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ABSTRACT

Threshold logic has been studied by at least two independent group of

researchers. One group of researchers studied threshold logic with the inten-

tion of building threshold logic circuits. The earliest research to this end was

done in the 1960’s. The major work at that time focused on studying math-

ematical properties of threshold logic as no efficient circuit implementations

of threshold logic were available. Recently many post-CMOS (Complimentary

Metal Oxide Semiconductor) technologies that implement threshold logic have

been proposed along with efficient CMOS implementations. This has renewed

the effort to develop efficient threshold logic design automation techniques.

This work contributes to this ongoing effort. Another group studying threshold

logic did so, because the building block of neural networks – the Perceptron,

is identical to the threshold element implementing a threshold function. Neural

networks are used for various purposes as data classifiers. This work con-

tributes tangentially to this field by proposing new methods and techniques to

study and analyze functions implemented by a Perceptron

After completion of the Human Genome Project, it has become evident

that most biological phenomenon is not caused by the action of single genes,

but due to the complex interaction involving a system of genes. In recent

times, the ‘systems approach’ for the study of gene systems is gaining popular-

ity. Many different theories from mathematics and computer science has been

used for this purpose. Among the systems approaches, the Boolean logic gene

model has emerged as the current most popular discrete gene model. This

work proposes a new gene model based on threshold logic functions (which

are a subset of Boolean logic functions). The biological relevance and utility of
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this model is argued illustrated by using it to model different in-vivo as well as

in-silico gene systems.
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Chapter 1

BACKGROUND

Electronic circuits and modern genetics have revolutionized the world in the

last few decades. Both these fields continue to unravel new developments,

which will impact our lives in the foreseeable future. The work done as part of

this Ph.D dissertation contributes to both these efforts. Semiconductor circuits

have been around for many years now, but as will be discussed later in this

chapter new developments require new paradigms of design. Genetics on the

other hand has recently become a quasi-computer-science based field [26].

The completion of the Human Genome Project (HGP) [19] and the advent of

micro-array technology [32,82] has allowed for the increasing use of

computational techniques to study, analyze and understand complex biological

phenomenon through the analysis of genes involved. This chapter gives a

brief introduction to both fields and how this dissertation contributes to each.

Information processing, paradigms of computation and limits of these

paradigms have been studied by different fields of computer science [87].

Electronic circuit design borrows these results from computer science to

design electrical circuits for practical applications while exploiting the

properties of different physical materials [69]. The very first computers were

built exploiting properties and characteristics of electric current flowing through

vacuum [75]. But this was eventually replaced by circuits built using the

properties of semiconductors. The unique properties of semiconducting

materials has lead to reduction in the size and speed of electronic circuits [91].

Circuits built from semiconducting materials have been continually

improved by shrinking the features of transistors [75]. This paradigm of scaling
1



is inevitably leading to problems involving manufacturing processes

employed [9]. So far, these bottlenecks have been overcome by the use of

ingenuous engineering solutions [9]. Thus the prediction made by Gordon

Moore on the rate of scaling of circuits (commonly referred to as the Moore’s

Law [71]) has been true thus far [70]. Scaling has produced the reductions in

size and cost, at the same time increasing the performance of electronic chips

seen in the past [91]. However, this approach of scaling is now approaching

limits imposed on physical properties of the materials used to build

transistors [98]. As the feature size of transistors entered the nano-scale, it

has become difficult to produce reliable circuits using existing fabrication

techniques [86].

Currently circuits are fabricated using the Complementary Metal-Oxide

Semiconductor (CMOS) technology [69]. Even though this particular transistor

design style has been the most dominant, there have been other design styles

proposed over the years [58]. Important among them is the Bipolar Junction

Transistor (BJT) [75] and the now emerging futuristic devices like the

Resonant Tunneling Diode (RTD) [34], Quantum Cellular Automata (QCA) [7],

Single Electron Transistor (SET) [64] and Carbon Nano-tube Field Effect

Transistor (CNT-FET) [4]. For reasons of fabrication economics, ease of

design and because of the inherent advantages of CMOS (most importantly

low-power, which was instrumental in it being preferred over BJTs) CMOS has

trumped all other design styles [75]. The natural abstraction to design CMOS

circuits is a network of AND/OR (and other simple Boolean gates) that

implements the required logic [69]. This is a direct consequence of the

advantages of organizing transistors as what is popularly known as

pull-up-pull-down logic [75]. However, by using complex gates as design
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primitives a more efficient (which in this context roughly means circuits with

less gates and lesser depth) can be obtained [58]. This is however not

possible with the current pull-up-pull-down design paradigm [75].

An alternative paradigm for designing digital circuits is threshold

logic [73]. Threshold logic is a sub-set of Boolean logic [24] that is identical to

the Perceptron used in neural network design [79]. A threshold function is a

Boolean function that can be implemented using a threshold gate [24].

A threshold element or gate, has n binary inputs, x1,x2, · · · ,xn, and a

single binary output y. Its internal parameters are a threshold T and weights

w1,w2, · · ·wn. Every input xi is associated with its respective weight wi. The

values of the threshold T and the weights wi (i 2 {1, · · · ,n}) may be any real,

finite, positive or negative numbers [73].

The input output relation of a threshold gate is defined as:

y =

8
><

>:

1 ifÂn
i=0 wixi � T

0 otherwise
(1.1)

where the sum and product are arithmetic. The sum
n

Â
i=0

wixi, is called

the weighted sum of inputs to the threshold element.

Example: Figure 1.1 shows a threshold gate that implements the

function y = a0b(c+d). Input a,b,c,d are assigned the weights �2, 2, 1 and 1

respectively and the threshold of this gate (T ) is 3. The gate’s output will be 1

when the weighted sum of inputs exceeds 3 (The value of T ), and will be 0

otherwise.

Threshold circuits comprise of a network of interconnected threshold
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Figure 1.1: A threshold element implementing the function y = a0b(c+d)

logic gates that implement the required function. All the basic gates (such as

AND, OR and their variants) are indeed threshold functions, and hence an

existing circuit of AND/OR gates is also a threshold logic circuit [98]. However

this is a simplistic form of threshold circuit and does not make use of the

advantages offered by threshold logic which is the availability of complex gate

primitives [97]. It is important to note here that threshold logic is still a very

small subset of Boolean logic and that not all Boolean functions are

threshold [58].

Even though currently the most dominant circuit design style is CMOS

based Boolean AND/OR circuit, there is a convergence of two historic trends

that are making threshold logic a viable alternative. Threshold logic has been

studied mostly as a theoretical curiosity and has never been widely used due

to the absence of efficient implementations. Incidentally, futuristic

nano-devices which were originally investigated to find alternatives to CMOS

(for an era when further scaling of CMOS transistors will not be possible),

inherently implement threshold logic similar to the way pull-up-pull-down logic

is a natural design style for for CMOS circuits [98]. Furthermore, more and
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more efficient CMOS implementations of threshold circuits are being

proposed [5]. This has motivated many researchers to look more closely into

threshold logic circuits over the past few years [3,88,98]. This work is focused

on aiding this effort when threshold logic circuits may come to dominate, or at

least be a viable alternative to CMOS in the next decade. This argument is

pictorially depicted in Figure 1.2.

Figure 1.2: Trends in semiconductor devices and circuit design styles.

Irrespective of the design style for reasons of increasing complexity of

digital circuits, shorter time-to-market, and a push for reducing costs the

process of designing digital circuits is either completely automated or software

tools have been developed that aid designers to analyze and optimize the

circuits they engineer. The process of designing a digital circuit broadly falls

into four phases (as described by Giovanni Micheli [69]; see Figure 1.3).

These phases are similar to the phases of design employed in other fields –

testing follows design and optimization, which is then followed by fabrication

before the product is packaged and shipped. Each of these phases involves
5



many sub-steps, which are facilitated by the use of design automation tools.

The design automation tools work with the abstraction of a circuit before

making the design specific to the underlying manufacturing technology. This is

known as technology independent design. This work focuses on technology

independent design automation techniques for threshold logic circuits.

Figure 1.3: Different phases in the design of a digital circuit.

The four major problems that this work attempts to address (with

regards to threshold design automation) are the problem of synthesis of

threshold circuits, verification of threshold circuits,

identification/characterization of threshold functions, and efficient

implementation of state machines using threshold logic. These problems lay

at the heart of some of the core problems in threshold design automation.
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Another focus of this work is the development of accurate gene models.

Although on the surface this appears to be different from the earlier described

work on threshold circuit design automation, it is closely tied because it uses

the properties and techniques developed for threshold design automation. In

recent years the circuit model of gene action is gaining popularity [68] and

Boolean logic has been extensively used to study both the qualitative and

quantitative characteristics of gene action [55,56]. Not only that many subsets

of Boolean functions (like canalizing [72] and post-class functions [85]) have

been proposed to better capture gene action than generic Boolean logic. To

this end the current work explores the possibility of using threshold logic to

explain the action of genes in creating complex biological phenomenon. This

is done by both qualitatively arguing the biological relevance of threshold logic

and by demonstrating the same by using the proposed approaches to model

both in-silico and in-vivo gene systems.

To further motivate the work on threshold gene models a review of

earlier work done in designing theoretical gene models, and the relevance of

this work in light of the current state-of-affairs in biology is in order. For a long

time biology has been an empirical, theory-neutral science [27]. But with the

advent of modern genetics [90] and the central dogma of molecular

biology [21] this is beginning to change. The central dogma of molecular

biology essentially is that genes code for proteins (see Figure 1.4) and all the

complex biological phenomena are caused by the action of proteins. This is a

very powerful paradigm and has the potential of being the Atomic Theory of

biology. Prior to the atomic theory, chemistry was an empirical, experimental

science. But the deduction of sub-atomic particles and a theory of their

organization and interaction led to the formulation of the theoretical
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underpinnings of modern chemistry [8]. Biology is now at that juncture, where

with the advent of new technology, ever more complex experiments can be

done on gene systems and this might yield a theoretical underpinning similar

to the foundation the Atomic Theory provided for modern chemistry.

Figure 1.4: The process of transcription and translation through which DNA
codes for proteins.

With this hope the Human Genome Project (HGP) was initiated. This

project mapped the entire human genome [19]. This was possible because of

the advances in biotechnology, as well as improved computers and

sequencing algorithms. However, since the completion of the HGP, it has

become clear that the one-gene-one-disease model is more of an exception

than a rule [78]. Even though a single malfunctioning gene causes some

genetic diseases, there are a plethora of inherited diseases, in which many

genes have been found to be involved [6]. This has led to the current

consensus that all gene action that causes complex biological phenomena is

based on the non-trivial interaction of genes and their proteins [26]. This has

resulted in the systems approach to study gene interaction. Since gene

expression is inherently a computational process (four base pairs of DNA are

read as a quaternary code, which when grouped together as triples, code for
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the 20 amino acids that make up proteins [90]) computational techniques

could be used in sequencing of genes. But now computer science is also used

to construct complex models that can help study gene systems that are too

large and too complex to be studied without such assistance [22]. Developing

ever-accurate models of simple gene systems is one of the most important

problems in computational biology [54].

Use of such computer tools to study real-world phenomenon is not new.

Using physical laws, computer aided design and modeling tools are produced

for designing cars, bridges etc. This is indeed possible because physical laws

have been well understood for a very long time and can be accurately

modeled within a computer [42]. But at this point in time we do not have good

models to explain how gene systems create complex biological phenomena.

One of the main reasons for this is that there is not enough biological data

available to infer biological laws needed to develop accurate models [48]. At

the same time as gene systems are complex it is difficult to plan experiments

on them by intuition alone. This is a peculiar catch-22 that can be resolved as

follows: using available biological data crude models can be built. These

models can then provide specific insights and predictions on how the system

should work. These can then be verified by actual experiments in the wet-lab

thereby increasing the scope of biological knowledge. This symbiosis between

model generation and biological experiments is depicted in Figure 1.5. Both

these activities benefit from each other leading to increasing biological

knowledge and more accurate models. The work as part of this dissertation

intends to contribute to this ongoing effort.

Many gene regulatory models have been proposed by extending

methodologies developed originally by mathematicians and computer
9



Figure 1.5: Experimental data drives modeling efforts and new models help
generate relevant data. This symbiosis drives the research for more accurate
biological modeling.

scientists. While each has its own specific characteristics they can be grouped

broadly into two categories: the continuous models and the discrete models.

Discrete models have some convenient features that make them more

appealing. For example discrete models capture the behavior of the

underlying systems in a crude manner, while retaining the essential behavior

of the system. This makes these models easier to build than continuous

models, which need accurate data to be built. However, gene expression data

currently available is coarse-grained. Among the discrete models the Boolean

logic gene model is the most popular one. This model has been shown to

capture the qualitative behavior of gene interaction [45].

The Boolean gene model assumes that gene expression is digital, i.e.

10



each gene is either on (logic level 1) or off (logic level 0). The expression of

each gene (henceforth called the target gene) is affected by a subset of other

genes involved. In the Boolean gene model the rules by which a set of genes

affect the target gene is represented by a Boolean function. The model is

simulated in discrete time to observe how the gene system behaves over time.

Although this does not happen in actual biological systems (gene interaction

which is based on chemical interactions of proteins is asynchronous), the

Boolean model can still capture the qualitative aspects of gene interaction like

homeostasis and switch-like behavior by synchronous simulation alone. If

starting with an initial state the model attains a steady state or a steady cycle,

this is said to correspond to one of the equilibrium (homeostatic) states

observed in biological systems.

Many extensions and variants of the Boolean gene model have been

proposed using subsets of Boolean functions. Important among them are the

canalizing and post-class functions. This work argues that using threshold

functions (a subset of Boolean functions) gene regulation modeling can be

accurately modeled. The biological relevance of threshold logic is argued by

comparing the characteristics of threshold logic with the characteristics

observed in actual in-vivo regulatory interactions. Additionally, the usefulness

of this concept is demonstrated by using it to model different biological

systems, like the genes involved in the embryonic patterning of Drosophila

and genes implicated in skin cancer. The approach could also successfully

model the dynamic properties of a in-silico gene system of 50 genes.

A brief overview of the specific problems addressed in this work is now

given. These will be discussed in further detail in the subsequent chapters.

Towards the end an annotated list of published work that discuss some of the
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work described here in more detail is given. For more details the reader is

referred to these.

The problem of design automation for threshold circuits is

fundamentally different from the problem of design automation for Boolean

CMOS circuits. As mentioned earlier a basic AND/OR Boolean circuit is also a

threshold logic circuit, but it does not utilize the full repertoire of gates

available. This work attempts to build a theoretical underpinning for threshold

design automation, while borrowing from the now mature filed of CMOS

design automation wherever relevant. The most important problem in

developing design automation techniques for any design style is the problem

of synthesis. Synthesis is the process of arriving at the required circuit when

the function to be implemented is specified.

Earlier threshold synthesis algorithms are different variations that map

the synthesized Boolean circuit onto a threshold circuit by selective

recombination of nodes [98]. Other proposed algorithms have been an

algorithm to synthesize feed-forward threshold circuits [3] and a two-level

synthesis algorithm [88]. In contrast to these earlier approaches the proposed

work attempts to develop a theoretical foundation based on manipulation of

graphical representation of Boolean functions (mainly Boolean Decision

Diagrams [13] and factor forms [40]).

Another closely related problem is the identification of threshold

functions and characterization of the same. Identification involves deciding

whether a Boolean function is threshold or not and characterization refers to

assigning input weights and threshold to the threshold function. This work

proposes a co-factoring based identification procedure which also
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characterizes the identified threshold functions. This procedure yields a

decomposition based synthesis approach. The advantage of the proposed

approach is that it eliminates the ILP formulation to identify threshold

functions. This improves all other threshold synthesis procedures that need to

identify threshold functions.

Once threshold circuits are synthesized they need to be verified for

accuracy. This problem is inherently hard for threshold circuits as in order to

find the Boolean function that is implemented by a threshold gate all the

one-points of that function should be determined. Detection of these

one-points is an exponential complexity process (in the worst case) as

equivalence of circuits for all combination of inputs need to be verified. As part

of this work a polynomial-total-complexity algorithm is developed for the

purpose of obtaining the Boolean function implemented by a threshold gate.

This function can be used together with existing Boolean equivalence

checking tools to verify the functional equivalence of threshold circuits.

Even though there now exists synthesis techniques proposed as part of

this work (among others), there are many problems that need to be resolved

before the true potential of threshold circuits is realized. Important among

them is the implementation of state machines using a single layer of threshold

logic gates. The problem involved in this is to identify if a single layer threshold

implementation of a state machine exists. If such an implementation exists

then the characterization of this circuit has to be done.

So far a brief outline of the problems addressed by this thesis with

regard to threshold circuit design automation were discussed. Now a similar

overview of the problems addressed by this thesis to develop better gene
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regulation models based on threshold logic is given.

Since many subsets of threshold logic have been used before to model

gene regulation models, a natural line of enquiry is to investigate if threshold

logic is more suited for this purpose. Threshold logic has been used earlier to

model the functioning of the brain using neural networks [2]. In some ways

threshold logic is more suited for gene regulation modeling that generic

Boolean logic. For example, the input weights and threshold naturally

represents the degree of influence an input gene has on the target gene

(since each input has its own weight). Positive and negative weights denoted if

a gene has an activating or inhibitory effect on the target gene.

First, a simple proof-of-concept to demonstrate the ability of threshold

logic to model complex biological phenomena was attempted. To do this one

of the most well understood gene systems associated with fruit fly embryo

development was selected. Using just a directed graph (known as the gene

interaction graph) showing which genes affect any particular gene and how

(activation/inhibition) a threshold logic gene model was developed. Since this

system is well understood, this was relatively easy to do using just the gene

interaction graph. The normal homeostatic state and the initial state were

used to iteratively fine-tune the model. This model is extensively studied to

generate predictions about the behavior of malfunctioning genes. Many of the

predictions could be verified using existing literature, and many others are

biologically meaningful, but could not be validated by existing literature. These

could provide pointers for fruit fly geneticists to conduct future experiments. A

detailed analysis of the state space generated by this model is also done. This

thesis proposes two gene models that model (1) the anterior-posterior

segmentation and (2) the dorsal-ventral germ layer formation that takes place
14



in the fruit fly embryo.

The approach used to model the fruit fly embryo development genes is

based solely on the gene interaction graph. However, with the advent of

micro-array technology [32,82] most high-throughput data available today is

from micro-array experiments. This is generally a time-series data where gene

expression is measured in discrete time steps. Moreover, inferring the gene

interaction graph is secondary since one or more gene interaction graphs can

yield an accurate model of the underlying gene regulatory dynamics [95]. With

the intent of developing a framework to infer the threshold gene model from

micro-array data an automated procedure was developed. This procedure was

tested on in-silico data provided as part of the Dialogue for Reverse

Engineering Assessments and Methods (DREAM2) network inference

challenge [74]. The method developed could accurately capture the dynamic

properties of the underlying system, even though it had only moderate

success in predicting the network structure (even so, it was chosen as one of

the best performers in the DREAM2 challenge).

The specific problems discussed above are elaborated in the

forthcoming chapters. This dissertation is intended to be complete and

self-contained. However, the reader is referred to the annotated bibliography in

the end as further reference.
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Chapter 2

SYNTHESIS OF THRESHOLD LOGIC CIRCUITS

An important problem in regards to threshold design automation is the

synthesis of threshold circuits. This thesis introduces 4 new algorithms for

threshold logic synthesis. In this Chapter three of them will be introduced and

the last algorithm will be discussed in Chapter 3. After a formal description of

the synthesis problem, algorithms 3-ITC, n-ITC and a tree-matching algorithm

for threshold synthesis are presented.

2.1 Problem Formulation

The generic problem of threshold circuit synthesis can be stated as follows:

Starting with a given functional representation, generate a threshold circuit

that implements the required Boolean function, as well as assign weights and

threshold to each threshold element in the synthesized circuit.

A threshold circuit is a directed graph in which each node represents a

threshold gate. Every threshold gate has a weight corresponding to each input

and a single threshold. The source nodes of this directed graph are primary

inputs the output nodes form the sink. The generated threshold circuit and the

given circuit specification are said to be functionally equivalent if for all input

the circuit evaluates the output as specified in the circuit specification. A

common circuit specification (which is the input to the synthesis algorithms

presented in this Chapter) is the factored form representation. Starting with

this representation the goal of these synthesis algorithms is to generate the

functionally equivalent threshold circuit. This goal is achieved by the proposed

algorithms by partitioning the factor form into a group of factor forms such that

16



each partitioned factor form is a threshold function. This partitioning of the

factor forms can be done either by using inherent properties of threshold

functions (the 3-ITC and n-ITC algorithms) or by pattern matching (the tree

partitioning algorithm).

2.2 The non-ILP based Synthesis Method for 3-Input Threshold Logic

Circuits

The 3-ITC algorithm take as input the maximally factored factor form of a

function and generates a threshold circuit that implements the function using

threshold gates of fanin not greater than 3. The algorithm makes use of the

fact that that all the threshold functions that have fanin no more than 3 have

one of the following seven factor form patterns:

• a+b.

• ab.

• a+b+ c.

• a+bc.

• a(b+ c).

• a(b+ c)+bc,abc.

Here, a, b and c are any three unique (positive or negative) literals. For

e.g: the pattern a+bc could represent x0+ yz or p+q0r0.

The input to the 3-ITC algorithm is represented as a factor tree. Each

node of the factor tree is either a maximal POS or a maximal SOP1. This is
1A Maximal Sum of Product (MSOP) is a SOP which is not contained in any other

SOP [40]. E.g. Consider the function H = abc(x + y + z + d) + e. Here x + y is not a MSOP,
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shown in Figure 2.1 (a). Consider the function G = (a+b)(c+d + e0)+ xy0z0.

The factor tree for this is shown in Figure 2.1 (b). As shown in this Figure, the

factor tree represents alternate layers of MPOSs and MSOPs. Note that single

literals are both MSOPs and MPOSs. Every AND function is represented by a

MPOS and an OR function represented by a MSOP.

Figure 2.1: (a) Structure of a factor tree. (b) Factor Tree for G = (a+b)(c+d +
e0)+ xy0z0.

The 3-ITC algorithm is first explained with the help of an example and

then the complete algorithm is listed for reference. Consider the function

G = (a+b)(c+d + e0)+ xy0z0. The 3-ITC algorithm considers single literals, two

input AND/OR functions as trivial MPOS/MSOP. The 3-ITC algorithm

represents these functions as the roots of the factor tree. The factor tree for G

with this representation is shown in Figure 2.2(a). The only difference between

this factor tree and the previous one (Figure 2.1 (b)) is that the node

representing function a+b is now a leaf. The 3-ITC algorithm works on this

factor tree from the bottom up. For each node it visits it reduces the function of

since it is part of x + y + z and x + y + z + d, but x + y + z + d is a MSOP. A Maximal Product of
Sum (MPOS) is a POS which is not contained in any other POS. E.g. Referring to the previous
example, notice that abc(x+ y+ z+d) is a MPOS in H.
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the node to either a single literal or an AND/OR function of two literals. In this

process, at each node the 3-ITC algorithm synthesizes threshold gates and

assigns unique literals to the output of these gates.

So, going back to the example (function G), starting at the leaves, the

3-ITC groups the trivial MSOP/MPOS into a single literal, and generates a new

gate for it. The 3-ITC algorithm has a set of individual literals and a set of

two-input ORs at each MPOS node, and a set of literals and a set of two input

ANDs at each MSOP node. This pairing of single literals with two input

AND/OR functions identify the patterns a+bc and a(b+ c). Another thing the

algorithm does is that it groups three single literals together. This grouping

helps identify the patterns a+b+ c (if it is a SOP node) and abc (if it is a POS

node). Figure 2.2(b) shows the action of the 3-ITC algorithm at each node. At

node N1 it combines the 3 individual literals c, d and e0 into a single gate

whose output is O1. Similarly it combines three single literals at node N3 to

form a single gate whose output is O3. At node N2 the 3-ITC algorithm

combines the single literal O1 with the two-input OR, a+b, to synthesize a gate

O2 = O1(a+b). Node N4 has two single literals O2 and O3. These are

combined to form a two input threshold gate G = O2O3. The complete

threshold circuit synthesized by this procedure is shown in Figure 2.2(c).

Since there are only seven patterns, the weights and thresholds are

determined before hand.

In case of negative literals the weights can be adjusted using thw

following well known result: If f (X) is a threshold function and has a weight

threshold assignment [{w1, · · ·wa�1,wa,wa+1, · · · ,wn};T ], then for f (X ;a! a0),

[{w1, · · ·wa�1,�wa,wa+1, · · · ,wn};T �wa] is a feasible weight threshold

assignment. (Theorem 3.2.2 page 58 in [73]). For example
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[wa0 =�2,wb = 1,wc = 1;T = 1]⌘ [wa = 2,wb = 1,wc = 1;T = 3].

Figure 2.2: (a) Structure of a factor tree used as input to the 3-ITC algorithm (b)
Working of the 3-ITC Algorithm. (c) The circuit synthesized for G, by the 3-ITC
algorithm.

The example explains how the patterns a+b+c, a+bc, a(b+c) and abc

are detected. The patterns ab and a+b are used only when a pair of literals

are left in the root. This is an important feature of the 3-ITC algorithm. Since it

uses a two input threshold gate only when a three input gate cannot be used,

it can be shown the 3-ITC algorithm synthesizes a gate optimal circuit under

certain conditions. This is discussed in detail later. As for the pattern

a(b+ c)+bc, when the 3-ITC algorithm is processing a MSOP node, it looks

for these patterns before grouping the literals with trivial POS.
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The algorithm is listed for reference. The algorithm generate3ITC takes

a factor form and synthesizes a 3-ITC implementing the factor form. It

internally uses SOPT GSyn and POST GSyn that call each other recursively. The

function Synthesize generates a threshold gate for the given function and

assigns a unique output variable to the synthesized gate. The combineLists

function groups the literals with the trivial POSs/SOPs iteratively, until a single

literal or a trivial SOP/POS is left. The addToList function adds the argument

to the listo f Literals if the argument is a literal. If the argument is a trivial factor

form it adds it to the listo f TrivialFFs.

Algorithm 1: generate3ITC: Algorithm to generate a 3-ITC from a fac-
tored form

1: INPUT: FF, a factored form that is not a trivial POS/SOP.
2: if FF is a POS then
3: returnFF = POSTGSyn(FF)
4: else
5: returnFF = SOPTGSyn(FF)
6: end if
7: if noofLiterals(returnFF) = 2 then
8: returnFF = Synthesize(returnFF)
9: end if

10: return returnFF

Improving the Depth of Synthesized Circuits

While combining nodes (in combineLists), we can ensure that the increase in

the number of levels is kept to a minimum. For this, depth information of each

gate synthesized should be maintained. When generating a new gate, while

popping out three elements from the listO f Ones, we can pop the elements

with the least depth. This way the new gate generated will have the least

depth, of all the gates we can generate in the current iteration of the algorithm.
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Algorithm 2: SOPTGSyn
1: INPUT: S, a Sum-of-Product
2: listOfLiterals = [ ] listOfTrivialFFs = [ ]
3: for all Patterns X(a+b)+ab is S (where X is a factored form) do
4: Y = Synthesize(generate3ITC(X)(a+b)+ab)
5: Replace X(a+b)+ab in S, by Y.
6: end for
7: for all MPOS, P in S do
8: if P is a trivial POS then
9: addToList(P).

10: else
11: addToList(POSTGSyn(P))
12: end if
13: end for
14: return combineLists(listOfLiterals, listOfTrivialFFs, OR)

Algorithm 3: POSTGSyn
1: INPUT: P, a Product-of-Sums
2: listOfLiterals = [ ], listOfTrivialFFs = [ ]
3: for all MSOP, S in P do
4: if S is a trivial SOP then
5: addToList(S).
6: else
7: addToList(SOPTGSyn(S))
8: end if
9: end for

10: return combineLists(listOfLiterals, listOfTrivialFFs, AND)

This same kind of delay sensitive combination can be done while

synthesizing any two or three input gate in combineLists. This will ensure

generation of a network, that has less depth, than a network that is got by

arbitrary combination of elements in the lists (listO f Literals and

listO f TrivialFFs).

