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ABSTRACT  
   

The effects of specific histone deacetylase inhibitors (HDACi) on 

transgene expression in combination with a novel polymer as a delivery vehicle 

are investigated in this research. Polymer vectors, although safer than viruses, are 

notorious for low levels of gene expression. In this investigation, the use of an 

emerging chemotherapeutic anti-cancer drug molecule, HDACi, was used to 

enhance the polymer-mediated gene expression. HDACi are capable of inhibiting 

deacetylation activities of histones and other non-histone proteins in the 

cytoplasm and nucleus, as well as increase transcriptional activities necessary for 

gene expression. In a prior study, a parallel synthesis and screening of polymers 

yielded a lead cationic polymer with high DNA-binding properties, and even 

more attractive, high transgene expressions. Previous studies showed the use of 

this polymer in conjunction with cytoplasmic HDACi significantly enhanced gene 

expression in PC3-PSMA prostate cancer cells. This led to the basis for the 

investigation presented in this thesis, but to use nuclear HDACi to potentially 

achieve similar results. The HDACi, HDACi_A, was a previously discovered lead 

drug that had potential to significantly enhance luciferase expression in PC3-

PSMA cells. The results of this study found that the 20:1 polymer:plasmid DNA 

weight ratio was effective with 1 μM and 2 μM HDACI_A concentrations, 

showing up to a 9-fold enhancement. This enhancement suggested that HDACi_A 

was effectively aiding transfection. While not an astounding enhancement, it is 

still interesting enough to investigate further. Cell viabilities need to be 

determined to supplement the results.  
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Chapter 1 

INTRODUCTION 

Prostate cancer was estimated to present in 240,890 new cases and cause 33,720 

deaths in 2011, making it a leading cancer-related cause of death (second to lung cancer) 

in males in the United States (Howlader et al., 2010).  While it can be treated adequately 

if caught early enough, there still exist the not uncommon possibilities that the cancer 

may be inoperable, unresponsive to current treatments, or even recur after initial 

treatments. The problem, thus, lies in not only the effectiveness of drug and treatment 

options for prostate cancer, but also in the quality of life for the patient. While 

conventional techniques have proven successful in the eradication of this disease, the side 

effects are detrimental to the patient (Madalinska et al., 2001).  Such major health risks 

arise from the high toxicity of the drugs and the higher doses needed to overcome their 

low efficacy nature (Fisher et al., 1999). In order to lessen these harmful health risks, a 

shift in alternative approaches to combat cancer has become exceedingly more prevalent 

in the last few decades.  Gene therapy, in particular, has become the primary approach to 

do just that. 
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Chapter 2 

BACKGROUND 

2.1 Gene Therapy 

 Gene therapy aims at correcting a disease at a genetic level in order to alter the 

particular cells that cause disease, implant a new gene to kill the disease, or change other 

cells in the body in order to fight the disease more efficiently (Mayo Clinic, 2010). It is 

basically the process of delivering exogenous nucleic acids to diseased cells, which has 

emerged as a unique process to treat diseases that are both acquired and genetic.  Recent 

studies have shown substantial progress in effective gene therapy that could prove its 

widespread use to treat diseases in the near future. Gene therapy in eye diseases has 

shown great success, for example. Recombinant adeno-associated virus vectors have a 

range of effects for retinal gene transfer, lentiviral vectors mediate efficient sustained 

expression in retinal pigment epithelium, corneal endothelium and trabecular meshwork, 

and even non-viral methods are used in improving gene transfer in the retina (Bainbridge, 

Tan, & Ali, 2006). More specifically, a recent study of canines with Leber congenital 

amaurosis (a severe inherited form of retinal degeneration that induces severe visual 

impairment that leads to blindness), found that 16 of 18 treated eyes showed rescue 

vision and improved retinal function, after treatment of a genetically altered recombinant 

adeno-associated viral vector (Annear et al., 2011).  Progress such as these show just how 

prospective gene therapy is for disease treatments. 

Gene therapy most often uses a genetically altered DNA (in viral methods) and 

the negatively charged plasmid DNA (pDNA). A plasmid DNA is a large macromolecule 

(3-15 kbp) that is capable of encoding for a specific gene that could express its 
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complement protein within a target cell via transcription. The major obstacles preventing 

delivery, however, are the biological barriers presented by the target cell. An adequate 

vehicle is essential to propel the plasmid DNA through the cell membrane (without 

succumbing to attack by the immune system), transport it through the cytoplasm, and 

finally facilitate it through the nuclear membrane to achieve efficient transcription and 

translation. Therefore, in order ensure optimal transfection of a gene, the optimal delivery 

system should be able to the following: bind and transport DNA to target cells, evade the 

body’s immune response, release DNA in the cytoplasm, transport DNA through the 

cytoplasm, and transfer DNA across the nucleus (Barua, 2011).  

2.2 Cancer Gene Therapy 

 The application of gene therapy in cancer diseases has been a rapidly growing 

research field since the first clinical trial was performed by Steven A. Rosenburg and R. 

Micahel Blaese’s group in 1990. Successful tumor regression in patients with metastatic 

melanoma was achieved in their study, which paved the way for future use of gene 

transfer in cancer therapies (Rosenberg et al., 1990). Over the past couple of decades, 

substantial progress has been made in this field, with about 65% of the approved 1644 

gene therapy clinical trials used to treat cancer (Edelstein, 2012).   

There are four phases of clinical trials, where phase I is screening for safety, 

phase II is establishing the testing protocol, phase III is final testing, and phase IV is post-

approval studies. Currently, phase I, phase II and a combination of phase I/II trails are the 

most common clinical trials conducted with gene therapy. Most of these gene therapy 

applications are in the primary stages of clinical trial, but show great promise towards the 

latter stages.  
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In order to achieve efficient gene delivery, an appropriate vector is necessary, as 

stated previously. Currently, the most commonly used vectors in clinical trials are viral, 

followed far behind by non-viral (Edelstein, 2012). However, these do not possess all the 

desirable properties of effective and safe delivery of transgenes to their target cells in 

large quantities. Yet, both types of vehicles have their unique set of advantages and 

disadvantages that determine their use in gene therapy.  

