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ABSTRACT  

   

Due to heterogeneity at the cellular level, single cell analysis (SCA) has 

become a necessity to study cellomics for the early detection of diseases like 

cancer. Development of single cell manipulation systems is very critical for 

performing SCA. In this thesis, electrorotation (ROT) chips to trap and rotate 

single cells using electrokinetic forces have been developed. The ROT chip 

mainly consists of a set of closely spaced metal electrodes (60µm interspacing 

between opposite electrodes) that forms a closed electric field cage (electrocage) 

when driven with high frequency AC voltages. Cells were flowed through a 

microchannel to the electrocage where they could be precisely trapped, levitated 

and rotated in 3-D along the axis of interest. The dielectrophoresis based ROT 

chip design and relevant electrokinetic effects have been simulated using 

COMSOL 3.4 to optimize the design parameters. Also, various semiconductor 

technology fabrication process steps have been developed and optimized for 

better yield and repeatability in the manufacture of the ROT chip. The ROT chip 

thus fabricated was used to characterize rotation of single cells with respect to the 

control parameters namely excitation voltage, frequency and cell line. The 

longevity of cell rotation under electric fields has been probed. Also, the Joule 

heating inside the ROT chip due to applied voltage has been characterized to 

know the thermal stress on the cells. The major advantages of the ROT chip 

developed are precise electrorotation of cells, simple design and straight forward 

fabrication process. 
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Chapter 1 

Introduction to cell manipulation using electrokinetic effects 

1.1. Introduction 

Heterogeneity in terms of gene, protein and metabolites expression at the 

cellular level has made single cell analysis (SCA) a necessity to study cellomics 

with cellular specificity. New emerging technologies have enabled SCA, opening 

the door for better understanding of biological phenomena at the cellular level and 

earlier disease detection (Wang and Bodovitz 2010). Cancer is the focal point of 

many efforts as its prevalence has persisted regardless of the technological 

advances. SCA has proven vital for studying tumor formation and progression in 

cancer since it is a heterogeneous disease (Wang and Bodovitz 2010).  

Even though the complexity behind cancer is yet to be solved, 

quantification of structural changes at single cell level using SCA can be very 

useful in developing robust biosignatures for early detection of the disease 

(Nandakumar et al. 2011). As SCA is critical for the above reasons, it is important 

to explore the techniques that are commonly used for single cell manipulation, 

which is elemental in performing SCA.  

Several different techniques have been established for particle/cell 

manipulation, mainly: optical, hydrodynamic, dielectrophoretic, magnetic, and 

acoustic manipulation techniques.  Each technique makes use of different 

properties of the particle/cell and offers different trapping resolution as shown in 

Table 1 below (Nilsson et al. 2009). Of these techniques, dielectrophoresis 
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(electrokinetic phenomenon) based manipulation of cells is of particular interest 

owing to the various advantages it offers.  

           In Table 1 , D is the particle/cell diameter, n is the refractive index of the 

particle/cell, ε is the permittivity of particle/cell and medium, σ is the conductivity 

of particle/cell and medium, χ is the permeability of the particle/cell, ρ is density 

of the particle/cell, β is the compressibility of the particle/cell.   

Table 1. Comparison of particle/cell manipulation techniques 

Manipulation 

technique 

Critical 

Properties 

Buffer demands Trapping 

resolution 

Trapping 

force(pN) 

Hydrodynamic D - Low(~10µm) NA 

Optical D, n Transparent High(~50nm) 100-2000 

Dielectrophoretic D, ε, σ pH, Ion, clean 

surfaces 

Medium(~1µm) 200-400 

Magnetic D, χ - Medium(~1µm) 2-1000 

Acoustic D, ρ, β - Low(~100µm) 100-400 

 

          The term “Dielectrophoresis” was coined by H. A. Pohl in 1951 who 

conducted the early experiments that defined the phenomenon. Recently, 

dielectrophoresis has become very important due its potential application in 

micro/nano manipulation (Arnold and Zimmermann 1988). Dielectrophoresis 

(DEP) is a phenomenon where the presence of a non-uniform electric field in the 

vicinity of a dielectric particle results in a force exerted on the particle. DEP does 

not require that the particle be charged; while the magnitude and direction of the 

force itself has a profound dependence on the properties of the particle and the 

medium surrounding the particle (Jones 1995). 
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1.2. Background literature 

The advantages of DEP has been utilized in several applications including 

sorting cells based on size, type and other properties, trapping and rotating 

individual cells for optical imaging and concentrating cells for bulk 

manipulation(Fiedler et al. 1998; Andersson and van den Berg 2003; Zahn 2009, 

pg 133-181). Several of these applications and the appropriate dielectrophoretic 

systems used are mentioned in this section. 

Filtering of particles/cells based on size and properties using 

dielectrophoresis is one of the most common applications. This is typically done 

with interdigitated electrode arrays with sets of energized and grounded 

electrodes. The dielectrophoretic effects have been used to accumulate 

particles/cells of interest along the electrodes against a fluid flow while other 

unwanted particles/cells were carried away (Zahn 2009, pg 133-181). 

Interdigitated electrodes with castellation have been used for positioning, 

separation as well as concentrating particles/cells (Green and Morgan 1997; 

Muller et al. 1999; Sebastian, Buckle, and Markx 2006). Another application of 

dielectrophoresis is sorting particles/cells (An et al. 2009; Fiedler et al. 1998). 

Travelling wave dielectrophoresis phenomenon, which is achieved with spatially 

varying phase of electric fields, has been used for levitation, controlled transverse 

motion and separation of particles/cells (Cui and Morgan 2000; Morgan et al. 

1997). Lapizco-Encinas et al. have used insulative dielectrophoresis (iDEP) for 

selective separation of particles/cells. The main advantages of iDEP method is the 

isolation of the driving electrodes from the particle, reducing Joule heating and 
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any contamination due to the exposed electrodes (Shafiee et al. 2009). However, 

iDEP systems use high applied voltages (> 100V) and low frequencies, which 

limit the precision of control on a single particle/cell basis   (Lapizco-Encinas et 

al. 2004, 2004).  

Particles/cells trapping using quadrupole (4 electrodes), octupole (8 

electrodes) and addressable dot traps have been demonstrated. Typically trapping 

of one or a few particles/cells is useful for close monitoring and manipulation. In 

this case, the system consists of electrodes which create a static or rotating electric 

field forming an electrocage that enables both trapping and trapping with rotation 

(ROT) of particles/cells (Muller et al. 1999; Taff and Voldman 2005; Voldman 

2006; Schnelle, Muller, and Fuhr 2000).  

           The main aim of this project is single cell manipulation using 

electrorotation (ROT). Fuhr et al. have completed extensive studies on 

electrorotation of cells/microbeads. The behavior of a single biological cell in a 

rotating electric field was investigated both theoretically and experimentally by 

calculating the torque and forces dependent on the electrical properties of the cell 

(Fuhr and Kuzmin 1986; Schnelle et al. 1993). Adhering animal cells were 

cultured under permanent electric field application to probe the effects on cell 

growth and were claimed to be insignificant (Fuhr et al. 1994). The degree of 

electropermeabilization of the plasma membrane of mammalian cells has been 

correlated to cell medium conductivity, by measuring the temporal and spatial 

intake of propidium iodide stain (Djuzenova et al. 1996). Dielectrophoresis based 

electrode elements capable of funneling, aligning, caging, and switching were 
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designed for focusing, trapping and separating cells and microbeads (Muller et al. 

1999). Cell division rates, cell motility and viability were probed to find that field 

application is limited by dielectric breakdown of cells at low frequency and Joule 

heating at high frequencies (Glasser and Fuhr 1998). Fuhr et al. has also shown 

experimentally that a dipole approximation for particles/cells in evaluating the 

dielectrophoretic forces can be a good estimate only for particles/cells that is 

quarter the size of the electrocage and for larger particles higher order quadrupole 

approximation is necessary (Schnelle et al. 1999). A combination of 

dielectrophoretic and laser trapping (electro-optical trap) for electrorotation which 

offers the advantage of low field operation has been demonstrated (Schnelle et al. 

2000).    

1.3 Theory  

            Every particle has electrical properties which are defined by its electrical 

conductivity, permittivity, shape and size. The conductivity and permittivity are 

material dependent parameters. Depending upon how a particle responds to an 

applied electric field, it can be classified into a conductor, dielectric or a lossy 

dielectric. A perfect conductor will aid in transport of charges (e.g. electron, ion) 

in the direction of the electric field making the electric potential distribution 

uniform across it. Whereas, a perfect dielectric has immobile charges (e.g. 

electron, ion) which results in polarization with no current flow and a potential 

distribution that is governed by Gauss’s law. Lastly, in case of a lossy dielectric, 

there will be polarization as well as non-negligible conduction current. In reality, 

every particle will exhibit both conduction and polarization to a finite extent 
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(Zahn 2009, pg 133-181). Thus a particle, when subjected to an electric field, has 

charge distributions in and around it determined by its electrical properties. As a 

result, the particle may experience forces and/or torques due to the electric field 

which forms the basis of electrokinetics. 

            Electrokinetics is a broad classification of a set of phenomena that occurs 

in a heterogeneous fluid containing particles in the presence of an electric field. 

Typically, the effects of electrokinetic phenomena are dominant in particle sizes 

roughly above 1µm and below 1mm. Beyond these limits, smaller particles are 

more influenced by Brownian and van der Waals forces and larger particles are 

more influenced by gravitational forces (Jones 1995). As an illustrative example, 

consider an aqueous medium that has mobile ions and charged particles of the 

described size. In this case, the local concentration of the mobile counter-ions 

near the surface of the charged particles will be higher forming an interfacial 

double layer of charges. Now, in presence of an external electric field, there is a 

force exerted on the mobile charge layer (diffuse layer), generating a tangential 

motion of the mobile charge, dragging along the medium with respect to the 

particle (α-dispersion phenomenon, frequency up to 1 kHz). The particle itself 

will experience a force under the influence of the electric field due to its charge 

(Jones 1995). Depending upon the type of relative motion that occurs between a 

surface/particle and mobile ions in a medium, several different electrokinetic 

phenomena are observed. Dielectrophoresis, electroosmosis, and Joule heating are 

of particular interest in studying the effects of electric field on biological cells (Oh 

et al. 2009). 
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           Dielectrophoresis is the motion of a dielectric particle caused by non-

uniformity in an electric field. Electroosmosis is the motion of the medium along 

with diffuse layer of charges relative to a stationary surface with a changing 

electric field (e.g. electrode). Joule heating (Ohmic heating) is the heating of a 

material due to flow of charges through the material. It is to be noted that DEP is 

an effect that is directly dependent on the interaction of a particle with electric 

field, whereas electroosmosis and Joule heating are hydrodynamic effects that 

depend upon the interaction of the heterogeneous medium with the electric field 

(Oh et al. 2009). 

1.3.1 Dielectrophoresis 

           A dielectric particle, like a biological cell, when subjected to a non-

uniform electric field, experiences a DEP force that is be determined by the size, 

shape and complex permittivity of the particle and surrounding medium as well as 

the frequency, strength and non-uniformity of the localized electric field. The cell 

has a net negative surface charge in the order of 10mC/m
2
 which results in

 
an 

electrical double layer around the cell. But, the movement of massive diffuse 

layer ions is slow and this type of polarization is effective only in low frequency 

ranges (α-dispersion phenomenon, frequency up to 1 kHz).
 