The algorithm generate3ITC produces a minimal gate 3ITC that

implements the given maximally factored non-extractable (MFNE) factored

form. The proof of this is non-trivial and is in the Chapter Appendix. Even
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Algorithm 4: combineLists
1: INPUT: listOfLiterals, listOfTrivialFFs, f
2: while Both lists (listOfLiterals and listOfTrivialFFs) are not empty do
3: if size(listOfLiterals) = 1 and size(listOfTrivialFFs) = 0 then
4: return (listOfLiterals.pop())
5: else if size(listOfLiterals) = 2 and size(listOfTrivialFFs) = 0 then
6: return (f (listOfLiterals.pop(), listOfLiterals.pop())
7: else if size(listOfLiterals) = 0 then
8: addToList(Synthesize(listOfPair.pop())
9: else if size(listOfTrivialFFs) = 0 then

10: Pop the top three elements of listOfLiterals
11: addToList(Synthesize(f (the three elements poped)))
12: else
13: addToList(Synthesize(f (listOfLiterals.pop(), listOfTrivialFFs.pop()))).
14: end if
15: end while

though this algorithm is gate optimal, it is of limited use, since to harness the

full potential of threshold logic gates of higher fanin will have to be used.

However, this algorithm shows that it is theoretically possible to achieve gate

optimal threshold circuit for a given fanin. This algorithm can be further

extended to generate threshold circuits using gates of higher fanin. However,

unlike the 3-ITC algorithm there is no guarantee on gate optimality.

2.3 Extension of the the non-ILP based Synthesis Method for n-Input Fanin

Restriction Threshold Logic Circuits

The n input threshold circuit (n-ITC) algorithm is similar to the 3-ITC algorithm

but it does not restrict the fanin of gates to 3. It is based on the following

properties of threshold functions:

1. Boolean AND and OR functions are threshold functions.

2. If a Boolean function f (x1,x2, · · · ,xn) is a threshold function, then the
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function g(x1,x2, · · · ,xn+k) = f (x1,x2, · · · ,xn)+ xn+1 + xn+2 + · · ·+ xn+k is

also a threshold function.

3. If a Boolean function f (x1,x2, · · · ,xn) is a threshold function, then the

function h(x1,x2, · · · ,xn+k) = f (x1,x2, · · · ,xn).xn+1.xn+2 · · ·xn+k is also a

threshold function.

The only way in which the n-ITC differs from the 3-ITC is that instead of

pairing the trivial POS/SOP with single literals, it groups a threshold function

with any number of literals (as long as the fanin restriction is not violated).

Figure 2.3 (a) shows the steps involved in the n-ITC algorithm when it

synthesizes the threshold circuit for the function G = (a+b)(c+d + e0)+ xy0z0.

The synthesized circuit is shown in Figure 2.3 (b).

Figure 2.3: (a) Working of the n-ITC Algorithm. (b) The circuit synthesized for
G, by the n-ITC algorithm.

The weight and threshold for these complex gates are assigned as

follows: if n additional literals are and-ed to the threshold function F , such that
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G = x1x2 · · ·xnF , then the additional literals are assigned the input weight equal

to TF (the threshold of F) and the threshold of function TG = (n+1)TF .

Example: If F = a+bcd ⌘ [wa = 3,wb = 1,wc = 1,wd = 1;TF = 3] and G = x1x2F ,

then G⌘ [wx1 = 3,wx2 = 3,wa = 3,wb = 1,wc = 1,wd = 1;TG = 9]. In case n

additional literals are or-ed to a threshold function F , such that H = x1x2 · · ·xnF ,

then the literals are assigned the input weight equal to TF (the threshold of F)

and the threshold of function TH = TF . Example: If

F = a+bcd ⌘ [wa = 3,wb = 1,wc = 1,wd = 1;TF = 3] and H = x1 + x2 +F , then

H ⌘ [wx1 = 3,wx2 = 3,wa = 3,wb = 1,wc = 1,wd = 1;TH = 3].

The depth of the circuits synthesized by the n-ITC algorithm can be

improved by using a similar technique used to improve the depth of threshold

circuits by the 3-ITC algorithm.

2.4 The Tree-Matching based Synthesis Technique

The drawback of the n-ITC algorithm is that it does not identify all the

threshold gates. For example, the function F = a(b+ c+d)+b(c+d)+ cd is a

threshold function, but the n-ITC will generate a threshold circuit that has three

gates in two levels (see Figure 2.4). Ideally, since the function F is threshold

we would like to synthesize a circuit that implements the function in a single

gate. It would be possible if we checked the factor tree of the function F

against the factor trees of all threshold functions. This is the central idea of the

tree matching approach for synthesizing threshold logic circuits propose next.

The Tree Matching Algorithm

The tree matching algorithm is formulated as a dynamic program to optimize

the number of gates used to implement the threshold circuit. The algorithm
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Figure 2.4: The n-ITC algorithm synthesizes a threshold circuit of three gates
for a 4 input threshold function.

like the 3-ITC and the n-ITC starts off with the factor form. The tree matching

algorithm then uses a library of factor trees of threshold gates to partition the

factor tree of the function into sub-trees which are all threshold functions. For

example consider the function F = ab+ cd0. The factor tree for this function is

shown in Figure 2.5 (a). If the set of factor trees of all threshold functions

whose fanin is  4 is used as the library, then a valid partitioning is shown in

Figure 2.5 (b). The circuit represented by this partitioning is shown in

Figure 2.5 (c). Note that a unique new literal is assigned to the output of every

gate synthesized. For example the output of the gate that implements the

function ad0 is assigned the label O_1. Similar to the earlier two algorithms

negative and positive literals are not differentiated and the weight assignment

for the negative literals is done by using Theorem 3.2.2 page 58 in [73]. The

original set of weights are part of the library and hence weight assignment is
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just a process of looking up the library and this is more efficient than using the

ILP formulation that is used by earlier methods.

Figure 2.5: (a) The factor tree for the function ab+cd0. (b) A valid tree partition-
ing. (c) The threshold circuit represented by the tree partitioning.

The complete algorithm is listed in Algorithms 5, 6 and 7. The

treeMatching algorithm takes as input the factor tree of the function and

generates the threshold circuit implementing the function. It uses the getCost

function to generate the costMatrix and Solution matrices that store the best

solution (they are global variables). The algorithm checks all the threshold

functions that would ‘fit’ the factor tree at the node and then choose the best

(the one that will result in the least gate implementation). The generateSolution

function is used to reconstruct the solution from the Solution matrix. In order to

minimize the size of the library a standard factorization is chosen for

constructing the factor tree and the solution. For the purposes of this work the

min-max factor form is chosen as a standard [37]. This factor form has many

interesting properties that are discussed in Chapter 3.

A comprehensive example is now presented to discuss the working of

the algorithm. Consider the factor tree shown in Figure 2.6(a), generated by

GetFactorTree (line 1 in Algorithm 5). The
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Algorithm 5: Tree partitioning algorithm for TL Synthesis
** CostMatrix stores the min. gate count for each node. **1
** Solution stores best solution for each node. **2
** Initialize the elements in CostMatrix to • **3

1: root = GetFactorTree(MFF)
2: GetCost(root)
3: GenerateSolution(root)

Algorithm 6: Least Gate TL Circuit Algorithm
1: if node is leaf then
2: return 0
3: else
4: for all Gate in Library do
5: if Gate fits at node then
6: ** L = the list of nodes in factor tree that corresponds to the leaves

of Gate.**
7: Cost = 1.
8: for all inpNode in L do
9: if CostMatrix[inpNode] < • then

10: Cost += CostMatrix[inpNode].
11: else
12: Cost += GetCost(inpNode).
13: end if
14: end for
15: if Cost < CostMatrix[node] then
16: CostMatrix[node] = Cost.
17: Solution[node] = Gate
18: end if
19: end if
20: end for
21: return CostMatrix(node)
22: end if
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Algorithm 7: Generating the solution TL circuit from the Solution array
1: Gate = Solution[node]

Generate the weight and threshold for the corresponding function in the
factor tree, matching Gate
** L = the list of nodes in the factor tree that correspond to the leaves of
Gate.**

2: for all inpNode in L do
3: if inpNode in Solution then
4: GenerateSolution(inpNode)
5: end if
6: end for

Library = {T 1,T 2,T 3,T 4,T 5,T 6,T 7}, consists of factor trees T 1 = a+b,

T 2 = ab, T 3 = a+bc, T 4 = a(b+ c), T 5 = abc, T 6 = a+b+ c and

T 7 = a(b+ c)+bc. GetCost is invoked (line 2 in Algorithm 5) with the root of

the factor tree as the argument and we get the Solution and costMatrix

shown in Figure 2.6(b). The algorithm fills up each entry in the costMatrix only

once. Figure 2.6(e) shows the execution of the algorithm for each node of the

factor tree. GetCost is invoked for the leaf nodes of the matched tree when

there is a match and the present cost of the node is infinity (lines 5 - 12 in

Algorithm 6). e.g: for node N2, T 2 and T 4 match (Figure 2.6(d) shows how this

matching is done). The best cost and solution are stored (lines 15 - 17) e.g:

For node N2, T 4 gets priority over T 2. For the sake of simplicity only the cost

is shown to be returned by the algorithm in the figure. During its execution, the

algorithm fills in the Solution array, from which the final circuit is constructed

(Figure 2.6(c)).

Optimality of the Tree Matching Algorithm

Optimality of the tree matching procedure is ensured by choosing the best

circuit implementation for each node in the factor tree (lines 15 - 17 in
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Figure 2.6: Sample Execution of The Tree Matching Algorithm
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Algorithm 6). Since Solution stores the gate-minimal implementation for each

node, after the algorithm completes execution the gate optimal solution for the

root node is present in Solution. Thus, the solution generated by the algorithm

has the least number of gates.

The reduction in the number of gates for a threshold circuit is more

complex than for a Boolean circuit. After obtaining the minimal literal factored

form, obtaining the minimal gate implementation is a non-trivial problem. In

this regard, the proposed algorithm guarantees a gate minimal implementation

for a particular factored form. The proposed algorithm gives the optimal

gate-efficient implementation for a single output function. For a multi-output

function, no such claim can be made, as the quality of the result depends on

the initial logic optimization and extraction.

2.5 The Synthesis Framework

The three algorithms proposed here take a factor form of a Boolean function

and generate a threshold function that implements that Boolean function. But

any generic circuit has multiple inputs and outputs. The different output

functions share common logic. In such a situation extraction of common logic

often leads to better results (fewer gates) [69]. In order to extract common

logic functions the Berkeley SIS tool [28] is used. This is a reasonable thing to

do, as more than two decades of work has been done to improve extraction

techniques for Boolean functions. SIS was used to perform extraction on the

original Boolean function. This is done by using the simplify command. The

factor form of the extracted function is obtained by using the print_factor

command (see Figure 2.7).

The output obtained from SIS is a circuit graph, implementing the
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Figure 2.7: The Synthesis Flow

multi-output function. Each node in the circuit graph represents a complex

Boolean function. Any of the proposed algorithms can be used to obtain the

threshold circuit which implements the function of each node in the circuit

graph. These threshold circuits can be put together (using to the circuit graph)

to obtain a final threshold circuit that implements the required multi-output

circuit.

2.6 Experimental Results

Computational Complexity

The computational complexities of both the 3-ITC and the n-ITC algorithm are

analyzed first. Note that both algorithms does computation only when

synthesizing a gate (when they assign weights and threshold to the new gate).

So by obtaining the the number of gates synthesized, we will get the

computational complexity of the two algorithms. At each node the two

algorithms synthesize no more new gates than the number of children to the

node. Therefore the number of gates synthesized is bound by the number of
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edges in the factor tree. The work done to synthesize each gate is constant,

and hence if n is the size of the input factor form (the number of literals) then

the number of edges in the factor tree is bound by O(n), and hence the

number of gates synthesized is also bound by O(n). Since the work done to

assign weights for each gate is constant the complexity of the 3-ITC and the

n-ITC algorithms is O(n) (linear time complexity).

In the Tree Matching algorithm the time spent on a single call to GetCost

is O(1) (since the size of the library is finite and fixed, it is constant). This is

excluding the time spent in the recursive calls it generates. So the running

time is bounded by a constant times the number of calls issued to GetCost.

Since the algorithm gives no explicit upper bound on the number of calls, a

bound is found by looking at a good measure of progress [57].

The most useful measure of progress is the number of entries in

CostMatrix (the global variable in Algorithms 5, 6 and 7) that are not infinity.

Initially the number is zero. Each time the procedure is invoked by recursion, a

new entry is filled. Since CostMatrix has only O(n) entries, n being the number

of nodes in the input factor tree, there can be at most O(n) calls to GetCost.

Therefore the running time of GetCost(node) is O(n). GenerateSolution and

GetFactorTree (lines 1 and 3 in Algorithm 5) both have O(n) complexity. Hence

the treeMatching algorithm has O(n) complexity (linear time complexity ).

Summary of Circuit Parameters Obtained for MCNC Benchmark Suite Circuits

A histogram (see Figure 2.8) is given to compare the results got by the 3-ITC

algorithm, as compared to the network generated by the method in [98]. The

positive x-axis denotes improvements in gate count, and the negative x-axis

represents the cases where 3ITC does worse. 3-ITC was run on 42 example
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circuits in the MCNC benchmark suite. This comparison is unfair as 3-ITC

uses only 3 input gates, whereas the method in [98] uses 6-input gates.

However the results are still comparable.

Figure 2.8: Comparison of 3ITC gate count with that of [98]

The results in [98] are compared with the n-ITC algorithm where n is set

to 6. This fanin restriction is chosen for fair comparison because the circuits

reported in [98] also have the same fanin limit. For the benchmark circuits a

gate count improvement of 14.14%, and a level improvement of 24% was

obtained. The level count can be further improved by using level sensitive

n-ITC. Full results is listed in Table 2.1.

The results in [98] are compared with the circuits obtained by the tree

matching algorithm. To run the tree matching algorithm first the library of all

threshold gates is generated. For this the list of threshold functions provided

in [73] is used. The list has all 2 to 5 input threshold networks. A subset of 6

input threshold gates were generated by using the 5 input threshold functions.

If f (x1, · · · ,xn) is a threshold function, then y+ f (x1, · · · ,xn) and z. f (x1, · · · ,xn)

are also threshold functions [73]. Therefore using five input threshold function
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Table 2.1: Comparison of n-ITC with previous work

Benchmark R Zhang et. al 6-Input Heuristic Difference
Gates Levels Gates Levels Gates Levels

b1 8 3 5 4 -3 -1
cm42a 13 3 10 1 -3 2
decod 24 3 16 1 -8 2
cm82a 12 4 12 2 0 2
majority 1 2 4 3 3 -1
parity 45 9 30 2 -15 7
x2 15 4 25 5 10 -1
cm85a 14 5 17 5 3 0
cm151a 12 5 16 5 4 0
cm162a 26 8 18 4 -8 4
cu 24 4 23 3 -1 1
cm163a 25 6 19 6 -6 0
cmb 27 6 20 9 -7 -3

a subset of six input threshold functions can be generated. Next, the factored

forms and the generated factor trees for these functions are obtained. The

collection of these factor trees constitutes the library, which is an input to our

procedure. Compared to the method in [98] (full results is listed in Table 2.2),

the proposed method generates circuits with comparable depth and 25% fewer

gates on average (50% at best). Even though the algorithm is optimal for

single output functions, for some (3 out of 43) circuits it does worse than the

method in [98], as they are multi-output functions. The algorithm presented

demonstrates a large improvement over Boolean logic implementations. It

also demonstrates significant improvement over the previous TL synthesis

method. The fan-in restriction assumed (six) is reasonable in light of device

considerations. In the few circuits where the method does worse, results can

be improved by better logic extraction for threshold logic.
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Table 2.2: Comparison of Tree Matching Algorithm with Previous Work

Bench- Boolean Circuit Method in [98] Tree Matching
mark Gates Levels Gates Levels Gates Levels

b1 10 4 8 3 6 4
cm42a 13 3 13 3 12 3
decod 24 3 24 3 18 2
cm82a 18 5 12 4 12 6
majority 5 3 1 2 1 1
parity 45 9 45 9 30 8
z4ml 39 8 19 5 24 5
f51m 101 8 82 8 44 4

9symml 141 10 110 9 85 10
alu2 253 27 197 25 161 28
x2 20 5 15 4 20 3

cm152a 13 4 11 4 9 4
cm85a 26 5 14 5 14 6

cm151a 14 6 12 5 10 4
alu4 517 28 410 23 320 31

cm162a 39 7 26 8 18 5
cu 31 6 24 4 24 4

cm163a 40 6 25 6 15 4
cmb 33 7 27 6 21 12
pm1 25 4 23 4 24 4
tcon 32 3 32 3 16 2
pcle 42 6 35 6 26 8
sct 54 6 38 5 38 5
cc 49 6 35 6 26 3

cm150a 25 5 21 4 18 5
cordic 61 9 49 7 30 6

ttt2 127 7 100 6 89 7
pcler8 50 7 47 7 34 9
frg1 97 12 59 9 40 7
c8 109 8 85 7 62 5

comp 89 9 83 8 62 12
my_adder 160 34 96 18 65 19

term1 278 11 226 10 118 9
count 91 12 79 12 48 18
unreg 66 4 50 5 48 3

cht 119 5 82 5 73 3
apex7 171 10 118 9 106 9

x1 293 8 203 7 104 7
example2 226 9 182 8 146 8

x4 264 7 189 8 176 6
apex6 543 12 396 12 326 10

x3 660 9 441 7 352 11
pair 1199 14 907 12 611 14
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Figure 2.9: Pattern V in a factor tree.

APPENDIX: Proof of Gate Optimality of 3-ITC algorithm

The algorithm generate3ITC produces a minimal gate 3ITC that implements

the given maximally factored non-extractable (MFNE) factored form. The

algorithm first identifies all patterns of the type X(a+b)+ab (call it Pattern V ).

In Pattern V , X is any factored form and a and b are two unique literals.) and

generates 3ITCs for them. To do this it generates a 3ITC for X , and uses the

output of this circuit, as an input to a three input gate. The other two inputs to

this gate are a and b, and this gate implements the function X(a+b)+ab. We

first prove that any network that implements the MFNE factored form and

ignores this pattern can be transformed to a network that will synthesize a

gate using this pattern without increasing the number of gates.

Consider a network that ignores at least one pattern V . Consider the

37



pair of nodes S and P in a factor tree T (Refer Figure 2.9), in which the pattern

X(a+b)+ab occurs, but is ignored. Let S and P be such that no other such

pattern occurs in P. Now the node P outputs either a pair of literals or a single

literal as input to S. If we choose to ignore (a+b), then we can get the same

output pattern at the output of P, with one less three input gate. This follows

because in an optimal network, the number of two-input gates needed,

depends only on the number of single literal inputs to P (Appendix I). Thus we

get the same effect with one less gate. If P outputs a pair, then to reduce it to a

single literal we need an extra gate. The previously saved gate will

compensate for this extra gate and so far network transformation has not

yielded any extra gates. Now the single literal output of P can be combined

with the cube ab and a+b to implement X(a+b)+ab in a single gate. Now we

have used an extra gate, but also eliminated the gate to which ab was input.

Example: Consider the function, G = ab(c+d)+ cd +g. Figure 2.10

shows two implementations. The first one ignores the pattern V . It requires 3

gates. The alternate implementation maps a gate for pattern V and is still

optimal (both require 3 gates)

Thus in transforming the optimal network into another one that uses the

pattern V , we preserve optimality. This can be done repeatedly to each pair P

and S. Hence there exists an optimal network that uses all the V , that occur in

the factored form.

Our algorithm generates a network, that maps all patterns of the type

V . Now it is enough to prove that for a factored form that is independent of

pattern V , the 3-ITC algorithm will still find the optimal mapping.

Preliminaries:
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Figure 2.10: Two networks that implement G = ab(c+d)+ cd +g

From now on consider MFNE factored forms that do not have pattern V .

Each network that implements a factored form generates a labeling of the

edges of the factor tree. The labeling is defined as follows:

If the MSOP or MPOS of the node in the factor tree is reduced to a

single literal, then the output edge of the node is labeled as S (single),

otherwise it is labeled as P (pair). If an edge is connected to a leaf, then the

number of literals in the function of the leaf determines the label of the edge. If

the leaf node is either pattern ab or (a+b) then the edge label is P, else it is S.

Now consider an optimal threshold network O and the corresponding

labeling Lo. Our solution (call it A), generates a labeling La. An edge is said

good if its labels in Lo and La are the same, otherwise it is said to be bad.

Now a coloring of the nodes of the factor tree is defined as follows:

A node in a factor tree is colored white if its input edges are good but

the output edge is bad. If the output edge and at least one of the input edges

are bad, then the node is colored grey. If any of the input edges are bad, but

39



the output edge is good, then the node is colored black. All the nodes that are

uncolored are the ones whose input and output edges are both good. Each

node also has a label N2, which is the number of two input gates used to

reduce the input at the node to the output at the node.

For the nodes that are not colored it can be seen that A uses the exact

same number of N2 nodes as O (The minimum N2 for optimal mapping is given

in Appendix I). Therefore for the uncolored nodes. N2O�N2A = 0

Now uncolor all the nodes, by a series of transformations, thus

transforming O to A. To show that A generates an optimal network, it is now

enough to show that each of the intermediate networks generated by the

transformation, is not sub-optimal when compared to O. This construction will

prove that A will have no more two-input gates than O. But since O is optimal,

by the corollary of Theorem 1 (which states that if a 3ITC implementing a

MFNE factor form of a function, uses the least possible number of 2 input

gates, then it is gate optimal among all the 3ITCs that implement the same

MFNE factor form; see Appendix V ), A is optimal.

The network transformation done to uncolor nodes is explained in the

next section.

Network Transformations:

The colored nodes of the factor tree form a forest of trees. A typical tree

is shown in Figure 2.11.

Choose from any tree a subtree S, such that its root node has more

than one child, and all other non-leaf nodes have only one child. If no such

sub-trees exist then all the trees in the forest are just simple paths, having the
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Figure 2.11: Coloring of the nodes of a factor tree.

black node at one end, zero or more gray nodes, and a single white node at

the other end. Each sub-tree found will have one of the two structures shown

in the Figure 2.12.

Consider a path of only grey nodes and a white node at the end (call it

a grey-white path). From Appendix II, we know that for a white node the

difference between the numbers of two input gates used for O, and the

number of two input gates used by A is 1. i.e if ON2 and AN2 are the number of

two input gates synthesized by O and A respectively, then, for a white node:

ON2 �AN2 = 1

Similarly, it is shown in Appendix III that for a grey node: ON2 �AN2 = 2

or ON2 �AN2 = 0. Note that: ON2 �AN2 � 0, for a grey node. Now for a

grey-white path: ON2 �AN2 � 1

It can be seen that the root of S has these grey-white paths as children.
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Figure 2.12: Structure of the subtrees (S)

If each of these grey-white paths is replaced by the implementation of A (i.e for

each node of these paths synthesize the gates as done by A), this will lead to

a savings � n in the number of two input gates. But such a replacement will

change the input edge labels of the root node of S(which is either a black or a

grey node). But from Appendix I, it can be seen that from any input

configuration, to get any form of output, we’ll never need more that 2 two-input

gates. Now replace the root of S too, by an optimal implementation, that will

result in the same output form as before. This will not take more than 2 extra

two-input gates.

Savings in 2-input gates by the replacement = n�2. But n� 2, thus

savings in two input gates � 0.

This replacement will yield an implementation, that as good or better
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Figure 2.13: Effect of uncoloring the nodes in S.

than O.

So far we’ve shown how to replace the entire sub-tree S, but not

change the rest of the implementation. This replacement will uncolor2 the grey

(non-root) and white nodes of S. If the root node was grey, it’s turned into

white, and if the root node of S was black, then it gets uncolored. This is

shown in Figure 2.13.

The sub-trees of the form S can be iteratively replaced. Such

replacements will yield networks that implement the same function, but are no

less optimal than O. After all the sub-trees of the form S are processed and

replaced we are left only with simple paths of the type shown in the figure 2.14.

These paths have a white node, a set of zero or more grey nodes and a

black node at the end (call it the black-grey-white paths).

From Appendix IV, we know that the black node will not take more than

one extra two-input node, if it’s made to align its implementation to that of A.
2An uncolored node is one whose incoming and outgoing edges have the same labels for

both networks O and A.
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Figure 2.14: Structure of “Simple Paths"

i.e AN2 �ON2 �1, or ON2 �AN2 ��1.

For the rest of the grey-white path, we know: ON2 �AN2 � 1.

Hence for the entire black-grey-white path: ON2 �AN2 � 0.

This implies that replacing all the nodes in the black-grey-white path, by

making them the same as the corresponding ones of A, we are not sacrificing

the gate optimality of the 3ITC algorithm. Such replacement can be viewed as

uncoloring the nodes, of the black-grey-white path.

Appendix I

This section lists the minimum number of two input gates required to reduce

different inputs that can occur at any node of the factored tree to one of the

two output forms (single literal or pair).

The different configurations of input and output forms are listed in the

Table 2.3. The number (minimum) of two input gates, that will be required for

each case is enumerated.

This table is used repeatedly to determine ON2 �AN2, in the next few
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n3 Output Form N2min
4

Odd Single Literal 0
Odd Literal Pair 1
Even Single Literal 1

Even (n� 2) Literal Pair 0
Even (n = 0) Literal Pair 2

Table 2.3: Number of N2s required for optimal implementation

Appendices.

Appendix II

This section investigates the difference in the number of two-input gates of O

and A (ON2 �AN2), for the different input combinations that can occur at a white

node of a factor tree.

Let n, be the number of single literal inputs at the node, and m be the

number of inputs to the node that occur as pairs.

CASE 1: n = 0. A will reduce the output to the form a, and will use one

two input gate. O will reduce the output of the node to a pair (this is because

in a white node the output format of A and O are different). For this O will use

two two-input gates. Thus, ON2 �AN2 = 1.

CASE 2: n > 0, n is even. A will reduce the output to a pair of literals,

and will not use any two input gates. O will reduce the output of the node to a

single literal form. For this O will use one two-input gates. Thus, ON2 �AN2 = 1.

CASE 3: n > 0, n is odd. In this case, A will reduce the output to a

single literal, and will not use any two input gate. O will reduce the output of

the node to a pair and will use one two-input gates. Thus, ON2 �AN2 = 1.

4Number and nature of single literal inputs (n)
5Minimum number of two input gates required.
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Appendix III

This section investigates the difference in the number of two-input gates of O

and A (ON2 �AN2), for the different input and output combinations that can

occur at a grey node of the factored tree.

In all the following cases, the value of n specified describes the input

configuration that occurred for A. In O, this value of n will change by ±1.

CASE 1: n = 0. A will reduce the output to a single literal, using one

two-input gate. O will get an input with n = 1, and will reduce it to a pair of

literal output using one two input gate.

For this case: ON2 �AN2 = 0.

CASE 2: n = 1. A will reduce the output to a single literal, without using

any two-input gate. O will: a. Get an input configuration, with n = 2, and will

reduce it to a pair of literal output using zero two input gate.

For this case: ON2 �AN2 = 0.

b. Get an input configuration, with n = 0, and will reduce it to a pair of

literal output using two two-input gate.

For this case: ON2 �AN2 = 2.

CASE 3: n� 2. n is odd. A will reduce the output to a single literal,

without using any two-input gate. O will now get an input where n is even and

will reduce the function of the node to a pair of literal form without using any

two-input gate.

