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ABSTRACT  
   

The living world we inhabit and observe is extraordinarily complex. 

From the perspective of a person analyzing data about the living world, 

complexity is most commonly encountered in two forms: 1) in the sheer 

size of the datasets that must be analyzed and the physical number of 

mathematical computations necessary to obtain an answer and 2) in the 

underlying structure of the data, which does not conform to classical 

normal theory statistical assumptions and includes clustering and 

unobserved latent constructs. Until recently, the methods and tools 

necessary to effectively address the complexity of biomedical data were 

not ordinarily available. The utility of four methods--High Performance 

Computing, Monte Carlo Simulations, Multi-Level Modeling and Structural 

Equation Modeling—designed to help make sense of complex biomedical 

data are presented here. 
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CHAPTER 1 

INTRODUCTION 

Introduction: 

Berman defined biomedical informatics as, “the branch of medicine 

that combines biology and computer science” (Berman 2007). Musen & 

Van Bemmel suggested that the pervasive cognition that computers are 

the predominant focus has contributed to a “tendency to define any 

activities with heavy computer focuses as informatics” (Musen and Van 

Bemmel 2004). For years there was a strong push to see computers in 

biomedicine as a predominant focus in biomedical informatics (Shortliffe 

and Cimino 2006). 

While computers are highly useful tools, they are not solutions to 

biomedical problems in and of themselves. Having large well curated 

collections of information that can be easily exchanged and shared is 

useful only insofar as we can analyze the data and make sense of what it 

means. Absent the ability to effectively analyze biomedical data, the 

potential for making advancements in medicine is unrealized. We need to 

be able to decode an understand what the vast amounts of biomedical 

data mean in order to develop new diagnostic screening tools for disease, 

clinical decision support systems or guidelines for addressing specific 

public health problems.  

Despite the ever growing need to analyze biomedical data, the task 

is especially challenging in biomedicine because of the size and 
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complexity of the data. Cios and Moore specifically discuss the 

uniqueness of biomedical data compared to other fields and note that 

“researchers in other fields may not be aware of the particular constraints 

and difficulties of the privacy-sensitive, heterogeneous, but voluminous 

data of medicine” (Cios and Moore 2002). Additionally, Cios and Moore 

also note that the “mathematical understanding of estimation and 

hypothesis formation in medical data may be fundamentally different than 

those from other data” (Cios and Moore 2002). National Institute of 

Heath’s Common Fund which is part of the Division of Program 

Coordination, Planning and Strategic Initiatives (DPCPSI) suggests that 

while there are many new challenges in dealing with biomedical data that 

“at the core of the challenge [today] is one of “big data” where handling 

and working with complex data at a large scale is both quantitatively and 

qualitatively different than at a smaller scale” (NIH 2011).  

As a result, there is a need to develop, adapt and disseminate 

methods to help address challenges and complexity inherent in modern 

biomedical data. In this dissertation, four methods, High Performance 

Computing, Monte Carlo Simulations, Multi-Level Modeling and Structural 

Equation Modeling that help address challenges posed by complexity in 

biomedical data are described in the context of their application to specific 

real-life problems. 

Origins and Nature of Complexity: 
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Complexity in modern biomedicine is a product of 1) millions of 

years of complex evolutionary change and 2) advancements in technology 

which enable the generation and storage of massive quantities of data 

(Crick 1988). (Cios and Moore 2002) (NIH 2011).  

The notion that biomedical data has become increasingly complex 

has become a major theme among premier scientists in the past few 

decades. Dr. Francis Crick, a co-discovered the double helix structure of 

DNA and among the most influential scientists of the 20th century, was one 

of the first to articulate this theme. The preface for his 1988 book, “What 

Mad Pursuit” specifically states that “science in [the 20th] century has 

become a complex endeavor” (Crick 1988). In the book, Dr. Crick expands 

further on the notion of biomedical research being complex with the 

recurrent argument that, “while Occam's razor is a useful tool in the 

physical sciences, it can be a very dangerous implement in biology. It is 

thus very rash to use simplicity and elegance as a guide in biological 

research” (Crick 1988). Dr. Crick suggests that part of the reason for the 

inherent complexity in the biological sciences and its lack of grand 

theories is a product of evolution. While biologists have ‘laws’ such as 

Mendelian inheritance, these are not nearly as precise or accurate as, for 

example, the theory of relativity. In physics, the laws were set from the 

start and are not the product of incremental change over time. In biology, 

what we observe is the product of millions of years of sequential 

evolutionary changes with each change or adaptation built upon the 
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previous (Crick 1988). Dr. Crick urges us to consider that while the end 

product is not always the most efficient system possible, nature had to 

build sequentially on what was already there to obtain the complex end 

result we see today.  

Numerous noteworthy scientists have directly commented positively 

on Dr. Crick’s views. For example, Phillip Anderson, who won the 1977 

Nobel Prize in physics for his work on the electronic structure of magnetic 

and disordered systems which paved the way for many modern computing 

systems, specifically said that as a general principle for “learning the truth 

about the world around us, Crick’s words are as good a guide to that end 

as I have seen” (Anderson 1990). 

 Adding to the inherent complexity of the natural world that Dr. Crick 

and others discuss are the explosion in the physical amount of data about 

the natural world and its structure that is spurred on by advances in 

computers and technology (Cios and Moore 2002) (Chen, et al. 2010) 

(Shortliffe and Cimino 2006). For example, the microarray is a relatively 

new technology used to measure genomic and proteomic properties of an 

organism which has massively increased the size of data. It is common for 

current generation microarrays to have tens of thousands to over a million 

data points on each array or for each subject or individual organism 

present in the study design (Brown, et al. 2011) (Affymetrix 2012). 

Secondly, database systems, information transfer technologies and the 

availability of inexpensive storage solutions are some factors which have 
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contributed to an increasing number of dedicated data repositories which 

collect, integrate and when agreed upon share data or results. A few 

examples includes the Center for Health Information and Research which 

contains information on millions of patients and tens thousands of doctors 

in Arizona or the National Cancer Institute’s Cancer Biomedical 

Informatics Grid known as caBIG which collects and shares data from 

over 700 cancer research institutions (Johnson, et al. 2011) (Nationanl 

Cancer Institute 2012). The massive quantity of data produces a 

significant computational challenge to be able to efficiently analyze the 

data.  

Large datasets, including those from microarray experiments and 

data repositories can lead to further complexities in the data such as the 

presence of multi-level structures. Also, many modern statistical methods 

are iterative and take many cycles to complete which compound the 

computational burden associated with voluminous amount of data. 

(Muthen and Muthen 2011).  

Overview of Methods: 

The dissertation is divided into four chapters: high performance 

computing methods, Monte Carlo Simulations, multi-level modeling and 

finally structural equation modeling. The first two chapters describe near 

universal methods which help facilitate any quantitative analysis in 

biomedicine. The third chapter serves as a transition and shows that 

newer and more complex modeling approaches are necessary to obtain 
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accurate results; such as when clustering and multi-level structures exists 

in the data. In addition, the multi-level modeling chapter also shows that 

newer modeling approaches to address complexity in biomedical data also 

allow researchers the ability to investigate relationships not possible with 

simpler models. The fourth chapter on structural equation modeling 

extends the notion that newer methods are often necessary to fully 

understand complex data and shows how structural equation modeling 

allows researchers new opportunities to develop diagnostic tests and to 

model unobservable latent constructs.  

High Performance Computing Overview: 

The high performance computing chapter lays out a number of 

methods and tools which are highly and nearly universally applicable to 

address problems of large data in biomedicine. The high performance 

computing methods presented in chapter 2 help address the informatics 

challenges of managing large data as well as physically running the large 

number of computations that are often necessary in an efficient fashion. 

This chapter details the use and benefits of database connectivity, pipeline 

parallelism, multi-core processing and distributed multi-core grid 

processing. This chapter is not meant to be an exhaustive treatise on 

computer science solutions to big data problems. Not only does the 

chapter not address every computer science challenge to big data, the 

scope in which they are examined is tailored towards individuals 
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performing quantitative analysis of biomedical data. The topics presented 

were also used to facilitate the utilization of the other 3 method chapters. 

Secondly, much of the literature on topics such as parallel 

processing is not tailored towards analysts and much of the relevant 

information is scattered throughout a number of different sources (ie. SAS 

manuals for example). The goal here is to present a number of tools, 

explain their utility and provide scripts and examples to help facilitate their 

implementation. The concrete examples and scripts that are included are 

focused at quantitative analysts and designed to make using such 

methods easier for many analysts.   

Monte Carlo Simulations Overview:  

This chapter advocates for broader use of Monte Carlo simulations 

in order to assess whether the models being used give accurate results as 

well as to pick the best alternative when one model fails.  Many statistical 

assumptions such as homogeneity of variance (equal variances between 

two groups (Cohen, et al. 2002) (Keppel and Wickens 2007)) are 

commonly, and sometimes by design, egregiously violated in biomedical 

data (Quackenbush, Causton and Brazma 2003). It is impossible to make 

sense of biomedical data and to make scientific advances if the statistical 

models a researcher is using do not giving accurate answers. The 

problem of inaccurate models is exacerbated by big data.  A Monte Carlo 

simulation is a method for testing mathematical models in which a large 

number of datasets are randomly generated to mimic a given set of 
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properties. A model is then tested on each random dataset and the results 

are recorded to gain insight into model behavior. Given the complex 

nature of biomedical data, Monte Carlo Simulations are an indispensable 

method to help confirm that on average over repeated sampling the 

results obtained from an analysis are accurate.    

Although Monte Carlo simulations have been a defacto standard for 

validating new statistical models for decades, the computational demands 

have largely kept them from being more widely used in routine statistical 

analyses (Fan 2002). Since many modern methods such as maximum 

likelihood are iterative there is no analytic solution to derive and 

simulations are the only way to determine model performance (Fan 2002) 

(Rubinstein and Kroese 2007). While it is advocated for a wider more 

general use of Monte Carlo simulations, even in smaller biomedical data 

sets when assumptions are not met, the even larger challenge today is 

comes from big data. Given the size of many modern biomedical datasets 

the question is not just restricted to which method will perform well under 

one specific set of conditions (ie. one pairwise contrast), but rather which 

will perform best over multiple comparisons across the entire range of 

data. With modern microarrays or databases containing population health 

information where tens of thousands or millions of observations are 

available, there may likely be a large spread in variances or adherence to 

model assumptions across the range of statistical contrasts. As a result, 

the question with big data becomes not which model is most accurate for 
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any single contrast but which model is most accurate across the entire 

surface and range of responses in the data that will be taken into account.  

One major challenge with big data is physically running the tens of 

thousands or millions of statistical tests so advocating running equality of 

variance tests on every observation is not realistic; even with the HPC 

methods that are presented in chapter 2 to help. Rather, sampling 

methodologies are suggested as an alternative. Depending on the 

structure of the experimental design, simple random sampling, stratified 

random samples, cluster randomized or even a multi-stage probability 

sample of a small portion of the data can be drawn. From this smaller and 

manageable subsample, screening tests on the data can be run and a 

Monte Carlo simulation can be created to determine the best method 

given the structure and surface of the dataset.  

While sampling methodology helps reduce computational demands, 

HPC implementations for Monte Carlo simulations are presented to help 

make Monte Carlo simulations themselves possible as a part of general 

research routine and process flow. Single core and parallel processing 

SAS macro programs and templates are provided to help users more 

easily perform Monte Carlo simulations. 

Multi-Level Modeling Overview: 

This chapter demonstrates the proper use of Multi-Level modeling 

to address the complex problem of clustering in biomedical data with the 

real world example of modeling adherence to treatment. In addition to 
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general correction for clustering, the chapter also illustrates the effective 

use of centering and how variance components estimated at the unit of 

observation and at the unit of clustering can be analyzed to help unravel 

the complexity in biomedical data. 

Unlike violations of homogeneity of variance discussed extensively 

in the Monte Carlo simulation chapter, it is well understood and agreed 

that multi-level modeling is the correct approach to take to deal with 

violations of independence of observations. (Raudenbush and Bryk 2001) 

(Cohen, et al. 2002) (Tabachnick and Fidell 2006). The assumption of 

independence assumes that each observation is uncorrelated with or 

independent of every other observation in the dataset. The primary way in 

which this assumption is violated is when clusters or nesting exist within 

the dataset. This sort of clustering or nesting is pervasive in modern 

biomedical datasets; especially those derived from databanks. A few of 

the more commonly encountered biomedical clustering problems are: 

doctors are nested within hospitals, patients are nested within doctors, 

tissue samples might be nested within lab if a research group obtains 

samples from multiple tissue banks or repeated measures within the same 

patient such as blood tests over the course of time. Even very small 

violations of independence can lead to dramatically inflated type 1 error 

rates (Raudenbush and Bryk 2001). 

Stulberg et al. 2010 used a multi-level model to control for 

clustering created by taking measurements across multiple hospitals and 
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Mills et al. 2006 used multi-level modeling to account for regional 

clustering in the sampling design across geographic regions (Stulberg, 

Delaney, et al. 2010) (Mills, et al. 2006). Wile there are numerous 

examples of multi-level modeling being used in premier journals such as 

JAMA, there are also examples in which no metion of efforts taken to 

control for possible clustering. Parker et al. 2009 propose a possible gene 

signature for breast cancer samples but they use samples from two 

distinct sample types fresh frozen and parrifin fixed formalin embedded 

(FFPE) which come from 5 different cohorts (Parker, et al. 2009). Across 

the many different comparisons performed, there is no mention of 

clustering in the paper. While the probablity does exist that the effect was 

neglegible, this is highly unlikely. Personal research not discussed in detail 

in this dissertation found that with similar breast cancer samples from 

multiple cohorts exhibited intraclass correlations (a measure of clusering) 

in excess of 0.6 (Seliegman and Brown 2011).  

Additionally, although multi-level modeling is sometime used when 

necessary, many papers in biomedicine such as Stulberg, Delaney, et al. 

2010 or Mills, et al. 2006 are uninterpretable because they omit key 

information about the model estimation and specification such as how the 

variables were centered. This is because the complex relationship 

between an independent predictor and dependent variable is comprised of 

variability at the unit level of observation as well as at the cluster or 

grouping level. Variability can be partitioned in different ways based on the 
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research question of interest. The researchers decisoin on how to partition 

variance determines the interpreatation of the paramter estimates 

(Raudenbush and Bryk 2001) (Enders and Tofigi 2007). Without knowing 

critical model specifications such as centering, it is impossible to 

accurately interpret the paramete estimates and to know if the model 

estimated is confounded (Raudenbush and Bryk 2001) (Enders and Tofigi 

2007).  

While using multi-level modeling to correct for clustering is a useful 

and necessary procedure, multi-level modeling provides a plethora of 

additional information beyond simply correcting for the structure in the 

data which does not meet certain statistical assumptions. Most authors in 

biomedicine, Stulberg and Mills included do not make use of the additional 

information and estimates provided generated when running a multi-level 

modeling. The extra complexity of multiple levels of clustering also 

provides additional sources of information and is something that helps us 

better unravel complexity. In multi-level modeling the equations and 

variance components are estimated separately for each level of a given 

cluster. One example of the utility of this which is presented later is that 

this approach allows us to estimate the relative amount of variability in 

adherence to medical treatment for doctors and patients separately. Multi-

level modeling is generally underutilized in biomedicine and when it is, it is 

almost exclusively used to correct for clustering rather than using the 

additional complexity to help better explain the world around us. 
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Structural Equation Modeling Overview: 

The final chapter focuses on structural equation modeling in 

biomedicine. The modeling approach described here addresses another 

situation where simpler modeling approaches do not fully capture the 

richness of the data and complexity of the natural world. Multi-level 

modeling is a mathematical subset of structural equation modeling. The 

origins of structural equation modeling date back to path analysis in the 

1920’s. Innovations in computer processing combined with the 

development of algorithms, such as estimation maximization (EM), that 

help efficiently perform maximum likelihood estimation have led to an 

increased popularity of structural equation modeling in many areas of 

research especially in the social sciences. Structural equation modeling is, 

however, relatively underutilized in biomedicine.  

In the few cases where structural equation modeling is used, the 

authors often specifically advocate for wider use of the method (Dahly, 

Adair and Bollen 2009). Tu 2009 argues more generally for expanded use 

of structural equation modeling as a potentially highly useful tool for 

advancing epidemiology and biomedicine (Tu 2009).  

One aspect of structural equation modeling which is especially 

useful in biomedicine is latent variable modeling. Often times the specific 

objects or theory of interest are measured indirectly. For example, peptide 

microarrays use random 20mer peptides to indirectly measure the 

presence and activity of antibodies in a sera sample when a part of the 
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antibody binds to one or more of the peptides on the array. Simple analytic 

methods such as a t-test, analysis of variance or logistic regression can 

determine if there are differences in expression of a peptide between 

groups but cannot tell us anything about the entire antibody of interest. 

Structural equation modeling provides a framework to not only infer which 

peptides might represent binding of a single antibody, but also provide 

detailed information about the latent antibody itself; such as how the 

antibody might correlate with disease status. This chapter describes latent 

class modeling of peptide data.  Additionally, it demonstrates how latent 

class modeling can be useful as a medical diagnostic algorithm. 

Discussion: 

In summary, millions of years of sequential evolutionary pressure 

and random variation, each building upon the last, has helped to create 

the complex living world we inhabit and observe today (Crick 1988). 

Additionally, modern technological advances, primarily via computers, 

have created many additional complex challenges stemming from big 

data. Four methods, high performance computing, Monte Carlo 

simulations, multi-level modeling and structural equation modeling are 

presented to help address challenges posed by complex modern 

biomedical data. Furthermore, while simpler analytic methods can be a 

good starting points, there are many occasions in which more complex 

modeling techniques are necessary to obtain accurate results. The more 

complex models explored estimate new parameters and allow researchers 
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to investigate relationships between variables and better unravel the 

complexity in modern biomedical data in ways not possible with more 

simplistic models. The hope is that the methods demonstrated in this 

dissertation will help accelerate the pace of biomedical discoveries; which 

will in the end help to ameliorate the quality of life for countless individuals.   
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CHAPTER 2 

HIGH PERFORMANCE COMPUTING METHODS IN SAS 

Chapter Overview: 

 This chapter presents four high performance computing methods: 

database connectivity, pipeline parallelism, multi-core parallel processing 

and distributed grid parallel processing. These methods are presented to 

help analysts cope with 1) the voluminous nature in physical size of 

modern biomedical datasets and 2) the computational increases 

associated with iterative algorithms which are common in many modern 

statistical models. Program code and example syntax is provided in SAS 

because it is the most widely used statistical analysis program in the 

world. Analytic results are presented that demonstrate the dramatic 

decrease in computational time from using these methods.   

Problem Abstract:  

Modern technological advancements such as microarrays and 

database technology have led to an explosion in the amount of data that 

must be or is available for analysis. This explosion of data has made it 

difficult to physically do all of the computations necessary to process large 

datasets or to run interactive models in a reasonable time frame. A 

number of computer science methods exist to help deal with the physical 

processing constraints. Unfortunately, many of these methods, such as 

parallel processing and distributed grid computing, require highly 

specialized computer science skillsets which many average analysts lack. 
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The goal of this chapter is to provide a set of templates and tools that 

allow average analysts the ability to easily and more efficiently make use 

of high performance computing methods. The use of database 

connectivity, pipeline parallelism, multi-core parallel processing, and 

distributed grid computing are described as tools to help process the large 

quantities of data in modern biomedical datasets.  It is shown how using 

such methods reduce dramatically the storage needs and the time needed 

to analyze complex and voluminous biomedical data.  

The methods are demonstrated using SAS. SAS was chosen 

because it is the world leader in analytic software. SAS analytic software 

is used by more than 55,000 sites including businesses, governments and 

universities in 129 countries. Additionally more than 90% of the Fortune 

Global 500 companies use SAS (SAS Institute 2012). Presenting these 

methods in SAS provides a common language and platform through which 

many analysts are already familiar; thus making the methods accessible to 

as large a group of analysts as possible.  

Background: 

The use of relational databases to store data has been well 

documented (Elmasri and Navathe 2006). Some of the reasons for storing 

data in relational databases are: improved retrieval of information, 

elimination of redundancy and reduction in storage space needs, and the 

potential for integrating multiple forms of data quickly and easily. Many 

text books such as those published by Elmasri & Navathe and Shortliffe & 
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Cimino specifically discuss these benefits of storing biomedical data 

(including genomic data) in databases (Elmasri and Navathe 2006) 

(Shortliffe and Cimino 2006). Beyond the many general discussions of the 

benefits and general strategies, authors such as Corwin, Siliberschatz, 

Miller & Marenco propose very specific database solutions such as the 

use of dynamic tables for storing biomedical data in relational databases 

(Corwin, et al. 2007).  

The one thing that is usually missing from the discussion of 

relational databases in biomedicine is commentary on integrating 

databases with analytic software such as SAS. Having large well curated 

databases that are optimally normalized, can be easily exchanged and 

shared seamlessly across platforms is useful only insofar as the data can 

be analyzed and interpreted. An external program is almost always used 

to analyze the data and if a researcher cannot easily integrate the data 

with a database, many of the efficiencies and gains from a database are 

lost. Database connectivity is a fairly simple technology implemented in 

many programs such as SAS, SPSS, MATLAB and others. Connecting an 

analytic program directly to a database speeds up the process by not 

requiring the output of a flat file (such as a .csv or excel file) to the be 

loaded into an analytic program, reduces potential errors in exporting and 

importing as well as reducing storage size on disk necessary for 

replicating database information in flat files. Unfortunately, the benefits 

and process of database connectivity is not always explained in a 
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straightforward way to end analytic users (Shamlin 2009) (Stokes, 

Bradstreet and Hill 2002). 

Another highly useful tool is parallel processing and distributed grid 

processing. There has been a large focus in the biomedical literature on 

high performance computing (HPC) focuses on supercomputing clusters. 

In addition to technical papers, companies such as Cray and IBM 

extensively market to the biomedical community while many research 

institutions such as Arizona State University offer training on how to use 

HPC environments. Unfortunately HPC clusters are not available to many 

researchers or institutions and programming in an HPC environment 

requires an additional highly specialized skill set (Hager and Wellein 

2010). While many analytic programs offer some level of parallelization, 

this dissertation specifically focuses on SAS.  

Part of the reason for focusing on SAS or an analytic package 

generally is because the complex mathematical operators of modern 

statistical methods are already implemented. While one could theoretically 

program his or her own maximum likelihood and estimation maximization 

algorithm to perform structural equation models in a language 

understandable to a HPC system, the difficulty and time necessary to do 

so would be quite high. SAS offers a number of modules to help 

implement parallel processing in an easy and efficient fashion. Integrating 

them into a workflow can dramatically reduce the time needed to perform 

computationally intensive analyses.  
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Modern analytic packages such as SAS have become so large that 

even individuals who have used such programs for years are unaware of 

many of the HPC related features which have shown up in recent years. In 

addition, even when many researchers are aware they exist, some do not 

immediately recognize the benefits they provide to the biomedical 

community and many often assume that they are so complex that their 

use will be difficult. Most of the literature on the application and use of 

HPC parts of SAS are contained in their technical manuals and SAS User 

Group International (SUGI) publications.  

The technical manuals are complex to understand and not well 

organized. HPC applications are spread across multiple different SAS 

applications requiring the user to often consult multiple manuals. Also, 

within each manual, key details needed to perform simple processes are 

scattered about and not well documented; even for those who are 

experienced in using such applications. SAS User Group International 

(SUGI)/SAS Global Forum publications are somewhat more useful. 

However, they do not always focus specifically on applications in 

biomedicine. There are some excellent SUGI publications such as 

“Threads Unraveled: A Parallel Processing Primer” which gives an 

excellent description of parallel processing (Shamlin, Threads Unraveled: 

A Parallel Processing Primer. 2004). However, such publications give no 

details on how to implement such processes in SAS. Conversely, there 

are other HPC related papers which do give technically correct 
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descriptions, are sometimes brief , leave out many key features and do 

not make concrete conceptual links (Stokes, Bradstreet and Hill 2002). For 

example, good parallel processing primers rarely are extended to include 

distributed grid computing and grid computing primers (or technical 

manuals) almost completely omit any discussion of multi-core parallel 

processing. Also, most grid computing or papers which address scaling 

out are focused on sending processes to remote machines focuses almost 

entirely on dedicated servers.  

The goal is to provide a context within which the processes 

presented can be useful to biomedical researchers as well as design 

templates to make it easier for analysts to more easily implement such 

features. Furthermore, with the prevalence of multi-core chips in almost 

every computer hardware application today, it is believed that a much 

more informative discussion of how to layer multi-core parallel processing 

with distributed grid computing is needed. This is because remotely 

submitting a job to a modern platform will almost always be going to a 

multi-core system. Taking advantage of the ability to scale out to a grid 

cannot be fully utilized without also being able to ensure the process will 

be processed in parallel once it reaches the grid or other machine. These 

computer tools, while not solutions to unraveling the complex world 

around us in and of themselves dramatically increase the performance 

and efficiency of quantitative analyses of biomedical data.  
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A few key HPC related processes which are highly useful for 

addressing current computational challenges in biomedicine are selected. 

The goal is also to provide a context within which the processes we 

present can be useful to biomedical researchers as well as how to simply 

implement them. Furthermore, with the prevalence of multi-core chips in 

almost every computer hardware application today, we believe that a 

much more informative discussion of how to layer multi-core parallel 

processing with distributed grid computing is needed. This is because 

remotely submitting a job to a modern platform will almost always be going 

to a multi-core system. Taking advantage of the ability to scale out to a 

grid cannot be fully utilized without also being able to ensure the process 

will be processed in parallel once it reaches the grid or other machine.  

