
Conversion of a Molecular Beam Epitaxy System  

for the Growth of 6.1 Angstrom Semiconductors  

by 

W. Hank G. Dettlaff 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment  
of the Requirements for the Degree  

Master of Science  
 
 
 
 
 
 
 
 
 
 

Approved April 2012 by the 
Graduate Supervisory Committee:  

 
Yong-Hang Zhang, Chair 

Dragica Vasileska 
Shane Johnson 

 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

May 2012



 

 i 

ABSTRACT 
 

A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the 

growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that 

are to be used in novel optoelectronic devices that take advantage of the nearly 

continuous bandgap availability between 0 eV and 3.4 eV. These devices include 

multijunction solar cells and multicolor detectors. The MBE system upgrade 

involved the conversion of a former III-V chamber for II-VI growth. This 

required intensive cleaning of the chamber and components to prevent 

contamination. Special features including valved II-VI sources and the addition of 

a cold trap allowed for the full system to be baked to 200 degrees Celsius to 

improve vacuum conditions and reduce background impurity concentrations in 

epilayers. After the conversion, the system was carefully calibrated and optimized 

for the growth of ZnSe and ZnTe on GaAs (001) substrates. Material quality was 

assessed using X-ray diffraction rocking curves. ZnSe layers displayed a trend of 

improving quality with decreasing growth temperature reaching a minimum full-

width half-maximum (FWHM) of 113 arcsec at 278 degrees Celsius. ZnTe 

epilayer quality increased with growth temperature under Zn rich conditions 

attaining a FWHM of 84 arcsec at 440 degrees Celsius. RHEED oscillations were 

successfully observed and used to obtain growth rate in situ for varying flux and 

temperature levels. For a fixed flux ratio, growth rate decreased with growth 

temperature as the desorption rate increased. A directly proportional dependence 

of growth rate on Te flux was observed for Zn rich growth. Furthermore, a 



 

 ii 

method for determining the flux ratio necessary for attaining the stoichiometric 

condition was demonstrated. 
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1 INTRODUCTION 

1.1 Background 

It has long been a goal of the optoelectronics community to integrate a 

wide range of devices onto a single substrate. Presently, this has been a challenge 

as a wide array of materials and substrates are enlisted in order to cover even the 

most common spectral ranges while maintaining the required level of material 

quality. For example, UV detectors are grown on GaN and sapphire substrates; 

infrared photodetectors use InP substrates; blue InGaN LEDs are grown on GaN 

substrates; and red AlGaInP LEDs utilize GaAs substrates. 

While there has been a significant amount of research into the hybrid 

integration of existing materials systems, there is yet to be a universal solution 

that would enable a wide range of devices to be practically integrated onto a 

single substrate. A new materials platform involving II-VI and III-V 

semiconductors lattice matched to GaSb and InAs substrates has been recently 

proposed to address this [1].  This system features semiconductor binaries and 

related alloys with direct bandgaps ranging from nearly 0 eV (far infrared) to 3.4 

eV (ultraviolet). In turn, this 6.1 Å	  lattice	  matched	  II-‐VI	  and	  III-‐V	  materials	  

platform makes the dream of integrating a wide range of photonic devices onto a 

single substrate highly plausible. 
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1.2 Overview of Electrical and Optical Properties 

  

Figure 1.1: Bandgap versus lattice constant for various III-V and II-VI 

semiconductor alloys (Courtesy: D. Ding) 

As was aforementioned, the 6.1 Å lattice matched II-VI and III-V 

materials platform spans the electromagnetic spectrum from around 0 eV up to 

3.4 eV. This is achieved with alloys using up to four constituents. Figure 1.1 

displays the bandgap versus lattice constant for a number of binary and ternary 

semiconductor compounds. It is important to note that not only are energy levels 

in this range attainable but also that a majority of the alloys used are direct 

bandgap. 

The 6.1 Å lattice matched II-VI and III-V material platform also has 

competitive electrical properties. Electron and hole mobilities are listed for a 

selection of binaries with lattice constants near 6.1 Å in Table 1.1. GaSb and InAs 
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have very high mobilities and would be well suited for use as conduction 

channels. As expected, the materials with larger bandgaps and greater effective 

masses have reduced mobilities making them better suited for electrical barrier 

and optical confinement layers. Overall, the near 6.1 Å binaries offer comparable 

or better mobilities then those of similar bandgap and different lattice constant. 

Table 1.1: Electron and hole mobilities at 300 K for binaries with lattice constants 

near 6.1 Å. 

Material Electron Mobility (cm2/V s) Hole Mobility (cm2/V s) 

ZnTe 600 100 

CdSe 900 50 

AlSb 200 420 

GaSb 12040 1624 

InAs 30000 450 

1.3 Proposed Applications 

A wide range of photonic and electronic devices with minimal misfit 

dislocations grown on GaSb or InAs substrates can be envisioned by using the 6.1 

Å materials platform. Of particular interest are those utilizing the ability to 

monolithically integrate a range of lattice-matched materials with bandgaps 

spanning a large portion of the electromagnetic spectrum. This level of freedom in 

device design is not known to be available for any other existing material system 

that is lattice matched to a single substrate. Successful development of the 

monolithically integrated device structures will open the door to additional 
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innovative device concepts and higher levels of system integration.  Two such 

device applications—multijunction solar cells and multicolor photodetectors—are 

discussed in depth in the following. 

1.3.1 Multijunction Solar Cells 

In recent years, concerns pertaining to the limited supply and 

environmental effects of various traditional energy sources such as oil and coal 

have been increasing. Consequently, the desire to find viable alternative energy 

resources has risen as well. The use of solar cells to convert sunlight directly into 

electricity via the photovoltaic effect is one possible solution. However, a variety 

of challenges have yet to be addressed before this technology will be competitive 

with traditional sources. These include electric infrastructure issues, energy 

storage, and cost reduction. 

When addressing economic issues, the cost of the module and installation 

must be considered in addition to that of the photovoltaic device and materials. 

For market dominating Silicon based solar cells, 60 to 75 percent of module cost 

is due to the cell component itself. With only minimal reductions in cost expected 

and efficiencies nearing theoretical limits for these cells, it is clear that solutions 

minimizing the cell component cost while allowing for increased efficiency would 

be extremely advantageous. This can be addressed by using potentially 

comparably inexpensive concentrator systems at ratios reaching over 1000, vastly 

reducing the cell component size and material requirements. 

With the proportion of cell component cost drastically reduced, it is 

advantageous to use higher efficiency cells that can be better tuned for high 
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concentration ratios.  The framework for increasing efficiency by using multiple 

energy gaps was laid out by Henry’s extension of the Shockley-Queisser detailed 

balance limit for pn junction solar cells [2,3]. By using multiple junctions, a better 

fit to the solar spectrum can be attained by minimizing unabsorbed photons that 

are at energies below the bandgap and by minimizing energy losses due to the 

position of hot carriers created by photons of energies exceeding the bandgap.  

Additionally, since current is reduced with increased junctions, losses due to 

series resistance are also reduced allowing the theoretical limits to be more 

closely approached. As a result of these advantages, multijunction cells have held 

the efficiency records for nearly two decades reaching as high as 43.5% under 

concentration[4]. 

These state-of-the art cells have primarily been grown on GaAs and Ge 

substrates. Unfortunately, significant efficiency increases have been hindered due 

to a lack of high quality, lattice-matched materials in the 1.0 eV to 1.3 eV 

bandgap range. These are necessary for increasing efficiency through increased 

junctions. [5]. The use of metamorphic buffer layers have shown some promise in 

alleviating these issues however production costs and cell longevity issues 

associated with resulting defects are major concerns [5,6]. Consequently, the ideal 

path forward requires lattice-matched materials over a wide range of desired 

bandgap energies. The 6.1 Å II-VI and III-V materials platform provides these 

features [1]. 

A number of additional advantages are enabled by this platform. Beyond 

covering the 1.0 eV to 1.3 eV gap associated with materials matched to GaAs and 
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Ge, the (InAlGa)(AsSb) alloys in this platform reach further into the infrared 

spectrum. This is especially advantageous for increasing efficiency under very 

high solar concentrations. Furthermore, the direct-indirect band crossover of the 

AlGaAsSb alloys included in the platform promotes a unique combination of high 

absorption, long carrier lifetimes, and increased Voc [1]. Finally, available type-II 

heterostructures are expected to allow tunnel junction designs with extremely low 

voltage drops. This feature will be extremely important in taking full advantage of 

high concentration ratios. 

Table 1.2: Layer structure for four junction solar cell. 

Material Bandgap (eV) Thickness (µm) 

Zn0.76Cd0.24Se0.23Te0.77 2.04 1.20 

CdSe0.90Te0.10 1.56 1.30 

Al0.32Ga0.78As0.03Sb0.97 1.21 2.10 

Al0.13Ga0.87As0.01Sb0.99 0.92 2.50 

 

A variety of potential solar cell structures have been investigated using 

Silvaco simulation software. Simulated efficiencies as high as 54% under 1000 

suns using the AM1.5D spectrum result using the structure shown in Table 1.2 

[7]. These simulations show great promise for the use of the 6.1 Å II-VI and III-V 

materials platform in record efficiency multijunction solar cells. The successful 

growth of these structures requires the ability to grow both II-VI and III-V alloys 

while maintaining high quality interfaces and avoiding unintentional dopants. 
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Consequently, these and related solar cell structures are a major motivator for the 

MBE upgrade discussed within this thesis. 

