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ABSTRACT  
   

Polydimethyl siloxane is a commonly used fabrication material for 

microfluidic devices. However, its hydrophobic nature and protein adsorption on 

the surface restricts its use for microfluidic applications. Also, it is critical to 

control the electroosmotic flow for electrophoretic and dielectrophoretic 

manipulations. Therefore, surface modification of PDMS is essential to make it 

well suited for bioanalytical applications. In this project, the role of polyethylene 

oxide copolymers F108 and PLL-PEG has been investigated to modify the surface 

properties of PDMS using physisorption method. Measuring electroosmotic flow 

and adsorption studies tested the quality and the long-term stability of the 

modified PDMS surface. Static and dynamic coating strategies were used to 

modify the PDMS surface. In static coating, the PDMS surface was incubated 

with the coating agent prior to the measurements. For dynamic coating, the 

coating agent was always present in the solution throughout the experiment. F108 

and PLL-PEG were equally effective to prevent the protein adsorption under both 

strategies. However, dynamic coating was more time saving. Furthermore, 

effective reduction of EOF was observed with F108 coating agent under dynamic 

conditions and with PLL-PEG coating agent under static conditions. Moreover, 

PLL-PEG dynamic coatings exhibited reversal of EOF. These important findings 

could be used to manipulate EOF and suggest optimal coating agent and strategies 

for PDMS surface treatment by the physisorption method. 
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Chapter 1 

ABSTRACT 

Polydimethyl siloxane is a commonly used fabrication material for 

microfluidic devices. However, its hydrophobic nature and protein adsorption on 

the surface restricts its use for microfluidic applications. Also, it is critical to 

control the electroosmotic flow for electrophoretic and dielectrophoretic 

manipulations. Therefore, surface modification of PDMS is essential to make it 

well suited for bioanalytical applications. In this project, the role of polyethylene 

oxide copolymers F108 and PLL-PEG has been investigated to modify the surface 

properties of PDMS using physisorption method. Measuring electroosmotic flow 

and adsorption studies tested the quality and the long-term stability of the 

modified PDMS surface. Static and dynamic coating strategies were used to 

modify the PDMS surface. In static coating, the PDMS surface was incubated 

with the coating agent prior to the measurements. For dynamic coating, the 

coating agent was always present in the solution throughout the experiment. F108 

and PLL-PEG were equally effective to prevent the protein adsorption under both 

strategies. However, dynamic coating was more time saving. Furthermore, 

effective reduction of EOF was observed with F108 coating agent under dynamic 

conditions and with PLL-PEG coating agent under static conditions. Moreover, 

PLL-PEG dynamic coatings exhibited reversal of EOF. These important findings 

could be used to manipulate EOF and suggest optimal coating agent and strategies 

for PDMS surface treatment by the physisorption method. 



	
  

	
  
2	
  

Chapter 2 

INTRODUCTION 

Microfluidic devices have gained much importance in recent years1-

6.These devices have the potential to provide fast analysis using only small 

sample volume. Microdevices deal with the high surface to the volume ratio. The 

fabrication material also has a profound effect on the performance of the analysis 

made in these micro devices. There is a wide variety of materials used for 

microfluidic devices such as silicon, quartz, glass or elastomers, e.g. polydimethyl 

siloxane (PDMS)7. The latter has been extensively used as a fabrication material 

for microfluidic devices8. Low fabrication cost, minimum clean room 

requirements and compatibility with biological samples makes PDMS suitable for 

microfluidic applications9. But, PDMS is hydrophobic in nature, which leads to 

unstable EOF flow10, the tendency to adsorb protein11 and consequently its low 

reusability.  

Therefore, surface modification of PDMS is very important to carry out reliable 

and reproducible analysis. Several methods have been reported to modify the 

PDMS surface. Modification of PDMS using surfactants12-15, chemical 

modification12, 16-19 using photoinduced grafting20, 21 or UV initiated grafting17, 18, 

and bulk modification22 by adding prepolymer additives. Modification of PDMS 

using surfactants is based on the weak interactions between the surface and the 

surfactant, called physisorption method. We have employed this method using 

polyethylene glycol (PEG) based copolymers for the modification of PDMS. 
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PEG derivatives have been demonstrated to significantly control EOF and 

reduce protein adsorption12, 16, 23, 24.The coating materials based on their structure 

and the interaction with PDMS have been categorized as non-ionic surfactants 

and charged polymers25. The physisorption method is typically based on the 

hydrophobic and electrostatic interactions with the PDMS surface. This project 

deals with two coating agents, the copolymers F108 and PLL-PEG (polylysine –

polyethylene). F108 is a triblock copolymer, which has two polyethylene glycol 

units and one polypropylene oxide unit (PEGx-PPOy-PEGx, x = 132 and y = 52). 

On native PDMS, the hydrophobic PPO unit interacts with the PDMS and 

hydrophilic PEG chains extrude out on the surface. However, on hydrophilic 

PDMS surface F108 has a flat conformation12 related to the interaction of PEO 

units with PDMS. Figure 1 shows the interaction of F108 on both hydrophobic 

and hydrophilic PDMS surfaces. 