2.3 Viral Vectors 

Viral vectors are viruses that have evolved over time to specifically function as a 

vehicle to deliver genetic data into their hosts in order to replicate. This specialized 

evolution has made viruses the most efficient delivery system of genes and it is used by 

many researchers who thought that domesticating viruses was a feasible approach. Many 

viral vectors in current use are (in order of most abundant) adenovirus, retrovirus, 

vaccinia (pox) virus, adeno-associated virus (AAV), herpes simplex virus (HSV), and 

lentivirus (Edelstein, 2012). While they may be the most efficient vector, viruses pose 

major safety risks, primarily due to their high immunogenicity effect. This became a 

well-known problem when a young patient died in 1999 after being treated with 

adenoviral vectors in an effort to treat an inherited enzyme deficiency (Marshall, 1999). 

Again in 2002 and 2003, young children suffering from an X-linked SCID-XI syndrome 

were treated with a retroviral gene therapy and later developed leukemia as a result of the 

viral mutagenesis (Thomas, Ehrhardt, & Kay, 2003). Clinical trials, such as these, have 

demanded a shift away from the use of viral vectors, since gene therapy is aimed to 

provide an alternative to current detrimental anti-cancer methods, not induce more 

harmful side effects. Aside from posing major health risks, viral vectors have additional 
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drawbacks such as: low DNA load capacity, relatively expensive production, and 

difficulty to produce in mass quantities (Atkinson & Chalmers, 1010). Despite these 

implications, viruses still remain the most widely used vectors in over two-thirds of 

clinical gene therapy (Edelstein, 2012). 

2.4 Non-Viral Vectors 

Non-viral vectors, on the other hand, have no limitations with transgene load 

capacity and provide a safer alternative to viruses. However, non-viral vehicles are 

notorious for the low efficiency of target and delivery to specific tissues, and tend to 

invoke dose-dependent inflammatory responses (Zhao et al., 2003; Norman et al., 2000). 

Many non-viral vectors have been explored for use in gene delivery including cationic 

molecules of lipids (Wansungu & Hoekstra, 2006), polyamines (Osland & Kleppe, 1977), 

and polymers (Lungwitz et al., 2005) Such polymers are  capable of condensing DNA 

into complexes on a nanoscale level by neutralizing negative charges on DNA in aqueous 

solutions (Smedt, Demeester, & Hennink, 1999). The formed complexes also possess a 

positive charge that can interact with the cellular membrane to effectively achieve 

cellular uptake. 

 

Figure 2.1. Formation of a polyplex through electrostatic interactions between the positively charged 
polymer and negatively charged DNA. 
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Cationic polymers, in particular, are of great interest due to their potential 

advantages of easy production, stability, low immunogenicity and toxicity, and large 

DNA loading capacity (Ledley, 1995). Most cationic polymers contain a positively 

charged, protonated amine group that has electrostatic interactions with the negatively 

charged phosphate groups of DNA which allow for spontaneous formation of complexes, 

termed polyplexes (see Figure 2.1). When these positively charged polyplexes come in 

contact with the negatively charged cell membrane, they allow for increased DNA uptake 

that can substantially enhance transfection. The most widely used cationic polymer 

traditionally used in transfection studies are poly(ʟ-lysine) (PLL) (Wu & Wu, 1998), 

polyethyleneimine (PEI) (Abdallah et al., 1996), chitosan (Roy et al., 1999), poly(vinyl 

pyrrolidone) (Mendiratta et al., 1999), and polyamidoamide (PAMAM) (Qin et al., 

1998).  The main drawback to the use of these particular cationic polymers is their high 

cytotoxicity. This problem led to a parallel synthesis and screening of polymers by Barua 

et al. in 2009, to identify a cationic polymer that was biocompatible, degradable, and 

could effectively transport DNA to enhance transgene expression.  The study pointed to a 

one such polymer, 1,4C-1,4Bis (Figure 2.2), which was based on the monomers 1,4-

cyclohexanedimethanol diglycidyl ether (1,4C) and 1,4-bis(3-aminopropyl) piperazine 

(1,4Bis). The properties of this particular cationic polymer showed transfection 

enhancements much higher than the currently employed, pEI-25, in human prostate 

cancer cells and murine osteoblasts and thus was chosen as the polymer for all 

transfections in this study (Barua et al., 2009). 
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Figure 2.2. Monomers of the identified lead polymer 1,4C-1,4Bis. 
 
 
2.5 Cellular Barriers 

Efficacy of delivery is lost at each step of the gene transfection process, so it is 

important to understand the barriers within the cell and with cellular delivery in order to 

develop successful vectors for an efficient gene delivery method. While there are 

biological barriers prior to arriving at the target cell, including serum stability, cell-

specific targeting and route of administration, the primary focus of this investigation is on 

intracellular uptake of polyplexes as depicted in Figure 2.3.  
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Figure 2.3. The major cellular barriers that non-viral delivery methods must overcome to achieve transgene 
transfection: extracellular, intracellular trafficking, and transcriptional (adapted from Pack et al., 2005). 
 

2.5.1 Extracellular Barrier 

The first biological roadblock, once the vector reaches the target cell, is the 

extracellular barrier. The cell’s plasma membrane is comprised of a lipid bilayer, laden 

with integral proteins that selectively regulate molecules. Polyplexes tend to 

electrostatically interact with the cellular membrane, due to the positively charged 

cationic polymer and negatively charged glycoproteins, proteoglycans and 

glycerophosphates on the cell surface (Morille, 2008). The method of cellular uptake of 

INTRACELLULAR 
TRAFFICKING 

BARRIER 

EXTRACELLULAR 
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INTRACELLULAR 
TRANSCRIPTIONAL 

BARRIER 
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polymer complexes seems to point towards non-specific adsorptive endocytosis followed 

by the clathrin-coated pit mechanism (Morille, 2008).   

Endocytosis is basically the invagination of the cellular membrane to transport 

extracellular molecules through the cytoplasm. Adsorptive endocytosis does not 

necessitate ligand-receptor interactions, but rather an unspecified physical adsorption of 

the complex at the cell surface (Jung et al, 2000). Complexes that are positively charged 

on the surface seem to undergo adsorptive endocytosis due to the electrostatic 

interactions (Merdan, Kopecek, & Kissel, 2002).  Clathrin-dependent endocytosis occurs 

at a specific domain in the cellular membrane where a clathrin protein is present 

(Mukherjee, Ghosh, & Maxfield, 1997). This area of the membrane is referred to as a 

clathrin-coated pit (Soenen et al., 2009).  Invagination of the plasma membrane at this 

particular point yields a vesicle that is clathrin-coated, but the vesicle tends to lose the 

sheath once it encounters other endosomes in the cytoplasm (Lungwitz et al. 2005).    