Methods: 

Database Integration and Interfaces: 

 The concept of database integration ostensibly deals with 

connecting an analytics package directly to a database management 

system (DBMS) such as MS SQL, MySQL, Oracle or others. Database 

systems provide a number of benefits for the efficient storage and 

management of data – efficient use of storage space, data security, 

streamlined information persistence and retrieval workflow, rapid data 

retrieval through the use of indexes, etc.   

 The SAS package that enables users to make database 

connections is SAS/ACCESS. SAS/ACCESS is comprised of a collection 



  23 

of interfaces. Although all interfaces operate in a similar way, each 

interface is specifically designed to connect to or work with a specific 

DBMS. Ostensibly the way SAS/ACCESS works is by translating SAS 

commands into the language of the specified DBMS. The request is then 

sent in the appropriate language, usually a variant of Structured Query 

Language (SQL), to the DBMS and the data is returned to the SAS 

system. There are two primary ways of connecting to a database. One 

method is by using the SAS/ACCESS library engine and libname 

statement. The second method to access a DBMS is via the pass-through 

facility. Each of these methods has its own advantages and 

disadvantages.  

 When utilizing the library engine in SAS to interface with the 

database, performing operations on data is much more straightforward 

and usually requires less code to access data. A single libname statement 

is sufficient to access data. In this respect, when specified properly, 

accessing a table in a DBMS is the same as accessing any other file in a 

SAS library. The benefit of this is that an end user does not need to know 

SQL or anything about databases to work with the information they need. 

The advantage to using the pass through facility is that it more robust for 

optimizing queries when joining multiple tables or using summary 

functions. The pass through facility can also make use of indexes placed 

on columns in the DBMS in order to process queries faster. Furthermore, 
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unlike, the library access method, pass through is able to accept more 

than just ANSI standard SQL.  

 Database connectivity technology can be useful is for various types 

of biomedical data and studies, e.g., microarray studies or in public health. 

Microarrays are widely used in genomic and proteomic research. 

Depending on the array type and study being conducted, a microarray can 

take anywhere from hundreds to millions of measurements from a 

biological sample. Within a specific study, measurements are usually 

taken from multiple individuals and thus produce large amounts of data; 

sometimes multiple gigabytes or even in excess of a terabyte. These data 

are commonly stored in databases, which provide an efficient mechanism 

for managing the large data sets.  Without using a database interface, in 

order to extract meaning from the microarray data, usually by performing 

statistical analysis or data mining, data would have to be exported from 

the DBMS. This creates two sources of inefficiency. First, it takes up hard 

drive storage space by creating flat text files (usually the type used by 

statistical analysis programs) with redundant information. Secondly, it 

takes time to export data and then import it into an analysis program such 

as SAS. The export/import process creates a significant bottleneck in the 

workflow process. Furthermore, exporting and importing data multiple 

times creates more possibilities for data integrity to be compromised.  

 An additional benefit is that database interfaces reduce the burden 

on IT and database maintenance staff. This is because once an IT person 
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sets up a database connection with a library reference engine, 

subsequently an end user or analyst is able to access information straight 

from the database without having to wait for IT to export for them a file 

from a database. Beyond this, there is no recurring need for an IT person 

to export a new dataset every time an update is made to the database. 

The analyst can simply access the database via a library in SAS and 

perform an analysis; thus streamlining workflow. Although there will 

probably be relatively little updates to the data made with microarray 

studies, an insurance company, hospital or public health entity may have 

updates to their database multiple times a day. Directly interfacing with a 

DBMS will help approach real time data analysis.  

 The process of physically integrating SAS/ACCESS with a 

database is quite simple. Once the ACCESS module for a specific 

database is installed a user can set up a database connection with syntax 

or point and click. To point and click, right click in the library window and 

click “new”.  

In the engine pull down box, select the SAS/ACCESS engine for 

the database that a connection will be established with. Then fill in the 

necessary fields (in this case user name, password, database, server, port 

as well as other SAS specifiable options). Finally, click ok to create a new 

library containing the database information. The enable at startup box will 

automatically load the specified DBMS connection every time a user starts 

SAS. 
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 The following is example syntax and reference code for 

syntactically connecting to a MySQL database: 

 Libname user_specified_library_name  mysql user=user_name-

password=user_password database=user_database_name_to-

_connect_to server=mysql_server_name

 port=port_to_connect_to_mysql_database; 

 run; 

 quit; 

The italicized portions are generic placeholders which a user would 

fill in to syntactically make a connection. The; and run and quit commands 

are parts of the SAS programming language. Tables in a database can be 

pulled simply using the library and file name syntax. PROC SQL can also 

be used to join tables and extract complex sets of data. 

High Performance Computing Methods: 

 In addition to more robust data management procedures such as 

using databases, there are a number of simple coding and programming 

methods that can dramatically reduce the time needed to perform 

computationally intensive analyses. With terabytes of biomedical data 

being generated, the length of time required to effectively analyze this 

amount of data with traditional single thread processing can be very large. 

Additionally, many processes in biomedicine lend themselves nicely to 

parallel processing. For example, peptide, genotype and gene expression 

microarray data often necessitate repeating analyses tens of thousands or 
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millions of times for each measurement on the chip. Public health data 

often requires repeating the same analyses on different datasets or 

separately for different subpopulations. Biomedical data across multiple 

domains may require running similar analyses under different assumptions 

or model specifications. Beyond repetition of tasks, any program in which 

individual pieces can be processed simultaneously or all of the data from 

one step is not needed for the next step to start (ability to overlap). High 

performance computing (HPC) methods presented can be of use. 

Since most new computers today make use of multi-core 

architecture, using the methods presented will help to make full use of the 

resources available to researchers without requiring a large financial 

investment in hardware. The sections below outline some of the HPC 

implementations available in SAS.  In SAS, pipeline parallelism, multi-core 

parallel processing and distributed grid processing are all features of the 

SAS/Connect package. Much of the syntax between these three 

processes is structurally quite similar. All three can be mixed and matched 

to best suit the needs of a given project. Additionally, all of these methods 

can be implemented when reading data from a database as described 

above. Although this dissertation focuses on SAS, again, other analytic 

programs are capable of doing similar things. The focus and goal is to 

illustrate a number of methods that are becoming more commonplace in 

analytic packages that can be highly useful to biomedical researchers 

without the need for a highly technical programming background. 
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Pipeline Parallelism: 

The first of the high performance computing related methods we 

will explore is pipeline parallelism. In its simplest form, pipeline parallelism 

uses TCP/IP ports on a computer to ‘pipe’ output from a process or step to 

a subsequent process or step in an analysis.    

Pipeline parallelism provides a number of advantages. First, and 

most obvious, is that this reduces intermediary writes to a hard drive. This 

is significant because writing large quantities of data to a hard drive and 

having to subsequently read it, is often one of the slowest steps in an 

analysis. This is because hard disk input/output (I/O) is usually orders of 

magnitude slower than processing data in memory. A second benefit of 

pipeline parallelism is the ability to process sequential processes in a 

more parallel fashion. Often times subsequent steps in an analysis do not 

need all of the information from the previous step to start working. For 

example, on a peptide microarray, thousands of regression models may 

need to be run to analyze the significance of each peptide and a 

subsequent step may be to merge all of the results into a single data file. 

The merging or union of the individual results step does not need to wait 

for the thousands of individual regressions to finish before starting. By 

using pipeline parallelism, regression outputs as they finish can be piped 

directly into a data step merging the results. 

 Despite the benefits of pipeline parallelism, there is a cost 

associated with it. For each pipe, there is an associated signon and signoff 
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process. Signon and signoff commands initiate and stop, respectively, 

links between local and a remote SAS sessions. Actions such as data 

steps piped to a sort procedure can be accomplished very efficiently with 

pipeline parallelism. Although looped regression equations and other more 

complex models can sometimes can benefit pipeline parallelism, the 

tradeoff between traditional read and write times need to be balanced 

between signon and signoff times. Generally, the larger the output form a 

given process, the greater the increase in overall performance will be. This 

is because the cost of a signon and signoff tasks relative to the overall 

process is reduced. With process producing large output, piping can often 

be more efficient than other methods of aggregating data; such as 

merging the data afterwards or a loop to run multiple SQL union 

procedures. Also, output from one process can be used as input in a 

subsequent process when building complex algorithms. A number of 

factors such as model complexity, amount of data being piped, overall 

memory utilization and overall computer load all likely play a role in 

determining the overall performance of piping; especially when piping 

output from one analytic procedure into another. 

 In the sample syntax below, three regression equations are 

performed and the output is piped into a single dataset as they are 

completed. The options autosignon=yes command is used to have SAS 

automatically open a TCP port for piping rather than having to specify 

signon task1, etc. The rsubmit statement is the basic SAS command for 
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remotely submitting a command, e.g., to open a port, to a specific 

processor or another machine. Wait=no tells SAS to execute the 

command immediately. Sysrputsync=yes is used if one was to nest this 

inside of a macro. This ensures that the macro variables would be 

updated. The SASCMD is a command used to specify options related to 

the remote submission.  Each rsubmit statement is closed with an 

endrsubmit statement. Everything nested between these two bocks is 

what is remotely submitted.  

Optionsautosignon = yes; 
 
rsubmit task1 wait=no sysrputsync=yes SASCMD="!SASCMD"; 

libname out1 sasesock":9001"; 
libname simtemp "c:\simtemp"; 
 
proc reg data=simtemp.ttest COV OUT 
OUTEST=out1.tstats1 tableout MSE; 
model class = score1; 
run; 
quit; 

endrsubmit; 
 
rsubmit task2 wait=no sysrputsync=yes SASCMD="!SASCMD"; 

libname out2 sasesock":9002"; 
libname simtemp "c:\simtemp"; 
 
proc reg data=simtemp.ttest COV OUT 
OUTEST=out2.tstats2 tableout MSE; 
model class = score2; 
run; 
quit; 

endrsubmit; 
 
rsubmit task3 wait=no sysrputsync=yes SASCMD="!SASCMD"; 

libname out3 sasesock":9003"; 
libname simtemp "c:\simtemp"; 
 
proc regdata=simtemp.ttest COV OUT 
OUTEST=out3.tstats3 tableout MSE; 
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model class = score3; 
run; 
quit; 

endrsubmit; 
 
rsubmit task4 wait=no sysrputsync=yes SASCMD="!SASCMD"; 

libname in1 sasesock":9001"; 
libname in2 sasesock":9002"; 
libname in3 sasesock":9003"; 
libname simtemp "C:\simtemp"; 
 
data simtemp.final_merged; 
set in1.tstats1 in2.tsats2 in3.tstats3; 
run; 
quit; 

 
endrsubmit; 

 
signoff task1; 
signoff task2; 
signoff task3; 
signoff task4; 
 

 Within the rsubmit block, we need a unique name for each remotely 

submitted process. In this case, task1 task2, andtask3 are used. The 

libname statements are ostensibly what define the syntax as pipeline 

parallelism. A libname needs to be set to specify the TCP port SAS will 

open. This is done with the sasesock “:xxxx” command. The name of the 

library is arbitrary but out1 out2 and out3 were used here because this is 

the step in which we were outputting results. When processing remote 

statements, SAS does not natively inherit libraries from the base SAS 

session so libraries used in a rsubmit block must be manually specified. 

This is done in the second libname command in each rsubmit block; 

although the ordering of libname statements is arbitrary. Output files need 
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to be specified to go to the library associated with the TCP port. In this 

example, the regression coefficients are output via the outest command to 

out1.tstats1 and so on. In the rsubmit4 block, the aggregation takes place. 

This block works in a highly similar way to the others. The only major 

difference is that the output library ports from the other rsubmit blocks are 

defined as input libraries in this rsubmit block. The naming is arbitrary of 

the library but the ports used in above blocks must be used in the later 

block of SAS is to make a connection to use the incoming data. After the 

final rsubmit block, a signoff statement is needed to close the port. There 

is not autosignoff option. It is important to note that the number of rsubmit 

blocks should not dramatically exceed the number of cores a computer 

has. The role of cores in this syntax will be discussed more below in the 

section on multi-core parallel processing. Although we present sample 

code for a t-test, piping is often more efficient when processing large 

amounts of output. This is because the associated input from a pipe can 

become cumbersome to program when a large number of repetitive tasks 

are done. We present piping in the context of a statistical test to 

demonstrate the robustness of the procedure; especially since the use of 

piping in other contexts such as data sorting is well documented in the 

SAS manuals and literature.  

Multi-Core Processing: 

 Multi-core parallel processing is perhaps one of the most powerful 

tools to aid in processing large amounts of biomedical data. Expanding the 
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number of processors and local system resources is often referred to as 

scaling-up. Although new programming languages and tools are starting to 

place more of an emphasis on threaded and multi-core programming, 

current languages in wide use such as Java are often difficult and 

cumbersome to perform multi-core and threaded programming. 

SAS/Connect is a simple and intuitive package that allows for easily 

parallel programming. The SAS/Connect rsubmit statement makes the 

task of creating multiple threads to submit to a unique core very simple. 

Given the size of many biomedical datasets utilizing all of the cores in a 

computer can dramatically reduce processing time. The exact amount of 

reduction will depend on the amount of the overall analysis that is able to 

be parallelized. As the amount of the program which can be parallelized 

increases, the time reduction from parallelization increases. Regardless of 

how much of the program can be parallelized, the ability to have a 2-8x 

increase in number of available processors provides a substantial benefit; 

especially when considering the low cost of multi-core computers today. 

 Below is syntax which demonstrates the use of multi-core parallel 

processing. In the syntax below, two processors are used to perform 

10,000 regression models with 5,000 per processor. A SAS macro and a 

do loop is used to iteratively loop through different regression equations. 

The syntax for creating multiple threads and making use of a multi-core 

PC is quite similar to that used in the pipeline parallelism. This is because 

each different task in piping is a separate thread and thus the reason why 
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it is not recommended for the number of threads to exceed the number of 

processors. All of the syntax nested between a rsubmit and endrsubmt 

block will create a new thread that is sent to a specific processor. The 

names task1 and task2 are arbitrary but must be different for each rsubmit 

statement and an associated signoff of each rsubmit is necessary. In this 

example, the rsubmit statements will signoff as they finish. However, the 

command _waitfor_=all; can be used to have SAS wait for all of the 

processes to finish before continuing. Here, we specify the library of files 

being used for analyses overtly in the libname statement. There is an 

inheritlib command which will allow SAS to inherit libraries  

 More information can be found in the SAS Macro language manual 

about the specifics of macro programming. Macros are user defined mini 

programs or blocks of code that can be reused.  However, in the example 

below, the block between %macro regs() and %regs(); is a single macro. 

The %mend ends the macro program. The block between %do and %end 

is the do loop. The ods output statement inside the do loop tells SAS to 

output parameter estimates to the file test.paramsx&i. In the do statement 

the counter variable i was used. Everywhere in the macro that &i appears, 

SAS substitutes the value of i for that pass through the loop. 

Options autosignon=yes; 

 rsubmit task1 wait=no sysrputsync=yes SASCMD="SAS"; 
  libname test 'c:\test'; 
  %macroregs(); 
  %do i = 1%to5000; 
  PROC reg data=test.test1; 
  model y=peptide&i; 
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  ods output ParameterEstimates = test.paramsx&i; 
  run; 
  quit; 
  %end; 
  %mend; 
  %regs(); 
 endrsubmit; 
 
 rsubmit task2 wait=no sysrputsync=yes SASCMD="SAS"; 
  libname test 'c:\test'; 
  %macro regs(); 
  %do i = 5001%to10000; 
  Proc reg data=test.test1; 
  model y=peptide&i; 
  ods output ParameterEstimates = test.paramsx&i; 
  run; 
  quit; 
  %end; 
  %mend; 
  %regs(); 
 endrsubmit; 
 
signoff task1; 
signoff task2; 
 
Distributed and Grid Parallel Processing: 

Beyond single multi-core parallel processing on a single PC, the 

syntax can easily be extended to remotely submit a multi-core parallel 

program to a remote machine. When utilizing other computing resources 

networked to a host computer, this is often referred to as scaling out. A 

simple and inexpensive way to scale out is to use other computers 

(remote machines) running SAS. The remote machine can be a server or 

another PC running SAS. High performance computing clusters (HPC) are 

a tremendous resource for analyzing biomedical data. However, there is a 

large cost often associated with HPC clusters and using them requires 

specialized knowledge . Many HPC clusters require the code to be 
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submitted in languages such as C or Fortran and via a secure shell 

program. Given the complexity of many of today’s statistical analyses, 

programming, for example, a mixture model using maximum likelihood 

estimation with robust standard errors is extremely complex. Beyond the 

difficulty, the time needed to program such a model in C or Fortran could 

be prohibitive. Furthermore, licensing for software on HPC is often very 

expensive.  Often times, research institutions or labs will have SAS on 

multiple PCs. Being able to remotely submit programs to other PCs will 

allow users to approach the processing power traditionally only available 

to researchers with access to HPC clusters. For example, 3 Intel I7 PCs 

could theoretically provide more than 200,000 CPU hours (3 x 8 x 24 x 

365 = 202,752) of processing time per year.  

Below is syntax for submitting programs to another PC running 

SAS. In this program, the multi-core parallel program is submitted to 

another PC and the results are sent back to the host machine. In addition 

to the syntax provided, the SAS Object Spawner needs to be running on 

the remote machine.Spawner.exe is included with SAS/Connect.  

Filename rlink "C:\Program 
Files\SAS\SASFoundation\9.2\connect\saslink\tcpwin.scr"; 
%let node=XXX.XXX.XXX.XXX; 
signon remote=node; 
libname test "c:\test"; 
rsubmit remote=node wait=no; 
libname test 'c:\test'; 

proc upload inlib=test outlib=test; 
proc download inlib=test outlib=test; 

options autosignon=yes; 
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 rsubmit task1 wait=no sysrputsync=yes SASCMD="SAS"; 
  libname test 'c:\test'; 
  %macro regs(); 
  %do i = 1%to5000; 
  Proc reg data=test.test1; 
  model y=peptide&i; 
  ods output ParameterEstimates = test.paramsx&i; 
  run; 
  quit; 
  %end; 
  %mend; 
  %regs(); 
 endrsubmit; 
 
 rsubmit task2 wait=no sysrputsync=yes SASCMD="SAS"; 
  libname test 'c:\test'; 
  %macro regs(); 
  %do i = 5001%to10000; 
  Proc reg data=test.test1; 
  model y=peptide&i; 
  ods output ParameterEstimates = test.paramsx&i; 
  run; 
  quit; 
  %end; 
  %mend; 
  %regs(); 
 endrsubmit; 
 
signoff task1; 
signoff task2; 
 
endrsubmit; 
signoff node; 

The filename rlink provides the location of the file tcpwin.scr. This is 

a script which tells SAS how to signon to a remote PC. The path to the file 

needs to be provided. The %let statement specifies the local IP address to 

the remote pc. The signon command remote=node is what tells SAS to 

signon to the remote PC. In SAS, a signon remote= command must have 

a SAS variable instead of an IP address. The %let command sets node 
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equal to the IP address. The syntax node is arbitrary and anything could 

be used. For example, PC1, PC2, PC3 could be used if submitting 

multiple blocks to multiple PCs. The signon process is ended with and 

endrsubmit and signoff statement. The signoff statement must specify 

which PC to signoff of; in this case the PC named node. 

As within an rsubmit statement, the remote SAS session on another 

PC will not inherit the host system’s libraries. Therefore, the library needs 

to be defined. Here we specify the library test to be located in c:\test. The 

location of this file is on the remote PC not the host PC. A database 

connect could be used here. However, if a database is not used the files 

for analysis either need to be manually copied into the library on the 

remote PC or uploaded via syntax. PROC upload is specified after a 

signon statement and is used to upload a complete library (or specific files 

in a library by using a where clause) to a remote PC. The inlib is the library 

on the host pc and the outlib is the library on the remote PC. When 

processing files on the remote PC, SAS will save files on the remote PC. 

The files will often need to be brought back to the host PC for aggregating. 

This is accomplished via the proc download command. In proc download, 

the inlib is the library on the remote PC and the outlib is the library on the 

host PC that files will be copied to. Once complete, the files will be 

available for processing or viewing on the host pc. 

We recommend using a local area network for processing for a few 

reasons. First, using local area network IP addresses reduces the 
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complexity which can sometimes be associated with external firewalls. 

Secondly, local area networks often have much faster transfer rates. New 

PC’s often have a gigabit per second transfer rates for hard wired local 

area networks. If a large amount of data is being transferred, having the 

fastest possible network connection between computers will minimize lag. 

Results: 

 To test the gain in performance for multicore and multicore 

distributed processing we use a Monte Carlo simulation to study the 

classical Behrens Fisher problem. In a Monte Carlo simulation, data is 

generated and a specific test is conducted a large number of times. The 

Behrens Fisher problem is a statistical debate without an analytic solution 

relating to the effect of unequal variances on the T-Test. In this simulation 

we study 3 sample sizes each with 3 different variances for a total of 9 

conditions per replication. We replicate the simulation 10,000 times. In 

addition, SAS runs an equal and Satterthwaite unequal variance T-Test in 

the standard proc ttest procedure. This results in 90,000 executions of the 

proc ttest procedure and 180,000 tests being conducted. The output from 

each run is saved and aggregated using the SQL union operator.  

 We test 3 different uses of multicore processing to illustrate the 

performance gains above the baseline of a single core process without 

parallelization. The machines used in this analysis were PCs each with 

one 2.5 GHz Xeon processor and 16gb of ram. PCs are connected on a 

gigabit Ethernet. First, a baseline test was run using a single thread and 



  40 

core to process the entire simulation.  In the second study all 4 cores were 

used on a host PC to run the simulation. Both the T-Tests and SQL unions 

were split into 4 equal parts. The third approach used both a local PC host 

and a second remote machine to process the simulation resulting in a total 

of 8 processors being used and the task being split into 8 equal parts. The 

same dataset was used for these performance studies. The benchmark 

test results are summarized in Table 1. 

Table 1 HPC Execution Times for the Simulation Benchmark Test  

 Single Thread 4 Threads 

One PC 

8 threads on 

2 PC’s  

T-Test’s Only Time 18 minutes 28 

seconds 

5 minutes 39 

seconds 

2 minutes 53 

seconds  

Total Time 

(including I/O) 

87 minutes 6 seconds 28 minutes 

14 seconds 

12 minutes  

8 seconds 

In this simulation we notice that the total execution time for 8 

threads on 2 PC is less than half the time of 4 threads on a single PC. 

However, this is one example of a common occurrence encountered when 

working with large datasets in biomedicine where breaking tasks down 

into smaller pieces can have an nonlinear and higher order increase on 

performance. In this simulation we merge the results using a loop and an 

SQL union procedure. By breaking the task down into smaller pieces, the 

time to process each join is substantially reduced. This is because the 

load and write time for smaller files is significantly faster. This effect is 
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especially apparent towards the upper end as more results are added to 

the merging file and the size of this file grows. Although there are likely 

more efficient ways to integrate the simulation results than presented 

here, we chose this method to illustrate the fact that while parallel and 

distributed processing can dramatically improve performance. Careful 

attention to program design and thinking about the entire workflow 

process are often significant moderators of performance gains. 

 The advanced multi-core processors on the market today provide 

vast increases in the potential computing power available to researchers. 

Multi core processors and technologies such as Intel’s Hyper threading 

(which ostensibly allows for 8 simultaneous threads on a quad core chip) 

can be procured relatively inexpensively. A competent quad core desktop 

as well as one with Hyper threading can be procured for at or under 

$1,000. By using the parallel processing and distributed computing 

infrastructure in SAS researchers can leverage the processing power of 

modern computers and expand their research with relatively little financial 

expenditure.  

210,240 CPU hour per year are theoretically available from 3 new 

Intel based PCs with Hyper threading technology (8 cpu hours per pc x 24 

hours/day x 365 days/year x 3 pcs = 210,240 cpu hours/year). Assuming a 

total cost of $5,000 for purchasing 3 such PC, including monitors and 

ancillary equipment such as networking supplies (a purposely high 

estimate), SAS licensing not included, results in approximately 0.024 
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cents per CPU hour if the total cost of the computers and equipment 

purchased is fully depreciated in a single year. However, it is likely that the 

computers and equipment would last considerably longer. Cloud based 

computing systems such as Amazon EC2 are at a minimum 5 times more 

expensive per CPU hour before factoring in the cost of data transfer and 

hosting. Additionally, SAS cannot be run on many cloud based clusters 

and the licensing to run SAS on a HPC supercomputing cluster is an 

additional cost. While SAS licensing costs are quite variable depending on 

a number of factors such as the packages chosen, we expect that the 

additional cost to license SAS on a second or third PC would be 

cumulatively less than the cost to purchase licensing to use on a HPC 

supercomputing cluster.  