PLL-PEG adsorption is based on electrostatic interactions on the PDMS 

surface. The PLL backbone is positively charged at neutral pH, which interacts 

with the negatively charged PDMS surface. Lee and 15 reported PLL-PEG 

as an excellent coating material to reduce protein adsorption. Another group12 has 

tested F108 to control EOF, but its effectiveness to reduce protein adsorption still 

needs to be studied. This group has tested EOF under the static conditions, but not 

the dynamic. In this project we characterized these two coating agents to reduce 

protein adsorption and to control electroosmotic flow using both the strategies 

static and dynamic. The quality of the surface-modified PDMS using these two 
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coating agents was tested by electroosmotic flow measurements and by 

performing adsorption studies. The long-term stability of the modified PDMS was 

also examined by the EOF measurements. We have also tested the dependence of 

the concentration of coating agents to modify the quality of the PDMS surface. 

 

Figure 1. a) Molecular conformation of F108 on a hydrophilic PDMS surface. 
Both PEG (thin lines) and PPO (thick lines) chains are interacting with the 
PDMS surface and b) on a hydrophobic PDMS surface. The hydrophobic PPO 
chains are attached to the PDMS surface via hydrophobic interactions and 
hydrophilic PEG chains are extruding out on the surface. 
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Chapter 3 

BACKGROUND AND THEORY 

3.1 PDMS and its characteristics 

PDMS is a silicon based organic polymer with a repeating unit of [-Si (CH3)2O-]. 

It is an inexpensive biocompatible material and micro fabrication with PDMS can 

be carried out with minimum clean room requirements. With a suitable master, 

several molds of PDMS can be made using soft lithography8. It is optically 

transparent down to 280nm, meaning it passes the light through it and therefore is 

useful for the detection schemes26. PDMS is hydrophobic in nature with a contact 

angle of ~108º 27. With the exposure to the plasma treatment the PDMS surface 

can be made hydrophilic. The hydrophilic PDMS micro channels can be easily 

filled with aqueous solutions. All these advantageous characteristics of PDMS 

make it a very useful fabrication material for microfluidic devices. 

3.2 Plasma treatment 

Plasma treatment is used to achieve irreversible seal of PDMS with other suitable 

material like glass to form closed microchannel. This irreversible seal is formed 

by covalent siloxane, Si-O-Si bonds. The oxygen plasma pretreats the non-

modified native PDMS, which makes PDMS surface hydrophilic due to the 

oxidation of siloxane to silanol groups. However, PDMS recovers hydrophobicity 

in a short period of time27. The possible reason for this hydrophobic recovery is 

reorientation of silanol groups and the diffusion of low molecular species from the 

bulk of PDMS to the surface28. The unstable surface charges due to hydrophobic 
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recovery on the PDMS, lead to the poor repeatable migration times29 in 

electrophoretic applications and reduce separation efficiency. Therefore, an 

effective and stable surface modification is necessary for good separation 

efficiency and reproducible measurements. 

3.3 Role of PEG derivatives 

PEG derivatives have been demonstrated to modify the PDMS surface effectively. 

The PEG chains are brush like polymers, which prevents the adsorption of 

proteins12, 15, 30 and control EOF29. It has been reported that the PEG architecture 

influences the adsorption of protein on the PDMS surface. High PEG chain 

density leads to low protein adsorption23. PDMS surface modified with PEG 

derivatives are more stable and helps in preventing protein adsorption and to 

control electroosmotic flow. Lee and  group15 demonstrated a simple 

modification of PDMS surfaces through the adsorption of a graft copolymer 

(PLL-g-PEG) from aqueous solution. They reported a reduction in fibrinogen 

adsorption onto the oxidized PDMS surface. This group has also characterized the 

resistance to protein on metal oxide surfaces layered with PLL-PEG31. Ros et al.12 

have tested the influence of PEG chains to control EOF. They varied the length of 

the PEG chains and found that longer PEG chains resulted in higher EOF 

reduction. The PEG chain density has a direct impact on EOF mobility. Textor et 

al.16 have used PLL-PEG copolymers to covalently attach on aldheyde plasma 

modified substrates. This modification was reported to be stable at extreme pH 

values or high ionic strength buffer (2400mM NaCl). In another study, photo 
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induced grafting polymerization was used to treat the PDMS surface. 

Polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate 

(PEGDA) have been used to modify the PDMS surface20. The PEGDA modified 

PDMS surface has been reported to be stable for over two months. PEG based 

modifier like PLA-PEG can be used as a prepolymer derivative22. It is reported 

that the bulk modification of PDMS using PLA -PEG reduced the adsorption of 

protein and also controls EOF. This PEG based copolymer is mainly used for 

tissue engineering applications32. The PEG based copolymers like F108 are also 

suitable for cell patterning33. Most of the PEG based copolymers are highly 

protein resistant, and therefore suitable for many microfluidic applications. With 

such advantages of PEG based polymer, Yoon et al.34 has reported the whole chip 

made of PEG. This PEG structured microfluidic channel can be repeatedly used. 

