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ABSTRACT

Research on developing new algorithms to improve information on brain function-

ality and structure is ongoing. Studying neural activity through dipole source localization

with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measure-

ments can lead to diagnosis and treatment of a brain disorder and can also identify the area

of the brain from where the disorder has originated. Designing advanced localization algo-

rithms that can adapt to environmental changes is considered a significant shift from manual

diagnosis which is based on the knowledge and observation of the doctor, to an adaptive

and improved brain disorder diagnosis as these algorithms can track activities that might

not be noticed by the human eye. An important consideration of these localization algo-

rithms, however, is to try and minimize the overall power consumption in order to improve

the study and treatment of brain disorders.

This thesis considers the problem of estimating dynamic parameters of neural dipole

sources while minimizing the system’s overall power consumption; this is achieved by min-

imizing the number of EEG/MEG measurements sensors without a loss in estimation per-

formance accuracy. As the EEG/MEG measurements models are related non-linearity to the

dipole source locations and moments, these dynamic parameters can be estimated using se-

quential Monte Carlo methods such as particle filtering. Due to the large number of sensors

required to record EEG/MEG measurements for use in the particle filter, over long period

recordings, a large amounts of power is required for storage and transmission. In order to

reduce the overall power consumption, two methods are proposed. The first method used

the predicted mean square estimation error as the performance metric under the constraint

of a maximum power consumption. The performance metric of the second method uses the

distance between the location of the sensors and the location estimate of the dipole source

at the previous time step; this sensor scheduling scheme results in maximizing the overall

signal-to-noise ratio. The performance of both methods is demonstrated using simulated

data, and both methods show that they can provide good estimation results with significant

reduction in the number of activated sensors at each time step.
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Chapter 1

INTRODUCTION

1.1 Motivation

The brain is the centre of the nervous system of the human body that controls and coor-

dinates the functionality of human muscles. Studying brain disorders that cause abnor-

mal brain functionality has been a topic of ongoing research. One such brain disorder

is epilepsy, a condition characterized by transient and unexpected electrical disturbances

of the brain. The growing rate of people suffering from epilepsy further emphasizes the

need for developing advanced processing techniques. Magnetoencephalography (MEG)

and electroencephalography (EEG) are test techniques that record the electrical and mag-

netic brain activity due to electrode sensors placed along the scalp. EEG/MEG methods

directly measure electrical brain activity and provide high time resolution, which provides

the ability to obtain information on the dynamic characteristics of the brain function. This

is an advantage of the EEG/MEG method over other methods, such as functional magnetic

resonance imaging (fMRI), which provide higher spatial resolution than the EEG/MEG

methods [3]. The location resolution drawback of the EEG/MEG methods, however, can be

solved by solving the electromagnetic inverse problem. By using the measurements of mul-

tiple sensors (electrodes) that are attached on the human skull and by solving the inverse

problem using signal processing methods, the results can be used to predict and identify

brain disorders, such as epilepsy.

A new technique known as ambulatory EEG (AEEG) is used nowadays that im-

proves the quality and accuracy of brain disorder tests. According to this method, the EEG

system is portable and can be used in the natural environment of the patient, which could

be, for example, the cause the seizure disorder. The disadvantage of the current AEEG is

the inconvenience caused to the patient due to the application of electrode’s wires and the

high weight of the system. To overcome the disadvantages of the current AEEG, a new

method called wearable EEG is proposed in order to replace the heavy and inconvenient

AEEG. The proposed devices are smaller and are easily attached on the scalp of the patient

and can record EEG for longer periods [4–6]. The proposed method will be an evolution in

the field of brain disorders monitoring. It will provide long term monitoring of brain activ-
1



ity, which is important for some brain disorders, and can help identify a higher likelihood

of seizures.

There are several issues that researchers need to overcome in order to make AEEG

a reliable and beneficial device for studying brain disorders. The first issue is to ensure

that the electrodes stay attached on the patient’s head. Since this is a device that can be

wearable in the patient’s nature environment, it is possible for one or more of the electrodes

to detach from the scalp due to the movements of the patient. If one electrode is detached

during testing, then bad measurements are obtained and the test is not reliable for study. The

second constraint is the weight of the device. It has to be light in order to be convenient.

The third constraint is to minimize the wire connections. Each channel requires a single

wire to connect the electrode to the recorded device. The new device has to be convenient

and should not restrict the movement range of the patient. The fourth constraint of the

new device is the ability to store and transmit a large amounts of data that long period

recordings require [4]. According to [4], for a 24 hour period recording, approximately

1GB of memory is required. This raises a power constrain issue, since in order to achieve

long term recordings, a large amount of power is needed. Finally, the last constraint is the

time required by the neurologist to analyse the data [7].

This thesis research focuses on the high power consumption constraint because of

the long term data recording requirement. The necessity and importance of monitoring

brain disorders makes it necessary to investigate various methods in order to overcome the

power constraint obstacle. Some existing proposed methods are: data selection techniques

[8], data compression techniques [9] and wavelet methods [10]. In addition, a group of

researches attempted to reduce the power constraint by hardware improvement, such as

amplifier design [6]. We propose to reduce the total power consumption by reducing the

number of activated sensors at each time step using sensor scheduling.

