 

.0185 139 467  [.014 .086] [.002 .098]  [.764. 836] [.752 .848] 

.0180 147 494  [.015 .085] [.004 .096]  [.765. 835] [.754 .846] 

.0175 155 522  [.016 .084] [.005 .095]  [.766. 834] [.755 .845] 

.0170 164 554  [.017 .083] [.006 .094]  [.767. 833] [.756 .844] 

.0165 174 588  [.018 .082] [.007 .093]  [.768. 832] [.757 .843] 

.0160 186 625  [.019 .081] [.009 .091]  [.769. 831] [.759 .841] 

.0155 198 666  [.020 .080] [.010 .090]  [.770. 830] [.760 .840] 

.0150 211 711  [.021 .079] [.011 .089]  [.771. 829] [.761 .839] 

.0145 226 761  [.022 .078] [.013 .087]  [.772. 828] [.763 .837] 

.0140 242 816  [.023 .077] [.014 .086]  [.773. 827] [.764 .836] 

.0135 261 878  [.024 .076] [.015 .085]  [.774. 826] [.765 .835] 

.0130 281 947  [.025 .075] [.017 .083]  [.775. 825] [.767 .833] 

.0125 304 1024  [.026 .074] [.018 .082]  [.776. 824] [.768 .832] 

.0120 330 1111  [.026 .074] [.019 .081]  [.776. 824] [.769 .831] 
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Generation of Person Parameters. Three levels of sample size (250, 

500, 750) were chosen for the current work. The largest sample size considered in 

this study has commonly been used in other research on DIMTEST, thereby 

allowing for comparison across studies. In contrast, sample sizes of 250 and 500 

have not been investigated with the current version of DIMTEST and therefore 

are reflective of the goals for this study. It is recommended that different subsets 

of examinees be used for selecting AT items and calculating the DIMTEST 

statistic. Accordingly, one third of the examinees were used for selecting AT 

items (83, 167, 250) with the remaining examinees (167, 333, 500) used for 

calculating the DIMTEST statistic.  

Person parameters were generated for each replication such that θ = (θ1, 

θ2) ~ N(0, Σ) where Σ is the variance-covariance matrix; the variance for each 

dimension was set to one, and the off-diagonal element of Σ was set to the desired 

correlation. The correlation between dimensions was manipulated in the power 

study to be either uncorrelated (ρ = 0), moderate (ρ = .35), or strong (ρ = .7).  

Generation of Item Parameters. Five levels of test length (9, 15, 21, 27, 

33) were chosen based on previous research and with the goals of this work in 

mind. One aspect of the items that was hypothesized to affect the performance of 

DIMTEST was the strength of dependence of item responses on the underlying 

dimensions (weak, moderate, strong). Item discrimination parameters were 

generated from a random uniform distribution for each replication within a 

condition. Table 2 shows the minima and maxima of the random uniform 

distribution used for each level of strength of dependence in the IRT 
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parameterization and the standardized factor loading metric. In terms of item 

difficulty parameters, Table 3 shows the fixed values of d-parameters for each 

level of test length; the values of d-parameters shown for any test length were 

simply repeated three times in order to arrive at the full test length. It is 

recognized that there is a confound between test length and the variability in the 

fixed item difficulties. Research on earlier versions of DIMTEST indicated that 

performance in multidimensional conditions is affected by the relative location of 

item difficulty parameters to person parameters and the variability of the 

generating item difficulty distribution (Seraphine, 2000). More recent research by 

Froelich and Habing (2008) suggests that these features of item difficulty 

parameters do not affect the performance of the current version of DIMTEST. 

Table 2 

Minima and Maxima of Random Uniform Distributions for Generating 

Discrimination Parameters 

Strength  

of 

Dependence 

IRT 

Discrimination  

Standardized 

Factor Loading 

Minimum Maximum  Minimum Maximum 

Weak .50 1.00  .28 .51 

Moderate .75 1.25  .40 .59 

Strong 1.25 1.75  .59 .72 

Note. The IRT discrimination parameters were transformed to standardized factor 

loadings via ( )2
/1/ DaDa jjj +=λ where D is a scaling constant equal to 1.7 

(Wirth & Edwards, 2007).  
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Table 3 

Generating Item Difficulty Parameters 

Test Length 

9 15 21 27 33 

-.75 -1.5 -1.5 -1.5 -1.5 

0 -.75 -1 -1.13 -1.2 

.75 0 -.5 -.75 -.9 

 .75 0 -.38 -.6 

 1.5 .5 0 -.3 

  1 .38 0 

  1.5 .75 .3 

   1.13 .6 

   1.5 .9 

    1.2 

    1.5 

Note. The sequence for each test length was repeated three times to produce the 

full test length.  

Test Structure. Froelich and Habing’s (2008) method was used to 

manipulate test structure. Their method consisted of (1) generating 

unidimensional a-parameters (denoted aj), (2) assigning each item an angle 

(denoted βj), and (3) calculating the discrimination parameters for the first (aj1) 

and second (aj2) dimensions with the following equations: 
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 )βcos(1 jjj aa = and )βsin(2 jjj aa = .  (20) 

For unidimensional conditions, 
jβ = 0 for all items; that is, all items exclusively 

measured θ1 and did not measure θ2. In simple structure conditions 
jβ = 0 

(measure θ1 exclusively) for two thirds of the items and 
jβ = 90 (measuring θ2 

exclusively) for the remaining items. In complex structure conditions angles were 

uniformly distributed for each replication such that 0 ≤ 
jβ ≤ 20 (measure θ1 best) 

for two thirds of the items and 70 ≤ 
jβ ≤ 90 (measure θ2 best) for the remaining 

items.  

Conducting DIMTEST 

 A number of decisions must be made by the user when conducting a 

DIMTEST analysis. The first decision is also the most important; users must 

partition the items into the PT and AT. As mentioned earlier, one goal of this 

study was to compare the performance and behavior of the ATFIND and 

exploratory DETECT programs for selecting AT items. The details for using these 

programs will be discussed first. Then, the specification of parameters for running 

DIMTEST will be elicited.  

 Parameters of Subtest Selection Methods. Although similar, the 

ATFIND and DETECT programs require different decisions on the user’s part. 

When conducting ATFIND, the only input necessary is an estimate of the c-

parameter. Since data were generated without guessing, c = 0 for all conditions in 

the study. The DETECT program requires more input than ATFIND. Specifically, 

one must select the type of analysis (confirmatory or exploratory), whether a 
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cross-validation analysis will be conducted, the maximum number of dimensions, 

and a seed number. For this work, exploratory DETECT with no cross-validation 

was used to maximize the DETECT index for a two dimensional solution; the 

default seed number (99991) was used.  

 DIMTEST Parameters. The parameters that must be specified for 

DIMTEST exclusively pertain to the bootstrapping procedure for removing bias 

from the test statistic. Three parameters are used for estimating the ICCs for each 

item – an estimate of the c-parameter, the number of evaluation points for 

smoothing ICCs, and the seed number. Since data were generated without 

guessing, c = 0 for all conditions. To smooth ICCs, 50 evaluation points (which is 

the default) were used. The default seed number (99991) was used. The final 

parameter that must be specified is the number of bootstrap replications; the 

default of 100 replications was used.  

Data Analysis 

 Type I error and power estimates were calculated for each condition by 

counting up the number rejections and dividing by the number of replications 

which was set to 800.  

