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ABSTRACT

This thesis examines the application of statistical signal processing ap-

proaches to data arising from surveys intended to measure phychological and

sociological phenomena underpinning human social dynamics. The use of sig-

nal processing methods for analysis of signals arising from measurement of

social, biological, and other non-traditional phenomena has been an important

and growing area of signal processing research over the past decade. Here, we

explore the application of statistical modeling and signal processing concepts

to data obtained from the Global Group Relations Project, specifically to under-

stand and quantify the effects and interactions of social psychological factors

related to intergroup conflicts.

We use Bayesian networks to specify prospective models of conditional

dependence. Bayesian networks are determined between social psychological

factors and conflict variables, and modeled by directed acyclic graphs, while

the significant interactions are modeled as conditional probabilities. Since the

data are sparse and multi-dimensional, we regress Gaussian mixture models

(GMMs) against the data to estimate the conditional probabilities of interest.

The parameters of GMMs are estimated using the expectation-maximization

(EM) algorithm. However, the EM algorithm may suffer from over-fitting problem

due to the high dimensionality and limited observations entailed in this data set.

Therefore, the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC) are used for GMM order estimation.

To assist intuitive understanding of the interactions of social variables

and the intergroup conflicts, we introduce a color-based visualization scheme.

In this scheme, the intensities of colors are proportional to the conditional prob-

abilities observed.
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Chapter 1

INTRODUCTION

Modern signal processing comprises a corpus of statistical, analytical, and al-

gorithmic techniques that have proven effective across a wide variety of appli-

cations. Traditional uses of signal processing, and the ones in context of which

much of the current subject were developed, involve signals transduced from

physical phenomena that are described by classical models, such as those for

electromagnetism, fluid dynamics, and Newtonian mechanics. Many standard

assumptions and models in signal processing are explicitly or implicitly asso-

ciated with these phenomena, and in some cases signal processing has been

instrumental in the process of understanding and modeling the behavior of sys-

tems governed by physical laws.

Over the past decade, the use of signal processing with non-traditional

signals has been of increasing interest within the research community. Such

signals include measurements associated with biological, sociological, and psy-

chological phenomena. It is widely understood that standard assumptions and

models, and methods predicated upon or optimized for these, will generally not

apply in such domains. Nevertheless, much recent research is based on the

premise that the underlying mathematical principles of signal processing are of-

ten compatible with adaptation or generalization to such non-traditional settings.

This thesis explores the utility of statistical and model fitting ideas familiar

in signal processing to data collected with the intention of understanding inter-

group conflict in human social systems. The foundations of intergroup conflict

have long been of significant interest in the social sciences, and the practical rel-

evance of grasping these foundations has been acutely advanced by the rise of

technologies enabling the rapid spread of information across social groups that
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may be globally distributed. A wide literature has explored a number of different

hypotheses that have been advanced for the primary causal factors of intergroup

conflict. Previous research [1, 2, 3, 4, 5, 6, 7] has explored social factors such

as primordial affiliation, traditions, ancient hatred, value incompatibility, cultural

difference between groups, competition over resources, economics and power,

collective fears of the other group, etc. In spite of religious riots, murders and

pogroms, religion has been largely discounted as the “true” motivating cause of

intergroup conflicts and has been viewed as a cloak for other motivations.

By contrast, the research discussed sought to explore the extent to which

religion may drive or influence intergroup conflict, in terms of an aggregate re-

ligious variable which has been labeled “religious infusion”. Our analysis is

founded on Global Group Relations Project surveys [8, 9] that elicit information

about socio-political and religious variables in conflict and non-conflict situa-

tions. We seek to discover if and to what extent some combinations of these

variables can serve as predictors of conflict at some level. In this discussion

the word “conflict” is interpreted to be much broader than violence or shedding

blood. It includes the five main intergroup conflict variables: prejudice, inter-

personal discrimination, symbolic aggression, individual violence and collective

violence [8, 9]. These are thought of roughly in this order on a scale represent-

ing increasing severity of conflict.

In fact, the survey measured a large number (169) of socio-political vari-

ables, but with limited observations: 731 with missing data, and 310 with com-

plete data for the analysis. The social scientists working on this project focussed

on just a few of the these variables and aggregated these down to just three

main predictor variables: competition over resources and power, incompatibili-

ties between groups’ values and their religious infusion.
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In this thesis, statistical modeling is used to quantify the relationships

between the predictors and the conflict variables. Solutions to religious-conflict

problems based on structural equation modeling (SEM) have been given in the

previous work of the Global Group Relations Project [8]. This model is founded

on the assumption of a normal distribution over, and a linear relationship be-

tween, all variables. As a result, upon the regression of dependent (also referred

as endogenous) variables on the independent (also referred as exogenous) vari-

ables, the resulting linear model is unable to explain nonlinear relationships in

the data. Furthermore, the small sample size hampers the ability of the SEM

regression to deal effectively with more than one conflict variable and two pre-

dictor variables at the same time; it is thus impossible to take all three predictors

into consideration at the same time. In this thesis, we present alternative, more

modern, methods for statistical analysis of the religious conflict problem that

are innovative within the context of statistical techniques for political analysis.

The new approach improves the performance significantly by carrying fewer

assumptions and by optimizing probability representations, which enables the

observation of non-linearity in the relationship and interactions of higher dimen-

sionality (3-D and 4-D analysis). In addition, it provides a means to visualize

the high dimensional data in an RGB color map, and thereby facilitate under-

standing of relationships. The introduction of Bayesian networks provides an

extremely simple and straightforward model of the impact of the social predic-

tors on the conflict outcomes. To set the parameters of these Bayesian networks

we implement Gaussian mixture models for different combinations of predictors

and conflict variables in which parameters are estimated and optimized to max-

imize the likelihood function and the number of free parameters is optimized

in the sense of information theory, as instantiated in the Bayesian Information

Criterion [10] and/or the Akaike Information Criterion [11].
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The form of the GMM provides a means by which the results of this

statistical modeling may be visualized — and this is an innovative improvement

for the visualization improves our ability to interpret what the statistical models

say about the data — in which conditional probabilities have been turned into

colors. In the visualizations, bright red paints the cases where a high likelihood

of severe conflict exists, while bright blue paints the cases where there is almost

no conflict. These results are discussed in the penultimate section of this thesis.

Besides analysis of the socio-political data, the statistical techniques de-

scribed above, especially GMM, are suitable for implementation in engineering

applications for traditional signal processing as well. Details of such applica-

tions are discussed in some recent papers on speaker identification [12], object

detection [13], face recognition [14], medical image processing [15], etc.
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Chapter 2

DISCUSSION OF TECHNIQUES

2.1 Bayesian networks

Introduction to Bayesian networks

When even a moderate number of simple variables are measured, e.g., 35

binary variables, the space of possible outcomes is exponentially large, in this

case 235 ≈ 34 billion. Inferential statements regarding probabilities of unmea-

sured outcome variables marginalized on hidden variables involve summation

over these combinatorial outcomes, and hence are computationally intractable.