Endocytotic pathways are largely dependent upon cell membrane composition, 

surface charge, and size of the complexes (Rejman et al., 2004). This can make it hard to 

pinpoint the exact mechanism of the endocytotic uptake of polyplexes into the target cell. 

This complication is most likely attributed to the highly complicated and iterative events 

that sort molecules for transportation across the membrane to compartments within the 

cell (Jung et al., 2000).  

2.5.2 Intracellular Trafficking Barrier 

The next major hurdle for gene delivery is the intracellular trafficking barrier. 

Cytoplasmic trafficking also plays a large role in determining whether or not the 

complexes will be efficiently delivered. Once the polyplexes have been endocytotically 
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uptaken into the cell, microtubules fibers essentially carry the encapsulated endosomal 

vesicle down its ‘tracks’ (Rejman et al., 2004; Musch, 2004). There are two motor 

proteins, dynein and kinesin, that facilitate the direction the vesicles are carried within the 

cytoplasm (Suomalainen et al., 1999).  Dynein transports vesicles towards the nucleus 

(minus end of microtubules) while kinesin transports vesicles in the opposite direction, 

away from the nucleus and towards the cell membrane (plus end of microtubules). Bi-

directional movement can also occur with utilization of both motor proteins (see Figure 

2.4). In a particular study, when the microtubules were disrupted (using colchicine) or 

either of the motors was inhibited, transgene expression declined drastically (Drake & 

Pack, 2008). This finding suggests that microtubules and their motor proteins are 

essential to effective polymer-mediated gene delivery. 

 
Figure 2.4. Intracellular trafficking of endosome vesicle, containing polyplexes, along microtubule ‘tracks’ 
via kinesin motor, dynein motor, or switching between both. 
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Transportation problems associated with intracellular trafficking also occur with 

the need for DNA to escape the endosomes that encompass the polyplexes. The 

complexes generally follow the endolysosomal pathway that begins after endocytotic 

uptake, with the early endosomes, to the late endosomes, and finally ending in the 

lysosomes where the complexes have no effect in the cell (Merdan et al., 2002).  The 

problem is that polyplexes readily accumulate in the lysosomal compartment so the DNA 

is unable to reach the nucleus (Bieber et al., 2002).  Early endosomal escape is one way 

to achieve this, so the DNA can safely evade degradation by the lysosomal environment 

of nucleases and acidic pH (Barua, 2011). One proposed theory of how this can occur is 

by the ‘proton sponge hypothesis’ (Boussif et al., 1995). The proton sponge effect 

(shown in Figure 2.5) is theorized to inhibit acidification of endosomal pH by 

neutralization of protons pumped by an active membrane transporter, which results in 

chloride counter ions flooding into the endosomes, thus increasing the osmotic pressure 

that causes swelling, and eventually leads to bursting of the membrane (Akinc et al., 

2005;, Yamashiro, Fluss, & Maxfield, 1983; Al-Dosari & Gao, 2009).  This theory has 

been supported indirectly by a noticeable decrease of transfection efficacy of polyplexes 

containing the polymer, PEI, in cells containing drugs that prevented endosome 

acidification (Rittner et al., 2002; Kichler et all, 2001). Further support of this theory has 

been through the research by Sonawane and colleagues which revealed polymers with 

protonable amines induced substantial increases in chloride ion concentration and the 

number of endosomes containing polyplexes, while a polymer without protonable amines 

had no remarkable effects (Sonawane, Szoka, & Verkman, 2003).   



12 

 
Figure 2.5. Proton sponge theory where the proton pump draws protons inside the endosome (a), which 
results in an influx of chloride ions (b), followed by an increased osmotic pressure (c) that ultimately 
causes the membrane to burst and expel the contained polyplex (d) (adapted from Pack et al., 2005). 
 
2.5.3 Transcriptional Barrier 

After passing all the way through cell, the final obstacle for the pDNA to 

overcome is the transcriptional barrier. A vector carrying the pDNA may pass through the 

cellular membrane, evade lysosomal degradation, and have proper microtubule transport 

through the cytoplasm. But without the pDNA actually penetrating through the nuclear 

membrane, absolutely no expression can take place. This physical characteristic of the 

nuclear membrane seems to be one of the limitations since it is composed of nuclear 

pores that are quite small (~25 nm diameter). Thus the translocation of pDNA from the 

cytoplasm to the inside of the nucleus is size-dependent as depicted by the nuclear 

diffusion of oligonucleotides through nuclear pore complexes (NPC) (Elouahabi & 

Ruysschaert, 2005).  

The proposed mechanisms as to how polyplexes can cross the nuclear membrane 

are passive diffusion, active transport through DNA nuclear pores, or DNA entry during 

cell division (Elouahabi & Ruysschaert, 2005). The passive mechanism is effective for 

DNA fragments less than 250 bp via simple diffusion with no specific interactions 

(Mesika et al., 2005). The active transport method usually caters to larger DNAs (40 – 60 

kDa) through nuclear pore complexes (NPCs). The two possible mechanisms that 
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facilitate the active transport are cis-acting, DNA sequence-dependent transport and 

trans-acting mechanism requiring addition of peptides (Elouhabi & Ruysschaert, 2005). 

However, this active transport has not been a very efficient process to transport large 

DNA fragments across the nuclear membrane. Finally, there is the possibility of DNA 

translocation via simple diffusion during cell cycle division. It has been shown that there 

is higher transfection efficiency when cells are at or near the M phase (mitosis) of the cell 

cycle at the time of polyplex transfection (Brunner et al,, 2000; Brunner et al., 2002; 

Wilke et al., 1996; Tseng, Haselton & Giorgio, 1999; Mortimer et al., 1999). However, 

this is a variable factor with different types of polymers, even between linear and 

branched PEI, that was seen in the work conducted by Brunner and his group (Brunner et 

al., 2000).   Some cationic polymers, however, are independent of cell cycle stage in 

efficiently delivering transgenes to the nucleus. Since DNA cannot survive very long in 

the cytoplasm due to the presence of cytoplasmic nucleases, the uptake of pDNA into the 

nucleus is vital to effective gene expression, regardless of the method used (Lechardeur et 

al., 1999). 