The DEP force is a 

resultant of polarization along the interface (e.g. cell membrane) between two 

materials with different complex permittivities (e.g. cell cytoplasm and cell 

medium). The polarization (Maxwell-Wagner interfacial polarization, β-

dispersion phenomenon, frequency range - 1 kHz- 100 MHz) results from 

collection of charge along the interface which can be approximated as a dipole 
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bound to the particle. The non-uniform external electric field exerts a Columbic 

force on the dipole. This necessitates that the non-uniformity of the local electric 

field should be on the order of the size of the particle and materials have different 

complex permittivities. Dielectrophoresis should not be confused with 

electrophoresis which is a closely related electrokinetic phenomenon that occurs 

only when a charged particle is exposed to an electric field. In case of 

electrophoresis, the electric field is always uniform and the inherent charge of the 

particle is responsible for the Columbic interactions between the field and the 

particle (Jones 1995; Heida 2003). Figure 1a shows the difference between 

electrophoresis and dielectrophoresis. Figure 1b shows the behavior of a dielectric 

particle in presence of a non-uniform electric field (Sung 2007).  

 
Figure 1. Dielectrophoresis principle 

           The time averaged DEP force using a dipole approximation acting on an 

isolated sphere suspended in infinite medium is given by the following equation 

(Jones 1995, pg 34-61): 

3 2
DEP m CM rmsF 2 R *Re(f )*< >= π∈ ∇Ε
� �

     where      
p m

CM

p m

f
2

∈ − ∈
=

∈ + ∈
 and 

iσ
∈=∈ −

ω
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           In the above equation, R is the radius of the suspended sphere, CMRe(f )  is 

the real part of the Clausius-Mossotti factor, CMf is the Clausius-Mossotti factor,∈ 

is the complex permittivity,∈is the dielectric permittivity, σ is the conductivity, ω

is the angular frequency of the applied electric field and
2

rmsE∇
�

is the gradient of 

the root mean square of the applied electric field. The suffix m stands for medium 

and p for particle. 

            From the time averaged dipole approximated DEP force equation, it can 

be observed that the force is directly proportional to the cube of the radius of the 

sphere, the real part of the Clausius-Mossotti factor that varies between 1(
p∈ → ∞

) and -0.5 ( m∈ → ∞ ) which determines the direction of the force and the gradient 

of the mean square of the applied electric field. Depending upon the polarity of 

the DEP force acting on a particle it can be classified into positive DEP and 

negative DEP forces. The positive DEP force attracts the particle towards the 

higher electric field gradient and negative DEP force repels the particle from high 

electric field gradient as shown in Figure 1b. In case of biological cells, to 

minimize the negative effects that may occur in presence of high electric field 

gradients, it is preferred to operate in negative DEP regime which is controlled by 

making the real part of the complex permittivity of medium higher than that of the 

cells. 

            In the above DEP force equation, the effect of spatial change of phase of 

the electric field has not been taken into account. When the phase of the electric 

field varies spatially, two different types of dielectrophoretic forces are observed 
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depending upon the arrangement of electrodes, namely travelling wave 

dielectrophoresis (TWDEP) and electrorotation (ROT).  

1.3.1.1 Travelling wave dielectrophoresis 

        Travelling wave dielectrophoresis is a phenomenon that occurs when the 

applied electric field has spatially varying phase as shown in Figure 2. The FDEP 

equation for a spatially varying electric field is given below. 

re imE(r, t) Re[(E (r) iE (r)) exp[i t]]= + ω
� � �� � �

    

3 2 3
DEP m CM rms m CMF 2 R *Re(f )* 2 R Im(f ) Re[E] Im[E]< >= π∈ ∇Ε − π∈ ∇× ×
� � � �

 

        The time averaged dielectrophoretic force has a travelling wave component 

defined by the second term in the equation(Schnelle, Muller, and Fuhr 2000). It 

has to be noted that the TWDEP component is proportional to the imaginary part 

of the Clausius-Mossotti factor and to the cube of the radius of the sphere. The 

TWDEP force mainly finds its application in smooth conveyance of particles that 

are levitated from the surface. Particle rotation may be observed in the direction 

of movement as shown in Figure 2.  

 
Figure 2. Travelling wave dielectrophoresis principle 
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1.3.1.2 Electrorotation 

          Electrorotation occurs when the particle is in the presence of a rotating 

electric field as shown in Figure 3. The time averaged dipole approximated torque 

exerted by a rotating electric field is given by the following equation (Schnelle, 

Muller, and Fuhr 2000).    

3

m CMN 4 R Im(f ) Re[E] Im[E]< >= π∈ ×
� � �

 

 
Figure 3. Electrorotation principle 

           Again it is seen that the electrorotation of a particle depends upon the 

imaginary part of the Clausius-Mossotti factor and the mean square of the electric 

field unlike the DEP force which is proportional to the gradient of the mean 

square electric field. 

     All the force equations so far described are valid under the assumptions that 

the particle considered is spherical and can be approximated as a dipole. Also, the 

in-homogeneity of the applied electric field should be in the order of the particle 

size that is manipulated. Under specific circumstances, it may be necessary to 
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consider higher order moment approximations to accurately predict 

dielectrophoretic forces. 

1.3.1.3 Higher order moment approximation 

         As discussed previously a cell in presence of an electric field can be 

approximated as a multipole whose order depends upon the level of accuracy with 

which the DEP force acting on the cell has to be determined. Shown below in 

Figure 4 is the multipole scheme that can be derived from a point charge 

separated by appropriate vectors. In the figure, n denotes the order of the 

multipoles (n=0 for monopole, n=1 for dipole, n=2 for quadrupole and n=3 for 

octupole) generated by placing two multipoles of order n-1 opposite to each other, 

separated by a distance vector. While the dipole approximation for a cell holds for 

most of the observed DEP effects, there are few exceptional cases when higher 

order approximations are required. When a cell is at or near a field null as in case 

of the center of an octode electrocage during electrorotation or the cell is placed in 

a very highly non-uniform electric field where the polarization is more complex 

than a dipole. The multipole approximations are required to accurately predict the 

behavior of cells in such situations (Washizu and Jones 1994; Schnelle et al. 

1999).    

 
Figure 4. Representation of multipoles using point charge model 
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          In order to predict the DEP force that acts on a cell using multipole 

approximations, Jones and Washizu have formulated the higher order DEP force 

terms as derivatives of electromechanical potentials (U) as shown in the below 

equations (Washizu and Jones 1994).  

DEP 1 2 3F (U U U ..)= −∇ + + +
�

 where, 

22 2

p m3 ext ext ext
1 m

p m

U 2 R
2 x y z

  ∈ −∈  ∂ϕ ∂ϕ ∂ϕ   
= − π ∈ + +        ∈ + ∈ ∂ ∂ ∂          

2 2 2
2 2 2

ext ext ext

2 2 2
5

p mm
2

2 2 2
2 2 2p m

ext ext ext

1

2 x y z4 R
U

3 2 3

y z z x x y

       ∂ ϕ ∂ ϕ ∂ ϕ
  + +     

∂ ∂ ∂  ∈ − ∈       π ∈   = −    ∈ + ∈         ∂ ϕ ∂ ϕ ∂ ϕ
+ + +      

∂ ∂ ∂ ∂ ∂ ∂       

 

 

2 2 2
3 3 3

ext ext ext

3 3 3

2 2 2
3 3 3

ext ext ext

2 2 27
p mm

3 2 2
3 3 3

p m
ext ext ext

2 2 2

1

6 x y z

x y x z y x2 R 1
U

5 3 4 2

y z z x z y

      ∂ ϕ ∂ ϕ ∂ ϕ
 + +     

∂ ∂ ∂       

     ∂ ϕ ∂ ϕ ∂ ϕ
+ +     

∂ ∂ ∂ ∂ ∂ ∂ ∈ − ∈π ∈      
= − +  ∈ + ∈      ∂ ϕ ∂ ϕ ∂ ϕ

+ + +   
∂ ∂ ∂ ∂ ∂ ∂   

2

2
3

ext

x y z

 
 
 
 
  
  
  
  

   
   
   

 
 ∂ ϕ +   ∂ ∂ ∂  

 

            In the above equation, φext is the net electrostatic potential at a point and 

the other terms are the same as in the dipole approximation.    

1.3.2 Electroosmosis 

            In the DEP chip used for cell handling, electroosmosis is observed near 

the surface of the electrodes. In electroosmosis, the mobile ions in the cell 
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medium form a counter-ion diffuse layer near the electrodes resulting in an 

electrical double layer. In certain cases where the electrodes are in close 

proximity, there will be a tangential component of the electric field between those 

electrodes which will drive the mobile ions in the diffuse layer laterally dragging 

the medium. This may result in a rotational fluid motion near the electrodes. The 

equation for the electroosmotic velocity is shown below (Oh et al. 2009).  

2 2

m 0
ACEO 2 2

V
8 d(1 )

 ∈ ϕ Ω
< >=  

η + Ω 
        where, m

m

1
kd

2

 ∈
Ω = π ω 

σ 
 

        In the above equation, m∈ is the dielectric permittivity of the medium, 0ϕ  is 

the initial potential, Ω is the non-dimensional frequency as defined by the 

equation, k is the inverse of the Debye length, mσ is the conductivity of the 

medium, η is the dynamic viscosity of the medium and d is the cross-sectional 

position starting from the center of the gap between the electrodes. 

          From the electroosmotic velocity equation, it can be observed that the 

velocity approaches zero at very low and high frequencies. Also, the 

electroosmotic effect becomes negligible with increase in the medium 

conductivity.  The DEP chip is designed to operate in frequencies greater than 500 

kHz and medium conductivity on the order of 1-10 S/m where the electroosmotic 

effect has to be probed.  

1.3.3 Joule heating 

       Joule heating is an effect observed when the moving charged particles 

(electrons in metals and ions in medium) that comprise electrical current collide 

with stationary atoms resulting in energy transfer that manifests itself as heat. 
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This heating effect results in gradients in the conductivity and permittivity of the 

medium. The electric field interacts with the gradients, resulting in fluid motion 

that may drag the particles suspended in the medium. 

        If the rate of change of the conductivity and the permittivity is known as a 

function of temperature, it is possible to evaluate the time averaged electrothermal 

(ET) hydrodynamic force induced by electric field due to the gradients in the 

conductivity and permittivity of the medium (Oh et al. 2009). 

            2 2

mk 0∇ Τ + σ Ε =
 
where, k  is the thermal conductivity of the medium   

                                                            mσ
 
is the conductivity of the medium                                

          
2

ET mF 0.5 ( )< >= ∈ ∇ΤΕ Π ω
� �

 where     
( )

2
( )

2

 α − β α
Π ω = − 

 1+ ωτ 

 

                                                                        m m(1/ )( / T)α = ∈ ∇ ∈ ∇ ,                                                           

m m(1/ )( / T)β = σ ∇σ ∇
, m m/τ =∈ σ  

             In the above equation, α is the percentage change of medium permittivity 

per Kelvin, β is the percentage change of medium conductivity per Kelvin,                                    

)Π(ω is a unit-less function of frequency and τ  is the charge relaxation time 

constant.   

It is shown that the temperature change is proportional to the electrical 

conductivity of the medium. Therefore lower medium conductivity eliminates 

current flow and there by joule heating. The electrothermal hydrodynamic force is 

directly proportional to the temperature gradient and the square of the magnitude 

of the electric field. Both the temperature gradient and the electric field are 
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proportional to the applied voltage. As such, the voltage affects the force 

significantly. It can also be noted that the force is inversely proportional to the 

frequency. High frequency operation therefore can be used to reduce Joule 

heating effects. 