However, there are still clear benefits using HPC clusters which are 

undeniable. For one, the entire 210,240 CPU hours could in theory be run 

in much less time than one year on a large HPC cluster. Additionally, HPC 

clusters are also likely to have more access to memory for complex 

models which may not always be available to researchers using high end 

desktop computers. Nonetheless, with new computers able to support 24+ 

GB of memory, we suspect that for many applications the need for 

significantly more memory will be limited to highly complex and 

specialized cases; and cases requiring such capacity will be so large and 

complex as to already be beyond the scope of this dissertation.  
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Discussion: 

The vast amounts of data being generated in biomedicine and the 

health care industry today are generating a number of analytic and 

technical challenges. One major problem is how to effectively manage and 

analyze the data in a timely fashion. The techniques and methods 

including database integration, pipeline parallelism, multi-core and 

distributed grid computing can help dramatically increase the speed of 

analyzing biomedical data. As the size of biomedical data sets grow, e.g., 

higher density microarrays or high-throughput genomic sequencing, 

understanding how to maximize the efficient use of available computing 

resources will only become more of a challenge. In addition, being able to 

increase the speed and performance of analysis of biomedical data, these 

processes will aid in increasing efficiency, streamlining workflows and 

promoting breakthroughs in biomedicine which help to ameliorate the 

quality of life for millions of individuals. The relatively inexpensive cost of 

new computers may for many researchers provide a distinct cost 

advantage over other HPC options or allow researchers to maximize the 

resources already at their disposal. Although the methods described here 

will not completely surpass traditional HPC cluster, we believe that these 

methods provide a significant advantage in terms of ease of programming 

and enabling inexpensive access to computing power that will be a 

valuable resource and appealing alternative for many researchers in the 

biomedical domain. 
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Conclusion: 

 This chapter demonstrates a set of useful computer science tools in 

a format (SAS) that is familiar to many analysts. To further illustrate with 

more concrete examples of how these methods are useful, each 

subsequent chapter gives an explanation of how these methods were 

used to facilitate the research. Utilizing these methods will help reduce 

storage needs and processing time for large biomedical datasets or of 

complex iterative models.  Such performance gains will increase the 

speed of biomedical data analysis as well as the speed of biomedical 

research more generally. 
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CHAPTER 3 

MONTE CARL SIMULATIONS  

Chapter Overview: 

 This chapter presents the use of Monte Carlo simulation 

methodologies to help pick the most appropriate model which minimizes 

bias and error due to violation of model assumptions. While Monte Carlo 

methods are generally applicable to all violations and for testing new 

model estimation routines, this chapter specifically focuses on violations of 

homogeneity of variance. This is because homogeneity of variance is 

among the most common violations in biomedical data and can easily lead 

to dramatically incorrect type 1 and type 2 error rates. The real world 

example involving immunosignature data shows that this violation can 

easily result in type 1 error rates in excess of 60%; an order of magnitude 

higher than the standard 5%. Additionally, given the size of biomedical 

datasets, there can be a range of violations across the dataset stemming 

from no violation in some cases to massive violations in others. As a 

result, sampling methodologies are proposed as a computationally 

efficient tool for screening the extent of violations and to help inform the 

design of a Monte Carlo simulation that will maximally represent the 

structure of the dataset.  

Problem Abstract: 

 Statistical models are based on a number of assumptions such as 

homogeneity of variance.  When model assumptions are violated the 
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models do not yield accurate or predictable results. Additionally, in the 

case of heterogeneity of variance or with complex iterative models such as 

those which utilize Maximum likelihood, there is no exact analytic solution 

that can be derived for how the violation will impact model performance. 

As a result, determining the most appropriate correction is not always 

clearly defined and is difficult even in the univariate case. This challenge is 

made significantly more complex by modern biomedical data such as 

microarrays where there are thousands or millions of comparisons need to 

be performed. As a result, Monte Carlo Simulations and sampling 

methods are advocated to help pick the model which that provides the 

most accurate results across the entire range of the data. 

Background: 

The results of the analysis of complex biological and biomedical 

data are not always correct. This is not because of any malicious intent by 

researchers to make the results of their analyses incorrect but rather 

because statistical and mathematical models used to conduct the analysis 

are sensitive to the assumptions underlying their design.  Thus, just 

because a computer gives a researcher an answer does not mean it is the 

correct answer; in the same way a student punching numbers into a 

calculator is not guaranteed to come out with the correct answer just 

because he or she used advanced technology. In order to extract meaning 

from analyses of biomedical data, whether we are using simple or 
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complex modeling techniques, we need to ensure that the most 

informative analyses are being done.  

A Monte Carl simulation is a study in which a large number (usually 

thousands) of datasets are randomly generated with a given distributional 

property and a statistical test is performed on each dataset. The results of 

the test are aggregated and the performance of the test can be studied. 

Since there are many cases such as unequal variances and iterative 

models in which no exact analytic solution can be precisely derived, Monte 

Carlo simulations have become the defacto gold standard for 

understanding model performance (Fan 2002).  

The challenge of big data has made the task of picking the correct 

model exponentially more difficult. Beyond the single test or comparison 

case, modern biomedical datasets often have tens of thousands or 

millions of comparisons which need to be investigated; specifically 

microarray datasets. Given the difficulty in making this decision for one 

comparison, it is vastly more complicated to pick a correct method for use 

across thousands or millions of contrasts. There is no single method which 

is ideally suited to all cases (Keppel and Wickens 2007) (Cohen, et al. 

2002). Given the natural variability by chance alone across thousands or 

millions of contrasts, without looking at the data in a thorough way, it is 

ostensibly impossible to have any idea which method is the most accurate 

across the state space of the dataset. As a result, the use of sampling 

methodologies to gain an understanding across of the range and 
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magnitude of violations across entire datasets combined with Monte Carlo 

simulations to pick the best method is strongly advocated.  

Statisticians have been debating one such case of violation of 

statistical model assumptions known as the Behrens Fisher problem for 

more than 80 years with no definitive solution yet to emerge. A Behrens 

Fisher problem arises when trying to estimate the difference in two means 

when groups have unequal variances because point estimates, hypothesis 

tests and type 1 and type 2 error rates can become unreliable (Behrens 

1929) (Seock-Ho and Cohen 1995). While there are many approaches 

which have been proposed, many of the classical methods such as 

Fisher’s fiducial theory (R. Fisher 1935), Jersey Neyman and Egon 

Pearson’s sampling proposal (Neyman and Pearson 1928) or a Bayesian 

method proposed by Harold Jeffreys (Jeffreys 1940), all of these solutions 

tend to give differing answers; especially with small sample sizes (Seock-

Ho and Cohen 1995).  

A similar problem arises in linear models such as Student’s T-Test 

when violations of normality exist. In 1960 John Tukey noted that there are 

multiple cases in which normality can dramatically bias confidence 

intervals, effect size measures and reduce power (Tukey, A survey of 

sampling from contaminated distributions 1960). Tukey and McLaughlin 

proposed a method of trimmed means (Tukey and McLaughlin 1963). As 

with the Behrens Fisher problem, no single best method has arisen 
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because a closed form analytic solution does not exist (Seock-Ho and 

Cohen 1995) (Wilcox 1995).  

One method which has become widely used to estimate solutions 

when an exact analytic solution does not exist, the computation time for an 

exact solution is excessive and to understand the behavior of statistical 

models is a Monte Carlo simulation. In the simplest form of a Monte Carlo 

simulation, many datasets (often thousands with modern computer 

experiments) are randomly generated and a statistic is tested on each set. 

The results are then aggregated to obtain an approximate estimate of 

model behavior.  

Although the first formal publication linking repeated random 

sampling to the term Monte Carlo was by Nicholas Metropolis and Stan 

Ulam in 1949 stemming from their work on the Manhattan project 

(Metropolis and Ulam 1949). One of the earliest uses of a Monte Carlo 

method was an 1872 report by Asaph Hall in the Journal Messenger of 

Mathematics (Hall 1872). Hall reports Captain O.C. Fox randomly throwing 

wire pins at a wooden board with equidistant parallel lines while 

recovering from battle wounds during the Civil War (Hall 1872). Captain 

Fox used the values from repeated tosses to calculate the approximate 

value of pi (Hall 1872).  

William Sealey Gossett actually used a method ostensibly similar to 

a Monte Carlo method in much of his early work to validate his theoretical 

ideas about the T-Test and distributions of correlations. Many of Gossett’s 



  50 

works used random sampling methods in a similar way to which modern 

researchers use Monte Carlo simulations (W. S. Gossett 1908) (W. S. 

Gossett 1908) (W. S. Gossett 1921). 

Again, the modern terminology for Monte Carlo experiments came 

out of work by Stan Ulam, Nicholas Metropolis and Jon Von Neuman from 

their work at Los Alamos National Laboratory in the 1940’s from their work 

on nuclear weapons development (Metropolis 1987) (Metropolis and Ulam 

1949). During World War II,one of the earliest computers called ENIAC 

was originally built and used for nuclear research. Because of the new 

found ability to compute numbers more rapidly, Ulam suggested 

resurrecting older statistical ideas which had been brushed aside because 

of the computational time intensity and difficulty (Metropolis 1987).  

Along with Metropolis and Von Neuman, the decision was made to 

emply ENIAC and statistical methods to model neutron multiplication and 

diffusion in fissionable material. This was important  because, at the 

quantum level, there is inherent randomness and the complex geometry 

inhernt in the design of nuclear reactions makes modeling neutrons 

difficult. When a block of fissionable material is compressed to a sufficient 

state that it reaches critical mass, a nuclear chain reaction is started. As 

atoms are split or combined (depending on the type of reaction) neutrons 

are released which then split other atoms increasing the energy yield of 

nuclear reactions. The team selected a random distribution of neutrons 

surrounding a spherical core of fissile material with a random velocity and 
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then tested the path and history of a neutron. This was repeated 

numerous times until a statistically valid model was generated (Metropolis 

1987).  When working to develop the Monte Carlo method Metropolis 

suggested the name Monte Carlo in part related to an uncle of Ulam who 

was always borrowing money to go to the grand casion’s and Monte Carlo 

(Metropolis 1987). The casino games are ostensibly games of chance, 

which is related to the random sampling or generation of data, the name 

Monte Carlo stuck (Metropolis 1987). 

In the half century since the formal development of Monte Carlo 

methods by Metropolis, Ulam and Von Neuman, the method has found 

wide spread use in many areas of statistics and mathematics. These 

range from estimating differential equations, entire statistical methods 

such as a Markov Chain Monte Carlo based on the Monte Carlo method 

as well as the enormous use to validate statistical methods (Fan 2002). 

There are literally thousands of statistical articles which use Monte Carlo 

simulations to test the effectiveness or validity of a given statistical 

method. In fact, the approach is so prevalent that entire Monte Carlo 

packages are intergrated into advanced statistical software such as Mplus 

(Muthen and Muthen 2011). While Monte Carlo simulations are often used 

to test the performance of statistical models in methodology papers, they 

are rarely if ever used by researchers to pick the best model for their given 

experiment.  
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Given the frequency, or almost certainty with which biomedical 

datasets violate major assumptions of classical linear models, performing 

a basic Monte Carlo to pick the best method or correction (ie. T-Test 

versus Satterwaithe correction etc) should be as commonplace as 

background subtraction, normalization and transformation in microarray 

processing.  

Metropolis, Ulam and Von Neuman were able to resurrect ideas 

from Gossett and others about random sampling because of computers. In 

the decdes since their early work at Los Alamos, Monte Carlo simulations 

have become commonplace to estimate partial differential equations, as 

part of Markov Chain Monte Carlo methods and to test statistical methods. 

In statistics, Monte Carlo simulations have historically been intensive 

research problems that even with computers could take months or years. 

However, microprocessors and high performance computing methods, 

such as those advocated in chapter 2, including parallel procesing and 

distributed grid processing the time can now be measured in hours or 

minutes; if the question is sufficiently focused.   

Ensuring the test conducted is given the expected results or 

performing under the expected parameters (ie. 5% type 1 error rate) is 

critical to extracting meaning from complexity in biomedical datasets. 

However, the process is made more difficult by big data. This is because 

the question is often one of thousands or millions of comparisons. As a 

result, the question is not simply of which model is best for a single 
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comparison but rather which will perform most robustly across the range 

and surface of the entire dataset.  

It is common practice in text books to suggest that statistical texts 

advocate running tests of model assumptions as part of a standard 

workflow (Keppel and Wickens 2007) (Cohen, et al. 2002) (Tabachnick 

and Fidell 2006). SAS implements a number of test procedures to test 

equality of variances. In proc ttest, the Folded-F method is a default 

output. PROC GLM for running regression or Analysis of Variance models 

offers a number of tests including Levene’s and the Brown Forsyth test 

(SAS Institute 2011). Both Satterthwaite and Welch robust tests are 

implemented in proc ttest and proc glm respectively. In fact, the 

Satterthwaite correction is generated by default in proc ttest.  

There are also many other ways beyond a t-test and a one way 

ANOVA to test whether there is a mean difference between two groups. A 

linear regression equation can use dummy codes (which will produce 

equivalent parameter estimates to ANOVA when grand mean effect coded 

since ANOVA is a special case of regression) as well as logistic 

regression. Weighted least squares and robust regression methods are 

also alternative ways of correcting heteroskedasticity (unequal variances) 

(Rao, et al. 2010). Additionally, there are multiple estimation methods 

available for logistic regression models in SAS (SAS Institute 2011). 

The fundamental design of many biomedical analyses will logically 

produce results with heteroskedastic or unequal variances. For example, 



  54 

in a cancer study, if there is a common unerlying biomarker, whether it is 

an expressed gene, the presence of an antiboy or other marker, a group 

of cancer patients with the same type of cancer may be expected to show 

a similar response profile. Normal patients who do not have cancer or the 

condition in question might be expected to have a wider variation in the 

observed values of their responses if sampled from the population at 

random. This is because all of the population variability would be 

encapsulated in the normal samples whereas only a smaller subset of 

those who exhibit similar characteristics on a given trait would be 

observed in the cancer or condition samples. Conversely, it is also 

possible that normal patients will have a more similar response profile and 

those with a condition will have a wider variation. This could result in 

situations in which there is a relatively small homeostatic window and any 

response outside of that leads to a disease. Also, we may observe 

differences in variance structures based on sample size. If there is a large 

difference in variation it may simply be because a larger number of 

samples was obtained from a given group and the larger number of 

samples asymptotically led to a more normal distribution consistent with 

the central limits theorem.  

Ostensibly, it is not always clear that we can or should expect equal 

variances in biomedical studies. Combine this with big data concerns such 

as testing thousands or millions of variables (genes, peptides etc) and the 

probability is that there will be a number of observations for which the 
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assumptions are perfectly met and a number where they are egregiously 

violated; with everything inbetween. This might lead some researchers to 

suggest computing a different model for each observation or comparison. 

For example, one suggestion could be to run a basic ANOVA model with a 

test for equality of variances and if it is met then run the standard ANOVA 

otherwise run a correction or alternative method.  

There are a few issue with running different models for each 

observation. First, this would pose a massive increase in computational 

difficulty and run time. Secondly, a p-value, F or T statistic are not 

measures of effect size and cannot be compared across models (Cohen, 

et al. 2002). Some researchers might suggest that an effect size measure 

might be a more approprite method since they can be more easily 

compared and are less sample dependent than p-values F or T statistics. 

However, effect size measures also have their own set of model 

assumptions; many of which are the same as for traditional statistical 

tests. 

The original validation work by E.S. Pearson and others on the 

Pearson product moment correlation coefficient was done assuming that 

the correlatin was zero (Pearson 1929) (Pearson 1931) (Rider 1932). The 

work by E.S. Pearson and others early on demonstrated that the pearson 

prodcut moment correlation is highly robust when the correlation 

coefficient was zero or very nearly so, that unequal variances and other 

violations of normal theory (Pearson 1929) (Pearson, The Test of 



  56 

Significance for the Correlation Coefficient 1931) (Rider 1932) (Haldene 

1949). Later research by Kowalski and others showed, using Monte Carlo 

simulations in Kowalski’s case that as the correlation coefficient increases, 

the bias of the correlation coefficient also increases (Kowalski 1972). 

Ostensibly, regardless of what method a researcher uses whether a 

classical statistical test, effect size measure or data mining technique, they 

are subject to some underlying assumptions and the premise that they are 

not likely to hold over the range of thousands or millions of observations is 

still a concern.  

One technical challenge posed by suggesting that researchers 

check assumptions across entire datasets is one of computational 

intensity. Simply running all of the comparisons can be computationally 

intensive to begin with and suggesting more tests beyond a simulation be 

run multiplies the computational burden. To help alleviate this concern, 

beyond the high performance computing methods discussed earlier, two 

suggestions are proposed. First, there is no need to run rigorous equality 

of variance tests and secondly, the use of sampling methodologies are 

recommended.  

The reason for not running a rigorous equality of variance test such 

as a Brown-Forsyth test is because it adds to the computational demand 

and really does not add much information. This is because such tests only 

tell a researcher if there is a violation and give no details about the 

magnitude of the violation (Keppel and Wickens 2007). A researcher will 
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then have to run univariate statistics above and beyond the equality of 

variance tests to get the input parameters to the Monte Carlo simulation. 

As a result, since univariate tests are going to be performed anyways, it is 

not necessary to add the step of a formal equality of variance test. 

However, if the researcher runs such test and notices small differences in 

the variances between two groups, individual equality of variance tests 

could be run in the rare even that a big dataset has thousands or millions 

of comparisons with very tiny differences in variances across all 

comparisons.  

Secondly, the use of sampling methodologies are highly 

recommended to take a subsample of the data. Sampling methods have 

been well developed in statistical literature and are easily implemented in 

many software packages such as SAS; including proc surveyselect, 

surveyreg, surveyfreq and surveylogistic (SAS Institute 2011). A number 

of different sampling procedures such as simple random sampling, 

stratified random sampling or cluster randomized samples can be taken 

from the dataset depending on the nature and structure of the data. For 

some complex studies, a multi-stage probability sample may be 

necessary; especially if the large study comes as part of a larger survey. 

The book Sampling: Design and Analysis 2nd Edition by Dr. Sharon Lohr 

provides an unsurpassed discussion and presentation of sampling 

methodologies and is an excellent resource for researchers (Lohr 2009). 
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Additionally, the book also emphasizes the use of SAS and provides 

extensive code examples. 

Model: 

Since much genetic and proteomic expression data in raw form is 

generally on a multiplicative scale rathre than a linear scale (assumed by 

most parametric statistical models), the first step in any genetic data 

analysis is background correction, normalization and log transformation to 

make the data as amenable as possible to general statistlcal models 

(Quackenbush, Causton and Brazma 2003). Because genomic data 

inherently violates these assumptions and no clear normalization process 

has been identified to always give a reasonable correction, it is 

questionable how often standard model assumptions are actually met and 

no formal meta analysis are known to have looked at the quesiton. As a 

result, it is imperative that researches test to ensure tha the models being 

used will produce accurate results.  

The procedure of using Monte Carlo simulations to determine 

optimal statistical tests was used in the immunosignaturing chapter 

discussed in chapger 5. The simulation work described in this chapter was 

the genesis behind using a Satterthwaite corrected t-test in the 

immunosignaturing chapter. The introduction to this chapter primarily 

focuses on the assumption of homogeneity of variance or 

heteroskedasticity as is sometimes referred to and type 1 errors (false 

positives). This is because linear models are usually more robust to 
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violations of normality than they are to violations of unequal variance and 

multi-level modeling corrections for violations of independence widely 

agreed upon (Keppel and Wickens 2007) (Raudenbush and Bryk 2001). 

Additionally, multi-level corrections for violations of independence are 

discussed in detail in the next chapter.  

 Immunosignaturing is described in chapter 5 in detail. As a basic 

summary, immunosignaturing is a microarray based technology for 

profiling humoral immune responses. Thousands of random 20 mer 

peptides were selected from a phage library to give broad coverage of 

human immune responses and are spotted onto a glass slide. Purified 

sera samples are applied to the array and antibodies, primarily IgG bind to 

the random peptides. When an antibody binds with a peptide it will 

flouesce when exposed to a laser; thus giving a measure of binding affinity 

(Johnson and Stafford 2009). 

 The study of interest using immunosignatures compared normal, 

single breast cancer tumors and second primary tumor samples with the 

goal of differentiating and the three groups as a diagnostic test (Brown, et 

al. 2011). Before running basic screening models across the more than 

10,000 peptides on the array, basic descriptive statistics were estimated 

and a random sample of the peptides were taken. A simple random 

sample of 500 peptides was taken and differences in variances for each 

group was calculated. The sample was taken using proc surveyselect in 
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SAS. The largest magnitude difference was approximately 6 fold between 

normal samples and a second primary tumor peptide.  

 Monte Carlo simulations were run using equal variances, 1, 2, 4 

and 6 fold differences between each of the three groups in univariate 

contrasts. Two datasets with sample sizes equal to those in the study (52 

for normal, 98 for single primary tumor and 21 second primary tumor 

samples). A scaling factor was used to increase the variance of one group 

by the given factor. Since type 1 errors were the primary interest, the 

means were simulated to be equal. SAS IML random number generator 

was used to generate the data. 2,000 tests were run for a standard T-Test, 

Satterthwaite T-Test, least squares regression, logistic regression as well 

as maximum likelihood regression and logistic regression with sandwich 

estimators. With a standard alpha level of 0.5, it is expected that by 

chance alone 100 tests would be significant. As a result, more than 100 

significant results would suggest a greater than 5% type 1 error rate. 

While not investigated in this chapter, power could also be studied. This 

would have been done by changing the mean difference of the two groups 

and then the percentage of significant tests would be equal to power; for 

the given magnitude difference.  

Results: 

 Table 2 shows that the simulation results for logistic regression 

outperforms standard ordinary least squares regression and a standard 

pooled T-Test with respect to type 1 errors. However, both maximum 
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likelihood regression and logistic regression with sandwich estimator 

robust standard errors as well as the Satterthwaite T-Test both 

significantly outperform the standard models; especially when the larger 

group has the smaller variance.  

Table 2 Monte Carlo Simulation Results 

 

Trial Varia
nce 

Logist
ic 

Robus
t SE 
Error 

Logist
ic 

Type1 
Error 

OLS 
Reg 
Type

1 
Error 

ML 
Reg 

Robust 
SE 

Type1 
Error 

Std T-
Test 

Type1 
Error 

Sattert
hwaite 
Type1 
Error 

cancer 
vs 
normal  

10 90 83 182 95 91 89 

cancer 
vs 
normal  

20 108 206 444 125 222 115 

cancer 
vs 
normal  

40 77 238 526 107 263 98 

cancer 
vs 
normal  

60 95 294 632 121 316 111 

cancer 
vs 
second  

10 111 86 210 131 105 104 

cancer 
vs 
second  

20 153 344 770 134 385 103 

cancer 
vs 
second  

40 159 567 1236 141 618 105 

cancer 
vs 
second  

60 141 643 1420 129 710 93 

normal 
vs 
cancer 

10 93 83 194 106 97 99 
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normal 
vs 
cancer 

20 94 37 86 111 43 110 

normal 
vs 
cancer 

40 63 14 32 96 16 92 

normal 
vs 
cancer 

60 74 18 40 103 20 101 

normal 
vs 
second 

10 88 80 188 103 94 93 

normal 
vs 
second 

20 119 233 556 120 278 85 

normal 
vs 
second 

40 96 306 760 129 380 100 

normal 
vs 
second 

60 78 349 858 132 429 99 

second 
vs 
cancer 

10 105 91 206 129 103 104 

second 
vs 
cancer 

20 84 4 14 104 7 96 

second 
vs 
cancer 

40 67 1 2 87 1 85 

second 
vs 
cancer 

60 80 3 5 106 12 103 

second 
vs 
normal 

10 101 84 228 130 114 114 

second 
vs 
normal 

20 75 28 74 121 37 112 

second 
vs 
normal 

40 63 4 18 111 9 109 

second 
vs 
normal 

60 54 3 12 102 6 93 
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The three corrective models show consistently performance with 

respect to type 1 errors. The Satterthwaite corrected T-Test shows the 

best results with a highest type 1 error rate of 5.75% compared to 7.95% 

for the logistic regression with robust standard errors and 7.05% for linear 

regression with robust standard errors. Additionally, the Satterthwaite T-

Test had the lowest range of type 1 error rates. Having a consistent range 

is desirable because it allows for more consistent interpretation across the 

range of the data. Also, as can be seen in the non-corrected tests, 

violations of assumptions can also deflate test statistics (Keppel and 

Wickens 2007). This shows up as dramatically lower error rates in this 

simulation. Having error rates as close to 0.05 as possible allows for 

maximal inference within the general linear framework researchers are 

used to.  

Discussion:  

Monte Carlo Simulations are a useful method to ensure the results 

obtained by a given statistical test are accurate and trustworthy; especially 

across the range of large biomedical datasets. While the thousands of 

calculations which must be performed can be computationally intensive 

and time consuming, the use of sampling methods combined with high 

performance computing methods will dramatically reduce the time 

necessary to perform Monte Carlo Simulations. Depending on the number 

of contrasts needed to be run (ie sample size and variance pairs for 
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example) with the aid of high performance computing methods, 

simulations such as the one presented in this chapter can likely be 

perfomed on an average single computer in less than an hour.  

 While there is a cost associated with adding another step to 

standard research protocolsl, researchers should consider the cost in the 

context of a larger research project. At a minimum, excessive type 1 or 

type 2 errors could yield an uninterpretable dataset. However, 

corporations intending on commercializing a product based on 

experimental results could easily lose tens or hundreds of thousands of 

dollars when future testing fails to replicate inaccurate results. So, while 

there may be a small cost associated with performing Monte Carl 

simulations routintely, the cost is likely to be dramatically less than the 

cost of obtaining inaccurate results. 

High Performance Computing Methods:  

In this experiment since the data is randomly generated, there is no 

need to connect to a database because the data is not stored anywhere. 

However, given the thousands of models which need to be estimated, 

multi-core parallel processing and grid distributed processing are highly 

useful for minimizing the processing time necessary to complete such 

simulations.  