Summary 

 This chapter has detailed the process for generating data, conducting the 

DIMTEST analyses for each replicated dataset, and analyzing the results. The 

factors manipulated included sample size, test length, and the strength of a-

parameters for the Type I error and power studies. The inter-dimensional 

correlation and test structure were also manipulated in the power study. The 
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minimum number of replications required to achieve pre-specified levels of 

precision was determined empirically and tempered by practical considerations; 

the number of replications for each condition was set to 800. In terms of data 

analyses, Type I error rates and power were estimated by simply calculating the 

proportion of replications that resulted in a rejection of the null hypothesis. 
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Chapter 4 

RESULTS 

This presentation of results is split into two sections. The first section 

presents the rejection rates for DIMTEST; the performance of ATFIND and 

DETECT with respect to selecting subtests is presented in the second section. 

Within each of these sections, the results for unidimensional and 

multidimensional conditions are shown separately.  

Rejection Rates 

Unidimensional Conditions: Estimation of Type I Error Rates. Figure 

5 presents the estimated Type I error rates based on 800 independent trials in each 

of the 45 unidimensional conditions. Each of the 15 panels corresponds to one of 

the combinations of sample size (the three rows of panels) and test length (the five 

panels within each row). The Type I error rate appears on the vertical axis, and 

the three levels of strength of dependence (weak, moderate, and strong) are shown 

on the horizontal axis. The black dashed line cutting across each panel marks the 

nominal rate of α = .05. The rejection rates for DIMTEST are shown separately 

for test partitions obtained with ATFIND (denoted by circle markers) and 

DETECT (denoted by triangle markers). In conditions generated with 21, 27, and 

33 items, the ATFIND and DETECT programs were applied to the same 

simulated datasets and are therefore directly comparable. Estimated Type I error 

rates for nine and 15-item tests are only shown for DETECT since it was not 

possible to use ATFIND for these conditions.  
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Figure 5. Proportion of rejections in 800 independent trials for unidimensional 

conditions. Values in the green and yellow bars correspond to the levels of sample 

size and test length, respectively. The dashed line marks the nominal rate of 

rejection (α = .05). W = weak strength of dependence, M = moderate strength of 

dependence, S = strong strength of dependence.  

 In general, DIMTEST was quite conservative across most conditions; that 

is, Type I error rates were below the nominal value of α = .05 for most conditions. 

Type I error rates were slightly higher than the nominal value for some conditions 

but the degree of inflation may have been the result of sampling error. However, 
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Type I error rates were approximately twice the nominal rate for nine item tests 

consisting of weakly discriminating items and at least 500 examinees. With the 

exception of short tests consisting of weakly discriminating items, the 

manipulated variables had trivial effects on the observed Type I rates. Notably, 

DIMTEST performed similarly when ATFIND and DETECT were applied to the 

same datasets for partitioning test items.  

Multidimensional Conditions: Estimation of Power. Figures 6 through 

8 graphically present the proportion of rejections for multidimensional conditions, 

or power, for each of the three levels of strength of dependence. The power of 

DIMTEST for all other combinations of the manipulated factors (sample size, test 

length, strength of dependence, test structure, test partitioning method) is shown 

in each figure. Each figure consists of 15 panels that represent the combinations 

of test length and sample size. Within any one panel, the three levels of 

dimensional correlation appear on the horizontal axis, and power is shown on the 

vertical axis. The lines within each panel represent one of the four combinations 

of test structure and test partitioning method. The markers differentiate the test 

partitioning method such that DETECT is denoted with triangle markers and 

ATFIND is denoted by circle markers. The lines differentiate test structure such 

that solid lines correspond to simple structure and dashed lines correspond to 

complex structure.  

Figure 6 presents the power results for strongly discriminating items. 

Several main effects and interactive relationships were found among the 

manipulated variables and power. Looking within each panel, the main effect of 
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increasing the correlation between dimensions is seen by looking across the 

horizontal axis and the main effect of test structure is seen by comparing the solid 

and dotted lines. The main effect of test length is seen looking across panels 

within a row holding constant the correlation between dimensions and subtest 

selection method. Finally, the main effect of sample is seen looking across panels 

within a column holding constant the correlation between dimensions and subtest 

selection method.  

 

 

 



 

Figure 6. Proportion of rejections in 800 independent trials for multidimensional 

conditions with strongly discriminating items. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively. 

Owing to the presence of ce

dimensions correlated at ρ

size, test structure, and subtest selection method were most clearly seen with 

dimensions correlated at ρ

the levels of test length, sample size, test structure, and subtest selection method 

conditional on dimensions being correlated at 
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Proportion of rejections in 800 independent trials for multidimensional 

conditions with strongly discriminating items. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively.  

Owing to the presence of ceiling effects for many conditions with 

ρ = 0 and ρ = .35, the main effects of test length, sample 

size, test structure, and subtest selection method were most clearly seen with 

ρ = .7. That is, there were conditional main effects across 

the levels of test length, sample size, test structure, and subtest selection method 

conditional on dimensions being correlated at ρ = .7.  With dimensions correlated 

 

Proportion of rejections in 800 independent trials for multidimensional  

conditions with strongly discriminating items. Values in the green and yellow bars  

iling effects for many conditions with 

= .35, the main effects of test length, sample 

size, test structure, and subtest selection method were most clearly seen with 

onditional main effects across 

the levels of test length, sample size, test structure, and subtest selection method 

.  With dimensions correlated 
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at ρ = .7, key main effects included positive relationships test length, sample size, 

simple structure relative to complex structure, and DETECT compared to 

ATFIND.  

Key interactive relationships were also observed with strongly 

discriminating items. The gains in power with increases in test length were 

amplified with simultaneous increases in sample size. The positive effects of the 

two-way interaction between sample size and test length, however, were 

dependent on test structure and the correlation between dimensions. For example, 

the positive effect of test length on power for test following a factorially complex 

model with dimensions correlated at ρ = .7 was smaller with 250 examinees than 

with 500 examinees.  Holding all else constant, the story was differed somewhat 

for data following a factorially simple model.  Power was generally high across 

the levels of test length with 500 examinees and therefore left relatively little 

room for improvement; the same was not true with 250 examinees and allowed 

power to consistently improve with increases in test length.  

Figure 7 shows the power results for moderately discriminating items. 

Compared to conditions with strongly discriminating items, a general drop in 

power was observed with moderately discriminating items. This finding 

highlights the positive main effect of having more strongly discriminating items. 

The main effects of other manipulated variables as discussed above were also 

seen with moderately discriminating items. Looking within panels, the effect of 

correlated dimensions is clearly seen to have a negative relationship with power 

particularly for data following exhibiting complex structure. For many conditions 



 

generated with complex structure and dimensions correlated at 

were commonly observed with 250 and 500 examinees and to a lesser

750 examinees.  

Figure 7. Proportion of rejections in 800 independent trials for multidimensional 

conditions with moderately discriminating items. Values in the green and yellow 

bars correspond to the levels of sample size and test length, r

Interactive relationships with power were also observed with moderately 

discriminating items. As was the case with strongly discriminating items, the 

positive relationship of test length was amplified by increased sample size; this 
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generated with complex structure and dimensions correlated at ρ = .7, floor effects 

were commonly observed with 250 and 500 examinees and to a lesser extent with 

Proportion of rejections in 800 independent trials for multidimensional 

conditions with moderately discriminating items. Values in the green and yellow 

bars correspond to the levels of sample size and test length, respectively. 

Interactive relationships with power were also observed with moderately 

discriminating items. As was the case with strongly discriminating items, the 

positive relationship of test length was amplified by increased sample size; this 

, floor effects 

extent with 

 

Proportion of rejections in 800 independent trials for multidimensional 

conditions with moderately discriminating items. Values in the green and yellow 

espectively.  