1.4 Electrorotation chip overview 

The main focus of this thesis is to develop an electrorotation chip, which 

will aid in single cell imaging aimed at early detection of diseases.  The 

electrorotation (ROT) chip consists of a set of deposited metal electrodes on two 

substrates, which are bonded with a polymer spacing layer between the substrates. 

The electrodes are exposed at the center of a microchannel formed by the polymer 

layer. This microchannel guides cells suspended in cell medium to the center of 

the electrocage. The electrodes form an electric field cage (electrocage) that can 

trap and rotate cells when stimulated with a high frequency AC voltage with 

appropriate phase shift. Figure 5 shows the 3-D arrangement of the electrodes 

forming an electrocage.  

 

Figure 5. 3-D electrode arrangement in ROT chip 
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1.5 Discussion 

          It is evident that several electrokinetic phenomena occur in the presence of 

alternating electric fields. For cell manipulation applications, it is critical to 

understand the various electrokinetic phenomena and parameters that affect them. 

The most critical phenomena to be considered are dielectrophoresis, 

electroosmosis and Joule heating for electrorotation of cells. The FDEP force and 

ROT torque are the two types of dielectrophoretic forces that determine cell 

electrorotation in the ROT chip. Whereas, Joule heating is undesired as an 

increase in the temperature can stress the cells. The ROT chip design has been 

considering the above mentioned electrokinetic phenomena for cell 

electrorotation.  
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Chapter 2 

Design selection for electrorotation chip   

            The design and dimensions of the electrodes determine the 

dielectrophoretic guiding, trapping and rotating forces acting on a cell, the amount 

of Joule heating and the ability to repel other cells from entering the electrocage.   

The initial electrode design guidelines for the ROT chip were adopted from Fuhr 

et al. (Fuhr et al. 2003). COMSOL Multiphysics was used to simulate the electric 

field distribution, suitable phase configuration and probe Joule heating in the 

electrocage. Further, several design iterations have been carried out to improve 

the fabrication yield and ROT control.  

2.1 Initial ROT chip designs 

               The electrode design for the ROT chip consisted of three regions namely 

a) head region, b) feed region and c) contact region. The head region of the 

electrode forms the cage, the contact region is used for electrical interfacing and 

the feed region connects the head and the contact regions. The head region design 

should be optimized to create highly inhomogeneous electric fields to increase the 

DEP force for good trapping in the cage and repel nearby cells from entering into 

the cage due to external forces like thermal convection or fluid drag force. The 

feed region should be smaller in width near the head region to minimize the 

thermal convection towards the electrode cage (Fuhr et al. 2003). Following the 

above guidelines, a myriad of electrode designs are possible which can make a 

ROT chip. But, only prevalently used electrode shapes have been simulated and 
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fabricated for better trapping, rotation of trapped cell and repelling of cells outside 

the electrocage. The feed region width was optimized for high fabrication yield 

and minimal thermal convection.     

Four iterations of the electrode designs were fabricated with modifications 

to improve the fabrication yield. In design iteration 1, electrodes with three 

different head shapes were fabricated which included 1) Flat head 2) Semi-

elliptical head and 3) Arrow head with two different interspacing (between 

opposite electrodes of same plane) 60µm and 120 µm as shown in Figure 6. Due 

to excessive etching of the deposited metal underneath the mask region (with aqua 

regia etchant), the electrodes were under-dimensioned leading to low yield. 

However, quadrupole electrodes were used to demonstrate planar cell rotation 

(about the z-axis) by stimulating the electrodes with voltages that had phase shift 

of 90° forming a planar rotating electric field. Owing to the poor yield in design 

iteration 1, the design iteration 2 had only flat head electrodes with interspacing 

120 µm. The feed and head regions were scaled up by around 40% and 20% 

respectively to increase the yield. The challenge with metal etching was addressed 

by using a commercially available etchant (TFA etchant). With this design, 3-D 

rotation of latex beads and K562 leukemia cancer cells were demonstrated. The 

120µm interspaced electrodes were separated by 120 µm spacing layer in order to 

have a symmetrical rotating field. This implies that the cell was levitated to 60µm 

above the bottom substrate, which is problematic because the height that the cell 

can be levitated is limited by the working distance of the objectives used for 

imaging. As such, it is desired to have the cell as close as possible to the bottom 
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substrate. Thus in design iteration 3, the same flat electrode geometry with three 

different interspaces of 50µm, 60µm and 80µm were fabricated. While all three 

interspacing electrodes precisely rotated cells, 60 µm was chosen as the standard 

interspacing for future designs considering the ease in fabricating the spacing 

layer (one step photolithography), proximity of the levitated cell to the bottom 

substrate (30µm), minimal microchannel clogging during the bonding process 

(diffuse bonding technique) and the design rules for electrode dimensions (Fuhr et 

al. 2003) (Note: Please refer to Chapter 3 for more details on fabrication 

processes). In design iteration 4, the form factor of the ROT chip was modified 

for compatibility with a proprietary imaging platform retaining the flat head 

electrode design with 60 µm interspacing. In the first three design iterations, the 

fluidic connections were made with Nanoport assemblies (Upchurch Scientific, 

Oak Harbor, WA) and electrical connections using soldered wires. While in 

design iteration 4, AS568A silicone o-ring face seals (McMaster-Carr, Santa Fe 

Springs, CA) were used for fluidic connection with ports cut on the face of the 

chip. Pogo pins (Mouser electronics, Mansfield, TX) were used to make electrical 

contact with the exposed bond pads.   

 

Figure 6. Electrode designs of design iteration 1 
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2.2 Electrorotation chip simulation 

2.2.1 Electrode design simulation 

            Various electrode designs were simulated using COMSOL 3.4 to optimize 

the electrode shape and dimensions for maximum cell trapping and rotation 

control for a given voltage. From the DEP force equation, it can be observed that 

the effect of the shape of electrodes is reflected in the
2

rmsE∇
�

 term. So, in order to 

optimize the electrode shape for maximum trapping and rotation, the electric field 

distribution and its gradient were analyzed.  

           Laplace equation for electrostatics was used to simulate the effect of 

applying a voltage to a medium using the electrodes. The conductivity of the 

medium and charge distribution density was assumed to be zero. The model 

yielded convincing results for the electric field distribution pattern. The Laplace 

equation for electrostatics is derived from the Gauss’s law in derivative form. The 

Laplace equation is given below, 

2 0∇ ϕ =    where ϕ is the electrostatic potential 

           The electrode shapes typically used for ROT application are semi-

elliptical, arrow and rounded arrow (Maswiwat, Holtappels, and Gimsa 2006; 

Reichle et al. 1999). In this thesis, the simulation of the electrode shapes were 

limited to semielliptical, arrow and concave head shapes. All the designs were 

simulated using a 2-D model. Quadrupole and octupole head electrode designs 

with 60µm interspacing were simulated with 4V peak-to-peak sinusoidal input of 

frequency 2MHz and phase shift of 90° (quadrupole) and 45° (octupole) between 

adjacent electrodes. The relative permittivity of the medium was set to 80.2 
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(permittivity of water in the frequency ranges of interest). Except for the 

electrodes all the other boundaries were set as distributed capacitance with Vref =0 

and εr as 80.2 for the boundary condition. With the above stated sub-domain 

settings and boundary conditions in the electrostatics application mode, the 

electric field magnitude and its gradient were analyzed to determine the optimum 

electrode shape. 

           The electric field magnitude (Enorm) is given by the equation below, 

22 2

norm x y zE (t) E (t) E (t) E (t)= + +  Where, x, y and z are the Cartesian 

coordinate axes. 

2.2.1.1 Arrow shape 

           The arrow head shaped electrodes were simulated using a set of 2-D 

quadrupole and octupole designs, varying the height and keeping the base width 

constant. The base width of quadrupole electrodes was 45µm and that of octupole 

electrodes was 21.6µm. The base to height ratio of the electrode head was varied 

from 6:1 to 6:10 in 10 steps and the results thus obtained were analyzed.  

          In Figure 7 the norm value of the electric field (Enorm) is plotted for only 

three quadrupole arrow head shaped electrodes at two different time values (t=0 

and t=0.125T, where T is the period of the wave). The base width to height ratios 

(b:h) for each set of electrodes are 6:1, 6:5 and 6:10. The electric field distribution 

in the electrocage along the line y=0 at t=0s and x=y at t=0.125T s (45° phase 

shift) for the electrodes have been plotted. It can be observed that the Enorm value 

between the tip of the electrodes at t=0s along y=0 line is maximum near the 
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electrode tips and drops immediately. The huge electric field gradient near the tip 

implies that there will be a very high DEP force, which will immediately drop 

towards the center. Considering that the electric field gradient is at a maximum 

near the electrode tips does not help the stability of the trap. It is to be noted that, 

with an increase in height of the arrow head, the surface area forming the 

electrocage reduces since the arrow gets sharper. As a result, trapping at t=0.125T 

s (phase shift 45°) along x=y line reduces considerably as shown in the figure. In 

this case, a cell that is initially off the center of the electrocage may not be 

repelled to the center of the electrocage and stably trapped. This implies that the 

optimal design should have sufficient area forming the cage, as well as sufficient 

electric field gradients to stabilize and effectively trap a cell. Comparing b:h::6:1 

and b:h::6:10, at t=0s the Enorm value at the tip is 4 time greater for the sharper 

arrow, but at t=0.125T s the Enorm value along x=y line is reduced to half the 

value. Thus, b:h::6:1 is a better design compared to b:h::6:10 as the trapping is 

better and there is no significant difference in the electric field distribution near 

the center of the electrocage.  
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Figure 7. 2-D Enorm  plot of arrow head shaped quadrupole electrodes at t=0s 

along y=0 and at t=0.125T s along x=y line. 

 

 
Figure 8. 2-D Enorm  plot of arrow head shaped octupole electrodes at t=0s along 

y=0 and at t=0.125T s along x=y line. 
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            In Figure 8, the Enorm distribution is plotted for only 3 octupole arrow head 

shaped electrodes at two different time values (t=0 and t=0.125T). The base to 

height ratio was maintained same as the quadrupole electrode design. It can noted 

that for t=0s along y=0 line and t=0.125T s (45° phase shift) along y=x line have 

same Enorm values as expected. Similar to the quadrupole design, the electric field 

gradient is at a maximum near the electrode and reduces immediately. The 

increase in the electrode number improves the trapping stability due to greater 

trapping forces as shown in Figure 10. Therefore, the octupole electrode design 

with base width to height ratio of 6:1 was fabricated in design iteration 5 for 

testing purposes.  

 

 
Figure 9. Electric potential and field distribution for 2-D quadrupole arrow head 

shaped electrode design (b:h::6:10) (x, y scale = 10e-4 m) 
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Figure 10. Electric potential and field distribution for 2-D octupole arrow head        

shaped electrode design (b:h::6:10) (x, y scale = 10e-4 m) 

         Figures 9 and 10 show the surface plots of electric potential distribution and 

3-D height data determined by the magnitude of the electric field values of the 2-

D quadrupole and octupole arrow head electrodes with b:h::6:10 respectively. The 

height data clearly indicates that octupole electrodes have better trapping than 

quadrupole electrodes.      

2.2.1.2 Semi-elliptical shape 

             The semi-elliptical shaped electrodes were simulated using a set of 2-D 

designs keeping one radius (Ra) constant and varying the other radius (Rb). The Ra 

of quadrupole electrodes was 22.5µm and that of octupole electrodes was 10.8µm. 