Efficient bookkeeping methods utilizing known conditional independencies can

help to manage the complexity of uncertainty and dependence of variables. In

1985, Pearl initiated the use of graphical models to efficiently tabulate statis-

tical relationships between variables [16, 17]. Motivated by Bayes’ rule which

expresses the relationship between opposite conditional dependencies P (A|B)

and P (B|A) in terms of marginal probabilities P (A) and P (B), this technique

uses graphical representation of guide iterated applications of Bayes’ rule for ex-

tended inference across multiple variables and multiple statistical relationships.

This structure, termed “Bayesian network”, has also been referred to as “in-

fluence network” for the objective of illustrating the influence among variables.

Bayesian networks use directed acyclic graphical (DAG) models to present the

knowledge of uncertainty and conditional dependence [18]. Statistical depen-

dencies can be encoded in the structure of Bayesian networks; these are often

obtained from domain experts’ knowledge [19].

Bayesian networks provide a straightforward mathematical language to

express relations between variables in a clear form [20]. Applications of Bayesian

networks have been useful tools in engineering, including the areas of speech
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recognition [21, 22], image processing [23, 24], wireless communications [25,

26], biomedical engineering [27, 28] and others [29, 30, 31]. The networks,

derived from uncertainty and causality, provide systematic and localized solu-

tions for the probabilistic information structuring while supported by inference

algorithms [32].

Definitions

Since Bayesian networks are based on DAG models, we first give some basic

terms from graph theory to prepare for the discussion of Bayesian networks.

Definition 1 (Graph, Directed Graph). A finite graph G = (V,E) consists of a

finite set of nodes V and an edge set E, where each edge indicates a unique

connection between two nodes so that the elements of E ⊆ V × V consists of

two-element subsets of V . Specifically, if e connects distinct nodes α, β, then

e = {α, β}. By contrast, for a directed graph G = (V,E) the edge set E

consists of unique directed edges, each from some vertex α to some other

vertex β; i.e., a directed edge is an ordered pair (α, β). Following common

notation, an undirected edge connecting α and β is denoted as ⟨α, β⟩.

Definition 2 (Path, Directed Path). Let G = (V,E) denote a graph. A path of

length m from a node α to a node β is a sequence of distinct nodes (τ0, . . . , τm)

such that τ0 = α and τm = β such that (τi−1, τi) ∈ E for each i = 1, . . . ,m. The

path is a directed path if all edges (τi−1, τi) for i = 1, . . . ,m in the path are

directed edges.

Definition 3 (Directed Acyclic Graph). A graph G = (V,E) is a directed acyclic

graph if each edge is directed and, for any node α ∈ V , there does not exist

any set of distinct nodes τ1, . . . , τm such that α ̸= τi for all i = 1, . . . ,m and

(α, τ1, . . . , τm, α) forms a directed path.
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Definition 4 (Parent, Child). In a directed graph G = (V,E), an ordered pair of

nodes (α, β) ∈ E, β is referred to as a child of α and α as a parent of β.

With the basic terminology of graph theory above, we now give the defi-

nition of a Baysian network.

Definition 5 (Bayesian Network). A Baysian network is a pair (G,P ), where

G = (V,D) is a directed acyclic graph (DAG) consisting of a set of nodes V =

{α1, . . . , αn} and directed edge set D between variable nodes such that each

node αv has a set of parents πv = (αv1 , . . . , αvm), and there is an assigned

potential P (αv|πv). The joint probability is P (α1, . . . , αn) =
n∏

v=1

P (αv|πv).

Although the notion of Bayesian network does not impose any a priori

constraint on the form of the distributions P (αv|πv), in this thesis we assume

each variable α ∈ V in a Bayesian network has a finite number of mutually

exclusive states. A given joint distribution may have more than one Bayesian

network representation. For example, it is always the case that P (α1, . . . , αn) =∏
i P (αi|αi+1, . . . , αn), and any permutation of the variables αj1 , . . . , αjn has a

corresponding representation of P (α1, . . . , αn) =
∏

i P (αji|αji+1
, . . . , αjn).

Examples of Bayesian networks

In the case of three random variables A, B and C, the above factor model gives

the joint probability distribution

P (A,B,C) = P (C|A,B)P (B|A)P (A). (2.1)

and can be associated to the directed acyclic graph in Figure 2.1.
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Figure 2.1: A Bayesian network example

The network model in Figure 2.1 clearly describes the variables in a prob-

abilistic sense. Another issue that should be taken into consideration is condi-

tional independence [33]. Three typical cases regarding independence that are

significant components of more complex Bayesian networks are discussed as

follows.

Case 1 Diverging connections

In the above example, if

P (C|A,B) = P (C|A), (2.2)

then C is independent of B conditioned on A; i.e.,

P (B,C|A) = P (C|A,B)P (B|A) = P (C|A)P (B|A). (2.3)

Although B and C are not independent, the equation indicates that B

and C are independent of each other conditioned on A.

Therefore, conditioning on A introduces independence to the variables

B and C and the network can be simplified by removing the directed edge from

B to C, as shown in Figure 2.2. In this case, we say that A, B and C are subject

to diverging connections [34].

8



Figure 2.2: Diverging connections

Case 2 Converging connections

Another network can be derived from the basic example in Figure 2.1 by remov-

ing the directed edge from A to B. Random variables A and B are independent

when no observations have been made; i.e.,

P (A,B) = P (A)P (B). (2.4)

However, conditioning on C, introduces dependency between A and B accord-

ing Bayes’ rule:

P (A,B|C) =
P (A,B,C)

P (C)
=

P (A|B,C)P (B|C)P (C)

P (C)
= P (A|B,C)P (B|C).

(2.5)

This conditional dependence is represented using the Bayesian network shown

in Figure 2.3. In this case, we say that A, B and C are subject to converging

connections [34].

Figure 2.3: Converging connections
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Case 3 Serial connections

The third network removes the directed edge from A to C based on the basic

network in Figure 2.1. Then the only connection from A to C is through the

influence on B. Therefore, when B is known, the connection has been “blocked”

and random variables A and C are thus independent of each other conditional

on B.

P (A,C|B) =
P (A,B,C)

P (B)
=

P (A)P (B|A)P (C|B)

P (B)
= P (A|B)P (C|B). (2.6)

This conditional dependence is represented using the Bayesian network shown

in Figure 2.4. In this case, we say that A, B and C are subject to serial connec-

tions [34].

Figure 2.4: Serial connections

In this thesis all Bayesian networks considered will be of converging type

because our subject matter experts wish to evaluate the hypothesis that, and the

extent to which, conflict variables are predicted by social variables.
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2.2 GAUSSIAN MIXTURE MODELS

Introduction

The Gaussian mixture model (GMM) efficiently models the distribution of data

observations as a weighted sum of parameterized Gaussian distributions. As

such it provides a computationally feasible non-Gaussian generalization of the

linear-Gaussian model that is standard of classical statistics. Various attempts

have been made exploring GMM both practically and theoretically after their

initial introduction by Pearson to classify two subspecies of crabs from the Bay

of Naples in 1894 [35].