Interactive relationships with power were also observed with moderately 

discriminating items. As was the case with strongly discriminating items, the 

positive relationship of test length was amplified by increased sample size; this 
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relationship again depended on the levels of the correlation between dimensions 

and test structure. For example, for data following a factorially simple model with 

dimensions correlated at ρ = .7, the positive moderating relationship between 

sample size and test length is seen with 500 and 750 examinees, but on account of 

floor effects, not with 250 examinees. A similar, but less pronounced trend was 

also observed for tests following a complex loading structure with dimensions 

correlated at ρ = .35. Importantly, the nature of these interactive relationships was 

not seen with strongly discriminating; this highlights the moderating influence of 

strength of dependence.  

 



 

Figure 8. Proportion of rejections in 800 independent trials for multidimensional 

conditions with weakly discriminating items. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively. 

Figure 8 shows the power obtain

lower than was observed in conditions with more strongly discriminating items; 

this highlights the main effect of strength of dependence. The positive moderating 

relationship of sample size and test length was not ob

correlated at ρ = .7 irrespective of test structure on account of very low power 

across all combinations of test length and sample size. The positive moderating 
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Proportion of rejections in 800 independent trials for multidimensional 

conditions with weakly discriminating items. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively.  

Figure 8 shows the power obtained with weakly discriminating items was 

lower than was observed in conditions with more strongly discriminating items; 

this highlights the main effect of strength of dependence. The positive moderating 

relationship of sample size and test length was not observed with dimensions 

irrespective of test structure on account of very low power 

across all combinations of test length and sample size. The positive moderating 

 

Proportion of rejections in 800 independent trials for multidimensional 

conditions with weakly discriminating items. Values in the green and yellow bars 

ed with weakly discriminating items was 

lower than was observed in conditions with more strongly discriminating items; 

this highlights the main effect of strength of dependence. The positive moderating 

served with dimensions 

irrespective of test structure on account of very low power 

across all combinations of test length and sample size. The positive moderating 



  53 

role of sample size and test length on power, however, was more clearly seen with 

dimensions correlated at either ρ = 0 or ρ = .35.  This was particularly true with 

250 and 500 examinees for data that followed a factorially simple model and with 

750 examinees for data that followed a factorially complex model.   

Summary of Trends in Power.  Key trends between the manipulated 

variables and power include positive relationships with sample size, test length, 

and strength of dependence; negative relationships were found between the 

correlation between dimensions and for test following a factorially complex rather 

than factorially simple model.  However, the magnitude of main effects often 

depended on the levels of other variables.  The positive effect of test length was 

amplified by increased sample size; this moderating relationship in turn was 

moderated by characteristics of the underlying model such as the test structure, 

the correlation between dimensions, and the strength of dependence.  

Evaluation of Test Partitions 

 The secondary focus of this study was to compare the test partitions 

obtained with ATFIND and DETECT. The previous section showed how the 

rejection rates obtained with DIMTEST were affected by the manipulated 

variables. As acknowledged earlier, the performance of DIMTEST is inherently 

tied to the partitioning of test items. By focusing on the test partitions obtained 

with ATFIND and DETECT, this chapter provides insight as to why the 

DIMTEST program performed as it did with respect to rejection rates.  

Unidimensional Conditions. The test partitions obtained in 

unidimensional conditions were evaluated in two ways. First, the average AT 
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length was calculated separately for ATFIND and DETECT across the 800 

replications in each condition; the results are shown in Figure 9 for each of the 45 

unidimensional conditions. The overall structure is similar to Figures 5 – 8 with 

the exception of the vertical axis. The positive relationship between total test 

length and AT length is inherent. In order to evaluate the role of test length 

meaningfully, it was necessary to place the average AT length on a common 

scale. Towards that end, the vertical axis shows the ratio of the average observed 

AT length to the total test length; values are interpreted as the average percentage 

of the total test length that were partitioned to the assessment subtests across 800 

independent trials. While the manipulated variables generally had little bearing on 

the average AT length, clear differences were found between ATFIND and 

DETECT for tests consisting of 21 or more items. In particular, DETECT tended 

to produce longer assessment subtests on average than ATFIND. The difference 

in average AT length between ATFIND and DETECT, however, tended to 

decrease with increases in test length.  
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Figure 9. Average length of assessment subtests across 800 independent trials. 

Values in the green and yellow bars correspond to the levels of sample size and 

test length, respectively. W = weak strength of dependence, M = moderate 

strength of dependence, S = strong strength of dependence.  

The ATFIND and DETECT-generated test partitions were also compared 

directly. For the purposes of the current work, three categories were used for 

comparing the test partitions. The first of which was strict agreement. For any one 

test partition, strict agreement was satisfied if the AT found with ATFIND was 

identical to the AT found with DETECT. The second category, which consists of 



  56 

two possibilities, required that the AT obtained with one method be a proper 

subset of the AT obtained with the other. This situation occurred if (a) the 

assessment subtests obtained with the ATFIND and DETECT programs differed 

in length, and (b) the shorter AT was a proper subset of the longer AT. If one AT 

was a subset of the other, then the primary difference was length. The third 

category was disagreement. Assessment subtests were deemed to disagree if (a) 

they differed in terms of length and the shorter AT was not a proper subset of the 

longer AT, or (b) they were the same length but differed by at least one item.  

The results for comparing test partitions are shown in Figure 10. The 

panels in the figure correspond to one of the nine combinations of test length (21, 

27, 33) and sample size (250, 500, 750) in which ATFIND and DETECT were 

both used to partition test items. The four levels of comparison among the test 

partitions are denoted by different markers. Agreement is denoted by circles; 

disagreement is denoted by triangles; the addition operator denotes ATFIND 

being a subset of DETECT; and the multiplication operator denotes DETECT 

being a subset of ATFIND. The proportion of rejections out of 800 independent 

trials is shown on the vertical axis, and the three levels of strength of dependence 

are shown on the horizontal axis.  
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Figure 10. Comparison of similarity of ATFIND and DETECT-generated AT 

subtests across 800 independent trials for unidimensional conditions. Values in 

the green and yellow bars correspond to the levels of sample size and test length, 

respectively.  

 For tests following a unidimensional structure, ATFIND- and DETECT-

generated test partitions were most likely to disagree. When test partitions did not 

disagree, ATFIND was most likely to produce an AT that was a subset of the AT 

found with DETECT. As evidenced above, ATFIND produced shorter assessment 

subtests, on average, than DETECT. Taken together these results indicate that 
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when directly compared the AT found with ATFIND would be shorter and either 

(a) be a proper subset of the DETECT AT, or more likely, (b) include at least one 

item that was not observed on the DETECT AT. Notably, disagreement became 

more likely to the extent that test length increased.  

Multidimensional Conditions. Like the unidimensional conditions, test 

partitions in multidimensional conditions were evaluated in terms of length and 

similarity between the assessment subtests found with ATFIND and DETECT. 

Unlike the unidimensional conditions, the test partitions that ought to result when 

applying a subtest selection method were known for multidimensional conditions. 

Therefore, this afforded the opportunity to also evaluate the accuracy of the test 

partitions obtained with ATFIND and DETECT. The following presentation of 

results is ordered such that accuracy is shown first, followed by the similarity of 

test partitions, and finally the average AT length across conditions is shown last.  

Accuracy of Test Partitions. Before presenting the results, it’s necessary 

to first define accuracy. A test partition was deemed accurate if the observed AT 

(and therefore the PT) was identical to the true test partition. Multidimensional 

data were simulated such that the first two thirds of the items best measured the 

first dimension, and the remaining one third of the items best measured the second 

dimension. Accordingly, a test partition was labeled as accurate if the PT 

consisted only of the first two thirds of the items and the AT consisted only of the 

final one third of the items. Although this requirement for accuracy is strict, this 

definition has been employed by Zhang and Stout (1999b) and Roussos and 

Ozbek (2006) in their investigations of DETECT. The results for accuracy are 



 

presented graphically. Figures 11 through 13 shares an identical structure to those 

used to present rejection rates in multidimensional conditions. Th

difference is the vertical axis; instead of the proportion of rejections, the vertical 

axis now shows the proportion of 800 replications that resulted in accurate test 

partitions.  