2.6 Histone Deacetylase Inhibitors 

Histone deacetylases, (HDACs) are a type of enzyme that deacetylase lysine 

residues of histones, which remove charge-neutralizing acetyl groups from histone lysine 

tails, and subsequently cause the tight coiling of chromosomes around the histone 

proteins. Many HDACs have been discovered thus far and can be organized into four 

major classes (see Table 2.1).  All classes, except class III, are zinc-dependent HDAC 

(Marks & Xu, 2009). The main difference between class I and class II HDACs appear to 

be that class I seem to primarily work with cell survival and proliferation, while class II 



14 

work with specific tissues (Marks & Xu, 2009). What makes the HDACs 1 and 2 seem to 

be found exclusively in the nucleus, is the characteristic nuclear localization signal 

(NLS), but no nuclear export signal (NES) (de Ruijter et al., 2003).  Class II HDACs, 

however, possess both NLS and NES motifs, allowing for shuttling between cytoplasm 

and nucleus (Hess-Stumpp et al., 2007). Class III HDACs, also referred to as selective 

internal radiation therapies (SIRTs), are NAD+-dependent (Johnstone, 2002). Class IV 

HDACs have recently been discovered to show features of class I and II enzymes (Hess-

Stumpp et al., 2007).  

Table 2.1 Known HDAC classes, functions and relevant HDACi that inhibit their functions (adapted from 
Rasheed, Johsntone & Prince, 2007) 
Class Enzyme Location Function Relevant HDACi 
I HDAC1 

HDAC2 
Nucleus Participate in 

Sin3, NuRD 
and Co-REST 
complex 

SK-7041, SK-7068, MS-275, VPA, 
romidepsin butyrate, trapoxin, SAHA, 
TSA, PXD-101, LBH-589, LAQ-824, and 
MGCD-0103 

 HDAC3 Nucleus, 
rarely in 
cytoplasm 

Participate in 
SMRT, N-
CoR complex 

MS-275, VPA, butyrate, trapoxin, SAHA, 
TSA, PXD-101, LBH-589, LAQ-824 and 
MGCD-0103 

 HDAC8 Nucleus  VPA, butyrate, trapoxin, HDACI_B, 
TSA, PXD-101, LBH-589 and LAQ-824 

IIa HDAC4 Nucleus, 
Cytoplasm 

Interaction 
with 
SMRT/N-
CoR and co-
repressors 
BcoR and 
CtBP 

Romidepsin, VPA, butyrate, trapoxin, 
SAHA, TSA, PXD-101, LBH-589 and 
LAQ-824 

 HDAC5   VPA, butyrate, trapoxin, SAHA, PXD-
101, LBH-589, and LAQ-824 

 HDAC7   VPA, butyrate, trapoxin, SAHA, PXD-
101, LBH-589, and LAQ-824 

 HDAC9  Muscle 
differentiation 

VPA, butyrate, trapoxin, SAHA, PXD-
101, LBH-589, and LAQ-824 

IIb HDAC6 Cytoplasm Tubulin 
deacetylase 

Romidepsin, tubacin, SAHA, TSA, PXD-
101, LBH-589 and LAQ-824 

 HDAC10 Nucleus, 
Cytoplasm 

 Tubacin, SAHA, TSA, PXD-101, LBH-
589 and LAQ-824 

III SIRT1-7    
IV HDAC11 Nucleus, 

Cytoplasm 
 SAHA, TSA, PXD-101, LBH-589, LAQ-

824 and MGCD-0103 
 



15 

Histone deacetylase inhibitors (HDACi) are a new class of chemotherapeutic 

agents that inhibit HDAC action. Extensive research has shown that HDACs are related 

to repressed gene transcription and repressed expression of tumor suppressor genes 

(Marks et al., 2001; Carew, Giles, & Nawrocki, 2008). This is noted by the high HDAC 

levels that result in an increase of cancer cell proliferation, tight histone binding around 

DNA, and transcription inhibition (Marks et al., 2001). Since HDACs, HDAC1 in 

particular, are observed to be over-expressed in prostate cancer, they are an attractive 

target for anti-cancer gene therapy (Halkidou et al., 2004). While most HDACi in current 

clinical trials are being used for their primary enzymatic inhibition property, HDACi 

have also been found to have other mechanisms of action, based off of the structural 

diversity among the HDACi (Marks & Xu, 2009). HDAC can also bind to, deacetylate 

and regulate the activity of many other non-histone proteins , such as transcription factors 

(p53, E2F transcription factor (1E2F1), and nuclear factor-κB (NF-κB)) and other cellular 

proteins (α-tubulin, Ku70, and Hsp90) (Bolden, Peart, & Johnstone, 2006).  

Zinc-dependent HDACi include most of the HDACi in classes I, IIa, IIb, and V. 

There are generally three common structural characteristics in these molecules: a zinc 

binding moiety, an opposite capping group, and a straight chain alkyl, vinyl, or aryl linker 

that connects the two. It has been found that these functional groups interact with three 

conserved regions of the active site for certain zinc-dependent HDACi (Finnin et al, 

1999; Somoza et al., 2004; Vannini et al., 2004). The zinc ion facilitates amide 

hydrolysis and is found at the bottom of the catalytic pocket, the hydrophobic tunnel is 

penetrated by an acetyl-lysine substrate, and the channel opening contains the rim 

interaction with the hydrophobic capping group (Marks & Xu, 2009).   
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2.7 Combinational Therapy 

 Conventional cancer treatments that utilize only one therapy are rarely effective 

curative measures for the disease. However, when gene therapy is used in conjunction 

with traditional methods, outcomes of patients have shown clear benefits in clinical trials 

(O’Shaughnessy et al., 2002). While the use of cationic polymers to deliver exogenous 