1.2 Neuron activity tracking

Over the last years, neuron source localization using EEG/MEG measurements drew the

attention of many researchers and a lot of algorithms have been developed to provide more

efficient results in brain disorders diagnosis. Designing advanced localization algorithms

2



that can adapt to environmental changes is considered a significant shift from manual di-

agnosis which is based on the knowledge and observation of the doctor, to an adaptive

and improved brain disorder diagnosis as these algorithms can track activities that might

not be noticed by the human eye. An important consideration of these localization algo-

rithms, however, is to try and minimize the overall power consumption in order to improve

the study and treatment of brain disorders [11–13]. Based on the nonlinear relationship

between EEG/MEG measurements and dipole source parameters at different time steps,

sequential Monte Carlo techniques like particle filtering can be used to estimate the time-

varying dipole source parameters. These techniques have the advantage of improving neu-

ron estimation performance and can also be applied to hardware implementation [11, 12].

1.3 Sensor Scheduling

Although particle filtering can be used for estimating dipole source parameters, it has high

computational cost, which is a disadvantage, and also requires a large amount of data to be

analysed. We propose a sensor scheduling algorithm which identifies a subset of sensors to

be powered on, thereby significantly reducing the power consumption of the EEG system.

The algorithm is based on adaptively configuring the sensors used to collect the EEG mea-

surements at each time step using the minimum predicted mean-squared error or maximum

signal-to-noise ratio (SNR) as the performance metric. Optimization is performed globally

over the entire search space of all available sensors. We show that the proposed sensor

scheduling algorithm significantly reduced the number of sensors required with minor loss

in estimation performance degradation. Optimizing a sensor scheduling algorithm can pro-

vide good estimation results with a smaller amounts of data. Using sensor scheduling for

radar tracking shows that choosing the optimum sensor combination can provide good es-

timation results [14, 15]. Therefore, sensor scheduling can be used to optimize the sensor

combination that provides the most valuable information for dipole locations. In addition,

the use of fewer sensors can reduce false alarms or artifacts, which constitute noise coming

from either brain activities related to body muscles that are not valuable in the brain study

or hardware noise.

In this thesis, two methods of sensor scheduling are introduced. Both of them use

3



the particle filter as the state estimate filtering tracking technique, because of the advantage

that it can be used in non-linear and non-Gaussian dynamic models. The first method uses

the predicted root mean-squared error (RMSE) as a performance metric for optimizing the

sensor configuration. The second method, which is a heuristic method, uses the distance

between the sensor location and the dipole location at the previous time step.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides background information on the

modelling of EEG/MEG measurements and then introduces the forward problem with the

inverse solution.

In Chapter 3, Bayesian estimation is discussed based on the state space formulation

of the problem. Because the forward problem is a non-linear problem with respect to the

location of the dipole, the particle filtering algorithm is used. As a result, the particle filter

algorithm is discussed with examples of previous tracking simulations on multiple dipole

tracking.

In Chapter 4, the two sensor scheduling methods are discussed in detail. For each

technique, the method is explained in detail with diagrams. In Chapter 5, all the simulations

and results are discussed. A number of tables and three-dimensional (3-D) plots are used

that demonstrate the performance of each method.
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Chapter 2

NEURAL ACTIVITY DIPOLE SOURCE MODEL

This section is going to introduce to the reader the physics background on the MEG/EEG

source localization problem. The first step in solving this problem is to calculate the poten-

tial and magnetic fields of the primary currents based on the neural activity; this is known

as the forward problem. In reality, the primary current source is not a discrete element

and, as a result, the dipole source approximation is needed before the forward problem is

considered. Based on the forward model, the primary current location can be estimated

using the inverse problem. The dipole source model for both EEG and MEG measurements

is first provided, before a brief introduction of the most known sensor placement systems

is discussed. We also provide a short discussion on MEG/EEG artifacts. The presence of

artifacts is an important aspect that needs to be addressed in order to obtain more accurate

results when estimating neural activity.

2.1 Dipole Representation and Current Distribution

The brain has a lot of neural current sources that can cause scalp potentials and external

magnetic fields. Those neural activities can be measured using MEG/EEG methods. How-

ever, it is important to distinguish the signals that are important in the specific research

problem or brain disorder diagnosis. These signals can be separated in the primary currents

Ip, also known as microscopic currents, as well as in the secondary currents, also known as

volume currents Iv. The primary currents are microscopic cellular currents, which contain

valuable information on neural activity. On the other hand, the volume currents represent

the movement charge of surrounding tissue caused by macroscopic electric fields [16]. Vol-

ume currents can be considered as noise; they are also known as EEG/MEG artifacts. Thus,

the currents at each three-dimensional (3-D) observation point r can be expressed as

I(r) = Ip(r)+ Iv(r) (2.1)