Figure 11. Proportion of accurate test partitions across 800 in

multidimensional conditions with strongly discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

respectively.  
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 Figure 11 shows the proportion of accurate test partitions across all 

conditions generated with strongly discriminating items. Key main effects on 

accuracy include a (a) positive relationship with sample size, (b) negative 

relationship with the correlation between dimensions, (c) negative relationship 

with test length, and (d) a decline in accuracy for data following a factorially 

complex rather than factorially simple model. With exception to tests generated 

with 21 items, the performances of ATFIND and DETECT were similar. An 

interactive relationship involving sample size, test structure, and the correlation 

between dimensions was also found. With 250 examinees, the effect of test 

structure was most clearly seen with dimensions correlated at ρ = 0 and ρ = .35; 

accuracy was consistently low with dimensions correlated at ρ = .7 irrespective of 

test structure. In contrast, accuracy was consistently high with uncorrelated 

dimensions with 500 and 750 examinees. For these conditions, increasing the 

correlation between dimensions more strongly separated out the effects of test 

structure.  

 Similar trends were also seen in conditions with moderately discriminating 

conditions as shown in Figure 12. The main effects enumerated above with highly 

discriminating items also apply with moderately discriminating items. The nature 

of the interactive relationship among sample size, test structure, and the 

correlation between dimensions was moderated by decrease in the strength of 

dependence. Across all levels of sample size, the effect of test structure was 

strongest when dimensions were either uncorrelated or correlated at ρ = .35. 



 

However, the magnitude of the effect of test structure was generally larger with 

sample sizes of 500 and 750 examinees than with 250 examinees. 

Figure 12. Proportion of accurate test partitions across 800 i

multidimensional conditions with moderately discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

respectively.  

 Figure 13 shows the proportion of accurate rejections for w

discriminating items. The main effects enumerated with more strongly 

discriminating conditions also applied here, and the general structure of the 
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However, the magnitude of the effect of test structure was generally larger with 

sample sizes of 500 and 750 examinees than with 250 examinees.  

. Proportion of accurate test partitions across 800 independent trials for 

multidimensional conditions with moderately discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

Figure 13 shows the proportion of accurate rejections for weakly 

discriminating items. The main effects enumerated with more strongly 

discriminating conditions also applied here, and the general structure of the 

However, the magnitude of the effect of test structure was generally larger with 

 

ndependent trials for 

multidimensional conditions with moderately discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

eakly 

discriminating conditions also applied here, and the general structure of the 
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interactive effects was similar to those found with moderately discriminating 

conditions. With respect to the interactive relationship, however, differences 

between test structure became more pronounced with either uncorrelated or 

dimensions correlated at ρ = .35 to the extent that sample size increased. Across 

all levels of sample size, accuracy was consistently close to zero with for tests that 

were factorially complex with dimensions correlated at ρ = .35; holding the 

correlation between dimensions constant at ρ = .35, accuracy tended to improve 

with factorially simple tests to the extent that sample size was increased. A similar 

trend was also found with uncorrelated dimensions; differences found between 

factorially complex and factorially simple tests were smaller with 250 examinees 

than with 500 and 750 examinees.  



 

Figure 13. Proportion of accurate te

multidimensional conditions with weakly discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

respectively.  

Similarity of Test Partitions

gauging the similarity between ATFIND

in multidimensional conditions. The axes and markers for each figure are identical 

to those used for Figure 10. Each figure presents the results

combinations of the strength of dependence and test structure. 
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. Proportion of accurate test partitions across 800 independent trials for 

multidimensional conditions with weakly discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

Similarity of Test Partitions. Figures 14 through 19 show the results for 

gauging the similarity between ATFIND- and DETECT-generated test partitions 

in multidimensional conditions. The axes and markers for each figure are identical 

to those used for Figure 10. Each figure presents the results for one of the six 

combinations of the strength of dependence and test structure.  

 

st partitions across 800 independent trials for 

multidimensional conditions with weakly discriminating items. Values in the 

green and yellow bars correspond to the levels of sample size and test length, 

14 through 19 show the results for 

generated test partitions 

in multidimensional conditions. The axes and markers for each figure are identical 

for one of the six 
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Ideally, the circle marker for each level of strength of dependence within a 

panel would be to the far right. This result would indicate that ATFIND and 

DETECT suggested identical test partitions for all replications within a condition; 

this was not the case for most multidimensional data structures. Generally 

speaking, the test partitions found with ATFIND and DETECT were most likely 

to agree for tests consisting of 27 or more strongly discriminating items and 

uncorrelated dimensions. When test partitions were not identical, it was generally 

the case that (a) the AT found with ATFIND was a subset of DETECT or (b) the 

assessment subtests disagreed. In cases in which non-identical test partitions were 

found, disagreement became less likely to the extent that conditions became more 

ideal (increased sample size, test length, strength of dependence; lower correlation 

between dimensions; simple rather than complex test structure).  
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Figure 14. Comparison of ATFIND and DETECT test partitions across 800 

replications for data exhibiting simple structure with strongly discriminating items 

in multidimensional conditions. Values in the green and yellow bars correspond to 

the levels of sample size and test length, respectively.  
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Figure 15. Comparison of ATFIND and DETECT test partitions across 800 

replications for data exhibiting simple structure with moderately discriminating 

items in multidimensional conditions. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively. 
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Figure 16. Comparison of ATFIND and DETECT test partitions across 800 

replications for data exhibiting simple structure with weakly discriminating items 

in multidimensional conditions. Values in the green and yellow bars correspond to 

the levels of sample size and test length, respectively.  
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Figure 17. Comparison of ATFIND and DETECT test partitions across 800 

replications for data exhibiting complex structure with strongly discriminating 

items in multidimensional conditions. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively. 
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Figure 18. Comparison of ATFIND and DETECT test partitions across 800 

replications for data exhibiting complex structure with moderately discriminating 

items in multidimensional conditions. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively.  
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Figure 19. Comparison of ATFIND and DETECT test partitions across 800 

replications for data exhibiting complex structure with weakly discriminating 

items in multidimensional conditions. Values in the green and yellow bars 

correspond to the levels of sample size and test length, respectively.  
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Average AT Length. The results for the average AT length in 

multidimensional conditions are shown in Figures 18 through 20. Each figure 

corresponds to one of the three levels of strength of dependence such that Figures 

18, 19, and 20 present the results for test consisting of strong, moderate, and weak 

item discriminations, respectively. With the exception of the vertical axis, the 

structure of each figure is identical to those shown for presenting rejection rates 

and the accuracy of test partitions. Since the data were simulated, the length of the 

true AT (3, 5, 7, 9, 11) for each level of total test length (9, 15, 21, 27, 33) was 

known in multidimensional conditions. The vertical axis shows the ratio of the 

average observed AT length across 800 independent trials to the true AT length. 

By forming the ratio, the average AT length across the levels of total test length 

are made comparable. A ratio equal to one indicates that the typical observed AT 

length was equal to the true AT length; a ratio equal to 1. 5 indicates that the 

typical test length was longer than the true AT length by half, which is the 

maximum length the AT can be; and a ratio equal to . 5 indicates that the typical 

AT length was half of the true AT length.  

A few key trends were found between the manipulated variables and the 

typical length of assessment subtests. First, the average observed AT length 

became closer to the true AT lengths dimensions became less correlated, for tests 

exhibiting simple rather than complex structure, and/or as the strength of 

dependence increased. Second, neither test length nor sample size affected the 

average length of assessment subtests. Third, as hinted at earlier, the length of 

assessment subtests found with the ATFIND program for 21 item tests were 
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consistently shorter than the true AT length. The typical observed AT length 

found with ATFIND was between five and six items while the true AT length was 

seven items for 21 item tests. Finally, the average AT length deviated from the 

true AT length for many of the multidimensional conditions such that assessment 

subtests were longer than the true AT length; this was particularly true assessment 

subtests found with DETECT.  