1.3.2 Multicolor Photodetectors 

The wide spectrum coverage enabled by the 6.1 Å II-VI and III-V 

materials platform has advantages for applications beyond solar cells. It could 

also provide a new level of flexibility for monolithically integrating photodiodes 

of multiple bandgaps onto a single substrate. This feature has potential application 

in imaging, environmental monitoring, communications, and spectroscopy [8]. 

The ability to integrate many detection bands onto a single substrate 

introduces system design challenges. With existing solutions, the maximum 

amount of detection bands possible using a single read out integrated circuit 

(ROIC) is two [9]. This can be accomplished using voltage biasing with 

photodiodes in a back-to-back configuration [10,11]. Alternatively, the two-band 

limit can be surpassed by incorporating additional terminals [12,13,14]. However, 

this incurs tradeoffs as the focal plane array layout becomes more complex, 

fabrication becomes significantly more difficult, ROIC requirements are 

increased, and fill factor is reduced [15]. In turn, these problems are inhibitive for 

increasing detection bands. 
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Figure 1.2: Optically addressed two terminal photodetector schematic [8]. 

In order to maximize the potential of the 6.1 Å materials platform, a two 

terminal solution allowing an almost limitless number of bands has been proposed 

[8]. This would utilize the concept of current limiting. Whereas in solar cells it 

creates challenges for maximizing efficiency, it is advantageous for measuring 

only the current of the desired cell in this case. In order to read a particular 

photodiode, all other photodiodes in the monolithically grown stack are light 

biased with an LED or laser within their respective spectral response ranges. The 

photogenerated current of the cell of interest then dictates that of the overall 

multicolor detector given it does not exceed that of the optically biased cells. 

Hence, by switching the appropriate light bias sources a single ROIC can be used 

to detect in any number of available bands. 
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Figure 1.3: Individual photodiode spectral responsivity curves [8]. 

 

Figure 1.4: InGaP photodiode linear dynamic range with different light bias levels 

for inactive photodiodes [8]. 
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This concept has been experimentally demonstrated [8]. Due to the 

inherent structural similarity and immediate availability, a commercial 

InGaP/InGaAs/Ge triple-junction solar cell was used as a multicolor 

photodetector for the study. Optical biasing was achieved using LEDs with peak 

wavelengths within the response ranges of each junction of the solar cell. Using 

the biasing method described earlier, responsivity plots were obtained (Figure 1.3) 

confirming that photodiodes can be addressed individually. It is believed that the 

responses noted outside the desired range of the InGaAs and Ge cells can be 

overcome with design modifications. Reasonably high linear dynamic range was 

also demonstrated (Figure 1.1). These results are promising for future 

development of the concept and its extension into utilizing the 6.1 Å lattice-

matched materials system to achieve detectors with many detection bands and 

only two terminals. 

1.3.3 Other Proposed Applications 

The 6.1 Å II-VI and III-V materials platform may also offer solutions for a 

number of other optoelectronic applications. One example is within the 

development of high efficiency LEDs. Within the range of 540 nm to 610 nm, a 

number of efficiency limiting problems have been encountered using 

conventional materials. ZnTe has the potential to address this as its bandgap 

corresponds to an emission wavelength of 546 nm [16]. The wide range of 

bandgaps achievable with this system also has the potential to facilitate broad 

integration of electronic and optoelectronic devices onto a single substrate. In 

addition to spectral properties, the variety of band alignments available within the 
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system may be useful for a number of innovative optical and electrical 

confinement structures. 

1.4 Prior Work 

The success of the proposed devices is contingent on the ability to 

integrate II-VI and III-V materials while maintaining low defect densities. Since 

GaSb is the preferred substrate for its available sizes and comparably low cost, 

initial studies have involved the growth of ZnTe on this material. In a work by 

Wang et al [17], thin layers of ZnTe were grown on GaSb substrates and were 

characterized by X-ray diffraction (XRD) and transmission electron microscopy 

(TEM). The ω-2θ XRD scans displayed distinct epilayer and substrate peaks as 

well as Pendellösung fringes. These fringes indicate that the epitaxial layer has a 

smooth interface, uniform thickness, and low defect density. This was confirmed 

with TEM images that displayed an interface free from misfit dislocations or 

stacking faults. This study also included the growth of a ZnCdTe/ZnTe quantum 

well on a GaSb substrate. Photoluminescence measurements detected strong 

emission. These findings indicate that low defect density interfaces for the II-VI 

and III-V materials platform are realistically attainable. 

Fan et al [18] offer further confirmation of this for thicker ZnTe layers. In 

this work, excellent XRD FWHM values as low as 32.9 arcsec were obtained for 

a 2.5 µm layer on GaSb. Strong PL spectra were noted as well. Growth of ZnTe 

on GaAs substrates was also studied. FWHM values as low as 45.0 arcsec were 

obtained for these samples. Since GaAs substrates were used for the calibration of 

the rebuilt chamber, these values served as an excellent reference level. 
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2 FACILITIES DEVELOPMENT 

2.1 Growth System Requirements 

The 6.1 Å lattice-matched materials platform and its previously discussed 

applications come with unique challenges and constraints for achieving successful 

growth. The foremost of these is the avoidance of cross contamination between II-

VI and III-V sources. This is because the constituents of each alloy group can 

contribute to unintended doping in the other. For example, As acts as an acceptor 

to ZnTe by replacing Te sites [19]. Likewise, Te is commonly used to dope III-V 

materials n-type. In order to attain desired device performance, unintentional 

doping from each alloy type must be minimized to achieve specified doping 

levels. 

The various applications listed in the introduction include features that are 

challenging for growth.  Thin layers around 10 nanometers are required for the 

tunnel junctions utilized by both multijunction solar cells and multicolor 

detectors. Even thinner layers are sometimes utilized in superlattices and quantum 

wells. Moreover, abrupt interfaces between these layers are usually desired. Given 

that the lattice constant of most semiconductors is between 0.54 nm and 0.65 nm, 

the growth method employed must be able to produces layers with monolayer 

accuracy. 

The nearly continuous range of bandgaps enabled by the 6.1 Å lattice-

matched materials platform is only possible with careful compositional control of 

alloys with up to four constituents. Many of these alloys are in the miscibility gap 

of techniques that rely on chemical processes that require near equilibrium growth 
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conditions. As a result, a technique that is not primarily dictated by these 

processes is desired. In summary, the desired technique must achieve the 

following: cross contamination minimization; precise layer thickness control; 

precise alloy composition control; and nonequilibrium growth. 

MBE is the solution that best meets these constraints. With specialized 

system setup, the minimization of cross contamination is possible as will be 

discussed in detail throughout the remainder of this chapter. The growth processes 

intrinsically associated with MBE address the latter challenges and are in the 

immediately following section. It should be noted that metalorganic chemical 

vapor deposition (MOCVD) is a suitable alternative for creating the discussed 

devices in most cases. This is important for commercialization as its higher 

throughput is preferable for industrial device production. Due to the comparable 

ease of altering growth conditions and higher level of control, MBE is the 

preferred method for research purposes. 

2.2 Basics of Molecular Beam Epitaxy 

Fundamentally, MBE [20,21] is the growth of thin films formed by the 

interaction of atomic or molecular beams with a substrate. By balancing the 

arrival rate of constituent atoms in these beams with the temperature of the 

substrate, a level of surface migration is achieved that results in very smooth 

surfaces. Consequently, a level of control is enabled where deposition can be 

started and stopped within a monolayer and the growth of the thin layers 

necessary for the previously discussed applications is possible. 
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The low growth rates employed further assist in the control of material 

composition. What truly makes MBE the optimal choice in this sense is its ability 

to achieve nonequilibrium growth. Other growth techniques such as liquid phase 

epitaxy and vapor phase epitaxy rely on chemical processes that require 

conditions near thermodynamic equilibrium vastly limiting the compositions 

achievable. MBE growth, however, is governed primarily by the kinetics of 

incoming atoms and molecules effectively removing most of these limitations. 

This is the enabling feature for attaining nearly continuous bandgap coverage in 

the 6.1 Å II-VI and III-V materials platform. 

 

Figure 2.1: Basic MBE system schematic. 

The basic physical setup used to foster high quality MBE growth is now 

discussed (Figure 2.1). The first step is to create an environment that minimizes 

incorporation of unintended materials. Limitations imposed by the control system 

and growth processes dictate growth rates of approximately 1 monolayer per 
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second. The impingement rate necessary for this amounts to a partial pressure on 

the order of 10-6 Torr corresponding to a mean free path in the range of meters to 

tens of meters. Since negligible interactions occur prior to reaching the substrate, 

the physical growth mode discussed previously is enabled.  In order to achieve 

acceptable impurity levels, for example 1 atom in 108, a background vacuum level 

of approximately 10-14 Torr would be needed. Fortunately, this is requirement is 

lessened by typically low impurity sticking coefficients. Consequently, 

background pressures of 10-9 Torr have proven to be acceptable. 