While regressing the data samples in a descriptive Gaussian mixture

model, we consider two significant concerns in this thesis. An obvious issue in

model fitting is estimating the parameters given observations. While the idea

of using maximum-likelihood (ML) estimation started in the 1930s [36, 37, 38],

the advent of EM algorithm in 1977 [37] has proven to be effective and popular

method for the ML fitting of a Gaussian mixture model.

The GMM yields estimates of the parameters and weighting of mixture

components for a fixed finite number of components. However, the choice of the

number of mixture model components in the GMM is another issue. Too large a

number of components can lead to over-fitting, which in turn may result in extra

computational complexity and the loss of universality. Techniques for choosing

the number of components that consider a penalized form of likelihood, such as

the Akaike information criterion [11], the Bayesian information criterion [10] and

many other criteria have provided methods to address the problem as described

above.
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By using a sufficient number of Gaussian distributions and adjusting the

weights, means and variances, any continuous density can be approximated to

arbitrary accuracy by a Gaussian mixture [33]. This also leads to an extremely

flexible method for clustering, especially for the data having asymmetrical dis-

tributions. GMMs have been widely used in applications including astronomy,

biology, genetics, medicine, psychiatry, economics, engineering and marketing

[39]. In this thesis, GMM is applied to the social psychological problem of quan-

tifying the relationship between social factors and intergroup conflicts.

Definition of GMM

As previously mentioned, a GMM models the distribution of data by a weighted

sum of parameterized Gaussian distributions. On the n-dimensional Euclidean

space Rn, we suppose that independent n-dimensional data observations xi

have been drawn as {xi : i = 1, . . . , N} where N denotes the size of the data

sample. The probability density of GMM for M mixture components built for the

above variable is written as

p(x) =
M∑
i=1

wiN (x;µi,Σi)

=
M∑
i=1

wi
1

(2π)
n
2 |Σi|

1
2

exp

(
−(x− µi)

TΣ−1
i (x− µi)

2

)
.

(2.7)

In the above equation, M reflects the number of mixture components,

while µi, and Σi are the mean and covariance matrix for the ith mixture compo-

nent. The weights accordingly are represented by wi and satisfying

0 ≤ wi ≤ 1 (i = 1, . . . ,M) (2.8)

and
M∑
i=1

wi = 1. (2.9)
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Given data observations, the mixture model can be obtained by the

maximum-likelihood approach using expectation-maximization algorithm.

EM algorithm

General derivation of EM algorithm

Assume X = (x1, . . . ,xN) is the list of all observations, which are each sta-

tistically independent of the others and drawn from the distribution p(x|θ). The

joint density function of all the observations is thus

p(X|θ) =
N∏
i=1

p(xi|θ),

where, in the case of interest to us, each p(x|θ) is a Gaussian mixture with

parameters

θ = (w1, . . . , wM , µ1, . . . , µM ,Σ1 . . .ΣM) .

For the sake of computation, we take the logarithm of the density function to

form the log-likelihood ℓ(θ|X) which is referred as likelihood function of the

parameters given the data; i.e.,

ℓ(θ|X) , log p(X|θ) = log
N∏
i=1

p(xi|θ).

In a parameter estimation problem, the objective is to find a value of θ that

maximizes likelihood function as

θopt = argmax
θ

ℓ(θ|X). (2.10)

Now we assume the observations X are generated from some Gaus-

sian mixture distribution by a process of 1) a random (and unobservable, or

hidden) draw Y = i ∈ {1, 2, · · · ,M} according to the probability distribution

w1, w2, · · ·wM , followed by 2) a draw from the multivariate normal distribution

N (µi,Σi) with parameters θ. Then we can define the set of observations and

13



hidden states as (X,Y ), therefore the joint density function is

p(X,Y |θ) = p(Y |X,θ)p(X|θ), (2.11)

while the function we seek to optimize is the conditional expectation (marginal)∑
i

p(X,Y = i|θ). Accordingly, we define a joint log-likelihood ℓ(θ|X,Y ) =

log p(X,Y |θ). Before looking at the optimization problem, we introduce Jensen’s

inequality. For a concave function defined on an interval I, and coefficients λi

such that
m∑
i=1

λi = 1 and λ1, . . . , λm ≥ 0, if x1, . . . , xm ∈ I,

f(
m∑
i=1

λixi) ≥
m∑
i=1

f(λixi). (2.12)

Assume the estimate of parameters is θ̂. Since the logarithm is a concave

function, and
∑
Y

p(Y |X, θ̂) = 1 we can derive the following inequality:

ℓ(θ|X)− ℓ(θ̂|X) = log

(∑
Y

p(X|Y ,θ)p(Y |θ)

)
− log p(X|θ̂)

= log

(∑
Y

p(X|Y ,θ)p(Y |θ)p(Y |X, θ̂)

p(Y |X, θ̂)

)
− log p(X|θ̂)

≥
∑
Y

p(Y |X, θ̂) log

(
p(X|Y ,θ)p(Y |θ)

p(Y |X, θ̂)

)

−
∑
Y

p(Y |X, θ̂) log p(X|ˆ̂θ)

=
∑
Y

p(Y |X, θ̂) log

(
p(X|Y ,θ)p(Y |θ)
p(Y |X, θ̂)p(X|θ̂)

)

=
∑
Y

p(Y |X, θ̂) log

(
p(X,Y |θ)
p(X,Y |θ̂)

)
.

Thus the increment of the log-likelihood can be written in the form

ℓ(θ|X)− ℓ(θ̂|X) =
∑
Y

p(Y |X, θ̂) log

(
p(X,Y |θ)
p(X,Y |θ̂)

)
, D(θ|θ̂)

where the equal sign holds when θ = θ̂. Thus by maximizing the D(θ|θ̂)

with respect to θ, it is also guaranteed that ℓ(θ|X) is not smaller than ℓ(θ̂|X).
14



Therefore we propose an iterative method of maximizing ℓ(θ|X) where at each

step D(θ|θ̂) is maximized with respect to θ:

θ̂
(m+1)

= argmax
θ

D(θ|θ̂
(m)

)

= argmax
θ

[
ℓ(θ̂

(m)
|X) +

∑
Y

p(Y |X, θ̂
(m)

) log

(
p(X,Y |θ)

p(X,Y |θ̂
(m)

)

)]

= argmax
θ

[∑
Y

p(Y |X, θ̂
(m)

) log p(X,Y |θ)

]

= argmax
θ

[
E

Y |X,θ̂
(m) [log p(X,Y |θ)]

]
= argmax

θ

[
E

Y |X,θ̂
(m) [ℓ(θ|X,Y )]

]
.

(2.13)

The above expression suggests two main steps, expectation step (E-step) and

maximization step (M-step), for parameter optimization. In the E-step, the ex-

pectation of ℓ(θ|X,Y ) with respect to (Y |X, θ̂
(m)

) can be computed using the

previous step estimation and the knowledge of the model. Then the expectation

is maximized over θ which is defined as the M-step. Therefore this algorithm is

referred to as the EM algorithm [37, 40].