The Ra to radius Rb ratio of the electrode shape was varied from 3:1 to 3:10 and 

the results obtained were analyzed.  

             In Figure 11, the Enorm distribution is plotted for only three geometries at 

t=0s along the line y=0 and at t=0.125T s along x=y line. The Ra to Rb ratio 
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(Ra:Rb) for the geometries are 3:1,3:5 and 3:10. Compared to the arrow shaped 

electrodes, the semi-elliptical electrodes have lower Enorm values near the 

electrode tips. The electric field gradient also varies more uniformly across the 

electrocage which will enable stable trapping. Also, the area of the electrode 

which forms electrocage is higher than the arrow electrodes which is supported by 

the nearly identical Enorm values at t=0.125T s along x=y line as shown in Figure 

11. 

 
Figure 11. 2-D Enorm  plot of semi-elliptical head shaped quadrupole electrodes at 

t=0s along y=0 and at t=0.125T s along x=y line. 
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Figure 12. 2-D Enorm  plot of semi-elliptical head shaped octupole electrodes at 

t=0s along y=0 and at t=0.125T s along x=y line. 
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Figure 13. Electric potential and field distribution for 2-D quadrupole semi-

elliptical ( head shaped electrode design(Ra:Rb::3:10) (x, y scale = 10e-4 m) 

 

 
Figure 14. Electric potential and field distribution for 2-D octupole arrow head        

shaped electrode design (Ra:Rb::3:10) (x, y scale = 10e-4 m) 
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             Figures 13 and 14 show the surface plots of electric potential distribution 

and 3-D height data determined by the magnitude of the electric field values of 

the 2-D quadrupole and octupole arrow head electrodes with Ra:Rb::3:10 

respectively. The height data clearly indicates that octupole electrodes have better 

trapping than quadrupole electrodes. 

2.2.1.3 Flat and concave shape 

              The flat and concave shaped electrodes were simulated using a set of 2-D 

designs keeping one radius constant Ra and varying the other radius Rb. The Ra of 

quadrupole electrodes was 22.5µm and that of octupole electrodes was 10.8µm. 

The Ra to Rb ratio of the electrode shape was varied from 3:0 to 3:5 and the results 

obtained were analyzed.   

 

Figure 15. 2-D Enorm  plot of flat and concave head shaped quadrupole electrodes 

at t=0s along y=0 and at t=0.125T s along x=y line. 
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             In Figure 15, the Enorm distribution is plotted for three geometries at t=0s 

along the line y=0 and at t=0.125T s along x=y line. The Ra to Rb ratios for the 

geometries are 3:0, 3:1 and 3:5. Since there is no tip in the concave electrode 

designs, it is observed that the Enorm values drop near the electrode, which will 

result in poor trapping of the cell due to low DEP force. The octupole flat head 

electrode design, which has good Enorm gradient values, was also fabricated in 

design iteration 5.   

 

 

 
Figure 16. 2-D Enorm  plot of flat and concave head shaped octupole electrodes at 

t=0s along y=0 and at t=0.125T s along x=y line. 
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Figure 17. Fabricated arrow, semi-elliptical and flat electrodes of design iteration 

5 

           Using the simulation results, the design iteration 5 was finalized and 

fabricated to form a 3-D hexadecapole ROT chip. Figure 17 shows the three 

electrode designs of design iteration 5. 

2.2.2 Electrode phase configurations 

          The electrode phase configuration determines the axis of electrorotation. 

For imaging purposes, the axis of rotation must be perpendicular to the direction 

of imaging. While there are a myriad possible electrode phase configurations that 

can be used to drive the 3-D octode (2 planar quadrupole) or 3-D hexadecapole (2 

planar octupole) electrodes, only a countable number of configurations form a 

closed electrode cage. 3-D electrorotation and/or trapping along different axes in 

the electrocage are possible. The following guidelines should be considered in 

order to form a closed electrocage. 

1) The trapping forces from all the electrodes along the axis of rotation 

should be equal.  

2) The electric field magnitude at the center of the cage should always be the 

lowest in the electrocage.  
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          Considering the above guidelines, the most stable configuration for rotation 

along an axis perpendicular to the direction of imaging is given by configuration 1 

in Table 2. It is to be noted that due to the symmetry of electrodes, the same 

configuration can be used for electrorotation along different axes. For stable 

trapping with no rotation, configuration 2 can be used. Figure 18, shows the 3-D 

electrode numbering for applying appropriate phase shifts. Figures 19 and 20 

show the electric field distribution at the Z=0 plane (central plane) of a 3-D flat 

head octupole electrocage with interspacing and height as 60µm simulated with 

configuration 1 and 2 respectively. For the simulation, the Laplace equation as 

mentioned in the previous section was solved to find the electric field distribution. 

Using the electrostatics physics, the permittivity of the medium was set as 80.2 

(water) and all the other boundaries, except the electrodes, have distributed 

capacitance with Vref =0 and εr as 80.2 for the boundary condition.  

Table 2.  Octupole electrode configurations 

Conf Elec 1 Elec 2 Elec 3 Elec 4 Elec 5 Elec 6 Elec 7 Elec 8 

1 90° 180° 0° 270° 0° 270° 90° 180° 

2 0° 180° 0° 180° 180° 0° 180° 0° 

 
Figure 18. 3-D Electrocage skeleton diagram 
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Figure 19. Enorm value of 3-D flat head octupole electrocage with phase 

configuration 1 for electrorotation perpendicular to Z-axis along X=-Y line. (x, y 

scale = 10e-4 m) 

 

 
Figure 20. Enorm value of 3-D flat head octupole electrocage with phase 

configuration 2 for stable trapping. (x, y scale = 10e-4 m) 
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2.2.3 Clausius-Mossotti factor 

           The Clausius-Mossotti (fCM) factor determines the frequency dependence 

of the dielectrophoretic force and torque as explained in Section 1.3.1. The 

dipole approximated fCM for a cell suspended in mediums of different 

conductivity values has been calculated. The cell was modeled as a sphere with 

single membrane. As shown in Figure 21, the cell and medium parameters were 

adopted to be membrane thickness = 8nm, Єint=50, σint=0.5 S/m (Cytoplasm), 

Єmem=8, σmem=3*10
-6

 S/m (cell membrane) and Єext=78.5, σext=1.5*10
-6

 – 1.5 

S/m (medium). These values have been used to model the dielectrophoretic 

response of L929 mouse fibroblast cells (Glasser and Fuhr 1998). The diameter 

of the cell was considered to be D = 30µm.  

        The Clausius-Mossotti factor equation mentioned in Section 1.3.1 considers 

a homogeneous sphere suspended in a medium. Therefore, it is necessary to find 

the equivalent complex permittivity of a homogeneous sphere that can represent 

the cell with a single membrane. The equation below shows the expression for 

equivalent complex permittivity of a cell ( c∈ ) (Jones 1995, pg 228). 

3 int mem

int mem

c mem

3 int mem

int mem

a 2 *

*

a

  ∈ − ∈
+  

∈ +2∗ ∈  ∈ =∈
  ∈ − ∈

−  
∈ +2∗ ∈   

  

 

  In the above equation ∈ is the complex permittivity and a = R1/R2. Figure 22 

shows the fCM versus log of linear frequency (f) for a cell suspended in medium 
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of different conductivity. The real (Re[fCM] – solid line) and imaginary (Im[fCM] 

– dashed line) part of the fCM has been plotted for medium conductivity values 

from 1.5*10
-6

 – 15 S/m in multiples of 10.    

 

Figure 21. Cell model for Clausius-Mossotti factor calculation 

           From Figure 22, the complex dependence of the dielectrophoretic forces 

to frequency are evident. Importantly, the figure shows that the high conductivity 

of cell mediums aids in slower rotation and maximum trapping with negative 

DEP which avoids the cell from exposure to high electric fields. And with 

decrease in the medium conductivity, the cells experience positive DEP and very 

high rotation torques which can damage the cell. Considering the case where the 

medium conductivity (σext) = 1.5 S/m (approximate conductivity of frequently 

used cell mediums), the Re[f CM] (determines the DEP repelling force that traps 

the cell) is approximately -0.3 in the frequency range of interest (500kHz - 

20MHz) but the Im[fCM] (determines the ROT torque that rotates the cell) has a 

maximum and minimum at 1MHz and 10MHz respectively. Experimental results 

that have been obtained as described in Section 4.2 using K-562 leukemia and 
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Murine cells have an increasing rotation rate from 500 kHz to 20 MHz as shown 

in Figures 38 and 39. It is desired to have the slowest rotation possible with 

maximum trapping for proper imaging. This implies that the frequency of 

operation should be kept as low as possible ( < 5MHz) which will be limited by 

the electrolysis of cell medium (Joule heating) and transmembrane potential of 

the cell for an applied voltage (Muller et al. 1999).  

 

   

Figure 22. Clausius-Mossotti factor versus log of frequency 
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2.2.4 Dielectrophoretic force and ROT torque  

         The DEP force and ROT torque equations have been explained in Section 

1.3.1. In this section, time dependent dipole approximated DEP force and ROT 

torque distribution for a 15µm cell (same permittivity and conductivity values 

from pervious section) suspended in a medium of conductivity 1.5 S/m has been 

plotted. The force and torque values were calculated for a 2-D flat head octupole 

electrode with a rotating electric field configuration (45° phase shift between 

adjacent electrodes) using COMSOL 3.4. The electric field magnitude (Enorm(t)) 

distribution was calculated using the electrostatics application mode with same 

parameters and conditions used in Section 2.2.1. The distribution was used to 

calculate the instantaneous force and torque values that will act on a 15 µm cell 

centered at that particular point.  

 
Figure 23. Distribution of log (|FDEP(t)|) in 2-D flat head octupole electrode design 

(x, y scale = 10e-4 m) 
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             Figure 23 is a 3-D plot of log (|FDEP(t)|) force distribution. The outline of 

the octagonal electrocage is shown for reference. It can be observed that the FDEP 

force is maximum near the electrodes and minimum at the center of the 

electrocage. Thus the cell inside the electrocage will be repelled to the center of 

the electrocage and trapped. The levitation force will not be reflected in this plot 

as the force is calculated with dipole approximation. Higher order moment 

contributions to the force have not been calculated here. It is also to be noted that, 

the planar octupole electrodes have good trapping from all directions enhancing 

control as compared to planar quadrupole electrodes.  

Figure 24. Distribution of log (| N(t)
�

|) in 2-D flat head octupole electrode design 

(x, y scale = 10e-4 m) 

 

            Figure 24 shows the 3-D plot of log (| N(t)
�

|) ROT torque distribution. It 

can be observed that the torque is maximum near the electrodes tips and nearly 
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constant in the electrocage area. Thus a cell inside the electrocage will rotate at a 

steady rate unless it gets very near to the electrodes. Typically, the cell is trapped 

at the center due to FDEP, but if the cell moves near the electrodes under the 

influence of external forces like fluid drag or thermal convection, the rotation rate 

increases rapidly which has also been observed experimentally.  

2.2.5 Joule heating simulation 

            Since Joule heating is caused by the flow of ions in the medium, it was 

simulated by coupling the Conductive media DC physics (EMDC) and General 

heat transfer physics (HTGH) in COMSOL 3.4. The voltage and frequency was 

set to 4V p-p and 20 Hz (due to the expensive computation required for long 

time spans). A 2-D cross-section of the electrocage was simulated. The EMDC 

physics assumes that the medium is resistive (with no reactance) and solves for 

the continuity equation of point form Ohm’s law given below to determine the 

electric field distribution.  