DNA into cancer cells have proven to be somewhat effective by themselves, a 

combination with chemotherapeutic drugs is hypothesized to  synergistically enhance 

transgene expressions (Kasman, Lu, & Voelkel-Johnson, 2007). In this research, it is 

proposed that a combinational therapeutic approach that uses the novel cationic polymer, 

1,4C-1,4Bis and new class of chemotherapeutic agents (HDACi) can enhance transgene 

expression by altering intracellular trafficking and transcription regulation.  
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Chapter 3 

PREVIOUS STUDIES 

3.1 Cytoplasmic HDACi Investigations 

3.1.1 Introduction 

In a previous study conducted by Barua and Rege in 2010, the HDAC6 inhibitors, 

tubacin (cytoplasmic HDAC inhibitor) and Trichostatin A (TsA) (cytoplasmic and 

nuclear HDAC inhibitor) were evaluated for their combinational gene therapy 

effectiveness. Cytoplasmic HDACs, specifically HDAC6, deacetylates α-tubulin and 

regulates dynein motor transport on microtubules, thus mediating intracellular trafficking 

of cargo to the microtubular organizing center (MTOC), which had the potential to 

increase polyplex transport to deliver DNA for transcription (see Figure 3.1). 

 
Figure 3.1. Schematic of the uptake, sorting and localization of polyplex and quantum dots inside a cell. 
Intracellular localization of polyplexes at or away from the perinuclear recycling compartment 
(PNRC)/microtubule organizing center (MTOC) was equated to transfection in PC3-PSMA cells. (Barua & 
Rege, 2010). 
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3.1.2 Research Findings 

Tubacin acts as an inhibitor of this α-tubulin deacetylation, which results in more 

stable microtubules and better support within the cell, due to the increased dynein and 

kinesin motors for the microtubules. In this particular study, tubacin showed up to a 40-

fold transgene expression enhancement at 4 μM concentration and a polyplex ratio of 

25:1 (Figure 3.2) in PC3-PSMA cells. This is a significant enhancement, but the 10:1 

polyplex ratio only gave up to a 5-fold enhancement. This suggested that while mediators 

of intracellular trafficking have been known to enhance transgene expression, the overall 

enhancement may also be due to polyplex size, intracellular localization profiles, and 

corresponding basal levels of transgene expression.  Tubacin seems to have opposing 

motor activity when in a polyplex in cellular vesicles, resulting in more time for 

polyplexes or dissociated plasmid DNA to escape into the cytoplasm. This may have led 

to higher transgene expression as seen for the 25:1 polyplexes.   

The other HDACi evaluated in this study was Trichostatin A, a class I and II 

HDACi, which allows for inhibition of cytoplasmic and nuclear activity. In the 

cytoplasm, it acts similarly to tubacin in inhibiting HDAC6. In the nucleus, it acetylates 

histones to enhance transcription and transgene expression. TsA has shown to act in 

repositioning plasmid DNA towards sites that are transcriptionally active in the nucleus. 

In PC3-PSMA cells, TsA showed up to a 35-fold transgene expression enhancement at a 

250 nM concentration and a 25:1 polyplex ratio (Figure 3.2). Similar to tubacin, the 25:1 

polyplexes showed a significantly higher expression enhancement than the 10:1 polyplex 

ratio. These results seem to support the mechanisms mentioned above. However, other 
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mechanisms, such as promoter activation, may also play a role in the enhancement seen 

in the study. 

 

 
Figure 3.2. Transgene expression enhancement in PC3-PSMA cells transfected with pGL3 and treated with 
varied concentrations of the HDAC6 inhibitor a) Tubacin and b) Trichostatin A (Barua & Rege 2010). 
 

 

 

 

a) 

b) 
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3.2 Nuclear HDACi Investigation 

3.2.1 Introduction 

In a similar method to the previous studies for TsA and tubacin, this research 

involved the use of three nuclear HDACi’s in combination treatments with polymer-

mediated transcription to enhance transgene expression in PC3-PSMA prostate cancer 

cells.  For purposes of this investigation only, the names of the drugs were referred to as 

HDACi_A (a HDAC1, 2 and 3 inhibitor), HDACi_B (a HDAC1, 2 and 3 inhibitor), and 

HDACi_C (a pan-HDAC inhibitor). 

3.2.2. Research Findings  

PC3-PSMA cells were treated with different concentrations of HDACi_A, 

HDACI_B, and HDACi_C (0-1000 nM) at a 25:1 weight ratio of 1,4C-1,4Bis polymer 

and pGL3 polyplexes. Up to a 14-fold transgene expression enhancement was seen at a 

concentration of 500 nM (Figure 3.3) for HDACi_A, but because only n=2 experiments 

were carried out at this concentration, this was a result that needed additional study to 

verify its validity. The next highest enhancement at 1000 nM for HDACi_A was 

approximately 8-fold, whereas HDACi_B and HDACi_C showed only up to a 4-fold 

enhancement. While there was some noticeable enhancement with the combination 

therapy, it was not as significant as previous studies showed with TsA (35-fold) and 

tubacin (40-fold). HDACi_C and HDACi_B both showed very little enhancement, 

making them less promising chemotherapeutic drugs to use in further research. However, 

despite results showing little synergistic enhancement in PC3-PSMA cells, compared to 

prior studies, the HDAC1, 2 and 3 inhibitor (HDACi_A) showed the most potential as the 

lead molecule to for additional studies with polymer-mediated transgene delivery.  
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Figure 3.3. Transfection of PC3-PSMA cells using luciferase gene and 1,4C-1,4 Bis polymer in presence of 
HDACis: HDACi_A, HDACi_B, and HDACi_C. The luciferase gene containing pGL3 DNA of 200ng and 
the polymer:pGL3 DNA ratio of 25:1 (w/w) were used. Luciferase expression was measured as RLU/mg 
protein using luciferin and BCA, giving the values with respect to no treatment for the corresponding drug 
(0 nM and in presence of polyplexes for samples of same color). HDACi_A at 500 nM was carried out only 
as n = 2.  Data was statistically significant for all of HDACi_B, HDACi_C, and HDACi_A at 500 nM 
concentrations (p < 0.05 with Bonferroni correction). 