EM algorithm in GMM

Now we consider an incomplete data density function in the form of a finite

mixture model as

p(x|θ) =
M∑
j=1

wjpj(x|ϕj) (2.14)

in which the θ is composed of the weights wj and parameters ϕj when the index

of the mixture component j = 1, . . . ,M . The weights are subject to constraints

given in equations (2.8) and (2.9). The log likelihood expression for the mixture
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density model is

ℓ(θ|X) = log
N∏
i=1

p(xi|θ) =
N∑
i=1

log

(
M∑
j=1

wjpj(xi|ϕj)

)
. (2.15)

Maximization turns out to be difficult considering the logarithm of a summation.

To simplify this problem, the EM algorithm introduces the hidden states

Y which is defined corresponding to the mixture components that the sample

data belongs to in the mixture model. So yi ∈ {1, 2, . . . ,M} and

p(yi|θ) =
wyi

M∑
yi=1

wyi

= wyi (2.16)

demonstrating that the weight wj can also be interpreted as the probability that a

particular sample belongs to jth mixture component. Therefore, the optimization

problem is significantly simplified as shown in equation (2.13).

We first examine the term ℓ(θ|X,Y ).

ℓ(θ|X,Y ) = log(p(X,Y |θ))

= log
N∏
i=1

p(xi, yi|θ)

=
N∑
i=1

log(p(xi, yi|θ)

=
N∑
i=1

log(p(yi|θ)p(xi|yi,θ))

=
N∑
i=1

log(wyipyi(xi|ϕyi)).

(2.17)

According to the objective of the EM algorithm in equation (2.13), we then opti-

mize the expectation of this term with respect to (Y |X, θ̂
(m)

)

p(Y |X,θ(m)) =
N∏
i=1

p(yi|xi,θ
(m)). (2.18)
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Since pj(xi|ϕj) can be easily obtained given the statistical model. According to

Bayes’ rule and equations (2.14) and (2.16), we have

p(yi|xi, θ̂
(m)

) =
p(yi,xi|θ̂

(m)
)

p(xi|θ̂
(m)

)
=

p(xi|yi, θ̂
(m)

)p(yi|θ̂
(m)

)

p(xi|θ̂
(m)

)
=

ŵ
(m)
yi pyi(xi|ϕ̂(m)

yi )
M∑
j=1

ŵ
(m)
j pj(xi|ϕ̂(m)

j ))

.

(2.19)

In this case, equation (2.13) is formed as

E[log p(X,Y |θ)|X, θ̂
(m)

]

=
∑
Y

log(ℓ(θ|X,Y ))p(Y |X, θ̂
(m)

)

=
∑
Y

N∑
i=1

log(wyipyi(xi|ϕyi))
N∏
k=1

p(yk|xk, θ̂
(m)

)

=
M∑

y1=1

M∑
y2=1

. . .

M∑
yN=1

N∑
i=1

logwyipyi(xi|ϕyi))
N∏
k=1

p(yk|xk, θ̂
(m)

)

=
M∑

y1=1

M∑
y2=1

. . .
M∑

yN=1

N∑
i=1

M∑
l=1

δl,yi logwlpl(xi|ϕl))
N∏
k=1

p(yk|xk, θ̂
(m)

)

=
M∑
l=1

N∑
i=1

log(wlpl(xi|ϕl))
M∑

y1=1

M∑
y2=1

. . .

M∑
yN=1

δl,yi

N∏
k=1

p(yk|xk, θ̂
(m)

)

=
M∑
l=1

N∑
i=1

log(wlpl(xi|ϕl))(
M∑

y1=1

M∑
y2=1

. . .
M∑

yN=1

δl,yi

N∏
k=1,k ̸=i

p(yk|xk, θ̂
(m)

)

)
p(l|xi, θ̂

(m)
)

=
M∑
l=1

N∑
i=1

log(wlpl(xi|ϕl))
N∏

k=1,k ̸=i

(
M∑

yk=1

p(yk|xk, θ̂
(m)

)

)
p(l|xi, θ̂

(m)
)

=
M∑
l=1

N∑
i=1

log(wlpl(xi|ϕl))p(l|xi, θ̂
(m)

)

=
M∑
l=1

N∑
i=1

log(wl)p(l|xi, θ̂
(m)

) +
M∑
l=1

N∑
i=1

log(pl(xi|θl))p(l|xi, θ̂
(m)

)

(2.20)

in which the expectation is multiplied by
M∑
l=1

δl,yi = 1 to simplify the expression

and l indexes the mixture components.
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As parts of θ, the weights w and parameters ϕ are uncorrelated and

therefore can be considered separately. We now consider the first term with

respect to estimating the weight of a certain mixture component wl. Given the

constraints in equation (2.9), we can obtain the maximum using a Lagrange

multiplier

∂

∂wl

[
M∑
l=1

N∑
i=1

log(wl)p(l|xi, θ̂
(m)

) + λ

(∑
l

wl − 1

)]
= 0,

N∑
i=1

1

w
(m+1)
l

p(l|xi, θ̂
(m)

) + λ = 0,

And by computation we obtain that λ = −N , so

w
(m+1)
l =

1

N

N∑
i=1

p(l|xi, θ̂
(m)

).

Now we have successfully estimated the weights. The parameter ϕl is com-

prised of the mean µl and variance Σl in a Gaussian mixture model shown in

equation (2.7). Taking the logarithm and substituting into equation (2.20), we

get

M∑
l=1

N∑
i=1

log(pl(xi|µl,Σl))p(l|xi, θ̂
(m)

)

=
M∑
l=1

N∑
i=1

(
−1

2
log(|Σl|)− 1/2(xi − µ)TΣ−1

l (xi − µl)

)
p(l|xi, θ̂

(m)
).

(2.21)

Taking the partial derivative with respect to µl and setting it equal to zero

yields

µ̂
(m+1)
l =

∑N
i=1 xip(l|xi, θ̂

(m)
)∑N

i=1 p(l|xi, θ̂
(m)

)
. (2.22)

Similarly, differentiating with respect to Σl gives

Σ̂
(m+1)
l =

∑N
i=1(xi − µ̂

(m+1)
l )(xi − µ̂

(m+1)
l )Tp(l|xi, θ̂

(m)
)∑N

i=1 p(l|xi, θ̂
(m)

)
. (2.23)

To sum up, in a Gaussian mixture model, the EM algorithm provides

estimates of the parameters w, µ and Σ iteratively based on the previous step
18



estimates

w
(m+1)
l =

1

N

N∑
i=1

p(l|xi, θ̂
(m)

),

µ̂
(m+1)
l =

∑N
i=1 xip(l|xi, θ̂

(m)
)∑N

i=1 p(l|xi, θ̂
(m)

)
,

Σ̂
(m+1)
l =

∑N
i=1(xi − µ̂

(m+1)
l )(xi − µ̂

(m+1)
l )Tp(l|xi, θ̂

(m)
)∑N

i=1 p(l|xi, θ̂
(m)

)
.