V J )e

jQ−∇.(σ∇ − =
 

          Where, ∇.  is the divergence operator, σ is the electrical conductivity of 

medium, V is the potential, J
e
 is the externally generated current and Qj is a 

current source. 

            In the above equation, it was assumed that there is no external current or 

a current source (J
e
 =Qj =0). The resulting equation was solved and the electric 

field distribution in the electrocage was determined. The electric field 

distribution obtained is fed as an input to HTGH. The heat source in HTGH is 

given by the value σm*E
2

norm. In HTGH, the thermal conductivity of the medium 
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was set to that of water. The medium electrical conductivity (σm) was set as 1.5 

S/m. The boundary condition for the wall was set as convective flux and for the 

electrodes as a heat flux. The equation below was solved for in the Joule heating 

model. 

pk Q C u∇ ⋅(− ∇Τ) = − ρ ⋅∇Τ  

           In the above equation, k is the medium thermal conductivity, T is the 

temperature, Q is the heat source, ρ is medium density, Cp is the medium heat 

capacity at constant pressure and u is the medium velocity. The velocity field 

was assumed to be zero and the model was simulated to find the temperature 

distribution in the electrocage.  

 

 

Figure 25. 2-D Temperature distribution in ROT chip due Joule heating. 
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          In Figure 25, the temperature distribution using 2-D Joule heating 

simulation has been shown. The temperature is at a maximum in the center of the 

electrocage. This can be attributed to the fact that the center of the electrocage 

sees the heating effect due to all the electrodes. The electrode regions are cooler 

as the electric field distribution is lower. Also, the heat generated due to electron 

flow in the metal is negligible compared to ion flow in the medium owing to the 

bigger size leading to less mobility. The temperature value is time dependent but 

reaches a maximum of 2.35 K increase as shown in the figure. But, comparing to 

the experimental results, the temperature rise predicted by the model is lower. 

However, the temperature distribution is similar to what is observed 

experimentally and the temperature is at a maximum at the cage center than 

elsewhere in the ROT chip.   

2.3 Discussion 

            The FDEP force, ROT torque and Joule heating which are the major 

electrokinetic phenomena that that determine the electrorotation of cells have 

been simulated using COMSOL 3.4. The various parameters that affect FDEP and 

ROT torque including electrode design, Clausius-Mossotti factor and phase 

configuration has been analyzed leading to logical directions for optimal design 

and operation of the ROT chip. Very simple models have been used for the 

simulation. But, the simulation results of the various phenomena follows the same 

trend as that of the experimental results observed (discussed in chapter 4). Also, 

the overall design of the ROT chip has been improved through several design 

iterations for better electrical, fluidic interface and fabrication yield.    
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Chapter 3 

Fabrication methods and experimental setup 

          The fabrication of the ROT chip involved a number of semiconductor 

technology processes and tools at the Center for Solid State Electronics (CSSER, 

ASU). The main processes in the manufacture of the ROT chip are electrode and 

microchannel fabrication, bonding of chip halves, and electrical and fluidic 

interfacing. It is necessary to develop a robust, repeatable fabrication process for 

the following reasons. 

a) Electrode designs have a critical dimension smaller than 10µm. 

b) Control on the height and uniformity of the microchannel is very critical 

as it determines the symmetry of the electric field distribution and the 

quality of chip bonding. 

c) Precise alignment of the chips is mandatory for forming a good 

electrocage. 

d) Efficient electrical and fluidic interfacing allows for good electrical 

contact, fluidic containment, and plug-and-play style use of the ROT chip.    

3.1 Materials selection 

3.1.1 Substrate 

           Since the ROT chip will be used for optical imaging, which requires high 

transparency, glass is an ideal substrate (Zahn 2009, pg 19). Since high 

magnification, low working-distance objectives will be used, the thickness of the 
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glass must be kept to a minimum for optimal imaging. For testing purposes, 

standard 4” 500µm thick Borofloat glass wafers are the best choice, due to their 

better durability. 

 3.1.2 Electrode metal 

            Gold was chosen for the electrode material due to its excellent electrical 

conductivity, chemical inertness, and biocompatibility. However, gold has poor 

adhesion to glass, requiring an adhesion promoter. A chromium layer has been 

deposited beneath the gold for this purpose (Zahn 2009, pg 161). 

3.1.3 Microchannel  

            The main constraints in material selection for the microchannel include 

biocompatibility, high aspect ratio patterning, film uniformity, adhesion to 

substrate and bond strength. Considering the above constraints, 

Polydimethylsiloxane (PDMS), SU-8 negative photoresist, KMPR negative 

photoresist and ACA adhesive film were considered for the microchannel 

fabrication. In spite of excellent film uniformity with PDMS (plasma treated) and 

ACA adhesive film, the adhesion to glass is instantaneous which makes it difficult 

to perform alignment before bonding. Therefore, SU-8 and KMPR epoxy based, 

high aspect ratio, negative tone photoresists were considered for the microchannel 

fabrication. These photoresists have been extensively used in biomicrofluidics 

(Abgrall et al. 2007; Zahn 2009, pg 20-22; Juang, Huang, and Chen 2010).  
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3.2 Process characterization 

3.2.1 Gold deposition process 

Chromium (adhesion layer) and gold were deposited using thermal and e-

beam evaporation techniques. Edwards-2 thermal evaporator and CHA e-beam 

evaporator at CSSER were used to deposit and analyze the quality of the gold 

film. It was observed that the durability and pinhole defect density varied 

considerably between the gold films obtained using the tools. All the depositions 

using the two tools were done under the recommended deposition pressure of 3e-6 

Torr at a rate of 0.1nm/s or lesser to obtain a very conformal layer with minimum 

pin-hole defects. And the thickness of chromium and gold deposited was 20nm 

and 200nm respectively. A comparison of the two evaporator tools for gold 

deposition is shown in Table 3 below.  

Table 3. Edwards-2 thermal evaporator versus CHA e-beam evaporator 

Edwards-2 thermal evaporator CHA e-beam evaporator 

Only one 4-inch wafer can be deposited at 

a time significantly increasing the process 

time.  

18 4-inch wafers can be loaded and 

deposited with gold simultaneously 

significantly reducing process time. 

Approximately 1 gram of gold is required 

to deposit one 4-inch wafer. 

Approximately 8g of gold is required 

for deposition of the 18 4-inch wafers. 

Slight non-uniformity in gold film across 

wafer may result due to stationary parts 

during deposition. 

Samples loaded on rotating carousal 

during deposition which improves the 

uniformity of the gold thickness.  

Minimal Pin holes when deposition rate is 

< 0.1nm/s as shown in Figure 26 a. 

High pin hole density even when the 

deposition rate is < 0.1nm/s as shown in 

Figure 26 b. 

Good film durability and requires no 

annealing.  

Relatively poor film durability and 

requires 1 hr annealing at 250 °C in a 

furnace as shown in Figure 27. 

Molybdenum boat holder (gold source) 

avoids particulate contamination during 

deposition. 

Graphite crucible holder (gold source) 

is a source of carbon particulates 

adulterating the gold and deposition 

process. 
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(a)                                                             (b) 

Figure 26. Pin-hole defect density- Edwards-2 (a) versus CHA evaporator (b). 

 
(a)                                                              (b) 

Figure 27. Effect of annealing on CHA evaporator deposited gold film, (a) 

without annealing, (b) with annealing. 

          As shown in Figure 26, Edwards-2 yields a durable and defect free gold 

film as compared to CHA evaporator which yields a gold film with many pin-hole 

defects and requires an additional annealing process to improve durability as 

shown in Figure 27. On the other hand, the lower process time, lower cost and 

high throughput are the advantages offered by the CHA e-beam evaporator tool.   

60 µm 60 µm 

5 µm 5 µm 
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3.2.2. Gold etching process 

The gold and chrome etching were done using wet etching methods due to 

their low-cost and high etch rates. For gold etching, aqua regia (1:2:3 -- HNO3: 

H2O: HCl) and commercially available TFA gold etchant (Transcene company, 

Inc.) were used. Aqua regia had relatively unpredictable etch rates with large 

undercutting as shown in Figure 28 a. The TFA gold etchant had a constant etch 

rate of approximately 2.8 nm/s with minimal undercutting as shown in Figure 

28b. To compare the etchants, gold etching was performed on a gold film 

deposited using Edwards-2 thermal evaporator. For chrome etching, commercially 

available chrome etchant (Cyantec, Inc.) was used which offered constant etch 

rate and minimal or no undercutting.  

 
(a)                                                             (b) 

Figure 28. Gold wet etching – Aqua regia (a) versus TFA gold etchant (b). 

3.2.3 Microchannel fabrication  

           Even though SU-8 and KMPR photoresists are used extensively in 

biomicrofluidic applications, a comparison of the two photoresists (in Table 4) 

5 µm 5 µm 
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was required to determine which was optimal for the fabrication of the ROT chip 

(Chollet 2009; Ray, Zhu, and Elango 2011).  

Table 4. SU-8 2035 versus KMPR 1025 for ROT chip fabrication 

SU-8 2035 photoresist KMPR 1025 photoresist 

Poor adhesion to glass even with an 

adhesion promoter (AP 3000, HMDS, 

Omnicoat) result in partial peeling of 

features.  

Good adhesion to glass with 

hexamethyldisilizane (HMDS) as an 

adhesion promoter. 

Requires slow ramp rates during soft bake 

and post exposure bake processes to 

minimize thermally induced stress which 

causes cracking. 

Requires no ramping for soft bake and 

post exposure bake and minimal 

thermally induced stress is observed. 

More reflow at high baking temperatures 

(>65 °C) decrease the layer uniformity.  

Minimal reflow ensuring good film 

uniformity even at 100 °C (standard soft 

bake temperature). 

Removing cross-linked SU-8 is tedious. It 

can be removed only using piranha 

solution (1:1:: H2SO4:H2O2). 

Cross-linked KMPR can be easily 

removed using solvent based stripper 

enabling process repetition upon 

photoresist failure. 

 

           Several different thicknesses of SU-8 and KMPR microchannels have been 

fabricated, ranging from 40 to 120µm to match electrode interspacing using 

different photolithography recipes. Nonetheless, the final microchannel thickness 

was fixed at 60 µm so that the cell was trapped 30 µm from the bottom substrate, 

enabling the use of low working-distance objectives. From the comparison shown 

in Table 4, KMPR 1025 offers several advantages and was primarily used to 

fabricate the microchannel. The recipes shown in Table 5 have been used with 

SU-8 and KMPR photoresists to obtain a 60 µm microchannel. 

Table 5. SU-8 and KMPR recipe for 60 µm height microchannel 

SU-8 2035 photoresist 60 µm recipe KMPR 1025 photoresist 60 µm recipe 

Dehydration bake for 15 minutes at 150 ° 

C. 

Dehydration bake for 15 minutes at 150 

° C. 

Rest the wafer for 3 minutes. Rest the wafer for 3 minutes 

Apply AP 3000 adhesion promoter and spin 

coat at 1150 rpm for 40s. 

Apply HMDS adhesion promoter and 

spin coat at 1000 rpm for 60s. 
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Apply SU-8 2035 and spin coat at 1150 

rpm for 40s. 

Apply KMPR 1025 and spin coat at 

1000 rpm for 60s.  

Rest the wafer for 3 minutes. Rest the wafer for 3 minutes. 

Soft bake- ramp from room temperature to 

65 °C at the rate of 5 °C/min and continue 

to bake for 45 minutes at 65 ° C. 