Achieving the necessary ultra-high vacuum (UHV) requires special care 

for the build and design of all portions of the system. This starts with a stainless 

steel chamber evacuated by a complement of pumps. The selection of pumps in 

the II-VI and III-V dual chamber system will be discussed in Section 2.3.2. In 

most systems, these primary pumps are supplemented by a cryopanel that 

surrounds the deposition region. These serve the dual purpose of absorbing stray 

radiation from various heaters and acting as a secondary pump to minimize stray 

flux. The maintenance of this vacuum and the minimization of external impurity 

introduction are assisted by the use of a load lock and preparation chamber 

connected to the growth chamber via gate valves. Respectively, these are used for 

introducing substrates from atmosphere and outgassing contaminants from 

substrates. 

In addition to providing the proper environmental conditions, MBE 

systems must also deliver and control the constituent materials used for the 

growth. A variety of methods are used for flux generation including thermal 
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effusion sources, gas sources, and electron beam evaporation sources. The most 

commonly used of these and that employed by the II-VI and III-V chambers is the 

thermal effusion cell. In these cells, source material is radiatively heated resulting 

in evaporation. Flux is directly related to source temperature and hence closely 

tied to crucible temperature. By using a flux measurement device such as an 

ionization gauge, calibration curves can be attained enabling control using simple 

temperature controllers. A variety of modifications are possible to make these 

sources more suitable for certain materials and to add a higher level of flux 

control. Those applicable to the ASU system will be described in Section 2.3.3. 

In order to grow a variety of materials, a typical chamber will have 

multiple sources. Mechanical shutters are used with each of these to facilitate sub-

monolayer interruption of flux enabling abrupt interfaces between layers. 

Accommodating multiple sources requires that they be setup at an angle to the 

substrate normal. This leads to a non-uniform flux profile at the substrate surface. 

Substrate rotation is employed to effectively average flux and ensure an even 

growth profile across the substrate. This feature is incorporated into a component 

referred to as the manipulator which also serves roles in substrate temperature 

control and wafer transfer. 

Successful growth, of course, requires sufficient in situ control, 

measurement, and analysis inside the MBE chambers. Sources and substrates 

must be equipped with temperature measurement devices. Along with shutters 

and other components, these are usually interfaced with some sort of computer 

control. Additional ports are often included to facilitate additional growth 
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monitoring. The UHV environment provides advantages compared to many other 

growth methods in that many in situ monitoring systems such as reflection high 

energy electron diffraction (RHEED) can be used. 

2.3 II-VI and III-V Dual Chamber Features 

The integration of II-VI and III-V materials presents many challenges as 

have been discussed previously.  Specialized setup and procedures must be 

implemented to minimize cross contamination. Additionally, certain properties of 

II-VI materials require additional care in component selection. The system design 

measures taken to facilitate the high quality growth of II-VI and III-V integrated 

devices are discussed in the following. 

2.3.1 Chamber Layout 

 

Figure 2.2: II-VI and III-V dual chamber system (Courtesy: D. Ding). 

The II-VI and III-V MBE machine was built upon what was originally a 

VG V80H dual III-V chamber system. A schematic of the modified system is 

shown in Figure 2.2. Each growth chamber is connected by a dual-purpose 

transfer and preparation chamber. Substrates are loaded into this chamber via a 
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semiconductor, move around the surface before incorporating, or evaporate from the wafer back 

into the chamber. By adjusting the cell temperature, shutters, cell valves, and substrate 

temperature, the desired heterostructure can be grown. The material quality can be very high for 

MBE grown semiconductors because of the pure source materials and UHV conditions. 

 The enabling technology that allows II-VI materials to be grown on III-V substrates is a 

dual-chamber MBE system. Fig. 3 shows a schematic diagram of the system, which consists of 

two UHV growth chambers separated by a UHV transfer chamber. Two chambers are necessary 

because a GaSb buffer layer is needed before the ZnTe growth. The buffer layer minimizes 

defects in ZnTe caused by the lower quality GaSb wafer surface after oxide removal. The UHV 

transfer chamber is needed to prevent contamination and oxidation of the buffer layer between 

growths. Each chamber has eight cell ports which are loaded with single-crucible cells and triple-

crucible doping cells. Table II lists the source materials for each chamber at ASU. The cell 

configuration for the II-VI chamber has all the necessary materials for growing 

(MgZnCd)(SeTe)-based structures. 
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Fig. 3.  Schematic diagram of the dual-chamber MBE system at ASU. [6] 
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fast entry load lock chamber. As standard operating procedure, the gate valve 

between the growth and preparation chamber and the seal between preparation 

chamber and load lock are never opened simultaneously. This provides an 

additional stage of isolation of growth chambers from atmospheric conditions. 

Additionally, after loading the substrate, a high temperature heating stage in the 

preparation chamber is used to outgas contaminants. 

 

Figure 2.3: II-VI and III-V isolation plan for wafer holder stages. 

The isolation of II-VI and III-V materials begins with a similar procedure. 

The gate valves for each growth chamber are never opened simultaneously to 

minimize the possibility of direct diffusion of contaminating gasses from chamber 

to chamber. Direct material transfer between chambers must also be minimized. 

The machine has two wafer stages, one for loading into the preparation chamber 

from the load lock (Figure 2.3) and one for holding wafers in this chamber. Each 

has designated locations for wafer holders that are used exclusively in each 

II-V
I 

III-V
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chamber with a blank disc placed between the II-VI and III-V sections. This aims 

to prevent material transfer between chambers via being knocked off during the 

transfer process or from being outgassed as the wafer is heated up in the growth 

chamber. This setup, however, requires the wafer to be removed from the system 

when transferring. In order to prevent surface oxidation, a very thin layer, on the 

order of monolayers, of low temperature amorphous material can be grown as a 

barrier. After transferring wafer holders, this layer can then be outgassed in the 

high temperature stage. Initial tests of this process were promising as shown by 

RHEED images before and after (Figure 2.4). During the before image, weak 

spots and hazy RHEED are consistent with a layer of amorphous As material on 

the surface. After the removal procedure, the background is cleared and the spot 

intensity increases suggesting the layer is no longer present. 
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Figure 2.4: RHEED images before (a) and after (b) As cap layer removal. 

2.3.2 Vacuum System 

The system UHV conditions are provided by a relatively common 

complement of pumps [22]. Initial pumping from atmosphere is provided by a 

turbomolecular pumping station connected via valves to each chamber. This 

consists of a turbomolecular pump backed by a UHV compatible oil-free 

roughing pump. This system is optimal as it provides high speed pumping of most 

gases during pump down and is capable of reaching pressures as low as 10-7 Torr. 

A cryopump and ion pump pairing provide primary pumping of the 

chambers. The former is advantageous for its high pumping speeds of 

atmoshpheric gases and H2O and high maximum operating pressure. The latter is 
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highly desired for its reliability and bakeability.  Each of these pumps features a 

gate valve allowing it to be separated from the chamber. This provides both a 

security measure against pump failure and pump saturation during higher pressure 

operations. A sublimation pump is utilized as added support on the growth 

chambers. This uses evaporated titanium to getter gases helping to provide 

additional pumping speed during growth and to help lower the standby pressure. 

Additionally, the previously discussed cryopanel is used extensively to provide 

additional pumping assistance during growth. 

The II-VI chamber features the addition of a cold trap connected to its ion 

pump. This is one of many steps taken to facilitate the unique ability to carry out 

high temperature (up to 200 °C) bake-outs of the chamber. By maintaining a 

significantly lower temperature then the chamber, the cold trap will prevent low 

vapor pressure II-VI materials from condensing on chamber walls during a bake. 

Periodic use of this of this ability is crucial in maintaining a level of system 

cleanliness required for the successful growth of high quality devices. The other 

measures taken to allow this will be discussed in subsequent sections. 

The vacuum is monitored in each chamber of the system via Stabil-Ion 

360 Series ion gauges. The ion pumps serve as secondary gauges due to the 

relation of ion pump operating current and pressure. Stanford Research Systems 

RGA300 residual gas analysis systems fitted to each chamber enable the 

identification and partial pressure measurement of gases present in the system. 

This ability finds application in many aspects of MBE including maintenance, 

growth preparation, and growth. 
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2.3.3 Sources for 6.1 Å II-VI and III-V Materials Growth 

 

Figure 2.5: II-VI chamber source setup (Courtesy: D. Ding). 

 

Figure 2.6: III-V chamber source setup (Courtesy: D. Ding) 

The sources in the updated system were chosen to provide a wide 

spectrum of bandgaps through the use of materials that can be lattice matched to 

6.1 Å substrates (Figure 1.1). The II-VI chamber utilizes the materials displayed 

in Figure 2.5. Mg, Se, and Te can be used in a ternary alloys with bandgaps up to 

3.4 eV. Exchanging Mg for Cd produces an alloy with the lowest attainable 

bandgap using the II-VI materials used in the chamber, approximately 1.5 eV. 
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Similarly, Zn pairs with Te to provide a binary with a bandgap in the middle of 

the aforementioned ternary alloys. 

In the III-V chamber (Figure 2.6), Al and Sb combine to form an alloy 

with a bandgap of 1.6 eV, slightly overlapping the range of the II-VI chamber 

materials. The addition of varying amounts of Ga results in lattice matched 

materials covering the spectrum between the AlSb and the bandgap of GaSb, 0.7 

eV. The In and As cells can be used along with Sb to achieve a ternary alloy with 

a bandgap of approximately 0.4 eV. 