 

Cell cytotoxicities for all the HDACi molecules tested were within an acceptable 

range as depicted in Figure 3.4. HDACi_C displayed a slightly higher cell death (up to 

40% for 1000 nM concentration) than the rest, which may have decreased the RLU 

expression seen at this concentration, but not significantly enough to reconsider the 

results. HDACi_B had up to a 25% cell death, which would very unlikely skew the RLU 

expressions either. With a less than 10% cell death across all concentrations, HDACi_A 

made itself a better candidate for future studies as it displayed the lowest cytotoxic levels, 

even at the higher concentrations.   

The large error in most of the HDACi_A results and 1000 nM HDACi_B 

concentration results could have been attributed to the luciferin used in these 

experiments. Probably the most notable source of this error was due to the D(-)-Luciferin 
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 *   
*   *   



22 

powder to make 30 mg/mL aliquots re-suspended in 1X PBS, instead of dimethyl 

sulfoxide (DMSO). The luciferin powder was only soluble in DMSO and slightly soluble 

in water, and by re-suspending in 1X PBS, the powder could never fully dissolve. Thus, 

the luciferin was probably distributed unevenly in the 15 mL aliquot tubes used in 

preparing a luciferin mixture with medium prior to luciferase expression reading on the 

plate reader. Not only were the tubes probably unevenly distributed with the powder, the 

wells that were read may also have contained uneven amounts, giving variable readings 

from well to well. This error could have been prevented and subsequent experiments may 

have shown less variability in the results.  

The other possible source of error could be due to the protocol used for the 

luciferin preparation. Previous studies in the lab had used a luciferase assay which had a 

standardized protocol to measure luciferase expression. This experiment, however, used 

new luciferin powder assay system, instead of the luciferase assay and buffer system 

previously employed. While the protocol used for measuring luciferase expression was 

thought to have been reliable, it was a new procedure that had not been standardized. 

This may have also contributed to the variability noted in the RLU expressions for the 

HDACi used. 
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Figure 3.4. Cell viability of PC3-PSMA cells, measured in percentages, when treated with the labeled 
HDACi. The concentrations represent those of the drugs with a 25:1 polyplex ratio. a) HDACi_A displayed 
less than 10% cell death for all concentrations,  b) HDACi_B showed up to 25% cell death for the highest 
concentration (1000 nM) and c) HDACi_C displayed up to 40% cell death for the highest concentration 
(1000 nM), which makes the cytotoxicities of each drug acceptable. An ANOVA analysis showed 
statistical significance in the data for HDACI_B and HDACi_C, but not HDACi_A (*p < 0.05). 

a) 
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3.3 Conclusions 

In both studies, an attempt was made to achieve synergistic enhancement of 

transgene expression through polymer-mediated gene delivery with the use of HDACi. 

The cytoplasmic HDACi were novel findings that spurred the interest in studying the 

possibility of similar effects in nuclear HDACi. This nuclear HDACi study, 

unfortunately, yielded results that were less than extraordinary. Initial findings of the 

small molecule, HDACi_A, seemed to be the best candidate to pursue for initial studies, 

despite its relatively low synergistic enhancement, compared to the 40-fold enhancements 

seen in Tubacin and TsA. However, with its highest enhancement of 14-fold, it was still a 

promising candidate to evaluate further.  

The data for HDACi_B and HDACi_C showed little enhancement and large 

sources of error which are likely attributed to a luciferin protocol that is not effective and 

the resuspension error made with the luciferin powder. This inconsistency of protocol 

made the use of luciferin powder not very attractive. Thus, a switch back to luciferase 

assay for expression readings was made for the following study.  

With these findings, a nuclear HDACi lead drug was identified and an alteration 

in assay system to evaluate further findings was made. The following chapters discuss 

further the investigation that used HDACi_A as part of combinational therapy in 

polymer-mediated transgene delivery in PC3-PSMA cells.  
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Chapter 4 

MATERIALS AND METHODS 

4.1 Cell Culture 

The PC3-PSMA (Prostate Specific Membrane Antigen) human prostate cancer 

cell line was a generous gift from Dr. Michel Sadelein (Memorial Sloan-Kettering Cancer 

Center, New York, NY). Cells were cultured at 37 °C and in a humidified 5% CO2

4.2 Purification of Plasmid DNA 

 

incubator in RPMI-1640 medium (HyClone®, UT) containing 10% heat-inactivated fetal 

bovine serum (FBS) and 1% peni-strep (100 units/mL penicillin and 100 μg/mL 

streptomycin). 

 The pGL3 control vector (Promega Corp., Madison, WI) is a plasmid DNA that 

encodes for the modified firefly luciferase protein under control of an SV40 promoter. 

The pGL3 was added to a culture of DH5α Escherichia coli (XL1 Blue) and incubated 

overnight (16 h, 37 °C, 225 rpm) in 150 mL of Terrific Broth (MP Biomedicals, LLC) 

containing 150 μg/mL antiampicillin (Research Products International, Corp.). Cultures 

were centrifuged at 6000 rcf at 4ºC for 15 minutes and the QIAprep Maxiprep Kit 

(QIAGEN Inc., Valencia, CA) protocol was followed to purify the plasmid DNA. 

Concentration and purity of the plasmid DNA was based on absorbance at 260 and 280 

nm, which was determined via a NanoDrop Spectrophotometer (ND-1000; NanoDrop 

Technologies). Plasmid DNA within the acceptance range of 1.8 – 2 of the 260/280 nM 

ratio were the only DNA used for experiments in this research. Plasmid DNA was stored 

at -20 ºC and thawed on ice upon use. 
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4.3. Transfection Protocol 

 In a 24-well plate, PC3-PSMA cells were seeded at a density of 50,000 cells/well 

in 500 μL serum-containing growth medium (RPMI-1640 medium with 10% FBS and 

1% peni-strep) and allowed to attach overnight. Growth medium was aspirated from the 

24-well plate and replaced with 500 μL serum-free medium (RPMI-1640 and 1% peni-

strep).  The HDACi was added in 1 μL amounts of specified concentrations to the cells. 