 

 

 

 



 

Figure 20. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with strongly discriminating items. Values 

in the green and yellow bars correspond to the levels of sample size and test 

length, respectively.  
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. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with strongly discriminating items. Values 

in the green and yellow bars correspond to the levels of sample size and test 

 

. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with strongly discriminating items. Values 

in the green and yellow bars correspond to the levels of sample size and test 



 

Figure 21. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with moderately discriminating items. 

Values in the green and yellow bars correspond to the levels of sample size and 

test length, respectively.  
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. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with moderately discriminating items. 

Values in the green and yellow bars correspond to the levels of sample size and 

 

 

. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with moderately discriminating items. 

Values in the green and yellow bars correspond to the levels of sample size and 



 

 

Figure 22. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with weakly discriminating items. Values 

in the green and yellow bars correspond to the levels of sample size and 

length, respectively.  

Summary 

 This chapter has presented the results for unidimensional and 

multidimensional conditions. The estimation of Type I error rates and power in 

unidimensional and multidimensional conditions, respectively, served as the 
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. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with weakly discriminating items. Values 

in the green and yellow bars correspond to the levels of sample size and test 

This chapter has presented the results for unidimensional and 

multidimensional conditions. The estimation of Type I error rates and power in 

unidimensional and multidimensional conditions, respectively, served as the 

 

. Ratio of the average AT length across 800 replications to the true AT 

length for multidimensional conditions with weakly discriminating items. Values 
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multidimensional conditions. The estimation of Type I error rates and power in 

unidimensional and multidimensional conditions, respectively, served as the 
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primary focus of this work. In general, the Type I error rate with DIMTEST 

tended to be conservative for most unidimensional conditions. Type I error rates 

approximately doubled, however, with either 500 or 750 examinees responding to 

nine weakly discriminating items. For multidimensional conditions, the 

manipulated variables exerted main effects and also combined interactively to 

influence the performance of DIMTEST. Put simply, the power of DIMTEST 

tended to improve as conditions became more ideal (larger sample size, longer 

tests, simple structure, less correlated dimensions, more discriminating items). To 

briefly summarize the interactive effects, combining a larger sample size, longer 

tests, less correlated dimensions, and more discriminating in generally resulted in 

high power with the exception of ceiling and floor that were observed for some 

conditions.  

 The secondary focus of this work was to compare the test partitions 

obtained the two conditional covariance-based subtest selection methods, 

ATFIND and DETECT. Test partitions were evaluated in terms of accuracy and 

test length, and were directly compared to assess their similarity between 

methods. In unidimensional conditions, assessment subtests found with DETECT 

tended to be longer, on average, than those found with ATFIND. Accordingly, the 

assessment subtests tended to disagree or the AT found with ATFIND was a 

proper subset of the AT found with DETECT; disagreement was observed more 

often for longer tests. In general, ATFIND and DETECT produced accurate test 

partitions, were in agreement more often, and more closely approximated the true 
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AT length in multidimensional conditions to the extent that conditions became 

more ideal. 
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Chapter 5 

DISCUSSION AND CONCLUSIONS 

Each of manipulated variables had meaningful impact on the rejection 

rates and the structure of test partitions. Key findings pertaining to these outcomes 

are separately discussed for unidimensional and multidimensional conditions. In 

light of the results, sample size and test length recommendations are given for the 

current DIMTEST procedure. Finally, concluding statements, limitations of the 

study, and suggestions for future work are provided.  

Unidimensional Conditions 

 Type I Error Rates. It was hypothesized for unidimensional conditions 

that none of the manipulated variables would systematically impact rejection 

rates; this hypothesis was generally supported (see Figure 5 and Appendix B). 

Irrespective of subtest selection method, Type I error rates were consistently 

below the nominal rate of α = .05 for tests consisting of 21 or more items. 

However, Type I error rates were systematically affected by the manipulated 

variables for shorter tests. Specifically, Type I error rates were inflated for tests 

comprised of nine weakly discriminating items, particularly to the extent that 

sample size was increased. Holding all else constant, Type I error rates were 

reduced for nine item tests by increasing the strength of dependence. Finch and 

Habing (2007) found that Type I error rates became inflated with DIMTEST by 

increasing the sample size from 1000 to 2000 examinees for short tests. The 

current study extends their work by showing that the role of sample size on Type I 

error rates for short test may be moderated by the strength of dependence.  
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 In general, rejections rates were lower than the nominal Type I error rate 

of α = .05 suggesting that DIMTEST is a conservative tests of the null hypothesis 

of essential unidimensionality for the sample sizes and test lengths considered. On 

one hand, this indicates that an analyst is quite unlikely to reject the null 

hypothesis with DIMTEST for tests that are indeed best characterized by one 

dimension. On the other hand, the empirical Type I error rate did not approach 

specified rate with increases in test length and/or sample size, which is an 

asymptotic relationship expected from theory (Stout, 1987).  

Structure of Test Partitions. With no existing work to draw from, 

hypotheses were not made about the relationship between the manipulated 

variables and the structure of test partitions; however, the characteristics of test 

partitions were explored. Test partitions in unidimensional conditions were 

explored by (a) calculating the average length of assessment subtests across the 

800 replications for each condition, and (b) directly comparing the assessment 

subtests obtained with ATFIND and DETECT. It was found that the manipulated 

variables had almost no effect on the average AT length (see Figure 9 and 

Appendix C). However, it was found that the average AT lengths obtained with 

ATFIND were consistently shorter than those found with DETECT. In turn, it was 

found that test partitions tended to disagree or ATFIND produced an AT that was 

a proper subset of the AT found with DETECT (see Figure 10). Disagreement 

became more likely to the extent that test length was increased. This finding may 

be expected in that increasing the test length yields a greater chance that at least 
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one item will differbetween the assessment subtests generated with any two 

subtest selection methods.  

Multidimensional Conditions 

 Power. In support of the hypotheses for this study, finding evidence for 

multidimensionality was easier with larger samples, longer tests, stronger strength 

of dependence, less correlated dimensions, and for test exhibiting simple rather 

than complex structure (see Figures 6 – 8). These findings were also consistent 

with previous research on DIMTEST (Nandakumar & Stout, 1993; Finch & 

Habing, 2007; Froelich & Habing, 2008; Froelich & Stout, 2003) and Zhang and 

Stout’s (1999a) conditional covariance theory. The main effects, however, were 

not consistent across the levels of the other manipulated variables.  

To highlight the general nature of the interactive effects, consider 

increasing the test length for conditions with dimensions correlated at ρ = .7. In 

the weak strength of dependence conditions, power was consistently low across 

all levels of test length irrespective sample size and test structure. The same was 

true for tests with complex structure and moderately discriminating items. In 

contrast, for tests following a simple structure model with at least 500 examinees, 

the low levels of power were offset by increasing test length. In general, 

increasing the test length for tests following a simple structure model had less of 

an effect with dimensions correlated at ρ = .7 on account of already high power.  

 Structure of Test Partitions. Three aspects of the test partitions were 

explored in multidimensional conditions: accuracy, the similarity of assessment 

subtests obtained with ATFIND and DETECT, and the average AT length. With 
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respect to the accuracy of test partitions, the trends in accuracy (see Figures 11 – 

13) were similar to the trends seen with rejection rates in multidimensional 

conditions. Specifically, test partitions were more likely to be accurate with (a) 

increased sample size, (b) less correlated dimensions, (c) a stronger strength of 

dependence, and (d) for tests following a simple rather complex structure model. 