For this case: ON2 �AN2 = 0.
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CASE 4: n� 2. n is even. A will reduce the output of this node to a pair

of literal form, without using two-input gates. O will now get an input where n is

odd and will reduce the function of the node one literal form, without using any

two-input gate.

For this case: ON2 �AN2 = 0.

Appendix IV

This section finds the difference in the number of two-input gates that get

synthesized by O and A (ON2 �AN2), for the different input combinations that

can occur at a black node of the factored tree.

CASE 1: Output form is single literal. Refer to Appendix I. If A gets

an input with n being odd A will take no two-input gate to reduce it the output

to a single literal form (AN2 = 0). Now, O will get an input where is even, and

will reduce it to a single literal output.

In this case, ON2 = 1, and so ON2 �AN2 = 1

If A gets an input with n being even, then ON2 �AN2 =�1

CASE 2: Output form is a literal pair. If A gets an input with odd n,

then A will take one two-input gate to reduce the output to a literal pair form

(AN2 = 1). Now, O will get an input where is even with either: a. n = 0 or b.

n > 0

In the first case, ON2 = 2, and so ON2 �AN2 = 1. If the reverse happens,

i.e A gets an input with n = 0 and O gets an input, with odd n, then

ON2 �AN2 =�1.

In the second case, ON2 = 0,) ON2 �AN2 =�1. If the reverse happens,
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i.e A gets an input with even n, and n > 0 and O gets an input, with odd n, then

ON2 �AN2 = 1.

We can now conclude, that for a black node, ON2 �AN2 = ±1.

Appendix V

Consider a MFNE factored form that is free of the patterns of the form

a(b+ c)+bc. The following properties hold for all the 3ITCs that implement

such a factored form:

Lemma 2.6.1. For a 3ITC, having N2 two-input and N3 three-input gates,

implementing a MFNE factored form of ` literals:

N2 +2N3 = `�1.

Proof: A three input gate reduces the number of literals in the factored

form by 2, and a two input gate reduces the number of literals by 1. The

function in it’s factored form has ` inputs, and this is reduced to one output

literal, by the network. Hence the statement of the lemma is true.

Theorem 2.6.1. Any gate optimal 3ITC, implementing a MFNE factored form,

has minimal number of two input gates, among all 3ITCs implementing the

same factored form.

Proof: Let N2 and N3 be the number of two input and three input gates

respectively, in a gate optimal 3ITC that has Kmin gates. Now, N2 +2N3 = `�1,

where ` is the number of literals in the factored form [From theorem 1].

Consider another minimal gate network that has atleast one less two input
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gate. Assume it has N2�2a two input gates5, , where a > 0. Then, it should

have N3 +a three input gates [Obtained by using Lemma 1].

The total number of gates in this second network is hence

N2�2a+N3 +a = N2 +N3�a = Kmin�a. This second network has fewer gates

than the optimal 3ITC, which is a contradiction.

Thus the assumption that there can be a network with fewer two input

gates than the optimal gate network, is not true. Hence the gate optimal 3ITC

has a minimum number of two input gates among all 3ITCs implementing the

same factored form.

Corollary 1. The threshold circuit that implements a MFNE factored form and

has the least number of two-input gates is a gate optimal network.

Proof: The proof of this corollary follows from the theorem.

5The difference between N2’s in any two gate optimal networks can’t be odd. This claim
can be proved as follows:

Let N2a and N3a are the number of two and three input gates for one optimal network, and
N2b and N3b are the number of two and three input gates for another optimal network. From the
first Lemma: N2a +2N3a = `�1 and N2b +2N3b = `�1.

Subtracting the two equations, and reordering, we get. N2a�N2b = 2(N3b�N3a) The right
hand side is an even number and hence the left hand side must also be even.
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Chapter 3

IDENTIFICATION AND SYNTHESIS OF THRESHOLD LOGIC FUNCTIONS

USING COFACTORS

This Chapter introduces a novel approach to threshold function identification.

As explained earlier, most of the existing approaches are based on solving

linear programs, and sometimes exploiting specific properties of Boolean

functions to quickly identify that the given function is not a threshold function,

so as to avoid solving a linear program. In contrast, the methods presented

here are based on efficient traversal of decision diagrams (Binary Decision

Diagrams, and Max Literal Factor Trees), which allows not only to quickly

identify that a function is a threshold function, but also to compute its minimal

weight assignment. The basic threshold identification procedure is used to

decompose a Boolean function into a network of threshold functions. It also

allows for exercising limitations on certain gate parameters such as maximum

fan-in, sum of weights and threshold making it more suitable for synthesis of

realizable threshold circuits. Experiments done on benchmark circuits yielded

circuits which on average have 23% fewer gates, and one less level when

compared to the state-of-art method.

3.1 Notation and Definitions

This section contains the definition of various terms and the notation that will

be used in the remainder of the Chapter.

1. Support Set: This is the set of all variables on which a given function F

depends. It is denoted by SF .
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2. Cofactors: If F is a Boolean function then the positive (Shannon)

cofactor of F with respect to a variable a, denoted by Fa, is the Boolean

function obtained by evaluating F with a = 1. The negative cofactor of F ,

denoted by Fa0, is similarly defined. Note that SF can also be defined as

{a|Fa 6= Fa0}.

3. Don’t Care variable: A variable d is said to be a don’t care variable of a

function F if and only if Fd0 = Fd. Don’t care variables do not belong to the

support set of a function. With regard to threshold functions, don’t care

variables can be assigned a weight of 0, whereas non don’t-care

variables must always have a non-zero weight.

4. Max Literal: Let F be a Boolean function, given in the form of a sum of

products in which no cube is contained in another (i.e. it is minimal w.r.t

single cube containment). The max literal of a function F is the literal that

occurs most frequently among the largest cubes in F . In the case of a

tie, then the tie among those literals is broken by comparing their

frequency among the next smaller size cubes.

Example: Consider the function F = ab+bc+ cde. The largest cubes are

{ab,bc}, and since b occurs most frequently, b is the max literal of F . As

another example, consider F = abc+ad +ae+de. The literals a, d and e

each occur twice among the largest cubes {ad,ae,de}. Among (a,d,e), a

occurs most often in the next largest cubes, namely, abc. Hence a is the

max literal.

5. Function containment: F is contained in G, denoted by F ✓ G, if and

only if the onset of F is contained in the onset of G.

F ✓ G⌘ F ) G⌘ F 0+G.
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6. ⌫-Ordering: For a function F , if Fxy0 ◆ Fx0y, then x is wavily greater than

or equal to y [73], and is denoted by x⌫ y. If Fxy0 � Fx0y, then x is strictly

wavily greater than y and is denoted by x� y. For a pair of variables x

and y, if x⌫ y and x� y, then x is wavily equal to y and is denoted by

x⇡ y.

Example: Consider the function F = x+ yuv. Since Fxy0 = 1 and Fx0y = uv,

Fxy0 � Fx0y, and x� y.

An equivalent characterization of wavy ordering is that if x� y then the

number of minterms in which x = 1 is greater than the number of

minterms in which y = 1 [73]. For a threshold function, wx > wy implies

x⌫ y, and wx = wy implies x⇡ y [73]. It is also known that for a threshold

function F , SF can be totally pseudo-ordered using the ⌫-relation. For

more details on these operators the reader is referred to [73].

3.2 Threshold Function Identification

Procedure isThreshold

In this section, we describe a procedure called isThreshold, that determines

whether or not a given Boolean function F is a threshold function. Proofs of

the properties on which the steps of the procedure are based are given in the

Appendix.

The input to the algorithm is a binary decision diagram (BDD)

F = xFx + x0Fx0, where x is variable associated with node pointed to by F . If F is

not a threshold function then isThreshold returns f (nil), otherwise it will

return a valid set of weights W and a threshold T . The algorithm makes use of

the weights and threshold of Fx and Fx0 to determine the weights and threshold

of F . This can be done because the algorithm partitions the problem of
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determining the property of being a threshold function into two sub-problems

of determining the same property of its cofactors.

The outline of the procedure in shown in Algorithm 8. In the algorithm,

the weights are represented by a dictionary in which the variables are the keys

and the values are their weights. W [x] represents the weight of variable x. The

algorithm uses a cache to store intermediate results.

[Terminal cases:] We first consider the terminal cases that are computed in

lines 2 and 3. If F = 1, then its support set is empty, and by default the sum

over an empty set is defined to be 0. Hence taking the threshold to be zero will

result in the threshold inequality always being satisfied. Similarly if F = 0, then

its the sum defined to be 0, it will not exceed a threshold 1.

In line 4 we check to see if the node was visited previously, and the

weight and threshold pair were computed. If so, we return the cached values.

[Support Set and Cofactor Containment:] First, three necessary conditions

for a threshold function are checked. The first two are simple. Theorem 3.4.1

states that a necessary condition for F to be threshold is that the support set

of either one of the cofactors of F is contained in the support set of the other

cofactor. Line 7 checks this condition. The second necessary condition is

given in Theorem 3.4.2 which states that one of the cofactors must be

contained in the other cofactor. Line 8 checks this condition.

[Check cofactors:] Another necessary condition for F to be a threshold

function is that Fx and Fx0 are threshold functions (Theorem 3.4.3). This

requires the recursive application of isThreshold to Fx and Fx0. This is

accomplished by the code in lines 9 up to line 12. If either cofactor is not a

threshold function, the procedure returns f .
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[Cofactors with same weights:] If control reaches line 13, then it has been

determined that Fx and Fx0 are threshold functions. If the weights of Fx and Fx0

are the same, then F is a threshold function. In this situation, Theorem 3.4.4

shows how the weights and threshold of F can be assigned. Let Fx = [W,TFx ],

Fx0 = [W,TFx0 ]. Then F = [W [{w(x) = TFx0 �TFx},TFx0 ]. This means that weight of

the cofactor variable x of F is assigned the threshold of Fx0 minus the threshold

of Fx, and the threshold of the F is assigned the threshold of Fx0. After

computing the weight and threshold of F , it is cached and returned. The code

from line 13 through line 18 accomplishes this.

[Cofactors with different weights:] We now arrive at a situation where the

weights of Fx and Fx0 are not the same. It is known [73] that if F is a threshold

function, then the variables in SF must be ordered according to the wavy

relation ⌫. This means that the variables in SFx and SFx0 must have the same

wavy ordering as in F .

In [73] it is shown that for any weight assignment to a threshold function

F , if |wx| > |wy| then x⌫ y, and if |wx| = |wy| then x⇡ y. This condition is tested

in line 20, and if the ordering of weights among the variables in Fx and Fx0 is

different, then F is not a threshold function. Note that this is a pessimistic

approach since if for some two variables a and b, if |wa| > |wb| in Fx and

|wa| < |wb| in Fx0, then we would declare F to be non-threshold function, when

in fact a⇡ b in both Fx and Fx0. Procedure DiffWavvyOrdering checks to see

if the weights of cofactors have a different wavy ordering. This is on line 19 of

isThreshold.

[Cofactors with same wavy ordering:] We know that if F is a threshold

function then there exists an assignment of identical weights to Fx and Fx0.
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Therefore, when the weights of Fx and Fx0 are not the same, but they both have

the same ⌫-ordering, we attempt to equalize their weights. This final step is

on line 20 of isThreshold and is performed by the procedure

tryEqualizeWeights.

Procedure tryEqualizeWeights

Procedure tryEqualizeWeights attempts to equalize the weights of Fx and Fx0

in the following ways. First the support sets SFx and SFx0 of the two cofactors

are checked for equivalence (line 3 of tryEqualizeWeights). In case they are

different we attempt to re-synthesize the weights of one cofactor. This is

performed by procedure resynthesizeWeights (line 4 of procedure

tryEqualizeWeights). Note that non-equivalence means that one support set

is fully contained in the other, as ensured by line 7 of isThreshold. If this

re-synthesis step succeeds then the weights and threshold of F are returned.

In case the procedure fails (i.e resynthesizeWeights returns f ), then the

algorithm continues execution at line 25.

If the support sets of the two co-factors are the same, procedure

tryEqualizeWeights checks if the weights assigned to Fx are a valid

assignment for Fx0 and visa-versa (line 9 through line 24). The test of validity is

performed by procedure getValidThresholds, which takes a weight vector W

and a threshold function F and returns an interval of threshold values such

that W and any value of a threshold in the interval serves as a valid

weight-threshold assignment for F .

Suppose that Wx, which is a weight assignment to Fx, is a valid set of

weights for Fx0, and the threshold interval returned by getValidThresholds is

[L,U ]. By Theorem 3.4.4, a valid threshold assignment to F will be the
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Algorithm 8: Pseudo code of isThreshold(F)
isThreshold cacheLookup Cache isLeaf diffWavvyOrdering1
validWeights equalWeights tryEqualizeWeights alreadyComputed
(F);2
Input : F is a pointer to a BDD or MLFT node.
Output: f if F is not a threshold function. Otherwise, if F is identified as a

threshold function then it is a pair [W,T ] where W is a dictionary
with the care variables as keys and weights as values. T is the
threshold. [W,T ] is the weight-threshold assignment to F .

// Terminal Cases

if F == 1 then return ([f ,0]) ;3
if F == 0 then return ([f ,1]) ;4

// if result already cached, return it.

[W,T ] = (F) ;5
if [W,T ] 6= f then return ([W,T ]) ;6

x = F.var ;7

// Check support set containment

if (SFx 6✓ SFx0 ) or (SFx0 6✓ SFx) then return (f ) ;8

// Check cofactor containment

if Fx0 6 Fx or Fx 6 Fx0 then return (f ) ;9

// Process cofactors

[Wx,Tx] = (Fx) ;10
if [Wx,Tx] == f then return (f ) ;11

[Wx0 ,Tx0 ] = (Fx0) ;12
if [Wx0,Tx0] == f then return (f ) ;13

// Both cofactors are Threshold

if (Wx,Wx0) then14
W = Wx ;15
W [x] = Tx0 �Tx ;16
T = Tx0 ;17
([W,T ],F ]) ;18
return [W,T ] ;19

if (Wx,Wx0) then return ((f))20
else return ((F)) ;21

threshold of Fx0. The minimum valid threshold for Fx0 returned by

getValidThresholds is L. Hence the threshold of F is set to L in line 15. Also,
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Algorithm 9: Pseudo code of tryEqualizeWeights
getValidThresholds equalWeights tryEqualizeWeights cacheLookup1
cache resynthesizeWeights (F)
Input : F is a pointer to a BDD or MLFT node.
Output: A weight vector and a threshold or f .
x = F.var2
if SFx 6= SFx0 then3

[W,T ] = (F))4
if [W,T ] 6= f then5

(([W,T ]),F)6
return [W,T ]7

else8
[Wx,Tx] = (Fx)9
[Wx0,Tx0] = (Fx0)10

[L,U ] = (Wx,Fx0)11
if [L,U ] 6= f then12

W = Wx13
W [x] = L�Tx14
T = L15
(([W,T ]),F)16
return [W,T ]17

[L,U ] = (Wx0,Fx)18
if [L,U ] 6= f then19

W = Wx020
W [x] = Tx0 �U21
T = Tx022
(([W,T ]),F)23
return ([W,T ])24

[L1,U1] = (Wx0 +Wx,Fx)25
if [L1,U1] 6= f then26

[L0,U0] = (Wx0 +Wx,Fx0)27
if [L0,U0] 6= f then28

W = Wx +Wx029
W [x] = L0�U130
T = L031
(([W,T ]),F) return [W,T ]32

return f33
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Algorithm 10: Algorithm to determine if the given weights W is valid for
the BDD/MLFT F (threshold function).

getValidThresholds1
(W, F) ;2
Input : F is a pointer to a BDD or MLFT node. W is a dictionary. The

keys are variables in the support set of F and the values are the
weights.

Output: An interval indicating the range of valid thresholds if F is a
threshold function, otherwise False.

if F == 1 then return [�•,Âx|W [x]<0W [x]] ;3

if F == 0 then return [Âx|W [x]>0(W [x])+1,•] ;4

if | Âx2W\DC(F)W [x] | � min{|W [y] |,y 2 SF} then5
return f6

if 9x 2 SF 3 |W [x]| 0 then7
return f8

x = F.var ;9
I1 = (W �W [x],Fx) ;10
I0 = (W �W [x],Fx0) ;11
return (I1 +W [x])\ I012

by Theorem 3.4.4, the weight of the variable at node F is the Tx0 �Tx = L�Tx.

This is performed on line 14. If Wx is not a valid set of weights for Fx0, then

getValidThresholds will return f , and tryEqualizeWeights checks if Wx0 is a

valid set of weights for Fx. This situation is similar and is shown in lines 18

through 24.

If the cofactor weights have not been equalized thus far, then

tryEqualizeWeights checks if the sum Wx +Wx0 is valid for both Fx and Fx0 . In

checking if the sum of weights is valid for both, two intervals are returned:

[L1,U1] (line 25) when checking if the sum is valid of Fx, and [L0,U0] (line 27)

when checking if the sum is valid for Fx0.

If neither is empty, then F is a threshold function and a weight and

threshold can be assigned to F . The weights will simply be Wx +Wx0. To

determine the threshold of F , recall from the description of weight-threshold
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Algorithm 11: Algorithm to resynthesize weights to accommodate don’t
cares.

resynthesizeWeights cacheLookUp getValidThresholds1
(F) ;2
Input : F is a pointer to a BDD or MLFT node.
Output: A weight and threshold pair [W,T ].
x = F.var ;3
[Wx,Tx] = (Fx) ;4
[Wx0,Tx0] = (Fx0) ;5
if SFx � SFx0 then6

WDC = Wx \Wx0 ;7
K = 1+Ây2WDC |Wx[y]| ;8

W new
x0 = K ⇤Wx0 [WDC ;9

T new
x0 = K ⇤Tx0 +Ây2SFx0

|Wx0 [y]<0W new
x0 [y] ;10

[L,U ] = (W new
x0 ,Fx) ;11

if [L,U ] = f then return f ;12
W = W new

x0 ;13
W [x] = T new

x0 �U ;14
return [W,T new

x0 ] ;15

else16
WDC = Wx0 \Wx ;17
K = 1+Ây2WDC |Wx0[y]| ;18

W new
x = K ⇤Wx[WDC ;19

T new
x = K ⇤Tx +Ây2SFx |Wx[y]<0W new

x [y] ;20

[L,U ] = (W new
x ,Fx0) ;21

if [L,U ] = f then return f ;22
W = W new

x ;23
W [x] = L�T new

x ;24
return [W,L]25

assignment above, the weight that is assigned to the cofactor variable x of F ,

namely W [x], is Tx0 �Tx, and the threshold is T = Tx0. In procedure

tryEqualizeWeights, the threshold interval for Fx is [L1,U1], and for Fx0 it is

[L0,U0]. Hence the least value of T will be L0, the least value for W [x] is

L0�U1. These computations are shown in lines 30 and 31.
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Procedure getValidThresholds

In this section the procedure that checks whether or not a given set of weights

is a valid assignment to a given function is described. The procedure that

performs this is getValidThresholds, and its pseudo-code is shown in

Algorithm 10. Procedure getValidThresholds recursively checks if a given

set of weights are valid for a function. It returns an interval of valid threshold

values for the given weights. An empty interval means that the weights are not

valid. Note that two operations on intervals are used. Addition of a single

value to an interval is defined as [L,U ]+ c = [L+ c,U + c]. The intersection of

two intervals is an interval representing their overlap.

Consider the terminal case of F = 1, and w.l.o.g let

W = (w1,w2, . . . ,wi,�wi+1,�wi+2, . . .�wn). Consider the inequality

w1x1 +w2x2 + · · ·�wi+1xi+1�wi+2xi+2� · · ·�wnxn � T.

Clearly if F = 1, then the above inequality must evaluate true for all values of x.

This will be the case if T is less than the minimum possible value of the

expression on the LHS, which will be the sum of all negative weights. Hence

the valid interval for T is
⇥
�•,Âx|W [x]<0W [x]

⇤
. This is shown line 2. The

reasoning for the case of F = 0 is similar and is shown on line 3.

The next test on line 4 ensures that the sum of the absolute weights of

don’t care variables is less than the minimum of the absolute weights of all the

care variables (Lemma 3.4.2). The second test on line 6 ensures that the

absolute weight of every care variable is strictly non-zero (Lemma 3.4.3).

After having dispensed with the terminal cases, getvalidThresholds is

recursively applied to each cofactor. The result will be two intervals I1 and I0,
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corresponding to the application of getValidThresholds to Fx and Fx0. Since

we are checking for the validity of a given set of weights, the weight of the

cofactor variable x of F , denoted by W [x] is already given. Recall that the

weight assignment in isThreshold computes this value as W [x] = Tx0 �Tx.

Therefore, Tx0 = W [x]+Tx. Interval I1 represents the values for Tx, and I0, the

values for Tx0. Since both must satisfied, the interval of thresholds associated

with F must be (I1 +W [x])\ I0. This is the interval returned at line 11 by

getValidThresholds.

Procedure resynthesizeWeights

What remains is an explanation of the procedure resynthesizeWeights. This

relies on the fact that the weights of a threshold function depend on the set of

don’t care variables. For instance, consider the function F = ab_ c. Then

SF = {a,b,c}. If no don’t care variables are specified, then one valid weight

assignment for F would be W = [wa = 1,wb = 1,wc = 2] and T = 2. This

corresponds to the inequality F ⌘ a+b+2c� 2. Now consider the same

function, but with two variables d and e specified as don’t cares with weights

wd =�5 and we = 3. In this case, one set of valid weights would be

W = [wa = 9,wb = 9,wc = 18,wd =�5,we = 3] and T = 13, which corresponds to

the inequality F ⌘ 9a+9b+18c�5d +3e� 13. Thus don’t care variables affect

the weight-threshold assignment.

As stated before, procedure resynthesizeWeights is called when

SFx 6= SFx0 . For definiteness, suppose SFx � SFx0 (line 5 of

resynthesizeWeights). In this case, some variables in Fx are don’t care

variables in Fx0. In such a situation, the care variables in Fx0 can be assigned

weights conditional on the weights of its don’t care variables that were
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assigned values in Fx. Lemma 3.4.2 states that the minimum weight of a care

variable must be at least one more than the sum of the magnitudes of the

weights of the don’t care variables. This quantity is used to scale the weights

of the care variables in Fx0 (line 8). This scaling is done by multiplying each

weight and the threshold by a constant. The scaled weights and the

corresponding threshold (line 9) will always be valid for Fx0. Next, a test is

made to check if these new weights W new
x0 are valid for Fx using

getValidThresholds (line 10). If they are, then both cofactors now have the

same set of weights, and as before, the new weights and threshold of F are

calculated and returned.

Examples of BDD based Threshold Identification

In this section we present three examples that exercise different parts of the

procedures. We first consider a simple (threshold) function F = ab+bc+ ca.

This function exercises the core steps of the procedure isThreshold, and

serves as a starting point for the discussion of more complex examples.

The variable ordering in the BDD representing F , shown in Figure 3.1,

is a < b < c. The initial dictionary representing variables and weights would be

F.W = [a :?,b :?,c :?,T :?]. Note that the tests for support set containment in

isThreshold (line 7) and cofactor containment (line 8) always succeed for this

example. The following is the sequence of computations that take place when

isThreshold is applied to F .

1. isThreshold recursively descends down the BDD to the leaf nodes 1

and 0. The weights and threshold returned by 1 and 0 are [f ,0] and [f ,1],

respectively (Figure 3.1(a)).

62



2. At node c, both of its cofactors are threshold functions. Their weight

vectors (e.g. f ) are the same. Hence control reaches line 14. The result

is wc = 1, Tc = 1. This stage is shown in Figure 3.1(b).

3. At node b (which is a’s left child b+ c), both of its cofactors are threshold

functions. However Wb = f (b’s 1-cofactor) and Wb0 = [wc = 1]. The test

on line 13 fails, and control reaches line 19, where the test fails by

default. That is, the two cofactors have the same wavy ordering. Hence

an attempt is made to equalize the weights of b’s cofactors (line 20).

4. In procedure tryEqualizeWeights, F = b+ c, x = b, SFb = f , and

SFb0 = wc. On line 3, we check if the support sets SFb and SFb0 are equal.

Since they are not the same, procedure resynthesizeWeights is called

with F = b+ c as the argument.

5. In procedure resynthesizeWeights x = b, Wb = f , Tb = 0, SFb0 = {c}, and

SFb = f . Since SFb0 � SFb, control reaches line 16. Executing lines 16

through 19, results in

WDC = [wc = 1],K = 2,W new
b = 2⇤f +[wc = 1] = [wc = 1]) T new

b = 0.

Note that the leaf node Fb = 1 now has a weight-threshold pair equal to

[W new
b ,T new

b ] = [wc = 1,0], because c which is a don’t care variable for the

leaf node, is now added to its leaf node. This represents the inequality

c� 0, which is always satisfied, and hence still represents the function 1.

In line 20, we check if the weight [wc = 1] is valid for Fb0 = c. It obviously

is, and the interval of thresholds returned is [L,U ] = [1,1]. Hence the

weight and threshold pair for node b is [wb = 1,wc = 1,T = 1], which

represents the function b+ c. This stage is shown in Figure 3.1(c).
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6. Returning to procedure tryEqualizeWeights, control reaches line 5,

where the weights [wb = 1,wc = 1;Tb = 1] are returned back to

isThreshold (see Figure 3.1(c)).

7. The negative cofactor of a, function bc, is processed by isThreshold

similarly and the weight-threshold of [wb = 1,wc = 1;Tb = 2] is assigned

when control returns to line 11 of isThreshold.

8. After having processed a’s cofactors, both of which are now threshold

functions, control returns to line 13 of isThreshold. Here x = a, and the

weight and threshold of a’s positive cofactor are Wa = [wb = 1,wc = 1] and

Ta = 1, and that of its negative cofactor are Wa0 = [wb = 1,wc = 1] and

Ta0 = 2. Since Wa = Wa0, the test on line 13 succeeds. In lines 14-16, wa

and Ta are assigned the values 1 and 2 respectively. In line 18 the

weights and threshold of F ⌘ [wa = 1,wb = 1,wc = 1;Ta = 2], is returned

(Figure 3.1(d)).

To further illustrate the tryEqualizeWeights procedure two more

examples are presented. Consider the function F = ab+acd +ace+bcd +bce.

The BDD of this function is shown in Figure 3.2(a). During the execution of

isThreshold, nodes Fa and Fa0 have different weights:

Wa = [wb = 3,wc = 2,wd = 1,wd = 1] 6= Wa0 = [wb = 2,wc = 2,wd = 1,we = 1]. The

control reaches line 20 of the isThreshold procedure and

tryEqualizeWeights is called. In the function tryEqualizeWeights, since the

support sets of Fa and Fa0 are equal, control passes to line 9. The call to

getValidThresholds on line 11 checks if weights Wa are valid for Fa0. The

edges of Figure 3.2(a) are annotated with the intervals returned by recursive

calls to getValidThresholds. The final result returned by
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Figure 3.1: Execution of procedure isThreshold on BDD of F = ab + bc + ca.
Solid edges are 1-cofactors, dashed edges are 0-cofactors.

getValidThresholds is ([3,3]+3)\ [5,•] = [6,6]. Since [6,6] 6= f , weights of

function F is assigned to be [wa = 3,wb = 3,wc = 2,wd = 1,wd = 1] and the

threshold T is assigned to be 6. This tuple is returned by tryEqualizeWeights

which in turn is the return value of isThreshold.

