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ABSTRACT 

 

Nanowires (NWs) have attracted many interests due to their advance in 

synthesis and their unique structural, electrical and optical properties. NWs have 

been realized as promising candidates for future photonic platforms. In this work, 

erbium chloride silicate (ECS), CdS and CdSSe NWs growth by 

vapor-liquid-solid mechanism and their characterization were demonstrated. 

In the ECS NWs part, systematic experiments were performed to investigate 

the relation between growth temperature and NWs structure. Scanning electron 

microscopy, Raman spectroscopy, X-ray diffraction and photoluminescence 

characterization were used to study the NWs morphology, crystal quality and 

optical properties. At low growth temperature, there was strong Si Raman signal 

observed indicating ECS NWs have Si core. At high growth temperature, the 

excess Si signal was disappeared and the NWs showed better crystal quality and 

optical properties. The growth temperature is the key parameter that will induce 

the transition from Si/ECS core-shell NWs structure to solid ECS NWs. With the 

merits of high Er concentration and long PL lifetime, ECS NWs can serve as 

optical gain material with emission at 1.5 m for communications and amplifiers. 

In the CdS, CdSSe NWs part, the band gap engineering of CdSSe NWs with 

spatial composition tuning along single NWs were demonstrated. The first step of 

realizing CdSSe NWs was the controlled growth of CdS NWs. It showed that 

overall pressure would largely affect the lengths of the CdS NWs. NWs with 

longer length can be obtained at higher pressure. Then, based on CdS NWs 

growth and by adding CdSe step by step, composition graded CdSSe alloy NWs 
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were successfully synthesized. The temperature control over the source vapor 

concentration plays the key role for the growth.  
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Chapter 1 

INTRODUCTION 

1.1 Nanotechnology Background 

Nanotechnology is the study of manipulation and manufacture of functional 

devices and systems at atomic or molecular scale. Nanotechnology offers the 

promise of enabling revolutionary advances in diverse areas ranging from 

electronics, optoelectronics, and energy to healthcare
1
. The success of realizing 

these potential of nanotechnology lies in the development of nanoscale materials, 

which have at least one critical dimension with size ranging from several to 

several hundred nanometers. When the size of the structure larger is than certain 

value, it behaves like the corresponding bulk material, which allows people to 

predict their properties based on the bulk counterparts. While when the size is 

comparable or smaller than the critical value, quantum confinement effects will be 

observed and the properties become size dependent. Thus, nanoscale materials 

exhibit unique electrical and optical properties. 

There are two general approaches to producing nanoscale structures. In the 

top-down approach, the desired small features are patterned from larger material 

by using lithography techniques. This approach is relatively mature and very 

successful in microelectronic industry. However, resolution limit is a big problem 

when the size of the features goes smaller and smaller. Another problem is that it 

will inevitably introduce surface structure imperfection and significant 

crystallographic damage to the processed patterns
2
, which in turn cost extra 
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challenges in the device design and fabrication. Improvements can be made, but 

there will be a near exponential increase in the cost for developing new machines 

and clean room environments. In the bottom-up approach, it involves creating 

complex assemblies with small dimension building blocks. Just like what nature 

has demonstrated for billions of years that complex living creatures can be 

produced skillfully by elementary components in a self-organization and 

self-construction way. It is more economical than top-down approach since there 

is no material waste from etching. Also, the processing procedure of bottom-up is 

relatively easier than top-down especially for smaller geometries. 

1.2 Nanowires 

Among all nanomaterial building blocks of bottom-up approach, NWs, a kind 

of nanostructure with the diameter on the order of nanometer and lengths on the 

order of micrometers, have attracted many interests due to their unique properties. 

Compared to other low dimensional systems, nanowire has 2 quantum confined 

directions but there is still one unconfined direction along which electrons and 

holes are free to transport. Thus, NWs exhibit significantly different electrical and 

optical properties compared to their bulk 3D or planar 2D counterparts. For 

example, they exhibit a singularity in their joint density of states, thus quantum 

effects would be optically observable. They also have increased surface area for 

electron or phonon scattering. And the two restricted transverse directions of their 

small diameter results in a large overlap between the electrons and holes 

wavefunctions, which increases the binding energy of the excitons. With many 
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distinctive properties, NWs have great potential to enhance the existing 

applications and realizing new functions. 

1.3 Motivation of Erbium Chloride Silicate NWs 

Microelectronics is already a mature technology that plays an important role 

in many aspects of our life. The desire for higher and higher capacity of carrying 

information for communication is driving traditional silicon microelectronics to 

its fundamental limits of 100 GB/s
3
. A cost effective solution is to substitute the 

traditional interconnects with optical interconnects. Such optical interconnects 

must be compatible with the current CMOS technology, but the development of 

silicon compatible light source and amplifier still remains challenging. This is 

because Si is indirect band gap material that has very short non-radiative lifetime 

due to strong non-radiative recombination processes. Thus it is recognized as a bad 

material for photonic applications. 