PEG based polymers are highly capable to modify the PDMS surface. The PEG 

chains in these polymers are able to resist protein12, 19 and to control EOF35. Long-

term stability and reusability have been observed on the PDMS modified with 

PEG copolymers36. Both the chemical and physical modifications are possible 

with PEG copolymers depending on the need. 

3.4 Surface modification methods and strategies 

There are two methods to do the surface modification of PDMS, the first one is 

physisorption method and the second one is chemisorption. The chemical 

modification is based on the covalent attachment of the coating agent with the 

surface. This modification method requires a specific functional group on the 
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microchannel to induce the chemical reaction. Various examples include chemical 

grafting of alkyne – PEG37, photoinduced grafting using polyethylene glycol 

monoacrylate and polyethylene glycol diacrylate20 and UV initiated grafting using 

benzophenone18 and self assembled monolayer’s (SAM) 38. The SAM layers 

covalently attached on the PDMS surface through the gold layer deposited on the 

PDMS. The physisorption method is based on weak Van der Waals forces, 

electrostatic interactions or hydrophobic interactions with the PDMS surface. In 

this method, the coating agent could detach from the PDMS surface because of 

the weak interactions. But, the physisorption method is very simple and easy to 

apply. There are two strategies to physically adsorb coating materials on PDMS 

surfaces, one is static coating and the other one is dynamic coating39. In static 

coating, the PDMS surface is incubated prior to the experiment and then rinsed 

with pure buffer to remove unbound residues. In dynamic coating, the coating 

agent is always present on the PDMS throughout the experiment.  Figure 2 shows 

the schematic of the strategy to apply coating agents. 
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Figure 2. Schematics of static vs. dynamic coating. The figure shows the coating 
agent (short black lines) adsorbed on the surface. The other symbol (circles with 
stars) depicts the proteins tagged with fluorophores.   Under static conditions the 
PDMS surface was incubated with the coating agent prior to the experiment and 
then after washing with the fluorescently tagged protein. In dynamic coating, the 
coating agent was always present both during pre-incubation and during 
incubation with protein.  
 

3.5 Coating agents 

F108 and PLL-PEG are the two coating agents that have been used to modify the 

PDMS surface in this work. Both these coating agents have long PEG chains. 

These PEG chains have been demonstrated to be effective in reducing the 

adsorption of proteins on the PDMS surface and to control EOF29, 40. F108 is a 

triblock copolymer with two PEG (polyethylene glycol) units or otherwise known 

as PEO units (polyethylene oxide) and one PPO unit, PEGx-PPOy-PEGx, x = 132 

and y = 52. On a hydrophilic PDMS surface, F108 has flat conformation resulting 

in an interaction of PEG chains with the PDMS12. PLL-PEG41 (polylysine - 

polyethylene glycol) is a polycation-PEG grafted co-block polymer. The PLL 

backbone exhibits positively charged amino groups, which attract towards the 

negatively charged PDMS surface, thus leading to electrostatic interactions16, 31, 

41.The PEG chains stick out on the PDMS surface. Figure 3 a) shows the 
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molecular structure of PLL-PEG and b) F108 respectively. 

a) 

 

b) 

 

Figure 3. Molecular structure of the surface coating agents: a) PLL-PEG (n=19, 

p = 113) b) F108 (with x = 132 and y = 52) 
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3.6 Electrical double layer and electroosmotic flow 

After the plasma treatment, PDMS has negative charges42 on its surface because 

of the deprotonation of the silanol groups in aqueous solution.                           

 

These charges are the basis of electroosmotic flow (EOF) in PDMS channels10. 

These negative charges on the PDMS surface attract the counter ion charges from 

the buffer apparent in the channel. The ions, which are directly attracted on the 

wall of the PDMS channel, form an immobile layer, called Stern layer and the 

other mobile layer, is called Diffusive layer. The Diffusive layer contains ions of 

both charges, but one is enriched depending on surface charge. These two layers 

together are called as electrical double layer or Debye layer. The thickness of the 

Debye layer is usually in the nanometer range. Figure 4 shows the stern model of 

the electrical double layer. When an external electric field is applied to a 

microchannel filled with buffer, the charges in the Debye layer get accelerated 

across a channel. These ions migrate towards the cathode moving the bulk 

solution by viscous drag. This bulk flow of ions is called electroosmotic flow. The 

ions move with the uniform velocity on the application of electric field and 

exhibits flat velocity as shown in Figure 5. 
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Figure 4. Scheme showing the Stern model of the electrical double layer. The 
immobile layer formed at the immediate vicinity of the PDMS wall is the Stern 
layer. The other layer is mobile and denoted the Diffusive layer. The Zeta 
potential is the potential at the Stern layer. The electrostatic potential decreases 
linearly through the stern layer and then exponentially. 
 