The last example we consider is the function

F = abc+abd +abe+acd +ace+ade+bcd +bce+bde. The BDD of this

function is shown in Figure 3.2(b). During the execution of isThreshold

procedure nodes Fa and Fa0 have different weights

(Wa = [wb = 1,wc = 1,wd = 1,wd = 1] 6= Wa0 = [wb = 2,wc = 1,wd = 1,we = 1]. On

line 20 of isThreshold, tryEqualizeWeights is called. Since the

support-sets of both co-factors are identical, control reaches line 9 of
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tryEqualizeWeights. The tests to check if either cofactor’s weights is valid for

the other fails (lines 11 and 18). The final test is to check if the sum of the

cofactor weights is valid for both cofactors. This test succeeds and the final

weight-threshold for function F [wa = 3,wb = 3,wc = 2,wd = 2,we = 2;T = 7] is

returned.
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Figure 3.2: Execution of procedure isThreshold on BDD of (a) F = ab + acd +
ace+bcd +bce, (b) F = abc+abd +abe+acd +ace+ade+bcd +bce+bde.
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Effect of Variable Ordering of a BDD

The ordering of variables in the BDD can affect the outcome of the threshold

identification procedure. Figure 3.3 shows the result of applying isThreshold

to the function G = abc+abd +abe+acd +bcde with the ordering

a < b < c < d < e. The procedure isThreshold correctly identifies the function

as a threshold function with a weight-threshold assignment

[wa = 4,wb = 3,wc = 2,wd = 2,we = 1;T = 8]. Figure 3.4 shows the same

function with the ordering b < a < c < d < e. This ordering requires

isThreshold to repeatedly attempt to equalize the weights, which eventually

fails for the cofactors of the root node b. The original weight-threshold

assignment of b’s cofactors are Wb = [wa = 2,wc = 1,wd = 1,we = 1;T = 3] and

Wb0 = [wa = 1,wc = 1,wd = 1,we = 0;T = 2]. The support sets aren’t the same (e

is a don’t care variable in Gb0). Hence procedure resynthesizeWeights is

called. In resynthesizeWeights, the weight-threshold vector computed for

Gb0 is [wa = 1,wc = 1,wd = 1,we = 0;T = 2]. However this weight vector does

not have a valid threshold for Gb. Therefore procedure resynthesizeWeights

fails and the control passes to line 25 of tryEqualizeWeights. Finally, the test

of whether Wa +Wa0 is valid for both cofactors, also fails. Consequently,

procedure isThreshold returns f , declaring that G is not a threshold function.

Max Literal Factor Tree: An Alternate Structure

We now describe an alternate data structure, which is referred to as a Max

Literal Factor Tree (MLFT). An MLFT will be seen to be more efficient and

accurate for identifying threshold functions. An MLFT is a decision diagram

similar to a BDD, and the algorithms presented in the previous section remain
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Figure 3.3: Result of isThreshold on G = abc + abd + abe + acd + bcde with or-
dering a < b < c < d < e.
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NOT 

THRESHOLD

Figure 3.4: Result of isThreshold on G = abc + abd + abe + acd + bcde with
ordering b < a < c < d < e.

exactly the same when operating on a MLFT instead of a BDD. There are

several important characteristics of an MLFT that should be noted.

1. An MLFT is a factor tree that can be constructed from a sum of products

(SOP) representation that is minimal with respect to single cube

containment.
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2. Unlike a BDD, no particular ordering of variables can be associated with

an MLFT of an arbitrary function.

3. However, a well defined ordering of variables, which we refer to as a max

literal (ML) ordering, can be associated with an MLFT of a threshold

function F . The BDD of a threshold function with its variables ordered

according to the ML ordering is the same as an MLFT.

The construction of an MLFT is as follows. First, without loss of

generality, we assume that F is a positive unate function and F is given in the

form of a SOP that is minimal with respect to single cube containment. The

result of dividing F by a literal x is a pair of functions (Q,R) such the F = xQ+R.

Here, x is the divisor, Q is the quotient and R is the remainder. The MLFT of F

is obtained by repeated algebraic division of F using max literals as divisors at

each step of the division. In an MLFT, the factored form F = xQ+R is

represented by binary tree, where the root node is labeled by x, and its left and

right children are the MLFT of Q and R respectively. The process stops when

both quotient and remainder are the constant functions 1 or 0. Note: Unlike a

BDD, the ML ordering of Q and R might be different, and hence no particular

ordering can be associated with an MLFT of a non-threshold function.

Consider F = ab+ c. The ML ordering is c < a < b. The MLFT of F is

obtained by the following factorization: F = c(1)+ [a(b)+0]. Figure 3.5 shows

the MLFT of F . This is the same as the BDD for the ordering c < a < b

because F is a threshold function.

69
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Figure 3.5: MLFT of f = ab+ c with ordering c < a < b. Same as a BDD.

Now consider the function G = ab+ade+bde+ e f g, which is not a

threshold function. Its MLFT is obtained by the following factorization.

G = ab+ade+bde+ e f g

= a[b(1)+de]+bde+ e f g

= a [b(1)+d[e(1)+0]]+ [e[bd + f g]+0]

Figure 3.6 shows the MLFT of G, which is not a BDD.

a

0
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b

d

1

b

d

e f

g

Not Threshold

Not Threshold

Not Threshold

Figure 3.6: MLFT of a non-threshold function G = ab+ade+bde+e f g is not the
same as a BDD.

The example threshold function G = abc+abd +abe+acd +bcde given

in Section 3.2 was correctly identified by isThreshold when the BDD was

ordered according to an ML ordering. The ML ordering is of particular
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significance because for a threshold function, the ML ordering1 is consistent

with a wavvy ordering.

We noticed that a threshold function in the form of an MLFT (which is

the same as a BDD with an ML ordering) was always correctly identified as

such by procedure isThreshold. This claim was tested by examining all

permutations of all threshold functions of five variables (i.e. 120 permutations

for each threshold function). There are 92 representative threshold functions

of five variables listed in [73] (all others are can be mapped to one of the 92

functions). Table 3.1 shows the results of applying isThreshold to all

permutations of each of the 92, five variable functions. It indicates the number

of functions and the fraction of their 120 permutations that were correctly

identified as threshold functions. For instance, for 75 of the 92 functions, all

120 permutations resulted in a correct identification. On the other hand, the

ML ordering resulted in correctly identifying all 92 functions as threshold

functions.

% of orderings that resulted in
correct identification

100% 80% 60% 40%
# of 5 variable

functions out of 92 75 5 6 6

Table 3.1: Results of applying isThreshold on all 120 orderings of all 92, 5 input
functions

The fact that an MLFT of a threshold function results in a ML ordering

of its support set is one of the main reasons that an MLFT is this successful in

identifying threshold functions. Even if a function F is not a threshold function,

some cofactor of F , say G, might be a threshold function. In such a case, the

repeated factoring of F by the max literals will result in the MLFT of G being
1ML ordering of a threshold function is the same as ordering by Chow parameters [73]
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quickly identified as a threshold function since the ordering of the variables in

G’s support set would be consistent with a wavvy ordering. In a BDD,

procedure isThreshold may not identify the sub-tree representing G as a

threshold function.

3.3 Synthesis of Threshold Networks

The first time that a node F is determined to be a non-threshold function, it will

be with both of its cofactors being threshold functions. This is because, the

algorithm proceeds bottom-up and leaf node is always a threshold function. At

this point, one or both of the cofactors can be substituted by a literal which will

represent the output of a threshold gate. The rules for substitution vary for an

MLFT and a BDD.

Consider an MLFT node F = xQ+R, where Q and R are threshold

functions and F is not. Since xQ is also a threshold function, we can substitute

either xQ or R. Suppose R is substituted by a literal r. This means that the

function R is implemented as a threshold gate and the literal r denotes its

output. Therefore the new MLFT would be F = r + xQ, which is a threshold

function whose support set is {r,x}[SQ. After this transformation, the

threshold identification procedure can proceed toward the root. Figure 3.7

shows the transformation, and its application to the function F = ab+ cd.

R = cd = [wc = 1,wd = 1;T = 2], F = r +ab = [wr = 2,wa = 1,wb = 1;T = 2].

Similarly, if xQ is implemented by a threshold gate, whose output is denoted by

the literal h, then F = h+R is a threshold function.

Now consider the function G = e(ab+ cd). In this case, we let

x = ab+ cd and G = ex. From Figure 3.7 we see that (ab+ cd) requires two

threshold gates. Figure 3.8 shows two possible implementations for G. In
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(b) MLFT substitution example
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Figure 3.7: Decomposition of a non-threshold MLFT. (a) General rule, (b) Ex-
ample F = ab+ cd

.

Figure 3.8(a) x and e are fed as inputs to a third threshold gate, and in

Figure 3.8(b) e it is merged into the threshold gate that produced x. As is

apparent, these implementations differ in the number of gates and levels, the

maximum fanin, and maximum weight and threshold.
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Figure 3.8: Possible implementations of G = e(ab+ cd).
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The substitution rules in the case of BDDs are similar. Consider the

BDD node F = xFx + x0Fx0, and assume that Fx and Fx0 are threshold functions,

but F is not a threshold function. The substitution can be done in one of three

ways: (1) implement y = Fx and z = x0Fx0 with two separate threshold gates with

node F = xy+ z becoming a new threshold function

F = [wx = 1,wy = 1,wz = 2;T = 2], or (2) implement y = xFx and z = Fx0 with two

separate threshold gates with node F = x0z+ y becoming a new threshold

function F = [wx0 = 1,wy = 2,wz = 1;T = 2], or (3) implement y = xFx and

z = x0Fx0 by two threshold gates with F = y+ z becoming a new threshold

function F = [wy = 1,wz = 1;T = 1]. As with MLFTs, these choices lead to

differences in gates, levels, weights and thresholds.

The choice of the substitution will impact the overall area, power and

performance of the network. In fact, with certain circuit architectures of

threshold gates such as those that use differential logic, the maximum weight

and threshold values have a strong impact on the reliability of the gate.

Due to the absence of a physical realization of a threshold gate, or

models of area, delay and power of threshold gates, our choice for the

substitution is based on reducing the number of gates.

Although in this work synthesis has been discussed in detail, the core

contribution of the work can be used to enhance other methods used in

designing threshold circuits. Detection of threshold function is an often

recurring problem in threshold CAD and this technique can be plugged with

existing approaches for detecting a threshold function. For example threshold

circuits have been used to improve the characteristics of asynchronous

circuits [50,51]. The approach in [51] uses merging of adjacent cells in an
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unoptimized netlist, as an optimization technique. Since the functions

considered are threshold functions the method proposed in this Chapter can

be used along with the techniques proposed in [51] to detect which mergers

yield valid threshold functions.

3.4 Experimental Results

Synthesis of Threshold Circuits

The algorithms described in this Chapter were tested on the MCNC suite of

benchmark circuits [25]. We present results based on BDDs and MLFTs.

Figure 3.9 shows the steps that were followed in synthesizing a threshold

network. Starting from a circuit specification in the form a BLIF [28] or Verilog

netlist, a multi-level logic synthesis tool, such as SIS [28], is used to generate

a Boolean network. This is a directed acyclic graph with each node

representing a multi-input, single output Boolean function. Before carrying out

the threshold logic synthesis method described, a BDD or MLFT of each node

in the Boolean network was constructed with the local inputs as its support

set. Hence the original network structure is preserved, with the network’s

nodes being replaced with a threshold network.

When constructing a BDD of a node in the Boolean network, no

particular ordering is specified. We let the decision diagram package [65]

select the order to achieve compact representations. The MLFTs of the node

functions were computed by first flattening (i.e. multiplying out the factored

form to produce sum of products (SOP)) the factored form obtained from the

multi-level synthesis step shown in Figure 3.9, and then making the SOP

minimal with respect to single cube containment. The resulting SOP was

repeatedly factored using the max literal as the divisor.
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blif, verilog or any other 

standard format

CIRCUIT SPECIFICATION

CIRCUIT GRAPH

THRESHOLD LOGIC 

CIRCUIT

For each node in the 

circuit, synthesize a 

threhsold network

    {d} = c

    {e} = a b' + a' b

    {f} = {e}' n1'

    {g} = c'

    n1 = a {g}' + a' {g}

CIRCUIT GRAPH

Threshold Logic Circuit
[ wb =1 wa = -1; Te2 = 1 ]

[ wa = 1 wb = -1 we2 = 2; T{e} =1 ]

[ wc = -1;  T{g} = 0 ]

[ wc = 1;  T{d} = 1 ]

[ w{g} = -1 wa = -1;  Tf2 = 0 ]

[ wa = 1 w{e} = -3 w{g} = 1 wf2 = 2; T{f} = 2 ]

Use standard logic 

synthesis tools, e.g. 

SIS or Synopsys DC

Figure 3.9: (a) Generic Synthesis Flow (b) Example of synthesis of b1 bench-
mark circuit.

We compare the method presented in this Chapter with results

reported in [98]. The approach described in [98] also starts from a gate-level

netlist, and selects sub-circuits whose functions are unate and checks whether

or not the function is a threshold function by attempting to satisfy a set of

linear inequalities derived from the truth table.

A comparison of the results of applying the method described using

BDDs with the results in [98] is shown in Figure 3.10. Due to the large number

of circuits and many differences in their characteristics, the results were

grouped into four categories based on the number of gates. The bins were

determined so as to have approximately an equal number of circuits.
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Figure 3.10: Percentage gate reduction obtained by [98] versus proposed
method using BDDs.

As expected, both the proposed method and the one in [98] resulted in

fewer gates than the original logic network. Over the set of all circuits, [98]

showed an average of 23% reduction in the total number of gates and the

reduction of approximately 1.1 levels on the average, whereas the proposed

method using BDDs resulted in an average of 31% reduction in the number

gates.

Figure 3.11 shows the results when MLFTs were used. The results are

much better when compared to those based on BDDs. Using MLFTs, the

proposed method resulted in an overall average of 36% reduction in the

number of gates and approximately 2.5 fewer levels.

The threshold network synthesis procedure using MLFT was

implemented in Python, and executed on a laptop computer with a single core.
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Figure 3.11: % Gate reduction obtained by [98] versus proposed method using
MLFT.

The execution time ranged from 2.5 seconds to 24 seconds. The Python

implementation would easily be two to three orders of magnitude slower than

a optimized C implementation. The BDD based procedure was implemented

in C++ using an existing BDD package [65]. In this case, the execution times

were less than a second for each circuit.

A comparison of the proposed approach with those in [3,88] is not

meaningful for the following reasons. The method described in [88] is

essentially a two level synthesis procedure. Multi-level circuits are obtained

only when the fanin exceeds a certain limit or if the computation time becomes

excessive (in which case they use SIS for preprocessing). The motivation for

the work in [88] is the study of neural network architectures (since the

threshold element and the Perceptron are functionally identical), and hence

gates with of fanins as large 86 are produced. This may not be an issue for
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neural network implementations, however for most logic circuits such high

fanins are not feasible. Since the vast majority of circuits generated are two

level implementations, no meaningful comparison can be made with a

multi-level synthesis approach. The results reported in [3] do not include

MCNC circuits. Moreover, their work and the one described herein are

qualitatively different both in terms of approach and computational efficiency.

In [3] an extensive search for feed forward implementation is done which

results in one gate per level. This method takes minutes to synthesize even

simple circuits of few inputs and outputs. Moreover the number of levels is

equal to the number of gates.

Appendix

Lemma 3.4.1. If F(X) is a threshold function and has a weight threshold

assignment [{w1, · · ·wa�1, wa,wa+1, · · · ,wn};TF ], then for F(X ;a! a0),

[{w1, · · ·wa�1,�wa,wa+1, · · · ,wn};TF �wa] is a feasible weight threshold

assignment.

Proof. See citation [73] pg 58.

Definition 1. The positive form of weight assignment of a threshold function is

the weight assignment obtained by the repeated application of Lemma 3.4.1,

such that all the input weights are positive.

Lemma 3.4.2. Let F be a threshold function. Then for any weight-threshold

assignment [W,T ] to F ,

Â
x 62Supp(F)

|wx| < min
y2Supp(F)

�
|wy|

 
. (3.1)
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Proof. (By contradiction) Let D denote the set of don’t care variables of F .

Assume the contrary that

Â
x2D

|wx|� |wy|, for some y 2 Supp(F). (3.2)

Let Py be a prime implicant of F that contains y. Therefore

Â
v2Py

wv � T ⌘ Â
v2Py
v6=y

wv +wy � T. (3.3)

Combining Equations (3.2) and (3.3), we obtain

Â
v2Py

wv + Â
x2D

|wx|� Â
v2Py

wv + |wy| by (3.2)

� Â
v2Py

wv +wy � T by (3.3).
(3.4)

Let P⇤y = Py \{y}][D. P⇤y is the cube obtained from Py after removing y

and including all the variables in D in positive form. Equation (3.4) implies that

the cube P⇤y , in which all the don’t care variables are set to 1, is an implicant of

F . By definition of don’t cares, this implies that the cube Py \{y}, in which all

the don’t care variables are set to 0, is also an implicant of F . This contradicts

the fact that Py is a prime implicant of F .

Lemma 3.4.3. Let F be a threshold function. Then for any weight-threshold

assignment [W,T ] to F , 8a 2 Supp(F), |wa| > 0.

Proof. (by contradiction) If |wa| 6> 0, then wa = 0. In this case wa does not affect

the weighted sum whether a = 1 or a = 0. Thus the output of F is not affected

when a = 1 or a = 0. Thus a 62 Supp(F) (by definition of a don’t-care variable).

This is a contradiction and hence the lemma is proved.
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Lemma 3.4.4. If F = xFx + x0Fx0 is a threshold function, then there exists a

weight-threshold assignment for Fx and Fx0 such that they have the same

variable weights.

Proof. If F = [W ;TF ], then (by the definition of cofactors)

Fx ⌘ [W \{wx};TF �wx] and Fx0 ⌘ [W \{wx};TF ]. Note that variable weights for

both Fx and Fx0 are the same input weights (W \{wx}).

Theorem 3.4.1. If F = x.Fx + x0.Fx0 is a Boolean function and if

Supp(Fx)\Supp(Fx0) 6= f and Supp(Fx0)\Supp(Fx) 6= f , then F is not a threshold

function.

Proof. Suppose F is a threshold function. Since

Supp(Fx)\Supp(Fx0) 6= f ,9a 2 Supp(Fx)\Supp(Fx0). Similarly

9b 2 Supp(Fx0)\Supp(Fx). The variable a is a don’t care for Fx0, and b is a don’t

care variable for Fx. By Lemma 3.4.4, there exists a weight-threshold

assignment for F in which a has the same weight in Fx and Fx0, as does b. By

Lemma 3.4.2, |wb| < |wa| in Fx because b is a don’t care variable in Fx.

Similarly, since a is a don’t care variable in Fx0, |wa| < |wb|. These contradict

Lemma 3.4.4, because it holds true for all weight-threshold assignments.

Hence the statement of the theorem is true.

Theorem 3.4.2. If F = xFx + x0Fx0 is a threshold function, then either Fx ✓ Fx0 or

Fx0 ✓ Fx.

Proof. By Lemma 3.4.4, there exists a set of weights W such that

Fx ⌘ [w1, · · · ,wn;TFx ] and Fx0 ⌘ [w1, · · · ,wn;TFx0 ]. If TFx > TFx0 , then every one-point

of Fx is a one-point in Fx0 (by definition of a threshold function). Therefore

Fx ✓ Fx0. Similarly if TFx0 > TFx , then Fx0 ✓ Fx.
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Theorem 3.4.3. If F = x.Fx + x0.Fx0 is a threshold function then Fx and Fx0 are

also threshold functions.

Proof. If F is a threshold function then 9[W ;TF ], that implements F (by

definition of threshold logic). Now Fx ⌘ [W \{wx};TF �wx] and

Fx0 ⌘ [W \{wx};TF ] (by definition of cofactors). Since there exists a weight

threshold assignment that implements Fx and Fx0, they are both threshold.

Theorem 3.4.4. Let F = xFx + x0Fx0 be a Boolean function, and suppose that Fx

and Fx0 are threshold functions with weight-threshold assignments [W,TFx ] and

[W,TFx0 ] (identical weights), respectively. Then F is a threshold function with

wx = TFx0 �TFx , and F = [W [wx,TFx0 ].

Proof. Let X = (x1,x2, . . . ,xn). We need to show that

F(X) = 1) Âxi2X wixi � TF , and F(X) = 0) Âxi2X wixi < TF . Applying the

Shannon decomposition w.r.t xi, F = xiFxi + x0iFx0i
.

Case 1: F(X) = 1. If xi = 1 then

F(X) = 1) Fx(X \ xi) = 1) Â
x j2(X\xi)

w jx j � TFxi

) Â
x j2(X\xi)

w jx j +(TFx0i
�TFxi

)xi � TFx0i

) Â
x j2X

w jx j � TF since wi = (TFx0i
�TFxi

) and TF = TFx0i
.
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If xi = 0 then

F(X) = 1) Fx0(X \ xi) = 1) Â
x j2(X\xi)

w jx j � TFx0i

) Â
x j2(X\xi)

w jx j +(TFx0i
�TFxi

)xi � TFx0i

) Â
x j2X

w jx j � TF .

Case 2: F(X) = 0. If xi = 1 then

F(X) = 0) Fx(X \ xi) = 0) Â
x j2(X\xi)

w jx j < TFxi

) Â
x j2(X\xi)

w jx j +(TFx0i
�TFxi

)xi < TFx0i

) Â
x j2X

w jx j < TF .

If xi = 0 then

F(X) = 0) Fx0(X \ xi) = 0) Â
x j2(X\xi)

w jx j < TFx0i

) Â
x j2(X\xi)

w jx j +(TFx0i
�TFxi

)xi < TFx0i

) Â
x j2X

w jx j < TF .
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Chapter 4

EQUIVALENCE CHECKING OF THRESHOLD LOGIC CIRCUITS

In this Chapter the first efficient procedure in literature to determine the logic

function of a threshold gate is introduced (called T G2MFF). The procedure is

provably correct and has polynomial total complexity. It generates a maximally

factored form representation of the logic function, which is very compact. This

procedure can be used to perform equivalence checking using the Boolean

Equation Diagrams (BEDs). The effectiveness of T G2MFF results in the

significant speed-up(1.25X to 16X) when equivalence checking is done using

BEDs [46]. Moreover the maximally factored form generated is that of a

minimal sum-of-products (which is the complete sum for a unate function [40]).

This results in much smaller representation of logic functions using BEDs.

4.1 Definitions

The algorithm to determine the logic function realized by a threshold gate

does so by generating a maximally factored form. Below is a list of some basic

definitions related to factored forms. For further details, the reader is referred

to Hachtel et al. [40].

Maximally Factored Form: A factored form is maximally factored, if

1. for every sum of products, there are no two syntactically equivalent

factors in the product,

2. for every product of sums, there are no two syntactically equivalent

factors in the sums.
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Complete Sum: An SOP formula is a complete sum (a sum of all prime

implicants and only prime implicants) iff :

1. no term includes any other term,

2. the consensus of any two terms of the formula either does not exist or is

contained in some other term.

The complete sum of function F is denoted by CS(F). For example, the

complete sum of ab0+ab+ c is a+ c.

Exact Factored Form: An exact factored form of an SOP is a factored form

which when expanded by repeated algebraic multiplication only (without

absorbing terms), will result in the original SOP. For example, consider the

SOP form F = ab+bc+ ca. The factored form a(b+ c+bc)+bc is not an exact

factored form even though F ⌘ a(b+ c+bc)+bc. The factored form

a(b+ c)+bc is an exact factored form of F .

Iterated Consensus: Iterated consensus is a method, based on the

consensus theorem [40], and generates the complete sum of a function using

any SOP. This method adds to the SOP, all the consensus terms of all pairs of

cubes in the SOP. It then removes the terms that are present in other terms.

This procedure is repeated until no further consensus is possible. E.g.:

Consider the SOP of F , x1x2 + x2
0x3 + x2x3x4. Iterated Consensus(F)

= x1x2 + x2
0x3 + x1x3 + x3x4, the CS(F).

The problem of demonstrating equivalence of two Boolean functions f

and g, or their combinational circuit representations, has been extensively

studied [59–61]. The “straightforward approach” is to construct an Ordered

Boolean Decision Diagram (OBDD) [14] of f ⌘ g, which reduces to 1 if they
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are equivalent. The drawback of this approach is that construction of the

OBDDs of f or g may not be efficient because their size may be exponential in

the number of variables, regardless of the variable ordering (e.g. multiplier).

An alternative approach is to use to intermediate representations such

as the AND/INVERTER graph [59] or Boolean Expression Diagram

(BED) [46], that allow us to exploit the structural similarities that exist between

the functions being compared. Since the implementation discussed here is

based on BEDs [46], the discussion is limited only to them.

Boolean Expression Diagram

BED is a data structure obtained by extending the OBDD representation with

operator vertices. A BED is similar to a logic graph representation of a

Boolean circuit, with each gate replaced by an equivalent operator node and

each input replaced by the corresponding variable node. All variable nodes

are connected to the two terminal nodes (0 and 1). Figure 4.1 gives the

example of a BED for the miter of the two circuits that are being compared.

A BED representation is not canonical but is polynomial in size of the

original circuit. Equivalence checking of two functions f and g is done by

constructing the BED of their miter [11] ( Figure 4.2). Hulgaard et al. [46]

present efficient transformations to reduce the size of the miter. The

(significantly) reduced miter, can then be efficiently transformed into a

OBDD [46], resulting in the equivalence check. The advantage of using BEDs

is two fold. First, they provide for efficient hashing to simplify and speedup

identification of structurally isomorphic parts of the two circuits. Second, it

avoids creating the individual OBDDs for f and g, and constructs the OBDD of

the reduced BED of the miter directly. This leads to a significant improvement
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Figure 4.1: Boolean expression diagram example (taken from [46])

in performance over the OBDD based approach. In fact, it often allows

equivalence checking of circuits that have exponential size OBDDs.

Figure 4.2: The miter of circuits F and G.

4.2 Problem Statement and Approach

The problem addressed in this chapter is the determination of equivalence of

two threshold networks f and g. At least one of f or g is given in the form of a

threshold network. The other may be logic network, a threshold network, or a
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functional specification of the circuit. It is assumed that f and g have the same

set of inputs and outputs, i.e., the mapping between the inputs and outputs of

the two circuits is known a priori.

A key step in verifying equivalence of threshold networks is the

determination of the logic function realized by a threshold gate. Once this is

done, then a logic network with the threshold gate replaced by its logic

function can be constructed. Using this the miter of the BED can be

constructed to determine equivalence of the two networks.

The naive way to determine the logic function of a threshold gate is to

try all 2n input combinations and determine the on-set of the function, and

generate a SOP representation. One of the features of threshold gates is that

they permit efficient realization (both in area and delay) of gates with large

fan-in. Hence the naive approach will not be practical. For instance, consider

an n-input majority function which can be implemented as a single threshold

gate. For n = 16, using the naive approach, takes over six minutes to generate

the logic function and about eight seconds to verify equivalence (see Section

5). For n = 24, the naive approach takes more than a day and does not

complete execution. In contrast, the method to be described takes about nine

minutes.

Since the subsequent step of equivalence checking relies on the use of

BEDs, it is important to generate a compact logic network representation of a

threshold gate, as this will reduce the size of the BED. Hence, instead of

generating an SOP form of a threshold gate, it is most important to generate a

maximally factored form. It would be best if the maximal factored form of the

minimal SOP (which is the complete sum for a unate/threshold
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function [40,58]) can be generated. The algorithm described herein does

exactly that – it generates a maximally factored form of a minimal SOP for a

threshold gate directly, without explicitly enumerating all the minterms or

generating the complete sum.

4.3 The Algorithm TG2MFF

The algorithm to determine a maximally factored form of a threshold gate is

referred to as TG2MFF. It takes an n-input threshold function F = [W ;T ],

where W = (w1,w2, . . . ,wn), and the support set is X = (x1,x2, . . . ,xn). Let

W \wk = (w1,w2, . . .wk�1,wk+1, . . . ,wn). TG2MFF recursively decomposes F

using cofactors. Its pseudo code is given in Algorithm 12.