Extensive research efforts have been made to the development of silicon 

compatible light sources. Among all differnt apporaches, Erbium (Er) containining 

materials have attracted a great deal of interest. This is because when Er  

incorporated into Si or silica, it can emit light at the wavelength around 1.5 m , 

where optical fibers for telecommunication and computer networking have their 

loss minimum. Thus, it has been realized that the incorporation of optically active 

erbium ions into silicon will open the possibility of the developing silicon-based 

light sources for optical fiber communications
4
. 
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The material in this work, single crystal erbium chloride silicate NWs
5
 

reported before by our group, has some superior material quality comparing with 

other previous erbium compound. These ECS NWs can be either Si/ECS 

core-shell structure or solid ECS structure. But the growth conditions and growth 

mechanism are not quite clear. ECS NWs growth and their properties were 

comprehensively and systematically investigated in chapter 3.  

1.4 Motivation of CdSSe NWs 

Cadmium sulfide (CdS) and Cadmium selenide (CdSe) are both the II-VI 

group semiconductor materials with a direct band gap of 2.42 eV and 1.73 eV 

respectively. Band gap is the energy difference between the bottom of conduction 

band and the top of the valence band. It is one of the most important 

semiconductor material parameters that determines the spectral information of 

absorption, emission and propagation for optical or optoelectronic applications. 

However, the bad gaps of natural semiconductors available are very limited, 

which hampered the capabilities in applications of these materials. In this sense, 

the process of controlling or altering the band gap of a material by manipulating 

the composition of certain semiconductor alloys, the so called band gap 

engineering is very important for optimizing and widening the applications of 

semiconductor devices. The band gap of the semiconductor alloy is determined by 

this equation: 

1( ) ( ) (1 ) ( ) (1 )g x x g gE AB C xE AB x E AC bx x     
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where b is bowing parameter, for CdSSe alloy, the value b=0.54
6
. With the 

advantages such as free of lattice mismatch, semiconductor alloy NWs will 

provide a new approach for achieving multifunctional devices compared to 2D 

counterparts. 

Also, it is very vital to systematically find out experimental conditions under 

which the nanostructures are synthesized with high reproducibility and desired 

morphology in order to meet the needs of large-scale, controlled synthesis of 

nanostructures for their eventual applications. This is the fundamental step 

towards nanomanufacturing for future functional devices. The controlled growth 

of CdS NWs and band gap engineering along single CdSSe NWs were 

demonstrated in chapter 4. 
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Chapter 2 

NANOWIRES GROWTH AND CHARACTERIZATION 

2.1 Nanowires Growth 

In 1964, Wagner and Ellis in Bell Telephone Laboratories demonstrated the 

vapor-liquid-solid (VLS) mechanism for anisotropic crystal growth. Now it is a 

very successful and widely used technique to synthesis NWs. Typically, the VLS 

method requires the use of metal catalyst of Au, or some other heavy metals such as 

Ag, Pt, Cu, Ni, Co, Ti. As for Au-Si system, the melting temperature of the Au:Si 

alloy reaches a minimum temperature of 363 °C when the Au:Si ratio is about 4:1, 

or the Au/Si eutectic point, which is much lower than the Si melting point of 

1414 °C. The catalyst is usually deposited as a layer of thin film on the substrate.  

When the Si substrate with sputtered Au catalyst film was placed in the 

furnace at a temperature near or above the Au-Si eutectic point, Au-Si eutectic 

droplets start to form. Meanwhile, the source material that was being evaporated 

and transported to the substrate region will be absorbed by the surface of the 

eutectic droplets. When the eutectic droplets are supersaturated with source vapor, 

nucleation and elongation occurs at the liquid/solid interface, thus the NWs start to 

grow. The VLS mechanism of nanowire growth is illustrated by Figure 2.1. 



7 

 

Figure 2.1 Schematic illustration of nanowire VLS mechanism growth 

With the better understanding of the VLS growth mechanism, the key 

parameters of NWs including chemical composition, diameter, length, growth 

direction, and doping can be predicted and controlled. The size of the alloy droplet 

determines diameter of the nanowire
7
. This relates to the thermodynamic limit for 

the minimum radius of the droplet, given by this equation: 

min

2

ln( )

lv lV
R

RT s




 

where Rmin is the minimum droplet diameter, R is the wire diameter, Vl is the molar 

volume of the liquid droplet, 
lv  the liquid-vapor surface energy, and s is the 

degree of supersaturation of the vapor
8
. Thus, thicker catalyst film prefers wider 

NWs growth, while thinner film produces nanowire with smaller diameter. It has 

been demonstrated that using monodispersed metal nanoparticles can obtain 

nanowire arrays with uniform size
9
. Other parameters also affect NWs 

morphology, such as growth time was one of the parameter that determines the 

 

 

Source Vapor 

Au-Si droplet 

 

Si Substrate 

Nanowire 

Growth 
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wire length
10

. Compared to planar material growth, the free-standing NWs growth 

are almost free of dislocations and can accommodate large lattice mismatch more 

readily by lateral relaxation of strain energy.
11

 

Another important feature of NWs was the controlled growth of NW axial 

and radial heterostructures. Nanowire axial and radial heterostructures represent 

compositions and/or doping tuned along or vertical to the nanowire axes. In general, 

the sequential alternating source vapor produces the axial heterostructures, while 

the direct overgrowth on the side wall of the NW by altering the conditions to 

favor homogeneous deposition on the surface gives radial NW heterostructures. 