Polyplexes of 1,4C-1,4Bis (1,4-cyclohexanedimethanol diglycidyl ether-1,4-bis(3-

aminopropyl) piperazine) polymer and pGL3 control vector in specified polymer:pDNA 

w/w ratio (200 ng pGL3 concentration) were prepared by adding the polymer to DNA in 

1.5 mL centrifuge tubes, then incubated at room temperature for 20 min. The resulting 

polyplexes were added to the cells for 6 h. Serum-free medium was pipetted out of the 

wells and replaced with 500 μL serum-containing growth medium. Another 1 μL of the 

HDACi drug at the varied concentrations was added to the corresponding wells. Cells 

were incubated for 48 h at 37 °C and 5% CO2

4.4 Luciferase Assay 

. 

Following ~48 h incubation of treated cells, medium was collected in 1.5 mL 

centrifuge tubes and washed with 150 μL of 1X phosphate buffered saline (PBS: 10mM 

Na2HPO4, 140mM NaCl, pH ~7.4). Each well was then treated with 150 μL of 1X cell 

lysis buffer reagent (Promega) for no longer than 2 min, but long enough to detach cells. 

Content from centrifuge tubes was then added back to lysate.  For samples that did not 

need to be diluted, 25 μL of the cell suspension was put into a 96 well non-sterile half 

area white plate in triplicates. For samples needing dilution, 100 μL of the cell suspension 

was put back into the centrifuge tubes and had 900 μL of nanopure water added to dilute 
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10X. If further dilution was still needed, 50 μL of this 10X dilution was taken into new 

1.5 mL centrifuge tubes in order to dilute 200X. With either dilution, 25 μL was taken 

and placed in the 96-well non-sterile half area white plate. Luciferase Glo Kit (Promega) 

was thawed at RT and mixed via vortexing, and then 50 μL was added to white plate as 

quickly as possible. The samples were read by Bio-Tek Synergy 2 plate reader 

immediately with excitation 360/40 filter plugged and emission 528/20 filter holed. 

Protein contents of each well were measured by Pierce BCA Protein Assay Kit (Pierce 

Biotechnology, Rockford, IL). The relative luminescence values (RLU) were normalized 

from these measured protein contents for each sample. 

4.5 Enhancement of Polymer-mediated Transgene Expression Using HDACi 

 PC3-PSMA cells were treated with 1 μL HDACi_A (0 – 2000 nM) at one of the 

six w/w ratios (1:1, 5:1, 10:1, 20:1, 25:1) of 1,4C-1,4Bis polymer and pGL3 plasmid 

DNA polyplexes. Following the ~48 h incubation period in the presence of the 

HDACi_A, PC3-PSMA cells were washed, lysed, and re-suspended in the medium, and 

prepared as the luciferase assay describes in section 4.4.  Transgene expression was 

reported as fold increase in normalized RLU/mg protein relative to no treatment (cells in 

the presence of polyplexes but no HDACi). 

4.6 Statistical Analysis 

All values are expressed as the mean ± one standard deviation (S.D.). All 

experiments were carried in at least triplicates, unless mentioned otherwise. A two-tailed, 

paired Student’s t-test was used to analyze the significance of the difference between the 

control and each experimental test condition (α = 0.05 and 0.005), with a Bonferroni 

correction (α/29 comparisons), giving the equivalent of α = 0.00172 and 0.000172, 
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respectively. ANOVA was run for cell viability data to test statistical significance. All 

analyses were conducted using Excel 2003. 
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Chapter 5 

RESULTS AND DISCUSSION 

A combinational approach was taken to investigate the effects of a lead nuclear 

HDACi and lead polymer for a non-viral gene delivery system. It was hypothesized that 

an HDACi that works inside the nucleus could overcome transcriptional barriers to 

enhance transgene expression in prostate cancer. In this research, four different 

polymer:pDNA weight ratios were used to deliver the plasmid DNA, pGL3, into PC3-

PSMA cells treated with varied concentrations of HDACi_A (a nuclear HDACi). The 

efficacy of the transfections were evaluated by reading luminescence (relative 

luminescence units or RLU) due to expression of the luciferase protein and normalized to 

the corresponding protein content of the sample. 

 The results from the transfections (see Figure 5.1) showed that the 20:1 

polymer:pDNA ratio was the most effective compared to the other polyplex ratios tested. 

The trend seems to show little increase in transfection efficacy between 1:1 and 10:1, a 

significant spike at 20:1, and a decrease with 25:1. This could be indicative of a possible 

size correlation with the transgene efficacy, but a size-zeta potential analysis would need 

to be conducted to prove this. Especially interesting would be to see if the 20:1 polyplex 

ratio is well within the endocytotic limits compared to the other ratios.  

At this 20:1 polyplex ratio, the two highest HDACi_A concentrations tested (1, 2 

μM) gave up to a 9-fold enhancement, with 750 nM HDACi_A not too far behind with 

around an 8-fold enhancement.  All other combinations of polyplex ratio and drugs were 

of little interest with less than 5-fold enhancements. 
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While the standard deviations for the 20:1 polyplexes were higher than most, the 

1000 and 2000 nM concentrations were statistically significant as denoted by the 

Bonferonni correction, which takes into account the entire sample amount. The 

enhancement at the higher HDACi_A doses is consistent with the drugs effectiveness 

seen in clinical trials at the micromolar scale (Bolden, Peart, & Johnstone, 2006). 

Additional experiments are needed to further understand the reasoning behind this 

enhancement. 
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Figure 5.1.  Luciferase expression in PC3-PSMA cells treated with HDACi_A using different 
polymer:pDNA weight ratios. Enhancement shown is related to no treatment (0 nM HDACi_A) but in the 
presence of polyplexes. Luciferase activity was measured as RLU/mg protein using means ± standard 
deviation (n ≥ 3). Statistical significance of * and ** indicated p < 0.05 and p < 0.005 (with Bonferroni 
correction), respectively using two-tailed, paired Student’s t-test.  
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 Actual luminescence expression values (RLU/mg protein) showed an increasing 

trend with increasing polyplex ratios (Table 5.1). This finding may support that these 

larger delivery devices may be more effective at overcoming biological barriers that are 

characteristic on non-viral delivery. One possibility is that the larger molecule increases 

endosomal escape due to proton sponge effect, since there is more cationic polymer to 

buffer against the acidic endosomal environment. However, additional studies would 

need to be conducted to verify this hypothesis.   