Statements 2 through 9 constitute the terminal cases and are easily

verified. The other two terminal cases (statements 11 to 14) can be verified

using the fact that all minterms are in the on-set of 1 and no minterm is in the

on-set of 0. Selecting a variable whose absolute weight is maximum is

necessary in order to obtain a maximally factored form.

Example: Consider F(a,b,c)⌘ [2,1,�1;2], with wa = 2,wb = 1,wc =�1

and T = 2. Applying TG2MFF we get:

F = [2,1,�1;2] = a · [1,�1;0]+ [1,�1;2]

= a{b[�1;�1]+ [�1;0]}+0 = a{b(1)+ c0}

= a(b+ c0)

It can be seen that [2,1,�1;2] is a feasible assignment for the function

a(b+ c0).
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Algorithm 12: Pseudo code of TG2MFF
** W = [w1, . . . ,wn], X = [x1, . . . ,xn] ** T is the threshold **1

1: if n = 1 then
2: if w1 � T and T  0 then
3: return 1;
4: end if
5: if w1 � T and T > 0 then
6: return x1;
7: end if
8: if w1 < T and T  0 then
9: return x1

0;
10: end if
11: if w1 < T and T > 0 then
12: return 0;
13: end if
14: else
15: if Â8w j<0 w j � T then
16: return 1;
17: end if
18: if Â8w j>0 w j < T then
19: return 0;
20: end if

** wk is the largest absolute weight **;
F1 = [W \wk,T �wk];
F2 = [W \wk,T ];

21: if wk > 0 then
22: return xk· TG2MFF(F1) + TG2MFF(F2);
23: else
24: return TG2MFF(F1) +xk

0· TG2MFF(F2);
25: end if
26: end if

Proof of Correctness

As can be seen, TG2MFF is very simple. However, the proof of correctness,

which is essential, is not obvious. First a useful property of the co-factors of a

threshold function is stated as the following Lemma.

Lemma 4.3.1. Let | wk |�| wi |,8i. Suppose that F is positive unate in xk. Let
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CS(F) = Axk +B. Then A+B = A.

Proof. Refer to Theorem 5.1.7 (pg. 121) in [73], from which the proof

follows.

Lemma 4.3.1 is also true if F is negative unate in the variable with the

maximum weight. The proof is similar.

Lemma 4.3.2. Let F ⌘ [W ;T ]. Algorithm TG2MFF(F) generates an exact

factored form of CS(F).

Proof. We first show, by induction, that the factored form generated by

TG2MFF evaluates to the Boolean function represented by [W ;T ]. It is trivial to

verify that for the terminal cases (n = 1), TG2MFF produces a factored form

that evaluates to same function as [w,T ].

Let wk be the weight largest in magnitude, and assume wk > 0. The

proof for wk < 0 is similar. From Equation 1.1 we see that setting xk = 1 and

xk = 0 yields [W \wk;T �wk] and [W \wk;T ], respectively. Assume that

TG2MFF, when supplied with [W \wk;T �wk] and [W \wk;T ], produces the

factored forms for Fxk and Fxk 0, which are the positive and negative cofactors of

F . Examining the pseudo code, TG2MFF when supplied with [W ;T ] produces

the factored form xkFxk +Fxk 0 . We want to show that this evaluates to the

function denoted by [W ;T ].

Let F be the function that [W ;T ] represents. By Shannon

decomposition, F = xkFxk + xk
0Fxk 0. Since F is positive unate in xk,

CS(F) = Axk +B. Computing the cofactors of F using CS(F) results in

Fxk = A+B and Fxk 0 = B. By Lemma 4.3.1, A+B = A. Therefore, Fxk = A. Hence
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CS(F) = xkFxk +Fxk 0. We have shown that what TG2MFF computes, evaluates

to CS(F), which is a representation of F .

It is now shown that TG2MFF produces an exact factored form. Since

CS(F) = Axk +B, A and B must each be complete sums. By induction,

TG2MFF produces exact factored forms for [W \wk;T �wk] and [W \wk;T ].

These, if multiplied out would be the complete sums A and B, respectively.

Therefore, xk[W \wk;T �wk]+ [W \wk;T ] is an exact factored form of CS(F).

Theorem 4.3.1. TG2MFF generates a maximally factored form of the

complete sum of the given threshold function.

Proof. The factorization F = Q ·D+R, obtained by dividing F by D (to get

quotient Q and remainder R. Q, D and R are repeatedly factored), will result in

a maximally factored form, if the following two conditions hold [40]:

1. If Q is a single cube then no literal in Q occurs in any cubes of R, and

2. If Q has more than one cube, then there is no factor of Q that is also a

factor of R.

We prove that, the two conditions sufficient for maximal factorization

are satisfied by the TG2MFF algorithm. Let F ⌘ [W ;T ], and wk be a largest

magnitude weight. As before, we assume wk > 0. The proof of wk < 0 is the

same.

By factoring out xk in CS(F) we get CS(F) = Axk +B. Note that B A

since A+B = A by Lemma 4.3.1.

Case 1: Suppose A is a single cube. Since B A, B = AC, where

C = C1 +C2 + · · ·+Cn. Therefore F = A(xi +C1 +C2 + · · ·+Cn). Since A is a
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single cube, it must have at least one literal, say y. A = Qy. Hence

F = Qy(xk +C1 +C2 + · · ·+Cn).

A one-point of F is Q = 1,y = 1,xk = 0,Ci = 1,Cj = 0, i 6= j, for some i, j.

Therefore

Â
`2Q

w` +wy + Â
`2Ci

w` � T

Since wk � wy,

Â
`2Qi

w` +wk + Â
`2Ci

w` � T

This implies that that y = 0 is in the onset of F , which is not possible.

Therefore A cannot be a single cube. Hence the first condition required for a

maximal factorization is satisfied.

Case 2: Now suppose A has at least two cubes and that A and B have

a common factor. Therefore, let A = (X1 +X2 + · · ·+Xa)(Y1 +Y2 + . . .Yb) and

B = (X1 +X2 + · · ·+Xa)(Z1 +Z2 + . . .Zc).

Note because the factorization is algebraic, none of the Xi and Yi have a

common literal and none of the Xi and Zi have no common literal. Rewriting F ,

we have

F = (X1 + . . .+Xa)[(Y1 + . . .+Yb)xk +(Z1 + . . .+Zc)]

A one-point of F is Zi = 1,Xj = 1,Zp = 0,Xq = 0,xk = 0, for some i, j, and

8p 6= i,8q 6= j. Hence,

Â
`2Zi

w` + Â
`2Xj

w` � T.

Â
`2Zi

w` +wXj1
+ . . .+wXjd

+ · · ·+wXjr � T.
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Since wk � w`,8` eXj.

Replacing wXjd
, by wk, we obtain

Â
`eZk

w` +wXj1
+wXj2

+ . . .wk + · · ·+wXjr � T.

This implies that Xj = 0,Zi = 1,xk = 1,Zp = 0, for some i, and 8 j, every p 6= i

belongs to the onset of F , which is not possible. Therefore A cannot have a

factor that is a factor of B, when A has more than one cube. Hence TM2MFF

produces a maximally factored form of the complete sum of F , using the

feasible weight assignment of F .

The Verification Procedure

The equivalence checking procedure starts with two threshold networks. The

maximally factored form of each threshold element in the network is obtained

by the algorithm TG2MFF. These factored forms are used to construct the

BED for each output of the two functions. As mentioned earlier the

correspondence between the outputs of the two functions is known. This

information is used to construct the BED of the miter for each output pair. The

ROBDD of the miter is then obtained by using the BED package [93]. The

BED package has efficient algorithms to convert a BED into an equivalent

ROBDD. The outputs are equivalent if the ROBDD of the miter is the constant

1. If all outputs of the two circuits are verified to be equivalent then the entire

circuit is equivalent. To verify two circuits when one of them is Boolean and

the other is threshold, a similar approach is followed.

An Example: Consider the threshold circuit shown in Figure 4.3.

Assume that a synthesis tool generated this circuit when it was given the

following specification:
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f = d(ab0+ac0+b0c); e = (a+b)(a0+b0).

To verify the two circuits by the method proposed, first the factored form

of each node in the threshold circuit is obtained. Using T G2MFF algorithm,

we get the following factored forms, for each node: X2 = d(b0+ c0);

f = X2(c+a); X1 = a0b0; X0 = X1+ab; e = X00.

Figure 4.3: A generated threshold circuit

Using these factored forms and the circuit specification, BEDs of the

miters are constructed. Since the circuits being compared here have two

outputs we get two miters (root 1 and root 2 in Figure 4.4). The ROBDD of

these two miters are constructed using the BED package. In our case the

ROBDD of root 1 and root 2, turn out to be the constant 1. Thus we can

conclude that the threshold circuit synthesized is according to the

specification. The verification of two threshold circuits is done in a similar way.

Complexity Analysis

TG2MFF generates a maximally factored from given a single threshold

element. Hence its time complexity depends only on the size of the input and

output, the size of the output being much larger than that of its input.
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Figure 4.4: Example of threshold circuit verification

Consequently, the time complexity is expressed in terms of the size of both

inputs and outputs. This is typically done for algorithms, whose output size is

much larger than the input size [57].

Let n and N be the number of literals in the input and the output

respectively. When a terminal case (statements 2�9 and 11�14) is

encountered TG2MFF halts the recursion and in the non-terminal case

(statements 15�21), it continues the recursion. At each stage (whether

terminal or non-terminal) TG2MFF spends O(n) time. This includes the

checking for terminal cases and the time taken to invoke the next stage. At

each non-terminal stage a new literal is added to the generated factored form.

Thus the number of non-terminal stages is O(N).

Each non-terminal stage can generate at most two terminal stages.

Since the number of non-terminal stages is bounded by N, the number of
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terminal stages is also O(N). Thus the number of invocations of the algorithm

(sum of terminal and non-terminal stages) is O(N). As said earlier since the

algorithm spends O(n) in each stage, the total complexity of TG2MFF is

O(nN). Hence the total complexity of TG2MFF is polynomial in the combined

size of input and output. After the Boolean factor form is generated the BED

generation can be done in linear time, since BED is just another

representation of the factor form [46].

4.4 Experimental Results

Table 4.1: Runtime Comparison
Benchmark Inputs/ Avg. Max. A : TG2MFF B : BED C : Naive D : BED C / A D / B

Circuits Outputs Fanin Fanin (sec) (tg2mff) (sec) (sec) (naive) (sec)
f51m-t 14 / 11 5 10 0.093 0.040 0.137 0.050 1.47 1.25
z4ml-t 19 / 9 6 10 0.099 0.040 0.181 0.060 1.83 1.5
cmb-t 19 / 15 3 6 0.116 0.040 0.218 0.080 1.88 2
cu-t 24 / 21 3 6 0.210 0.060 1.075 0.200 5.12 3.33

pcle-t 16 / 4 3 6 0.090 0.040 0.123 0.050 1.37 1.25
sct-t 47 / 36 3 6 0.126 0.040 0.239 0.070 1.90 1.75

majority-8 8 / 1 8 8 0.342 0.120 7.957 1.140 23.27 9.5
cht-t 9 / 1 4 6 0.459 0.130 22.149 1.760 48.25 13.54

cm152a-t 8 / 8 11 11 0.140 0.050 1.078 0.290 7.70 5.8
ttt2-t 7 / 4 3 9 0.110 0.040 0.417 0.140 3.79 3.5
x2-t 10 / 7 5 12 0.084 0.030 0.154 0.050 1.83 1.67

9symml-t 11 / 1 5 13 0.146 0.060 1.109 0.120 7.60 2
majority-16 16 / 1 16 16 1.975 0.470 374.168 7.790 189.45 16.57
majority-24 24 / 1 24 24 413.994 92.540 > 1 day – – –

Average
Improvement 22.73X 4.9X

The few synthesis methods that have appeared in the literature

recently [3,96] generate circuits with high fan-in gates. However, in order to

best demonstart the effectiveness of T G2MFF , new benchmark circuits using

the existing MCNC circuits were generated. Since the bottle-neck of the naive

verification procedure (e.g. exhaustive enumeration of minterms) when

applied to a threshold network is the fanin of gates and not the number of

gates, threshold networks with large fanin threshold elements were generated.

The directed acyclic graph representation of each MCNC benchmark circuit

was taken and each node was replaced with a threshold element. This
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provided a complex threshold network. The weights and threshold of each

threshold element were generated randomly.

Once the threshold networks were constructed, an equivalence check

of each circuit with itself was done, to examine the running time of two

procedures (TG2MFF vs exhaustive enumeration). After deriving the logic

function, the BED tool was used to check the equivalence. The experiments

were run on a Sun Fire V880 machine with 16GB RAM.

Table 4.1 lists the running time required for verifying the circuits by the

proposed and naive method. There are two columns corresponding to each

method. The first is the run-time to generate the function and the second is the

time taken for the BED based verification. As seen from the Table, TG2MFF is

more than an order of magnitude faster than the naive method. TG2MFF

verified the 24 input majority gate in nine minutes, whereas the naive approach

could not complete execution even after twenty four hours. TG2MFF takes

much longer to generate the factor form of majority-24, when compared to the

time taken to generate the factor form for majority-16, even though the input to

the algorithm in the former case is only 1.5 times that of the latter case. This is

because of the large differences in their factor forms (the output of TG2MFF).

TG2MFF also reduces the time required for the BED based verification.

It runs 22X faster on average and speeds up the BED based verification by 5X

on average (for circuits that could be verified by both methods). The first

speed up is because of the polynomial total complexity of TG2MFF. The

second speed up is due to the compact function representation produced by

the algorithm. Note that the factored form produced by TG2MFF is compact in

two ways. First because it is the factored form of the minimal SOP (the
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complete sum for a unate function). Secondly, because of the maximal

factorization, the generated BED is compact. It can be observed that the time

required for verification by the naive approach, depends on the fan-in of the

individual gates and not necessarily on the number of gates. Example: Even

though f51m-t has 8 gates it can be verified within a second, whereas

majority-24, which has only one gate could not be verified in a day. This is

because of the huge fan-in of the one gate in the majority-24 circuit.
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Chapter 5

RECURSIVE BRANCH AND SEARCH ALGORITHM FOR STATE SPACE

ENCODING TARGETING SINGLE-LAYER THRESHOLD CIRCUITS

State machines are common components of most practical circuits. When

implementing state machines in hardware the objective is to design a circuit

that has desirable features like less area, delay, power etc. Many novel circuit

design techniques have been explored with the intent of improving existing

circuits. Even though CMOS continues to be the most dominant design style,

other alternatives to CMOS are being actively researched. This has been

discussed in detail in earlier chapters. Newer techniques of synthesis,

decomposition and equivalence checking have been proposed in the

preceding chapters. Encoding of state machines for efficient CMOS circuit

implementation is a very well understood problem. An evolutionary algorithm

has been proposed recently, which searches for an encoding that yields the

best threshold logic implementation. This approach uses an existing threshold

synthesis tool to synthesize state machine circuit implementations.

In this Chapter we consider a more fundamental question, which is : is

there an encoding of states that will make the state machine implementable as

a single layer threshold circuit?. The aim of this work is to propose a technique

inspired by the approach taken to solve the Boolean Satisfiability problem.

The proposed approach aims to identify an encoding of states that will yield a

single layer threshold circuit implementation (if one exists) or will declare that

no such encoding exists for the choosen encoding length.
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5.1 Problem Formulation

A state machine is a 5-tuple consisting of a set of states (S), inputs (I),

outputs(O), state transition functions (TS) and output transition functions (TO).

The set of outputs and output transition functions are optional, but the other

three components are necessary to completely define a state machine. A

state machine thus defined can be represented by a state transition diagram.

Consider the state machine shown in Figure 5.1. It is a simple state machine

consisting of 4 states, 4 inputs and 4 outputs. It can be completely described

by the transition functions in Figure 5.1 (a), or by the state transition diagram

in Figure 5.1 (b). The edges in the state transition diagram represent the

transition of states when on a particular input (the first element of the tuple

labeling the transition edge). The second element of the edge label represents

the output value resulting from the state transition.

Figure 5.1: An example state machine (a) 5-tuple description, (b) State transi-
tion diagram representation.

The pertinent question now is how can a state machine that is

described as a 5-tuple, be implemented as a circuit?
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A state machine can be encoded by assigning a unique binary vector

to each state, input and output. This results in an binary input-output relation

between the input state encoding variables, (present) state encoding variables

and the (next) state encoding variables and the output variables. Consider an

encoding as shown in Figure 5.2 (a) for the state machine in Figure 5.1.

Minimum encoding sizes has been chosen, and the encoding length of states,

inputs and outputs are each 4. Let the state encoding variables be

{s1,s2,s3,s4}, the input encoding variable be {i1, i2, i3, i4} and the output

encoding variables be {o1,o2,o3,o4}.

A Boolean function mapping the current state and input encoding

variables to the next state and output encoding variables is just another

representation of the state machine. This alternate representation of a state

machine is convenient when implementing a circuit. Figure 5.2 (b) shows the

truth table resulting from the chosen encoding.

In this work, the focus is on determining an encoding of states, inputs

and outputs of a given state machine such that the resulting circuit of Boolean

encoding variables can be implemented with a single layer of threshold gates.

To do this the approach taken is of exploring all encodings and checking if

there exists an encoding that satisfies the required condition. Since the

number of encodings are large we develop heuristic techniques to prune the

search space. Many years of research into pruning search spaces of

assignments in a SAT solver gives us a useful framework to emulate.

To the best of the Author’s knowledge, the only other similar work in

literature is a method of determining if an encoding results in 2-assummable

functions proposed in Coates et al. [41]. 2-assummability is a necessary but
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Figure 5.2: An example state machine (a) An encoding, (b) Boolean function of
encoding variables.

insufficient condition for a function to be threshold. Even though this work

provides a detailed analysis of 2-assumability, it is not practical and is

incomplete.

To summarize, from the discussion so far it can be observed that given

a state machine description, determining the encoding results in a circuit

specification that implements the state machine (Figure 5.3). Different

encodings result in different Boolean function mapping of encoding variables

and hence different circuits. This work is interested in determining the

encoding that results in a single layer threshold circuit implementation, if it

exists, or declare that no such encoding exists for the given encoding length.
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Figure 5.3: Components involved in determining a circuit implementation of a
state machine.

5.2 Background

In this section an overview of SAT solvers and threshold logic properties are

presented. These will be made use of later in the paper for designing the

proposed algorithm.

Boolean Satisfiability Solvers

Boolean Satisfiability is one of the original NP-Complete problems [20].

Despite extensive search for a polynomial algorithm to solve the SAT problem,

such an algorithm has not been found. The most general version of the SAT

problem has a Boolean Formula expressed in Conjunctive Normal Form

(CNF). The formula is a logical and of individual clauses. Each clause is a

logical or of at most three literals (for 3-SAT, which is the most common form of

SAT). A literal is a variable or its negation.

Since there is no polynomial time algorithm, different heuristic

techniques have been proposed over the last few decades to solve the SAT

problem. But in spite of its simplicity the DPLL algorithm proposed in 1960

remains the best framework used by the most efficient solvers of today.

Virtually all improvements in SAT solvers have been achieved by fine-tuning

the different components of the SAT solvers.

The basic structure of a SAT solver is as shown in Algorithm 13. The
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pseudo-code shows the high level operation of the SAT solver. This algorithm

recursively assigns values to each literal of the given Boolean formula and

checks if the assignment makes the formula satisfiable. The main focus in

designing a DPLL based algorithm is to fine-tune the different components

that make up this algorithm. This fine-tuning is done with the aim of minimizing

the size of the explored search space of assignments.

Algorithm 13: Pseudo code of DPLL ()
DPLL(formula, assignment)1

necessary = deduction(formula, assignment) ;2
newAssignment = union(necessary, assignment) ;3

if isSatisfiable(formula, newAssignment) then4
return SATISFIABLE ;5

if ifConflict(formula, newAssignment) then6
return CONFLICT ;7

currentVar = chooseVariable(formula, newAssignment) ;8
currentAsgn = union(newAssignment, assign (currentVar, 1)) ;9
if DPLL(formula, newAssignment) == SATISFIABLE then10

return SATISFIABLE ;11

else12
currentAsgn = union(newAssignment, assign (currentVar, 0)) ;13
return DPLL(formula, newAssignment) ;14

The three major components of a DPLL SAT Solver are:

1. Deduction Algorithm

2. Branching Heuristics

3. Assignment Heuristics

The Deduction Algorithm (called on line 2 or Algorithm 13) takes stock

of the implications of the last assignment. Many different techniques of
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deduction have been proposed, but here we look at one popular deduction

mechanism – Boolean constraint propagation.

During the functioning of a SAT solver, if there is any clause left with

only one literal which does not have an assignment and the other two literals

in the clause are assigned 0, then the only way that clause could be true is if

the remaining literal is assigned to 1. Thus the search space is automatically

reduced. This assignment of 1 to such clauses (popularly known as unit

clauses) is called Boolean constraint propagation. Even though this is a

simple deduction rule it has been found to be very effective in practice.

Branching heuristic refers to choosing a variable among all unassigned

variables for the purpose of assigning an assignment. Different branching

heuristics result in different size search trees. The popular branching

heuristics count the number of occurrences of the literals in unresolved

clauses. For example the Maximum Occurrences on Minimum sized clauses

(MOM) heuristic chooses the literal that occurs most in the most number of

unresolved clauses. This approach aims to result in a branch that result in the

largest number of implications and has been found to work well in practice.

The SAT solver is a very simple case of the general constraint

satisfaction problem (CSP). SAT is one of the most researched CSP. The

choices made by the selection heuristic of a SAT solver is restricted to 1 and 0

for the variable chosen by the branching heuristic. For the problem we

consider there can be more than two choices. SAT solvers exploit the limited

size of the selection space and the unique properties of the problem (such a

fixed clause size of 3, for the standard 3-SAT problem) to arrive at efficient

selection heuristics. The problem of state encoding considered here does not
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share these properties with the SAT solver. However, the properties of

threshold functions can be exploited to design a different selection heuristics.

For this purpose an overview threshold function properties is presented next.

Properties of Threshold Functions

Even though threshold gates are more expressive than the generic Boolean

gates (that are implemented by pull-up / pull-down transistors) they cannot

implement all Boolean functions. Although all threshold functions are known to

be unate [58], not all unate functions are threshold (threshold functions are

those that can be implemented by a threshold element). The function ab+ cd

cannot be implemented by a threshold gate even though it is unate. The

relation between Boolean, unate and threshold functions is shown in

Figure 5.4. Theorem 5.2.1 proves the threshold functions are all unate.

Figure 5.4: Relationship between Boolean, unate and threshold functions

Theorem 5.2.1. If F = xFx + x0Fx0 is a threshold function, then F is either

positive unate or negative unate in x.
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Proof. By definition of unateness in order to prove the theorem all we need to

show is that either Fx0 ✓ Fx (F is positive unate in x) or Fx ✓ Fx0 (F is negative

unate in x).

By definition of a threshold function, there exists a set of weights WF of

function F , F ⌘ [w1,w2, · · · ,wn;TF ]. By the definition of cofactors:

Fx ⌘ [w2, · · · ,wn;TF ] and Fx0 ⌘ [w2, · · · ,wn;TF �w1]. Note that TFxTF and

TFx0TF �w1.

If TFx > TFx0 , then every one-point of Fx is a one-point in Fx0 (by definition

of a threshold function). Therefore Fx ✓ Fx0. Similarly if TFx0 > TFx , then Fx0 ✓ Fx.

Therefore the theorem is true.

Design of a DPLL Inspired Branch and Search Algorithm for State Space

Encoding

The problem of interest is assigning an encoding to each state, input and

output of a state-machine, such that the resulting circuit can be implemented

as a single layer of threshold gates. A trivial approach would be to choose an

encoding length and for every possible valid encoding (i.e every state has a

unique assignment and no two states have the same encoding), check if a

single layer threshold circuit implementation exists. The main issue with this

approach is that the search space considered is exponential. This is identical

to the issue of exponential search space encountered in the SAT solvers.

Decades of advancements in SAT solvers have focussed their efforts on the

three components – deduction, selection and branching heuristics to reduce

the size of the explored search space. To solve the problem of state space
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encoding, the generic outline of the SAT solver is used. However, specific

deduction, selection and branching heuristics are designed.

5.3 The Algorithm

Overview

We will continue to use the state machine defined earlier (Figure 5.1)

throughout this section to demonstrate the steps of the proposed algorithm.

The overall approach involves assigning an encoding to all state machine

parameters and to check if such an encoding results in a threshold logic

function for each encoding variable. We will use the standard ILP test to check

for thresholdness. Just like in the case of satisfiability, when given an encoding

it is straightforward to check if the encoding results in a single layer threshold

circuit. However, even if only the minimum encoding length is considered the

number of encodings to be checked are exponential. Therefore the deduction,

selection and assignment heuristics play an important role in reducing the size

of the search space of encodings. The ILP method of detecting thresholdness

is discussed later in the section.

The objective of this work is to design heuristics using the properties of

threshold logic such that the number of encodings checked are minimal. We

will design ways of checking if certain branches of the search tree are worth

pursuing or not. The discussion of the structure of the SAT solver will come

handy as this structure is found to be ideal in all modern SAT solvers. By

incorporating the general structure of the SAT solver, we can focus on

designing and fine tuning the three components – the deduction algorithm,

branching and assignment heuristics.

The principle algorithm involved is listed in Algorithm 15. Before this
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algorithm is invoked certain global variables have to be initialized (in

Algorithm 14). The role of these global variables will be made clear by the

following discussion on the book-keeping data structures used.

The initial call to encodeStateSpace is made by setting the

currentTruthTable to empty. The currentTruthTable maintains the truth table of

the resulting Boolean function of encoding variables as a result of the

encodings assigned thus far. The available assignment table maintains all the

assignments that could possibly be assigned to each state. The

currentAssignment maintains a list of encodings assigned (empty at first).

ASGVAR is a variable that was assigned the encoding ENCODING. Both are

initially set to f . These variables initializations are done by Algorithm 14. The

encoding length is also chosen at this time. The minimum encoding length for

a state machine of n states should be � dlog(n)e.

Algorithm 14: Pseudo code of initializeGlobals ()
initializeGlobals();1

Choose encoding length ;2
Generate empty currentTruthTable ;3
Generate empty available assignment table ;4
Generate empty currentAssignment list ;5
Generate empty unateTable ;6
ASGVAR = f ;7
ENCODING = f8

return ;9

The high-level objective of encodeStateSpace is to assign a unique

encoding to each state, input and output and then check if the resulting circuit

results in a single layer threshold circuit (see Figure 5.5). This naive approach

has some issues. For a state machine of n inputs, m states and p outputs the

minimum encoding lengths are dlog(n)e, dlog(m)e, and dlog(p)e respectively.
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Algorithm 15: Pseudo code of encodeStateSpace (CurrentTruthTable,
CurrentAssignment)
encodeStateSpace(CurrentTruthTable, CurrentAssignment);1
Input : CurrentTruthTable is a partial multiple output truth table

representing the next state of the state encoding variables.
CurrentAssignment is a dictionary of states, Inputs and Outputs
with their assigned encodings.

Output: f if no encoding exists. Otherwise, if an encoding is returned
that can be implemented as a single layer threshold circuit.