The relationship between test length and accuracy, however, differed in two ways 

from the trends seen with rejection rates. First, test partitions were slightly less 

likely to be accurate with increases in test length. One possible explanation is that 

the potential for assigning at least one item to the wrong cluster becomes greater 

for longer tests. Second, test partitions obtained with ATFIND were never 

accurate for 21 item tests. This finding highlights a nuance in the ATFIND 

program that is not implemented in the DETECT program; the AT must consist of 

at least four items, and the PT must consist of at least 15 items. Since the true AT 

in 21 item conditions consisted of seven items, the true PT of 14 items was shorter 

than allowed by the ATFIND program. It was therefore impossible for the 

ATFIND program to produce accurate test partitions based on the definition of 

accuracy used here.  

Distinct patterns were observed when directly comparing the assessment 

subtests found with ATFIND and DETECT directly (see Figures 14-19). First, the 

results obtained for 21 items differed markedly from 27 and 33 item tests. For 21 

item tests, the assessment subtests obtained with DETECT were never observed to 

agree with those found with ATFIND or be a subset of ATFIND assessment 

subtests. Rather, ATFIND assessment subtests were more likely to be a subset of 
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DETECT assessment subtests with (a) increased sample size, (b) less correlated 

dimensions, (c) a stronger strength of dependence, and (d) for tests following a 

simple rather than complex structure model. The results for 27 and 33 item tests 

were quite similar to each other. Strict agreement between ATFIND and DETECT 

assessment subtests became more likely with (a) increased sample size, (b) less 

correlated dimensions, (c) a stronger strength of dependence, and (d) for tests 

following a simple rather than complex structure model. When the assessment 

subtests between methods did not agree, the patterns were somewhat more mixed 

for 27 and 33 item tests. However, as was the case for 21 item tests, the most 

likely scenarios were that the assessment subtests obtained with ATFIND either 

disagreed with or were subset of the DETECT assessment subtests.  

The relationships pertaining to the accuracy of test partitions and the 

agreement between ATFIND and DETECT assessment subtests were strongly 

tied to the typical length of assessment subtests (see Figures 20 – 22). Across all 

levels of strength of dependence, they eye is drawn to the lines showing the 

results for ATFIND in 21 item conditions, which are the only lines that show an 

average AT length lower than the true AT length. This finding reflects the 

requirements placed on the length of the two subtests by the ATFIND program. 

The remaining results indicate that the average observed AT length became closer 

to the true AT length with (a) increased sample size, (b) a stronger strength of 

dependence, (c) less correlated dimensions, and (d) for tests following a simple 

rather complex structure model. Test length had little effect on the relative length 

of observed assessment subtests to the true assessment subtest length. These 
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trends shed light on the accuracy of test partitions in that accuracy tended to 

diminish on account of ATFIND and DETECT including more items than 

necessary on the assessment subtests. It was also observed that DETECT tended 

to produce slightly longer assessment subtests than ATFIND, on average, 

particularly with an increased correlation between the dimensions and/or 

decreased strength of dependence. In these conditions, ATFIND tended to 

produce assessment subtests that were a subset of those found with DETECT or 

the assessment subtests disagreed. To the extent that the average length of 

ATFIND and DETECT-generated subtests became more similar, the assessment 

subtests were more likely to agree.  

Relating the Structure of Test Partitions to DIMTEST Performance. 

For true multidimensional tests, the performance of DIMTEST depends on the 

utility of the test partitioning method to maximize dimensional homogeneity 

within subtests and dimensional heterogeneity between subtests. The 

maximization of dimensional homogeneity and heterogeneity was captured by the 

operationalization of test partition accuracy. In general, the observed trends in 

power were also observed with the proportion of perfect test partitions, or 

accuracy; as the proportion of accurate test partitions increased, so did power. The 

relationship between accuracy and power, however, was not as strong as intuition 

may suggest. In particular, gains in accuracy were did not perfectly mirror gains 

in power; the latter were generally greater than the former.  

The discrepancy between power and accuracy is an issue of the robustness 

of DIMTEST in multidimensional conditions to inaccurate test partitions. In the 
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context of DIMTEST, robustness refers to the degree by which a test partition can 

be inaccurate and still yield a correct result. As robustness was not the focus of 

this work, it was not investigated directly. However, key relationships in the 

average AT length, accuracy, and power provide some insight into the issue of 

robustness.  

One key finding was that DIMTEST was similarly powered with ATFIND 

and DETECT for 21 item test even though ATFIND always produced assessment 

subtests that were shorter than the true AT length, and were therefore never 

accurate. Restrictions on the length of partitioning subtests with ATFIND (JPT ≥ 

15) forced assessment subtests to be shorter than the true AT length. Despite this 

restriction, the differences in the power of DIMTEST obtained with ATFIND and 

DETECT were substantially smaller than the differences seen with respect to the 

accuracy of test partitions. At the extreme, DIMTEST rejected the null hypothesis 

nearly 100% of the time with ATFIND for some conditions even though the test 

partitions submitted for testing were never perfectly accurate.  

Instances of high power despite lacking accuracy of test partitions were 

seen in other conditions as well. Although somewhat restrictive, conditions with a 

strong strength of dependence, complex test structure, and dimensions correlated 

at ρ = .7 are discussed for illustration. For these conditions, the average length of 

assessment subtests were consistently longer than the true subtests, and in turn, 

resulted in diminished proportions of accurate test partitions. Moreover, a slight 

decline in accuracy was observed with increases in test length. Despite the low 

levels of accuracy, the power of DIMTEST improved with increases in test length 
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and sample size. Taken together, these results indicate that DIMTEST became 

more robust to inaccurate test partitions with increases in sample size and test 

length. Similar trends were also seen with uncorrelated and moderately correlated 

dimensions with weakly and moderately discriminating items.  

Sample Size and Test Length Requirements 

 The primary goal of this work was to update the sample size and test 

length requirements for the current DIMTEST procedure. Previous research has 

suggested that DIMTEST can be expected to maintain the Type I error rate at or 

below the nominal rate without sacrificing power with a minimum of 750 

examinees and 25 items (Gessoroli and De Champlain, 1996; Stout, 1987). 

Drawing on the results from this work, it is argued that the selection of sample 

size and test length minima for DIMTEST depends on the approach used for 

making recommendations.  

 The approach for making recommendations in previous research on 

DIMTEST was to select the lowest combination of sample size and test length 

that yielded sufficiently low Type I error rates without sacrificing power. Given 

that DIMTEST is intended for use prior to selecting a unidimensional IRT model, 

the analyst is unlikely to know much about the data at hand beyond the sample 

size and test length. The results in this study indicates that unknown features of 

the data such as the strength of dependence, the correlation between dimensions, 

and test structure strongly impacted the performance of DIMTEST. Since these 

features of the data are most likely unknown to the analyst, one reasonable 

solution is to recommend a combination of sample size and test length that yields 
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the lowest opportunity for making an incorrect inference about the dimensionality 

of a test based on the DIMTEST analysis. From this perspective, the 

recommended combination of sample size and test length based on the current 

work would be 750 examinees and 33 items. For this sample size and test length 

combination, Type I error rates were low and power was reasonably high with 

moderately correlated dimensions and weakly discriminating items.  

 The above approach assumes a passive analyst and may unnecessarily 

detract those with shorter tests and/or smaller samples from using DIMTEST. 

However, DIMTEST maintained control of the Type I error rate and was 

reasonably powered for some conditions with as few as 250 examinees and nine 

items. A more flexible approach to offering recommendations assumes an active 

analyst who has gained some understanding about the data at hand.  