The shear forces in the liquid lead to a unique flow in the channel with the 

electroosmotic velocity denoted by,  

! 

! v eo  given by the Smoluchowski equation, 

                    Eqn. 1 

Where   

! 

! v eo  is the velocity,   

! 

! 
"  is the electric field strength applied, 

! 

"  is the 

permittivity of the solution, 

! 

"  is the zeta potential and

! 

" is the viscosity of the 

solution.  
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and, the electroosmotic mobility 

! 

µeo is given by 

                                      

! 

! v eo = µeo

! 
"                     Eqn. 2 

Rearranging and substituting,   

! 

! 
"  = V/L, where V is the voltage applied, L is the 

length of the channel and   

! 

! v eo= L/t, t is time, the electroosmotic mobility results in: 

                                 

! 

µeo = L2 /Vt                      Eqn. 3 

 

 

Figure 5. Scheme showing electroosmotic velocity profile. PDMS exhibits  
negative surface charges on the microchannel wall and positive ions are enriched 
in close vicinity to the PDMS surface in accordance with the Stern model. Upon 
application of an electric field a bulk flow arises, exhibiting a flat velocity profile.  
 
3.7 Zeta Potential 

In an EDL, the electrostatic potential near the surface drops linearly through the 

Stern layer and then it drops exponentially (figure 4). The Zeta potential is the 

potential at the Stern layer and denoted by ζ. It is an important characteristic to 

determine the EOF on charged surfaces. It is a function of the double 
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layer and the surface charge density on the PDMS surface. There are different 

methods to calculate ζ. Li et al.43 has reported a simple method to calculate the 

zeta potential on PDMS coated surface using the Smoluchowski equation and the 

slope of the current time relationship observed from the current monitoring 

method. According to this group, the zeta potential values on PDMS coated glass 

surface are -87 and -68mV for 10-3 M KCl and 10-3 M LaCl3 respectively. 

3.8 Current Monitoring Method 
 
This method is based on recording the time history of the current during CZE 

(capillary zone electrophoresis)44. The microchannel and both reservoirs are filled 

with an electrolyte at a high concentration and as the microchannel gets 

conditioned with the high concentration electrolyte the buffer in the anode 

reservoir gets exchanged with the lower concentration buffer. When a voltage is 

applied, the lower concentration electrolyte migrates through the microchannel 

and it displaces an equal volume of higher concentration electrolyte in the 

microchannel. The time at which the complete buffer exchange occurs is called as 

exchange time, t. The ‘t’ value can be calculated by the interception of the two 

linear fits. Fig 6a. shows the schematic of the current monitoring method and 6b. 

shows an example of a recorded current vs. time trace.      
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Figure 6. a) Schematic of current monitoring method. The channel was 
conditioned with the high concentration buffer and then replaced with the lower 
concentration buffer. b) Example of resulting trace of current vs. time curve. 
 
3.9 Fluorescence microscopy imaging 

Fluorescence is a phenomenon in which a molecule called a fluorophore absorbs 

light at a particular wavelength and subsequently emits light of longer 

wavelength. Fluorescence measurements are very useful for adsorption studies of 

protein to surfaces because of their sensitivity. Fluorescence microscopy allows to 

image the fluorescence intensities on a PDMS surface. In fluorescence 

microscopy imaging a sample is illuminated with light of a specific wavelength 

range. The fluorophores in the sample are excited and then emit light at a different 

longer wavelength. Two types of filters are used in this technique, an excitation 

filter and an emission filter as well as a dichroic mirror. The excitation filter 

passes the light of the desired wavelength similar to the excitation wavelength of 

the fluorescence material. Dichroic mirror directs this light on the immobilized 

fluorophore. Upon excitation of the fluorophore the emitted light passes through 

the emission filter.	
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Figure 7. Fluorescence microscopy imaging technique uses two types of filters: 
an excitation filter and an emission filter as well as a dichroic mirror. The sample 
is tagged with the fluorophores, which absorbs light at a particular wavelength, 
gets excited and emits light of longer wavelength. 
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Chapter 4 

MATERIALS AND METHODS 

4.1 Chemicals and reagents 

Silicon wafers were purchased from University Wafer. Negative photoresist SU-8 

was purchased from Microchem (Newton, USA). Polydimethyl siloxane (Sylgard 

184) was from Dow Corning (USA). Potassium phosphate monobasic, potassium 

phosphate dibasic and F108 a triblock polymer (PEG-PPO-PEG) was obtained 

from Sigma-Aldrich (USA). Alexa488-labelled BSA and Alexa-488 labelled 

fibrinogen were from Invitrogen (USA). Polylysine polyethylene glycol [(20)-

[3.5]-(20)], PLL-PEG was obtained from SurfaceSolutions (Switzerland). Glass 

slides were obtained from Fischer Scientific and Pt wire was from Alfa Aesar 

(USA). Millipore water was from a Synergy purification system (Millipore, 

USA).  