Soft bake at100 °C for 15minutes. Rest 

the wafer for 3 minutes. Bake the wafer 

again at 100 °C 3 times for three 

minutes each with 3 minutes gap 

between each bake. 

Expose the wafer to 300mJ/cm
2
 exposure 

dose with PL360-LP filter (Omega 

Optical). 

Expose the wafer 1500mJ/cm
2
 exposure 

dose with PL360-LP filter (Omega 

Optical). 

Post exposure bake- start from 65 °C and 

ramp to 95° C at the rate of 5° C/min and 

continue to bake for 6 minutes at 95° C. 

Post exposure bake at 95° C for 

3minutes and 30 seconds. 

Develop using SU-8 developer for 

approximately 6 minutes. 

Develop using MF-26A developer for 

approximately 6 minutes. 

Hard bake at 120° C for 15 minutes. Hard bake at 120° C for 15 minutes. 

  

3.2.4. Chip bonding 

           Adhesive bonding techniques are prevalently used to fabricate closed 

channels from photoresist (Niklaus et al. 2006). In fabricating the ROT chip, two 

such methods have been explored. The first method made use of an EVG 520 

bonder tool to apply heat and pressure causing reflow of the photoresist layer and 

adhesion between the two chip halves. The second in-house developed method 

made use of SU-8 2005 photoresist, which was drawn in between the chip halves 

by capillary action and crosslinked to adhere the chips together. Table 7 compares 

the two bonding methods tabulating the advantages of each. 

3.2.4.1 EVG 520 bonding  

          The EVG 520 bonder was used for bonding on the wafer (4 inch) scale. The 

wafers used for testing had 60µm height KMPR/SU-8 microchannels fabricated 

using the recipe mentioned in Table 5, skipping the hard bake step to maintain 

some compliance. The wafers were then rinsed with deionized (DI) water in a 
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dump rinser for 15 minutes before bonding. Plasma cleaning of the photoresist 

layer using Tegal Ashers tool for 1 minute at 200W and 50sccm oxygen resulted 

in poor bonding. It was found that plasma cleaning removes remnant 

uncrosslinked photoresist (after developing) from the surface of photoresist layer 

(Serra et al. 2007). The uncrosslinked photoresist aids the bonding by increasing 

the bond strength. For this reason, plasma cleaning of the photoresist layer was 

removed from the bonding protocol. The DI water rinsed wafers were then 

positioned and aligned on the clamp unit of the EVG 520 bonder. The aligned 

wafers were held together using the clamp unit, which was then placed into the 

bonder and locked. The bonding pressure and temperature applied was varied to 

achieve optimum bonding conditions. The bonding time and temperature ramp 

rate was fixed at 60 minutes and 10°C/min respectively. The table below shows 

the bonding parameters used for the experiments.  

Table 6. SU-8 and KMPR adhesive bonding results using EVG 520 bonder 

Photoresist Parameter Pressure (N) Temperature 

(°C) 

Results 

SU-8 2035 Hard baked 2000 180 No bonding 

SU-8 2035 No hard bake, 

plasma treated 

2000 180 No bonding 

SU-8 2035 No hard bake, no 

plasma treatment 

2000 180 Good bonding, 

Figure 29 b 

KMPR No hard bake, no 

plasma treatment 

2000 180 Poor bonding 

KMPR No hard bake, no 

plasma treatment 

1000 120 Good bonding, 

Figure 29 a 

 



51 

 

 
(a)                                                                (b) 

Figure 29. EVG bonding of KMPR(a) and SU-8(b) patterned 4-inch wafers 

3.2.4.2 Diffusive bonding  

           The diffusive bonding technique is based on the capillary diffusion of the 

SU-8 2005 (low viscosity – 45 cSt) photoresist between two sandwiched chips. 

The diffusive bonding technique has not been optimized for wafer level bonding. 

As such, the bonding is done on a smaller scale with chips that have been diced 

from the 4-inch wafers with a dicing saw. The complementary chip halves that 

form the 3-D electrocage were aligned using the OAI 200 aligner. The aligned 

chips were then held in hard contact on the aligner and a few drops of a viscous 

two part epoxy were applied to the edges of the chips. Once the epoxy cured (cure 

time = 15minutes), it held the chips aligned. SU-8 2005 was then pipetted along 

the edges of the chip in small volumes (~5µl). The SU-8 2005 seeped into the 

chip due to capillary action and spread to the entire chip excluding the 

microchannel. Then the chip sandwich was soft baked at 40°C for 2 hours to 

evaporate the solvent (low bake temperature allows the solvent vapors to escape 

without driving liquid phase SU-8 into the microchannel) and exposed to 100 

25mm 25mm 
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mJ/cm
2 

exposure
 
dose. The sandwich was then post exposure baked for 1 hour at 

60°C to achieve a bonded ROT chip. Now the cross-linked SU-8 2005 functions 

as an adhesive layer to hold the ROT chip together. The cured epoxy was cut 

away with a rotary tool to free up space for additional processing.     

 
Figure 30. Diffusive bonded ROT chip with two parts epoxy 

 

Table 7. EVG 520 bonding versus Diffusive bonding 

EVG 520 bonding Diffusive bonding 

High pressure (~2kN) and relatively high 

temperature process (120-180 °C). 

No applied pressure and low temperature 

process (60°C).     

Requires precise alignment using aligner 

followed by transfer using clamp unit to 

bonder before bonding.  

Requires precise alignment using aligner 

and epoxy to secure the aligned chips 

before bonding. 

Due to the large forces involved, 

misalignment can occur resulting in 

accuracy of ~ 10µm (Niklaus et al. 2003)  

Bonding accuracy is limited by the 

aligner and the user  normally within ~ 2 

µm. 

Lesser bonded area due to air trapped 

between the bonded areas and photoresist 

layer non-uniformity. 

Minimal or no air trapped with careful 

operation and compliance possible for 

photoresist layer non-uniformity. 

Excellent bond strength Excellent bond strength 

High cost process.  Low cost process.  

Only wafer to wafer bonding is possible 

using the bonder tool. 

Chip to chip bonding has been 

optimized. Wafer level bonding has not 

been optimized. 

Channel deformation may occur due to 

excess pressure with elevated temperatures. 

Channel clogging is possible which 

depends upon the geometry of the 

microchannel.  

2.5mm 
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            The EVG bonding conditions for KMPR photoresist was optimized to be 

120 °C and 1kN piston pressure and 180 °C and 2kN for SU-8.  Figure 29 shows 

the EVG bonded wafers with 60 µm KMPR photoresist layer and SU-8 

photoresist layer respectively imaged using a transmission infrared camera. The 

bonded wafers had two rectangular photoresist patterns on them. On these 

rectangular regions, the light gray region corresponds to bonded area where as the 

medium and dark gray areas correspond to unbonded areas. The darkness of the 

area increases with increasing separation of the glass. It can be observed that in 

both cases only ~ 75% of the area is bonded. This is a result of the non-uniform 

thickness of the photoresist layer (± 3µm) and air trapped during bonding. 

          Figure 30 shows the ROT chip with the two-part epoxy holding the sides of 

a chip that have been bonded using the diffusive bonding technique. It can be 

observed that there are no air gaps in the bonded area, unlike EVG bonding.  

3.2.5 Electric and fluidic interface  

          Electric and fluidic interfacing is a critical feature of the ROT chip. The 

electrical and fluidic connections were made possible by laser milling the chips. 

Using a custom built CNC laser micro-machining tool (MB 1000, Xcaliber)—

operating at 355nm and 2W—arbitrary patterns can be cut in various materials 

through ablative removal of material. For the ROT chip, 1mm diameter holes 

were cut through the 500µm glass to allow fluidic interfacing with the 

microchannel. In a similar fashion, larger 3mm diameter holes were cut 

strategically in both top and bottom halves of the ROT chip to allow access to the 
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electrode contact region on the opposite chip. Wires were soldered to the 

electrode contact region through the 3mm holes. Nanoport connectors (Upchurch 

Scientific, Oak Harbor, WA) were adhered to the fluidic ports using a strong two-

part epoxy. The Nanoport connectors allow for the connection of tubing to the 

ROT chip. This connection is leak free, strong, and reliable, allowing for easy 

introduction of cells into the ROT chip.      

3.3 Fabrication process 

            Fabrication of the ROT chip requires bonding of two wafers and therefore 

every batch required two 4-inch Borofloat wafers. The process starts with RCA 

cleaning of the wafer substrates, done by treating the wafers with a solution of DI 

water, ammonium hydroxide, and hydrogen peroxide (in the ratio 5:1:1 

respectively) at 75°C for 10 minutes to remove organic contaminants and then 

with a solution of DI water, hydrochloric acid and hydrogen peroxide (in the ratio 

6:1:1 respectively) at 75°C for 10 minutes to remove metallic contaminants. The 

wafers were rinsed in a dump rinser for 10 minutes and dried with nitrogen. This 

was followed by a dehydration bake at 120°C for 15 minutes. Using thermal or e-

beam evaporation tools, chromium was deposited on the wafers (to 20nm 

thickness) followed by gold (to 200nm thickness), as explained in Section 3.2.1. 

In the next step, AZ 3312 positive photoresist (AZ electronic materials USA 

Corp., Branchburg, NJ) was spun on the wafers at 3500 rpm for 30s to 1µm 

thickness using the P-6708 precision spin coater (Specialty coating systems, 

Indianapolis, IN). The wafers were then soft baked at 100°C for 1minute on a hot 

plate. Each of the wafers was then exposed at 45mJ/cm
2
 exposure dose using the 
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EVG 620 photolithography tool (EV Group, Tempe, AZ) with an electrode design 

photomask to expose and pattern the photoresist layer. The patterned photoresist 

layer was developed using the AZ 300MIF developer to form the electrode 

patterns. The wafers were hard baked at 110°C for 1 minute to remove any 

remnant solvent. The photoresist forms a mask for the gold wet-etching process 

by protecting the covered areas. Each of the wafers was then etched separately 

using fresh TFA gold etchant (Transcene, Inc., Danvers, MA) for 70-80 seconds 

until the exposed gold layer was entirely removed. The etched wafer was then 

inspected in a microscope for quality. With the gold etched away, the chromium 

layer beneath remained. The chromium was wet-etched for 20-30s using chrome 

etchant until the wafer was completely transparent in the exposed areas. In the 

next step, the wafers were cleaned in Microstrip 2001(Fujifilm, Allendale, NJ) for 

5 minutes at 65°C to remove the AZ 3312 layer. The gold electrodes are now 

clean and fully developed. A 60µm height KMPR 1025 (Kayaku Microchem, 

Newton, MA) microchannel was then fabricated on the appropriate wafer using 

the recipe given in Table 5.  Because the fabricated KMPR channel is full height 

and adheres well to glass, it is only fabricated on one of the two wafers. In Figure 

31, the complete fabrication process flow is shown. 
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Figure 31. ROT chip fabrication process flow 

          The next step in fabricating the ROT chip was to cut the glass wafer to 

make fluidic and electric interfacing ports. This was achieved by the procedure 

explained in Section 3.2.5. Once the holes were cut, the wafers were diced using a 

dicing saw (Assembly technologies Inc., Orr Road Charlotte, 

NC) to attain individual chips. Each chip was aligned and bonded with its 

counterpart using the OAI 200 and the diffusive bonding technique was 

implemented to form the ROT chip as explained in the Section 3.2.4.2. Wires 

were then soldered to the electrode pads, and Nanoports were adhered to complete 

the ROT chip. In Figure 32, the ROT chip (design iteration 1.0) from a wafer to 

electrocage level is shown.  