// Terminal Case

if isEncodingComplete (currentAssignment) then2
if isThreshold (currentAssignment) then3

return (currentAssignment) ;4

return (f ) ;5

necessaryTruthTable = deductionAlgorithm (currentTruthTable) ;6
// If a conflict is found

if necessaryTruthTable == CONFLICT then7
return (f ) ;8

unassignedVariables = getAllUnassignedVariables9
(CurrentAssignment) ;

// Choose an variable to encode

for ASGVAR in selectionHeuristic (unassignedVariables) do10
// Decide encoding for ASGVAR.
ENCODING = assignmentHeuristic (ASGVAR) ;11
unassignedVariables.remove(ASGVAR) ;12
// Update book-keeping values.

currentAssignment = updateAssignment (currentAssignment,13
ASGVAR, ENCODING) ;
updatedTruthTable = updateTruthTable (necessaryTruthTable,14
ASGVAR, ENCODING) ;
solution = encodeStateSpace (updatedTruthTable,15
currentAssignment) ;
if solution 6= f then16

return (solution) ;17

end18

return (f ) ;19

Thus the number of encodings to consider is O(n!m!p!). This explosion of

search space is identical to the search space size explosion encountered by
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the SAT solver. We will now design deduction, assignment and branching

heuristics to reduce this search space.

Figure 5.5: Search tree resulting from a naive branch and search encoding.

Deduction Algorithm

It may not be necessary to explore all branches of the search space of state

encodings. The encodings assigned so far may dictate the choice of encoding

available for other unencoded states. One simple case is that since a valid

state encoding assigns unique encoding to each state, an encoding that is

already assigned cannot be assigned to another state. This reduces the

search tree from size O(nnmm pp) to a more manageable O(n!m!p!), but it still is
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computationally expensive. We now make use of another property of

threshold logic to reduce available encodings to unencoded states even

further. The encoding available to each unassigned state is maintained by the

availableAssignment table.

We know that threshold functions are unate (from Theorem 5.2.1).

Using this information the deduction algorithm inspects the existing truth table

and looks for inconsistencies. If no such inconsistencies are found the entries

to the existing truth table that are implied by the current assignment are filled

in – this restricts the branches that can be taken. In order to better understand

the functioning of the algorithm, the following example encodings are

considered for the state machine in Figure 5.1.

Algorithm 16: Pseudo code of updateTruthTable ()
updateTruthTable(currentTruthTable, ASGVAR, ENCODING);1

for rowi in currentTruthTable do2
if E 0(currentState(rowi)) 2 currentAssignment and3
E 0(input(rowi)) 2 currentAssignment then

var theNextState = nextState(E 0(input(rowi)),currentState(rowi)) ;4
if theNextState 2 currentAssignment then5

out put(rowi) = E(theNextState);6

end7
return ;8

Motivational Examples

Two examples are considered here that encode the inputs and states of the

state machine in Figure 5.1. The first encoding does not lead to a single layer

threshold logic implementation. In order to simplify the example we only

consider encoding of the next state functions.

Example 1: Encoding E(I1) = 00, E(I2) = 01, E(I3) = 10, E(I4) = 11,
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Algorithm 17: Pseudo code of deductionAlgorithm ()
deductionAlgorithm(currentTruthTable);1

if ASGVAR == f then2
return ;3

makeCopy (currentTruthTable, necessaryTruthTable) ;4

for rowi in necessaryTruthTable do5
if rowi does NOT represent a state transition rule involving ASGVAR6
then

continue ;7

for j in {input encoding variables, state encoding variables} do8
for k in {state encoding variables, output encoding variables} do9

if getUnateness ( j, k, rowi) == UNDEFINED then10
continue ;11

if unateTable[ j,k] == UNDEFINED then12
unateTable[ j,k] = getUnateness ( j, k, rowi) ;13
continue ;14

if unateTable[ j,k] 6= getUnateness ( j, k, rowi) then15
return CONFLICT ;16

end17

end18

end19

Algorithm 18: Pseudo code of getUnateness ()
getUnateness( j, k, rowi)1

Let rowi
0 be a row in necessaryTruthTable, in which all inputs are assigned2

the same values as in rowi, but the value of input j is the negation of its
value in rowi.
Let k0 be the output value of rowi

0.3
if k == UNDEFINED or k0 == UNDEFINED or k == k0 then4

return UNDEFINED ;5

if (k > k0 and j > j0) or (k < k0 and j < j0) then6
return Positive ;7

return Negative ;8

E(S1) = 00, E(S2) = 01, E(S3) = 10, E(S4) = 11.

Figure 5.6 shows the partial search tree leading to the assigned
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encoding. In the first step the encoding length is chosen and the empty

currentTruthTable is initialized. This truth table has all the inputs rows filled.

input(rowi) represents the binary vector that represents the input encoding bits

in rowi of currentTruthTable, and currentState(rowi) denote the state encoding

bits in rowi of currentTruthTable. As the encoding is assigned to all states and

inputs each out put(rowi), which is the output vector of the function of truth

table in Figure 5.6 (currentTruthTable) is assigned. Let us now consider the

changes to the global data structures that take place as each parameter of the

state machine is assigned an encoding.

Figure 5.6: Applying encodeStateSpace when the encoding is E(I1) = 00, E(I2) =
01, E(I3) = 10, E(I4) = 11, E(S1) = 00, E(S2) = 01, E(S3) = 10, E(S4) = 11.

When the inputs I1, I2, I3, I4 and S1 are assigned encoding the output
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of currentTruthTable remains unchanged, but currentAssignment is updated to

reflect the changes (line 12 of Algorithm 15). When S2 is assigned an

encoding, the outputs on rows 1,3,5,6 and 7 are populated to reflect the

behavior of the state machine (line 13 of Algorithm 15). These entries are

shown in red and are decided according to Algorithm 16. Note that E(S),

represents the binary vector of encoding variables for state S in

currentAssignment, and E 0({s1, · · · ,sn}) represents the state that has the

encoding {s1, · · · ,sn} in currentAssignment.

After this encodeStateSpace is invoked again with updated

currentTruthTable and currentAssignment values (line 14 of Algorithm 15). In

line 2 of Algorithm 15, it is checked if the encoding is complete. The encoding

is complete if currentTruthTable is completely defined. Since currentTruthTable

is not yet complete, the control now passes to line 4, where deductionAlgorithm

is invoked.

The deductionAlgorithm inspects the newly filled rows in

necessaryTruthTable and to determine if there is any contradiction to the

unateness property (Theorem ??) of threshold functions. If a conflict if found

the current search path will be abandoned (line 16 of Algorithm ??). If no

conflict is found then the unateness imposed by necessaryTruthTable is made

note of in unateTable (line 13 of Algorithm ??).

For the current encoding there is a conflict in the unateness of s2(t) with

respect to s2(t +1). The currentTruthTable after all state machine parameters

({I1 · · · I4}, {S1 · · ·S4})are assigned encodings, implies that output s2(t +1) is

both positive unate and negative unate with respect to input s2(t). This gives

rise to a conflict, and hence the current assignment will not result in a single

116



layer threshold circuit implementation.

Example 2: Encoding E(I1) = 00, E(I2) = 01, E(I3) = 11, E(I4) = 10,

E(S1) = 00, E(S2) = 11, E(S3) = 01, E(S4) = 10.

Figure 5.7: (a) currentTruthTable when the encoding is E(I1) = 00, E(I2) = 01,
E(I3) = 11, E(I4) = 10, E(S1) = 00, E(S2) = 11, E(S3) = 01, E(S4) = 10. (b)
Single level threshold circuit implementation of the state machine.

The second encoding when run through the steps of encodeStateSpace,

does not give rise to any conflict and is hence a candidate for checking if a

single layer threshold circuit can be obtained. Using an ILP solver for the truth

table in Figure 5.7 (a) results in the threshold circuit shown in Figure 5.7 (b).

Detecting if a Function is Threshold

On line 3 of Algorithm 15, the function isT hreshold is used to detect if a

function is threshold or not. There are many different ways in which this can

be done. The traditional approach is to use the Integer Linear Programming

(ILP) to both detect and assign weights to threshold functions. Recently
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certain efficient but incomplete approaches have been proposed. For more

details on this refer to [36], [38].

This work uses the Integer Linear Programming (ILP) formulation to

test if a function is threshold. In the following discussion examples are used to

show how a Boolean function can be checked if it is threshold or not using the

ILP formulation.

Consider the function F = a+bc. The truth table of this function is

shown in Figure 5.8. To determine if this function is threshold, an Integer

Linear Program (ILP) is generated as follows:

First an assumption is made that the given function (say F) is threshold

and there exists a threshold element with input weights wa, wb, wc and

threshold T that implements the function. The constraints of the ILP are

generated from the rows of the truth table. One constraint is obtained from

each row (except for the row in which all inputs are 0) of the truth table. For

example, consider row 4, b and c are the only inputs that is 1 and the output is

1. Therefore wb +wc � T (from the definition of a threshold function). For the

ILP of function F the set of all constraints are: wc < T (row 2), wb < T (row 3),

wb +wc � T (row 4), wa � T (row 5), wa +wc � T (row 6), wa +wb � T (row 7)

and wa +wb +wc � T (row 8). The objective function is set to: Minimize

wa +wb +wc +T . This is a reasonable aim since in most threshold logic circuit

implementations reduction in weights and threshold result in a reduction in

area/power of the circuit. In any case, we are mostly interested in identifying

the feasibility of the ILP (which implies that the function F is threshold – the

original assumption). In case the ILP is not feasible it implies that the original

assumption was wrong and the function F is not threshold. This function is
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threshold and an integer solution to the ILP is: [wa = 2,wb = 1,wc = 1;T = 2].

Figure 5.8: Truth Table for the function F = a+bc.

Now consider an example of a function which is not threshold:

G = ab+ cd. This function is not threshold because among the constraint

equations we have wa +wb � T , wc +wd � T , wa +wc < T , wb +wd < T . Adding

the first two and the last two constraints we get wa +wb +wc +wd � 2T and

wa +wb +wc +wd < 2T , which are clearly incompatible. The ILP hence has no

solution which implies the function G is not threshold.

Selection and Assignment Heuristics

In the motivational examples discussed in the previous sections the selection

of variable to be assigned encoding, as well as its encoding were decided

before hand. It is clear from the examples about that the order in which the

state machine parameters are assigned encodings and the encodings

assigned determine if the encoding is desirable (meaning that it leads to a

state machine circuit, which can be implemented using a single layer of

threshold gates). In this section we introduce different heuristics for
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determining the next parameter to be assigned encoding and the choice of

encoding assigned in order to arrive at a desirable encoding with the minimal

exploration of search space.

To achieve this goal the selection and assignment heuristics can be

designed to do either of the following:

1. To choose the parameter to encode, and to choose an encoding for it

that has the best chance of leading to a desirable encoding.

2. To choose the parameter to encode, and to choose an encoding for it

leads to an conflicting encoding sooner.

The first kind of heuristic is designed to arrive at a desirable encoding

eventually. However, the second kind of heuristic is to arrive at a bad encoding

sooner so that the total size of the search space explored is as small as

possible. The first type of encoding is much suited for a state machine for

which a desirable encoding exists, and the second type is more suited for a

state machine which has no desirable encoding. The approach taken in this

work is to arrive at a constraint sooner. The work chooses the best solution

(which is the solution that has the most number of state encoding functions

that are threshold) in case there does not exist a perfect solution.

Note that selection and assignment heuristics for a 3-SAT solver are

much simpler as the structure of the problem restricts the selection and

assignment heuristics (for e.g. there are only two choices for variable

assignment 1 and 0, but this is not the case for our problem).

The following are the heuristics evaluated in this work: Select the most

constrained variable; assign the most constraining value
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Consider the state machine and assignment shown in Figure 5.9 (a).

After S2 has been assigned encoding, values of currentTruthTable,

currentAssignment, availableAssignment and unateTable is as shown in

Figure 5.9 (b, c). Since s2(t +1) is negative unate with respect to i1(t), it can

be inferred that s2(t +1) cannot be zero, as the output of row 4, is 01 and row 2

is identical to row 4, except for i1(t). Thus S3 cannot be assigned encoding 10

as it would make i1(t) = 0, because of how the state machine transitions are

defined. This is reflected in the last availableAssignment table in Figure 5.9 (c).

This makes S3 more constrained than S4 since they have 1 and 2 encoding

choices available respectively.

As there is only one encoding choice for S3, the issue of choosing the

assignment does not arise in this example.

Figure 5.9: (a) A state machine. (b) currentTruthTable. (c) Book-keeping data-
structures

The heuristics presented here were evaluated on MCNC

benchmarks [25]. Other heuristics and speed-up methods can be integrated to

improve the proposed procedure. We discuss one such technique called
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forward checking now.

Forward Checking

In Line 11 of Algorithm 14, assignmentHeuristic returns an ordered list of

available assignments. As described in the previous section, different

heuristics can be used to determine this list. In the normal execution of the

Algorithm, this list is not empty. Forward Checking is to look one or more steps

ahead to see if the domain of available assignments is not empty.

The objective of this look-ahead is to reduce the amount of

backtracking. It is clear that a complete look-ahead (to the leaf of the search

tree) eliminates all backtracking. The issue with this is that the computation

time saved by reduced backtracking is small compared to the time invested in

forward checking. The relationship between forward checking and

backtracking time is shown in Figure 5.10. It has been found that for most

practical Constraint Satisfiability Problems (CSPs) forward checking to one

level (look-ahead of two, called arc consistency) or two levels (look-ahead of

three, called path consistency) results in the best computational efficiency [23].

Completeness and Exactness of Proposed Approach

The proposed procedure is both complete and exact. This means that the

proposed procedure finds a solution if one exists, and if not, reports that no

solution is possible.

The procedure searches all the possible encodings and is hence

complete. The only branches pruned in the branch and search procedure are

done so because they violate a necessary conditions of thresholdness (such

as unateness and not having a ILP solution). The procedure returns an
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Figure 5.10: Variation of forward checking time and computation time as the
amount of look ahead is varied.

encoding that results in a single layer threshold circuit, or returns nil (f ), if no

solution exists. Again, since all possible encodings of a finite length are

inspected the procedure is exact.

5.4 Experimental Results

The selection and assignment heuristics along with the deduction algorithm

and forward checking added to the naive approach. The proposed approach

was tested on state machines provided by the MCNC benchmark suite [25].

The benchmark circuits have inputs and outputs encoded, but the state

encodings are unspecified. The experiments were run to determine the

encoding of states that result in a single layer threshold circuit. However, since

not all circuits result in a single layer implementation. In fact only five circuits

(out of about 50) have single layer implementations. These circuits are listed

in Table 5.1.
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Table 5.1: Computation time required for different approaches and heuristics.

BENCHMARK # STATES # Input Enc. Vars # Input Enc. Vars # TH.FUNCs. % OF TH.FUNCs.
bbtas 6 2 3 3 100
dk15 4 3 2 2 100
dk27 7 1 3 3 100
shiftreg 8 1 3 3 100
tav 4 4 2 2 100

The experiments were run on a Linux Desktop with 4 GB RAM. Most of

the other circuits had very low number of threshold functions and have not

been listed in the Table. The reason for this is that as the input size of

functions increase the percentage of threshold functions decreases

dramatically. The percentage of Boolean functions with 8 or more inputs that

are threshold is less than 10�6%. This explains why the circuits whose

encoding variable functions had large support sets do not have any functions

that can be implemented in a single layer threshold implementation. This work

however, can be a starting poit of more complex decomposition algorithms

that implement the state machine circuit as a hybrid circuit consisting of both

Boolean and threshold elements.
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Chapter 6

THRESHOLD LOGIC GENE MODEL OF EMBRYO DEVELOPMENT IN

DROSOPHILA MELANOGASTER

In this chapter a detailed rational for using threshold logic is provided by

analyzing its biological relevance. Threshold logic models for the anterior

posterior patterning and the dorsal ventral germ layer formation are developed

and both are evaluated by extensive simulation. With respect to the dorsal

ventral model developed a novel spatial representation of the underlying

system that helps study the distribution of germ layers within the dorsal ventral

axis of the Drosophila embryo is introduced. It is demonstrated that threshold

logic can generate accurate models that can be then used to predict the

behavior of the underlying system. A discussion on how the models generated

mimic the properties of actual gene systems like homeostasis, switch like

behavior and stability is also provided.

The first step in the generation of gene models is to determine the

regulatory interaction between pairs of genes (activation and inhibition). This

pairwise interaction can be represented by a directed graph called the gene

interaction graph. This graph is used to generate the gene interaction model.

There are two types of gene regulatory models. One assumes the expression

of the gene products to be continuous functions which interact with each other

in continuous time (e.g: [39], [76]). Another group of models assume that gene

expression takes place in discrete levels and that gene interaction takes place

in discrete time (e.g: [84], [1]). The challenge is to come up with a model that

captures the temporal and spatial characteristics of gene action which is easy

to construct and simulate. It is generally agreed that merely specifying the type
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of interaction between genes is not enough to characterize gene regulation [1].

In this work it is shown that for at least two gene systems knowing the kind of

interaction between genes will suffice to construct an expressive model which

can mimic the biological process accurately. For the embryo patterning

problem that is considered in this chapter, a fixed number of discrete levels of

expression is assumed for gene products. This approach is well suited for this

purpose as once the gene is either expressed or not expressed in a cell, it

remains that way to enable the cell to develop towards its determined fate.

The importance of developing accurate gene regulatory models can be

understood by the following two examples. An important application of gene

models is in cancer research [18]. It is now understood that there is a genetic

basis for most cancers [16]. The normal tissue and the cancerous tissue differ

in the activity of genes. If an accurate gene model is developed for a particular

cancer it might be possible to prevent cancer [83]. A predictive gene model

can also provide insights for developing an effective cure for cancer. Another

domain where the interaction of genes is involved in creating complex behavior

is developmental biology. The activity of genes in a cell determine the nature

of the cell. In a developing embryo the undifferentiated cells differentiate into

different cells and eventually into different organs by the action of genes

involved in embryo development [94]. Modeling these genes is useful

understand how simple interaction between genes can create the complex

diversity of cells in an adult body. This will eventually provide insights into

understanding organ formation and the manifestation of genetic abnormalities.

Most of the advances in developmental biology have come from the

work done on fruit flies – the model organism in developmental biology [77].

Different groups of genes are responsible for the changes that takes place in
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the fruit fly embryo. Like all animals with bilateral symmetry, Drosophila is

patterned along two distinct, independent axes: the anterior-posterior axis and

the dorsal-ventral axis [94]. Along the anterior-posterior axis the larva appears

regularly segmented. During early embryo development, the dorsal-ventral

axis is divided into four distinct regions [94]. Organization along these two

axes occurs more-or-less simultaneously and is regulated by different sets of

genes.

In [1], it is shown that by using two discrete states of gene expression

and Boolean logic for gene regulation rules it is possible to model the action of

segment polarity genes in the Drosophila embryo. While it has been

demonstrated that Boolean logic rules are enough to describe gene

interaction, there is little understanding on how to construct Boolean rules for a

generic gene regulatory system. In this work it is proposed that the Boolean

rules used in gene regulation belong to a special class of functions called

threshold functions [24,58]. These functions are a subset of Boolean functions

(the percentage of Boolean functions that are threshold decreases

exponentially with the number of inputs [47]). Threshold logic was first

proposed as a alternative to Boolean logic for modeling gene regulation

in [35]. In that work threshold logic was used to model the dorsal-ventral germ

layer in Drosophila. It focussed mainly on speeding up the simulation of gene

model using specialized hardware.

6.1 Approach

Choice of Threshold Logic for Modeling

Threshold logic as mentioned before has discrete inputs and output. There

are several reasons why a discrete model was chosen to model the effect of
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genes in the embryogenesis of Drosophila. Principal among them is that much

of the experimental data available is coarse grained. In this situation, a

discrete model is more preferable than a continuous model [48].

The use of discrete model is also well suited for the gene system of

interest (embryo development). Morphogens are chemicals that are

responsible for cell differentiation and trigger switch like behavior in cells [94].

Cells are not able to sense the absolute concentration of morphogens.

However, they can recognize if the concentration of the a particular

morphogen is above a certain level (threshold). This is described as the

French flag model of cell pattern formation [94]. Figure 6.1 shows how the

ability of cells to perceive different discrete chemical concentrations can lead

to the formation of different kinds of cells. If the cells are sensitive to three

discrete concentrations, three kinds of cells are formed along a continuous

morphogen gradient. Similarly, if the cells are sensitive to two levels, two kinds

of cells are formed.

Now a note on how the threshold logic gene model improves on one of

the most popular discrete gene model – the Boolean logic gene

model [1,56,84]. A gene can affect another gene by either activating or

inhibiting it. This can be modeled intuitively in the threshold gene model using

positive and negative weights. A positive weight corresponds to an activator

gene and a negative weight corresponds to an inhibitor gene. Example:

Consider the threshold element shown in Figure 6.2. Gene gy is an activator of

gene gx and is hence assigned a positive weight. Similarly gz inhibits gx and is

therefore assigned a negative weight. The threshold model can model the

difference in the level of influence different genes have. For example, consider

the TE shown in Figure 6.3. Gene gb has more influence on gene ga than
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either gc or gd. This can be incorporated within the threshold model by making

sure that wgb > wgc and wgb > wgd . These two features can be trivially mapped

onto the threshold logic model, but this mapping is non-evident in the Boolean

logic model.

Figure 6.1: The “French flag"
patterning. Interpretation of
morphogen concentration
leads to different kinds of cells.

Figure 6.2: The TE
for the regulation of
gene gx.

Figure 6.3: The TE
for the regulation of
gene ga.

The Procedure

The threshold model consists of a threshold element for each gene product

(mRNA, protein and protein complexes), i.e there is one TE for each node in

the gene interaction graph. The inputs to a TE are the incoming edges to the

corresponding node in the gene interaction graph. The model is simulated by

updating the threshold rules at regular time steps. This updating is done

synchronously – i.e all the genes are updated at the same time. The state of

the gene system at any given time is the set of all gene values. The initial

state is set before the model simulation begins. In general the initial state is

set according to a biologically relevant gene expression that is studied. The

model enters a steady state or a steady cycle after the simulation has run for a
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finite time. This steady state (if the model is accurate) corresponds to the

steady state observed in biological systems.

The steps involved in generating the gene regulatory model are shown

in Figure 6.4. The procedure to generate the model starts with the gene

interaction graph (Step 1). Since the model has to mimic the biological

process of gene regulation the model is modified iteratively until an accurate

model is obtained [22] (Step 3).

Figure 6.4: Steps involved in the generation of a threshold gene circuit

Beginning with the gene interaction graph the threshold logic rules are

generated (Step 2) using the following rules (based on the insights discussed

in previous subsection):

1. The weights and threshold are restricted to integers to simplify rule

generation. However, this does not limit the expressiveness of threshold

logic [73].

2. Genes and gene products that act as activators are assigned positive

weights. Inhibitors are assigned negative weights.

3. Input gene products are selected from the gene interaction graph.
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4. Since in general inhibition is stronger than activation, inhibitors have a

higher absolute weight than activators.

6.2 Methods

Dorsal Ventral (DV) Modeling

Embryonic cell differentiation along the dorsal-ventral axis in Drosophila is

essentially two dimensional. Along the dorsal-ventral axis the cells are

differentiated into four different types during the blastoderm stage of the

embryo [94]. Four different cell types make up the four germ layers –

amnioserosa, dorsal ectoderm, ventral ectoderm and mesoderm (from the

dorsal region to the ventral region as shown in Figure 6.5). The cells in the

blastoderm stage embryo are concentrated in the periphery leaving a hollow in

the center [94]. Therefore for modeling purposes the dorsal-ventral axis is

abstracted as a two-dimentional ring made of twelve segments as shown in

Figure 6.5.

The germ layer formation in the blastoderm stage is caused by the

action of following genes: twist (twi), snail (sna), rhomboid (rho), tolloid (tld),

decapentaplegic (dpp), zerknüllt (zen) [94]. These genes influence each other

by pairwise activation and inhibition. This influence is exerted via the proteins

they synthesize. The different germ layers are determined by the activation of

a subset of these genes. For example the mesoderm is formed by the cells in

which twi and sna are activated [94]. These genes are also influenced by two

other proteins – short gastrulation (sog) and dorsal (dl). The expression of

these proteins remains unchanged during the process of germ layer

formation [94].

The interaction between genes involved in the DV patterning is depicted
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in the gene interaction graph as shown in Figure 6.6. The gray boxes

represent one of the 12 segments of our model. The gene products between

neighboring segments interact through diffusion. In each segment every gene

product is expressed at a particular level and this determines the effect it has

on other gene products within the same segment and the neighboring

segments. The arrows (!) represent positive influence (activation) and the

t-connectors (a) represent negative influence (inhibition). The oval nodes

represents mRNA and the rectangular nodes represent proteins. The

convention adopted uses lower case for mRNA and upper case for proteins.

Figure 6.5: The dorsal ventral axis of the embryo is abstracted as a ring of 12
segments.

Using the gene interaction graph the threshold logic rules for each gene

product is derived by the procedure outlined in the previous section. For more

details on the threshold rule generation, refer to [35].

Anterior Posterior (AP) Modeling

The anterior-posterior patterning in Drosophila is due to the action of four sets

of genes – maternal genes, gap genes, pair rule genes and segment polarity

genes [39,94] . Segmentation in Drosophila is due to the action of the

segment polarity genes [1]. These genes are activated by the pair rule genes
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Figure 6.6: The gene interaction graph for the dorsal-ventral patterning genes.

in the cellular blastoderm phase [1]. Segment polarity genes help maintain the

segment boundaries along the anterior-posterior axis in stages 8-11 of

Drosophila embryogenesis [1]. The interest of this work is in the action of the

segment polarity genes in these stages, as the goal is to explain the action of

these genes in creating segments in the embryo. The interaction between

different segment polarity gene products is shown in Figure 6.7. This gene

interaction graph notation is similar to the dorsal-ventral gene interaction

graph. The only change is that the protein complex (PHO) is represented by

an octagonal node.

Since it is difficult to model a large number of cells, for modeling

purposes a reasonable abstraction of the embryonic tissue is chosen as was

done for the dorsal-ventral model. The expression of the segment polarity

genes occur in stripes that encircle the embryo [1]. This segmentation repeats

regularly along the axis and hence it is enough to model 4 segments only. The
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section of 4 segments is treated as a one dimensional array of 12 cells

(Figure 6.8). The segments at the ends have 2 cells each and the middle two

segments have 4 cells each. The boundary of the segments is assumed to be

one cell thick. This modeling abstraction is similar to the one used in [1]. The

threshold logic rules is derived for each gene product as was done for the

dorsal ventral case and thus the model for the genes responsible for

Drosophila segmentation is generated. In the next section the models

generated are provided and their predictive utility is discussed.

Figure 6.7: Gene interaction graph of the segment polarity genes.

Figure 6.8: Modeling of 4 Drosophila segments. Each segment is assumed to
be 4 cells wide. The segments in the periphery have 2 cells each.
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6.3 Results

The Dorsal Ventral Model

Using the proposed procedure threshold logic rules for each node in the gene

interaction graph are obtained. These rules together form the threshold logic

model, as shown below:

• rho: rhoi
t+1 = [DLi�1

t = +1,DLi
t = +1,DLi+1

t = +1,SNAi
t =�3;T = 1].

• twi: twiit+1 = [TWIi
t = +2,DLi�1

t = +1,DLi
t = +1,DLi+1

t = +1;T = 3].

• sna: snai
t+1 = [TWIi

t = +2,DLi�1
t = +1,DLi

t = +1,DLi+1
t = +1;T = 3].

• dpp: d ppi
t+1 = [SOGi�1

t =�1,SOGi
t =�1,SOGi+1

t =�1,DLi�1
t =�1,DLi

t =

�1,DLi+1
t =�1;T =�1].

• tld: tldi
t+1 = [DLi�1

t =�1,DLi
t =�1,DLi+1

t =�1;T = 0].

• zen: zeni
t+1 = [DLi�1

t =�1,DLi
t =�2,DLi+1

t =�1;T = 2].