Order of a GMM

The EM algorithm is able to achieve an arbitrarily accurate approximation in

the sense that the mean-square error approaches zero, for GMMs with arbi-

trarily large numbers of components. However, zero error is achieved in the

limit of one N (µi = xi,Σi = 0) multivariate normal per data point xi, which is

surely over-fitting. Therefore, it becomes important to determine the number of

mixture components, which is also referred as the order of the mixture model.

There exist a variety of solutions for order optimization for mixture models, in-

cluding graphical tools [41, 42, 43], information theoretic critera [10, 11], kernel

techniques [44, 45], moment-based methods [46, 47, 48], and some other non-

parametric estimation techniques [49, 50, 51].

In this thesis we concentrate on selecting the order of Gaussian mix-

ture models using information theoretic criteria, including the Akaike information

criterion and Schwarz’ Bayesian information criterion.

Akaike information criterion

Before discussing the AIC, we first introduce basic ideas of information theory.

Optimal model choice, in our case GMM order, can be approached in terms
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of the Kullback-Leibler (K-L) information which measures the information loss

of an optimal model estimate from reality [52]; i.e., the K-L distance from the

estimated model to the true distribution [53]. Here we define a good model

or a good estimate to be close to the true distribution in the sense of having

a small K-L value. Let f(x|θ) denote the “true” model, in which x represents

the random variable and θ is the true parameter value, and let g(x|θ̂) denote a

model estimate based on the whole data set and estimated parameter θ̂. The

K-L information of f(x|θ) with respect to g(x|θ̂) is defined as

I{f(x|θ); g(x|θ̂)} ,
∫

f(x|θ) log f(x|θ)
g(x|θ̂)

dx

=

∫
f(x|θ) log f(x|θ) dx−

∫
f(x|θ) log g(x|θ̂) dx

= const− Ex

[
log g(x|θ̂)

]
(2.24)

which measures the K-L divergence between f(x|θ) and g(x|θ̂). The objec-

tive of model selection is to minimize K-L information. Since the first term is a

function of the truth which is a constant, the minimization is equivalent to maxi-

mizing the second term on the right side. To further explore the model selection

problem, it is better to remove the uncertainty of parameter estimation. So we

add another expectation with respect to the θ̂. The problem now becomes min-

imizing Eθ̂Ex

[
log g(x|θ̂)

]
.

The logarithm log g(x|θ̂) can be expanded to second order in a Taylor

series around an estimate by partial observations θ̂o as follows:

log g(x|θ̂) ≈ log(g(x|θ̂o)) +

[
∂ log(g(x|θ̂o))

∂θ̂

]T
[θ̂ − θ̂o]

+
1

2
[θ̂ − θ̂o]

T

[
∂2 log(g(x|θ̂o))

∂2θ̂

]
[θ̂ − θ̂o]

(2.25)
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So the expectation is

Ex[log g(x|θ̂)] ≈Ex

[
log(g(x|θ̂o))

]
+ Ex

[
∂ log(g(x|θ̂o))

∂θ̂

]T
[θ̂ − θ̂o]

+
1

2
[θ̂ − θ̂o]

T

[
Ex

∂2 log(g(x|θ̂o))

∂2θ̂

]
[θ̂ − θ̂o]

(2.26)

In the first-order term, we observe that Ex

[
∂ log(g(x|θ̂o))

∂θ̂

]
can be derived

from differentiation of the K-L information I{g(x|θ̂); g(x|θ̂o)}. It is known that

the minimum of the K-L information occurs at the best estimate value, where

θ̂ = θ̂o. Thus we know that[
∂I{g(x|θ̂); g(x|θ̂o)}

∂θ̂

]
θ̂=θ̂o

=

[
∂
∫
g(x|θ̂) log g(x|θ̂o) dx

∂θ̂

]
θ̂=θ̂o

= Ex

[
∂log(g(x|θ̂o))

∂θ̂

]
= 0

(2.27)

And in the second-order term, we assume

∂2 log(g(x|θ̂o))

∂2θ̂
, I(θ̂o) (2.28)

Now the expectation to be maximized can be written as

Ex[log g(x|θ̂)] ≈Ex

[
log(g(x|θ̂o))

]
+

1

2

[
[I(θ̂o)][θ̂ − θ̂o][θ̂ − θ̂o]

T
]

(2.29)

Eθ̂Ex[log g(x|θ̂)] ≈Ex

[
log(g(x|θ̂o))

]
+

1

2
tr
[
[I(θ̂o)]Eθ̂[θ̂ − θ̂o][θ̂ − θ̂o]

T
]

(2.30)

If we see θ̂ as a random variable with mean θ̂o, then the term Eθ̂[θ̂−θ̂o][θ̂−θ̂o]
T

is the covariance matrix Σ.

Eθ̂Ex[log g(x|θ̂)] ≈ Ex

[
log(g(x|θ̂o))

]
− 1

2
tr
[
[I(θ̂o)]Σ

]
(2.31)

Similarly, Ex

[
log(g(x|θ̂o))

]
is also expanded to second order in a Taylor series

and we get

Ex

[
log(g(x|θ̂o))

]
≈ Ex[log g(x|θ̂)]−

1

2
tr
[
[I(θ̂o)]Σ

]
(2.32)
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Then by substituting equation (2.32) into equation (2.31)

Eθ̂Ex[log g(x|θ̂)] ≈ Ex[log g(x|θ̂)]− tr
[
[I(θ̂o)]Σ

]
(2.33)

Conventionally, the information criterion is in the form of minimizing

−2 log g(x|θ̂) + 2 tr[[I(θ̂o)]Σ] (2.34)

By assuming tr[[I(θ̂o)]Σ] = K where K is the total number of free parameters

in the mixture model, we can use AIC for model selection by minimizing

−2 log g(x|θ̂) + 2K (2.35)

Bayesian information criterion

Another approach for the model selection is derived from the Bayesian frame-

work. The derivation of BIC holds both the model set and the data-generating

model fixed as sample size goes to infinity. It is also clear that if the model

contains the true model, then BIC selection converges with probability one. A

critical quantity to be approximated is the marginal probability of the data:∫ [ n∏
i=1

g(xi|θ̂)

]
π(θ̂) dθ̂ (2.36)

which can be rewritten in the form of likelihood∫
[ℓ(θ̂|x, g)]π(θ̂) dθ̂ (2.37)

where x represents the data. Under general regularity conditions, as sample

size increases, the log likelihood function can be approximated using a second-

order Taylor series as

log ℓ(θ̂|x, g) = log ℓ(θ̂o|x, g)−
1

2
(θ̂ − θ̂o)

TI(θ̂o)(θ̂ − θ̂o) (2.38)

Therefore the marginal probability of the data is

ℓ(θ̂o|x, g)
∫

exp

[
−1

2
(θ̂ − θ̂o)

TI(θ̂o)(θ̂ − θ̂o)

]
(2.39)

22



On the other hand,∫
(2π)−K/2|I(θ̂o)|1/2 exp

[
−1

2
(θ̂ − θ̂o)

TI(θ̂o)(θ̂ − θ̂o)

]
dθ̂ = 1 (2.40)