There are a number of strategies that can be employed to 

parallelize a Monte Carlo simulation ad described in this chapter. One is to 

divide the thousands of replications within a specific model (ie 
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Satterthwaite T-Test) across multiple cores or machines. A second option 

is to run all of the replications on a single core but stripe the methods 

across cores or machines. For example, all of the runs in a T-Test could 

be run on one core while all of the runs for the Satterthwaite correction 

could be run on a second core. The choice on how to parallelize the task 

is largely process dependent. If a number of complex iterative models are 

being run with a number of simple methods, the simpler methods may 

finish much quicker than the complex iterative methods thus not making 

optimal use of available computing resources.  

Conclusion: 

The results of this simulation suggest that the Satterthwaite T-Test 

is the best and most consistent test given the structure and nature of the 

immunosignaturing data. While it is predictable that the normal theory 

tests would fail, the magnitude with which the someitmes did was not 

predictable. For example, ordinary least squares regression sometimes 

produced type 1 error rates in excess of 50%. Without running this 

simulation, the magnitude of the failure of OLS as well as the fact that 

logistic regression with robust standard errors had a nearly 40% higher 

maximum type 1 error rate than the Satterthwaite test would have been 

impossible to know.  

This simulation is the underlying research which led to the use of 

the Satterthwaite test in chapter 5. Given the complexity and range of 

observations in modern biomedical data it is highly recommended that 
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researchers make use of simulations to ensure the tests they are using 

are giving accurate results not only for a single comparison but across the 

entire range of data in the study. 
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CHAPTER 4 

Multi-level Modeling 

Chapter Overview: 

 This chapter presents the use of multi-level modeling in the real 

world example of modeling adherence to medical treatment. The ways in 

which clustering commonly exists in biomedical data is discussed along 

with the deleterious effects clustering has on model performance by 

violating assumptions of independence of observations. Multi-level 

modeling examples are presented to illustrate how to correct for 

clustering. In the process it is discussed why it is necessary to center 

variables and for researchers to document how they centered in order to 

obtain and accurately interpret multi-level modeling results. Additionally, 

multi-level models estimate new variance parameters. The estimation and 

interpretation of these new parameters is highlighted as a powerful 

method for helping to better understand the complex relationships 

underlying the data.  

Problem Abstract:  

Clustering is a common occurrence in biomedical data that 

dramatically increases its complexity. If left uncorrected, clustering can 

cause a number of problems.  These include parameter estimates that can 

be incorrect in both their sign and magnitude. This often artificially reduces 

the standard errors and thus leads to inflated type 1 error rates. Multi-level 

modeling is a widely accepted method for addressing the problems 
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created by clustering. Unfortunately, multi-level modeling is not as widely 

used in biomedicine as it should be. When multi-level models are used in 

biomedicine they often omit critical pieces of information necessary to fully 

interpret their results, such as how the variance was partitioned.  

 Additionally, beyond simply correcting for a clustering problem, 

multi-level models are also necessary to truly make sense of the 

complexity inherent in the data. Multi-level models provide estimates of a 

number of new parameters, such as variances at multiple levels, which 

allow researchers to answer questions about the complex structure and 

nature of the data that cannot be answered with classical models.  

Methodological Background: 

While T-Tests and classical linear models are highly useful, they 

cannot answer every question. Computer implementations of Maximum 

likelihood and the EM algorithm have given rise to an entirely new set of 

methods in recent years which allow researchers to ask new and 

fundamentally different questions than they could in the past. Although T-

Tests and other generally computationally simple methods are highly 

useful in many situations, given the increased complexity of the data and 

our need to ask more intricate questions, newer more advanced models 

can help researchers extract more information from biomedical datasets.  

As with so many other statistics, the history of multi-level modeling 

can be traced back to R.A. Fisher in his paper, “The Correlation of 

Relatives on the Supposition of Mendelian Inheritance” (R. Fisher 1918). 
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While the mathematical foundations have existed for some time, the use 

of random effect and multi-level models was not highly utilized for years 

because one problem with Fisher’s early work was that the model would 

not work with unbalanced designs. Fisher did also invent maximum 

likelihood but it was the advent of the EM algorithm and computers that 

made the iterative process for estimating general forms of these models 

possible (Goldstein 1986) (Longford 1987).  

Multi-level models started to gain more widespread 

acknowledgement in the mid 1990’s and have become fairly common; 

especially in social sciences and epidemiology. Stulberg et al. 2010 used 

a multi-level model to control for clustering created by taking 

measurements across multiple hospitals and Mills et al. 2006 used multi-

level modeling to account for regional clustering in the sampling design 

across geographic regions (Stulberg, Delaney, et al. 2010) (Mills, et al. 

2006). Wile there are numerous examples of multi-level modeling being 

used in premier journals such as JAMA, there are also examples in which 

no metion of efforts taken to control for possible clustering. Parker et al. 

2009 propose a possible gene signature for breast cancer samples but 

they use samples from two distinct sample types fresh frozen and parrifin 

fixed formalin embedded (FFPE) which come from 5 different cohorts 

(Parker, et al. 2009). Across the many different comparisons performed, 

there is no mention of clustering in the paper. While the probablity does 

exist that the effect was neglegible, this is highly unlikely. Personal 
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research not discussed in detail in this dissertation found that with similar 

breast cancer samples from multiple cohorts exhibited intraclass 

correlations (a measure of clusering) in excess of 0.6 (Seliegman and 

Brown 2011). 

Even though many papers have used multi-level modeling in 

bionmedicine, one error or omission which often exists is in centering the 

variables. Enders and Tofigi 2007 note that even in the social sciences 

where multi-level modeling is heavily used, that “the issue of centering has 

been discussed in the literature, but it is still widely misunderstood” 

(Enders and Tofigi 2007). This is equally valid for biomedical research. 

Neither Stulberg, Delaney, et al. 2010 or Mills, et al. 2006 who take the 

first step and recognize a multi-level model is necessary, make any 

mention of centering; which is critical to obtaining accurate parameter 

estimates in multi-level models.  

In a standard regression model, centering is the process of 

subtracting a constant, often the mean, from all observations (Cohen, et 

al. 2002). This has the result of making the intercept the expected value at 

the mean of the data rater than when x=0 (Cohen, et al. 2002). This 

process only changes the interepretations of the coefficients but in no way 

changes the significance of the model.  

However, in multi-level models, centering is necessary to obtain 

accurate non-biased parameter estimates (Raudenbush and Bryk 2001). 

This is because there is a complex relationship between the independent 
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and dependent variables at two or more levels; the individual unit level of 

observation as well as the grouping or cluster level (Raudenbush and Bryk 

2001) (Enders and Tofigi 2007). This leads to a significant problem 

because, as in standard ordinary least squres regression, the relationship 

between an independent and depenedent variable is captured by a single 

variable.  

The interpreation depends on how the multiple variances are 

partitioned. There are two main types of centering: centering within cluster 

where the cluster mean is subtracted from each observation within a 

cluster or grand mean centering where the grand mean for the entire 

sample is subtracted from each score. Both methods produce dramatically 

different interpretations and parameter estimates. For example, if the 

question of interest is a level 1(or unit of observation level) such as 

number of comorbid conditions a patient has, the recommended approach 

is to center within cluster because this removes all of the variaibility due to 

the level 2 variable or unit of clustering such as the doctor he/she sees or 

the hosptial he/she is admitted to. Grand mean centering the level 1 

variable such as number of comorbid conditions would yield an estimate 

confounded with level 2 or cluster level variability (Enders and Tofigi 

2007). Conversely, if the question of interest was a level 2 cluster level 

variable or a cross level interaction, such whether the effect of number of 

comorbitidies (level 1 unit level observation) of a patient on some outcome 

depends on the number of physician years of experience (level 2 cluster 
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observation), centering within cluster would make it impossible to estimate 

because all of the cluster level variability would be gone. Rather a 

researcher would want to grand mean center in these types of cases. 

Ostensilby, without knowing how, if at all, Stulberg, Delaney, et al. 2010 as 

well as Mills, et al. 2006 centered their variables, it is impossible to 

interpret their model results, parameter estimates and thus conclusions.  

While using multi-level modeling to correct for clustering is a useful 

and necessary procedure, multi-level modeling provides a plethora of 

additional information beyond simply correcting for the structure in the 

data which does not meet certain statistical assumptions. Most authors in 

biomedicine, Stulberg and Mills included do not make use of the additional 

information and estimates provided generated when running a multi-level 

modeling. One example of the utility of this which is presented is that this 

approach allows researchers the ability to estimate the relative amount of 

variability in adherence to medical treatment for doctors and patients 

separately. Multi-level modeling is generally underutilized in biomedicine 

and when it is, it is almost exclusively used to correct for clustering rather 

than using the additional complexity to help better explain the world 

around us. 

The following section which investigates adherence to treatment 

illustrates not only the classical use of multi-level modeling for correcting 

for clustering within the data but also demonstrates how additional 

sources of information in the model such as the new variance estimates 
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can be very useful in helping untangle the complexity underlying 

adherence to treatment. 

Experimental Study Background:  

Adherence to standards of care has been studied for decades 

across a variety of populations and settings with mixed results. Patient’s 

characteristics (age, sex, ethnicity, marital status) are important in some 

studies but not in others (DiMatteo, et al. 2002) (Vermeire, et al. 2001) 

(Martin, et al. 2005). The differences among the studies may reflect 

unobserved interactions between patient characteristics and different 

health conditions, omitted effects such as insurance coverage and 

geographic differences in practice, or may be simply the artifacts of 

different methods.  

Case studies find that patient – physician communication is an 

important influence on adherence. The odds of a patient adhering have 

been found to be 2.16 times greater if his or her physician is a good 

communicator (Zolnierek and & DiMatteo 2009) (DiMatteo, et al. 2002) 

(Vermeire, et al. 2001). The advantages of the communication studies are, 

however, achieved at the cost of limiting inferences to small groups of 

physicians and patients, often in experimental settings. The results 

presented here are complementary, gathering information on day to day 

care in non-experimental settings for large numbers of physicians and 

patients.  
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We use a large, community wide, multi-payer data set to estimate 

the extent to which variations in adherence rates among patients within 

each of 17 groups of health conditions reflect differences in the patient-

constant characteristics of primary care physicians or physician-constant 

differences among their patients. The community is Maricopa County, 

Arizona which includes Phoenix, the sixth largest city in the United States. 

The focus on one county, albeit a very large area, minimizes geographic 

variations in customary care. The data are a subset of the data supplied 

by three commercial insurers, namely: Cigna, Humana and Health Net of 

Arizona; and the Arizona Medicaid (AHCCCS) system as part of the 

Phoenix Healthcare Values Measurement Initiative (PHVMI) (Johnson, et 

al. 2011).  The complete data set include rates of adherence to more than 

300 guidelines, 58 health conditions and 38 million claims for 918,370 

patients.  The analysis data include 52,895 patients, 17 chronic conditions 

and 3,037 primary care physicians who treated the patients. The 17 

conditions, which are described in Table 3, are illnesses for which 

adherence to recommended care can yield significant benefits. Primary 

care physicians were selected rather than specialists because we assume 

that PCPs are more likely to have ongoing contacts with their patients.  

Table 3 List of Conditions Studied 

Condition 

Diabetes Care (NS) 

CAD (NS) 

Asthma (NS) 
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Cholesterol Management (NS) 

CHF (NS) 

DMARD Therapy in RA (NS) 

ADHD (NS) 

LBP Imaging (NS) 

Pharyngitis (NS) 

URI (NS) 

Bronchitis, Acute (NS) 

Depression Med Management (NS) 

COPD (NS) 

Cardiac Surgery (NS) 

Alcohol Treatment (NS) 

Emergency Medicine (NS) 

COPD Exacerbation (NS) 

 

Adherence has been defined as the “active, voluntary, and 

collaborative involvement of the patient in a mutually acceptable course of 

behavior to produce a therapeutic result”. (Meichenbaum & Turk, 1987)  

The comparison of a large number of standards of care for a large 

population requires a complex array of assumptions and procedures. We 

selected Symmetry EBM Connect® 7.6 as our software of choice. EBM 

Connect®, a product of the Ingenix Corporation, identifies gaps between 

clinical evidence and health care practice with applications for a variety of 

health care organizations. (Ingenix, Inc., 2008)  EBM Connect® compares 

actual, observed patient care with care indicated by research-based 

guidelines 

Methods: 

A two-level hierarchical model is used to estimate the results.  As in 

previous studies the hierarchical model controls for the effect of clustered 
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variables, namely clustering of patients by physician (Stulberg, Delaney, et 

al. 2010) (Mills, et al. 2006).  Correlations between groups of clustered 

variables reduce variance estimates, leading to inflated test statistics; type 

1 (false positive) errors.   

We are also interested in estimating the extent of clustering to understand 

how much of the variance in adherence rates can be attributed to patients 

versus physicians.  

The model includes two parts, the first of which (level 1) is used to 

estimate the variation in adherence rates among patients, controlling for 

differences among physicians. Level 2 of the model estimates the 

influence of differences among physicians on adherence rates controlling 

for differences among their respective groups of patients. Separate 

estimates are prepared for each of the 17 health conditions.  

Two different specifications of the model are estimated, namely: a model 

without covariates (the random effects model) and the model with 

covariates.  

Adherence rates are known to vary among different conditions but 

the variance in individual adherence rates within a specific condition is not 

well established. We begin our modeling within specific condition groups 

such as asthma and diabetes. We select physicians who see at least 5 

patients for a given condition. The selection process removes outliers, 

providing a more representative estimate of physician level variances. 
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Patients are defined as adherent when 80% or more of rule measures 

were met (Halpern, et al. 2006); (Mallion, et al. 1998); (Lee, et al. 1996). 

Random Effects Multi-Level Model: 

We use multi-level modeling to study adherence. The first step in 

any multi-level model is to assess how much, if any, clustering exists and 

whether or not that amount of clustering warrants the use of a multi-level 

modeling correction. In our model, factors relating to patient adherence 

will comprise the level 1 variables while factors relating to physicians will 

be the level 2 variables. Since patients are nested or clustered within 

physicians, patients seeing the same physician will likely be more similar 

in adherence because of factors such as physician-patient communication 

patterns. Clustering reduces within class error rates because adding one 

additional case to a study does not add one full piece of information as a 

result of the correlation between cases nested within a class.  

In other words, because individuals seeing a similar physician are 

likely to be have at least some correlation, (a degree of similarity) knowing 

something about one patient provides some information about other 

patients and how they are likely to adhere; part of which may be due to 

seeing same physician. Subsequently, this phenomenon known as an 

intra-class correlation reduces the denominator of many regression based 

statistics and thus false positive rates associated with statistical 

hypothesis testing. 
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The first phase of this study is a random effects multi-level model 

as specified by the following set of equations: 

Yij = B0j + rij    Equation 1 

B0j = Y00 + μj                               Equation 2 

where: the outcome variable Yij is a measure of adherence to treatment for 

an individual i in class j. B0j is the mean adherence value for class j and rij 

is the deviation between and individual’s score i and their respective class 

mean j. Y00 measures the grand mean across all groups and μj is the 

deviation between the grand mean and the mean for class j. This notation 

shows level 1 and level 2 equations separately. However, the level 2 

equation can be substituted into the B0j term of the level 1 equation to 

create a combined equation as follows: 

Yij = Y00 + μj + rij   Equation 3 

Equation (3) implies that an individual’s level of adherence can be 

accounted for by the physician/prescriber they see as well as some unique 

individual variance. This model partitions the variance into independent 

orthogonal level 1 and level 2 components. 

 This model can be used to estimate a number of informative 

factors. One is the intra-class correlation (ICC). The ICC measure 

quantifies the effect of level 2 clustering on the data. In other words, the 

ICC provides the expected correlation between two patients’ scores from 

the same level 2 cluster. In this study the ICC measures correlation 
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between the adherence scores of two patients who see the same 

physician. The ICC is calculated as follows: 

ICC= 
   

       
    Equation 4 

 The model also estimates parameters τ00 and σ2. τ00 is the level 2 

variance between class means. This variance estimate is between class 

means because the average value for individual scores i form the input for 

class j at level 2. σ2 is the average within class variance at level 1. Taking 

the square root of the variance estimates τ00 and σ2 will yield standard 

deviations and an estimate of the size of the difference between  an 

individual’s score and  their group mean (the average for others who see 

the same physician, σ2) as well as how much difference there is between 

physicians on mean adherence (τ00). Table 4 shows the ICC, level 1 

variance, level 1 standard deviation, level2 variance and the ICC. Notice in 

table 4 that the square root of the variance estimates give the standard 

deviations. 

From here, assuming we find evidence of clustering and differences 

between physicians, a number of other variables can be added to the 

model. Age, severe comorbidities and type of insurance (public or private) 

can be added as level 1 variables. Physician specialization can be added 

as a level 2 variable. After adding variables to a model, both the level 1 

variance σ2 and the level 2 variance τ00 can be recomputed. The 

recomputed values will tell us how much variance at each level was 

accounted for by adding a given set of predictors. In addition, we can 
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estimate how much variation in level 1 and level 2 is not due to the added 

predictors in our model. 

Figure 1: Multi-Level Modeling Variance Partitioning 

 

In graph 1 represents sample data for the purpose of helping to 

make the multi-level conceptions of variance more clear. In this graph 

individual compliance rates are plotted by different doctors. The thick 

black line is the grand mean or the average compliance rate across all 

patients. The circles identify more clearly patients seeing a single doctor 

and the thin black lines at the center of the circles are the mean 

compliance rate for physicians. The blue lines between the physician 

mean (thin black line in the middle of the circles) to the line at the end of 

the circle is indicating the spread of patient adherence rates. This is the 

variation for patients seeing a single doctor. The average spread or 
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variance across all doctors is the level 1 variance. If there was no level 1 

or individual level variance, there would be no circle and all of the patients 

would have the same adherence rate. The orange line from the physician 

mean to the grand mean represents the level 2 or physician level 

variance.  

Although there are a number of factors relating to individual 

adherence, at a more fundamental level, graph 1 shows that an 

adherence rate for an individual has two components. One part is the 

natural propensity of an individual to adhere due to intrapersonal factors 

such as age, sex, number of times they visit a doctor. The second part is 

the physician they see. Factors such as physician communication and 

experience may serve to shift an individual’s likelihood of adherence up or 

down. The magnitude of this shift can be conceptualized as the overall 

width of the orange lines. As physicians pay a larger effect on an 

individual’s likelihood of adhering, the average width of the orange lines 

(distance between average compliance of all patients a physician sees 

and the grand mean) gets larger. Factors such as physician 

communication patterns and years of experience may influence how their 

patients adhere. Unfortunately because we are using public health data, 

we do not have data on communication patterns. However, we are still 

able to measure the magnitude of the effect that physician level (level 2) 

and individual level (level 1) variables have on the adherence rates of 

individuals.  
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Results Random Effects Multi-level Model: 

Table 4 represents the findings from the random effects multi-level 

model. We will start by considering diabetes as an example to illustrate 

the interpretation of the results. For coronary artery disease (CAD), τ00 

has a value of 0.006148 and is the level 2 variance which quantifies 

between cluster (physician variability). The standard deviation for the τ00 

(square root of the variance) at level 2 (within physician) is approximately 

7.8% (0.07841). In other words, the mean compliance rate of patients 

being treated by a given physician for CAD should over repeated sampling 

on average range between 40.96% and 71.7% (95% confidence interval). 

Within each cluster (physician) the variance (level 1 variance / sigma 

squared) is 0.0951. This says that within each cluster (physician) an 

individual patients compliance will on average differ from that doctors 

mean compliance by approximately 30.84% (note the square root of a 

variance is a standard error and the √       = .3084). 

Is what this illustrates is that the within class variation is much 

greater than the between class variation or that there is much more 

variation between individual patients seeing a physician than there is 

between the average compliance rates across physicians. Said differently, 

in the case of diabetes, although the physician bears some responsibility, 

individuals are far more responsible for adherence; or lack thereof than 

physicians.  
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An ICC of .05 is often used to determine whether or not there is a 

significant effect of clustering. Having an ICC greater than .05 suggests 

that there is a significant effect of physician or that adherence differs 

significantly based on which physician an individual goes to.  

By looking at the ICC and variance components across multiple conditions 

(Table 4) a number of interesting trends emerge. First, the level 1 or 

individual level variance is always much larger than the level 2 or 

physician level variance. This suggests that like with CAD, factors relating 

to the individual seem to be a larger driving force behind adherence than 

factors associated with the physician. The level 1 variances also replicates 

the findings from previous research showing that individual adherence 

differs across condition.  

As with the level 1 variances, the level 2 variances differ across 

condition. Interestingly, the level 2 physician level variances and ICC’s 

suggest that difference among physicians in the treatment of conditions 

such as coronary artery disease, ADHD, cardiac surgery and depression 

medication management physicians, have little effect on adherence rates. 

With ICC’s less than .05 in these conditions, variations in adherence rates 

among patients account for such a disproportionately large amount of 

variance, that the role of the physician is negligible; if even existent.  

In the case of ADHD, this makes some intuitive sense. This is because a 

primary treatment for ADHD today is amphetamine based stimulants. 

Drugs such as Adderall and Ritalin are controlled substances for which 
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there are very strict treatment guidelines. As a result, it would be unlikely 

to see large differences between physicians. In the case of cardiac 

surgery, since heart related conditions are among the leading causes of 

death in America, there is substantial amount of literature and emphasis 

on best practices for treatment. Therefore, like with ADHD, the message 

physicians are giving their patients is not likely to vary too much.  

However, depression medication is interesting because in many respects 

it is exactly the opposite of ADHD and coronary artery disease because 

best practice treatment guidelines are not well defined. Perceptions about 

treatment and the theoretical construct of depression likely varies a 

significant amount among both physician and individuals. It is initially 

unclear as to why there is almost no discernible difference at the physician 

level. One hypothesis might be that because the individual level variance 

is large, the physician level variance has little room to play any role. The 

problem with this hypothesis is that DMARD therapy also has a large 

individual level variance while simultaneously having one of the largest 

physician level variances. Furthermore, the physician level variance for 

ADHD is ostensibly zero. There are other conditions such Pharyngitis and 

COPD in which the physician level plays a large role. Understanding the 

causal factors underlying why the physician level variances differ so 

precipitously across condition is a novel question for future research.  

Table 4 Physician Level Variances 
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Condition Level 2 

Variance 

Level 1 

Variance 

Level 2 

Standard 

Deviation 

Level 1 

Standard 

Deviation 

ICC 

Diabetes Care (NS) 0.002875 0.02666 0.05362 0.16327 0.09737 

CAD (NS) 0.006148 0.0951 0.07841 0.30838 0.06072 

Asthma (NS) 0.002845 0.1008 0.05334 0.31752 0.02745 

Cholesterol 

Management (NS) 

0.004328 0.02941 0.06579 0.1715 0.12828 

CHF (NS) 0.08466 0.1422 0.29096 0.3771 0.37318 

DMARD Therapy in 

RA (NS) 

0.04707 0.1992 0.21695 0.44631 0.19113 

ADHD (NS) >.0001 0.2344 >.0001 0.48412 >.0001 

LBP Imaging (NS) 0.007291 0.1678 0.08539 0.40961 0.04165 

Pharyngitis (NS) 0.085 0.142 0.29154 0.37678 0.3745 

URI (NS) 0.04487 0.1141 0.21184 0.33772 0.28235 

Bronchitis, Acute 

(NS) 

0.01069 0.1943 0.10339 0.44078 0.05215 

Depression Med 

Management (NS) 

>.0001 0.2018 >.0001 0.44921 >.0001 

COPD (NS) 0.05198 0.1742 0.228 0.41733 0.22987 

Cardiac Surgery 

(NS) 

0.003214 0.06865 0.05669 0.26201 0.04472 
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Alcohol Treatment 

(NS) 

0.03799 0.05936 0.1949 0.24363 0.39023 

Emergency Medicine 

(NS) 

0.03544 0.08143 0.18827 0.28536 0.30327 

COPD Exacerbation 

(NS) 

0.03156 0.1298 0.17766 0.36033 0.19556 

 Beyond the ICC which tells us which conditions have significant 

clustering, the interesting and noteworthy finding is that while physician’s 

do bear some level of responsibility for lack of adherence, the patients 

always account for a greater proportion of variability. This finding would 

not have been possible with simpler models such as a t-test or standard 

ordinary least squares regression. This is because neither model allows 

researchers to estimate the parameters necessary to partition the variance 

between patients and physicians in an interpretable fashion. The next 

section shows how multi-level models can be used with covariates to 

understand predictor variables which help explain adherence to treatment. 

Additionally, the section demonstrates proper centering of variables to 

obtain accurate and un-confounded parameter estimates.  

Multi-Level Model with Covariates: 

A random effect multi-level model is a starting place to determine 

the feasibility of further exploring more complex multi-level models. For 

example, one reason for not continuing to build a more complex model is if 

random effect results do not show a significant ICC or level 2 variance 
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component. This is because if there is no intra-class correlation and 

significant level 2 variance component then there is no need or validity to 

using a multi-level model. As a result, a subset of conditions were selected 

for further analyses.  

The variables explored were public versus private insurance 

(insurer type), gender, age, number of patient visits, ethnicity and 

physician years of experience. Physician experience was centered at the 

grand mean while patient age and number of patient visits were centered 

within cluster in order to give an unbiased estimate of the level 1 or 

individual level effect. Centering patient age or number of patient visits at 

the grand mean would confound the estimates with level 2 variability. 

Physician experience was centered at the grand mean because it is a 

level 2 variable predicting physician mean adherence and therefore 

centering within cluster is not an option. Insurer type, gender and ethnicity 

were dummy coded. For insurer type, private was coded zero, for gender 

male was coded zero and for ethnicity Caucasian was always coded zero. 