Ga, In, and Al are used on the II-VI chamber as n-type dopants. For p-

type, a nitrogen source is used as well as a GaP source, from which the desired 

phosphorous dopant is preferentially evaporated. In the III-V chamber, Be and Si 

are used for p-type doping while Si and Te are used for n-type doping. 

Bi has been included on both chambers because its large size promotes 

surfactant behavior. This property can be utilized to prevent surface roughening 

during the growth of various heterostructures and also to modify the mode of 

growth [23]. On the III-V chamber, it can be incorporated with Ga and As to 

achieve large reductions in bandgap energy with comparably small changes in 

lattice constant [24]. 

In order to better accommodate the low vapor pressure II-VI materials, 

specially designed sources with two-piece graphite crucibles were selected. As 

compared to commonly used crucible material pyrolytic boron nitride (pBN), 

graphite allows for greater flexibility and higher machining tolerances. This 

enables the two-piece design that enhances the material loading process. It also 
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facilitates the customization of source nozzles. This allows smaller apertures to be 

used to promote higher cell temperatures and better flux control. Moreover, 

improved flux output profiles are possible. 

 

Figure 2.7: II-VI valve schematic. 

The Te and Se cells incorporate one further feature to improve their flux 

control and facilitate higher temperature bakes then have previously been possible 

on II-VI systems. This is the inclusion of a source valve (Figure 2.7). By using 

high precision control of the valve opening near instantaneous changes in flux are 

possible. By closing the valve, negligible source material can be lost thus enabling 

higher bake temperatures. In order to prevent material deposits on this area, a 

higher temperature then the crucible is maintained at all times. 

2.3.4 In-situ Monitoring Systems 

Successful MBE growth requires the ability to carefully control growth 

conditions and monitor growth process. The most fundamental growth conditions 

are the constituent flux rates and substrate surface temperature. With the flux rates 

dictated primarily by effusion cell temperature, temperature control is at the heart 

of attaining desired growth conditions. In each cell, a thermocouple is in contact 
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with the crucible. Similarly, a thermocouple is used to measure the substrate 

temperature. However, due to the desire to use In-free mounting and the use of 

substrate rotation the thermocouple is placed between the wafer and heater. Each 

of these thermocouples is connected to a PID controller with the corresponding 

source or substrate heater as its output. This provides the first level of control. 

Neither the source or substrate temperature measurements are perfectly 

stable or accurate. In the sources, the thermal transfer characteristics between the 

evaporating material and the thermocouple change as material is used. 

Furthermore, some lag can occur between the measured and actual temperatures. 

As a result, a flux gauge is used to calibrate the required temperatures more 

directly and to characterize transient behavior. In the II-VI and III-V dual 

chamber system, the manipulator can be tilted out of the way so that an ion gauge 

can be moved into the substrate growth position to provide these functions. 

The aforementioned substrate temperature measurement setup tends to be 

very inaccurate. This is due to the reliance on radiative coupling between the 

substrate, heater, and the thermocouple. Resultantly, lag is an issue in transient 

situations. Additionally, temperature offsets vary significantly between different 

substrates and substrate holders as well. For these reasons, the thermocouple 

measurements are supplemented with optical measurement methods. In the III-V 

chamber, an infrared pyrometer with a range of 400 °C to 1200 °C is utilized. 

This infers the substrate temperature via applying the Stefan-Boltzmann law to 

the measured thermal radiation. 
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Since the low growth temperatures used for II-VI growth are out of the 

specified range of the pyrometer, diffuse reflectance spectroscopy (DRS) is used 

as an alternative. In this method [25], a broadband white light source is focused 

over the substrate. This passes through the substrate and is diffusely reflected 

back through the substrate. The spectrum at a nonspecular point is measured using 

a monochromator. Only light not absorbed in the substrate is measured at this 

point in turn enabling determination of the bandgap. This can then be used to infer 

the substrate temperature. If the bandgap-substrate temperature relation is 

available, this is a highly accurate and robust method. Fortunately, it is well 

characterized for the GaAs substrates used for the chamber calibration. 

As a complement to the growth monitoring systems, RHEED enables the 

in-situ analysis of epitaxial layer growth. This technique utilizes an electron beam 

at a glancing angle. At the electron energies used, the beam penetration is 

typically limited to a few monolayers. This results in a surface sensitive 

diffraction pattern that can provide many insights into the growth process [20]. 

Both chambers of the II-VI and III-V dual chamber system implement a 

Staib Instruments RH-15 RHEED system. This features a compact electron gun 

with an accelerating voltage of 15 keV. The compact geometry is an important 

feature as it accommodates the baking box necessary for maintaining system 

cleanliness. The accompanying Staib Instruments kSA400 software enables 

computer based RHEED image capture and analysis. Of note is the RHEED 

oscillation tracking and subsequent fitting. This allows for growth rate 

determination during growth, a key feature for the system calibration. 



 

 27 

2.3.5 Computer Control 

It is clear that the control of MBE involves many inputs including 

substrate and source temperature controllers, source valves, and shutters. Even for 

simple structures, the required operator attention can take away from the ability to 

carefully monitor growth progress. More complex structures may not be able to 

be grown accurately via manual control. For this reason, both chambers feature 

high performance computers operating the Emeralt control system. The heart of 

this system is desktop software that utilizes C-language based input. This allows 

growth procedures to be programmed in advance. Operator error is minimized and 

focus can be shifted to monitoring RHEED, DRS temperature, and the substrate. 

Furthermore, the source temperature ramps can be written as calculation loops 

simplifying the implementation of graded layers. 

An important aspect of the Emeralt system is its real-time control. By 

supervising execution time, it is ensured that commands will occur at the 

designated times and not accumulate errors related to computer processing time as 

can happen in many other control systems. Furthermore, this facilitates the ability 

to run both parallel and synchronized processes. In turn, growth structures can be 

executed with a high level of confidence. 

Communication in this system is achieved via the TCP/IP ethernet 

protocol with components selected to minimize latency between computer 

commands and device action. A bank of TCP/IP to RS-232 controllers is utilized 

to accommodate older temperature controllers and source valve controllers. The 

accuracy in timing enabled by this setup is highly advantageous for the growth of 
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graded layers, superlattices, and digital alloys. Coupled with data recording 

functionality, the Emeralt computer control system greatly enhances both the 

efficiency of operation and the growth capabilities afforded to the grower. 

2.4 System Upgrade Process 

As in any major MBE maintenance cycle, careful attention to cleanliness 

is central to the upgrade of the ASU system. This is vital for maximizing the 

ability to maintain UHV chamber conditions and to minimize potential material 

contaminants. Converting one of the system’s two chambers from III-V growth to 

II-VI growth significantly increases the difficulty in achieving this. The dual 

chamber upgrade process and the many additional considerations necessary for 

the conversion are discussed in the following. 

2.4.1 Preparation for System Cleaning 

The MBE upgrade commenced with the preparation of sources for 

venting. Heater temperatures were ramped down slowly to protect the pBN and 

graphite crucibles from potential damage due to thermal coefficient of expansion 

differences with source materials. 

Prior to opening the chamber, a vent-pump procedure was used as a safety 

precaution against hazardous reactions of deposited materials with atmospheric 

gases. In particular, the pyrophoric characteristic of the P4 allotrope of 

phosphorous can result in fire and dangerous explosions if exposed to quickly to 

oxygen. Similarly, arsenic reacts with the hydrogen present in air to produce 

arsine, a highly toxic gas [26]. The procedure involves repeatedly exposing the 
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chamber to atmospheric gases and then using the turbo pumping station to clear 

out resulting hazardous gases. By removing sudden exposure to full atmospheric 

conditions, the aforementioned dangers are minimized. 

The full vent then follows and deposited materials are allowed to further 

oxidize until arsine readings decrease to safe levels. Components of the MBE 

were then removed and all ports were blank flanged except for one to allow for 

continued arsine monitoring. Parts were wrapped in UHV compatible aluminum 

foil for storage. While many were reused on the chamber designated for continued 

III-V growth, the II-VI chamber primarily used new parts. This was done to 

minimize potential contamination by III-V materials that could result from 

imperfectly cleaned components. 

2.4.2 Chamber Cleaning 

Both growth chambers then underwent a mechanical cleaning procedure to 

remove deposited materials. A number of protocols were established to prevent 

exposure of research team members to hazardous chamber materials. These 

started with the specification of required personal protective equipment. A 

DuPont Tyvek coverall was worn by all working in the lab as a barrier from 

particles and chemicals. Also for this reason, particulate respirators and gloves 

were used. When cleaning the chamber, other ports were covered with UHV 

compatible aluminum foil and the arsine detector probe was placed near the 

entrance of the working port. The work area was evacuated if any readings 

exceeding the Occupational Safety and Health Administration recommended 

permissible exposure limit of 50 parts per billion were encountered [27].  
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The cleaning process started with simple scraping with isopropyl alcohol 

(IPA) cleaned screwdrivers and other similar implements. For safety, care was 

taken to avoid aggressive scraping that would expose a large amount of 

unoxidized pyrophoric material. Furthermore, during all mechanical cleaning 

steps, water was sprayed over the scraping area to minimize spread of particulates 

into the air. Upon removal of a majority of the deposited material, each chamber 

underwent further finishing steps. Since the deposited materials were of lesser 

concern for the chamber designated for III-V growth, a simpler sandpaper 

cleaning method was used. Low fiber producing cleanroom wipes were used in 

conjunction with IPA to remove particles and clean away organic materials. 