The ability to design and synthesis diverse heterostructures distinguishes NWs 

from other nanomaterials such as quantum dots, opening up great opportunities 

for enhancing the performance and enabling new functions nanoscale photonic 

and electronic devices
12

. 

2.2 Furnace Vacuum System 

The NWs studied in this thesis were synthesized in a 3-zone horizontal tube 

furnace. A quartz tube with an inner diameter of 1.5 inches was placed inside the 

furnace. The furnace system includes gas cylinder (Ar+5%H2 or N2), mass flow 

controller (MFC), flow meter, pressure controller, pump and valves as illustrated 

in Figure 2.2. The furnace has 3 temperature zones which can be manipulated 

independently, providing flexible control over the growth temperature. The flow 

rate of the carrier gas was controlled by mass flow controller. And there are 2 

capacitance manometers that give the system pressure ranging from 1 mTorr to 
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atmospheric pressure with ~0.12% accuracy. And the pressure of the furnace can 

be controlled with a controller so that the system can maintain at any pressure in 

that range.  

 

Figure 2.2 3-zone furnace vacuum system 

2.3 Growth Process 

The controlled growth of NWs requires good understanding of the growth 

process. The growth experiments require design and optimization of the different 

parameters including pressure, flow rate and temperature. Thus, how those 

parameters would affect the growth process should be studied. Typically, the 

growth process involves several steps as shown in Figure 2.3:  

(1) Production of precursors  

(2) Transport of precursors to the substrate region by the main gas flow  

(3) Adsorption and diffusion of the precursors on the growth sites of the 

substrate surface  

(4) Reactions and growth on the substrate  
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(5) Transport of the by-products away from the substrate. 

 

Figure 2.3 The sequence of events of the growth process 

The flow can behave as either molecular flow or viscous flow and growth 

takes place in viscous regime. In the viscous case, low flow rates produce laminar 

flow which is desired, while high flow rates result in turbulent flow which should 

be avoided. Since the flow in the tube is laminar viscous flow, we need to 

consider the boundary layer issues. 

The carrier gas flow velocity has a uniform value of u0 before impinging on 

the leading edge of the plate. However, as flow pass through the substrate, 

velocity gradients will form because the gas clings to the plate because of the 

viscous drag from the surface. The velocity “far away” is still uniform but drops 

rapidly to 0 at the plate surface. The distance from the solid body at which the 

viscous flow velocity is 99% of the free stream velocity u0 (u(y) =0.99u0) is the so 

called boundary layer as shown in Figure 2.4 (a). And the thickness of the 

boundary layer can be expressed by the following equation
13

 

0

0

( ) ( )e

e

ux x
x R

R u
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where Re=Reynolds number, a dimensionless parameter that describes the ratio of 

inertial forces to viscous forces,  = viscosity, mass density, x = the distance 

from inlet from the flow direction. The remedy for the boundary layer problem is 

to tilt the susceptor at an angle, as shown in Figure 2.4 (b). 

 

 

Figure 2.4 (a) Boundary Layer (b) Remedy for boundary layer 

By tilting the susceptor, the uniformity of gas flow velocity profile is largely 

improved. As a result, source vapor is uniformly supplied to the substrate. Since 

the deposition uniformity and quality largely depend on the delivery of equal 

amount of source vapor to the entire substrate surface, more uniform deposition 

can be achieved in this way. Without this remedy, strong edge effect will be 

observed due to larger amount of source vapor supplied to the leading edge 

(b) 

(a) 
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compared to the surface at the behind. This substrate tilting strategy was used in 

chapter 4 for the growth of CdS, CdSSe NWs. Without tilting, there will be strong 

edge effect during the growth as shown in the photo in Figure 2.5 (a). With tilting, 

substrates have more uniform deposition as shown in Figure 2.5 (b). 

  

Figure 2.5 (a) Deposition with strong edge effect (b) Deposition with tilting 

strategy 

The different experimental parameters would affect growth process in 

several ways. For example, the diffusibility of the gas is inversely related to its 

pressure, the partial pressure of the source gas vapor will largely determine the 

thermodynamic activity of the gas’s molecules. The melting point of a substance 

generally increases as the pressure increases, thus pressure also affects the rate of 

evaporation, since evaporation happens faster if there was less exertion on the 

surface keeping the molecules from holding themselves. By careful optimization 

of all these growth parameters, the deposition can be controlled to a great degree. 

This is the fundamental step for the controlled NWs growth experiments.  

(a) (b) 



13 

2.4 Nanowires Characterization 

2.4.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is a type of electron microscope that 

use high-energy beam of electrons, which typically has energy ranging from 0.2 

keV to 40 keV, for high resolution sample surface imaging. The De Broglie 

equation states:  

1.22
( )

2

h h h
nm

p mv qmV V
      

Thus, compared to optical microscope, SEM can achieve much higher resolution 

and larger magnification, because the wavelength of electrons 

( 0.0122 12.2e nm pm   at V=10kV) is much shorter than visible light 

(390—700 nm). Magnification of a SEM can achieve in the range of about 10 to 

500,000 times. In this work, the scanning electron microscopy (SEM) images 

were obtained by a Philips XL-30 field-emission SEM with a resolution of 3 nm. 