In a dummy coded model, the regression coefficients represent the 

expected change in the mean from the group coded zero to the group 

coded 1. For example, if there was a positive coefficient for a gender 

dummy code, this would mean that on average, females are expected 

comply more than males by a given amount. The model estimated is as 

follows: 
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Yij = Y00 + Y01(physican years experience cgm) + Y10(patient age 

cwc)  + Y20(number of visits cwc) + Y30(patient gender) + Y40(insurer) + 

Y50(Asian) + Y60(Black) + Y70(Hispanic) + Y80(Native American) + 

Y90(Other) + U0j +rij   Equation 5 

Or 

Yij = B0j + Y10(patient age cwc)  + Y20(number of visits cwc) + 

Y30(patient gender) + Y40(insurer) + Y50(Asian) + Y60(Black) + 

Y70(Hispanic) + Y80(Native American) + Y90(Other)  +rij 

B0j = Y00 + Y01(physican years experience cgm) + U0j  Equation 6 

Y00 is the grand mean, Y01, Y10 – Y90 are regression coefficients 

U0j are random slope for level 2 and rij is the level 1 residual. Patient age, 

number of visits and gender are level 1 variables while physician years of 

experience is a level 2 variable. The results of the multi-level models do at 

some point find a significant effect for all of the variables. However, 

variables are not significant across all conditions. Furthermore, the effect 

size and trend is equally inconsistent. A Bonferroni correction was made 

for alpha inflation or multiple testing and our nominal alpha or p-value for 

significance was set at 0.005. This was done because with p=.05, by 

chance alone 1 out of 20 tests would be significant. Since we had 10 

variables we were testing 10 variables per condition, we reduced the 

alpha level or nominal p-value for significance to keep the probability of a 

type 1 error or false positive what it would have been if we only ran one 
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test for one condition. Table 5 shows the statistically significant factors 

after this correction factor was made. 

Table 5 Significant Predictors 

Description Effect Estimate Standard 

Error 

Degrees 

 of 

Freedom 

T-

Value 

P-

Value 

Alcohol 

Treatment (NS) 

Gender  -0.04814 0.01043 2411 -4.61 <.0001 

CAD (NS) Gender  -0.04927 0.007967 6021 -6.18 <.0001 

Cholesterol 

Mgmt (NS) 

Gender  -0.01838 0.004686 6371 -3.92 <.0001 

COPD 

Exacerbation 

(NS) 

Gender  0.06915 0.01607 2576 4.3 <.0001 

CAD (NS) Insurance 

Type 

-0.1204 0.01026 2141 -

11.73 

<.0001 

COPD 

Exacerbation 

(NS) 

Insurance 

Type 

-0.3468 0.02915 2574 -11.9 <.0001 

Diabetes Care 

(NS) 

Insurance 

Type 

-0.02175 0.002145 5.30E+04 -

10.14 

<.0001 

CAD (NS) Patient Age -0.00444 0.000306 5860 - <.0001 
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14.53 

Cholesterol 

Mgmt (NS) 

Patient Age -0.00216 0.000204 6294 -

10.57 

<.0001 

COPD 

Exacerbation 

(NS) 

Patient Age -0.01226 0.000778 2552 -

15.75 

<.0001 

Diabetes Care 

(NS) 

Patient Age 0.000923 0.000045 7.50E+04 20.57 <.0001 

DMARD 

Therapy in RA 

(NS) 

Patient Age -0.00709 0.001354 638 -5.24 <.0001 

Alcohol 

Treatment (NS) 

Number of 

Visits CW 

0.01069 0.002016 2348 5.3 <.0001 

CAD (NS) Number of 

Visits CWC 

0.01905 0.002953 5792 6.45 <.0001 

COPD 

Exacerbation 

(NS) 

Number of 

Visits CWC 

-0.00952 0.002106 2535 -4.52 <.0001 

Diabetes Care 

(NS) 

Number of 

Visits CWC 

0.00223 0.000175 7.50E+04 12.71 <.0001 

LBP Imaging 

(NS) 

Number of 

Visits CWC 

-0.1867 0.01751 2317 -

10.66 

<.0001 
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COPD 

Exacerbation 

(NS) 

Hispanic 1.0194 0.08615 2559 11.83 <.0001 

Diabetes Care 

(NS) 

Hispanic 0.09725 0.0119 7.50E+04 8.17 <.0001 

Diabetes Care 

(NS) 

Native 

American  

-0.078 0.003468 7.40E+04 -

22.49 

<.0001 

Diabetes Care 

(NS) 

Other 

Ethnicity 

0.006962 0.00139 7.50E+04 5.01 <.0001 

URI (NS) Years 

Practiced 

GMC 

-0.0032 0.000741 187 -4.32 <.0001 

Diabetes Care 

(NS) 

Asian -0.01431 0.00505 7.60E+04 -2.83 0.0046 

CAD (NS) Hispanic -0.1812 0.0622 5995 -2.91 0.0036 

Alcohol 

Treatment (NS) 

Native 

American  

-0.09684 0.02878 2402 -3.36 0.0008 

Alcohol 

Treatment (NS) 

Years 

Practiced 

GMC 

-0.00263 0.000742 195 -3.54 0.0005 

Cholesterol 

Mgmt (NS) 

Insurance 

Type 

-0.02726 0.007537 5339 -3.62 0.0003 
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Bronchitis, 

Acute (NS) 

Patient Age 0.003572 0.00099 1655 3.61 0.0003 

A number of more complex models with higher order terms, such 

as quadratic trends, interactions, cross level interactions and additional 

random slopes were studied. However, trying to force more exotic model 

specification onto all conditions led to problems such as non-convergence 

need a highly tailored model specification for each individual condition to 

yield meaningful results.  As a result of the highly specific nature of each 

model, such results are not readily comparable across conditions and are 

not presented.  

Results Multi-Level Model with Covariates: 

Beyond the global trends and partitioning variance in adherence 

between patients and physicians, our models provide a wealth of 

information about how common covariates differ across condition. Age is 

the single most prevalent influence on adherence rates. Age significantly 

influences adherence rates for 9 of the 17 conditions studied.  The effect 

of age on adherence rates is similar to the other significant influences in 

that it is positive or negative, depending on the health condition being 

considered. An additional year of age, all else equal, increases adherence 

rates among patients with diabetes, ADHD and Bronchitis but reduces 

adherence rates among patients with CAD, Asthma, Cholesterol 

Management, DMARD therapy, COPD and COPD Exacerbation.  
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Statistical significance tests indicate that an effect is not random, but very 

small effects can be statistically significant. It is useful, therefore, to also 

consider the size of the significant effects. The effect sizes associated with 

age are generally small, ranging from -0.1 percentage points to +3.7. 

Except for the maximum estimate (+3.7) which applies to a very restricted 

age range, the estimates would increase substantially if applied to the 

multi-year age groups typically used in research on health or health care.  

Being female has a significant influence on 5 of the 17 health conditions 

with the direction (positive or negative) varying among different conditions. 

All else equal, female patients are less adherent than males if they are 

being treated for CAD, Acute Bronchitis or problems with Alcohol. The 

estimates range from -2.5 to -4.1 percentage points relative to the 

adherence rates, all else equal, of males with the same conditions.  

Females are likely to be more adherent than males if the criteria refer to 

avoidance of imaging for acute low back pain or appropriate treatment for 

COPD Exacerbation. The estimates are 3.9 percentage points for lower 

back pain imaging and 6.3 percentage points for COPD.  

The effects of ethnicity are not uniform among the health 

conditions. Being Hispanic is a significant influence on adherence for only 

2 of the 17 conditions, namely diabetes or COPD exacerbation. Hispanic 

(H) patients with diabetes are, all else equal, more likely to be adherent 

than White, Non-Hispanic patients (WNH), but Native American (NA)  

patients are less likely to be adherent than either Hispanics or White Non-
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Hispanic (WNH) patients with diabetes. Hispanic patients, all else equal, 

have adherence rates that are 3.7 percentage points higher than those of 

WNH. NA patients have rates that are 7.3 percentage points lower than 

those of WNH. The only significant effect of being NA, other than for 

diabetes, is for patients with upper respiratory infections, and the effect is 

positive rather than the negative effect for diabetes. Adherence rates for 

NA URI patients are 9.9 percentage points higher than for WNH patients.  

The variations among different diseases in direction, significance 

and size of the association between patients’ characteristics and 

adherence rates echoes the lack of agreement in previous research 

studies concerning the importance of demographics on adherence rates 

(cited in the Background section of this portion of the report). Our results 

show that demographic characteristics have a significant effect on 

adherence, but those relationships are very different for different 

conditions.  

The remaining results refer to one measure of public versus 

commercial insurance coverage and two measures of physician 

characteristics. The results for insurers do not allow for interactions 

between insurer type and adherence rates. That would require estimating 

separate results for each type of insurer which was beyond the scope of 

this part of the report. The inclusion of a one-zero variable in which public 

insurer=1 captures shifts in the intercept of the equation, but not 

interactions between insurer type and all the other variables in the model.  
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There is no significant difference between coverage by public versus 

commercial insurance for 13 of the 17 health conditions. The exceptions 

are for CAD, Cholesterol Management, COPD Exacerbation and Diabetes 

for which adherence rates are, in each case, reduced if, all else equal, a 

patient is covered by public insurance. The estimates range from -3.9 

percentage points for Cholesterol Management to -18.1 percentage points 

for COPD Exacerbation. The results for public insurance may include a 

selection bias since persons with mental health problems are more likely 

to be on public insurance.  

Two variables, namely years in practice and number of visits for 

each patient seen by a physician were included in the model to provide 

some controls for differences among physicians. The interpretation of the 

association between years of practice and adherence rates, controlling for 

patient characteristics, is straight forward. The effect of number of visits is, 

however, subject to uncertainty concerning causal direction, although it 

does indicate the extent of contact between a physician and a patient. We 

will, therefore, restrict our discussion of the results to the years of practice 

variable and treat the visits variable as a pure control.  

An additional year of practice by a physician is significantly associated, all 

else equal, with differences in adherence rates for only 3 of the 17 

conditions, namely: CAD, URI, and Alcohol Treatment. The effect of a 

single year is quite small, less than one to three tenths of one percent, 

indicating that substantial differences only occur over ten to twenty year 
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differences in physician practices. Thus, one expects the large differences 

to exist between relatively young physicians and physicians in their sixties 

or older.    

Discussion: 

Adherence to treatment has been studied in numerous different 

contexts across a plethora of settings. Our study takes a slightly different 

approach in that we ask the question of how much of the variance in 

adherence is due to physician related factors and how much is due to 

patient factors. Our use of hierarchical (multi-level) modeling to partition 

variance between groups in clustered datasets is by no means technically 

new. However, this method is less commonly used in the study of 

adherence. Stemming from past literature, in a second set of analyses we 

also look at the role of previously identified factors relating to adherence. 

While in the first part of our study, hierarchical (multi-level) modeling was 

used as a tool to partition variance, in the second part modeling factors on 

adherence, the use of this method is necessary to obtain statistically valid 

estimates. This is because clustering in datasets, if not correct for through 

methods such as hierarchical (multi-level) modeling will lead to 

dramatically inflated type 1 error rates (Raudenbush and Bryk 2001). 

In contrast, many studies tend to focus more on the specific factors 

relating to adherence. For example, McKinlay et al. examine sources of 

variation in physician adherence with clinical guidelines and Cabana et al. 

similarly study why physicians do not follow clinical practice guidelines. In 
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acknowledgement of the fact that physicians often do not follow 

guidelines, the New England Health Care Institute conducted a study to 

identify barriers and develop strategies for improving physician adherence 

to clinical guidelines. The New England Health Care Institute identifies the 

medical payment system, IT infrastructure, physician culture and the 

current guideline development process as barriers to physician adherence 

to guidelines. The Institutes report also identifies a number of potential 

interventions to improving physician adherence to guidelines. Although we 

do not explicitly test many of these things such as IT infrastructure or 

medical payments, we believe that many of these factors would be 

subsumed within the physician variance component. This is because to 

the extent that IT infrastructure or medical payments are a factor, 

differences in adherence related to them would show up in different mean 

adherence rates between physicians. While these may be important 

factors which show statistically significant results in studies on their own, 

our research suggests that the overall magnitude of their effect in the 

broader context of adherence is likely small because physician related 

factors globally contribute to a small fraction of the variance in adherence 

rates. We believe that interventions focusing more on patient centric 

aspects of adherence would be a better use of finite resources.  

In addition to physician factors on adherence, a vast literature spanning 

decades exists examining patient factors relating to adherence. Dimatteo 

et al. and Vermeire et al. both provide excellent meta-analyses and 
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reviews of the literature regarding patient factors on adherence (DiMatteo, 

et al. 2002) (Vermeire, et al. 2001). Our study, like many meta-analyses 

does not find a clear and consistent effect for many demographic variables 

such as age, gender, race or even physician years of experience on 

adherence. Dimatteo et al. and Richard et al. examine the effects of 

patient non-adherence in health outcomes. Choudhry, Fletcher and 

Soumerai find that physicians with more years of experience are 

sometimes at risk for providing lower quality care and may need quality 

improvement interventions (Choudhry, Fletcher and Soumeral 2005). We 

find that in 3 of the 17 conditions studied, physician years of experience is 

correlated with decreased adherence rates. Although we only observe this 

in a small subset of conditions, it is tangentially consistent with the general 

findings of physician performance degradation over time.  

Many researchers have noted that adherence is also likely a factor 

of the interaction between physicians and patients (Zolnierek and & 

DiMatteo 2009).  Zolnierek & DiMateo specifically conduct an extensive 

meta-analysis regarding the effects of physician patient communication on 

adherence. Decades of research identifies a number of factors on both the 

patient and physicians sides of adherence as well as factors relating to the 

interaction between patients and physicians. Our contribution is that we 

are able to show that while there is clearly a non-ignorable portion of 

variance associated with adherence is due to physicians, in every 

condition we studied, a much larger portion can be attributed to the 
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patients. Given the consistency of the finding that more variance can be 

attributed to patients than physicians in all 17 conditions studied, we 

suggest placing more emphasis on focusing interventions more on 

patients than on physicians. While physicians are an easier group to reach 

for interventions, without a strong intervention that produces large effects, 

in the bigger picture of overall adherence, such programs may not have 

the largest overall impact.  

The characteristics included in the model (insurance type, age, 

gender, ethnicity and number of visits, years of practice) account for some 

of the variance in adherence rates but the amount of overall variance 

explained is low. In the full models, a pseudo r-squared calculation to 

measure the proportion reduction in variance never reaches the threshold 

for even a medium or moderate effect size for the individual level variables 

tested. The results, calculated for each condition, reflect the fact that much 

of the difference in adherence rates is determined by the type of condition 

being treated rather than variations among patients with the condition or 

among the physicians who are treating them. 

Adherence rates, within type of condition are influenced in greater 

part by differences among patients than by differences among physicians, 

recognizing that our measures of physician characteristics are limited. 

Many conditions exist where a specific physician does have a noticeable 

effect, but even in those circumstances the physician does not appear to 

be the predominant influence.  
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High Performance Computing Methods: 

The Center for Health Information Research stores archival data in 

a SAS database. As a result the analytic program is natively connect to 

the analytic program and eliminates the need for database connectivity 

programs. Nonetheless, the same inherent benefits are realized in that the 

redundant write to disks and increased size of excess output flat files is 

minimized. 

 Multi-level models are iterative models which utilize maximum 

likelihood and the EM algorithm. Given the complexity of the data these 

models sometimes take a large amount of time and number of iterations to 

converge on a solution. Since the model is iterative each run cannot be 

parallelized but each different condition can be. Parallel processing was 

used in a dual core fashion to run the 17 conditions in parallel thus 

substantially reducing the necessary processing time.  

Conclusion:  

 This chapter demonstrates the effective use of multi-level modeling. 

Proper use of the model and centering is illustrated along with how new 

parameter estimates such as level 1 and level 2 variances can be used to 

address the complexity in modern biomedical datasets. Without using 

multi-level modeling the parameter estimates from the model would have 

been dramatically inflated and the researcher would have likely made 

incorrect conclusions about the relationship of many variables.  
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Additionally, without the use of multi-level modeling it would not 

have been possible to partition the complexly tangled variability in 

adherence to treatment accurately between patients and physicians. This 

result gives significant insight into a decades old question and suggests 

that more resources should be allocated to interventions targeted at 

patients to increase adherence to treatment.  
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CHAPTER 5 

Structural Equation Modeling 

Chapter Overview: 

 This chapter presents the use of structural equation modeling to 

better address the complexity associated with the presence of unobserved 

latent variables in a research project. This is illustrated through the real 

world example of an immunosignaturing study to develop diagnostic tests 

to screen for breast cancer. The first section shows that while classical 

tests such as a t-test provide useful information, they are very limited in 

their ability to fully address the complexity inherent in the data and have 

no ability to model underlying latent constructs. The second section 

expands by show how structural equation modeling can be used to better 

make sense of complex data and directly model latent constructs (in this 

case antibodies). Additionally, it is shown how not only can we make 

inferences about the existence of latent constructs but it is also possible to 

model their relationship to other variables such as how they predict 

disease outcomes. This chapter also discusses how the measurement 

model portion of a structural equation model may be used as a diagnostic 

tool for medical devices.  

Problem Abstract: 

One final complexity in biomedical datasets is the presence of 

latent factors where the outcome of interest is not measured directly but 

rather via a number of proxy observations. This occurs commonly in 
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microarray technologies where single nucleotide polymorphisms are used 

to represent the effect of an entire gene, single messenger RNA 

fragments are used to study the expression of an entire gene  or peptides 

are used to study the effects immune response and antibodies. Simple 

statistical models are only capable of studying the marker variables and 

have no way to make any inferences about the larger underlying latent or 

unobserved construct. Structural equation modeling is specifically 

designed to help answer questions about hypothesized but unobserved 

latent constructs. Additionally, beyond investigating the presence of latent 

factors, structural equation models are capable of estimating much more 

complex models in which hypothesized latent factors are treated as 

unique variables to help understand their relationship in the broader 

context of the research study.  

 It is demonstrated how structural equation modeling can make 

sense of complex datasets even when the outcome of interest is not 

directly measured. Applications for diagnostic screening using latent 

factors are also presented.  

Methodological Background: 

 Structural equation modeling is commonly used in the social 

sciences today is comparatively underutilized in biomedical data analysis. 

Despite the relative underutilization of structural equation modeling in 

Biomedicine today, the historical roots can be traced back to work by the 

noted population geneticist Sewall Wright’s work on path analysis. In his 
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1921 paper entitled Correlation and Causation, Wright lays out a 

covariance modeling approach to path analysis as a method for studying 

plant and animal biology (Wright 1921). Path analysis is the basic 

foundation for the structural portion of structural equation modeling 

models. Later, measurement models based largely off of factor analytic 

methods were added to what has become the modern day structural 

equation modeling framework (Bollen, Structural Equations with Latent 

Variables 1989). 

Structural equation modeling provides a robust modeling 

frameworks that is applicable across a wide range of biomedical data from 

genomic and proteomic to public health data. Both Dahly and Yu-Kang 

argue that structural equation modeling is underutilized in many 

biomedical fields; especially epidemiology (Tu 2009) (Dahly, Adair and 

Bollen 2009). The general structure of structural equation modeling makes 

it well suited to addressing many analytic challenges across a wide range 

of biomedical domains. This is because structural equation modeling 

allows users to specify anything from a t-test or simple linear regression to 

highly complex models with latent factor variables and multiple covariance 

structures (Bollen, Structural Equations with Latent Variables 1989). The 

structural equation modeling framework also provides many useful 

attributes for estimation of missing data problems (Enders, Applied 

Missing Data Analysis 2010). 
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Tu suggests that part of the underutilization of structural equation 

modeling in biomedicine may be related to a lack of familiarity with the 

models and the need to learn how to specify more complex models that 

structural equation modeling is capable of addressing (Tu 2009). There 

are examples of structural equation modeling in biomedicine though such 

as the study by Dahly, Adair and Bollen which investigate blood pressure 

(Dahly, Adair and Bollen 2009). Given that Kenneth Bollen is a premier 

researcher on SEM, this in part explains the reason for this study.  

In genetics, most of the structural equation modeling based 

literature focuses on older data and research designs such as twin and 

adoption studies. These studies also tend to focus on psychological 

questions and psychology is a field where structural equation modeling is 

commonplace. Bartels, Cacioppo, Hudziak and Boomsma were interested 

in studying genetic and environmental contributions to stability in 

loneliness throughout childhood while D'Onofrio, Hulle, Waldman, 

Rodgers, Harden, Rathouz and Lahey studied how genetic and 

environmental factors interact with smoking during pregnancy to create 

externalizing problems in children (Bartels, et al. 2008) (D'Onofrio, et al. 

2008). The use of structural equation models in biomedicine, especially 

genetics and proteomics is limited to a specific set of questions usually 

related to psychological outcomes. Structural equation modeling has also 

not made a real forte into mainstream analysis of high throughput 

microarray technologies either.  
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This chapter on statistical methods for analyzing immunosignatures 

provides a number of examples in which the structural equation modeling 

framework can be useful for helping to model complex relationships 

among peptide microarray data. It also presents a model for using 

confirmatory factor analyses or structural equation measurement models 

as a method for screening new samples for disease. It is also 

demonstrated that while simpler classical tests such as T-Tests are useful, 

the same level of information is not able to be obtained without using more 

complex modeling approaches such as those within the structural 

equation modeling framework. Structural equation modeling is necessary 

to untangle the complexity in modern biomedical data. 

Experimental Study Background: 

The human immune system is a rich source of information about 

the health and disease status of an individual (Johnson and Stafford 2009) 

(Metchnikoff and Binnie 2009) (Litman, Cannon and Dishaw 2005) 

(Legutki, et al. 2010).  Immunosignaturing is a new technology that may 

be useful to decode the vast amounts of health information contained in 

the immune system. An immunosignature is a pattern containing 

multiplexed signals from chronic or recently matured antibodies.  These 

signals come from a sufficiently diverse set of peptide targets on a 

microarray.  Thousands of peptides of random sequence (mimotopes) 

provide the density and diversity sufficient to discriminate different 

diseases.  An initial question, and the aim of this chapter, is how best to 
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analyze and decode the information from immunosignaturing studies.  

Previous reports (Legutki, et al. 2010) (Johnson and Stafford 2009) used 

frequentist statistics (ANOVA or t-test) and cluster analysis (hierarchical 

clustering and Principal Components) to identify features that classify 

disease states.  We examine other methods that may yield better 

performance in immunosignature analyses. Corrected T-Tests as well as 

logistic and multinomial logistic regression models have demonstrated an 

ability to differentiate between patients with different disease states even 

after stringent corrections for running multiple statistical tests (alpha 

inflation). Confirmatory factor analysis is an additional method which 

provides an abundance of information relating to the clustering of samples 

as well as providing an alternative method for categorizing and 

determining the disease state of a single sample. Descriptive statistics 

help to paint a better picture of the overall immune system activity. Finally, 

structural equation modeling and mixture models can help explain the 

underlying structure of an immunosignature.  

For these analyses we examined a dataset containing breast 

cancer samples along with patients who had a second primary tumor (not 

a recurrence).  The group with a second primary tumor was included in the 

analyses because if these patients could be diagnosed as having a high 

probability of developing a second tumor, they could be more closely 

monitored.  
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 In an immunosignaturing study, sera samples are collected from 

participants and the physical information from the immune system is 

extracted using high density peptide microarrays. Each microarray 

contains a large number of peptides; in this case 10,375 peptides. The 

selection of these peptides was designed to give broad spectrum 

coverage of relevant antigens in the human immune system. The relevant 

nature of each peptide capitalized on early phage display research 

(Johnson and Stafford 2009). The decision was made to use a peptide 

microarray instead of phage library panning because of the increased 

speed and efficiency offered by a peptide microarray (Johnson and 

Stafford 2009).  Ideally, if we can better understand the information 

captured by the peptide microarrays we may be able to develop quick, 

accurate, unobtrusive and inexpensive screening tests for many types of 

disease.   

 Classic peptide microarrays are created by spotting overlapping 

peptides corresponding to linear sequences of proteins known to be 

involved in an infectious disease.  These arrays cannot identify non-linear 

epitopes.  The epitopes are identified when B-cells produce antibodies 

(usually IgG) specific to 8-12 residue peptides that are components of the 

antigen protein. In contrast, immunosignaturing arrays utilize random-

sequence peptides.  Random sequence peptides have some specific and 

reproducible affinity to antibodies, and determining the level and pattern of 
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binding is core to determining the difference between patients with 

different diseases.  

 Although much research has been done on statistical analyses 

using microarrays, immunosignaturing microarrays pose a number of 

novel challenges not encountered in traditional microarrays. In nucleic 

acid microarray technologies, binding is essentially only between two 

types of molecules of complementary sequence. For example, in a 

genotype array, genomic DNA binds to complementary nucleic acid 

probes that have either matches (e.g., perfect match, PM) or mismatches 

(MM) and the signals from the different probes are combined to make 

homozygous and heterozygous base calls for individual single nucleotide 

polymorphisms (SNPs). In a gene expression microarray, only a specific 

fragment of RNA will bind to the oligonucleotide on the array. With modern 

microarrays, as long as there is a sufficient abundance of RNA on the 

array, it will generally bind only to the specific complementary probe, with 

very limited non-specific binding. 

 With immunosignaturing microarrays, the intensity values are a 

continuous value from 0-65,000 and binding is not restricted to a single 

“complementary” molecule. Multiple antibodies in IgG could bind to the 

same 20mer peptide on the array. Also, although the immunosignaturing 

arrays are designed to measure IgG, there may still be competitive binding 

from other material in the sera and from other types of immunoglobulin. 