The more stringent removal requirements of the II-VI chamber dictate full 

cleaning to the stainless steel walls. This was achieved through the use of a rotary 

tool equipped with a steel brush attachment and extensive sandpaper and steel 

wool scrubbing in hard to reach areas. As in the III-V chamber, an IPA wiping 

followed to aid in particulate removal. A 1:50 nitric acid to deionized water 

solution was used to passivate the freshly exposed stainless steel chamber walls 

and was followed by another IPA wiping. 

2.4.3 High Temperature II-VI Chamber Bake 

Bakes are used in high vacuum applications to outgas contaminants and 

maximize the vacuum level potential of a system. Increasing chamber temperature 

increases the equilibrium vapor pressure of any materials condensed onto the 

walls. This promotes higher rates of evaporation enabling faster removal from the 

chamber by the vacuum system. Very high temperatures are therefore desired but 
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limitations are usually incurred by the maximum operating points of chamber 

components. 

It was important to remove as much of the remaining III-V contaminants 

as possible from the II-VI chamber. Therefore, an initial chamber bake with ports 

blank flanged was used to remove the temperature limitations due to component 

specifications. In order to accomplish this, the original baking setup of the dual 

chamber system had to be modified to facilitate the single chamber bake. This 

original setup consisted of a series of fiberglass insulation filled panels that 

assemble into a box around the entire system. The new setup required 

disconnecting the II-VI chamber from the transfer chamber and shifting its 

position to allow for a newly fabricated panel to be added, completing the 

enclosure. 

 

Figure 2.8: II-VI chamber high temperature baking setup (Courtesy: D. Ding) 



 

 32 

The setup of the II-VI chamber bake is shown in Figure 2.8.  The goal of 

the bake is to reach a chamber temperature of approximately 300 °C. However, 

the ion pump used during the bake must be maintained at a lower temperature. A 

heater is used to achieve a maximum of 200 °C in the baking box, an acceptable 

level for the ion pump. Heat tape wrapped directly around the chamber with an 

additional covering layer of fiberglass insulation enables the additional 

temperature difference desired for the chamber. This wrapping was done carefully 

to ensure highly uniform heating, necessary to undue stress on welds that could 

result in leaks. 

 

Figure 2.9: II-VI chamber pressure and temperatures versus baking time. 

Thermocouple probes were placed in multiple locations on the chamber to 

monitor this uniformity. Heating tapes were individually controllable by variable 

duty cycle on-off controllers. The overall temperature ramp proceeded slowly to 
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ensure that uniform heating of each zone could be accomplished (Figure 2.9). The 

pressure was also monitored during this time. There is a general correspondence 

in pressure increases with faster ramps in temperature. This is explained by 

increases in evaporation rates and the amount of materials having reached their 

vapor points. At points where the temperature was held constant, the pressure 

lowers as evaporated materials are pumped out of the chamber. The entire 

bakeout was carried out over a period of 14 days and a maximum chamber 

temperature of 298 °C was recorded. 

 

Figure 2.10: RGA partial pressure scans of the III-V chamber (main) and II-VI 

chamber post-bake (inset). 

The success of the cleaning process is verified by comparing RGA output 

of the II-VI chamber with that of the III-V chamber (Figure 2.10). The most 

important observation is the lack of arsenic peak on the II-VI chamber reading, 

confirming significant reduction in semiconductor material via the cleaning 
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process. The peaks of the II-VI output are attributable to atmospheric 

contaminants such as water, nitrogen, and hydrogen. These are expected as the 

chamber was exposed to air to allow the addition of MBE components prior to 

taking the readings. 

2.4.4 Component Maintenance and Replacement 

In a typical MBE maintenance cycle, many components can be reused. 

However, as a measure to avoid III-V contamination, extensive cleaning or 

complete replacement was required for parts used in the II-VI chamber 

conversion. A selection of the MBE parts and their maintenance is now discussed 

with focus on achieving cleanliness and reliability. 

The vacuum system for all chambers underwent major renovation to 

maximize reliability and longevity for the system. The ion pumps were 

disassembled. The pump bodies were sent out for chemical cleaning to remove all 

traces of III-V materials. Cathodic plates, used for gas capture, were fully 

replaced as were the anodic elements.  High voltage feed-thrus were replaced due 

to their tendency to leak after extended use. 

Cryopumps were also removed and sent out for rebuild. The high surface 

area carbon surfaces used to capture gases were replaced. This is especially vital 

for the II-VI chamber to prevent captured III-V materials from desorbing into the 

clean chamber. Necessary maintenance is also carried out on the mechanical parts 

of the helium compression system to promote future reliability. 

On the III-V chamber, gate valves were cleaned and rebuilt. Again, to 

prevent potential contamination from incomplete cleaning, all new gate valves 
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were used on the II-VI chamber. Gate valves were oriented such that their sealing 

O-ring faces away from sources. This is to prevent particles from embedding into 

the rings, potentially causing leaks. 

Heated windows are used on some ports to enable optical measurements 

throughout extended growth cycles. By applying the same principles used in 

chamber bakeouts, minimal material condensation occurs on the windows when 

kept at an elevated temperature. On the III-V chamber structural parts were 

cleaned and the tungsten heating filaments were replaced as they were nearing 

their expected lifetime. All new windows were used on the II-VI chamber. 

Both manipulators underwent extensive maintenance. Due to cost and 

availability, full replacement was not an option. Instead, it was disassembled into 

many small parts that were either replaced or underwent careful mechanical and 

chemical cleaning. In an effort to further reduce risks of contaminating the II-VI 

chamber, the manipulator was reassembled and attached to an external chamber to 

outgas using its heater prior to final installation. 

The final requirement for having all chamber components ready for 

growth was to prepare the substrate holders. Brand new holders were given a 

simple IPA rinse. Previously used holders required etching to remove deposited 

material. A concentrated nitric acid etch was used as it selectively etches III-V 

semiconductors versus the molybdenum in the substrate holder [28]. Before 

growth, all holders were outgassed in the high temperature stage of the prep 

chamber with completion verified using the RGA. 
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2.4.5 Full System Bake 

After all in-vacuum components of the dual chamber MBE system were 

installed, the system was pumped down and checked for leaks. Upon completion 

of this, all unbakeable exterior components were removed, cooling water lines 

were purged using pressurized air, and the full system baking box was assembled. 

The liquid nitrogen supply lines were then connected to the cold trap. The baking 

box heaters were then ramped up at a rate of 1 °C/hr to a maximum of 200 °C.  

This temperature was maintained for 130 hours prior to a ramp down over a 

period of approximately four days. During all stages, the system vacuum was 

monitored and the partial pressures at the cold trap were recorded. 

 

Figure 2.11: Partial pressures versus time recorded at cold trap during bake. 

Prior to the bake, the II-VI chamber had a total pressure in the mid 10-9 

Torr range. During the baking temperature ramp, the total pressure increased as is 

also reflected in the recorded partial pressures (Figure 2.11). As in the initial II-VI 
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chamber bake, this is due to the increased evaporation rates of materials 

condensed on chamber walls. At the point where the ramp up completed 

(approximately 170 hours), the partial pressures began to decrease as pumping 

rates overcame the evaporation rates. At approximately 330 hours, the baking 

temperature ramp down began. Partial pressures correspondingly decreased as 

their evaporation rates also decreased with temperature. When room temperature 

was reached, the II-VI chamber total pressure was 3×10-10 Torr. This lower 

reading suggests that chamber contaminants had been reduced as the pumps have 

less outgassing to overcome. 

 

Figure 2.12: Analog RGA scans at the cold trap before and after bake. 

Further confirming this is a comparison of the RGA analog scan output 

immediately before and after the bake (Figure 2.12). In this, hydrogen (m/z = 2) 

and water (m/z = 16,17,18) is reduced by over 2 orders of magnitude. Similarly, 

nitrogen (m/z = 28) and carbon dioxide (m/z = 44) are reduced by over an order 

of magnitude, as are many other atmospheric gases. 
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The scan also demonstrates the success of measures taken to minimize 

outgassing of  II-VI materials. The cadmium partial pressure (m/z = 56,112) is 

reduced while selenium (m/z = 160) exhibited a negligible rise in partial pressure. 

No other significant peaks corresponding to other II-VI semiconductors is noted. 
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3 GROWTH CALIBRATION FOR II-VI SEMICONDUCTORS 

3.1 Growth Preparation 

3.1.1 Substrate Mounting 

Substrate temperature control plays a vital role in nearly all stages of MBE 

growth as it dictates processes occurring at the wafer surface. Since the ASU 6.1 

Å II-VI and III-V dual chamber MBE system utilizes an indirect thermocouple 

measurement for control, it is important to understand the relative heating 

characteristics of the substrate holders used. The types of wafer holders used and 

their heating characteristics are discussed in the following. 

In the ASU system, wafer holders facilitate substrate heating via two 

general methods, direct and indirect. The former holds the wafer such that heater 

radiation is absorbed within the actual sample and is also known as In-free 

mounting. Conversely, the substrate holder or a carrier wafer absorbs the radiant 

heat in the latter which is then transferred by primarily conductive means to a 

substrate mounted to its surface. 
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Figure 3.1: Schematic of a full-wafer holder. 