H(θ̂o) = nH1(θ̂o) (2.41)

H1(θ̂o) is independent of sample size and will converge to H1(θ̂). Then,

log

∫ [ n∏
i=1

g(xi|θ̂)

]
π(θ̂) dθ̂

= log(ℓ(θ̂o|x, g))−
1

2
(θ̂ − θ̂o)

TI(θ̂o)(θ̂ − θ̂o)

= log(ℓ(θ̂o|x, g)) +
K

2
log(n)− K

2
log(2π)− log(|I(θ̂o)|)

(2.42)

In previous literature, the last two terms with higher orders are usually dropped

and the BIC value is defined as

−2 log(ℓ(θ̂o|x, g)) +K log(n) (2.43)

Minimizing the BIC value is another useful method for model selection.
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Chapter 3

APPLICATION AND RESULTS

3.1 Bayesian networks for religion-conflict data

To provide a straightforward representation of interactions of the predictors and

conflict variables from the religion-conflict data, Bayesian networks are imple-

mented encoding the “relationship” as conditional probabilities. To facilitate

comparison with SEM models [8], the model is built to represent the interactions

of each pair of the three social conditions interacting with one conflict variable

at a time as shown in figure in which the “conflict” block/node indicates one of

the five conflict variables (e.g., one of the models examines the effect of value

incompatibility and resource-power differential over prejudice). In the networks,

the states of the nodes can be evaluated according to survey investigated by

social psychology experts in the Global Group Relations Project [9].

According to the domain experts’ knowledge, we assume that the social

conditions are independent of each other in the absence of a conflict condition,

which can be modeled as converging connections.

On the other hand, however, it is not the case that all conflict variables

are independent of each other conditional on any of the social conditions. Di-

verging and serial connections are inappropriate for the religion-conflict data

analysis. Therefore, in Figure 3.1, conflict variables are considered separately,

i.e., only one conflict variable is considered at a time.
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Figure 3.1: Bayesian networks of two social conditions and one conflict variable

If we use P1, P2, P3 to represent the predictors and Ci(i = 1, 2, 3, 4, 5)

denotes one conflict variable, the Bayesian network above suggests that the

essence of the problem lies in the probabilities P (Ci|P1, P2), P (Ci|P1, P3), and

P (Ci|P2, P3) (i = 1, 2, 3, 4, 5). Moving beyond what was feasible with SEM

modeling, we consider the impact of all three predictors simultaneously on each

conflict variable in the network shown in Figure 3.2.
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Figure 3.2: Bayesian networks of all social conditions and one conflict variable

Similarly, the 4-D model is built to explore probabilities P (Ci|P1, P2, P3)(i =

1, 2, 3, 4, 5).

According to the definition of conditional probability P (A|B) = P (A,B)
P (B)

,

a simple method to compute the conditional probabilities is obtaining the joint

probability. Therefore, Gaussian mixture model is used to estimate the joint

probability distribution.

3.2 Gaussian mixture model

Methods analysis and validation

In among the main ideas about optimizing the number of mixture components

for mixture models, we build mixture model for the purpose of understanding

interactions of social psychology concerns. For the multidimensional Gaussian

mixture, the limited number of available observations (310) is not sufficient for a

non-parametric method of estimating the order. And as suggested in literature

[39], information criteria based on a penalized form of the likelihood are ade-

quate for the problem of estimating unknown distributional shapes and density.

Before implementing the methods to the observations, the performance

of AIC, BIC and the basic method maximizing the log-likelihood have been com-

pared by testing using the EM algorithm to decompose the mixture models on
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artificial data. Gaussian mixtures are generated by pre-set mean, variance and

number of random samples selected from each mixture component. Various

scenarios have been designed for the testing. Issues have been taken into con-

sideration, such as number of observations, number of mixture components,

sparsity of the means for the clusters and the overlapping issue.

For the sake of visualizing the comparison, we first view the cases de-

signed as one-dimensional Gaussian mixture models with two mixture compo-

nents. Case 1 presents the scenario that two evenly weighted mixtures have

mean values very close to each other and exactly the same variance. Case

2 builds one of the mixture components with relatively large variance. Case 3

weights one mixture component much more significantly than the other. The

results are shown in Table 3.1 below, and the distributions are plotted in Figure

3.3.

Table 3.1: Testing scenarios

Weights Means Variances AIC BIC Log-likelihood

Case 1 0.5, 0.5 1, 1.2 2, 2 1 1 1

Case 2 0.5, 0.5 0, 2 3, 10 2 2 9

Case 3 0.9, 0.1 0, 5 3, 3 2 2 15
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Case 1

Case 2

Case 3

Figure 3.3: True distribution and estimated distributions

Although none of these methods is able to distinguish very close distri-

butions, it is apparent that the over-fitting problem in the EM algorithm has been

significantly avoided here by implementing AIC and BIC.
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Table 3.2: Example of an artificial data set

3-D Data 4 Mixture Components
1st component 2nd component 3rd component 4th component

Weight 0.17 0.34 0.23 0.26

Mean

 8.54
7.37
6.02

  0.86
0.47
8.78

  9.19
9.34
2.43

  4.26
1.57
8.27


Covariance

 1.42 −0.61 −0.10
−0.61 1.37 0.03
−0.10 0.03 0.55

  4.60 −2.64 2.44
−2.64 6.02 2.48
2.44 2.48 6.71

  6.72 0.34 1.12
0.34 8.46 1.28
1.12 1.28 5.61

  0.90 −0.02 0.06
−0.02 2.19 −1.45
0.06 −1.45 3.37



Now we move forward using high-dimensional data to approximate the

real-world data. According to the religion-conflict problem we try designing data

similar to the real cases of 3-D and 4-D using expectations within the survey

range and random covariance matrices.

In Table 3.2 we present an example set of three-dimensional artificial

data with four mixture components and parameters as stated in the table.

Similar data sets are created of 3-D and 4-D data with mixture compo-

nents every third number from 1 to 16 (i.e., M = 1, 4, 7, 10, 13, 16). And five

groups using different combinations of random parameters for a certain number

of components have been tested by AIC, BIC, and maximizing the likelihood.