Competitive binding could result in an IgG antibody not binding at all or 
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binding with a lower affinity. This could be potentially problematic if the 

auxiliary particle reducing binding affinity does not differ systematically 

across groups. Furthermore, a single antibody may also bind to multiple 

peptides on the array; a problem almost non-existent in genotype or gene 

expression arrays.  

 With the potential for so many different things to bind to a peptide 

on the array, it is not immediately clear how accurately traditional and 

more novel statistical methods would perform. One primary goal of the 

research reported here was to determine if the proposed statistical 

methods were capable of effectively analyzing the data and producing a 

correct pattern of results. For example, with a number of different things 

binding to a peptide and antibodies binding to multiple peptides it was 

initially uncertain if this would produce erratic signatures which would lead 

to incorrect results when certain methods were used.  

 Despite a number of new complexities created by 

immunosignaturing microarrays, these challenges give us the opportunity 

to test the performance of classically used methods such as factor 

analysis models in a different environment while also allowing us to ask 

new and fundamentally different research questions. In order to answer 

these new research questions, there is a need to use different statistical 

models not commonly used to analyze microarray data. This is because 

more traditional models used to analyze microarrays lack the versatility to 

adequately capture and explain the complexities of immunosignatures. 
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Here, we explore the use of structural equation models in order to try to 

determine whether the immunosignature formed by the fluorescent values 

of the 10,375 peptides is mostly random or if there is a consistent 

underlying pattern or factor structure to an immunosignature that 

correlated with disease. This research question is made possible because 

of the novelty in immunosignaturing arrays that that allow a single 

antibody to bind to multiple peptides on the array. This research shows 

that there are complex and consistently reproducible structures underlying 

peptides which differentiate groups. Such patterns can be used as 

biosignatures for disease as well as provide deep insight into antibodies 

and immune response to disease. Although there are new analytic 

challenges in immunosignaturing, it is these exact challenges that provide 

the promise of new discoveries while laying the groundwork for 

applications in future research and technologies.  

 In this chapter we present a range of statistical methods, their use 

and demonstrate what type of information they can provide researchers in 

immunosignaturing studies. We show the ability to classify samples into 

their respective disease categories and find peptides which significantly 

predict disease status. This provides a promising method for screening 

and potentially presymptomatic screening of disease. We also identify a 

number of latent factors using structural equation modeling. We 

hypothesize that the latent factors being modeled may represent specific 

antibodies that differ among disease classes.  
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Methods: 

 Patient samples are analyzed by applying the sera or plasma to the 

array at a 1:500 dilution, detected with an anti-human fluorescent 

antibody, and the signals are read using an Agilent C laser scanner.  

Images are processed using GenePix Pro 8 providing a text file of values 

for each peptide.  Binding affinity is a continuous value from 0-65,500 (16 

bit image). Genepix software was used to convert the 16-bit TIFF images 

to values, median non-background subtracted values were used and log10 

transformation was done on the median normalized intensity values. 

Three distinct datasets were used in these analyses. One was a set of 

samples from a random group of individuals without breast cancer, a 

second set of samples is from a group with breast cancer and finally the 

third set of samples is from a group of patients who were diagnosed with a 

second primary tumor. The normal samples were a convenient sample of 

individuals without any known breast cancer history. The breast cancer 

samples were a sample of current breast cancer patients with different 

levels of disease progression and diverse demographic backgrounds. 

There were 52 samples from normal individuals without cancer, 98 

samples from cancer patients with a single primary tumor and there were 

21 samples with second primary tumors. Human subjects protection was 

observed, collaborators ensured all samples were collected under the 

same protocol. All of the samples came from females between the age of 

45 and 54. The specific participant age for each sample was kept from us 



  113 

because of HIPPA and patient privacy concerns. All pre-processing was 

median-normalization per microarray slide, to adjust for global intensity 

bias. Data was also log10 transformed.  The spot intensity was the median 

signal (obtained by GenePix Pro) with no local background 

subtraction.  Background subtraction was not used because the arrays 

showed consistent background across the 1172 empty spots which were 

spread across the physical surface of the array.  Technical replicates also 

showed greater reproducibility without background subtraction than with, 

indicating that the method for subtracting background was not useful.  

Additionally, the local and global background estimates were, on average, 

150-300 RFU, which for any microarray is extremely low considering the 

3+ logs of dynamic range. 

 It is common in similar lines of research, such as genotype 

experimentation to use a pattern matched experimental design. Matching 

participants in an experiment has the effect of increasing homogeneity 

among groups. As a result, the reduced within class variation which often 

accompanies matching designs has the effect of reducing the standard 

error and denominator of common statistical tests. This in turn leads to 

higher statistical power. Additionally, more homogeneous groups often 

enable easier classification in exploratory models. In the data analyzed 

here, the normal non-cancer samples were not matched to either the 

cancer groups, however research has shown that the signature of immune 

response is far less susceptible to the type of personal factors that genetic 
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studies are – even HLA has only a minor effect on the consistency of a 

disease state immunosignature pattern (Johnson and Stafford 2009) 

(Legutki, et al. 2010).   

Given that immunosignaturing is a new technology, early 

investigations, contrary to initial belief actually capitalize on the lack of 

rigid experimental designs. This is because additional sources of variance 

in the data allow us to better understand the robustness of the technology 

and related statistical analyses. If a method can perform well in a 

somewhat noisy environment with loose experimental designs, it is highly 

likely to perform even better when well curated studies (such as matched 

designs) are performed. In many respects, testing immunosignaturing data 

with loosely structured and curated data provides a much more stringent 

test of the technology and methods. Being able to obtain statistically 

significant results with the correct patterns of results from such 

unstructured data illustrates the versatility of immunosignaturing 

technology and the statistical methods tested here.  

Understanding the robustness of the technology provide guidance 

for future experiments using this technology while giving insight into the 

potential clinical use of immunosignaturing. Biologically, it is possible that 

healthy normal individuals with no active infection are responding 

immunologically to their environment, and persons with an infection have 

a focused immune response.  It is likely that high variation in immune 

response to an environment would be present across individuals. 
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Therefore, in order to be clinically useful, it is imperative that the 

technology and methods are robust enough to function accurately outside 

of precisely controlled laboratory settings; as would be encountered during 

clinical deployment of the technology. 

Descriptive Statistics: 

The first set of methods presented illustrate the capabilities and 

limitations of classical models such as descriptive statistics, the T-Test 

and factor analytic models. Table 6 provides basic descriptive 

fluorescence intensity statistics of each of the three disease groups.  

Descriptive statistics of an immunosignature provide a significant amount 

of insight into the underlying immune response during disease states. Of 

particular biological interest in this sample is the difference in the range of 

values from the three groups. The normal and single tumor cancer 

samples have ostensibly the same floor value while the second primary 

tumor cancer samples have a much lower floor value. This may suggest a 

suppression of the immune system in second primary tumor cancer 

samples. The single tumor cancer and second primary tumor cancer 

samples have progressively higher maximum values which may suggest 

an increased immune response associated with cancer and a 

reoccurrence of cancer. 

Table 6 Fluorescence intensity and descriptive statistics for the three 

disease groups 
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Group Mean Minimum Maximum Std. 

Deviation 

Variance Range 

Normal 329 207 9672 93 10336 9465 

Single 

Tumor 

336 204 16702 115 16258 16498 

Second 

Tumor 

676 36 49880 549 339301 49844 

 Although there are large differences in the ranges, in order to have 

any predictive validity, the differences in ranges need to be consistent 

across samples within each group. For example, a high fluorescence 

value over 45000 in the second tumor samples needs to occur on a given 

peptide with regularity to produce a statistically significant result.  

Classical Statistical Significance Tests: 

 There are a number of statistical tests which could potentially be 

used to test whether the differences between groups across peptides are 

significant beyond what would be expected by chance alone. Some of 

these methods include the T-Test, corrected T-Tests, Logistic Regression 

and Multinomial Logistic regression. The standard T-Test divides the 

mean difference between two groups by a standard error to produce a T-

Statistic used for null hypothesis significance testing. One problem with 

the standard T-Test is that the test makes the assumptions that the 

variances in both groups are equal. The problem of unequal variances in a 

T-Test is commonly known in the statistics literature as the Behrens-
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Fisher problem and has been researched for the better part of the last 

century in various contexts.  If the assumption of equal variances is 

violated, the T-Statistic can be either inflated or deflated depending on the 

samples sizes in each group. As a result, the analyses were conducted 

using a Satterthwaite corrected T-Test. The Satterthwaite test is one of 

numerous corrections for unequal variances that have been proposed 

over the years. The Satterthwaite test works by adjusting the degrees of 

freedom in the test. The resulting correction produces an asymptotically 

correct T-statistic when groups have unequal variances. The Satterthwaite 

correction works by modifying the degrees of freedom via equation 1: 

( 1 2)*2
 

1*2 2*2

2 1 2 1

w w
df

w w

n n





 

         Equation 7 

A Satterthwaite corrected T-Test and a number of similar test 

corrections which could have also been used such as a Brown-Forsythe 

correction in an ANOVA model tended to produce statistically significant 

results after a Bonferroni correction for multiple testing (alpha inflation). A 

Bonferroni correction was used to protect against alpha inflation because 

with a standard alpha level of .05, purely by chance alone, 1 out of 20 

tests will be significant. The Bonferroni correction divides the alpha value 

by the number of tests run; in this case 10,375, or one for each peptide on 

the microarray. This resulted in a corrected p-value threshold of 4.819*10-

6. Nonetheless, despite this much lower p-value, highly significant results 

are still obtained for Satterthwaite corrected T-Tests comparing normal 
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versus single tumor cancer samples, normal versus second diagnosis 

samples and single tumor cancer versus second primary tumor cancer 

samples. Table 7 shows the top 10 significant peptides for a Satterthwaite 

corrected T-Test comparing normal samples to cancer samples. Logistic 

and Multinomial logistic regression may also be of interest and an 

alternative method for comparing groups to the tests used here. One place 

in which logit models may be useful is if a researcher in future studies has 

a known set of covariates they wish to control for. For example, in the 

study of diabetes, it may be of interest to control for body mass index or 

HB1AC test results.  

Table 7 Top 10 significant peptides for a Satterthwaite corrected T-Test 

comparing normal samples to cancer samples 

Variable 
ID 

Peptide Sequence T-Value DF P-Value 
 

V2833 HFRKWHKRRWKHHKKWKGSC -6.51 132.4 1.4372E-
09  

V3113 HRFKWHWKHRFHHFHRFGSC -6.29 144.4
1 

3.5843E-
09  

V6772 QKFKHQQGSFKLPWLSMGSC -6.29 144.8
4 

3.5843E-
09  

V9732 WRRSTPVGPWTWFGKFLGSC -6.12 146.1 8.1933E-
09  

V7196 RFGRPQHQHDFRRHAIYGSC -6.06 146.8 1.1046E-
08  

V6978 QSHMTLAPGIRRYKKFNGSC -6.06 146.3
2 

1.1046E-
08  

V7387 RMGFGLYERLWGKTNHYGSC -6.01 134.2
6 

1.6532E-
08  

V9561 WKWKRHWKWPHRRKHFFGSC -5.95 144.4
9 

1.9475E-
08  

V6987 QSIGLGYSAFMPKWPFRGSC -5.93 140.1
3 

2.2543E-
08  

V3249 HWKRHHRPKHKHHRHKHGSC -5.9 145.4 2.4586E-  
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08 

Exploratory Factor Analysis: 

 Factor analytic models have previously been used in analyzing 

immunosignatures and are quite common in analyzing high dimensionality 

microarray data (Legutki, et al. 2010) (Kustra, Shioda and Zhu 2006) 

(Blume 2010). Each of the models explored during this line of research 

were investigated in order to determine its feasibility for answering a 

specific research question. Exploratory factor analysis (EFA) was 

examined as a method to be able to differentiate samples based on 

disease states with no prior clinical knowledge of the samples. Estimation 

of EFA models was performed using ordinary least squares (OLS). EFA 

with Promax rotation proved significantly better than chance at classifying 

samples. EFA is a set of procedures that accounts for the relationship 

among a set of variables in terms of a smaller set of underlying latent 

constructs or factors. (For example, a factor is a disease state.) We 

specifically use principal axis factoring with iterated communalities. 

Although PCA and EFA are quite similar, an important difference between 

the two methods is that PCA makes the assumption that all of the variance 

in an item is a reflection of common variance shared among all items 

whereas EFA posits that each item shares some common variance with all 

other items but also has its own unique variance. Mathematically the 

difference between PCA and EFA is the addition of single matrix; D2. 

Rzz = A * Rf * A’ + D2
        Equation 8 
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In equation 2 Rzz is the correlation matrix among the observed variables. A 

is a matrix of factor loadings, Rf is the correlation matrix among the factor 

loadings, the A’ denotes the transpose of the A matrix of factor loadings 

and thus ARfA’ is the matrix representation of the common factor 

structure. D2 is a diagonal matrix that captures the unique variance 

weights and distinguishes EFA from PCA.  

 Varimax and Promax rotation methods were explored in depth. This 

is in part because Varimax is often a starting point for a Promax rotation. A 

sample is said to “load on” a given factor when the model suggests a 

strong fit on the given factor. Rotation in EFA is a method for making 

factor loadings more interpretable. Rotation methods change the 

relationship between items and the factors (which are geometrically 

represented as axes). Rotation does not change the relationship among 

the individual items. Since rotation methods only make changes to the 

axes and not to the communalities (variance accounted for), rotation does 

not mathematically change the initially obtained results. Rotation makes 

the factor loadings more interpretable. 

 Varimax uses a complexity function to maximize the variance of the 

squared loadings on each factor. This results in loadings with a more even 

spread across the factors; as opposed to having an overabundance of 

loadings on a first factor. Varimax is an orthogonal rotation that maintains 

the orthogonal (90 degrees) intersection of the axes. This has the result of 
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keeping the correlation between the factors at zero because the cosine of 

90 degrees is 0. 

 Promax is an oblique rotation that allows the angle between the 

axes to vary. In statistics, variance has to be accounted for in some part of 

the model. Allowing the axes to vary and thus a correlation between the 

factors is another path to account for variance. Allowing variance to be 

expressed in terms of correlations between factors has the result of not 

forcing variance between factors to be represented as between item 

variance. This can result in cleaner factor loadings. Additionally, the 

assumption that there is no correlation between factors, or in this analysis, 

disease states, is unlikely because there will always be some additional 

common variance and similarities in immune samples due to basic 

immune responses and structures present across all samples.  

 Unlike Varimax, Promax does not use a complexity function. 

Rather, Promax rotation is a procrustean rotation to a target matrix. In 

Promax, a pattern matrix of loadings (often derived from Varimax rotation) 

is taken to some power (i.e., squared, cubed etc.) to form a target matrix. 

The original loading components are then rotated to get as close as 

possible to the newly formed target matrix.   

A number of EFA models with Promax rotation were run to 

investigate the utility of this method for differentiating between groups with 

no prior knowledge of group membership. Table 8 provides summary 

results. The number of factors was known to be 2 for each comparison. 
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Scree plots were used to validate the hypothesis. None of the plots 

suggested the presence of a strong third factor. A scree plot plots the 

eigenvalues for each component. The largest components before a 

leveling off is used to determine the appropriate number of factors. Factor 

loadings greater than .3 were said to load on a given factor. If loadings for 

both factors were less than .3 the sample was said to not counted as a 

correct classification on either match. Catell (1966) provides a more 

detailed description of how to use eigenvalues and scree plots for 

determining the number of factors (Cattell 1966). 

Table 8 Exploratory Factor Analysis Results 

 EFA Model Correct Classification 

Single Primary Tumor and Second Primary 

Tumor Samples 

93.45% 

Non-Cancerous and Second Time Cancer 

Samples 

84.4% 

Non-Cancerous and First Time Cancer Samples 68% 

 

 An EFA between cancer samples and the samples from patients 

who had a second primary tumor produced a correct classification for 

93.45% of the cases. Of the cases that were miscategorized, all of them 

except one were cancer cases that loaded more highly with the second 

primary tumor group. There are a few possible explanations for this. This 

could simply be model error resulting from the lack of homogeneity among 
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the first time cancer group. However, it is possible that the miscategorized 

cases may represent individuals who will at some point in the future 

develop a second primary tumor or are unbeknownst to the researchers 

already in the process of developing one. All this says is that less than 

10% of cancer samples are more closely related to the samples of 

individuals who had acquired a second primary tumor than the samples 

with a single primary tumor. 

 A second EFA was run between the normal or noncancerous 

samples and the samples with a second primary tumor. The overall 

classification accuracy was 84.8%. Within this model, 74.1% of the normal 

samples loaded correctly on the same factor whereas 100% of the second 

primary tumor samples loaded on the correct and same factor. 

 A third EFA was run exploring the relationship between normal or 

non-cancerous samples and single tumor cancer samples. Using the 

same model specifications as in the first model, this EFA produced a 68% 

classification accuracy. Although this is quite low by traditional model 

building standards, there are a number of factors relating to the data which 

may make this a useful starting point. First, the normal patients were taken 

from a wide range of convenient lab samples. Some of the normal 

samples may have come from individuals outside of the age and 

traditional demographic background to even be remotely at risk for breast 

cancer. Secondly, the stage and progression of cancer patients was 

unknown. As a result, an additional possibility for the classification 
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accuracy may be that the cross loadings represent a mixture of early 

stage cancer patients and those at high risk for or who are developing 

cancer.  

 Unfortunately, detailed information about the disease state of the 

samples is unavailable and thus makes any conjecture purely 

hypothetical. However, in all models, the results are significantly better 

than chance and illustrate in many ways the performance of the 

technology and approach under adverse conditions. The three models 

taken in concert illustrate that the lack of a concrete and well curated 

control group is likely responsible for the decremented classification 

accuracy in some models. This can be most clearly seen when 

considering that the single tumor cancer and second primary tumor cancer 

samples consistently exhibit stable factor loadings with relatively low cross 

loadings because the single tumor cancer samples serve as a much 

cleaner control group for the second primary tumor cancer samples than 

the normal do for either of the cancer groups. This early research 

suggests that future studies using more precisely selected control groups 

and experimental design would have even better ability to classify cancer 

patents. 

 Beyond classification accuracy, the similarity between different 

factor based models and rotations is extremely informative from a 

biological perspective. All combinations of PCA and EFA with Varimax or 

Promax gave highly similar results with respect to overall classification of 
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groups across a number of different analyses. Although specific factor 

loadings certainly had different values, the overall picture and 

classification accuracy was relatively constant. Brief investigations into 

other rotations such as Oblimin were also explored in the context of EFA 

models and produced similar results to Varimax and Promax.  

 First, with respect to PCA versus EFA, the lack of difference 

suggests that the vast majority of the variance accounting for classification 

is at the factor level (ie. ostensibly disease state) and not the individual 

level.  This is because as the D2 matrix which differentiates the two 

methods captures the unique variance in an EFA model and as the D2 

matrix approaches zero, an EFA model approaches a PCA model. 

Therefore, since the D2 matrix is the only difference in the equation and an 

analytic solutions exists due to Ordinary Least Squares estimation, we can 

conclude that the lack of difference was because there was relatively little 

unique variance present.  

Confirmatory Factor Analysis: 

 Since EFA models showed the ability to differentiate samples, a 

logical clinical application of immunosignaturing would be to screen a 

single sample from an individual to determine his or her disease status. 

Confirmatory factor analysis (CFA) was chosen as an ideal method for 

investigating this question due in part to the similarity with EFA and 

because of the versatility to examine one specific sample in detail. EFA is 

an exploratory method that should be used when the number of groups or 
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structure of the data is not well understood. Conversely, CFA is a 

confirmatory method that can be used when the structure of the data is 

well understood. As the name implies, exploratory factor analysis, EFA 

models should not be used as confirmatory model or to confirm a 

hypothesis. 

 Both CFA and EFA attempt to explain the underlying structure in a 

dataset. However, CFA and EFA approach the problem from two distinct 

directions. EFA makes almost no prior assumptions about the structure of 

the data and attempts to sort through the data to help a researcher 

determine what the underlying structure of the data is. In this research, the 

general group membership was known and thus the appropriate number 

of factors was specified apriori. In a CFA model, the researcher explicitly 

identifies not only the number of factors but which cases load on each 

factor as well as factor variances, covariance’s between the factors and 

disturbances for each item. CFA models are not data mining approaches 

and require well formulated notions about the underlying structure of the 

data.  

 Mathematically, the simplest formulation of a CFA model in matrix 

notation is: 

X = Λ * ξ * ΔL      Equation 9 

In Equation 3, X is a vector of observed variables, Λ is a matrix of factor 

loadings, ξ is a matrix of scores for each variable on a factor or latent 

construct and Δ is a vector containing measurement error.  
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In the CFA models analyzed here, one sample from each factor 

(disease state) was chosen at random as a scaling constraint in order to 

ensure identification in these models. Maximum likelihood estimation with 

robust standard errors was used to estimate these CFA models. The 

known disease status was the basis for defining the factor loading for each 

sample. A sample was allowed to load only on a single factor and fixed to 

zero on the other. Variances and covariance’s between all factors were 

estimated. Summary results are provided in Table 9. 

Table 9 Confirmatory Factor Analysis Results 

CFA Model Correct 

Classification 

Single Primary Tumor and Second Primary Tumor 

Samples 

89.9% 

Non-Cancerous and Second Time Cancer Samples 93.1% 

Non-Cancerous and First Time Cancer Samples 83.4% 

For a CFA comparing single tumor cancer samples and second 

primary tumor samples, 89.9% of samples loaded on the specified factor. 

For a normal versus second primary tumor CFA, 93.1% of the samples 

loaded on the specified factor and a normal versus single tumor CFA 

produced sample loadings on the specified factor 83.4% of the time. The 

difference in classification accuracy between the CFA and EFA models is 

due to a number of factors; some of which include model variance and 

covariance specifications as well as different estimator types.  
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One primary advantage CFA models have over EFA models are fit 

indices which give some quantitative measure of how accurately the 

specified model is. Although there are a plethora of fit indices that have 

been proposed within the structural modeling framework that CFA models 

reside, the chi-square difference test, root mean square error (RMSEA) 

and standardized root mean error (SRMR) are among the most common 

and widely cited. 

The chi-square test ostensibly tests how well the specified model 

reproduces the covariance matrix from the original data. The problem with 

this test is that it is so sensitive that it is nearly impossible to obtain 

statistically non-significant results. It is important to note that the null 

hypothesis of this test is that there is no difference between the specified 

model’s covariance matrix and the covariance model in the actual data, a 

non-significant p-value is the desired outcome. Because it is of interest to 

find no difference between the specified model and the data, a non-

significant p-value is the goal. The chi-square test for all of the CFA 

models was significant with p<.001 suggesting that there is a statistically 

significant difference between the specified model covariance matrix and 

the covariance matrix of the original data. However, the chi-square test is 

extremely sensitive and often detects trivial differences [8-9]. Noting the 

sensitivity of the test is not meant to suggest that in fact the specified CFA 

models are perfect fits or deny lack of fit. Rather, the test is noted because 
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it is among the most common fit indices and the issues with the test are 

noted as a means of providing appropriate context for the results. 

The Root Mean Square Error of Approximation (RMSEA) and the 

Standardized Root Mean Square Residual (SRMR) are two common fit 

indices used in the Structural Equation Modeling framework description; of 

which CFA is a part of. The basis of the RMSEA is a non-centrality 

parameter. The simplest reduced form of the RMSEA equation is: 

RMSEA = 

2

1

1

x

df

n

 
 

 


      Equation 10 

In equation 4,    is the model generated chi-square value, df is the 

degrees of freedom and n is the sample size. Smaller RMSEA values 

suggest better fit. The SRMR measures the standardized difference 

between the observed covariance matrix and the model implied 

covariance matrix.  

For the CFA model for single tumor samples versus second primary 

tumor samples, the RMESA was .083 and the SRMR was .071. For the 

CFA model comparing normal versus second primary tumor samples the 

RMSEA was .097 and the SRMR was .076 while the normal versus single 

tumor samples produced a RMSEA of .07 and a SRMR of .074. These are 

marginally significant results because traditional benchmarks cite .05 as a 

cutoff for statistical significance (Bollen 1993). RMSEA and SRMR values 

in the .05-.08 range are usually regarded as marginally significant. 

Although the results do not meet the rigid .05 level, they are actually quite 
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impressive when considering the experimental design and the fact that a 

portion of the lack of fit may actually be representing natural biological 

patterns such as the development of a first or second tumor. 

Perhaps the real utility of a CFA model for immunosignaturing could 

come in the form of diagnostic testing. Given the accuracy of the CFA 

model with this data, once a well curated set of samples for a certain 

disease or collection of diseases has been established, a CFA model 

could be specified where a new unknown sample could be allowed to load 

on both (or multiple) factors. By comparing the relative loadings on the 

factors, it would be possible to determine to which group the sample most 

likely belongs. For example, there are numerous subtypes of breast 

cancer and different stages of disease progression. If a collection of 

samples was available as a concrete reference set, a CFA model could be 

easily and accurately employed as a new method for aiding in the 

diagnosis as well as perhaps early detection of breast cancer. 