• RH: RHt+1 = [rh = +1;T = 1]

• TWI: TWIt+1 = [twi = +1;T = 1]

• SNA: SNAt+1 = [sna = +1;T = 1]

• ZEN: ZENt+1 = [zen = +1;T = 1]

• DPP: DPPt+1 = [d pp = +1;T = 1]

• TLD: T LDt+1 = [tld = +1;T = 1]

The Anterior Posterior Model

Using the gene interaction graph in Figure 6.7 and the threshold inference

rules the following rules are derived:
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• SLP: SLPi
t+1 ⌘ [SLPi

t = 1;T = 1]].

• wg: wgi
t+1 ⌘ [CIRi

t =�2,wgi
t = 1,CIAi

t = 1,SLPi
t = 1;T = 2]

• WG: WGi
t+1 ⌘ [wgi

t = 1;T = 1]

• en: eni
t+1 ⌘ [WGi�1

t = 1,WGi+1
t = 1,SLPi

t =�2;T = 1]

• EN: ENi
t+1 ⌘ [eni

t = 1;T = 1]

• hh: hhi
t+1 ⌘ [ENi

t = 1,CIRi
t =�1;T = 1]

• HH: HHi
t+1 ⌘ [hhi

t = 1;T = 1]

• ptc: ptci
t+1 ⌘ [CIAi

t = 1,ENi
t =�1,CIRi

t =�1;T = 1]

• PTC: PTCi
t+1 ⌘ [ptci

t = 3,PTCi
t = 1,HHi�1

t =�1,HHi+1
t =�1;T = 1]

• PH: PHi
t ⌘ [PTCi

t = 2,HHi�1
t = 1,HHi+1

t = 1;T = 3]

• SMO: SMOi
t ⌘ [PTCi

t =�1,HHi�1
t = 1,HHi+1

t = 1;T = 0]

• ci: ciit+1 ⌘ [ENi
t =�1;T = 0]

• CI: CIi
t+1 ⌘ [ciit = 1;T = 1]

• CIA: CIAi
t+1 ⌘ [CIi

t = 3,SMOi
t = 1,hhi�1

t = 1,hhi+1
t = 1;T = 4]

• CIR: CIRi
t+1 ⌘ [CIi

t = 1,SMOi
t =�1,hhi�1

t =�1,hhi+1
t =�1;T = 1]

Note: A node that activates only one other node is considered

transparent. e.g: WG of neighboring cells activate FZ, which in-turn activates

en. Thus en is assumed to be activated by WG of neighboring cells. Similarly

HH of adjacent cells are assumed to activate SMO (via PH). The inputs to

each TE is identical to the inputs used for the Boolean rules in [1] (for detailed

rationale refer to [1]).
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6.4 Discussion

Now the accuracy and validity of the model is examined. Steady states in a

cellular system (also known as homeostatic state) results in a particular cell

type [45]. It is tested if the model can predict the same homeostatic state

observed in wild-type embryos. The model is simulated starting from an initial

state and is updated at discrete time steps. A steady state is reached when

the value of gene products do not change from one time step to the next.

The steady states observed in wild-type embryos when all genes are

functioning correctly is used to build the model; so it is not surprising that the

model predicted that correctly. However, the model was also able to generate

other significant predictions that were not used for model building. Some of

these predictions could be verified by existing biological literature. Others

provide specific phenotypic effects of the malfunctioning of genes. These are

useful to biologists studying fruit flies, and they can now verify if the

predictions made here are biologically accurate. Apart from the predictive

capability of the model, it also exhibits many properties that are inherent to

gene systems. Important among them – stability, homeostasis, switch like

behavior, and disproportionate influence of genes are discussed later.

Prediction of Normal Steady States

For dorsal ventral patterning the initial states of DL and SOG is known [94]. All

other genes are assumed to be unexpressed in all segments. The initial state

of the simulation (at t = 0) is shown in Figure 6.9.

In the model simulation starting with the above described initial state,

after time t = 3 the expression of all variables in the model remain unchanged.
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Figure 6.9: Gene expression along the DV axis at time t = 0.

Figure 6.10: A: Biologically observed gene expression in the Drosophila blas-
toderm. B-E Steady state expression obtained from simulation of the model.
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This steady state is then compared with the biological steady state observed

in wild-type embryos. As shown in Figure 6.10, zen mRNA and protein are

expressed only in the region where amnioserosa is formed in the wild-type

embryo. zen is known to be associated with the formation of amnioserosa [94].

Similarly twi and sna are associated with the formation of mesoderm, dpp and

tld are associated with the formation of dorsal ectoderm and rho is associated

with the formation of ventral ectoderm [94]. The model predicts the region of

formation of all the germ layers accurately as shown in Figure 6.10.

For the anterior posterior model the expression pattern in phase 8 wild

type embryos is used as the initial state for the simulation (this is similar to the

initial state used in [1]). This initial state is shown in Figure 6.11 (A). Each oval

represents one of the 12 segments in the model. A red colored segment

indicates the expression of the corresponding gene product in that segment (a

blue segment indicated that the corresponding gene product is not expressed

in that segment). The threshold gene model rules is simulated until a steady

state is attained. The steady state gene expression obtained (which is a point

attractor) from the model simulation is shown in Figure 6.11 (B). This is

compared to the wild type expression of phase 11 embryos.

Our model could predict the following gene expression patterns

experimentally observed in wild-type phase 9�11 embryos [1]: 1. wg and WG

are expressed in the most posterior cell of each segment. 2. en, EN, hh and

HH are expressed in the most anterior cell of each segment. 3. ci is

expressed everywhere, with the exception of the cells expressing en. 4. ptc is

expressed in cells on each side of the en-expressing cells. 5. SMO is present

in broad stripes whose anterior border coincides with the anterior border of the

wg stripe and whose posterior border extends about one cell. 6. CIA is
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expressed in the neighbors of the HH-expressing cells. 7. CIR is expressed

far from the HH-expressing cells.

Figure 6.11: A: The initial state at t = 0. B: Steady state obtained by simulation
of the AP model.

In-Silico Simulation of Gene Malfunctions

To further test the predictive capability of the model, more simulations were

done with the dorsal-ventral model to predict the effects of abnormal gene

expression. The predictions that follow are not part of the data used in

generating the model.

In order to check the effect of spatially misplaced expression of dl gene,

the following simulation was done using the model: In the model space the dl

protein at t = 0 (in each germ layer) was alternately expressed and

un-expressed and the simulation was executed. Since there are 4 germ layers

and dl can take the value of 1 or 0 in each of them, there are 24 = 16 unique

initial states. For each of the these initial states the simulation yielded point
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attractors. The results showed that the dl gene plays a very important part in

determining the spatial location of the germ layers. The detailed results of this

simulation is given in Appendix I.

It is known that when dl protein is excluded uniformly, dpp is expressed

everywhere and the twi and sna are not expressed anywhere. This is called

dorsalization of the embryo [94]. In the extensive simulation it was found that

DL = 0 in all segments at t = 0 resulted in the exact same condition as

observed in experiments with dorsalized embryos (Figure 6.12 (A)). If the dl

protein is expressed throughout the dorsal-ventral section, twi and sna are

expressed throughout and dpp is not expressed at all in the steady state. This

is called ventralization of the embryo [94]. Our simulation was also able to

predict the fate of ventralized embryos (Figure 6.12).

Figure 6.12: A: Gene expression predicted by the model when DL is uniformly
unexpressed. B: Gene expression predicted by the model when DL is uniformly
expressed.

Next, more extensive simulations were done in order to generate more

predictions. Starting from 224 initial states (two binary values for rho, zen, twi,

sna, dpp and tld in four germ layers = 2(6X4) initial states) the steady state

corresponding to each initial state was obtained. The different initial states

generated only two distinct steady states. One of them was the steady state

shown in Figure 6.10. The other is shown in Figure 6.13. In this steady state

rho is not expressed in any segment and twi and sna are expressed in the
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segments where mesoderm and ventral ectoderm are formed in a wild-type

embryo. The expression of all other genes is identical to the expression

pattern depicted in Figure 6.10. The biological interpretation of this steady

state is the absence of ventral ectoderm and the extension of the mesoderm

into the regions where the ventral ectoderm should have been present. The

initial states that caused this corresponded to the twist gene being expressed

in the region corresponding to the ventral ectoderm. This result is not obvious

from the gene interaction graph. This result has been verified by a biological

experiment [30]. The importance of this simulation experiment is that it

demonstrates that results that are not intuitive to infer from the gene

interaction graph can be obtained from modeling of gene systems.

Another observation from the extensive simulation is that, only the

malfunctioning of twist and dorsal genes result in abnormal states. From the

gene interaction graph (Figure 6.6) we can see that these are the only 2 genes

that have an out degree of � 2. Moreover twist m-RNA and protein have a

feedback loop between them.

A series of extensive simulations were then done using the AP gene

model. The five genes - wg, en, hh, ptc and ci are assigned different values in

each initial state. In each segment (4 cells), the left-most cell is called the

head of the segment and the remaining 3 cells the tail of the segment. For

each gene the head of the segment and the tail of the segment are assigned

value of either 1 or 0. The different initial states considered here cover all the

different ways each of these 5 genes are expressed at the segment

boundaries. The total number of initial states thus considered is 25x2 = 210.

Starting from each of these initial states the steady states (which all happen to

be point attractors) were obtained. Our simulation showed that there exist only
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7 distinct point attractors into which each of these initial states converge (in no

more that 5 simulation steps). The details of this simulation is given in

Appendix II.

The seven distinct attractor states can be grouped into four different

phenotypic interpretations – normal segmentation, normal segmentation with

extended wg regions, and two distict non-segmentation conditions. A majority

of initial states lead to the first two types of attractors (624/1024 which is

> 60%). This fits well with the observed behavior of actual biological systems.

Even though gene systems are complex many conditions of malfunctioning

genes are self-correcting. Another feature of the simulation result – a small

number of attractors also concurs with the behavior of real gene systems. In

Appendix II the list of all prime implicants (the complete sum [40]) of the initial

state conditions required to lead to each of these steady states is provided.

The expression of en and wg is crucial for the formation of

segments [67]. To confirm this, a mutation experiment was performed using

the anterior-posterior gene model. In this experiment en gene was inhibited.

The steady state resulting from the simulation is shown in Figure 6.14. All

gene products are unexpressed, with the exception of PTC, ci, CI and CIR,

which are evenly expressed. When the en gene is dysfunctional it is observed

that the gene expression that is required for normal segment formation does

not occur in phase 9�11 embryos. This is consistent with the biological

experiments done by silencing en [1]. The same gene expression

(Figure 6.14) is obtained even when wg is blocked. This is also in agreement

with the experimental observations [1].
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Figure 6.13: The alternate steady state. The steady state represents the ab-
sence of ventral ectoderm and a more pronounced mesoderm

Figure 6.14: Steady state obtained after silencing en in the simulation.

Properties of the Threshold Logic Gene Model

The behavior of the gene models developed in this work closely resemble the

behavior of actual gene systems in the following ways: Stability: The gene

models developed converge to a very small number of steady states. This is a
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property exhibited by gene systems as well. Even though there are

exponential possible combinations of gene expressions only a few are found in

an organism’s body. Another reason why the models developed are stable is

because any initial state considered converges to a steady state within a few

steps of simulation. This indicates that the system will converge to a steady

state even when perturbed, which is again a property exhibited by actual gene

systems. Homeostasis: Homeostatis is the ability of a system to remain in a

state of equilibrium. The gene models seen here exhibit a tendency to settle in

a given state after a few steps into the simulation (for all the simulations

discussed here the steady state was reached within 5 simulation steps). This

is also a property of actual gene systems. All the steady states found by

model simulation were point attractors. The threshold gene model introduced

here is deterministic and this property is to be expected. More study on

non-deterministic extensions of the current model will be done in the future.

Switch like behavior: The gene systems exhibit a switch-like behavior, i.e

they tend to settle in different steady states depending on the expression level

of a gene. This means that the control gene acts as a switch and controls the

state of the system. This property was observed in the models discussed

here. For e.g: the dl protein to a very large extend determines which attractor

the system will converge in. Similarly for the AP model the wg, en and hh

genes act as switches and decide what state the system of genes will

converge to. Not all genes are equal: In a gene system, it has been

observed that the perturbation of some genes can have little or no effect on

the system, at least at the phenotypic level. However, the system is very

sensitive to the malfunctioning of few genes. This too was demonstrated by

the models developed in this work. For e.g: the DV model functioned normally
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under the perturbation of all genes except for dorsal and twist.

Comparison with Earlier Drosophila Models

Boolean logic has been used to model Drosophila embryogenesis before.

In [81], a three-variable logic model is used to model the activity of dorsal,

twist and snail genes. Multi-level logic and a truth-table based approach were

used to model the interaction between genes. This approach is exhaustive as

it enumerates all the preconditions required for the expression and

non-expression of a gene. In contrast the approach presented provides a

generic framework of threshold logic to model gene action. Our method also

considers all the genes involved in the process and incorporates the spatial

characteristics of embryo pattering (by use of different two-dimentional 12

segment construction). Our approach models intercellular interaction by

incorporating the action of gene products on neighboring model segments. To

the best of author’s knowledge it is the first model for the DV germ layer

formation that takes into account spatial considerations.

In [1], Boolean logic rules were used to model the anterior-posterior

segmentation. As argued before threshold logic has benefits over generic

Boolean logic (in modeling activators and inhibitors and different levels of gene

influence). All the predictions reported by them was replicated by the

proposed model (both wild-type steady states and the effects of gene

mutations). The result of the extensive simulations on the model are also

reported. This work shows that a very small subset of Boolean logic is

expressive enough to model gene interaction. A major contribution of this work

is to demonstrate the biological relevance of using threshold logic over generic

Boolean logic to model gene regulation.
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Appendix I

This Appendix we provides the results of all the steady states obtained from

the simulation of the dorsal ventral model when different conditions of the

dorsal gene was used. Only the phenotypic interpretation of the steady states

obtained are listed (see Table 6.1). The following notation is used in the

representation of the initial state.

DLa : expression value of dorsal protein in amnioserosa.

DLde : expression value of dorsal protein in dorsal ectoderm.

DLve : expression value of dorsal protein in ventral ectoderm.

DLm : expression value of dorsal protein in mesoderm.

Appendix II

In this appendix the list all the attractors found from the simulation of the

threshold logic model for the anterior-posterior segmentation of Drosophila

melanogaster is given.

Seven attractors were obtained from simulations beginning with 1024

different initial states. All attractors were point attractors. The phenotypic

interpretation of the attractors is based on the expression of the wg, en and hh

genes, since they play a major role in the formation of segments. The

complete sum of the initial states is also provided. These represent the

minimal conditions required in the initial states that lead to the respective

attractors. They provide useful information as to which kind of initial conditions

result in a particular type of steady state. The subscripts of the genes in the

complete sum represent the expression in the head (h) or tail (t) of each
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Table 6.1: Steady States Obtained by extensive simulation of the DV model.

DLa DLde DLve DLm Steady State (phenotypic interpretation)
0 0 0 0 Only dorsal ectoderm (DE) is formed, and it spans the

entire D-V section.
0 0 0 1 Germ layers formed with normal spatial ordering.

However, the mesoderm is reduced and the DE is en-
larged.

0 0 1 0 DE present in both the dorsal and ventral ends. Ven-
tral ectoderm (VE) is in between the two regions of
DE.

0 0 1 1 Normal spatial location of germ layers. Extended
mesoderm.

0 1 0 0 DE formed in the ventral region. VE is present in the
dorsal region. No mesoderm is formed.

0 1 0 1 An extended VE that spans the entire embryo is
formed.

0 1 1 0 Multiple regions of VE are formed. A reduced DE at
the ventral tip of the embryo.

0 1 1 1 Mesoderm that covers 3/4th of the embryo from the
ventral end. The rest is VE.

1 0 0 0 DE formed at it spans the entire D-V section except in
the dorsal end, where the VE is formed. No mesoderm
is formed.

1 0 0 1 Multiple bands of VE are formed.
1 0 1 0 VE spans the entire embryo. No other germ layers are

formed.
1 0 1 1 Mesoderm in the ventral half and VE in the dorsal half

of the embryo are formed.
1 1 0 0 The regions are inverted along the D-V axis, but no

amnioserosa is formed.
1 1 0 1 Inverted embryo. But no DE is formed.
1 1 1 0 Germ layer location inverted.
1 1 1 1 Mesoderm spans the entire embryo.

segment.

The seven attractors are now listed together with phenotypic

interpretation and the number of initial states that lead to them. The complete

sum of initial conditions that resulted in each attractor is also given.

Attractor 1. (See Figure 6.15).

Abnormal segmentation (112/1024 initial states lead to this attractor).

Complete Sum : ( wgt and hht and ptct and cih and cit) or ( wgt and
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ptch and ptct and cit) or ( hhh and hht and ptch and ptct and cit).

Attractor 2. (See Figure 6.16).

Abnormal segmentation (32/1024 initial states lead to this attractor).

Complete Sum : (wgt and hht and ptct and cih and cit).

Attractor 3. (See Figure 6.17).

Normal segmentation; wide wg region (256/1024 initial states lead to

this attractor).

Complete Sum : (hht and ptch and cit) or (hhh and ptch and ptct and cih

and cit) or (wgt and ptch and ptct and cit) or (wgt and ptch and cih and cit) or

(wgt and hht and ptch).

Attractor 4. (See Figure 6.18).

Abnormal segmentation (256/1024 initial states lead to this attractor).

Complete Sum : ( wgt and ptct and cit) or (hhh and hht and cih and cit)

or ( hhh and hht and ptct and cit).

Attractor 5. (See Figure 6.19).

Normal segmentation (16/1024 initial states lead to this attractor).

Complete Sum : (hhh and hht and ptch and ptct and cih and cit).

Attractor 6. (See Figure 6.20).

Normal segmentation (16/1024 initial states lead to this attractor).

Complete Sum : (hhh and hht and ptch and ptct and cih and cit).

Attractor 7. (See Figure 6.21).
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Normal segmentation; wide wg region (336/1024 initial states lead to

this attractor).

Complete Sum : ( ptch and ptct and cih) or (hht and ptch and cit) or

( hht and ptch and ptct and cit) or (wgt and ptch and cih and cit) or (wgt and

hht and ptch) or ( hhh and hht and ptch and ptct).

Figure 6.15: Attractor 1 of the extensive simulation of the anterior-posterior
gene model.
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Figure 6.16: Attractor 2 of the extensive simulation of the anterior-posterior
gene model.

Figure 6.17: Attractor 3 of the extensive simulation of the anterior-posterior
gene model.
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Figure 6.18: Attractor 4 of the extensive simulation of the anterior-posterior
gene model.

Figure 6.19: Attractor 5 of the extensive simulation of the anterior-posterior
gene model.
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Figure 6.20: Attractor 6 of the extensive simulation of the anterior-posterior
gene model.

Figure 6.21: Attractor 7 of the extensive simulation of the anterior-posterior
gene model.
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Chapter 7

DETECTION OF PAIR-WISE GENE INTERACTION BY INFERRING THE

THRESHOLD GENE MODEL

In this Chapter a method for inferring dependency among genes using data

from DNA microarray experiments is presented. DNA microarrays are used to

measure expression level of different genes [32,82]. The procedure proposed

in this chapter uses microarray data and constructs the gene interaction graph

using the properties of threshold logic. The procedure can also be used to

build the gene regulation model. However, in this chapter the discussion is

only concerned with the accuracy of the gene interaction graph generated by

the procedure. This work is an attempt to use the underlying circuit like

behavior of genes (the circuit based model of gene regulation is gaining

popularity [68]) to identify pair-wise interaction between genes.

The data provided for the DREAM2 network inference challenge was

used (specifically the dataset InSilico3 which is part of Challenge 4). This data

includes gene expression data from time course experiments. The data is

used to identify interactions between these genes and construct the gene

interaction graph. Since no additional biological knowledge is provided the

procedure had to rely completely on the data provided. The result discussed

here was chosen as the best performer among the entries that predicted the

InSilico3 network in the DREAM2 inference challenge (in the category directed

signed excitatory). Next, the technique is applied to an actual biological

system. The method is also used to construct the gene interaction graph for a

group of melanoma related genes [6]. Gene expression profile of 31 patients

is used to construct the gene interaction graph. Then the gene interaction
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graph obtained is validated using existing biological literature.

7.1 Method

The Procedure

In order to construct the gene interaction graph, given a set of all genes, G, a

set of genes G(gt)✓ G are identified, such that each gene gs 2 G(gt), affects

the expression of gt (henceforth called the target gene). To identify G(gt), for

the gene gt , the threshold logic function T (gt), which best describes the

regulatory function of gt is inferred. G(gt) can then be obtained from T (gt),

since G(gt) is simply the inputs to the function T (gt). As mentioned before

threshold logic rules have been demonstrated to be expressive enough to

describe gene interaction. The major contribution of this work is to identify

gene networks using data from biological experiments, by making use of the

concepts and theories from threshold logic research.

A threshold logic function is completely characterized by the inputs,

input weights and threshold. In order to determine the threshold gene

regulation rule for the target gene gt , first the set of genes G(gt) that affect the

gene expression of gt , the input weights for each gene and the threshold have

to be determined. It has been shown that the inputs that have the least impact

on the output have the least absolute weight [37]. It would be good if the

genes can be ordered in their order of impact so that the ones with less or no

impact on gene gt can be ignored. To do this two properties of threshold

functions are used:

1. The ratio of the spectral coefficient of an input to its correlation with the

output is a constant.
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2. The ordering of input variables of a threshold function by their spectral

coefficients is the same as the ordering of variables by their input

weights.

(For proofs of the above two properties, refer to the Appendix).

From the above two properties, input genes can be ordered according

to their impact on gene gt , by ordering the genes in the descending order of

the absolute value of their correlation with gene gt (since the inputs with the

least weight have the least impact [37]).

The time-series data (typically obtained from microarray experiments)

is used to construct the threshold logic function T (gt). A time-series data gives

the gene expression values for each gene at regular time steps. It is a matrix

TimeSeries of size nxm, where n is the number genes and m is the number of

time steps. Therefore TimeSeries[i, j] is the gene expression of gene i at time

step j. It is assumed that the expression level of all the genes at time k (i.e

ga
k,8gaG), is responsible for the expression of any gene gt at time (k +1) –

gt
(k+1).

To generate the threshold logic rule T (gt) for gene gt , first all the genes

are ordered in the non-increasing order of their absolute correlation with gene

gt . This correlation value – corr(ga
k,gt

(k+1)) is calculated between the value of

gene ga at time k and the value of gene gt at time (k +1), for all

k 2 1,2, ....(m�1), where m is the number of time steps. After the value of

corr(ga
k,gt

(k+1)) is calculated for every ga 2 G, the genes are ordered in the

non-increasing order of their absolute correlation values with gt . This gives the

ordering of all genes in the order of their impact on gt .
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The threshold rule T (gt) is derived, by using the correlation values as

follows: One gene at a time (in the order described before) is added to T (gt).

The input weights of these input genes are set to be equal to their correlation

values with gt . That is if ga is an input of T (gt), weight(ga) = corr(ga
k,gt

(k+1)).

The threshold of T (gt) is determined to be equal to the value of the least

one-point. Using the Least Mean Square (LMS) Perceptron learning

algorithm [92], these weights are fine-tuned such that the error (number of

misclassified points) is minimized (as mentioned before a TE and the

Perceptron are identical). More genes are added to the set of dependent

genes as long as the error is reduced. The process of adding any more input

genes to T (gt) is stopped when the number of misclassified points after

adding the new input gene to T (gt) is more than the number of misclassified

points without adding the new input gene to T (gt).

The detailed steps involved in determining the dependent genes for

target gene gt is given in Algorithm 19.

The InSilico Dataset

The first dataset on which the procedure was tested was the one provided by

the DREAM2 conference for the DREAM2 network inference challenge

(urlhttp://wiki.c2b2.columbia.edu/dream). The InSilico3 data which is part of

the challenge 4 dataset is used in this work. This dataset consists of data from

3 different experiments Ð the heterozygous knockdown experiment, the null

mutant experiment and the time-series experiments. For the proposed

procedure only the data from the time-course experiments is required. This

dataset consists of continuous expression values of 24 metabolites, 23

proteins and 20 genes.
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Algorithm 19: Pseudo code for generating the gene interaction graph.
1: Determine corr(gi

k,gt
k+1), genes gi that are genes in the dataset.

2: DepGenes = {gh}, where gh is a gene such that
corr(gh

k,gt
k+1)corr(gi

k,gt
k+1), gi 6= gh. Error = ř.

3: Initialize the TE for gene gt , with inputs being DepGenes (initialize
wg

i = corr(gi
k,gt

k+1), 8gi 2 DepGenes).
4: Evaluate the initial value of threshold T (T = the largest weighted sum for

any input for which gt = 1).
5: Use the LMS algorithm to learn weights of the equivalent Perceptron. Let

newError be the error of this Perceptron.
6: if newError < Error then
7: DepGenes = DepGenes[gn,
8: where gn is a gene such that corr(gn

k,gt
k+1)corr(gi

k,gt
k+1),

gi,gn 2 DepGenes.
9: Error = newError.

10: GOTO Step 3.
11: end if
12: DepGenes are the dependent genes of gene gt .

The continuous data was first discritized into 4 levels – 0, 1, 2, and 3.

This granularity of discretization was chosen by inspection of the histograms of

the expression values. Using the discretized data the correlation values were

obtained and the procedure described was used to determine the dependent

genes. There is however one modification to the standard procedure. Since

the data is in 4 discrete levels, 3 TEs (cascaded TEs [3])are required. The first

TE decides if the output is 3 or not, the second if the outputs is 2 or not, and

the third if the output is 1 or 0. The set union of all the inputs genes of the

three TEs decides the dependent genes for the target gene.

Gene Interaction Graph for Melanoma Genes

The above-described procedure was applied to an actual biological system to

generate the gene interaction graph. Specifically it is used to find pair-wise

interaction among melanoma disease-related genes. Ten genes are believed
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to be closely associated with melanoma [99] (these are listed in Table 7.1).

The gene expression profile for these 10 genes was obtained from 31 different

melanoma tumors using DNA micro-arrays (refer to Bittner et al. [6]). Unlike

the previous case, no time-course data was available. Gene profile of tumors

is treated as a steady state data and the same procedure is applied. Since

only steady state data is used corr(gak,gt(k +1)) = corr(ga
ss,gt

ss), where ga
ss

and gt
ss are expression values of genes ga and gt in the steady state. The

gene expression is discretized into 3 levels – �1 (under expression), 0 (normal

expression) and +1 (over expression), and two TEs per gene is needed to

obtain the threshold rules which describe the gene regulatory rules. The

dependent genes are obtained from the threshold regulatory rules as done in

the previous experiment.

Gene Entrez Gene Name Synonym
pirin pirin (iron-binding nuclear protein) PIR

WNT5A Wingless-type MMTV integration family, member 5A
S100 S100 calcium binding protein B S100B

PLGC1 phospholipase C, gamma 1 PHO-C
RET-1 ret proto-oncogene

synuclien synuclein, alpha (non A4 component of amyloid precursor) SNCA
STC2 stanniocalcin 2

MMP-3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) MMP3
MART-1 melan-A MLANA
HADHB hydroxyacyl-Coenzyme A dehydrogenase

/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme
A hydratase (trifunctional protein), beta subunit

Table 7.1: The genes involved in melanoma manifestation and their synonyms.

A true time-series data is always preferred to use with this technique,

since it captures the dynamics of the network more accurately. However in the

absence of time-series data (which is often the case when working with

biological systems) the steady state data can be used as was done in the case

of melanoma related genes.
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7.2 Results

The InSilico Dataset

After the proposed procedure was used to identify the dependent genes, the

gene interaction graph was constructed. This gene interaction graph is shown

in Figure 7.1. The InSilico3 data was generated in-silico and at the time the

data was provided no biological knowledge regarding the gene products

involved was given.

Figure 7.1: The predicted gene interaction graph for InSilico3 dataset.