Table 5.1 Normalized RLU/mg protein with S.D. x 103

 
 of polyplex ratios at the six drug concentrations 

RLU/mg protein ± S.D. x 10^3 

HDACi_A 
Concentration 

(nM) 
1:1 plx 10:1 plx 20:1 plx 25:1 plx 

0 0.04 ± 0.03 3.0 ± 2.0 51.0 ± 75.0 4000.0 ± 800.0 
100 0 ± 0 3.8 ± 1.1 90.0 ± 72.0 6200.0 ± 870.0 
250 0.06 ± 0.01 7.0 ± 7.0 120.0 ± 101.0 6000.0 ± 240.0 
500 0.03 ± 0.03 9.6 ± 6.2 180.0 ± 145.0 9500.0 ± 3100.0 
750 0.07 ± 0.1 7.3 ± 3.2 270.0 ± 145.0 11000.0 ± 530.0 
1000  8.5 ± 8.0 250.0 ± 230.0 12000.0 ± 1000.0 

 

 Standard deviations were fairly high for nearly all polyplex and drug 

combinations, but more so at the 20:1 polyplex ratio. The reason behind this could be due 

to the larger sample size taken for 20:1 (n = 12) compared to the other polyplexes (n = 3 

for 1:1 and n = 6 for 10:1 and 25:1). Additionally it has been witnessed in our laboratory 

that plasmid DNA, from different purifications has a variation in expression levels. Half 

the transfections at 20:1 used pGL3 were from one recently made stock and the other half 

from one from a year-old stock stored at -20ºC. Interestingly, though, it was noted that 

while the recent plasmid DNA gave higher luminescence values, it also gave lower 
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transfection enhancements. Further speculation is needed to understand the reason behind 

this, and may spur additional experiments to compare different plasmid DNA stocks.  
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Chapter 6 

CONCLUSION 

 The goal of this research was to evaluate the effectiveness of combinational 

therapy with a specific nuclear HDACi and polymer-mediated transgene delivery on 

transgene expression. Prior studies with HDACi that inhibit functions of HDAC in the 

cytoplasm (tubacin and TSA) have shown up to 40-fold enhancement over polymer 

delivery, alone. This same principle was thought to have similar results with HDACi that 

are found to work in the nuclear realm.  

A preliminary screening of a few potential molecules yielded one HDACi that 

showed promise for further studies. This chemotherapeutic agent, HDACi_A, showed up 

to a 9-fold enhancement in PC3-PSMA cells at a 20:1 polymer:pDNA ratio for doses of 1 

and 2 μM. This dose range was consistent with effective doses used in current clinical 

trials. It is hypothesized that the 20:1 polyplex ratio may have a size-correlation with 

transfection efficacy. Additional studies still need to be conducted to further understand 

the reason behind this enhancement.  
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Chapter 7 

FUTURE WORK 

7.1 Cell Cytoxicity 

To further analyze the effect of HDACi_A on polymer-mediated transgene 

delivery, it is important to collect data on cell cytotoxicity, since this is an important 

factor in achieving an effective gene delivery system. Without acceptable cell viability, 

the combinational therapy proposed would not be useful in clinical applications. These 

experiments would be conducted for all combinations of polyplex ratios and drug 

concentrations in the same method used in previous studies, via MTT assay.  

7.2 Size and Zeta Potential 

Another important part of this study will be to collect data on size and zeta 

potential in order to ensure a correlation to the obtained luciferase results.  This 

information will give further insight as to possible size barriers that could decrease the 

uptake and efficiency of transgene expression. 

The methods for determining the polyplex size and zeta potential would be 

through the use of dynamic light scattering (DLS) via Malvern Zetasizer Nano Series 

(Malvem Instruments Inc., Westborough, MA). Polyplexes are incubated at R.T. for 20 

min at 0.4 μg/ml pDNA at the w/w ratios used in the transfection study in 1X PBS.  

7.3 Additional Cell Lines 

Additional cell lines would need to be transfected with the same polyplexes and 

HDACi to evaluate the effectiveness of the combinational effects that can transcend only 

PC3-PSMA.  This is essential because prostate cancer cell lines have shown to have 

various outcomes due to phenotypic differences (Barua & Rege, 2009). Also, an 
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investigation of breast cancer and pancreatic cell lines could open up additional research 

that could prove more effective. An initial dose response would be conducted for each 

cell line to establish the scale for HDACi_A concentrations (such as nano- or micro-

molar). Then the transfections would be carried out as discussed in section 4.3 with same 

polymer and plasmid DNA at the same polyplex w/w ratios and the ascertained 

HDACi_A concentrations from the dose response. 

7.4 Alternative Novel Polymer 

 In the laboratory, polymer synthesis has been conducted to find a new lead 

polymer that is highly efficient as a vector for gene therapy. One such polymer has been 

discovered and has shown significant enhancements in transgene expression. Use of this 

polymer with HDACi_A could have a possible synergistic effect. The same method as 

depicted in section 4.5 would be used to evaluate the best combination of polyplex ratio 

and drug concentration. 

7.5 Use with TRAIL Gene 

Finally, to test the effectiveness in an actual cancer therapy, the lead polyplex 

ratio and drug concentration obtained in this study, with the least cytotoxicity, would 

need to be tested with the tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL) gene. Past studies have shown effective use of HDACi that enhance the TRAIL 

gene in LNCap prostate cancer cell line using viral methods (Kasman, Lu, & Voelkel-

Johnson, 2007). The combinational therapy used in this research could have similar 

outcomes in PC3-PSMA cell lines with use of TRAIL.  
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Figure A1. Proposed schematic of polymerization of 1,4C-1,4Bis polymer based on the ring opening of the 
diglycidyl ether by the amine (adapted from Barua et al., 2009). 
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Table A1. Characteristics of 1,4C-1,4Bis compared to pEI-25 (Barua, 2011). 

 1,4C-1,4Bis pEI-25 
Mn  3.9  (kDa) 10  
Mw 23.5  (kDa) 25 

Polydispersity 5.96 2.5 
Size (nm) 10:1 plx ratio 154.5 ± 13 190.7 ± 6.3 

25:1 plx ratio 244.8 ± 17  261.7 ± 9.3 
Zeta Potential (mV) 10:1 plx ratio 22.8 ± 2.7 20.7 ± 2.2 

25:1 plx ratio 27 ± 4.3 25.7 ±1.6 
 