While features of a test such as the strength of dependence of items, test 

structure, and the correlation between dimensions cannot be known, analysts can 

gain some insight about these features of the data at a hand via classical test 

theory indices and subject matter expertise (when available). For example, the 

strength of dependence between items and the latent variable(s) can be 

approximated via item-total score correlation coefficients. Two features of the 

item-total score correlation coefficients can be considered in light of the current 

work: (a) the strength of the coefficients and (b) the pattern of the coefficients. 

Higher coefficients indicate a stronger strength of dependence and potentially a 

more powerful test of the unidimensionality assumption. The pattern of 

coefficients can suggest (a) unidimensionality if all items are highly related to the 
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total score or (b) multidimensionality if some items are not strongly related to the 

total score. Subject matter expertise can also be called on to gain insight about the 

expectations with respect to test structure in terms of (a) the number of latent 

variables and (b) which items are associated with the latent variable(s). If multiple 

dimensions are suspected, the correlation between dimensions can be estimated 

via the correlation between the total scores for the expected dimensions. The key 

point is that analysts can evaluate how well the features of real data align with the 

features of the simulated data in this work (and other work) and decide whether 

DIMTEST would yield a trustworthy result given their sample size and test 

length.  

Conclusions 

 This research extends the existing research on the current DIMTEST 

procedure and provides avenues for additional research. Central to this work was 

the belief that recent chances to the DIMTEST statistic would require smaller 

samples and fewer items than research on earlier versions has suggested. The 

results indicate that sample size and test length requirements are tied to the 

features of the data such as the strength of discrimination parameters, and in 

multidimensional conditions, the correlation between dimensions and the test 

structure. Given that the range of sample size and test length requirements varied 

for different data structures, it is recommended that analysts become familiar with 

the data at a descriptive level via classical test theory statistics and subject matter 

expertise (when possible) prior to conducting DIMTEST.  
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 To date, this work is the first to investigate the performance of DIMTEST 

using Zhang and Stout’s (1999b) DETECT program with the genetic algorithm 

(the ATFIND program uses DETECT, but does not employ the genetic 

algorithm). Although the performance of DIMTEST with ATFIND and DETECT 

was similar for most conditions, DETECT yielded non-trivially higher power than 

ATFIND for some multidimensional conditions. Moreover, it was possible to use 

DETECT to obtain subtests with fewer items than ATFIND. These features call 

for additional research on the utility of DETECT for obtaining the required test 

partition for DIMTEST 

 The relationship between the performance of and the structure of test 

partitions obtained with ATFIND, DETECT, and possibly other methods deserves 

further attention, particularly for multidimensional conditions. In general, 

rejection rates tended to be larger than the proportion of accurate test partitions; 

this indicates that DIMTEST is robust to imperfect partitions. Additional research 

is necessary for (a) understanding factors that influence the structure of test 

partitions and (b) gauging the degree of departure of the AT/PT test partitioning 

from the true test structure than can be withstood before DIMTEST no longer 

performs effectively. 
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APPENDIX A  

DATA GENERATION CODE 
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################################################################## 

## Code for binary generating IRT data.  

################################################################## 

 

#SPECIFY THE SAMPLE SIZE AND TEST LENGTH.  

#SPECIFY UNIDIMENSIONAL OR MULTIDIMENSIONAL GENERATION 

(1=unidim, 2=multidim).  

#SPECIFY THE STRUCTURE OF MIRT DATA (1=simple, 2=appss).  

#SPECIFY THE NUMBER OF REPLICATIONS.  

#SPECIFY ALL SIMULATION SETTINGS.  

 

I = 750 

exam_prop = 2 

J = 33 

type=2 

struct_type = "simple"   

r="modcor" #nocor, modcor, or highcor 

alevel="high" #low, moderate, or high 

nreps=800 

 

#DIRECTORIES.  

condition = paste(I, "N", J, "J", struct_type, r, alevel, sep="_") 

gen. dir = paste("C:\\Documents and Settings\\Derek\\Desktop\\", condition, "\\", 

sep="")  

#gen. dir = paste("F:\\Users\\Derek\\Desktop\\", condition, "\\", sep="")  

#gen. dir = paste("I:\\", condition, "\\", sep="")  

dir. create(gen. dir) 

dir. create(paste(gen. dir, "items\\", sep="")) 

dir. create(paste(gen. dir, "thetas\\", sep="")) 

dir. create(paste(gen. dir, "data\\", sep="")) 

dir. create(paste(gen. dir, "figures\\", sep="")) 

item_fold=paste(gen. dir, "items\\", sep="") 

data_fold=paste(gen. dir, "data\\", sep="") 

theta_fold=paste(gen. dir, "thetas\\", sep="") 

figure_fold=paste(gen. dir, "figures\\", sep="") 

setwd(gen. dir) 
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# SPECIFY THE DISTRIBUTION OF ITEM AND PERSON PARAMETERS.  

# LOAD NECESSARY PACKAGES.  

#difficulty parameters.  

if (J==9)dp = as. matrix(c(rep(c(-. 75,0,. 75),3)),ncol=1,nrow=J) 

if (J==15) dp = as. matrix(c(rep(c(-1. 5,-. 75,0,. 75,1. 5),3)),ncol=1,nrow=J) 

if (J==21) dp = as. matrix(c(rep(c(-1. 5,-1,-. 5,0,. 5,1,1. 5),3)),ncol=1,nrow=J) 

if (J==27) dp = as. matrix(c(rep(c(-1. 5,-1. 13, -. 75, . 38,0,. 38,. 75,1. 13,1. 

50),3)),ncol=1,nrow=J) 

if (J==33) dp = as. matrix(c(rep(c(-1. 5,-1. 2,-. 9, -. 6, . 3,0,. 3,. 6,. 9,1. 2,1. 

5),3)),ncol=1,nrow=J) 

 

# correlations.  

if (r=="nocor") r=0 

if (r=="modcor") r=. 35 

if (r=="highcor") r=. 70 

 

library(MASS) 

library(mvtnorm) 

 

#GENERATE ABILITY ESTIMATES and DATA.  

at_data = matrix(NA,at. I,J) #SET UP AT DATA MATRIX.  

dim_data = matrix(NA,dim. I,J) #SET UP DIMTEST DATA MATRIX.  

 

system. time( #start the clock for timing the generation of data.  

 

for(which. rep in 1:nreps){ 

 

#generate unidimensional discrimination parameters.  

if (alevel=="low") apars = as. matrix(runif(J, min=. 5, max=1)) 

if (alevel=="moderate") apars = as. matrix(runif(J, min=. 75, max=1. 25)) 

if (alevel=="high") apars = as. matrix(runif(J, min=1. 25, max=1. 75)) 

 

#manipulate the structure of item parameters.  

 if (struct_type=="simple") structure=as. matrix(c(runif((round((2/3)*J)),min=0, 

max=0), runif((round((1/3)*J)),min=(90*(pi/180)), max=(90*(pi/180)))))  

 if (struct_type=="apss") structure=as. 

matrix(c(runif((round((2/3)*J)),min=(0*(pi/180)), max=(20*(pi/180))), 

runif((round((1/3)*J)),min=(70*(pi/180)), max=(90*(pi/180))))) 

 if (struct_type=="unidim") structure=as. 

matrix(c(runif((round((2/3)*J)),min=(0*(pi/180)), max=(0*(pi/180))), 

runif((round((1/3)*J)),min=(0*(pi/180)), max=(0*(pi/180))))) 
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#pseudo-guessing parameter.  

cp = as. matrix(runif(J, min=0, max=0)) 

 

#GENERATE DISCRIMINATION PARAMETERS TO BE 

MULTIDIMENSIONAL IF TYPE==2.  