2.4.2 X-ray Diffraction 

X-rays have energies of the order of tens of kilovolts. The scattering of 

X-rays by periodic array of atoms can be used to identify their spatial 

arrangement, thus we can learn the structure of the material. The mechanism of 

X-ray diffraction (XRD) can be explained by considering crystals as composed of 

parallel planes of atoms with a spacing of d. The incident X-rays would produce 

Bragg peaks only if the reflected beams from the planes interfered in a 
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constructively way, the phase shift is a multiple of 2 . This can be expressed by 

Bragg’s law: 

2 sinn d   

where d is the spacing between the atomic planes,   is the angle of the incident 

beams, n is the diffraction order,   is the wavelength of the x-ray, as illustrated 

in Figure 2.6. XRD gives the atomic structure information of the material, such as 

quality of single crystal, composition and orientation. In this work, XRD data 

were collected by the PANalytical X’Pert Pro materials research X-ray 

diffractometer. 

 

 

Figure 2.6 Bragg condition of X-ray diffraction in a crystal lattice 

2.4.3 Photoluminescence Spectroscopy 

Photoluminescence (PL) spectroscopy was a contactless, nondestructive 

characterization process, in which a sample absorbs photons and then re-radiates 

photons. The sample was excited by incident laser, which typically has energy of
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h Eg  , creating electron-hole pairs (ephs) that recombine and emit photons. 

The general PL process of direct band gap material was shown in Figure 2.7, it 

involves the following steps: 

(1) Absorption: electron-hole (e-h) pairs are generated and excited to a 

non-equilibrium state by absorption of photons provided by incident light. 

(2) Relaxation: the thermalization of the photo-excited e-h pairs via 

carrier-carrier and carrier-phonon scatterings, and relax to the lowest energy state. 

(3) Recombination: the e-h pairs recombine in radiate process at the band 

edge.  

 

Figure 2.7 Photoluminescence process of direct band gap material 
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There are also non-radiated processes in which carriers recombine without 

emitting photo but generate phonon instead, such as Shockley-Read-Hall (SRH) 

process, Auger process. For SRH process, the electron in transition between bands 

first falls into a “trap”, the new energy state created within the band gap by an 

impurity or defect, then falls into an empty state in the valence band, thus 

completing the recombination process by energy exchange in the form of lattice 

vibration, or phonon. It is also called trap-assist process. For Auger process, e-h 

pairs will recombine in a band-to-band transition and give off the resulting energy 

to another electron or hole through thermal vibration. The comparisons of these 

processes are shown in Figure 2.8. PL gives many information of the material 

such as band gap, defects, and impurities. It is widely used for characterization of 

direct-band gap semiconductors. 
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Figure 2.8 Recombination processes: (a) Raidative (b) SRH (c) Auger 

2.5 Nanowires Applications 

Semiconductor NWs have been successfully assembled into many electronic 

and photonic devices so far, such as nanowire p-n diodes
14

, nanowire FETs
15

, 

nanowire LEDs
16

. Moreover, individual NWs have the inherent nature of 1D 

geometry, high index of refraction (n>2) in contrast to surroundings which 

provide strong confinement, NWs represent a highly attractive class of material 

for lasing applications.  

NWs lasers have some unique features compared to conventional edge 

emitting lasers. The facets of the NW can’t be simply treated as 2 reflectors that 
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form a Fabry-Perot optical cavity. This is because NWs diameter is typically 

smaller than the lasing wavelength and thus the two facets involve diffraction loss. 

In this regards, for NW lasers, optical field would “spill” out of the wires due to 

diffraction.  

In order to lase, the following condition must be fulfilled: the round-trip gain 

exceeds round-trip loss (threshold condition)
17

 

th w mg      

in whichwas confinement factor, ,w m  (
1 2

1 1
lnm

L R R
  , L is nanowire length 

and R1 and R2 are reflection coefficient of the two facets) are waveguide loss and 

mirror loss respectively. Traditional edge emitting lasers have larger waveguide 

loss than mirror loss, but nanowire lasers have very small cavity length and small 

reflection coefficient
18

, mirror loss dominates (
m w  ) due to diffraction as 

discussed before. We can see that the key parameters that will determine the 

threshold gain are the NW length L and NW diameter D. It has been demonstrated 

that NWs with diameters smaller than certain critical value will never reach 

threshold no matter what the nanowire length is
19

. The waveguide mode spacing is 

given by
17 

2
11

[ ( ) ]
2

dn
n

L d


 



    

in which L is the cavity length and n is refractive index at certain wavelength . We 

can see that mode spacing is proportional to the inverse of cavity length 1/L. 
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So far, researchers have reported lasing from these nanostructure material: 

ZnO NW arrays (λ ~ 385 nm)
20

, ZnS (λ∼337 nm) nanoribbons
21

, CdS NWs 

(λ∼510 nm)
22

,GaN ring resonator (λ∼375 nm)
23

, and GaSb NWs (λ∼1550nm)
24

.  
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Chapter 3 

ERBIUM CHLORIDE SILICATE NWs 

3.1 The Growth of ECS NWs 

Single crystal erbium silicate (ECS) NWs in this study are grown by low 

pressure CVD (LPCVD) process using Vapor-Liquid-Solid (VLS) method. Silicon 

powder (Alfa Aesar, 99.99%) and erbium chloride (ErCl3, Alfa Aesar, 99.9%, 

diameter ~1 mm) micro beads were used as source materials. Silicon powder was 

placed at the middle region of the furnace since it requires higher temperature to 

evaporate (Si melting point is 1414 °C). The ErCl3 source was placed at the 

downstream where has lower temperature. Si (100) wafer pre-sputtered with a 10 

nm thickness layer of Au film was used as substrate, which was placed vertically 

at the behind of the ErCl3 source boat. There are 2 reasons for this placement, one 

is ErCl3 has lower evaporation temperature (ErCl3 melting point was 776 °C), and 

the other is ErCl3 has high vapor pressure (or high volatility). In this way, ErCl3 

vapor can be supplied to the substrate efficiently, otherwise there will be a supply 

deficiency in ErCl3. The substrate can’t be placed horizontally for the same reason. 