4.2 Chip fabrication  

In this work, PDMS microfluidic devices were fabricated using soft lithography26, 

45. The straight channels required for measuring EOF were created on a silicon 

wafer using negative photoresist SU-8 by photolithography. This master wafer 

was silanized using tridecafluoro-1, 1,2,2-tetra-hydro-octyl-1-trichlorsilane 

(TDTS) to make it hydrophobic.  

PDMS (25g) was mixed with the curing agent (2.5g) and was poured on the 

master wafer and cured at 85º C for 4 h. Then PDMS was peeled off from the 

wafer and the required channel was cut. Reservoirs were punched to enable access 
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to the channel. To form closed micro channels, the PDMS slab and the PDMS 

coated glass substrate were treated with oxygen plasma in plasma cleaner 

(Harrick, USA) for 60 seconds at 500-millitorr. The dimension of the linear micro 

channel was 25 x 55 µm2 in height and width and 3.1 cm in length for PDMS 

chip. For adsorption studies, thin glass slides (48x60 mm2) were spin coated with 

PDMS diluted with hexane (50:50) using a spin coater. 

4.3 Surface derivatization 

Coating materials were dissolved in 20mM phosphate buffer (potassium 

phosphate monobasic and potassium phosphate dibasic anhydrous) at pH 7. The 

assembled PDMS chip was incubated overnight with the coating agent for 

overnight incubation and then rinsed with phosphate buffer for EOF 

measurements under static condition. For dynamic coating, the PDMS surface 

was incubated with coating agent for 5 min before the experiments and the 

coating agent was present throughout the measurements. For, adsorption studies, 

under static conditions the PDMS surface was incubated overnight with the 

coating agent. It was further rinsed with phosphate buffer and was incubated with 

protein for 2 hrs in the dark. For dynamic coating, the PDMS surface was pre-

incubated with the coating agent for 10 min and then with protein solution 

containing coating agent. 

4.4 EOF measurements 

The current monitoring method44  was used to determine the electroosmotic flow 

mobility.  Platinum wires were inserted in the reservoirs to apply potential to the 
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channel. Labsmith (HV 446, Labsmith, USA) was used as a high voltage power 

source via electrodes. The polarity of the power supply is chosen so that the 

electroosmotic flow is cathodic i.e. from the anode reservoir to the cathode 

reservoir. 30mM and 15mM phosphate buffer were used to determine the buffer 

exchange time. The channel was conditioned with the 30mM phosphate buffer 

and then replaced by 15mM phosphate buffer. The decrease in current was 

recorded at 300V/cm, applied via electrodes dipped in the reservoirs. Voltage was 

applied and current recorded using Labsmith (HV 446, Labsmith, USA). The 

electroosmotic mobility was calculated using eq. 3. The time t was calculated by 

the interception of the two linear fits of the current trace. For PLL-PEG dynamic 

coating, the polarity was reversed. The same method was used for the EOF 

measurements for dynamic coating with PLL-PEG but the buffer was exchanged 

from the cathode reservoir. 

4.5 Protein adsorption measurements 

Fluorescence microscopy imaging technique was used for adsorption studies. The 

fluorescence intensity of fluorophorescently tagged protein adsorbed on treated 

PDMS surface was measured to study the effectiveness of the coating agent. The 

surfaces on the PDMS coated glass slide were sectioned using PDMS slabs to 

prevent the mixing of coating agent with variable concentrations. Under static 

conditions, each sectioned PDMS surface was incubated overnight with the 

different concentration of the coating agent and then with a droplet of protein 

prepared in buffer for 2hrs. Under dynamic condition, the surface was incubated 
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for 10 min with the coating agent, which was further incubated for 30 min with 

labeled protein solution containing phosphate buffer and coating agent. After 

incubation, the surfaces were washed with pure buffer. For washing, PDMS 

surface was rinsed with pure buffer for 1min and this step is repeated three times 

to remove any unbound residues. After washing the PDMS surface was dried and 

the fluorescence intensities were measured. F108 and PLL-PEG were used as the 

coating agents and BSA-Alexa 488 (Invitrogen, USA) and Fibrinogen - Alexa 488 

were used as proteins for concentration dependent experiments. The concentration 

range tested for F108 and PLL-PEG was from 5µM to 10mM and 0.04µM to 

20µM. Fluorescence intensity measurements of adsorbed protein were carried out 

on a IX74 inverted microscope (Olympus, USA) using a QuantEM camera 

(Photometrics, USA). The objective magnification was 40X for all the adsorption 

experiments. 
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Chapter 5 

RESULTS AND DISCUSSIONS 

Here, we studied the properties of PDMS surface modified with the PEG based 

coating agents under varying conditions. We tested the effectiveness of the 

modified PDMS surface by EOF measurements and adsorption studies. Dynamic 

and static coating strategies were used to investigate the influence of the coating 

agent on the PDMS surface.  