During the system calibration, direct heating was accomplished by placing 

a wafer into an open molybdenum frame. Full wafer holders of this kind used a 

circular ceramic clip to hold the wafer securely onto the frame (Figure 3.1). New 

quarter wafer holders were also designed that use three small clips secured by 

screws to hold the substrate. 

The indirect wafer heating method used involved adhering the substrate to 

a Si carrier wafer using In solder. This method has a number of drawbacks for 

device quality growth. The foremost of these is that In can unintentionally get 

incorporated as a dopant for II-VI materials or as a constituent for III-V materials. 

It also presents a number of practical issues. Applying the In to the mount 

requires time and care. Removing residual In from the sample backside after 

growth is also challenging. As a result, the In-free mounting methods are highly 

preferred for achieving high quality devices and materials. 
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Figure 3.2: DRS temperature vs. thermocouple temperature for substrates of 

different lots mounted with In-free wafer holders under equilibrium (solid line 

segments) and fast positive ramp (solid line segments). 

In early calibration runs, a high amount of temperature variability was 

observed between different substrates and substrate holders. Therefore, an 

investigation of substrate calibration data was carried out. Full equilibrium 

calibrations were taken by waiting for temperatures to stabilize at each recorded 

point. Observations were also recorded during fast ramps, over 50 °C/min, such as 

those used during deoxidation procedures. The data revealed that wafer lots have 

a significant effect on the heating characteristics (Figure 3.2). This is due to 

varying amounts of infrared heater absorption and emission within the substrates. 

Doping level was shown to be a major factor. This is reflected by the lowest DRS 

temperatures relative to the thermocouple reading being attained for the undoped 
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substrate corresponding to a lower amount of infrared absorbing free carriers. 

However, similarly doped subtrates still exhibited a high level of variability as 

well. This is likely due to a combination of other substrate properties including 

carrier mobility, thickness, and resistivity. 

The absorption rate of each substrate displayed a clear effect on the 

temperature characteristics under ramp up as well. On the more highly absorbing 

substrates, the transient curve exceeded the equilibrium curve. Conversely, on the 

low absorbing undoped substrate, the transient curve was lower in temperature 

relative to the equilibrium curve. Knowing these characteristics is vital for 

achieving successful deoxidation. 

Due to the noted variability, it is clear that substrate calibrations are 

required for directly heated substrates. Fortunately, variation within wafer lots 

was far less significant, typically less than 5 °C. This suggests that a single 

calibration is applicable for each wafer lot. 
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Figure 3.3 DRS temperature versus thermocouple temperature for substrates of 

different lots using In mounting. 

By using the Si carrier wafer to absorb the heater radiation, the variation 

between wafer lots is effectively removed. This is confirmed in the obtained data 

as the same wafer lots display a significantly reduced spread (Figure 3.3). The 

variation that is noted is attributed to differences in mounting technique between 

samples. The data also displays transient temperatures closer to the equilibrium 

curve. 

This study suggests that In-mounting reduces substrate temperature 

calibration requirements. For this reason, In-mounting was used for a majority of 

the II-VI system calibration. However, the more stringent contaminant avoidance 

requirements of materials studies and device production dictate future use of the 
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direct holders. The discussed investigation points to the importance of obtaining a 

temperature calibration curve for each wafer lot used. 

3.1.2 As-Free GaAs Substrate Deoxidation 

GaAs (001) substrates were selected for a majority of the calibration runs 

in order to reduce costs relative to the ZnTe or GaSb substrates planned for use in 

6.1 Å II-VI and III-V integrated devices. Typically, GaAs substrates are 

deoxidized under an As flux to prevent desorption during substrate heating. Due 

to contamination concerns, this is not allowable in the II-VI chamber. As a result, 

excessive heating must be avoided to prevent severe degradation of the surface 

prior to growth. 

Bousquet et al. suggest heating until a (2×1) RHEED pattern is observed 

when using an epi-ready GaAs (100) substrate [29]. In their work, this pattern 

occurs between 580 °C and 600 °C and is accompanied by an increase in 

brightness indicating the desorption of the oxide layer. Similarly, Cornelissen et 

al. [30] reported streaky RHEED at 580 °C. Hence, the initial procedure used for 

deoxidation during the II-VI chamber calibration was to heat until a (2×1) pattern 

was observed.  

A ramp to fail test was carried out to observe the evolution of RHEED 

during oxidation. At that time, the pyrometer was used for substrate temperature 

measurements. During measurements, the heated window was turned off to avoid 

inaccurate readings caused by stray radiation from the filaments. During the ramp, 

(2×1) RHEED was observed at 700 °C on the thermocouple and 570 °C on the 

pyrometer. At 800 °C/658 °C (thermocouple/pyrometer), the RHEED evolved to 
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a (4×1) pattern. Further heating resulted in the appearance of spottiness 

characterized by a chevron shape concluding with the appearance of 3D rings at 

905 °C/750 °C (thermocouple/pyrometer). This suggested that the deoxidation 

process was fairly forgiving of the maximum temperature. 

As growths were carried out, however, inconsistent observations were 

noted. The appearance of a (2×1) reconstruction did not always happen prior to 

reaching very high temperatures. In other cases, the RHEED turned spotty before 

this reconstruction appeared. This is a sign of a 3D surface caused by excessive 

As desorption. The most successful desorptions involved ramping down the 

temperature after an increase in intensity and observation of (2×1). Many of these 

were carried out using In-mounted substrates suggesting deoxidation issues may 

have been linked with poor temperature calibration. 

In order to establish a consistent routine, a deoxidation study was carried 

out with careful attention to reconstruction observations relative to substrate 

temperature measured via DRS. A slow ramp rate of 10 °C/min was used from 

540 °C (DRS) to observe the RHEED evolution. During this time brightness of 

the specular spot was objectively measured using the RHEED oscillation feature 

of the software. As the ramp continued through the mid-500 °C range, the weak 

GaAs reconstruction started to become streakier. A significant increase in 

brightness occurred at 585 °C signaling significant desorption of the oxide layer. 

Weak second order lines began to appear at 605 °C and strengthened with 

continued ramping suggesting As had started to become deficient at the surface. 

Beyond 625 °C, the RHEED pattern began to darken meanwhile the streakiness 
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continued to improve until 640 °C. Beyond this point, the pattern degraded and 

the substrate surface began to appear hazy. The darkening and pattern degradation 

are consistent with a decrease in order on the substrate, suggesting a poor surface 

for growth initiation. 

 

Figure 3.4: (2×1) RHEED pattern of GaAs (001) substrate at a peak deoxidation 

temperature of 620 °C (DRS). 

Based on this information, a procedure of quickly ramping the substrate 

quickly past RHEED brightening to temperature of 615 °C followed by a 1 min to 

2 minute hold time was adopted. This extra hold time is used to ensure complete 

oxide desorption. During the hold, the RHEED is closely monitored and the 

substrate temperature dropped if the pattern begins to get spotty or darken to 

prevent further surface degradation. Using this procedure, (2×1) patterns such as 
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that shown in Figure 3.4 were consistently attained and streakier RHEED was 

maintained during ramp down and after Zn flux initiation. Runs experiencing 

brief substrate temperature overshoot to temperatures around 630 °C to 640 °C 

were notably streakier. Further experimentation is required to confirm the 

reliability of this observation and warrant implementing it into the deoxidation 

process. 

3.2 Source Flux Calibration 

 

Figure 3.5: Zn flux versus source temperature. 
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Figure 3.6: Se flux versus source temperature. 

 

Figure 3.7: Te flux versus source temperature. 
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In order to calibrate growth conditions, knowledge of the source heating 

characteristics and flux characteristics are needed. Stable source flux output is 

best achieved by slowly ramping to the desired growth temperature. This is to 

ensure uniform heating of the material. Flux versus temperature curves were 

obtained for Zn (Figure 3.5), Se (Figure 3.6), and Te (Figure 3.7) by using a slow 

ramp, allowing over 10 minutes for stabilization and then averaging flux readings 

over 1.5 minutes. Overall, these curves exhibit the expected exponential shape 

and enable determination of source temperatures to achieve desired growth 

conditions. Since some drift can occur over time, fluxes were checked 

periodically to maintain consistent flux ratios. 

 

Figure 3.8: Se flux versus valve position for Se cell bulk temperature of 200 °C. 
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The Se valve enables quick flux adjustment. Its characteristic displays a 

high slope in the lower range and eventually saturates as it approaches the fully 

open value (Figure 3.8). This high slope exacerbates inaccuracies caused by any 

drift in flux over time therefore frequent calibrations are needed for any growths 

using this zone. Also of note, the low values below a valve position of 8 mil were 

removed by a later recalibration of the valve positioning system. The calibration 

process also revealed excess flux for approximately 5 minutes following initial 

opening. Therefore, a procedure was implemented where the valve is opened with 

shutter closed for at least ten minutes prior to initiating growth. 

 

Figure 3.9: Te flux versus valve position 
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is noted. Again, this requires frequent calibration to ensure accuracy of these 

fluxes. Unlike the Se valve, this source does not demonstrate an initial flux burst 

after opening. Therefore, no waiting time after initial valve opening is required 

prior to use. 