After the furnace system was evacuated to a vacuum level of pressure below 200 

mTorr by mechanical pump, a constant flow of 50 sccm Argon gas with 5% of H2 

(Standard Cubic Centimeters per Minute) was introduced into the system as the 

carrier gas to transport the gas phase Si and ErCl3 to the substrate region. The 

center of the furnace was heated to temperature of 1100/1200°C in around 20 

minutes and then maintained for one and half hour. After the growth, the CVD 
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furnace was cooled down to room temperature naturally. The ECS NWs growth 

set-up is shown in Figure 3.1 and temperature profile of the furnace is shown in 

Figure 3.2. The substrate temperature can be determined by checking the position 

and temperature profile. 

 

Figure 3.1 ECS NWs growth experiment set-up 

 

Figure 3.2 Temperature profile of the CVD furnace Blue: set temperature at 

1100 °C, Red: set temperature at 1200 °C 

In order to investigate the relationship between the NW properties and 

growth conditions, 2 series of experiments have been carried out. One series was 

performed by keeping the temperature of the center of the furnace at 1100 °C and 
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placing the substrate at different positions. The other one was setting the 

temperature at 1200 °C. Thus, ECS NWs synthesized at different substrate 

temperature ranging from ~700 °C to ~1100 °C were obtained. The growth 

conditions of ECS NWs are summarized in Table 3.1. 

Table 3.1Growth conditions of ECS NWs 

Gas Ar+5% H2 

Flow rate 50 sccm 

Pressure 3 Torr 

Source temperature 1100/1200 °C 

Substrate temperature 770-1109 °C 

Au film thickness 10 nm 

3.2 Characterization of ECS NWs 

To study the morphology of the NWs, scanning electron microscopy (SEM) 

was performed. The obtained ECS NWs typically have diameters in the range of 

200-800 nm and lengths of tens of micrometers, as shown in the SEM images of 

the as grown samples in Figure 3.3. And the observation of the Au tips confirms 

the VLS growth of the NWs. 
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Figure 3.3 SEM images of as grown ECS NWs 
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Raman spectroscopy was also performed to study the ECS NWs. A 50 mW 

532 nm laser was focused to the sample through an objective. At this excitation 

wavelength, both the Er
3+

 luminescence and Si Raman signal could be excited. 

Figure 3.4 (a) shows the PL/Raman spectrum of different ECS NWs samples 1, 2 

and a Si wafer respectively under the same experiment conditions. A series of 

peaks observed from the ECS NWs 1 corresponds to the photoluminescence 

signal of Er
3+

 (downward transition from 
4
S3/2 to 

4
I15/2), which are also found on the 

ECS NWs sample 2 with much weaker intensity. Moreover, there is a strong peak 

observed at the center of the spectra for ECS NWs sample 2 while the ECS NWs 

sample 1 showed a double peak which comes from the PL feature of Er
3+

. A 

zoomed in feature are shown in Figure 3.4 (b). It was found that the peak position 

of ECS NWs sample 2 was very close to the Raman signal from Si wafer. With 

further comparison of this peak position to Si Raman signal, it has stronger 

intensity, downshift and asymmetric broadening at 520 cm
-1

, which has a good 

agreement with the previous reported features of Raman spectroscopy of Si 

NWs
25

.  

The most likely reason for these features is that ECS NWs 1 are solid ECS 

NWs which do not have excess Si Raman signals, while for ECS NWs 2 are 

Si/ECS core-shell NWs structure which exhibit strong Si Raman signals. 
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Figure 3.4 (a) PL / Raman comparison of different ECS NWs samples and Si 

wafer (b) zoomed in features 

The Raman sutdy of a series of ECS samples grown at different temperature 

were performed. Figure 3.5 (a) shows that for ECS NWs grown at a high 

temperature of above 950°C, there is no Si signal observed and the ECS NWs 

exhibit very similar spectral shape. While the samples grown below 900 °C all 

showed strong Si Raman signal, which could be coming from the Si core. Thus, the 

samples around the transition temperature, 887 °C, 912 °C and 957 °C were 

compared by the zoomed in feature shown in Figure 3.5 (b). The sample grown at 

912 °C showed both Si Raman signal and the PL signal from Er
3+

. Moreover, the 

strength of Si Raman signal for this sample was found to be weaker than the sample 

grown at 887 °C when a three-Lorentz function fitting was applied. The possible 

reason for such behavior is that the size of Si core of those Si/ECS core-shell NWs 

is shrinking and finally disappears when substrate temperature is increased. The 

ECS NWs have witnessed a transition from Si/ECS core-shell structure to solid 

ECS NWs structure. 