Structural Equation Models: 

While the method presented above are highly useful, they are 

inherently limited in the amount of complexity they can unravel. Structural 

equation modeling helps us better understand the complex underlying 

nature of immunosignatures. From EFA, CFA and descriptive statistics we 

know that the immunosignatures as a whole are in fact different across 

groups while corrected T-Tests show that there are statistically significant 

systematic variations. The logical question arising from these findings is 
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how precisely do the immunosignatures differ from one another? Is there a 

clear, consistent and reproducible pattern underlying the differences in 

immunosignatures across disease states? Because a single antibody can 

bind to multiple peptides and different antibodies can bind to the same 

peptide, a coherent pattern of peptide fluorescence across an 

immunosignature is much more informative than the fluorescence of 

individual peptides on their own. Furthermore, being able to identify 

common relationships and covariances between groups of peptides is of 

even greater utility. This can be accomplished by modeling latent factors. 

On a genotype microarray, the probe is directly measuring an 

individual’s genotype at a specific location. In contrast, the peptide probes 

on an immunosignature array are indirectly measuring immune response 

and antibodies present in the sera. When measures are not directly 

observed they are often referred to in statistical and structural equation 

modeling literature as latent factors. If there are clear, consistent and 

reproducible patterns caused by specific antibodies in a sera sample 

binding to peptides on an immunosignaturing array, it should be possible 

to model individual antibodies as latent factors. For example, when 

reading the tick marks on a mercury thermometer, one is not reading a 

direct measure of temperature but rather displacement of mercury. The 

latent factor measured by displacement of mercury is temperature 

because from a purely physics standpoint, temperature is the kinetic 

energy of an object; usually measured at the molecular level. Another 
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example of a latent factor is depression. Psychologists cannot directly 

measure depression but they can ask a series of questions that 

cumulatively allow them to model the latent construct of depression. Each 

question in a depression inventory gets at one small piece of the latent 

factor depression in much the same way that peptides on an 

immunosignaturing array provide an indirect measure of immune 

response; as measured primarily by IgG antibodies.  

Structural equation modeling is specifically designed for modeling 

latent variables. Structural equation modeling models have two parts: a 

path model comprised of regressing a set of variables on another and a 

measurement model in which CFA is used to form latent variables. When 

a set of measured variables is set to load on a given factor, the result is a 

latent factor. In structural equation models, the resulting latent variables 

can be treated as either endogenous or exogenous variables; depending 

on the research question of interest. A full structural equation model is a 

collection of equations defining each variable and their relation to one 

another. Since complex models can quickly generate a large number of 

equations, structural equation models are often represented graphically for 

quicker interpretation. Since confirmatory factor analysis is a major 

component in a full latent variable structural equation model, attempting to 

classify samples with factor analytic methods lent evidence to the 

feasibility structural equation models. These early models also provided a 
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plethora of background information which aided in the testing of full 

structural equation models.  

Initial Structural Equation Modeling Testing: 

Despite evidence from previous factor analytic models that 

structural equation models should be feasible, since these are highly 

complex models, an incremental approach was taken to building and 

testing large structural equation models. To start with, a measurement 

model and full structural equation model was run using the top three 

peptides from the normal versus single tumor cancer samples (Table 7) to 

predict disease. The measurement model (ostensibly a confirmatory factor 

analysis) in a structural equation model tests the loadings of individual 

peptides onto latent variables.  In this model one peptide was set as a 

scaling constraint and the other two were freely estimated. Three peptides 

were chosen because that is the minimum needed for model identification 

and provides for the simplest model. Because of the iterative nature of the 

maximum likelihood algorithms used structural equation models, starting 

with a simple model reduces computational time and aids in convergence. 

Furthermore, starting with the simplest model and building up is good 

practice in modeling. 

 Since a measurement model with 3 factors is just identified or has 

no extra degrees of freedom, fit indices cannot be calculated. However, all 

the variables load strongly on the latent factor with loadings greater than 
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.7. This finding suggests that the top 3 peptides are indicative of a single 

underlying latent factor.  

In order to help rule out the possibility that the consistent loadings 

in the first model were not type 1 error or false positive, the same model 

specification was run in an attempt to see if the top 3 peptides 

differentiating single tumor cancer samples from second primary tumor 

cancer samples. In this model the top 3 peptides also loaded on a single 

latent variable. Like the first model, the second model illustrated the same 

pattern of results with the top 3 peptides all significantly loading on a 

single latent factor. 

The same pattern of results can be replicated with two disease 

contrasts. Replicating the finding with normal versus a single primary 

tumor cancer and second primary tumor cancer versus single primary 

tumor dramatically reduces threats to validity against causal conclusions 

proposed by structural equation models of immunosignaturing data. 

When investigating models that differentiate two distinct groups 

from a baseline group (in this case single tumor cancer samples) there are 

three potential outcomes. First, a complete lack of model fit and no 

consistent underlying factor structure. In this case, none of the peptides 

would load consistently and correctly on either of two specified factors 

suggesting that peptide florescence is random. The second possibility is 

that all of the peptides would load on one factor. This result could result 

from any number of potential biases in the technology itself, printing or 
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processing of the microarrays. Another reason all of the peptides might 

load on one common factor is that they are all part of a single latent factor. 

However, because the significance of each peptide varies quite 

precipitously across group contrasts, it seems unlikely that a single 

underlying latent factor would produce different significance values across 

disease contrasts. The third possibility is that the peptides significantly 

load on two separate factors and that the peptides for each contrast 

exhibit no cross loadings. 

A series of analyses was run using significant peptides from normal 

versus single tumor cancer corrected T-Tests as well as second primary 

tumor samples versus single tumor samples combined into a single 

model. The first model was a measurement model which added the first 

two CFA’s into one model. The top 3 peptides for normal versus single 

tumor samples and single tumor samples versus second tumor samples 

each were set to load on a separate latent factor.  A covariance between 

the two latent variables was also estimated. The path diagram in Figure 2 

illustrates this model. In Figure 2’s path diagram, the square boxes 

represent measured variables, which, in this case are peptide fluorescent 

values. The large circles are the unmeasured latent variables. The arrows 

between the latent factors and measured variables show which measured 

peptides load on which latent variable. The curved arrow represents an 

estimated covariance between the two latent variables. 
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Figure 2 Latent & Measured Variables in Immunosignaturing

 

 In path diagrams, the arrows represent the causal flow of 

information. The arrows are pointing from the latent variables to the 

measured variables because the argument in structural equation models 

is that there is some unmeasured and underlying latent construct that is 

responsible for the observed results of the measured variables. The 

immune response and antibodies present in the sera samples is the 

ultimate causal factor of peptide fluorescence.  

 The model tested in Figure 2 was estimated using maximum 

likelihood estimation with robust standard errors (MLR). The model 

exhibits excellent model fit with an RMSEA of .063 and an SRMR of .031. 

In addition, the Chi-Square test was not significant, Chi-Sq=14.054, df=8, 
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p=.0804. A non-significant Chi-Square test is the desired result. Again, this 

is because the null hypothesis of this Chi-Square test is that there is no 

difference between the observed covariance matrix (input data) and the 

covariance matrix implied by the model in Figure 2. These results strongly 

suggest excellent model fit and that the latent factors are unique 

constructs. Biologically, this suggests that a different latent factor is 

underlying each latent variable. 

 To further confirm the interpretation that the latent factors are 

different, one peptide from each factor was switched. V3113 and V10218 

were set to load on the opposite factor from the first model. In this new 

model, there was a complete lack of fit. In addition to poor loadings, the fit 

indices dramatically decreased. The RMSEA was .354, the SRMR was 

.192 and the Chi-Square was 198.704, df=8, p<.0001. Thus further 

suggests two different underlying constructs rather than statistical 

anomalies. 

An additional set of analyses were run using the top 5 peptides 

instead of just the top 3. The first models run in this sequence were 

Varimax and Promax exploratory factor analyses. Both models gave 100% 

classification with extremely strong loadings on each factor. Table 10 is 

the rotated factor pattern or a two group EFA taking the top 5 peptides 

from each disease contrast. This clearly illustrates the top five peptides 

strongly load on factor one while the last five strongly load on the second 

factor. The loadings of peptides are consistent with the groups from which 
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each peptide was selected. For example, v4356, v10218, v7869, v8672 

and v8170 were the top 5 most significant peptides differentiating first time 

cancer samples from second time cancer samples. In combination with 

earlier results, this very clear and consistent loading pattern strongly 

suggests that the top peptides for each class form unique latent variables 

and they are almost irrefutably measuring different constructs. Biologically, 

this suggests that the latent factor which is more active in single tumor 

cancer samples compared to normal samples is not the same latent factor 

that appears to be present in second tumor samples. 

Table 10 Rotated factor pattern for two group EFA of significant peptides 

Peptide ID Peptide Sequence Factor1 Factor2 

V4356 KYQFAGQRSGKQYRWRIGSC 0.88773 0.05624 

V10218 YQPPPRKAVIQMDWLSYGSC 0.92126 0.06844 

V7869 SKFRDVLTFNEPSRFVSGSC 0.51657 0.04716 

V8672 TVHESMIYRMRFMTFKHGSC 0.93261 0.04783 

V8170 SWRRMRMHKNFMISNLDGSC 0.87997 0.06368 

V2833 HFRKWHKRRWKHHKKWKGSC 0.11128 0.7436 

V3113 HRFKWHWKHRFHHFHRFGSC 0.06271 0.82673 

V6772 QKFKHQQGSFKLPWLSMGSC 0.12145 0.73203 

V9732 WRRSTPVGPWTWFGKFLGSC 0.05844 0.88795 

V7196 RFGRPQHQHDFRRHAIYGSC 0.035 0.88098 

 The same result was also found by running a two group exploratory 

factor mixture model with Geomin rotation. Geomin rotation is another 
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oblique rotation method similar to Promax. A more complete discussion of 

the mathematical differences of rotation methods can be found in (Browne 

2001). In this data, the observed peptides as a whole form a single 

distribution. In mixture modeling, the underlying notion is that the 

distribution formed by all of the observed data is the product of two or 

more underlying distributions; each of which represents a distinct class. 

Ostensibly, an exploratory factor mixture model is trying to answer the 

same question as PCA and EFA, PAF/Factor Analysis but via a different 

mathematical framework. Despite the complexity of mixture modeling, the 

basis of an exploratory factor mixture model is for a categorical latent 

class variable C, for a specific class k. The model estimated is: 

Yp = Vkp+λkp*η*εp       Equation 11 

In equation 5, for a variable Yp,Vkpis an intercept parameter, λkpis a vector 

of loadings, η is a vector of latent factors and εp is a residual term. In 

addition, there is a correlation matrix Ψk for the latent factors η of class k 

along with a distribution for the latent class variable C: Pk = P(C=K). In this 

equation, for a dependent variable P, the probability of C is equal to k. 

Also, other constraints are added to this basic framework for purposes of 

identification but are related to model specific decisions such as 

orthogonal or oblique rotation. 

 EFA mixture models were estimated using Maximum Likelihood 

with Robust Standard Errors (MLR) estimation and 20 random start 

values. Random starting values were used in part due to the complexity 
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inherent in mixture models and to check for local solutions. By running the 

analysis with multiple random start values log likelihood (LL) values can 

be compared. To the extent that different LL values are obtained, the 

random start values can be directly input into the model and the results 

can be compared to the best fitting LL model. This is useful because if 

different start values produce dramatically different results, this might 

suggest that the algorithm converged at a local maxima instead of a global 

maxima or that the results are unstable. 

 Fit statistics such as the Bayesian Information Criterion (BIC) 

provide a more quantitative analysis of model fit for a series of nested 

models. EFA mixture models were estimated for one, two and three class 

models. This approach allows us to confirm that a two class model is in 

fact the best fit for the data. 

The series of EFA mixture models suggested the same pattern of 

results as traditional EFA models; that there are two distinct and separate 

underlying classes formed by the top 5 peptides for each disease contrast. 

In addition, mixture models also produce a statistic for the average latent 

class probability: 

P ( Yp  =  j | C = K) = φ – 1 ( T *kpj ) – φ – 1 ( T*kpj -1)  Equation 12 

In equation 6 T*
kpj is a threshold parameter on a standardized correlation 

metric and φ is a matrix of residuals for the latent factors [11]. For both two 

and three class models, the average latent class probability for the most 

likely latent class membership was greater than 99% for both class 1 and 
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class 2. In other words, for the subgroup of samples classified as being 

part of class 1 by the model, more than 99% of the time, class 1 was also 

their most likely class membership. This further reaffirms the excellent 

model classification. The three class model produced nearly identical 

average latent class probability values because the model did not classify 

any of the peptides as belonging to the third class. 

The BIC was used to assess the best fitting model. The BIC is 

estimated as follows: 

BIC = - 2  * LL + p * log(n)            Equation 13 

In equation 7 LL is the log likelihood value of the model, p is the number of 

parameters and n is the number of observations. The lower the value of 

the BIC the better the model fit. Often times, BIC values or plots are used 

ostensibly in the same fashion that scree plots and eigenvalues are used 

in PCA or traditional factor models where a researcher looks for the point 

at which the decrease in values levels off.  However, in this analysis, the 

two class model had the lowest BIC and somewhat unexpectedly, the 

three class model actually saw a slight increase in the BIC This result 

further reaffirms the excellent fit of a two class model. 

As is common in model building, a series of full structural equation 

models were run in increasing levels of complexity. To start with, the two 

latent variables were regressed on their respective disease states in 

individual models. A path diagram for the normal versus single tumor 

samples is presented in figure 3. 
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Figure 3 Path diagram for normal versus cancer peptides SEM model 

 

These models were estimated using MLR. The latent variable 

regression was performed using logistic regression and was significant, 

p<.001. Additionally, the odds ratio was 1.841. This suggests that having 

the attributed measured by the latent variable makes an individual 1.841 

times more likely to develop breast cancer. The same model specification 

for single tumor versus second tumor samples produced similar results 

with p<.001 and an odds ratio of 3.49. In other words, there appears to be 

a latent factor that is present in those who have a single tumor that is not 

present in those samples with a second primary tumor. 

Furthermore, another structural equation model was run combining 

the above two analyses so that the two distinct latent variables were used 

to predict disease status. The estimation of disease status was done via 

multinomial logistic regression. This was done because when the models 
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were combined there were three levels of disease. In a multinomial logistic 

regression model, one level (in this case single tumor samples) was set as 

the reference group. Then n-1 logistic separate regression equations are 

run; where n is the number of levels of the dependent variable. Therefore, 

since each latent variable was regressed on disease status, there were 

two logistic regression equations run. Both latent variables predicted their 

respective disease status with p<.01. Again, this suggests that normal, 

single tumor cancer and second tumor cancer samples are separated by 

different sets of latent variables. 

The first set of structural equation models provided an initial proof 

of concept for full structural equation models. This laid the groundwork for 

the more interesting question of what the underlying structure looks like for 

unique parts of the immunosignatures. Since further investigations are 

meant to look at the overall differences in immunosignatures as a whole, it 

is hypothesized that the latent factors differentiating groups are specific 

antibodies present in the sera samples; as explained above. Two 

experimental tests were conducted: a series of structural equation models 

and an examination of the peptide means across groups. 

Structural Equation Models of Significant Peptides and Antibodies: 

Next, all of the peptides that were statistically significant after a 

Bonferroni correction in the normal versus single tumor and second tumor 

versus single tumor contrasts were selected for further analysis. Following 

the same pattern as before, exploratory factor analysis models were run to 
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determine how many underlying factors appeared to be present. This was 

done because selecting the top peptides might yield more than one factor; 

suggesting more than one antibody. For the normal versus single tumor 

contrast there were 176 peptides that were significant and there were 30 

significant peptides for the second tumor versus single tumor contrast. 

The eigenvalues and scree plots suggest a three factor solution for the 

normal versus single tumor contrast and a one factor solution for the 

second tumor versus single tumor contrast. In other words, for the normal 

versus single tumor, the hypothesis is that there are three antibodies that 

differentiate the groups while there is only a single antibody differentiating 

the second tumor versus single tumor groups.  

 In the second tumor versus single tumor contrast, factor loadings 

from exploratory factor mixture models and Promax EFA models confirm 

an unstable second factor. This is because the loadings on the second 

factor are generally low and minimally larger than the first factor loading 

on the same peptide. Additionally, a two factor solution produced 

Heywood cases in which there were communality estimates greater than 

one; suggesting a problem with the two factor model. When single factor 

models were run, all of the peptides loaded highly on the one factor. As a 

result of the EFA models suggesting a single factor solution, a full 

structural equation model was run in which all of the top 30 peptides were 

set to load on a single latent variable which was then regressed on 

disease status. In this model, the stable latent factor significantly 
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correlated with disease status, p<0.001. The odds ratio of 3.148 suggests 

that the single hypothesized antibody confers significant risk for acquiring 

a second tumor. Also, the means for all of the peptides in the second 

tumor samples were lower than the means for the single tumor samples. 

This suggests immune suppression. In other words, there appears to be 

an antibody present in samples with a single tumor that is not present in 

samples with a second tumor.  

 The normal versus single tumor samples is a bit more complex. A 

full structural equation model containing all three hypothesized factors was 

unable to be estimated because there were more peptides than samples. 

Therefore, there were not enough degrees of freedom to run a full model 

containing all 3 groups. As a result, subsets and individual factors were 

tested individually. When tested individually, all of the three 

factors/hypothesized antibodies significantly correlate with disease, 

p<0.01. Two of the latent factors positively correlated while the third 

negatively correlated with disease status. 

 Within the 176 significant peptides for normal versus single tumor 

samples, 162 peptides increase or have a higher mean in the cancer 

samples than in the normal samples increase. Conversely, 14 decrease or 

have a higher mean in the normal group than in the cancer group. In other 

words, there appears to be two new antibodies present in cancer samples 

not present in normal samples and one antibody present in normal 

samples that is not present in cancer samples. Immunosignatures are 



  146 

unique in analysis of the humoral response in that they can detect 

decreases in reactivity relative to normal levels.  

 One finding of particular note is a high covariance between the two 

positive factors (or proposed antibodies present in cancer that are not in 

normal samples). The high covariance and multicollinearity suggests that 

the two are very similar. When regressing both of the positive latent 

variables on disease, in every instance, only one of the latent factors was 

significant with p<.05. This is likely due to the way in which multiple 

regression partitions variance. In a multivariate regression model, the 

effect of one variable (x) is the unique contribution of that variable with all 

others held constant. Because there is so much common or shared 

variance, a vast majority of the variance is used up or accounted for by the 

first factor, not leaving enough unique unexplained variance left for the 

second factor to be significant as well.  

 A two level measurement model was used to test whether the two 

factors were measuring a similar underlying construct. In this model, the 

two latent factors were set to load on a third latent variable. The reasoning 

behind this test was as follows: if the two latent factors loaded on a single 

second level latent factor, then the two original factors would be 

measuring the same underlying construct. One way this could occur is if 

the antibody had a highly complex structure. This model was not, 

however, statistically significant, RMSEA = .21, SRMR = .09. This 

suggests that the two factors are unique albeit highly similar.  
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 There are a number of potential interpretations of this result. One of 

the more plausible biological hypotheses is the presence of 

subpopulations. Among two different cancer subtypes of single tumor 

breast cancer, there are likely two distinct antibodies; one for each 

subtype. If subpopulations are present in the data, it seems plausible that 

these two antibodies are highly similar because both are, in the end, l 

responding to breast cancer. The variations that lead to different subtypes 

may in fact be what makes the two positive latent factors separate and 

distinct from one another. The multicollinearity may be because they vary 

together, not that they have a similar sequence and see the same antigen.  

If two different antigens consistently arose in a tumor they would raise 

antibodies that varied together in samples but would see completely 

different antigens.  

 A second possibility is that the high multicollinearity is a result of 

modeling different times in the disease progression.  As disease 

progresses it is likely different antigens are presented by the tumor to the 

immune system.  If so, the relative amount of particular marker antibodies 

will also change.   

Implications of Structural Equation Modeling: 

 We have explored a number of statistical models for analyzing 

immunosignatures. Each method explored helps answer a different 

research question relating to the analysis of immunosignatures. 

Descriptive statistics about an immunosignature can provide high level 
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information about the general immune response in a signature. 

Exploratory factor analytic models (PCA and EFA) can be useful for 

classifying immunosignatures into different disease groups without any 

clinical information. CFA models can classify samples onto specified 

factors and could be developed into a useful model of disease. These 

structural equation models identify interesting and robust latent factor 

structures underlying immunosignatures which warrant further 

investigation.  

 Latent factors can be reliably extracted from immunosignatures. 

These latent factors are clear, consistent and replicable patterns which 

differentiate disease states in terms of their statistical significance fashion. 

These latent factors can serve as strong biomarkers for disease. Given 

the design of immunosignaturing and the fact that antibodies are binding 

to peptides on immunosignature arrays, it is highly plausible that the latent 

factors are modeling individual antibodies.  

 Although future research is needed to conclusively confirm the 

relationship between modeled latent factors and antibodies, the potential 

of having a high-throughput bioinformatics-driven method for antibody 

discovery creates countless potential avenues for future applications. The 

primary benefit of this methodological approach is to reduce the time it 

takes to identify antibodies associated with various clinical situations. 

Reducing this time reduces cost and increases the speed of advancement 

in biomedicine. Additionally, the increased speed of analysis and resulting 
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reduced cost may permit applications that were not conceivable just a 

short time ago. For example, a method for quickly and inexpensively 

detecting an antibody could play a crucial first step in developing 

personalized vaccines.  

 Below we present a multi-step procedure for detecting latent factors 

and potentially antibodies in an immunosignaturing study.  The first step is 

to run an exploratory factor analysis on the data with rotation. Various 

rotations should be explored but Promax or Geomin are recommended. 

An EFA model is  a useful starting place for multiple reasons. First, it 

ensures that the groups are different constructs and significantly different 

from one another.  This determination can be made by looking at scree 

plots and eigenvalues to assess the probable number of groups in the 

model; these should be equal to the number of known disease states. The 

samples should load correctly on a given factor with a high classification 

rate.  

 At this point, cross loadings in an EFA model can be investigated. If 

clinical data exists, it would be of use to try to assess whether there are 

potential reasons why a specific sample may be cross loading. For 

example, is there a history of cancer in a normal sample that cross loads 

on a cancer sample which might suggest the person is in a transition 

phase? This may be a way of detecting aberrant cases or outliers. That 

said, haphazardly removing cases from a dataset is NOT advocated. 

Cross loadings were not analyzed in this application due to a lack of 
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additional information and clinical data upon which to draw any relevant 

conclusions.  

 From here, a test of statistical significance comparing the groups 

for the peptides of interest can be done using an appropriate test statistic. 

T-Tests or logistic regression and their multivariate extensions, ANOVA 

and multinomial logistic regression, are a few potential methodological 

tools. The specific test should be picked with respect to the features of the 

data being analyzed. For example, in this chapter, we used a 

Satterthwaite corrected T-Test because of unequal samples sizes and 

variances. The Satterthwaite test was chosen on the basis of the Monte 

Carlo simulation run in chapter 3. A correction should be made to protect 

against alpha inflation. Although a number of tests exist for this purpose, 

the Bonferroni correction is among the most common; even if it may be 

somewhat conservative.  

 A traditional EFA model or an exploratory factor mixture model can 

be used to infer the structure of the significant peptides within each group. 

This information can be used to create a full structural equation model. 

However, as part of good model building practices, starting with a CFA 

measurement model is recommended; especially because the iterative 

nature and complexity of these models may lead to convergence 

problems. Additionally, information from these simpler models can be 

used to specify starting values in full structural equation models if 

convergence problems occur. CFA measurement models specify which 
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peptides load together on a given latent factor. Checking the fit of the 

measurement models can confirm the accuracy of the model. However, 

given that CFA is so similar to EFA methods, it is unlikely that differing 

results would be obtained.  

 Once a working measurement model has been obtained, a full 

structural equation model can be created by regressing the latent factors 

on disease state. It is important to test a full structural equation model for 

a number of reasons. Although EFA and CFA models may suggest that a 

group of significant peptides are related in some way, without a full 

structural equation model, there is no way of knowing whether the 

relationship is a significant predictor of a specific disease state. In the 

absence of predictive validity for a specified disease state, any 

relationship among the peptides is trivial and would not suggest that it is 

because of a common antibody. The same conclusion can made if the 

latent factor is predictive of disease states beyond the hypothesized state. 

 If a significant structural equation model can be obtained, wet lab 

validation can then attempt to determine whether the model is correct. 

One potential way of testing this in the wet lab would be to use the 

designated peptides to affinity purify the antibody from the sera.  The 

prediction is that the different peptides would purify the same antibody.  

This could be tested by immunosignaturing the antibodies purified.   

Screening and Presymptomatic Screening for Disease: 
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The relative ease from which samples can be classified and 

differentiated with all of the methods explored here makes this technology 

an excellent use for disease screening. Whether examining the loadings of 

new samples in a CFA model or as part of a larger structural equation 

model, this technology can allow researchers to screen patients in a 

variety of contexts. This initial research suggests that immunosignaturing 

could be developed into a quick and inexpensive method of screening for 

cancer. Taking a small sera sample from an individual is much less 

expensive and intrusive than traditional screening methods such as 

mammograms. One early potential use for immunosignaturing would be to 

help follow at risk populations; such as those individuals with a family 

history of cancer. Immunosignatures could be taken at regular intervals 

between regularly scheduled mammograms. If the generated 

immunosignature from an interim test started to suggest a closer similarity 

to cancer, this could prompt physicians to follow the patient more closely 

or advise additional screening. Immunosignatures could be used in the 

same way for individuals who already have cancer. In this case, if an 

immunosignature suggested the person was developing an antibody 

signature indicative of a second tumor (or more closely loading on a latent 

factor biomarker), the individual could be followed more closely to detect 

the presence of a second primary tumor.  

 Screening for a specific disease state is fairly straightforward. A 

well curated collection of disease samples would form baseline control 
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factors. A sera sample would be taken from an individual and their sample 

would be allowed to freely load in a CFA model across relevant disease 

conditions. A significant loading on a disease factor would provide strong 

evidence for the person having a given disease.  