The inferred network is compared against the gold standard. The

statistics of this comparison is given in Table 7.2. Overall, many of the true

interactions were not identified by the proposed method. The positive

predictive value (PPV) was 12.87% and the sensitivity was only 21.67%. Higher

negative predictive value (NPV) and specificity is misleading, as there exists

significant bias toward non-interaction. The results of the DREAM2 challenge
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were evaluated based on the Precision v/s Recall and the Receiver Operating

Characteristic (ROC) curves. These are shown in Figure 7.2. For details of

how these curves were obtained and more information on how the inferences

were evaluated refer to Scoring Methodologies for DREAM2

(http://wiki.c2b2.columbia.edu/dream/data/gold-standards/

Scoring_Methodologies_for_DREAM2.doc).

Figure 7.2: The precision versus recall and ROC curves obtained by comparing
the predicted network against the InSilico 3 gold standard.

Gold Standard
Prediction Edge exists No Edge

Inferred 26 176 PPV = 12.87%
Non-Inferred 94 4,193 NPV = 97.8%

Sensitivity = 21.67% Specificity = 95.97%

Table 7.2: Statistical comparison of the predicted InSilico3 gene interaction
graph against the gold standard network.

The Melanoma Dataset

After coming up with the threshold rules, the dependent genes for each gene

were extracted from the rules. These were used to construct the gene

interaction graph. The procedure not only identifies the pair-wise interactions,

but also categorizes them into activation and inhibition. The transitive edges
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are removed (e.g, the edge from MART-1 to MMP-3 is removed because

MART-1 can inhibit MMP-3 via WNT5A) to emphasize only the strongest

interactions. Outgoing edges from MMP-3 are removed as MMP-3 is the

terminal node in the pathway involving these genes [99]. The final gene

interaction graph is shown in Figure 7.3. Many different attempts have been

made to infer the regulatory network for the genes involved in the WNT5A

pathway and its neighborhood[27, 28]. This is an ongoing work and different

pair-wise interactions predicted by this and the previous works needs to be

validated.

Figure 7.3: The gene interaction graph predicted for the melanoma dataset
(transitive edges are removed).

These results are further discussed and pointers to future work are

provided in the Discussion section.
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7.3 Discussion

In-Silico Experiments

As seen from the results of the InSilico3 experiments it is clear that the

procedure could not identify many of the edges present in the actual network

(gold standard). This can be attributed to the following. Threshold logic can

only capture relations that are mostly linear, and if the underlying process to

generate InSilico3 data was non-linear, the proposed method could not have

appropriately captured the functions used to generate the data. This implies

the importance of the selection of appropriate mathematical models. However,

when available biological data is limited, as often the case in biology, complex

(i.e., non-linear) models cannot be used in general, due to errors involved in

estimating necessary parameters, which increase as the complexity of model

increases. More validation is required for the proposed method and this will be

done in the future based on randomly generated networks. In the future

studying the effect of the number of discrete levels on the accuracy of the

model, based on a recent study [12] is planned. The automated discretization

methods published recently which chooses the optimal number of discrete

levels based on the given data [17] can also be integrated with the proposed

approach.

Biological Data: Melanoma

The method however had more success in predicting the edges of the

melanoma gene system. Many interactions could be verified by existing

literature (see Figure 7.4). By utilizing existing literature and Ingenuity Pathway

Analysis system (IPA, Ingenuity Systems, http://www.ingenuity.com),
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the pathways obtained by the proposed method were investigated. Figure 7.4

shows a pathway constructed using IPA with the ten genes used in this study.

Figure 7.4: The pathways involving melanoma disease-related genes reported
in literature.

As shown in Figure 7.3, S100 was predicted to inhibit the expression of

WNT5A. From existing literature (as shown in Figure 7.4), S100 protein is

known to increase the expression of JUN mRNA (and thus the JUN

protein) [44] which in turn binds to the promoter region of the WNT5A

gene [31]. This binding prevents WNT5A gene from being expressed.

Through the mediation of JUN mRNA and protein, S100 inhibits the

expression of WNT5A.

As per the model’s prediction, WNT5A interacts with MMP-3. WNT5A

causes an increased expression of RET mRNA [33] and the RET protein then
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causes an increase in the expression of MMP-3 mRNA (and protein) [10].

Thus by the mediation of RET, WNT5A causes an increase in the level of

MMP-3, as shown in Figure 7.4. Also shown in Figure 7.3 is that WNT5A and

MART-1 interact with each other in inhibitory manner. WNT5A increases the

expression of IL2 protein [80], IL2 protein increases the activation of IFNG

gene [66], which in turn decreases the expression of MART-1 [63]. Therefore

WNT5A inhibits the expression of MART-1 through a series of interaction

involving other genes.

Our study predicted that PHO-C inhibits the expression of synuclein

(SNCA). Campbell et al. [15] have shown that PLC-gamma (PHO-C) protein is

necessary for the activation of P38-MAPK protein, which in turn binds to

SNCA (synuclien) [49].

The TNF protein is increased by the anti-genic protein fragment from

MLANA (MART-1) protein [29]. The TNF protein decreases the expression of

ERBB2 protein [53]. The ERBB2 protein is involved in the expression of

HADHB [62]. This suggests that MART-1 affects the expression of HADHB,

which was also predicted by the proposed method (Figure 7.3).

Several other attempts have been made to predict the interaction

between the core genes involved in melanoma manifestation, and this is still

an active area of research[27, 28]. The author believes that the interactions

suggested would aid in the identification of the actual bio-chemical pathways

involved in the regulation of these genes.
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Appendix

Lemma 7.3.1. The ratio of the spectral co-efficient of an input to its Pearson

correlation with the output is a constant.

Proof. Consider a threshold function F and variable a that is an input of F and

has a positive input weight.

Now in each row of the truth table of F , a can either agree with F (i.e

a = 0;F = 0 or a = 1;F = 1) or it can disagree with F (a = 1;F = 0 or

a = 0;F = 1). We first show that:

• For every case where a = 1;F = 0, there exists a case a = 0;F = 0.

• For every case where a = 0;F = 1, there exists a case a = 1;F = 1.

The first condition is trivial as a has a positive weight. Switching a form 1 to 0

when the other inputs are intact will not change the value of F from 0 to 1.

Now since F is threshold it is also unate. Therefore the property

F |(a = 0)✓ F |(a = 1) holds. The second condition follows directly from this

property.

Since the above two conditions hold, every row of the truth table on which a

and F disagree can be paired uniquely to another row where they agree.

After such a pairing, the number of rows that are not part of any pair is equal

to the spectral coefficient s(a) (by definition).

Now consider the value of the product of the difference of each variable (a and

F) and their mean:
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H = (a�µa)(F�µF)

(µa = 1/2: in any truth table an input is 1 and 0 equal number of times)

This value is different for different value of a and F :

• If a = 0;F = 0: H = µF/2

• If a = 0;F = 1: H =�(1�µF)/2

• If a = 1;F = 0: H =�µF/2

• If a = 1;F = 1: H = (1�µF)/2

Note that for any of the previously described pairing the value of H for one is

�1 times the value of H for the other.

var(a,F) = (ÂH)/(n�1)

.

The values of H in the pairs cancel each other and we’re left with:

) var(a,F) = (s(a)/2)ÂH(a=1;F=1) +(s(a)/2)ÂH(a=0;F=0)/(n�1)

.

Substituting the value of var(a,F), in the formula for corr(a,F) and simplifying,

we get:

k =
corr(a,F)

s(a)
=

1
2ppq

167



.

where p is the number of times F = 1 and q is the number of times

F = 0, which are constants for any given F .

This same formula can be similarly derived if a has a negative weight.

Lemma 7.3.2. The ordering of input variables of a threshold function by their

spectral co-efficients is the same as the ordering of variables by their input

weights.

Proof. Spectral co-efficients are closely related to Chow parameters used in

the study of threshold logic [47,73]. From Theorems 5.1.4 and 5.1.5 in [73]

and Lemma 1, Lemma 2 follows.
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Chapter 8

AUTOMATED PROCEDURE FOR MODELING GENE REGULATORY

DYNAMICS

In this Chapter a novel gene regulatory model based on threshold logic is

proposed. The approach is developed by a combination of threshold logic

properties and perceptron learning techniques. This work does not focus on

determination of the pair-wise interaction among genes (which is discussed in

the previous chapter). Instead, the objective of this work is to generate a

model that will describe and predict phenomena associated with a biological

system. The utility of the approach is demonstrated by modeling a cellular

system of 50 genes. The model could effectively replicate both the steady

state and the transient behavior of genes.

Threshold logic was first used to model gene regulatory networks in

order to describe embryo development in Drosophila (see Chapter 6). A group

of genes known as segment polarity genes are responsible for the formation of

segments in a Drosophila embryo [94]. Since this group of genes is relatively

small and the interaction between genes (and their gene products) is well

understood, a threshold model could be constructed by hand that accurately

replicates the biological role of segment polarity genes. This work however is

specific and does not provide a generic method to construct these models.

Modeling larger biological systems is infeasible by this method. To alleviate

this drawback, an automated methodology that can construct the threshold

gene model starting with gene expression data obtained from biological

experiments is proposed.

There are several advantages of the proposed model over the generic
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Boolean logic model. Principal among them is the combinatorial algorithm for

the construction of the model. This method allows for the use of a finite

number of discrete levels, and is not restricted to two levels as in generic

Boolean logic. Implementing multi-level outputs in Boolean logic is also

possible but significantly increases the complexity of the model. Threshold

logic is intuitively related to the underlying gene system. This is discussed in

detail later in the chapter.

The aim of this work is to develop techniques to infer gene regulatory

models from gene expression data obtained from biological experiments. The

model developed is easy to infer and the biological reasoning for the choice of

threshold logic is provided. A series of cross validation experiments validate

the merit of the proposed approach. Finally the utility of the model is

demonstrated by using it to model the action of a group of 50 genes, to

faithfully predict dynamic behavior of genes given in the data. Since the gene

interaction graph is not available a priori the details of how to construct it from

the available data is given. However, the focus of this work is not to determine

the gene interaction graph. Instead the aim of this work is to generate a gene

regulation model using available biological data that can mimic a system of

interacting genes.

8.1 Method

Threshold logic (TL) is a proper subset of Boolean logic. Since threshold logic

is similar to the single-layer perceptron with a step activating function, it

implements a linearly separable function [79]. Threshold logic differs from the

perceptron in that the input weights and thresholds are restricted to be

integers. This is not a requirement of threshold logic but since its development
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is closely linked to circuit design, integer weights are convenient as it makes

the sizing of transistors (which is used in many TL circuit implementations)

straightforward. It has to be noted however that restricting the weights to

integers does not alter the expressiveness of threshold logic [73]. Another

difference is that threshold logic is more suited for the study of Boolean logic

properties (such as symmetry detection etc.) whereas perceptrons are mainly

used to study properties of linearly separable functions.

Since the threshold element and the perceptron are closely linked a

combination of threshold logic and perceptron learning methods can be used

to infer the gene regulation rules from expression data. Another useful

technique used here is a feed-forward threshold circuit. This construction is

useful when more than two discrete levels are used for gene expression. A

single threshold element can be used to describe a multi-output function. In

general n�1 thresholds are needed to implement an n level output function.

Even so, the feed-forward network of threshold gates is used as it simplifies

the integration of perceptron learning into the methodology.

Input Data

The data used to demonstrate the utility of the proposed model is provided as

part of the DREAM2 network inference challenge

(http://wiki.c2b2.columbia.edu/dream). In this chapter the dataset

InSilico1, which is one of the three data sets provided as part of the DREAM2

challenge 4 is used.

The InSilico1 data consists of gene expression data for a cellular

system of 50 genes in different experiments. The data provided is obtained

from three kinds of experiments:
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1. Data from the first set of experiments is gene expression in the steady

state for wild type and heterozygous knock-down strains of each gene.

2. The second set of data is the steady state for wild type and null mutant

strains of each gene.

3. The third set consists of 23 time course experiments in which the

expression of each gene is recorded in discrete time steps (26 for each

experiment). Each experiment differs from the other in the initial state

with which the experiment begins.

The first two data-sets (knock-down experiments) are used to generate

a preliminary gene interaction graph which indicates target genes that are

affected by the perturbation of a gene. This is done by comparing the

knock-down (or null mutant) steady state expression against the wild type

expression. The time course data is then used to generate the threshold logic

model and to construct the final gene interaction graph from the preliminary

gene interaction graph.

Discretizing the Data

The first step in generating the gene interaction graph and building the model

is discretization of the data. The given gene expression is a continuous value.

Using this data a histogram of gene expression of each gene is plotted. Then

the clustering of gene expression in this histogram is used as a guide to

discretize the gene expression values. It was empirically observed that 3

discrete levels were enough for the first two data sets. However, the gene

expression data for the time course experiments was discretized into 4 levels

(chosen again by empirical observation). Discretization has two distinct
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benefits. First is to infer the preliminary gene interaction graph. Continuous

data sometimes varies little between different experiments. These minute

variations may be due to other factors and not necessarily due to the action of

genes. Discretized data provides a better way to compare variations in gene

expression. Secondly, since threshold logic works with discrete inputs and

outputs, discrete data can be used as input data for the model.

Constructing the gene Interaction Graph

After discretizing the data from the heterozygous knock-down and the

null-hypothesis experiments a preliminary gene interaction graph is

constructed. The gene interaction graph has one node for each gene and

directed edges representing interactions between the genes. This is

constructed by comparing the gene expression (when a gene is knocked down

or completely unexpressed) against the gene expression in the normal case

(wild-type). The discretized gene expression from both heterozygous and null

knock down experiments can also be found in supplementary material. These

inferred edges are tentative as the effect of a gene on another can be due to

direct interaction or due to a series of intermediate gene interactions. The data

from the time course experiments is used to infer the final gene interaction

graph.

Inferring Threshold Logic Network from Data

The algorithm uses a combination of threshold logic properties and perceptron

learning techniques to infer a cascade of TEs for each gene. As mentioned

earlier the single perceptron with the step function as the activating function is

identical to a threshold element. The only difference being that in the
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perceptron the threshold T of a threshold element is treated as another input

which is always 1, and whose weight is �T . It is easy to see that this does not

change the function implemented by the perceptron. Perceptron learning

algorithms start out with an initial assignment of weights and iteratively adjust

the weights by use of training data [43]. The assignment of initial weights is

important for the quality of the solution and the time taken to generate it. In

case the perceptron is to implement a function that is not linearly separable, it

generates a set of weights so that the mean square error is minimal. The

perceptron learning algorithm used is the Least Mean Square (LMS)

algorithm [92].

The basic idea of the algorithm is to infer threshold rules that capture

the behavior of each gene using minimal number of inputs (genes). The model

consists of three TEs for each gene. The input of these threshold elements are

other genes. Three TEÕs are needed since the time course data is discretized

to have 4 discrete levels – 0, 1, 2 and 3. The cascade of TEs (feed-forward

circuit) that determine the value of a given gene is as shown in Figure 8.1(a).

If the input combination makes the weighted sum of TE 3 greater than its

threshold the output is 3. If not, TE 2 is used to determine if the output is 2. If

not, TE 1 is used to determine if the output is 1 or 0 (Figure 8.1(b)).

The ideal model will determine the output of each gene accurately for

each gene. However inferring the right model (the right set of TEs for each

gene) may not be possible using the given data. One reason is that there may

be inherent contradictions within the given data. Example: a given set of

inputs may correspond to the gene value 3 in one case and 1 in another.

Therefore the algorithm is designed to minimize the error in inference and not

to eliminate error all together.
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Figure 8.1: A feed-forward threshold circuit that describes a gene in the thresh-
old model.

Another important feature of the algorithm is that it attempts to minimize

the number of input genes required to determine the value of a gene. The

tentative gene interaction graph gives all the genes on which the expression of

a gene may depend. However, not all genes have the same impact. Therefore

the algorithm picks the minimum set of inputs (ones that have the most impact)

that can infer the value of the gene accurately. This is based on the property

that the inputs that have the least weight (known as donÕt care variables)

have the least impact in determining the output of a threshold function [37].

The outline of the algorithm is listed in Algorithm 20. It shows how the

feed-forward circuit of TEs to describe one gene (Gene) in the threshold model

is constructed.

The algorithm uses the time course data to generate correlation values

between any two pairs of genes. Correlation values provide a good estimate

of the weights (it can be shown that in a threshold function the ordering of

input variables by their correlation to the output is the same as the ordering of

variables by their input weights). The perceptron learning algorithm further

fine-tunes the weights (line 8). In line 1 all the genes that have an outgoing
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Algorithm 20: generateT hresholdRule(TCData,correlationData, prelimGIG,Gene)
1: allInputs = Inputs(Gene, prelimGIG)
2: for all level 2 (3downto1) do
3: for all InputGenes 2 (1, length(Inputs(Gene)) do
4: T = guessT hreshold(Gene,noo f InputGenes)
5: currentInputs = allInputs[0 : noo f InputGenes]
6: InputandWeights = [(gi,wi),T ], 8gi 2 currentInputs.
7: * Input weights are assigned as the correlation of the input-output *
8: Rule[Gene][level] =

perceptronLearningAlgorithm(TCData, InputandWeights)
9: if misclassi f ied points > previousmisclassi f ied points then

10: break
11: end if
12: end for
13: end for

edge to Gene in the preliminary gene interaction graph (GIG) are added to the

list allInputs. These genes are sorted according to their correlation with Gene.

Line 2 of the algorithm makes sure that all three TEs are inferred (these three

TEs together form the feed-forward circuit which describes the gene in the

model. The range of level goes from 3 to 1 as the time course data is

discretized into 4 discrete levels – 0, 1, 2, 3). Line 3 is used to progressively

increase the number of inputs until a good TE (one with the least error) is

obtained. In line 4 the initial value of the threshold is decided as the minimum

of all the weighted sums that correspond to level (which is 3, 2 or 1 depending

on the iteration). The loop (line 3 to 11) is exited if the current Rule has more

misclassified points than the rule inferred in the previous iteration. The one

with the least error is the one chosen as part of the TL model to describe the

action of Gene. The rules iteratively get better (have fewer errors) as more

inputs are added (Figure 8.2), but at some point the error increases. This is

when the algorithm stops and uses the TL Rule inferred in the previous

iteration. Example: As shown in Figure 8.2, for G2 gene the algorithm

176



iteratively generates TL rules with 1, 2 and 3 input genes that have the highest

correlation with G2. Since with 3 inputs the error is greater than with just 2

inputs, the algorithm quits and chooses the first two genes to be the input.

When the feed-forward circuit of TEs for each gene is inferred the construction

of the TL model is complete.

Figure 8.2: Determination of inputs to a threshold logic gene function by the
algorithm.

The flow chart in Figure 8.3 describes the steps involved in generating

the threshold logic gene regulation model by using the proposed procedure.

Figure 8.3: Flow chart of the proposed procedure.

Simulation

Once the model is generated it can be used to simulate the biological system

it models. To check the accuracy of the model the time course data is used.
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There are 23 different time course experiments and each starts with a different

initial state of genes. Each case is simulated in the model to generate the

steady state and the transient behavior. This simulated data is then compared

against the actual data.

8.2 Results and Discussion

Validity of Using Threshold Logic to Model Gene Regulation

Since threshold logic is based on assigning weights to inputs it makes the

modeling of gene interaction more intuitive. A gene can affect another gene by

either activating it or inhibiting it [89]. In a threshold element (an element that

implements a threshold logic function) an input that has a positive weight

increases the weighted sum and thus attempts to make the output 1. This is

similar to an activating gene as it too tries to switch on the target gene. If the

input weight is negative then it reduces the weighted sum. This is equivalent

to the action of an inhibitor, which tries to prevent the gene from expressing.

Thus an activator gene can be modeled within threshold logic by using a

positive input weight and an inhibitor can be modeled by assigning it a

negative weight. It should be noted here that an input that has positive weight

occurs in the positive form in the Boolean expression and an input that has

negative weight occurs in the negated form [58]. Below is the biological

reasoning to why threshold logic is a useful model for gene regulatory

networks.

If two genes (say ga and gb) are known to activate another gene gc and

gene ga has more impact than gene gb; the threshold model can use a greater

input weight for ga than gb in order to model this. This level of influence of a

gene on another gene is neither intuitive nor straightforward in the Boolean
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gene model.

As mentioned earlier threshold functions are a proper subset of

Boolean functions. Even so a network of threshold gates can implement any

Boolean function [73]. Threshold functions are also a subset of a class of

functions called unate functions. A unate function is a Boolean function that

has a Boolean representation in which every input variable appears only in the

positive or negated form [40]. For example: ab0+ cd is a unate function since a

appears in positive form a but not in the negated form a0 ; b appear only in the

negated form; c and d appear only in the positive form.

The relation between Boolean, unate and threshold functions is a

follows:

Threshold functions ✓ Unate functions ✓ Boolean functions.

A Boolean function is unate if and only if the negative co-factor is

contained in the positive co-factor (in case of an input occurring in the positive

form) or vice-versa (input in negative form) [40]. Example: Consider the

function F = ab0+ cd. The positive co-factor of F with respect to a is

F(a = 1) = b0+cd. Similarly the negative co-factor F(a = 0) = cd. It is clear that

F(a = 1)✓ F(a = 0). Similarly F(b = 1)✓ F(b = 0).

First it is shown that under the assumption that a gene (say ga) can

either activate another gene (gb) or inhibit it (but never both), the Boolean

function used to represent the interaction of genes is a unate function. The

assumption made is biologically reasonable as a gene inhibits or activates

another gene by binding itself to the regulatory regions of the gene [89].

Hence the same gene when binding to the target gene cannot activate it under
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one condition and inhibit it under some other condition.

Consider a gene gz that is activated by gene ga. Let the set of genes

that affect gz be GI. Therefore the Boolean function of gz will have the

elements of GI as inputs. Consider any input combination where ga = 0 and for

which gz = 1. Now keeping all other inputs intact switching ga from 0 to 1 will

not change the value of gz (since ga is an activator).

Therefore:

gz|(ga = 0)✓ gz|(ga = 1).

Similarly if gb is an inhibitor of gene gz it can be shown that

gz|(gb = 1)✓ gz|(gb = 0).

Therefore the Boolean function gz is a unate function.

It is now argued that the Boolean function representing gene interaction

can be represented using threshold logic. It has been observed that the

degree of separation between any two nodes in any cellular network is very

small [52]. In such a scenario, any gene can inhibit any other gene through a

series of regulatory interactions (which may involve other genes). In the

Boolean representation of the gene function this would mean replacing a gene

by the negation of another gene. We know that in a threshold function F

replacing any variable x by y0 will retain its threshold-ness (i.e it remains

unate) [98]. Since weÕve already shown that gene functions are unate and

any such variable replacements should retain the unateness property, is is

assumed that gene regulatory functions are threshold functions. This

argument only claims that if gene interaction is described by a threshold
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function the assumption that a gene is either an activator or an inhibitor is not

violated. This argument can be improved if it can be shown that a gene

regulatory function has to be a threshold function, if the assumption that a

gene is either an activator or a inhibitor (never both) has to be valid.

The performance evaluation of the model prediction

For this work the InSilico1 data provided in DREAM2 Challenge

(http://wiki.c2b2.columbia.edu/dream) is used to illustrate the utility

of the threshold logic. Since the true model is not known a priori and the

network is not real biological system, no attempt was made to compare the

graphical representation of inferred network. However, the inferred gene

interaction graph is provided in the supplementary material.

Once the model is constructed from experimental data obtained from

time-course experiments, it can be simulated to generate the predicted

behavior which can then be compared the data used [12]. This is a more

difficult problem than inferring the graphical representation of the gene

network since networks with similar graphical representation could lead to

significantly different dynamic behaviors if underlying functional relationships

(rules) are different.

Two types of comparisons are made – the steady state gene

expression and the transient gene expression before reaching the steady

state. The steady states in the 23 experiments of the given data are identical

and are as shown in Figure 8.4. The predicted steady state obtained by

simulating the proposed model is also shown in the Figure. The 23rd time

course data prediction did not match with the actual data for most genes. So

only the steady state obtained for 22 out of the 23 experiments is reported
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(considering the 23rd experiment as an outlier). Some genes attain different

steady states for different experiments. These are also listed in the Figure. It

can be seen from the table that for most of the genes (46 out of 50) the model

could accurately predict the steady state.

Figure 8.4: Actual steady state and the model predicted steady state.

To compare the predicted transient behavior with the actual transient

data, the normalized mean absolute difference of two trajectories for each

gene is calculated as follows:

ei =
E[|gi

p�gi
a|]

di

where gi
p and gi

a are predicted and actual trajectories of each gene,

respectively, and i is the range of the actual trajectory.

In order to verify the correctness of the proposed procedure, a 5-fold

cross validation procedure was employed where the 23 time course

experiments were randomly divided into 5 different groups; the data from 4

groups was used to build the model and the fifth group was used to test it. The

process was repeated 15 times.
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The majority of the genes have less than 2% error. This demonstrates

that the method can be used for modeling a generic cellular system from the

available experimental data and the model will reliably predict the results of

other experiments. Overall error averaged over all genes is 3.39%. Table 8.1

gives a more detailed picture by listing the error range in which each gene lies

(for the cross-validation experiments).

Error < 2% 2 – 5% 5 – 20% > 20% Avg. Error
Genes G2, G3, G5-14, G16, G17, G19-21, G24, G1, G25 G4, G15, G18, G22, G29, G32 3.7%

G27, G28, G30, G31, G33-45, G47-G50 G23, G26, G46

Table 8.1: Error metrics of genes (for cross validation experiments).

To give a better idea about the accuracy of the transient behavior

predicted by the model, it is compared with the actual transient behavior

(shown in Figure 8.5). It shows the plots of the actual and simulated data for

gene G3 and gene G22. These plots compare the actual continuous data

against the simulated discrete data (after it is normalized). As seen from the

Figure, the threshold logic model was able to predict the dynamic behavior of

each gene accurately. A major reason for this accurate prediction is the use of

multi-level threshold logic to capture multi-level discrete states of gene

expressions. Both G3 and G22 genes affect their own expression. This is true

for a majority of genes (> 60% of genes affected their own expression).

In the future it is worth investigating how the accuracy of the model

varies with the number of discrete levels used. As can be seen from Figure 8.5

the predictions generated are systematically ‘faster’ than the actual data. This

could either be because of the number of discrete levels used or it could be

inherent to the threshold model itself. The ability of the presented approach to

model actual biological systems will also be tested in the future. The model
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Figure 8.5: Comparison of the given data with the model generated data.

currently is deterministic. Gene models need to model the inherent

non-determinism that exists in biological systems. The model can be improved

to incorporate non-deterministic behavior.
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Chapter 9

Conclusion

In conclusion, a review of the significant contributions of this thesis is now

presented. Firstly, the thesis addresses the issue of threshold logic design

automation. The main contribution of this thesis lies in the synthesis and

equivalence checking of threshold logic. As illustrated in the thesis an crucial

problem to do this is the identification of threshold functions.

This thesis proposes a novel co-factoring based algorithm to identify

threshold functions. This is an alternative to the traditional ILP formulation.

Since it is a co-factoring based method, it is well suited for a decomposition

based synthesis method. The utility of this method is demonstrated in this

thesis. However, many improvements to the proposed procedure can be

made. Some such improvements include exploring decomposition heuristics

that have not been tested in this work. The thesis also proposes 3 other

synthesis methods and a novel equivalence checking method.

The second half of the thesis deals with the demonstration of threshold

logic as a viable model to understand gene regulation and other complex

biological processes. The thesis demonstrates the relevance of threshold logic

for this purpose by modeling the embryo development in Drosophila. The

model proposed could also model other gene systems (like the one provided

by the DREAM2 contest). The largest system tested and validated in this work

is one with 50 genes. In the future the model could be applied to larger gene

systems. Other model enhancement, like non-deterministic behavior and the

effect of external conditions can also be incorporated into the model.
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