(b) 
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Figure 3.5 (a) PL/Raman spectra of ECS samples grown at low temperature and 

high temperature (b) zoom-in spectra comparison of ECS samples around 

transition temperature 

XRD characterization was performed to further study the relation between 

growth temperature and ECS NWs crystal quality. From the analysis in Figure 3.6 

(a), the sample grown at high temperature, the XRD peaks have a perfect match 

with the ECS reference peaks and there is no Si peak observed. Also, there are 

several Au peaks observed due to the use of Au film as catalyst. In Figure 3.6 (b), 

the low growth temperature case, there are both ECS peaks and Si peaks observed 

in the XRD pattern. To further study the crystal quality of the ECS NWs, the XRD 

Full width at half maximum (FWHM) of the strongest peak at 30.38 corresponding 

to (060) plane of ECS NWs grown at different temperature from 712°C to 1072°C 

were compared as shown in Figure 3.7. It showed a clear trend that NWs grown at 
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higher substrate temperature have narrower XRD FWHM compared to the samples 

grown at low temperature, which indicates the improvement of the ECS crystal 

quality when the growth temperature was increased. The sample with narrowest 

FWHM of 0.17° was observed from the one grown at highest temperature. This 

behavior is similar to the reported feature of erbium containing thin film growth 

that high temperature post annealing above 1000°C will improve the crystal 

quality
26

. 

 

(a) 
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Figure 3.6 XRD analysis of ECS grown at (a) High temperature (b) Low 

temperature 
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Figure 3.7 The XRD FWHM of the strongest peak at 30.38 (060) plane of ECS 

NWs as a function of substrate temperature 

The improvement of crystal quality is further confirmed by PL decay lifetime 

measurement of 1.5 m emission, a 667 nm pulse laser is used for optical 

excitation. The lifetime of ECS NWs samples grown at different temperatures 

were compared, as shown in Figure 3.8. For those ECS NWs samples grown at 

low temperature below 900 °C, the lifetime is about 100 s and there is a slightly 

increase as the substrate temperature is elevated. While for those samples with 

growth temperature above 900 °C, there is a much faster increase in lifetime than 

the low temperature case. The highest lifetime of 540s was observed from the 

sample grown at highest temperature at 1072 °C. The relation between PL lifetime 

and other processes is determined by following equation:  

1 1 1

PL r nr  
   

where PL is PL lifetime, r  is radiative process lifetime and nr is non-radiative 

process lifetime. Thus, the longer PL lifetime indicates the reduced of 

non-radiative recombination processes which typically caused by defects in the 

crystal. Below 900 °C, the lifetime only increases with a slope of ~ 0.23 s/°C, 

while above 900 °C, the lifetime improvements are more dramatic with a slope of 

~ 2.9 s/°C. The transition temperature at around 900 °C agrees very well with the 

previous Raman results. The conclusions from all of these characterization results 

are the crystal quality of the ECS NWs is improved and lifetime is increased when 

the growth temperature is elevated. 
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Figure 3.8 1.5 m PL lifetime of samples grown at different temperature; Inset: 

PL decay curve 

3.3 Growth Mechanism of ECS NWs 

The minor amount of H2O, SiO2 and O2 in the furnace serves as the source of 

oxygen for the growth of ECS NWs. The reaction can be demonstrated by the 

following equation: 

ErCl3 + Si + Oxygen (O2, H2O, SiO2)  ECS + by-products 

The formation of the core-shell structure at low substrate temperature can be 

explained by following reasons. Er has low solubility in Si and Er has a strong 

surface segregation during the growth of Si
27

. The surface segregation is due to 

large atomic size of Er compared to Si (0.17 and 0.11 nm, respectively). But, when 
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the temperature is increased, the ErCl3 source vapor concentration increases much 

faster than Si source vapor. The chemical equilibrium moves to the direction that 

produces more ECS according to Le Chatelier's principle, which states that when 

a chemical system at equilibrium experiences a change in concentration, 

temperature, volume, or partial pressure, then the equilibrium shifts to counteract 

the imposed stimulus and establishes a new equilibrium status. Thus, there is a 

transition in NWs morphology from core-shell structure to solid ECS structure 

when growth temperature is increased. 

3.4 Applications of ECS NWs 

The key parameters that will determine the performance of erbium based 

devices such as optical amplifiers and lasers are the erbium concentrations, the 

lifetime of the excited states and the linewidth of the emission spectrum.  

Till now, there are several Si based material embedded with Er ions forms 

have been reported and they can be divided into two groups: Er-doped material, 

such as Er-doped crystalline Si
28

 and Erbium doped fiber amplifier (EDFA)
29

, 

and Er-compounds including Er2O3
30

, Erbium Silicate (ES) in the forms of 

Er2SiO5 or Er2SiO7
31,26

 The Er concentration in Er-doped material is limited to 

about 10
20 

cm
−3

 due to low solubility of Er in these materials
32

. Thus these 

Er-dpoed materials typically have small optical gain. While for erbium 

compounds, the concentration can achieve the order of 10
22 

cm
−3

, this is because 

Er
3+

 ions are arranged in a periodic way so that erbium clustering problem in 

Er-doped material is eliminated. But those materials have short 
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photoluminescence (PL) lifetime, in specifically, Er2O3 and Er2SiO5 only have 5.7 

and 20 s. Thus, the threshold is high and population inverstion is hard to achieve 

in those materials. 