The numbers of components obtained for the artificial data are shown in Table

3.3.
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Table 3.3: Estimated numbers of mixture components for artificial data sets

Dimensionality Real number AIC BIC Log-likelihood

3-dimensional data

1 29, 29, 30, 20, 26 1, 1, 1, 1, 1 30, 30, 30, 30, 30

4 30, 29, 28, 29, 27 4, 3, 2, 4, 4 30, 30, 30, 29, 30

7 30, 27, 29, 30, 23 2, 6, 4, 4, 4 30, 30, 30, 30, 30

10 28, 28, 30, 30, 28 3, 5, 6, 5, 6 28, 29, 30, 29, 30

13 30, 28, 29, 29, 29 5, 3, 2, 5, 5 30, 28, 30, 29, 30

16 29, 25, 30, 30, 29 3, 6, 4, 2, 3 30, 30, 30, 30, 30

4-dimensional data

1 30, 28, 30, 30, 28 1, 1, 1, 1, 1 30, 30, 30, 30, 30

4 28, 27, 30, 29, 30 4, 3, 3, 3, 3 30, 30, 30, 30, 30

7 29, 26, 29, 25, 30 5, 3, 6, 5, 4 29, 30, 29, 30, 30

10 29, 26, 28, 29, 28 6, 6, 3, 4, 6 29, 30, 30, 29, 30

13 28, 26, 27, 30, 29 4, 4, 4, 3, 4 30, 29, 30, 30, 29

16 30, 30, 30, 30, 26 5, 4, 4, 5, 4 30, 30, 30, 30, 29

The results reveal that BIC acts with better robustness and brings about

higher accuracy especially when dealing with smaller number of mixtures. The

result of BIC for the example given in Table 3.2 turns out to be accurate, as

shown in Table 3.4. Here we present Table 3.5 comparing the original model

and the recovered model from the data. The comparison is made over each

mixture component. Error of weight is interpreted as the absolute value of the

differences between corresponding Gaussian mixture component of the artificial

model wo and the estimation we,

∆w = |we − wo|. (3.1)

Error of the estimated mean vectors µe from the truth µo is measured by Eu-

clidean distance on Rn

d(µe, µo) = ∥µe − µo∥. (3.2)
30



The covariance matrices are compared by listing their eigenvalues.

However, when it comes to complicated mixture models, such as cases

with large number mixture components, BIC underestimates the number of com-

ponents with the limited number of data samples.

Table 3.4: Results for the artificial data set example estimated by BIC

3-D Data 4 Mixture Components

1st component 2nd component 3rd component 4th component

Weight 0.17 0.34 0.23 0.26

Mean


8.57

7.27

5.96




0.94

0.38

8.88




9.40

9.44

2.49




4.44

1.48

8.41



Covariance


1.52 −0.68 −0.19

−0.68 1.34 0.01

−0.19 0.01 0.61




4.09 −2.28 2.44

−2.28 5.31 2.20

2.44 2.20 6.52




7.35 0.82 1.18

0.82 7.01 1.61

1.18 1.61 6.66




0.92 −0.06 0.03

−0.06 2.01 −1.18

0.03 −1.18 3.17



Table 3.5: Model estimation compared with truth

3-D Data 4 Mixture Components

1st component 2nd component 3rd component 4th component

Weight Error 0 0 0 0

Mean Error 0.11 0.15 0.24 0.24

Eigenvalues of True Model 2.01, 0.80, 0.54 8.88, 7.84, 0.62 9.18, 6.93, 4.68 4.35, 1.21, 0.90

Covariance Matrices Estimation 2.12, 0.83, 0.52 8.35, 7.02, 0.54 9.42, 6.46, 5.15 3.90, 1.29, 0.91

Solving the problem of density estimation of multi-dimensional religion-

conflict data, since survey has provided very limited number of observations

(310 after removing the missing data), avoiding over-fitting is the most significant

issue. Therefore, BIC is selected for the analysis of religion-conflict data set.

Gaussian mixture model for religion-conflict data

After exploring the techniques, we now build a GMM for the religion-conflict data

extracted from the survey and represented by score numbers. Three social

predicting factors and five intergroup conflict variables are selected by social
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scientists to be the main focus. Two of the social factors (religious infusion

and value incompatibility) are evaluated in the scale of 1 through 9, and the

resource-power differential is measured by number between −6 and 6 where

a positive value means the group has relatively greater resources and power

than the other group and a negative value means a greater scarcity. All conflict

variables come with the value somewhere between 1 and 9. In the statistical

model estimation, we make an assumption that all data sets are continuous and

unbounded.

According to the Bayesian networks created for the religion-conflict data,

the probabilities of interests are probabilities of conflict variables conditional on

the predictors. There are three social factors acting as predictors, and five con-

flict variables, thus we have
(
2
3

)(
1
5

)
= 15 sets of three-dimensional data and(

3
3

)(
1
5

)
= 5 sets of four-dimensional data.

Given the observations, mixture model has been built for each set of

data implementing the EM algorithm using BIC to determine the number of mix-

tures. More specifically, to achieve good estimation, convergence is defined

by a threshold of 10−6 and the maximum number of iterations is set to be 400.

Three hundred different random initializations have been attempted for the min-

imum BIC value.

Here we only present the result of mixture components for the religion-

conflict data shown in Table 3.6 and later the probabilities will be shown via a

straightforward color visualization technique.
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Table 3.6: Number of mixture components for religion-conflict data

Conflict Type Predictor Variables

Value and Religious Infusion Religious Infusion All Three

Resource-power and Value and Resource-power predictors

Prejudice 11 7 5 5

Interpersonal
12 4 4 4

Discrimination

Symbolic
12 6 6 7

Aggression

Individual
6 7 10 8

Violence

Collective
8 6 8 7

Violence

After successfully estimating the joint probabilities of the predictors and

the variables using Gaussian mixture models, the next step is to achieve the

goal shown in the Bayesian networks by obtaining the conditional probabilities.

Again to simplify the expression, we use P1, P2, P3 to represent the predictors

and Ci(i = 1, 2, 3, 4, 5) to be the conflict variable. Here we take two predictor

cases for example of further derivation, noting that the same method can be im-

plemented in three predictor cases. The joint probability distribution is estimated

by the mixture model and can be represented using conditional probability den-

sities

p(Ci, Pj, Pk) =
M∑
l=1

wlpl(Ci, Pj, Pk)

=
M∑
l=1

wlpl(Ci|Pj, Pk)pl(Pj, Pk)

(3.3)

where for each mixture we have

pl(Ci, Pj, Pk) = pl(Ci|Pj, Pk)pl(Pj, Pk) (3.4)

If we view the probability pl(Pj, Pk) as the marginal probability for the predictors,
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since we know the joint probability, this marginal can be derived by integrating

over Ci

p(Pj, Pk) =

∫
Cj

M∑
l=1

wlpl(Ci, Pj, Pk) dCj

=
M∑
l=1

wl

∫
Cj

pl(Ci, Pj, Pk)

=
M∑
l=1

wlpl(Pj, Pk).

(3.5)

Therefore, the conditional probability density function is

p(Cj|Pj, Pk) =
p(Ci, Pj, Pk)

p(Pj, Pk)

=

M∑
l=1

wlpl(Ci|Pj, Pk)pl(Pj, Pk)

M∑
r=1

wrpr(Pj, Pk)

=
M∑
l=1

wlpl(Pj, Pk)

[
M∑
r=1

wrpr(Pj, Pk)]

pl(Ci|Pj, Pk)

(3.6)

which is also a mixture model with weights wlpl(Pj ,Pk)

[
M∑
r=1

wrpr(Pj ,Pk)]

for l = 1, . . . ,M .