57 

 

             

 
Figure 32. Zoom-in picture of ROT chip from 4” wafer to electrocage 

3.4 Experimental setup 

             The experimental set up consists of the microscope, function generator, 

camera and PC. All the experiments were conducted on a Nikon TS 100 

microscope. The two function generators used were T-340 (Highland technology, 

San Francisco, CA) (4 output channel, maximum frequency - 2MHz) and PXI 

1045 (National Instruments, Austin, TX) (8 output channel, maximum frequency - 

20MHz). Both function generators were used to create sinusoidal waveforms. For 

the T-340, an interactive program was created using LabVIEW incorporating a 

.NET driver developed in-house to access the functionalities of the generator. 

With the program, it was possible to set the peak-to-peak voltage, frequency and 

phase shift of the four channels separately and in real-time. With PXI 1045, 

another program was written using LabVIEW which made use of the FGEN 

driver provided by National Instruments to synchronize and control the eight 

500µm 



58 

 

individual generator modules. The LabVIEW program enabled the user to change 

the peak-to-peak voltage, frequency and phase of all the eight channels, after 

which the synchronization is performed. Once the synchronization process is 

finished, desired voltages were available at the outputs of each generator. Video 

acquisition was carried out with the Prosilica GE 1650 camera (AIA, Ann Arbor, 

Michigan) driven using Prostream software (Southern Vision Systems, Inc., 

Snellville, GA). The NI PXI has an in-built PC which was used to drive all the 

generators (including T-340) and the camera. In Figure 33, all the constituents of 

the experimental set up are shown. Figure 34 shows a ROT chip, with syringes 

attached to the Nanoports, loaded on the TS 100 for testing. Cells are flowed into 

the chip using the syringes and the BNC grabbers from the function generator are 

used to power the electrodes.   

 

Figure 33. Electrocage experimental set up 
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Figure 34. TS 100 test bed showing ROT chip with electrical and fluidic 

connections. 

 

 3.5 Discussion 

           Various materials and process steps involved in the fabrication protocol 

have been analyzed in detail and optimized for manufacture of a fully functional 

ROT chip with good repeatability. However, with the current fabrication method 

and experimental setup the low throughput (9 ROT devices for a batch), long 

process times (approximately 20 hours from blank wafer to working ROT device), 

cell delivery and cell retrieval have to be improved. Reducing the form factor of 

the chip and enabling wafer level bonding can considerably improve the through 

put and process time. Also, with the current ROT chip manufactured, using high 

magnification objectives is not possible due to the use of 500µm thickness wafers 

and has to be transferred to 170µm thickness substrates.   
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Chapter 4 

Cell rotation characterization 

              The aim of the experiments conducted using the ROT chip was to 

characterize cell rotation in the presence of applied AC electric fields and 

determine the rotation rate dependence on relevant electrical parameters. 

Considering the DEP force and ROT equations, the variables that affect the 

rotation rate include applied voltage and frequency, cell size and shape, 

permittivity of cell and medium, conductivity of cell and medium, electrode shape 

and spacing, number of electrodes and phase configuration.  

            To allow for imaging, a cell rotation rate on the order of 1/60Hz is 

required, as well as a fixed axis of rotation perpendicular to the imaging axis with 

limited lateral movement. Thus, for controlled levitation and rotation of cells with 

minimal stress due to the electrical forces, it is important to consider the 

contributions of the above mentioned electrical parameters. All cells used in the 

following experiments were cultured in RPMI-1640 growth medium (Gibco, 

Grand Island, NY) in 5% CO2 and 37°C. The medium was supplemented with 

10% fetal bovine serum, 2 mM L-glutamine, 100 µg /ml penicillin and 100 µg/ml 

streptomycin.  Figure 35 shows a near spherical K-562 leukemia cancer cell being 

electrorotated using a flat head electrocage with interspacing 60µm. The rotation 

axis is in the plane of the figure running from top left to bottom right corner 

perpendicular to the direction of imaging. Note that the cell is levitated to the 

middle plane of the electrocage and therefore the electrodes are not in focus.  
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. Image of K-562 cell electrorotation in ROT chip 
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configuration 1 shown in Table 2. The cells used were in good health, and had 

been incubated in a 37°C 5% CO2 environment until at least 90 minutes before 

testing. The average size of K-562 cells were 17.7 + 2.3µm (max - 21 µm, min - 

14 µm) and Murine cells were 14.1+ 1.4 µm (max- 16 µm, min-12 µm). Videos 

and pictures of rotating cells at various voltages were acquired and the difference 

in levitation was determined visually.  

 
Figure 36. Cumulative K-562 cell levitation versus excitation voltage amplitude 

 
Figure 37. Cumulative Murine cell levitation versus excitation voltage amplitude 
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           The column charts shown in Figures 36 and 37 shows the cumulative 

number of cells that were levitated to the center of the cage upon applying 

different voltages. For example, at 2.25 V, every Murine cell of the ten cells 

tested was levitated. Prior to each evaluation, every K-562 cell was rotated at 2V 

amplitude and every Murine cell was rotated at 2.5V to determine the plane for 

optimal levitation. Voltage was then reduced and levitation plane was determined 

in intervals of 0.25V until the maximum voltage (2V for K-562 and 2.5V for 

Murine) was reached. It can be seen from the column charts that 1.75V amplitude 

and 2.25V amplitude are safe operable voltages for K-562 and Murine cells 

respectively. These results hold for the given electrode type and spacing, the 

applied frequency, and the phase configuration.   

4.2 Frequency characterization 

               The frequency dependence of the cell rotation is reflected by the 

Clausius-Mossotti factor. It is optimal to choose the frequency that will exert the 

maximum force for a given voltage to enhance the stability and also reduce the 

transmembrane potential of a cell (Muller et al. 1999). Therefore, optimal 

operation frequencies were determined for K-562, Murine cells and 

PolyMethylMethAcrylate (PMMA) 15 µm microbeads (Bangs laboratories Inc.) 

suspended in RPMI medium of conductivity 1.5 + 0.2 S/m at 23 °C. A total of 10 

near spherical cells in each cell line within 90 minutes from 37 °C, 5% CO2 

incubator and 10 microbeads were electrorotated in this experiment. The tested K-

562 cells were 17.6 + 2.4µm (max - 21 µm, min - 14 µm), the Murine cells were 

14.6 + 2.0 µm (max- 20 µm, min-12 µm) and the PMMA microbeads were 
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15.8+0.6µm. The microbeads were hemispherically coated in chromium so that 

their rotational rate could be determined. To do this, the microbeads were 

embedded in 7.5µm AZ4620 photoresist and deposited with 20nm of chromium 

using Edward-2 thermal evaporator. The photoresist was then removed and the 

beads were resuspended in the cell medium. The testing was done in an octupole 

flat head ROT chip with spacing 60µm. The electrodes were operated with phase 

configuration 1 that is shown in Table 2. The ROT chip was driven with 2V for 

K-562 cells, 2.25V for Murine cells and 2.5V for PMMA microbead by the NI 

PXI 1045 function generator. Videos and pictures of rotating cells/beads at 

different frequencies were acquired and the rotation rates were determined 

visually.  

 
Figure 38. K-562 cell rotation rate versus excitation frequency 
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Figure 39. Murine cell rotation versus excitation frequency 

 
Figure 40. PMMA microbead rotation versus excitation frequency 
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cell size, shape and the electrical properties of the cells (Clausius-Mossotti 

factor). In the case of the microbeads, the amount of deposited chromium was not 

controlled, leaving excess chromium particles anisotropically attached to the 

microbeads. Comparing the Clausius-Mossotti factor versus frequency plot in 

Section 2.2.3 to that of the rotation rates versus frequency, it can be observed that 

there is negative DEP force and slow rotation rates for the given value of medium 

conductivity 1.5S/m. However, the simplified cell model used in the Clausius-

Mossotti plot does not completely explain the cell rotation behavior. The ROT 

torque continuously increases with increase in frequency. Therefore, the ideal 

frequency of operation should be as low as possible as very low rotation rates are 

desired. But, the limiting factors for low frequency operation are Joule heating 

and cell transmembrane potential. The transmembrane potential is minimal for 

frequency values more than 5MHz (Glasser and Fuhr 1998). Increase in 

transmembrane potential may result in quicker compromise of the cell membrane. 

However, in Section 4.6, cell rotation under low frequency ranges (500 kHz – 

2MHz) has been performed for 60 minutes without significant damage to the 

cells. This implies that cell rotation under low frequencies (500 kHz – 2MHz) 

may suit for imaging purposes. Detailed studies on the effects due to applied 

electric fields should be carried out for quantitative determination of cell stress. 

4.3 Cell size, shape and type 

               The DEP and ROT force have a cubic dependence on the radius of the 

cell assuming it to be spherical. Both the cell lines characterized are of similar 

size ranges. However, from the Figures in previous section, it can be seen that the 
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average rotation rate of the K-562 cells is slightly greater than that of the Murine 

cells despite using 2V for K-562 cells and 2.25V for Murine cells. An exclusive 

characterization of the rotation rate with respect to size was not performed to 

explore this behavior further.    

4.4 Cell medium conductivity 

               The conductivity of the cell mediums were measured, whereas the other 

parameters (conductivity of cell, permittivity of cell and medium) were not 

determined as part of this project. In Table 8 below, the conductivity values of 

several commonly used media are listed.  

Table 8. Cell medium conductivity values 

Cell medium Conductivity (S/m) @ 22.4°C 

RPMI 1.36 

DMEM 1.79 

EMEM 1.67 

Keratinocyte 1.57 

 

4.5 Electrode shape, spacing and number  

               The electrode shape, spacing and number influence the electric field 

distribution inside the electrocage. The electrode shape and number have been 

simulated in COMSOL, and optimized for maximum electrorotation and trapping. 

The electrode spacing has dependence on the height of the microchannel for 

electric field symmetry.  But, the height is limited by the distance the cell can be 

levitated from bottom substrate.  The main constraint being the working distance 
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of the objectives used. Therefore, the electrode interspacing and height was fixed 

at 60µm.  

4.6 Trypan blue cell rotation longevity characterization 

             As mentioned earlier, the electrical forces and Joule heating can have 

detrimental effects on the cell. Therefore, it is necessary to find the longevity of 

cell rotation using the electrocage. Cell cultivation/manipulation in presence of 

electric field has been extensively studied by Fuhr et al (Fuhr et al. 1994; Glasser 

and Fuhr 1998). It has been stated that at low frequencies (<1MHz) the field 

application is limited by the dielectric breakdown of cell membrane due to high 

transmembrane potential values while at high frequencies (>5MHz) much higher 

fields can be applied and Joule heating is the limitation factor.  

Table 9. Trypan blue cell electrorotation longevity characterization 

Cell Voltage (V) Frequency (MHz) Viability 

1 4 2 < 2 minutes 

2 2 2 >60minutes 

3 2 1 >60minutes 

4 2 0.5 >60minutes 

 

             Cell rotation longevity was analyzed by using Trypan blue absorption 

dye. Trypan blue is an exclusion dye which stains only dead cells and does not 

permeate into live cells. This property can be useful in probing the viability of 

cells during and after cell rotation (Frenea et al. 2003). In this experiment, 100µl 

of trypan blue dye (T8154- 0.4%, Sigma Aldrich, St. Louis, MO) was added to 

1ml of K-562 cells suspended in RPMI medium and flowed into the ROT chip. 