For ECS NWs, the erbium concentration can achieve 221.6 10 cm
3
 and 

linewidth of only 0.8 nm, the narrowest linewidth from erbium compounds to the 

best of our knowledge
5
. Moreover, they have lifetime of 540 s, the longest 

among all Er-materials with density above 10
22

 cm
-3

. In this sense, ECS is capable 

to serve as optical gain material at the wavelength of 1.5 m. 

3.5 Conclusions 

In summary, a systematic growth study on ECS NWs was performed. The 

characterization results confirmed that the structure and quality of ECS NWs have 

a strong dependence on the growth temperature. At low temperature, the ECS 

NWs are most likely in the form of Si/ECS core-shell structure. With the increase 

of growth temperature, the size of the Si core is reduced and finally disappeared. 

At high growth temperature, solid ECS NWs were obtained and longer PL 

lifetime and sharper XRD FWHM were observed, which indicates the 

improvements of crystal quality and optical properties.  

The solid ECS NWs have longer PL lifetime at 1.5 m than Si/ECS NWs. 

With the merits of high Er concentration and long PL lifetime, those ECS NWs 

can serve as optical gain material and have possible applications in amplifiers and 

lasers. 
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Chapter 4 

CdS, CdSSe NWs 

4.1 Growth of CdS NWs 

In this part, pure CdS and CdSSe spatial composition graded single alloy 

NWs were synthesized by VLS method, their morphology and optical properties 

were studied. The first step of realizing the composition graded NWs is the 

controlled growth of CdS NWs. The control over the length of the NWs is very 

important for meeting different applications requirements. 

A quartz boat with CdS powder was loaded at the center of the heating zone. 

Si wafers were sputtered with a 10 nm thickness Au film and placed at the 

downstream of the furnace. The furnace system was evacuated to a pressure 

below 0.2 Torr by mechanical pump. Then Nitrogen gas was introduced into the 

system and kept for 20 min to further eliminate oxygen in the tube. The system 

pressure can be controlled by a pressure controller valve, and NWs grown at 

different pressures from low pressure of 20, 40 Torr to high pressure of 140, 170, 

200, and 225 Torr were obtained and the lengths of the NWs were compared. The 

NWs growths at different pressure were all optimized and repeated several times 

to verify the reproducibility of experimental results. And the growth time of all 

the experiments were 1.5 hours. 

The morphology of the as grown samples was studied by SEM. Since the all 

the studied samples have uniform coverage of CdS NWs, the lengths data were 

randomly collected from 5 spots along the substrate. For those samples grown at 
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low pressure of 20, 40 Torr, the NWs typically have lengths ranging from 5—40 

m as shown in Figure 4.1 (a). At high pressure of 140—225 Torr, the typical 

wires lengths are in the range of 50—200 m as shown in Figure 4.1 (b). The 

detailed comparison of the lengths of the CdS NWs is summarized in Table4.1 and 

Figure 4.2 gives the lengths distribution at different pressure. 

(a) low pressure 

  

(b) high pressure 
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Figure 4.1 (a) CdS NWs grown at low pressure of 20 (left), 40 Torr (right) (b) 

high pressure of 140 (top left), 170 (top right), 225 (bottom left) Torr and zoomed 

in features (bottom right) of the NWs 

Table 4.1 Comparison of the lengths of the NWs grown at different pressure 

Pressure (Torr) Length (m) 

20 5—20 

40 20—40 

140 50—80 

170 60—150 

225 100—200 
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Figure 4.2 Comparison of lengths of CdS NWs/belts grown at different pressure 

of 20, 40, 140,170, 225 Torr, the dashed areas represent the lengths distribution 

These results showed a clear trend that higher pressure produces longer NWs. 

This pressure—length relation provides another approach for the controlled 

growth of NWs. It enables better flexibility to grow NWs with different lengths to 

meet different application requirements and wires with longer length reduces the 

challenges for further manipulation and fabrication of the NWs. 

4.2 Optical Properties of CdS NWs 

PL experiments were performed to study the optical properties of the CdS 

NWs. CdS NWs were dispersed on the glass substrate first and then excited by 

Ti:sapphire laser pulses at the wavelength of 405 nm. Lasing measurement was 

carried out by exciting the NW using Nd:YAG laser at the third harmonics 

wavelength of 355 nm. The spectra were collected from one end of the NW. 

Figure 4.3 shows the PL and lasing spectra of single CdS NW. The linewidth of 
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the single CdS NW lasing peak is 0.8nm. Lasing observed in single CdS NW is 

also an indication of high crystal quality of the CdS NWs. 

 

Figure 4.3 PL and lasing spectra of dispersed single CdS NW 

4.3 Growth of CdSSe Composition Graded NWs 

The strategy for realizing composition graded CdSSe are summarized by 

following steps: 

(1) CdS section growth by only using the 3
rd

 zone of the furnace.  

(2) Adding CdSe part by turning on the heating elements in 1
st
 and 2

nd
 zone, 

meanwhile, decreasing the source temperature of CdS.  