 There are a number of ways in which a presymptomatic screening 

test could be developed from immunosignatures. This could be done by 

collecting a longitudinal or time series sample of sera from an individual 

and following the factor loadings on a disease state over time. As the 

loadings on a disease factor tend to increase the individual could be 

watched more closely and additional screening for a disease could be 

recommended by a physician. A number of statistical methods and time 

series analyses such as latent transition analysis (LTA) could be 

employed to model this.  

Discussion: 

Immunosignaturing is a novel approach for understanding disease. 

A number of statistical methods including, exploratory factor analysis, 

confirmatory factor analysis, descriptive statistics, corrected t-tests, 

ANOVA, logistic and multinomial logistic regression, mixture models and 

structural equation modeling have shown promising abilities for analyzing 

different dimensions of immunosignatures. Immunosignaturing in the 

context of breast cancer has been shown to be a good platform for 

differentiating groups of samples based on disease status, determining the 
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disease status of specific samples as well as potentially serving a role in 

the discovery of antibodies for specific diseases. 

Despite many new challenges posed by immunosignaturing 

microarrays such as competitive binding and binding to multiple sites, the 

analyses conducted here clearly illustrate the usefulness of classical 

analytical methods to produce accurate results. The results are particularly 

noteworthy because of the lack of structure in the data and lack of a full 

pattern matched experimental design. The early results of structural 

equation modeling are very promising. Although wet lab validation is 

needed for the proposed methodology of antibody discovery, even if the 

latent factors turn out not to be a specific antibody, the model can still 

serve as an excellent biosignatures for disease screening.  

Early detection of cancer is among the best predictors of survival. 

Continued development of immunosignaturing into a screening and 

presymptomatic screening diagnostic tool will aid in early discovery and 

help turn the corner in the fight against cancer. Future research in this field 

should aim at validating the hypothesis that the latent factors modeled 

here are in fact antibodies and to develop the technology into a diagnostic 

screening tool. 

High Performance Computing: 

 In this study, each sample were loaded into a relational database. 

The database connectivity methods were used to access the data. With 

the multiple tests run, this eliminated the need to create a separate data 
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file every time a different format was needed for a different analysis. In 

addition to reducing the time needed to export data files and reimport 

them into SAS, this dramatically reduced storage space from extra files 

because the total data size for this experiment was over 10 gigabytes.  

 Multi-core and distributed grid processing was used to process the 

large number of pairwise comparisons. The syntax in chapter 2 on 

distributed grid processing was derived from the syntax used in this 

chapter. Also, multi-core processing was used to perform the Monte Carlo 

chapter used to decide on the use of the Satterthwaite T-Test presented in 

chapter 3 and used in this chapter.  

 High performance computing methods reduced storage and 

dramatically reduced the time necessary to process the large number of 

calculations necessary to test the more than 10,000 peptides present on 

the immunosignaturing array.  

Conclusion: 

 While simplistic methods can be a good starting point for modeling, 

methods such as the T-Test cannot fully unravel the complexity underlying 

the data when latent factors are present. Using structural equation 

modeling allows researchers the methods necessary to finally be able to 

ask questions not possible with simpler methods. Beyond being able to 

unravel complexity of latent factor not before possible, the use of the 

structural equation modeling framework may also prove useful for 

developing diagnostic devices to help screen for complex diseases.  
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CHAPTER 6 

CONCLUSION 

The living world we inhabit is massively complex. For years 

scientists lacked the data to ask many fundamental research questions in 

biomedicine. With the recent advances in computers, databases and new 

technologies such as microarrays we finally have access to the data 

necessary to investigate many areas of biomedicine including population 

health dynamics and the role genomics and proteomics play in disease. 

Unfortunately, now that we have the data, one major question is how to 

make sense of it amidst the complexity.  

Complexity is an inherent trait of the natural world we inhabit and in 

part a byproduct of sequential evolutionary change as well as from the 

enormous size and structure of modern biomedical data. New methods 

are necessary to help cope with the ever increasing size of biomedical 

data and to be able to effectively make sense of what the data means. 

However, before beginning to address the complexity in the natural world, 

new tools need to be made more accessible to average analysts to help 

cope with the volume of modern biomedical data.  

While it is imperative that researchers actually be able to physically 

process all of the data in a timely fashion, the result is not of high value 

unless the results obtained are accurate. Statistical methods are based on 

many assumptions and when violated they produce incorrect results; 

which are often not easily predictable in a precise fashion. Determining the 
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most appropriate model is difficult in the univariate case. The complexity 

added to the task is increased dramatically by the size and variability in 

modern biomedical data to the point that the question of interest is not 

simply which model makes the most sense but rather to which model 

performs the best across the entire range of the data. Monte Carlo 

Simulations combined with sampling methodologies are advocated as a 

way to test model performance and to pick the model which will provide 

the most accurate results across the spectrum of the dataset.  

Another added source of complexity in biomedical data is multi-

level or clustered structures in the data. Clustering in the data if left 

uncorrected can cause inaccurate results in the form of inflated type 1 

error rates. Additionally, there can also be disaggregated relationships in 

which ignoring clustering can produce parameter estimates not only with 

incorrect magnitudes but also incorrect signs. Unfortunately, despite the 

known hazards of not using multi-level modeling when clustering exists, 

the method is still underutilized in biomedicine. When multi-level modeling 

is used, it is not clear that it is used correctly and many critical pieces of 

information needed to accurately assess the models are omitted from 

journals.  

Beyond the limited use and arguably correct use of the method, 

multi-level models and experiments designed with them in mind are 

necessary to more fully understand the complexity in the data. For 

example, simply knowing that both physicians and patients have some 
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causal role in adherence to treatment is only of limited use. Understanding 

the interaction between the two and being able to know how much 

variance in adherence comes from physician and how much comes from 

patient factors is critical to being able to develop the most effective 

interventions possible. Failing to correct for clustering will give incorrect 

model results, but designing experiments to avoid clustering means the 

researcher is limiting the amount of information they are using and are 

ostensibly ignoring the inherent complexity of our natural world. The 

necessity of multi-level models is not simply to obtain correct parameter 

estimates but also to help us more fully understand and unravel the 

complexity amidst modern biomedical data. 

Finally, structural equation modeling is presented because the 

presence of latent factors makes an in depth analysis of modern 

biomedical data highly complex. Simpler classical methods are incapable 

of detecting or adequately modeling latent factors. Ignoring the presence 

of latent variables in biomedical data fails to explain the complex 

relationship among variables in the dataset. Method such as multi-level 

modeling and structural equation modeling are needed to unravel the 

complexity. In addition, confirmatory factor analysis or the measurement 

Future Directions 

The methods presented in this dissertation are highly useful, but do 

not constitute an exhaustive treatise on the analysis of biomedical data. 

Additionally, this dissertation focuses more on individual pieces rather 
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than how they can be integrated together into an enterprise workflow. As a 

result, a major future direction for this research is in integration of methods 

and methods into workflow. 

With respect to integration of methods, multi-level modeling and 

structural equation modeling can be integrated into a single model when 

necessary. The implementation of high performance computing in each 

chapter discusses how complexity of voluminous and computationally 

intense data often co-occurs with other complexities such as clustering or 

latent class variables. In the same context, clustering sometimes co-

occurs with latent class data. For example, assume that in the 

immunosignaturing study that the sera samples had come from different 

labs and that the expression was significantly different based on which lab 

the sample came from. Samples coming from participants from sets of 

families or diverse racial backgrounds may also lead to clustering in 

genomic the data due to the inherent genetic variability within the human 

population. These examples may all require the use of a multi-level model 

to correct for clustering. However, the need to use a multi-level model 

would not preclude researchers from also then investigating latent class 

variables. Studying the multi-level structure might produce potentially 

novel new information while still allowing for the investigation of latent 

factors.  

The methods are presented as individual chapters but are not 

entirely separate and unrelated to one another within the context of an 
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overall workflow for data analysis. More emphasis can be placed on 

integrating analysis into the workflow. Beyond the initial mention of 

integrating an analytic package such as SAS with a database, once the 

data is aggregated and loaded into a database or analytic program, 

automated processes could be written to perform a Monte Carlo 

simulation and select the most appropriate model. Then, the selected 

model based on a predefined target algorithm could be used to run a 

screening experiment on all of the samples in the dataset; in the same 

way the Satterthwaite T-Test was run on the peptides in the 

immunosignaturing study based on the Monte Carlo results. The results 

would then all be output into one aggregate report upon completion. The 

high performance computing method such as pipeline parallelism and 

multi-core processing could be integrated into this process.  

Providing tools to integrate the methods presented in this 

dissertation into a streamlined workflow is useful for a number of reasons. 

Providing simple automated tools will to help these methods to become a 

more normal part of standard research practices. This is because 

performing one task is less complex for the end researcher who may not 

have an informatics or statistics background. Providing a single validated 

package for researchers to use is also less error prone than having 

researchers perform many sequential manual tasks. Additionally, 

integrating and automating the process reduces time for an experiment to 

run.  
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However, beyond one experiment, having automated analytic 

processes and supporting methods (high performance computing) that 

can be widely applied to data within a given domain is a key part in 

building community wide informatics pipeline for integration and analysis 

of biomedical data. Such a system could be placed in the cloud to allow 

for real time and on demand processing and reporting of predefined data 

streams within biomedicine; thus removing the informatics burden from 

researchers such as epidemiologists, biochemists, geneticists in order to 

enable them to focus more directly on their core area of expertise.  

In the case of population health in which reports are received from 

multiple hospitals or labs where clustering is endemic to the data, multi-

level models could be directly integrated into the process flow. As data is 

received, it is loaded, normalized to a common data structure, variables 

denoting clustering are tagged during loading and normalization period 

which would be passed directly to a module performing multi-level 

modeling and finally the results of the model can be sent directly to the 

necessary recipient upon completion. Such results based on more 

accurate multi-level models would give a better reflection of differences 

between hospitals and labs or how covariates of interest are influencing 

spread of disease. 

Although the data is complex and the models presented in this 

dissertation are also complex, there are many common denominators. 

Specifically, there are many recurrent forms of complexity such as the 
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voluminous size of data, heterogeneous variances, clustering or latent 

constructs. By better understanding how and when they occur through 

concrete examples presented in this dissertation, we can use the methods 

presented to help address common complexity problems in a more 

automated process flow.   

Complexity from natural from natural and synthetic sources will 

continue to be a challenge for analyzing biomedical data. The 

advancement of the methods presented in this dissertation as well as 

integrating them more seamlessly into workflow and informatics pipelines 

will increase the pace of biomedical discovery. The driving goal behind 

this dissertation is that by advancing analytic methods and giving 

biomedical researchers tools to help facilitate analysis, the bench to 

bedside timeline can be decreased; ultimately ameliorating the quality of 

life four countless individuals.  



  163 

REFERENCES 

Affymetrix. Affymetrix Microarray Solutions. 2 22, 2012. 
http://www.affymetrix.com/estore/browse/level_one_category_template_o
ne.jsp?category=35796&categoryIdClicked=35796&parent=35796 
(accessed 2 22, 2012). 

 
Anderson, Phillip. "Some thoughtful words (not mine) on research strategy for 

theorists." Physics Today, 1990. 
 
Ary, D. V., D. Toobert, Wilson, W., and R. E. Glasgow. "Patient perspective on 

factors contributing to non-adherence to diabetes regimen." Diabetes 
care, 1986: 168-195. 

 
Bartels, M., J.T Cacioppo, J.J. Hudziak, and D. I. Boomsma. "Genetic and 

environmental contributions to stability in loneliness throughout 
childhood." American Journal of Medical Genetics Part B, 2008: 385-391. 

Behrens, W. "A contribution to error estimation with few observations." 
Landwirtschaftliche Jahrbücher, 1929: 807-837. 

 
Bender, B. G., and C. Rand. "Medication non-adherence and asthma treatment 

cost. Outcome measures." Current Opinion in Allergy & Clinical 
Immunology, 2005: 191-195. 

 
Benjamini, Y: Hochberg, Y. "• BenjamControlling False Discovery Rate: A 

Practical and Powerful Approach to Multiple Testing ." Journal of the 
Royal Statistical Society, 1995: 289-300. 

 
Berman, J. Biomedical Informatics. Sudbry, MA: Jones and Barlett Publishers, 

2007. 
 
Bernstam, Elmer, Jack Smith, and Todd Johnson. "What is biomedical 

informatics?" Journal of Biomedical Informatics, 2010: 104-110. 
 
Blume. "A Factor Model to Analyze Heterogeneity in Gene Expression." BMC 

Bioinformatics, 2010: 368-397. 
 
Bollen, Kenneth. Structural Equations with Latent Variables. USA: Wiley-

Interscience, 1989. 
 
—. Testing structural equation models. United States of America: 1993, 1993. 
Brown, J, P Stafford, S Johnson, and V Dinu. "Statistical Methods for Analyzing 

Immunosignatures." BMC Bioinformatics, 2011. 
 
Browne, M. "An Overview of Analytic Rotation in Exploratory Factor Analysis." 

Multivariate Behavioral Research, 2001: 111-150. 
 
Cabana, M., et al. "Why Don’t Physicians Follow Clinical Practice Guidelines?" 

JAMA, 1999. 



  164 

Cattell, R. "The Scree Test for Number of Factors." Multivariate Behavioral 
Research, 1966: 245-276. 

 
Chen, H, S Fuller, C Freidman, and W Hersh. Medical informatics: knowledge 

management and data mining in biomedicin. United States of America: 
Springer, 2010. 

 
Choudhry, NK, RH Fletcher, and SB Soumeral. "Systematic Review: The 

Relationship between Clinical Experience and Quality of Health Care." 
Annals of Internal Medicine, 2005: 260-273. 

 
Cios, K, and G Moore. "Uniqueness of Medical Data Mining." Artificial 

Intelligence in Medicine, 2002. 
 
Cohen, J, P Cohen, S West, and L Aiken. Applied Multiple Regression Third 

Edition. USA: Routledge Academic, 2002. 
 
Corwin, John, Avi Sukberscgatz, Perry Miller, and Luis Marenco. "Dynamic 

Tables: An Architecture for Managing Evolving, Heterogeneous 
Biomedical Data in Relational Database Management Systems." JAMIA, 
2007: 86-93. 

 
Crick, Francis. What Mad Pursuit. United States of America: Perseus Books, 

1988. 
 
Dahly, D, L Adair, and K Bollen. "A structural equation model of the origin of 

blood pressure." International Journal of Epidemiology, 2009: 538-548. 
 
DiMatteo, M., P. Giordani, H. Lepper, and T. W. Croghan. "Patient adherence 

and medical treatment outcomes: a meta-analysis." Medical Care, 2002: 
794-811. 

 
D'Onofrio, B.M., Hulle, C.A., I.D. Waldman, J. L. Rodgers, K.P Harden, P.J. 

Rathouz, and B.B Lahey. "Smoking during pregnancy and offspring 
externalizing problems: An exploration of genetic and environmental 
confounds." Development and Psychopathology, 2008: 139-164. 

 
Elmasri, Ramez, and Shamkant Navathe. Fundamentals of Database Systems 

5th Edition. USA: Addison Wesley, 2006. 
 
Enders, Craig. Applied Missing Data Analysis. USA: Guilford Press, 2010. 
 
Enders, Craig, and Davood Tofigi. "Centering predictor variables in cross-

sectional multilevel models: A new look at an old issue." Psychological 
Methods, 2007: 121-138. 

 
Fan, Xiato. SAS for Monte Carlo Studies. Carey, North Carolina: SAS Institute, 

2002. 
 



  165 

Fisher, R.A. "The Correlation of Relatives on the Supposition of Mendelian 
Inheritance." Transactions Royal Society of Endinburg, 1918: Endinburg. 

 
Fisher, Ronald. "The Fiducial Argument In Statistical Inference ." Journal of 

Eugenics, 1935: 391-398. 
 
Goldstein, H. "Multilevel Variance Component Models." Biometrika, 1986. 
 
Gossett, Willaim Sealey. "The Probable Error of The Mean." Biometrika, 1908: 1-

25. 
 
Gossett, William Sealey. "An experimental determination of the probable error of 

Dr Spearman's correlation coefficients." Biometrika, 1921: 263-282. 
 
Gossett, Willian Sealey. "Probable Error Of A Correlation Coefficient." 

Biometrika, 1908: 302-310. 
 
Hager, G, and G Wellein. Introduction to High Performance Computing for 

Scientists and Engineers. United States of America: Chapman & Hall, 
2010. 

 
Haldene, J. "A Note on Non-Normal Correlation." Biometrika, 1949: 467-468. 
Hall, Asaph. "On an experimental determination of PI." Messenger of 

Mathematics, 1872. 
 
Halpern, M T, et al. "Recommendations for evaluating adherence and 

persistence with hypertension therapy using retrospective data." 
Hypertension 47 (2006): 1039-48. 

 
Jeffreys, Harold. "Note on Behrens Fisher Formula." Annals of Eugenics, 1940: 

48-51. 
 
Johnson, S, and P Stafford. "Immunosignaturing to Profile Humoral Responses." 

2009. 
 
Johnson, W., J. Brown, G. Harootunian, D. Petitti, Y. Qui, and T Sama. Phoenix 

Healthcare Value Measurement Initiative Report. Phoenix: Center for 
Health Information and Research, 2011. 

 
Keppel, G, and T Wickens. Design and Analysis 5th Edition. United States of 

America: Prentice Hall, 2007. 
 
Kowalski, C. "On The Effects of Non-Normality on the Distribution of the Sample 

Product Moment Correlation Coefficient." Journal of the Royal Statistical 
Society, 1972: 1-12. 

 
Kustra, R, R Shioda, and M Zhu. "A Factor Analysis Model for Functional 

Genomics." BMC Bioinformatics, 2006: 207-216. 



  166 

Lee, J Y, et al. "Assessing medication adherence by pill count and electronic 
monitoring in the African American Study of Kidney Disease and 
Hypertension (AASK) pilot study." Am J Hypertens 9 (1996): 719-25. 

 
Legutki, J, M Magee, P Stafford, and S Johnston. "A General Method or 

Characterization of Humoral Immunity Induced by a Vaccine or Infection." 
Vaccine, 2010: 4529-4537. 

 
Litman, G, J Cannon, and L Dishaw. "Reconstructing immune phylogeny: new 

perspectives." Nature Review, 2005: 866-879. 
 
Lohr, S. Sampling: Design and Analysis 2nd Edition. United States of America: 

Duxbury , 2009. 
 
Longford, N. "A fast scoring algorithm for maximum likelihood estimation in 

unbalanced mixed models with nested random effects." Biometrika, 1987: 
817-827. 

 
Mallion, J M, J P Baguet, J P Siche, F Tremel, and R de Gaudemaris. 

"Adherence, electronic monitoring and antihypertensive drugs." 
Hypertens 16, no. suppl (1998): S75-S79. 

 
Martin, L. R., S. L. Williams, K. B. Haskard, and M. R. & DiMatteo. "The 

challenge of patient adherence." Clinical Risk Management, 2005: 189-
199. 

 
Meichenbaum, D, and D Turk. Patient compliance; Medical personnel and 

patient; Sick; Patient Education. United States of America: Plenum Press, 
1987. 

 
Metchnikoff, E, and F.G. Binnie. Immunity in Infective Diseases. Cambridge: 

Cambridge University Press, 2009. 
 
Metropolis, Nicholas. "The Beggining of the Monte Carlo Method." Los Alamos 

Science, 1987: 125-130. 
 
Metropolis, Nicholas, and Stanley Ulam. "The Monte Carlo Method." Journal of 

the American Statistical Association, 1949: 335-341. 
 
Mills, E, et al. "Adherence to Antiretroviral Therapy in Sub-Saharan Africa and 

North America." JAMA, 2006: 2479-2485. 
 
Musen, M, and J Van Bemmel. "Challenges for medical informatics as an 

academic." Methods in Information Medicine, 2004: 1-3. 
 
Muthen, Bengt, and Linda Muthen. Mplus Version 6. USA: Mplus, 2011. 
Nationanl Cancer Institute. cBIG. 2 20, 2012.  
 
https://cabig.nci.nih.gov/community/concepts/caDSR/ (accessed 2 20, 2012). 



  167 

New England Health Institute. "Improving Physician Adherence to Clinical 
Practice Guidelines." 2008. 

 
Neyman, Jersey, and Egon Pearson. "On The Use And Interpretation Of Certain 

Test Criteria For Purposes of Statistical Inference." Biometrika, 1928: 
263-294. 

 
NIH Common Fund. "About the NIH Common Fund." June 16, 2011. 

http://commonfund.nih.gov/about.aspx (accessed September 3, 2011). 
 
NIH. "Meeting the Challenge of Big Data in Biomedical and Translational 

Science." August 2, 2011.  
http://commonfund.nih.gov/InnovationBrainstorm/?tag=/biomedical-data 

(accessed August 3, 2011). 
 
Parker, J, et al. "Supervised Risk Predictor of Breast Cancer Based on." Journal 

of Clinical Oncology, 2009. 
 
Pearson, E.S. "Some Notes on Sampling Tests with Two Variables." Biometrika, 

1929: 337-360. 
 
Pearson, E.S. "The Test of Significance for the Correlation Coefficient." Journal 

of the American Statistical Association, 1931: 128-134. 
 
Quackenbush, John, Helen Causton, and Alvis Brazma. Analysis, Microarray 

Gene Expression Data. United States: Wiley-Blackwell, 2003. 
 
Rao, C, H Toutenburg, Shalab, C Heumann, and M Schorn. Linear Models and 

Generalizations: Least Squares and Alternatives. United States of 
America: Springer Series in Statistics, 2010. 

 
Raudenbush, S, and A Bryk. Hierarchical Linear Models: Applications and Data 

Analysis Methods. USA: Sage Publications, 2001. 
 
Rider, P. "The Distribution of the Correlation Coefficient in Small Samples." 

Biometrika, 1932: 382-403. 
 
Ron, D. H., et al. "The impact of patient adherence on health outcomes for 

patients with chronic disease in the medical outcomes study." Journal of 
Behavioral Medicine, 1994: 347-360. 

 
Rubinstein, R, and D Kroese. Methods, Simulation and Monte Carlo. United 

States of America: Wiley Series in Probability and Statistics, 2007. 
SAS Institute. SAS Corporate Statistics. 2 26, 2012. 

http://www.sas.com/company/about/statistics.html (accessed 2 25, 2012). 
 
SAS Institute. SAS User Guide 9.2 Second Edition. Carey, North Carolina: SAS, 

2011. 



  168 

Seliegman, B, and J Brown. Health and Human Services NCI Basal Breast 
Cancer Diagnostic Grant HHSN261201000131C. Grant Phase 1 Report, 
Tucson: High Throughput Genomics, 2011. 

 
Seock-Ho, Kim, and Allen Cohen. "On The Behrens Fisher Problem: A Review." 

Psychometric Society, 1995: 1-40. 
 
Shamlin, D. " Threads Unraveled: A Parallel Processing Primer." SUGI, 2004: 

217-229. 
 
Shamlin, D. "Threads Unraveled: A Parallel Processing Primer." SUGI, 2009. 
Shortliffe, Edward, and James Cimino. Biomedical Informatics: Computer 

Applications in Health Care and Biomedicine. USA: Springer, 2006. 
 
Stokes, J, D Bradstreet, and M Hill. "SAS/Connect® Simply Stated." SUGI, 2002: 

109-127. 
 
Storey, J. "A Direct Approach to False Discovery Rates." Journal of the Royal 

Statistical Society, 2002. 
 
Stulberg, J, C Delaney, D Neuhauser, D Aron, and S Koroukian. "Adherence to 

Surgical Care Improvement Project Measures and the Association with 
Postoperative Infections." JAMA, 2010: 2479-2485. 

 
Stulberg, J, C Delaney, D Neuhauser, D Aron, P Fu, and S Koroukian. 

"Adherence to Surgical Care Improvement Project Measures and the 
Association with Posoperative Infection." JAMA, 2010: 2479-2485. 

 
Stulberg, J. Delaney, C., D. Neuhauser, D. Aron, P. Fu, and S. Koroukian. 

"Adherence to Surgical Care Improvement Project Measures and the 
Association With Postoperative Infections." JAMA, 2010: 2479-2485. 

 
Tabachnick, B, and L Fidell. Using Multivariate Statistics Fifth Edition. USA: Allyn 

& Bacon, 2006. 
 
Tu, Yu-Kang. "Is Structural Equation Modeling A Step Forward for 

Epidemiologists." International Journal of Epidemiology, 2009: 549-551. 
 
Tukey, John. "A survey of sampling from contaminated distributions." 

Contributions to Probability and Statistics, 1960: 448-485. 
 
Tukey, John, and D McLaughlin. "Less vulnerable confidence and significance 

procedures for location based on a single sample: Trimming/Winsorizing." 
Sankhya, 1963: 331-352. 

 
Vermeire, H., H. Hearnshaw, P. Van Royen, Denekens, and J. "Patient 

adherence to treatment: three decades of research. a comprehensive 
review." Journal of Clinical Pharmacology Therapy, 2001: 331-342. 

 



  169 

Wilcox, Rand. "ANOVA: A Paradigm For Low Power and Misleading Effect 
Size?" Review of Educational Research, 1995: 51-77. 

 
Wright, Sweall. "Correlation and Causation." Journal of Agricultural Research, 

1921: 557-585. 
 
Zolnierek, H., and M. & DiMatteo. "Physician communication and patient 

adherence to treatment: a meta-analysis." Medical Care, 2009: 826-834. 