5.1 Effect of coatings on EOF 

The effect of F108 and PLL-PEG coatings on electroosmotic flow has been 

characterized by the current monitoring method44 and electroosmotic flow 

mobilities have been obtained from this method. In this project we used 20 KDa 

of PLL to which 5KDa PEG was grafted in a ratio of 3.6.  With PLL-PEG, the 

PEG chain density can also alter the EOF. We compared the mobility after 

applying the coating agent with the mobility on the native PDMS. The 

electroosmotic flow was always from the anode to the cathode except9, 46 for the 

PLL-PEG dynamic coating. Table 1 summarizes the mobility observed and the % 

reduction in the mobilities after the surface modification with coating agent with 

respect to the plasma treated PDMS. It was observed that F108 dynamic coating is 

more effective to control the electroosmotic flow as compared to the static. With 

F108 static coating, 43% reduction in the mobility was observed. However with 

F108 dynamic coating, 93 % reduction was observed47. It has been argued that the 

PEG chains coated on the charged PDMS surface increase the local viscosity in 
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the electrical double layer region referring to equation 1. The coating agent 

adsorbed on the PDMS surface has a certain thickness. PLL-PEG is a charged 

polymer. This adsorbed layer of PLL-PEG polymer creates a viscous layer that 

masks the charges on the wall, reducing the surface charge density and hence the 

EOF. F108 has a flat conformation12 with a thickness of ∼ 3nm on oxidized 

PDMS surface. Under static conditions these coatings agents altered the viscosity 

in the electrical double layer region but not in the bulk solution. But when applied 

dynamically, the running buffer has PEG chains, which increases the viscosity of 

the bulk solution. Under both the strategies due to the increase in the viscosity, the 

EOF mobility should decrease. 

Further, to compare F108 and PLL-PEG under static conditions, ∼ 80 % reduction 

in EOF mobility was observed with PLL-PEG, which is larger than was observed 

with F108 static coating (Table 1). The long PEG chains in PLL-PEG can alter 

the EOF by increasing the viscosity of the solution in the channel. The brush like 

chains extruding out in the double layer on the charged surface of PDMS (Fig 3a). 

PLL-PEG has strong electrostatic interactions with the PDMS surface as 

compared to the hydrophobic interaction of F108. This strong electrostatic 

interaction of PLL-PEG with the PDMS surface accounts for the stable PDMS 

surface covering. However, with PLL-PEG dynamic coating, the direction of the 

EOF flow was reversed which was not the case for F108 dynamic coating. The 

reasons accounted for this behavior are (1) dynamic coating replenishes the 

PDMS surface and (2) masking of surface charges with PLL-PEG leading to the 
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positive charges on PDMS surface, thus the negative mobility. With PLL-PEG 

dynamic coating the flow remains reversed even after several measurements as 

shown in Table 1. 

The long-term stability with PLL-PEG static coating was also tested. The PDMS 

surface modified with PLL-PEG under static condition was stable for several 

days. In contrast to F108 static coating as reported in the literature12 no significant 

change in 

! 

µeo with repetitive measurements after several days was observed. 

 

Figure 8. Long-term data of repetitive EOF measurements with PLL-PEG coating 
agent under static conditions. 
 
In summary, dynamic coating strategy exhibits stronger reduction in EOF in 

comparison to the static coating. The surface coatings had an appreciable effect 

on the quality of EOF. The reproducibility and the stability were improved with 

the coatings. All the measurements are the average values of at least three 
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repetitions from each channel, with three channels in total. Table 1 below shows 

the summarized EOF mobility observed after the treatment of PDMS surface. The 

reduction in the mobility with respect to the untreated PDMS surface is also listed 

in Table 1. 

 

Table 1. EOF mobility of treated PDMS surface and % reduction with respect to  
                         the untreated PDMS surface (n.d : not determined) 
 

 µeo*10-4[cm2/Vs] 

 

% Reduction EOF direction Zeta 
potential 

F108 
static12 

       1.75[0.3] 43 Cathodic 24.7mV 

F108 
dynamic 

       0.53[0.07] 88 Cathodic 25mV 

PLL-PEG 
static 

       1.00[0.15] 80 Cathodic 14.12mV 

PLL-PEG 
dynamic 

     - 0.85[0.21] N/a Anodic -11.3mV 

PLL-PEG 
dynamic 
(after 17 
days) 

     - 1.1[0.84] N/a Anodic n.d. 

   
5.2 Concentration dependence of F108 on EOF 

We also studied the effect of coating agent concentration on EOF measurements 

to find the saturation concentration at which the maximum reduction in 

electroosmotic mobility occurs. The range of F108 concentration tested was from 

1µM to 2mM. The maximum reduction in electroosmotic mobility was ~ 80 % 

with respect to the untreated surface at around 100µM. After that there was no 

further reduction in the mobility with further increase in the F108 concentration. 