(3) Continue to grow CdSe rich part by keeping the entire furnace on. 

The CdSSe NWs were obtained by following set-up. CdS powder was loaded 

at the 3
rd

 zone of the furnace while CdSe powder was placed at the 1
st
 zone of the 

furnace as shown in the Figure 4.4. There are ceramic wraps at the boundary of 

each heating zone to isolate each temperature regions. Si wafers sputtered with a 

10 nm thickness Au film were used as substrates and placed at the downstream of 

the furnace. The CVD system was evacuate to a pressure below 0.2 Torr by 
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mechanical pump. Then 150 sccm Nitrogen flow was introduced into the system 

and kept for 30 min to eliminate oxygen in the tube and the system pressure was 

maintained at 225 Torr. Since the CVD furnace has 3 temperature zones, the 

source temperature, thus the source vapor concentration can be controlled readily 

in order to achieve different composition. The melting point of CdS powder is 

1750 °C while CdSe powder is 1286 °C. Thus, at same temperature, CdSe has 

lower evaporation rate compared to CdS. The 3
rd

 zone was set at 900 °C and 

reached in 12 minutes. After 2 hours of CdS growth, the temperature of the 1
st
 and 

2
nd

 zone are elevated to 850 °C, meanwhile the 3
rd

 zone temperature was 

decreased at a speed of 1°C/min. All the 3 zones reached 850 °C in 40 minutes. 

Finally, the furnace was kept at this temperature for 40 minutes for CdSe growth. 

 

Figure 4.4 CdSSe composition graded NWs growth set-up 

4.4 Optical Properties of CdSSe NWs 

NWs were dispersed on the glass substrate and studied under laser 

illumination. The NWs typically have diameter of 200-500 nm and the length 

above 100 m, the PL of the dispersed NWs are shown in Figure 4.5.  
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Figure 4.5 PL of dispersed CdSSe NWs 

Figure 4.6 (a) shows the PL of a single CdSSe NW picked by a fiber tip. 

Then PL scan along the length of the NW was performed. Figure 4.6 (b) gives the 

emission from each spot scanned of the single wire, and the wavelength 

continuously tuned from 520 nm at one end to 620 nm at the other. These results 

indicate that the composition of the NW is tuning from CdS rich part to CdSe rich 

part corresponds to the 3 steps of the growth process.  

 

(a) 
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Figure 4.6 (a) PL image of single CdSSe NW (b) PL scan of the CdSSe single 

NWs 

4.5 Growth Mechanism and Applications 

The temperature control plays an important role for successful synthesizing 

composition grading along single CdSSe NWs. The composition of the VLS NWs 

growth is determined by the supplied vapor concentration of different source 

materials. At the beginning stage of the growth, only CdS source vapor was 

supplied to the substrate thus there was only CdS NW elongation. At the transition 

state of the growth, the CdSe source was heated up step by step, thus the 

concentration of CdSe increases correspondingly. Meanwhile, the source 

temperature of CdS was lowered, thus the concentration of CdS decreases. Also, 

(b) 
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this is very important to maintain similar amount of material that was transported 

to the substrate. Otherwise, too much material supply may result in vapor-solid 

growth of big belts or sheets, as shown in Figure 4.7. For the entire growth 

process, the concentration of the vapor was tuning from CdS rich to CdSe rich, 

thus, the composition of the newly grown wires have composition tuning due to 

the change in the vapor concentrations. 

  

Figure 4.7 Dispersed nanoblet/nanosheet under PL illumination 

These composition graded CdSSe NWs will have many very possible 

applications. For example, wavelength tunability and controllability are important 

for applications of a laser. Composition tuning in a single NW with diameter of a 

few hundred nanometer and controllable length provide another approach for 

realizing these functionalities. Moreover, since the CdSSe NWs have very wide 

wavelength coverage, it can be used as high efficiency solar cells. Also, with the 

inherent nature of large surface-to-volume ratio, NWs have higher 

photosensitivity than their bulk counterparts. Thus, composition graded can also 

be used as multispectral photodetectors. Another importance of these graded NWs 

is that multi-functionalities can be achieved in a single device, which largely 

simplifies the fabrication processes. 
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Chapter 5 

Summary 

1-D structures such as NWs have been recognized as one of the building 

blocks for future photonic devices due to their inherent unique properties. The 

success of the NWs based devices largely relies on the good understanding of 

their growth mechanism to have precise control over their parameters such as 

diameter, length, composition and so on. In this work, extensive NWs growth 

experiments and characterization were demonstrated.  

In chapter 3, ECS NWs growths were systematically studied with an 

emphasis on growth temperature. It showed that with the increase of growth 

temperature, the NWs witnessed a transition from Si/ECS core-shell structure to 

solid ECS NWs with better crystal quality and optical properties. These ECS NWs 

have high Er concentration and long PL lifetime, thus, they have promising 

applications as optical gain material. In chapter 4, the strategy of synthesis CdS 

and CdSSe composition graded NWs were demonstrated. The lengths of the NWs 

have a strong correlation with the overall pressure. Growth at higher pressure 

typically produces NWs with longer length. The temperature control over source 

vapor concentration is the key to obtain the composition grading along single 

CdSSe NWs. These NWs have potential applications in multi-color light emission 

devices, photodetectors and solar cells. 
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