Based on equation (3.4), we now discuss the case of a single mixture

component of the joint probability. This component is subject to the Gaussian

distribution

pl(Ci, Pj, Pk) =
M∑
l=1

wl
1

(2π)
n
2 |Σl(Ci, Pj, Pk)|

1
2

exp

(
−(x− µl(Ci, Pj, Pk))

TΣl(Ci, Pj, Pk)
−1(x− µl(Ci, Pj, Pk))

2

)
(3.7)

in which the parameters are

Σl(Ci, Pj, Pk) =


varl(Ci) covl(Ci, Pj) covl(Ci, Pk)

covl(Pj, Ci) varl(Pj) covl(Pj, Pk)

covl(Pk, Ci) covl(Pk, Pj) varl(Pk)

 (3.8)
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µl(Ci, Pj, Pk) =


µl(Ci)

µl(Pj)

µl(Pk)

 (3.9)

from which we can observe that pl(Ci|Pj, Pk) is Gaussian with

µl(Ci|Pj, Pk) = µl(Ci) +

[
covl(Ci, Pj) covl(Ci, Pk)

]
 varl(Pj) covl(Pj, Pk)

covl(Pk, Pj) varl(Pk)


−1

 Pj

Pk

−

 µ(Pj)

µ(Pk)


 ,

and

Σl(Ci|Pj, Pk) = var
l
(Ci)−

[
covl(Ci, Pj) covl(Ci, Pk)

]
 varl(Pj) covl(Pj, Pk)

covl(Pk, Pj) varl(Pk)


−1  cov(Pj, Ci)

cov(Pk, Ci)

 .

Therefore, p(Cj|Pj, Pk) has been proven to be another Gaussian mixture model

with known parameters. Similarly, we have p(Cj|P1, P2, P3) to be a Gaussian

mixture model as well. The next step is presenting a clear visualization for the

3-D and 4-D Gaussian mixture distributions.

3.3 RGB color visualization

Visualization of probability densities enables analysts to directly view trends and

shapes of the data distributions. It usually gives impetus to significant analysis

and novel findings. Curves, surfaces and meshes have been served as helpful

tools for illustrating probabilities. However, depending on the particular nature

of this intergroup religion-conflict interaction research, three or four variables

should be taken into consideration together plus the probabilities. Dimension-

ality now becomes the main issue for two-dimensional visualization. Here we

propose a color mapping method inspired by the idea of heat map which is

able to use two-dimensional Figure to display three-dimensional data [54]. Two-
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dimensional images are organized as x-by-y pixels/cells with respect to the in-

teger values within the scales of the two predictors. The color encodes level of

conflict while the intensity of color encodes the conditional probability.

In the visualization of the mixture model results for religion-conflict data,

we use RGB color intensities to represent the probability of each conflict condi-

tional in every cell (which means given values of the social predictors). The color

intensities of red, green and blue corresponding to the probabilities range from

0 to 1, where 0 represents the lowest intensity and 1 represents the highest in-

tensity. According to the survey design [9] and psychology experts’ knowledge,

we focus on the analysis of particular values of intergroup conflicts. Levels are

set for conflict variables and integrates the conditional probabilities over each

level setting. Probability of low conflict value P (Ci 6 2|Pj, Pk) or P (Ci 6

2|P1, P2, P3) is encoded by the intensity of blue, and probability of high con-

flict value P (Ci > 6|Pj, Pk) or P (Ci > 6|P1, P2, P3) encoded by the inten-

sity of red. Probability of medium conflict value P (2 < Ci 6 6|Pj, Pk) or

P (2 < Ci 6 6|P1, P2, P3) is simply represented by black (R = 0, G = 0, B = 0)

to avoid confusion or negative effect over the analysis of the severe cases of

conflicts.

Through the novel visualization method, explorations have been made

for all five conflicts. The displays in Figure 3.4 show the prediction of prejudice

by two social factors at a time.
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Figure 3.4: Visualization for two-predictor analysis of prejudice

From the figures above we can observe that the increment of the prob-

ability of high prejudice and the decrement of low prejudice follow the increas-

ing value incompatibility, religious infusion, and/or the severe case of resource-

power differential, both negative and positive. And the interaction with religious

infusion enables the value incompatibility to have a stronger effect over preju-
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dice. Similar patterns and trends as shown above are discovered in the analysis

of interpersonal discrimination as well.

However, some different patterns are discovered while exploring other

conflicts including aggression, assaults and collective violence. The following

figures illustrate the interactions between social predictors and the collective

violence.

Figure 3.5: Visualization for two-predictor analysis of collective violence
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We still can see as the predictors’ value increases, the conflict of collec-

tive violence has a higher probability to be strong. But in this case, the color

maps reveal that in the groups where religious infusion has a low value, and

the resource-power differential is negative, people avoid having any strong col-

lective violence. And these patterns can also be detected in the analysis of

symbolic aggression and individual violence.

When we consider the interaction of three predictors and the conflict

variables, the results turn out as depicted in Figure 3.6.

In the analysis considering all the three predictors at the same time,

the visualizations are of considerable value in interpreting the data. However,

the higher the dimension the more strongly the curse of dimensionality enters

as data sparsity, which may result in a estimation with much higher error rate.

Therefore, we use this model as a suggestive material of the analysis. When

larger data sets are obtained from further surveys, these methods should be

more helpful.
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Figure 3.6: Visualization for three-predictor analysis of prejudice
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Chapter 4

CONCLUSIONS AND FUTURE WORK

In this thesis, we studied signal processing methods of Bayesian networks,

Gaussian mixture models, and information criteria for model selection. We also

developed a novel visualization method for the multi-dimensional distributions.

Artificial data has created for testing the methods, and Gaussian mixture models

achieved using AIC and BIC were compared to true distributions. The testing

results suggest that AIC works well with relatively small data samples, and low

dimensionality, but tends to give large estimated numbers of mixture compo-

nents (larger than 20 in the testing scenario). But the Bayesian method works

well in dealing with large data samples and relatively small numbers of mixture

components (most of which are smaller than 10 in the testing scenario).

We used combinations of these methods to solve a non-traditional sig-

nal problem in which the social psychology survey data are treated as the sig-

nal. To facilitate the analysis, statistical models were effectively built for the

multi-dimensional and sparse data samples using BIC for the Gaussian mix-

ture model selection to avoid over-fitting problem. According to the Bayesian

networks built for the religion-conflict data, the interactions were modeled as

conditional probabilities from the Gaussian mixture models.

A RGB color visualization technique were proposed to display the prob-

abilities of interest by intensities of red and blue. The color representations

enabled intuitive and direct observations about the effect of religion, interacting

with value incompatibility and resource-power differential, in predicting different

levels of intergroup conflicts.

In this first attempt to implement Bayesian techniques and statistical
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models into the religion-conflict problem analysis, it was assumed that the sur-

vey data may be sufficiently well approximated by a model involving a contin-

uous and unbounded distribution. It was also assumed that the mixture model

components are Gaussian and the mixture components were estimated based

on Bayesian information criterion. Also, by integrating the probability densities

over three ranges, we may have lost some valuable information. Therefore, fu-

ture work is expected including development and improvement of the mixture

model structure selection and model parameter estimation. And as complexity

of the model increases, the visualization method needs to be improved using,

for example, HSV color space instead of RGB color maps.
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