 

#APPROXIMATELY 1/3 OF THE ITEMS MEASURE THE SECOND 

DIMENSION, AND 2/3 MEASURE THE FIRST DIMENSION.  

ap1=as. matrix(apars*cos(structure),ncol=type) 

ap2=as. matrix(apars*sin(structure),ncol=type) 

ap = as. matrix(cbind(ap1,ap2), ncol=type, nrow=J) 

ap = as. matrix(ap, nrow=J, ncol=2) 

apf = as. matrix(((apars/1. 7)/(sqrt(1+((apars/1. 7)*(apars/1. 7))))), ncol=1, 

nrow=J) #unidimensional standardized factor loading - calculation based on Wirth 

& Edwards, 2007.  

ap1f = as. matrix(((ap1/1. 7)/(sqrt(1+((ap1/1. 7)*(ap1/1. 7))))), ncol=1, 

nrow=J)#dimension 1 standardized factor loading - calculation based on Wirth & 

Edwards, 2007.  

ap2f = as. matrix(((ap2/1. 7)/(sqrt(1+((ap2/1. 7)*(ap2/1. 7))))), ncol=1, 

nrow=J)#dimension 2 standardized factor loading - calculation based on Wirth & 

Edwards, 2007.  

 

#generate test structure plots.  

plot(ap1, ap2, type="n", xlim=c(0,2), ylim=c(0,2), xlab=" ", ylab=" ") 

arrows(0, 0, ap1, ap2, code=2, length=. 05) 

savePlot(paste(figure_fold, "structure_", which. rep, sep=""), type="png") 

 

#WRITE OUT GENERATED PARAMETERS.  

item. id = matrix(seq(from=1, to=J, by=1), ncol=1, nrow=J) 

structure. angle = matrix(structure*180)/pi 

items = matrix(cbind(item. id, apars, apf, ap, ap1f, ap2f, structure, structure. 

angle, dp, cp), ncol=11, nrow=J) 

items = matrix(round(items,digits=2), ncol=11, nrow=J) 

write. table(items, paste(item_fold, "items_", which. rep, ". dat", sep=""),  

col. names=c("item", "apars", "apf", "ap1", "ap2", "ap1f", "ap2f", "beta", "angle", 

"dp", "cp"),  

row. names=F,  

sep="\t", 

quote=F) 
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at_theta = as. matrix(rnorm(at. I, mean=0, sd=1), ncol=1, nrow=at. I) 

dim_theta = as. matrix(rnorm(dim. I, mean=0, sd=1), ncol=1, nrow=dim. I) 

sigma=matrix(c(1, r, r, 1),ncol(ap)) 

mu=rep(0, ncol(as. matrix(ap))) 

at_theta = as. matrix(mvrnorm(at. I, mu, sigma)) 

dim_theta = as. matrix(mvrnorm(dim. I, mu, sigma)) 

 

#write out separate theta files for the at and dimtest files.  

write. table(at_theta,  

paste(theta_fold, "at_thetas_", which. rep, ". dat", sep=""),  

row. names=T,  

col. names=F,  

quote=F,sep="\t") 

write. table(dim_theta,  

paste(theta_fold, "dim_thetas_", which. rep, ". dat", sep=""),  

row. names=T,  

col. names=F,  

quote=F,  

sep="\t") 

 

 

for(a in 1:at. I){ 

for(j in 1:J){ 

 #p_at=cp[j]+((1-

cp[j])*(exp((t(ap[j,1])%*%at_theta[a,1]+t(ap[j,2])%*%at_theta[a,2])+dp[j]))/(1+(

exp((t(ap[j,1])%*%at_theta[a,1]+t(ap[j,2])%*%at_theta[a,2])+dp[j])))) 

 at_num = 

(exp((t(ap[j,1])%*%at_theta[a,1]+t(ap[j,2])%*%at_theta[a,2])+dp[j])) 

 at_den = 1 + at_num 

 p_at=(cp[j] + ((1-cp[j])*((at_num)/(at_den)))) 

uni_at = runif(1) 

if (p_at>uni_at) at_data[a,j]=1 

if (p_at<uni_at) at_data[a,j]=0 

} #closes MIRT AT item loop.  

} #closes MIRT AT person loop.  

for(d in 1:dim. I){ 

for(j in 1:J){ 

 #p_dim=cp[j]+((1-

cp[j])*(exp((t(ap[j,1])%*%dim_theta[d,1]+t(ap[j,2])%*%dim_theta[d,2])+dp[j]))/

(1+(exp((t(ap[j,1])%*%dim_theta[d,1]+t(ap[j,2])%*%dim_theta[d,2])+dp[j])))) 

 dim_num = 

(exp((t(ap[j,1])%*%dim_theta[d,1]+t(ap[j,2])%*%dim_theta[d,2])+dp[j])) 

 dim_den = 1 + dim_num 

 p_dim=(cp[j] + ((1-cp[j])*((dim_num)/(dim_den)))) 

uni_dim = runif(1) 
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if (p_dim>uni_dim) dim_data[d,j]=1 

if (p_dim<uni_dim) dim_data[d,j]=0 

} #closes MIRT DIMTEST item loop.  

} #closes MIRT DIMTEST person loop.  

 

#write out data files for the AT and DIMTEST.  

write. table(at_data,  

paste(data_fold,"at_data_", which. rep, ". dat", sep=""),  

row. names=F,  

col. names=F,  

quote=F, 

sep="") 

 

write. table(dim_data,  

paste(data_fold, "dim_data_", which. rep, ". dat", sep=""),  

row. names=F,  

col. names=F,  

quote=F,  

sep="") 

 

} #close nreps loop.  

 

) #close system time function.  
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APPENDIX B  

TABLE OF TYPE 1 ERROR RATES 
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Proportion of dE = 1 Rejections in 800 Replications for Unidimensional 

Conditions 

   J = 9 J = 15 J = 21 J = 27 J = 33 

N SoD  D D A D A D A D 

250 Weak  .068 .015 .030 .028 .024 .015 .013 .023 

 Moderate  .043 .026 .024 .015 .020 .011 .019 .021 

 Strong  .020 .016 .019 .019 .006 .010 .015 .021 

500 Weak  .101 .023 .029 .030 .016 .020 .021 .018 

 Moderate  .054 .021 .026 .024 .018 .014 .015 .014 

 Strong  .016 .015 .014 .018 .020 .013 .014 .015 

750 Weak  .113 .053 .036 .040 .028 .026 .025 .024 

 Moderate  .066 .044 .023 .033 .024 .030 .014 .024 

 Strong  .020 .015 .024 .008 .015 .011 .021 .013 

Note.  SoD = strength of dependence. A = ATFIND. D = DETECT.  
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APPENDIX C  

TABLE OF AVERAGE AT LENGTH IN UNIDIMENSIONAL CONDITIONS 
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Average AT Length across 800 Replications for Unidimensional Conditions 

   J = 9 J = 15 J = 21 J = 27 J = 33 

N SoD  D D A D A D A D 

250 Weak  3.85 6.62 6.00 9.49 9.91 12.22 13.16 15.02 

 Moderate  3.81 6.60 5.36 9.34 9.99 12.24 13.17 15.08 

 Strong  3.75 5.53 5.39 9.35 9.95 12.08 12.92 14.98 

500 Weak  3.86 6.66 5.40 9.43 9.95 12.28 13.32 15.09 

 Moderate  3.81 6.60 5.43 9.47 9.96 12.26 13.25 15.10 

 Strong  3.74 6.55 5.38 9.39 9.99 12.25 13.23 15.03 

750 Weak  3.89 6.65 5.42 9.50 10.04 12.37 13.20 15.19 

 Moderate  3.84 6.61 5.34 9.43 9.99 12.24 13.36 15.09 

 Strong  3.75 6.57 5.37 9.37 9.99 12.17 13.31 15.13 

Note.  SoD = strength of dependence. A = ATFIND. D = DETECT. 

 