Flat head octupole ROT chip with interspacing 60µm was excited using T-340 
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function generator (maximum frequency – 2MHz). Four cells were tested with 

different voltages and frequencies as shown in the Table 9.     

        Even though the sample set in the experiment is less, it clearly indicates that 

at very high voltages (> 4V) the cell membrane is compromised very soon (<2 

min.). While at 2V, cells continuously rotated for an hour with no visible effect on 

the cell membrane as no trypan blue was observed in the cell cytoplasm. Also, 

after 1 hr rotation at 2V, applying 4V to 3 cells resulted in faster cell degradation 

(<1minute). Figure 41, shows cell 1 which was electrorotated with 4V and 2MHz 

at 0 min (left) and 2 min(right). Figure 42, shows cell 4 which was electrorotated 

with 2V and 500KHz at 0 min (left) and 60 min(right). Another important effect 

of DEP force on the cell that is evident from the figures even at low voltage is that 

after sufficient exposure to DEP forces, the cell becomes more spherical which 

can be attributed to the constant repelling force pushing the cell to the center of 

the electrocage. This effect can be reduced by decreasing the operation voltage 

without sacrificing levitation and avoiding long electrorotation times.   

  
(a)                                                             (b) 

Figure 41. Image of K-562 cell before (a) and after (b) electrorotation at 

4Vamplitude, 2MHz  for 2 minutes 

15µm 15µm 
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(a)                                                             (b) 

Figure 42. Image of K-562 cell before (a) and after (b) electrorotation at 2V 

amplitude, 500kHz for 60 minutes 

4.7 Rhodamine-B characterization of Joule heating 

          Rhodamine B is a water-soluble dye that is commonly used for staining 

cells and as a tracer. It belongs to a class of fluorophores whose fluorescence 

intensities are highly dependent on temperature. And therefore, Rhodamine B 

allows for temperature measurements in microfluidic systems with good spatial 

and temporal resolution (Ross, Gaitan, and Locascio 2001).  

           The effect of Joule heating has been studied by Fuhr et al. (Glasser and 

Fuhr 1998). It has been shown that the temperature increase ( C∆Τ 2.5°� ) 

remains almost constant with a constant electric field over a wide range of 

frequencies (100 KHz – 100MHz). But, for an applied voltage, the potential drop 

and therefore the electric field vary with frequency which depends on the 

electrical properties of the medium. However, in the preliminary tests reported 

here, the voltage is varied and electric field inside the ROT chip is not probed. In 

order to find the temperature gradients occurring inside the ROT chip in the 

electrocage region due to Joule heating, rhodamine dye dissolved in IMDM cell 

medium of conductivity 1.5 + 0.2 S/m at 23°C was used. Octupole flat head ROT 

15µm 15µm 
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chip with 60µm was used. The dye was flowed inside the electrocage and 

different voltage was applied. The resulting intensity of the dye was measured 

using a fluorescence microscope. The Nikon TE 2000E confocal microscope used 

a Xenon light source filtered to an excitation wavelength of 542-567nm and an 

emission wavelength of 579nm-631nm.  In order to calibrate the temperature, the 

ROT chip with Rhodamine B dye in the microchannel was placed inside an on-

stage incubator unit (INU series, Tokai Hit Co., Ltd) with predefined temperature 

settings and the fluorescence intensity was measured. As shown in Figure 44, the 

fluorescence intensity was obtained for various temperatures. The temperature 

inside the ROT chip was probed by averaging the measurements obtained using 

two thermocouples on the top and bottom of the ROT chip. Then the ROT chip 

was maintained at room temperature and driven using the Highland T340 function 

generator. 1-4 V amplitude with intervals of 1 V was applied to the electrodes 

with phase config 1 as shown in Table 2 and two different frequencies 500 KHz 

and 2 MHz (maximum). Two trials were recorded for each experiment and fresh 

IMDM medium was pumped to the cage after every experiment giving sufficient 

time for the residual flow to settle and for the intensity of the dye to equilibrate 

after applying a voltage. The average fluorescence intensity was calculated over 

the electrocage area (ROI) as shown in Figure 43 for various preset incubation 

temperatures and voltages applied.  
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Figure 43. Region of interest used to evaluate the fluorescence intensity 

  

Figure 44. Incubation temperature versus relative fluorescence intensity 
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Figure 45. Excitation voltage versus relative fluorescence intensity 

             Figures 44 and 45, show the relative fluorescence intensity (with respect 

to RT =23.85+ 0.15°C) of Rhodamine-B dye in the ROI. It can be seen that with 

the increase in the incubation temperature and voltage applied, the intensity of the 

dye reduces. In the voltage ranges of interest (~ 2V amplitude), from the 

calibration curve, it can be inferred that the temperature in the electrocage region 

increases by around 7 °C from RT. And at high voltages (~ 4V amplitude), the 

temperature in the electrocage is very high and definitely not a favorable 

condition for live cells. The fluorescence intensity doesn’t seem to vary much for 

the frequency ranges considered. Therefore, to minimize the effect of Joule 

heating, voltage values below 2V for the given frequency range is optimal. The 

effect of Joule heating at high frequencies (~20MHz) can be much lower and 

therefore operation at high frequencies and lower voltages can be advantageous in 

reducing Joule heating.    
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4.8 Discussion 

            The dielectrophoretic responses of two different cell lines have been 

analyzed by varying the applied voltage and frequency. Comparing the simulation 

results to the experimental observations, the frequency response of the rotation 

rate of cells follows the similar trend as that of the Im (fCM) for a fixed medium 

conductivity of 1.5 S/m. The main limiting factors for operable frequency are cell 

transmembrane potential (low frequency) and high rotation rates (high frequency). 

The voltage is limited by the levitation FDEP force. Joule heating in the voltage and 

the frequency range of interest has been probed. Also, the longevity of cell 

electrorotation under the influence of electric fields has been measured. With the 

experimentally observed results, it can be concluded that precise electrorotation of 

cells is possible with the ROT chip for optical imaging purpose. The slowest 

rotation achieved with the ROT chip in an average is 0.05 cycles/s. It is desired to 

achieve much slower rotation which may be possible by tweaking the electrical or 

fluidic parameters of the cell medium in the voltage and frequency range of 

interest.         
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Chapter 5 

Conclusion and future work 

            As presented in this thesis, a ROT chip has been developed which is 

capable of precise electrorotation of single cells in 3-D. Although, the chip design 

and fabrication protocol have been specifically developed for cell rotation, the 

principles of DEP can be used to easily develop additional functional structures 

which can perform other functions like funneling, concentrating, 

parking(http://www.youtube.com/watch?v=_nJCLxbiiNs&context=C433c6a5AD

vjVQa1PpcFMvMpoVA6Jdw4-lUaAdww6_ZEY9fSv9OeI=) and separating, thus 

offering additional functionality to the chip (Muller et al. 1999). Many can be 

integrated into the chip to make the chip more versatile and eventually a true “lab-

on-chip”. In this thesis, only prevalently used electrode designs and fabrication 

techniques have been analyzed, focusing specifically on electrorotation Also, it 

has been shown that the electric field distribution in an electrocage varied 

minimally across various electrode shapes (Schnelle, Muller, and Fuhr 2000). 

Therefore, further modifications to the electrode head shape may not offer huge 

improvements in performances.  

          Considering the design, the current electrode shapes (flat, semi-elliptical 

and arrow) is more than sufficient to deliver precise rotation of cells. It can be 

advantageous to modify the electrode design to reduce thermal convection, to 

improve fabrication yield, or to repel cells on the outside of the electrocage. Also, 

additional functional structures to aid in cell delivery and retrieval can be 

designed as mentioned before. 



76 

 

           Regarding the fabrication protocol of the ROT chip, the process steps have 

been optimized for repeatable fabrication with minimal tolerances. However, only 

500 µm thick glass wafers have been used for fabrication, which is much thicker 

than the 170 µm thick glass required for high magnification imaging. Fabrication 

and integration of features with wafers as thin as 170 µm may be a significant 

challenge as handling can be risky. Because ROT chip requires fluidic and 

electric connections, holes must be cut in the wafers before being bonded. In this 

step, the wafers are vulnerable to breakage during extraction from the machining 

substrate. Bonding poses the greatest risk of breakage in the fabrication process; 

however, diffusive bonding allows for the use of relatively low pressures to bond 

the chip halves when compared to the bonder tool (which exerts ~ 2kN). The 

diffusive bonding technique must be optimized for wafer level bonding. To 

overcome the difficulties of handling and transporting the wafers between 

processes, supportive holders can be used (for example, a 500 µm thick wafer 

stuck under the 170 µm during fabrication process). Fabrication could also be 

done on a 500 µm thick wafer that would then be etched down to 170 µm with 

hydrofluoric acid/Buffered Oxide Etchant (BOE). In any case, the durability of 

the ROT chip itself with 170 µm glass will be lower than with 500 µm glass. A 

500 µm top substrate and 170 µm bottom substrate, can also be used on an 

inverted microscope assuming that this does not introduce any new challenges for 

imaging.  

            Another challenge with the current fabrication process is its low 

throughput. The main constraints lie in the large form factor of each chip (design 
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iteration 2.0 – 1” * 2.5”), the gold deposition tool (Edwards-2 thermal 

evaporator), and the diffusive bonding process. As clearly stated in Table 3, the 

Edwards-2 thermal evaporator offers a more durable and defect free gold layer. 

However, its low throughput (1 wafer at a time) and high material expenses make 

it unattractive. The diffusive bonding process has to be done on a chip basis, 

limiting throughput. Although it would be more efficient, the inherent non-

uniformity of the photoresist layer poses a major challenge for wafer level 

bonding with the EVG 520 bonder as shown in Figure 29. 

           With the acquired cell electrorotation characterization data, it is possible to 

deduce the trend that can be expected with any future experiments. A good 

understanding of the electrokinetic principles that govern the ROT chip operation 

is very important for future developments. The current imaging capabilities 

require that the cell rotation rate be as low as one rotation every minute. However, 

the slowest rotation rate achieved with the threshold voltages mentioned in 

Section 4.1 is roughly 0.05cycles/s (20s per rotation). This implies that new 

techniques to reduce the rotation rate must be developed. Possible work around 

could be to use a combination of optical trapping and DEP to rotate cells at lower 

voltages and therefore slower or increase the viscosity of the cell medium without 

affecting the electrical properties of the medium so that the opposing viscous drag 

force reduce the rotation rate. Changing the conductivity of the medium might be 

a possibility considering the Clausius-Mossotti factor behavior, but it is of great 

interest not to alter the constituents of the cell medium to keep the cell viability 

high. 
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         Other challenges to be solved with the ROT chip are to reduce Joule heating 

due to applied electric fields and to probe the effects of electric field on the 

viability of cells. It has been shown by Fuhr et al that cells can be cultured in 

presence of high AC electric fields under similar conditions used in the ROT chip 

(Fuhr et al. 1994). However, considering the observations in the Rhodamine-B 

Joule heating test and Trypan blue cell rotation longevity test, it is necessary to 

probe the effect of electric fields on the cell in greater detail.  

          One drawback of the ROT chip is that precise uniaxial electrorotation of 

non-spherical cells can be difficult. The cell positions itself to minimize the DEP 

force acting on it and this could lead to multiaxial rotation (if the cell is 

significantly non-spherical). Also, so far, only non-adherent cells have been 

electrorotated. Electrorotation of adherent cells will be possible only by 

typsinizing the cells so they are in suspended state.              
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