3.3 ZnSe Growth Calibration 

With the flux characteristics of the sources determined, experimentation to 

find optimum growth procedures and parameters could begin. The first step is to 

establish a ramp down procedure from the deoxidation temperature. The As-free 

deoxidation procedure results in a Ga terminated surface that has a tendency to 

form compounds with group-VI elements that can hinder proper growth [31]. In 

order to avoid this, all growths were initiated using a Zn flux starting 100 °C over 

growth temperature during ramp down. At this point, RHEED typically remained 

unchanged from its streaky/spotty reconstruction. 

The next step was to determine the source operating conditions. For ZnSe, 

the desired flux ratio achieves stoichiometric conditions at the substrate surface 

[32]. Since the flux gauge sensitivity varies by constituent as does sticking 

coefficient, the measured flux ratio for this condition is not necessarily 1:1. 

Fortunately, RHEED reconstructions are often dependent on the constituent ratio 

at the surface. Previous reports [30,32] have noted that Zn rich surfaces are 

associated with a c(2×2) pattern and Se rich surfaces display a (2×1) pattern. 

Under stoichiometric conditions, these reconstructions are superimposed with 

weaker second order lines. 
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Figure 3.10: RHEED reconstructions for (a) [110] azimuth and for (b) [100] 

azimuth near the stoichiometric condition. 

The II-VI observations were consistent with those reported in literature. In 

order to assure either Zn rich or Se rich surfaces, the opposite shutter was 

temporarily closed during growth. In both cases, stronger second order lines 

appeared in their respective reconstruction. By adjusting the source temperatures 

and Se valve position, the optimal near-stoichiometric growth zone could be 

located (Figure 3.10). During initial growths, this transition zone appeared for 

measured flux ratios (Jse/JZn) between 2 and 3 therefore values in this range were 

used for all calibration experiments. 
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Achieving an ideal combination of flux ratio and substrate temperature 

enable surface processes that promote high quality, uniform crystal growth. Using 

the experimentally determined ideal flux ratio range above, samples were grown 

over a range of substrate temperatures. The ZnSe films range in thickness 

between 1.25 µm and 6.40 µm. Growth rates were independent of substrate 

temperature within the tested range. Values between 0.21 µm/hr and 0.26 µm/hr 

were obtained for the initial growths. In order to achieve higher growth rate, 

overall flux was increased with resulting samples attaining rates between 0.52 

µm/hr and 0.59 µm/hr. 

The quality of these crystals was assessed using the full width half 

maximum (FWHM) of X-ray diffraction (XRD) ω-2θ rocking curves (Figure 

3.11). This technique measures the intensity of diffraction peaks over a range of 

angles. The peak diffraction angle is dependent on lattice constant. Variation of 

lattice constant appears as a broadened peak that is the summation of individual 

diffraction peaks within the material. This variation is highly correlated to the 

amount of structural defects within a material and hence is a good indicator of 

quality. 
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.  

Figure 3.11: XRD ω-2θ FWHM versus substrate temperature of ZnSe samples 

grown using standard deoxidation procedure and low temperature As cap 

desorption. 

The ZnSe XRD FWHM results are in the range of published values for 

ZnSe grown on GaAs (001) substrates [33,34,35]. An increase in ZnSe crystal 

quality with decreasing substrate temperature is observed for samples that 

employed high temperature deoxidation procedures. Since other growth 

procedures and conditions were varied between these samples, the data was 

analyzed to ensure the trend was not due to other factors. Thickness, in particular, 

has a direct theoretical relation to the XRD line width [36]. However, there is no 

significant correlation between sample thickness and the measured FWHM 

suggesting that this effect is negligible compared to that of temperature. 
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It is unlikely that the samples grown using low temperature As cap 

desorption signal a boundary to the aforementioned trend. Rather, this points to 

the need for further development of this process. Potential causes for the higher 

line width of these samples include incomplete desorption of the amorphous As 

layer and a poor GaAs buffer layer. 

The FWHM values attained during the calibration support that the system 

upgrade was successful in fostering quality growth through contaminant 

minimization. The data suggests lower temperatures would further improve the 

material quality. A deeper investigation into the effect of flux ratio may also be 

informative. This could include both a wider range of flux ratios and a sensitivity 

check near the stoichiometric ratio. The latter is of interest due to the best sample 

having implemented a valve adjustment procedure that was used to achieve the 

optimal RHEED from Figure 3.4. 

3.4 ZnTe Calibration 

3.4.1 Growth Condition Experimentation 

As with ZnSe, the ZnTe growth uses an initial Zn flux to prevent the 

formation of III-VI compounds at the interface. This is started 100 °C above the 

desired growth temperature during ramp down. At this time, there was typically 

either no change or a slight increase in spottiness of the RHEED pattern. 

During initial growths, Zn and Te shutters were alternately closed in order 

to observe the resulting RHEED reconstructions. In the Te-rich case, a (2×1) 

reconstruction with strong second order lines was noted. Conversely, a c(2×2) 
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reconstruction corresponded to a Zn stabilized surface. These observations are 

consistent with those recorded in literature [36,18,37,38]. 

  

  

Figure 3.12: RHEED images for Te to Zn ratios of 1.46:1 (a, b) and 1.26:1 (c, d) 

in [110] azimuth (a, c) and [100] azimuth (b, d). 

The focus of the initial growth condition experimentation was to locate an 

optimal substrate temperature range. Measured Te to Zn flux ratios between 

1.25:1 and 1.5:1 were used for a majority of samples grown for this purpose. This 

was selected as a middle value of the wide range of ratios cited in literature for 

achieving successful growths [18,37,39]. These ratios appear to be in the 

transition zone of the RHEED. While not entirely consistent, samples with a 

higher Te:Zn ratio tended to have a (2×1) reconstruction whereas those with a 
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lower ratio more often had a c(2×2) reconstruction (Figure 3.12). This suggests 

that these ratios may be near the stoichiometric point. 

 

Figure 3.13: XRD ω-2θ FWHM versus substrate temperature for ZnTe samples. 

The XRD ω-2θ rocking curves show a trend of decreasing FWHM 

values as the substrate temperature is increased (Figure 3.13). This signifies an 

increase in the structural quality of the ZnTe epilayers at the upper temperature 

range of the grown samples. A potential explanation for this is that the additional 

thermal energy provided to the substrate helps adatoms reach thermodynamically 

stable sites in the crystal [38]. This would be especially critical as the lattice 

relaxes from the strain induced by the 7.9% mismatch with the GaAs substrate. It 

is unlikely, however, that this trend would continue significantly beyond the range 
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of the grown samples due to reported faceting resulting from high desorption rates 

above 450 °C [36]. 

 

Figure 3.14: Measured XRD ω-2θ FWHM and thickness broadening adjusted 

FWHM versus thickness of ZnTe samples. 

In order to verify that substrate temperature is the dominant factor in the 

trend observed in Figure 3.13, other relations are examined. The first of these is 

XRD ω-2θ FWHM versus epilayer thickness (Figure 3.14). As mentioned in the 

ZnSe section, crystals incur thickness dependent linewidth broadening, βL [36]. 

This is described by: 

€ 

βL
2 = [4 ln2 /(πh2)](λ2 /cos2θ) 

where h is the layer thickness, λ is the beam wavelength, and θ is the Bragg angle. 

The overall measured broadening, βM is calculated by: 
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€ 

βm
2 (hkl) = β0

2(hkl) + βd
2 (hkl) + βα

2(hkl) + βc
2(hkl) + βr

2(hkl) + βL
2 (hkl)  

which includes other broadening mechanisms [40]. These are used to calculate 

adjusted FWHM values with the thickness dependent linewidth broadening 

removed. It is clearly seen in Figure 3.14 that this has a minimal effect. This 

shows that the FWHM trend is most likely caused primarily by other factors 

which is consistent with temperature being dominant. 

 

Figure 3.15: Growth rate versus measured flux ratio for ZnTe samples. 

A strong positive trend between growth rate and temperature was noted 

within the data. Rather then being a direct effect, it is most likely that this is the 
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observations of both Zn-rich and Te-rich RHEED reconstructions may only signal 

that the measurements are near the crossover, not actually at it. In order to better 

understand this and other growth rate relations, a designed study was needed. 

3.4.2 RHEED Oscillation Growth Rate Study 

The investigation of ZnTe growth rate began by citing a number of factors 

that could be potentially influential. In order to effectively test all these, an 

efficient method to record the growth rate for different factor combinations 

without the need for individual growths was required. RHEED intensity 

oscillations are phenomena that are frequently used in MBE growth to obtain this 

in situ and have been previously reported for ZnTe[41]. These occur due to the 

diffuse scattering of the specular beam as partial layers are formed during two-

dimensional layer-by-layer growth [20]. Since the oscillation period is directly 

related to the growth of an individual layer, the growth rate can be extracted. 

A highly smooth and uniform surface is required in order to observe 

RHEED oscillations. The procedure used to achieve and maintain this during the 

study was developed using parameters from Najjar et al [41] as a starting point. It 

was as follows. An undoped GaAs substrate was deoxidized using the standard 

procedure. The Zn shutter was opened 100 °C above the growth temperature of 

355 °C. After opening the Te shutter, the sample was grown under rotation for 25 

minutes during which time RHEED became very streaky and displayed a c(2×2) 

reconstruction. At this point 20 migration enhanced epitaxy (MEE) cycles were 

utilized to smooth the surface. After a full growth interruption under a Te flux, 

oscillations were observed. 
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Figure 3.16: Example of RHEED oscillation obtained during ZnTe growth rate 

study with fitted damped sine wave. 
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Figure 3.17: RHEED oscillation displaying double peak due to a misaligned 

electron beam. 