The percentage reduction in EOF mobility increases dramatically at 
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lower concentrations of F108 and then it reaches a saturation point, where the 

isotherm becomes flat. At lower concentration of F108, PDMS surface is not 

covered completely with the agent; therefore the standard deviations are high. But 

when the coating agent on the PDMS surface covered properly and reached the 

saturation, the standard deviations are much less and the maximum reduction in 

the EOF mobility observed. Figure 9 shows the isotherm where the % reduction in 

EOF mobility is plotted vs. concentration of F108. For dielectrophoretic 

manipulations, the EOF can be altered as desired by changing the concentration of 

the coating agent on PDMS surface. This gives the flexibility to control EOF. 

 
Figure 9. Concentration dependence of F108 on EOF under dynamic conditions. 
All values are the average values obtained from at least two repetitions in three 
channels.  
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5.3 Adsorption studies of protein 

The PDMS surface was modified with coating agent, which was further incubated 

with fluorescently labeled protein. Relative intensity of fluorescence was 

measured for coating agent modified and plasma oxidized PDMS surfaces. The 

fluorescence microscopy imaging technique was used to probe the surface and 

count the intensity from the fluorophores. Bovine serum albumin (BSA) known to 

adsorb readily to surfaces was used for the adsorption studies. The concentration 

of protein chosen was 100nM. Fibrinogen, another protein present abundant in 

blood plasma was also tested for the adsorption studies. The concentration of 

fibrinogen used was 5mg/mL. We applied both dynamic and static coating 

strategies for adsorption studies using F108 and PLL-PEG as coating agents. The 

following Figure 10 shows the schematic procedure to conduct adsorption studies. 

Figure 10. Schematics of protein adsorption studies. The figure shows the coating 
agent (short black lines) adsorbed on the surface. The other symbol (circle with 
star) depicts the proteins tagged with fluorophores. The left figure shows less 
adsorption of proteins on the oxidized PDMS surface after it was incubated with 
the coating agent. On the right side the proteins are readily adsorbed on the non-
modified oxidized PDMS surface. 
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5.3.1 Static coating of F108 with BSA and fibrinogen  
 
To test the effectiveness of F108 and its behavior on the PDMS surface, we 

incubated the PDMS surface with the coating material, by varying its 

concentration from 5µM to the maximum of 10mM. Here, we are interested to 

know the saturation point where the maximum reduction in the adsorption of 

protein occurs on the modified PDMS. After incubation and the washing steps as 

mentioned above, PDMS surface was probed by fluorescence microscopy 

imaging. As shown in Figure 11, the isotherm observed with F108 and BSA, F108 

copolymer readily helped in reducing the protein adsorption. The standard 

deviations are little higher at the lower concentration of F108 but when the 

concentration of the coating agent increases and the PDMS surface gets covered 

with it properly, the standard deviations are much less. This is due to less protein 

adsorbed on the PDMS surface, when the PDMS surface covered with the coating 

agent. At lower concentrations, the PDMS surface was not fully covered with the 

agent and the proteins are interacting with the PDMS surface. The BSA protein 

(pKa ~ 4.7) 48 is negatively charged at pH 7 and the PDMS surface is also 

negatively charged. But when the concentration of F108 increases, it forms more 

stable covering on the PDMS. PEG molecules are believed to form a protective 

hydration shell around it in aqueous solution16. The PEG molecules bind water 

through hydrogen bonding. These hydration shells around PEG molecules prevent 

protein to interact with the PEG molecule and also to interact with the PDMS 

surface, thus preventing protein adsorption. For BSA, the saturation point was 
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observed at ~ 1mM, where the maximum reduction in the protein adsorption has 

been observed. 

For fibrinogen, we performed the same studies, and the saturation point was 

observed at around same concentration of F108 as it was with BSA. Around 80% 

reduction in the protein adsorption has been observed. Swart et al.49 has reported 

the effectiveness of F108 to reduce protein adsorption on non-porous membranes. 

Our results with F108 are in accordance to reported literature data. In our case 

F108 efficiently helped to reduce protein adsorption on PDMS surface. Figure 12 

shows the isotherm observed with fibrinogen. All the values shown in the figure 

below are the average of three independent measurements and the error bars 

indicate the standard deviation. Thus, we can conclude that F108 works 

effectively in reducing the adsorption of proteins on the PDMS surface. 

 
Figure 11. Protein adsorption for varying concentration of coating agent F108 
under static condition: all values are the average of three independent 
measurements. 
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Figure 12. Protein adsorption for varying concentration of coating agent F108 
under static condition: all values are the average of three independent 
measurements. 
 
5.3.2 Static coating PLL-PEG (BSA) 

Here, we tested PLL-PEG for the adsorption studies. This polymer worked 

equally effective as F108 to reduce the adsorption of protein. However, the 

saturation point with PLL-PEG was observed at 100 fold less concentration as 

was observed with F108. For PLL-PEG, the concentration varied from 0.04µM to 

the maximum 20µM to incubate the PDMS surface. Similar percentage ~80% in 

the reduction of protein adsorption was observed as compared with F108. Figure 

13 shows the isotherm observed with PLL-PEG. At ~ 10µM the PDMS surface 

was almost covered with PLL-PEG. The PLL group attached to the PDMS 

surface via electrostatic interactions and the PEG chains are extruding out on the 

surface preventing the protein to adsorb on the surface. Our data using PLL-PEG 
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as a coating agent is in accordance with other reported literature values16, 23, 30, 31 

 
Figure 13. Protein adsorption for varying concentration of coating agent F108 
under static condition: all values are the average of three independent 
measurements. 
 
5.3.3 Time Dependence  

For static coating, the PDMS surface was coated overnight, which is more time 

consuming. Therefore, we tested the amount of time sufficiently required to coat 

the PDMS surface properly by the coating agent to reduce protein adsorption. 

Here, we incubated the PDMS surface with the coating agents for different 

intervals of time. After treating the PDMS surface with the coating agent, it was 

treated with the mixture (100nM BSA and 1mM F108) of protein and the coating 

agent for 2 hrs. It was observed that time is not a factor for treating PDMS 

surface. Around same percentage of reduction in the adsorption of protein 
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was observed for the minimum (2 min) and the maximum time (1 hr) of 

incubation. So, we choose 10 min incubation time for our experiments with 

dynamic coating. Figure 14 shows the percentage reduction in intensity at 

different interval of incubation time. 

 

Figure 14. Time dependence of incubation under dynamic conditions with F108 
coating agent. 
 
5.3.4 Dynamic coating of F108 with BSA 

Under dynamic condition, the PDMS surface was incubated with F108 for 10 min 

and was further incubated with the mixture of protein and F108 for 2 hr. Dynamic 

coating showed similar results as was concluded for static coating with F108.We 

applied same concentration of coating agent (lowest 5µM and highest 10mM) as 

used for static coating. At around 1mM the saturation point was observed with 
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the maximum of ~89% reduction in the adsorption of protein. Dynamic coating is 

more time saving and if the coating does not interfere with the analytes, then it 

would be a good strategy. Figure 15 shows the isotherm observed after applying 

the coating dynamically. 

 
Figure 15. Protein adsorption for varying concentration of coating agent F108 
under dynamic condition: all values are the average of three independent 
measurements 
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Chapter 6 

CONCLUSIONS 

We tested the effect of F108 and PLL-PEG coating agents on EOF and protein 

adsorption on PDMS surface. Coating agents were tested under both static and 

dynamic conditions. These coating agents could significantly reduce the 

electroosmotic mobility. The dynamic strategy is found to be more effective as 

compared to the static method to control electroosmotic flow. With F108 dynamic 

coating more than 90 % reduction was observed12. However, with F108 static 

coating only 43% reduction has been observed. The possible reason accounted for 

the effectiveness of dynamic coating is the replenishment of the PDMS surface 

with the coating agent. Interestingly, PLL-PEG static coating resulted in ~ 80% 

reduction in EOF mobility. This is attributed to the strong electrostatic 

interactions of PLL-PEG as compared to the weak hydrophobic interactions of 

F108 with the PDMS surface. With PLL-PEG dynamic coating, however, the 

flow was reversed. The charges on the PDMS surface get positive with the 

dynamic application of PLL-PEG. This interesting finding could be used to 

manipulate the EOF in a specific direction relative to electrophoretic transport. 

With the change in the concentration of PLL-PEG coating agent, the EOF 

mobility can be controlled and can be eliminated to null. This is advantageous for 

DC analytical application in which EOF is not desired. 

The adsorptions were tested via fluorescence microscopy. The proteins were 

tagged with the fluorophore Alexa - 488. Both F108 and PLL-PEG copolymers 
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were equally effective in reducing the adsorption of proteins on the PDMS. 

Further, static and dynamic coating both were equally effective to reduce the 

adsorption. However, the dynamic coating strategy is more simple and time 

saving. If the interference of coating agent with the sample is not an issue, the 

dynamic coating is the best option for physisorbed modification. We were able to 

find the saturation point where the maximum reduction in the protein adsorption 

was observed. To determine the maximum coverage of the PDMS surface, the 

concentration of the coating agent varied. At lower concentrations of the coating 

agent the adsorption of protein was still high. This is due to the direct interaction 

of PDMS with the proteins. But, when the PDMS get covered with the coating 

agent, the protein interacts less with the charged PDMS surface.  The protective 

hydration shell around the PEG molecules prevents the proteins to interact with 

the PDMS surface and reduces protein adsorption. These PEG molecules not only 

reduced the adsorption of proteins but also reduce the degree of protein unfolding 

and denaturing17. 

In summary, the surface modification of PDMS using polyethylene oxide 

copolymer has the potential to reduce adsorption of proteins and to control EOF, 

which is useful for various microfluidic applications. These modified PDMS 

surfaces are stable for days and can produce reproducible results. The PEG based 

modified PDMS are highly protein resistant and able to control EOF. 
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