The oscillations were tracked with Staib Instruments kSA400 software. 

Using this, it was determined that the strongest oscillations were recorded with 

the electron beam aligned to the [110] direction and interruption of the Zn source 

(Figure 3.16). Slight deviations from the [110] direction resulted in decreased 

signal-to-noise ratio and double peak behavior (Figure 3.17). After achieving 

quality oscillations, the growth rate was then extracted by fitting a damped sine 

wave to the measured waveform. 

Throughout the measurement process, the quality and length of the 

oscillations would deteriorate. For most cases, a series of MEE cycles 

successfully restored the oscillations. In certain occasions, and more commonly at 

20# 25# 30# 35# 40#

In
te
ns
it
y(
(a
.u
)(

Time((sec)(



 

 63 

low substrate temperatures, this did not help. At these times, an anneal at 

approximately 420 °C for 10 minutes was used to increase surface kinetics and 

return the 2-D growth surface. 

 

Figure 3.18: Growth rate versus substrate temperature for various Te valve. 

Desorption rate also shown. 
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Figure 3.19: Growth rate versus Te valve position cross-section of Figure 3.18 at 

418 °C superimposed on flux versus Te valve position from Figure 3.9. 

Growth rates were obtained over a range of substrate temperatures for 

different Te valve settings (Figure 3.18). It is evident from the growth rate 

dependence on valve position that all characteristics were carried out under Zn-

rich conditions. A cross-section of the plot in Figure 3.18 clearly shows that the 

Te-limited growth rate is directly proportional to the valve flux characteristic 

(Figure 3.19). 

The growth rate versus substrate characteristic displays a negative slope 

from what appears to be an asymptote at low temperatures. At the upper end of 
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encountered. When the growth was interrupted, however, oscillations were 

observed. This was a result of layer-by-layer desorption in this regime. The rates 

of this action were obtained and are juxtaposed with the growth rate values in 

Figure 3.18. An exponential fit of these points shows a high level of correlation 

and offers a clear explanation of the noted temperature dependence. 

 

Figure 3.20: Growth rate versus measured Te flux for various Zn source fluxes. 

It was expected that growth rate dependence would transition from the Te 

flux to the Zn flux if the latter was sufficiently lowered. This was tested by 
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measurements taken for a particular Zn flux setting. The midpoint at each valve 

setting is used in the plot and the variation between values was typically less then 

5 percent. 

The expected growth rate characteristic is clearly noted. At low values of 

Te flux, growth rate values for all Zn flux settings fall along the same positive 

linear relation confirming Te-limited growth. In the lower Zn flux curves, a 

significant and abrupt decrease in slope is noted signaling a transition to Zn 

limited growth. The Te flux level of this transition increases in order with 

increasing Zn flux levels. 

Table 3.1: Fluxes resulting in stoichiometric adsorption with corresponding Te/Zn 

ratio 

Zn 

Temperature 

(°C) Zn Flux (nA) Te Flux (nA) 

Estimated 1:1 

Flux Ratio 

(Te/Zn) 

Measured 

Flux Ratio 

(Te/Zn) 

350 24.1 60.2 1.76 2.50 

360 32.1 80.0 1.79 2.49 

375 49.0 117.1 1.83 2.39 

 

This transition point indicates the conditions at which there is a 

stoichiometric ratio of adatoms at the sample surface. The Te flux value at which 

this occurs is extracted using the intersection of linear fits of the Zn-rich and Te-

rich regions. These are shown along with the corresponding Zn flux and measured 
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ratio in Table 3.1. Since the ion gauge used for flux measurements has different 

sensitivities for Zn and Te, the true 1:1 flux ratio is estimated using 

€ 

PTe PZn = [(JTeηTe ) (JZnηZn )][(TZnMTe ) (TTeMZn )]
1/ 2   

where P represents the measured flux of a species, M is its molecular weight, T is 

the source temperature, and η is its ionization efficiency which can be estimated 

relative to nitrogen by 

 

€ 

ηx η(N2) = 0.4Z 14 + 0.6 

where Z is the atomic number [20]. Comparing the obtained values with the 

measured flux ratios indicates that a higher Te flux is required to reach 

stoichiometric adsorption. This suggests that Te has a lower comparative sticking 

coefficient at these conditions. 

 Beyond the stoichiometric condition, a small positive slope of the growth 

rate versus Te flux curve is observed. This is in violation of the first order 

hypothesis that this trend would become constant in accordance with the constant 

Zn flux. A potential explanation is that the Te excess at the surface increases the 

Zn sticking coefficient [42]. Subsequently, there is a corresponding increase in the 

amount of Zn available for incorporation into the crystal. 
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4  SUMMARY AND CONCLUSIONS 

A dual chamber MBE system was rebuilt to enable the growth of 6.1 Å 

lattice-matched II-VI and III-V semiconductors. Alloys of this platform enable 

nearly complete coverage of the bandgap ranging from 0 eV to 3.4 eV. A number 

of optoelectronic applications have been proposed that take advantage of this 

property. High efficiency multijunction solar cells with four or more junctions and 

two terminal multicolor photodetectors are two examples. 

In order to successfully grow devices such as these, an MBE system with 

low contaminant levels is needed. Achieving this for the II-VI chamber involved 

extensive cleaning procedures to remove deposited III-V materials. This began 

with physical removal methods followed by a 300 °C bake on the II-VI chamber 

to drive off remaining III-V contaminants. A comparison of residual gas analysis 

scans between the baked II-VI and III-V chamber confirmed a successful 

reduction of As and other contaminants. 

In order to prevent further contamination, system components were 

either carefully cleaned or fully replaced. In particular, all pumps were rebuilt for 

this reason as well as to promote system reliability. Special features were added to 

the II-VI chamber to enable higher temperature bakes. These included the use of 

valved cells and the addition of a cold trap. Additional features were incorporated 

to increase the level of control attainable within the system. A high performance 

computer control system was implemented enabling programming of complex 

growth structures and also real time device control. Measurement and analysis 
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systems such as reflection-high energy electron diffraction, diffuse reflectance 

spectroscopy, and residual gas analysis were also implemented. 

A full system bake carried out over a period of over two weeks and 

reaching up to 200 °C was used to remove contaminants from the upgrade process 

and exposure to atmosphere. This improved the system vacuum by over an order 

of magnitude which was reflected by the significant reduction of impurities as 

shown by residual gas analysis. Measures to reduce II-VI material outgassing 

were shown to be successful as only a small increase of the partial pressures of 

these elements was noted. 

In this work, calibration and growth optimization of ZnSe and ZnTe was 

carried out. Each of the sources used in these materials displayed the expected 

exponential flux versus temperature characteristic. The flux versus valve position 

for both Se and Te displayed a high initial slope with asymptotic behavior as the 

fully open flux value was approached. Due to the high slope, frequent calibrations 

are required to achieve accurate flux output at intermediate valve positions. 

GaAs substrates were used for the growth studies. Due to contamination 

constraints, an As-free deoxidation procedure was developed. Consistent results 

were achieved using a fast ramp to a substrate temperature of approximately 615 

°C followed by a 1-4 minute hold during which RHEED was monitored for an 

increase in brightness and appearance of second order lines in the [110] direction. 

ZnSe growths were carried out for a range of substrate temperatures. X-

ray diffraction ω-2θ scans were used to analyze material quality. The data, carried 

out over a range of 278 °C to 400 °C, showed a trend of improving material as 
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temperature was decreased. Full-width half-maximum values as low as 113 arcsec 

confirm that the MBE system is capable of high quality growth. 

A similar study was carried out for ZnTe. For this material, crystal quality 

increased with temperature up to 440 °C. It is believed that this increased the 

ability of adatoms to find energetically favorable sites helping to quickly alleviate 

strain induced by the 7.9% lattice mismatch with GaAs. A reasonably low FWHM 

of 84 arcsec was obtained, however significantly lower values have been 

published suggesting further optimization is possible [18]. 

The dependence of ZnTe growth rate on substrate temperature was studied 

using RHEED oscillation. A decrease in growth rate as temperature was increased 

was noted. This was shown to primarily correspond to an increase in desorption 

rates with temperature. 

Similarly, RHEED oscillations were used to obtain growth rates for 

various flux conditions. It was shown that the stoichiometric growth condition 

could be located by varying the Te flux at different Zn fluxes. This occurred for 

Te to Zn ratios between 2.39 and 2.50. Beyond this point, a small slope in the 

growth rate versus Te flux curve at a fixed Zn flux level indicates that the Zn is 

incorporated more efficiently as the surface becomes more Te rich. 

Overall, the rebuild of a dual chamber MBE system for the growth of 6.1 

Å II-VI and III-V materials has proven successful. Extensive contaminant 

reduction and new system features have fostered the ability to grow high quality 

materials. Paths for further optimization have been identified and it is expected 

that this will soon enable exploration into novel device concepts that take full 
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advantage of the unique properties of the 6.1 Å II-VI and III-V materials 

platform. 
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