The primary current is the only current component that is used in the calculation of the

potentials and magnetic fields of brain activity. In order to make a model of this primary

current in terms of source localization, it is assumed that the primary current acts as a

discrete current dipole. This is a very useful and accurate estimation because the dipole
5



q 

Figure 2.1: A small scale picture representation of the ionic current activity of a large neural
cell and the arrow indicates the dipole estimation with moment q [1]

represents the motion of a local charge over a small distance. The direction of the dipole

is the same as the primary current Ip(r) and multiplying current with distance gives the

moment q of the current dipole. Therefore, the primary current Ip(r) can be discretized at

a single point as a current dipole with moment q j at location r j [16]. The primary current

discretization can also be shown mathematically as a delta function. Therefore, the primary

current Ip
k at time k can be represented in terms of Nd current dipoles as

Ip
k (r) =

Nd

∑
j=1

qk, jδ (r− rk, j) (2.2)

where qk = [q(x)k q(y)k q(z)k ] and rk = [r(x)k r(y)k r(z)k ] are 3-D moment and location vectors,

respectively, in Cartesian coordinates for the jth dipole at time step k. Equation (2.2) is

very important and will be used in the next section in order to define the forward problem.

Figure 2.1 and Figure 2.2 show how the dipole approximation actually looks in the brain

structure. Figure 2.1 shows how the neuron cells are polarized causing the current to flow

through them, indicating the current dipole approximation. Figure 2.2 shows in large scale
6



Figure 2.2: A large scale picture indicating the effects of current movement with the arrow
indicating the dipole representation [1]

the dipole formation according to the current movement. The arrow in both figures indicates

the dipole approximation and direction.

2.2 The Forward Model

The current dipole with moment q j at location r j is related to the surface potential u(r) at

location r using the forward model [16,17]. The formulation and solution of the problem is

based on Maxwell’s equations and the quasi-static approximation of Maxwell’s equations

[16]. Because of the nature of EEG/MEG signals, the time derivatives are really small

and, according to the quasi-static approximation, these can be ignored. The head model is

another important factor in defining the forward problem. In order to calculate the magnetic

fields, it is important to know the conductivity σ of the head volume and in how many

regions the head is divided. Most of the head models divide the human head from one

to five regions, also known as shells (scalp, skull, cerebrospinal fluid, gray matter and

white matter), where the conductivity σ(r) is assumed to be uniform in each region [18,

19]. Applying the quasi static approximation and the head model, the electric field can be

7



described as [16, 17]

b(r) = b∞(r)−
µ0

4π

ψ

∑
i=1

(σ−i −σ
+
i )
∫
Si

(u(r’)ni(r’)× d
d3 )dr’ (2.3)

where (a×b) denotes the cross product between vectors a and b, d = r−r’ is the distance

between the observation point r and the source point r’ with magnitude d, Si is the number

of surfaces between the uniform regions, and each surface has an inside and outside σ
−
i

and σ
+
i respectively. The number of regions is always Ψ+1, because it includes the non-

conductive region outside the head. Therefore, the number of surfaces Si that are between

the regions is always greater than the number of regions, ψ ≥Ψ. ni(r) is a vector element

of Si. The primary field b∞(r) is defined as [17]

b∞(r) =
µ0

4π

∫
C

jp(r′)× d
d3 dr’ (2.4)

where µ0 is permittivity of free space and jp is the primary current. Applying Green’s

theorem, the surface potential at all surfaces can be calculated using

σ0u∞(r) =
(σ−i −σ

+
i )

2
u(r)+

1
4π

ψ

∑
i=1

(σ−i −σ
+
i )
∫
Si

(u(r’)ni(r’)× d
d3 )dr’ (2.5)

where r ∈ Si, and u∞(r) is the primary potential defined as

u∞(r) =
1

4πσ0

∫
G

jp(r’).
d
d3 dr’ (2.6)

Based on the current dipole approximation, Equations (2.4) and (2.6) of the primary field

and primary potential can be simplified to

b∞(r) =
µ0

4π
q× d

d3 dr’ (2.7)

u∞(r) =
1

4πσ0
q.

d
d3 dr’ (2.8)

At this point, it is important to define the forward problem based on the location rm of the

mth sensor and the MEG symmetric conductor, which is the head. Therefore, the radial

field component for each sensor location rm with magnitude r can be defined as [16]

br(rm) = b∞(rm) ·
rm

r

=
µ0

4π
rm× r j ·

q j

rd3

(2.9)
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The radial magnetic field is important because it is used to calculate the magnetic potential

u(rm). Calculating the magnetic potential u(rm), the full magnetic field can be finally ob-

tained in Cartesian coordinates by taking the gradient of u(rm) using Sarvas’s formula [16].

The full magnetic field is basically the forward problem of MEG. Specifically, the full mag-

netic field bk, j(rm) for the mth sensor, with position rm at time step k for the jth dipole is

given by

bk, j(rm) =

[
µ0

4πg2(rk, j,rm)
rk, j×

(
g(rk, j,rm)qm− fT (rk, j,rm)qm rm

)]T

qk, j (2.10)

The scalar g(rk, j,rm) and the vector f(rk, j,rm) are obtained as

g(rk, j,rm) = dk,m, j
(
dk,m, j |rm|+ |rm|2− rT

k, jrm
)

(2.11)

f(rk, j,rm) =

(
d2

k,m, j

|rm|
+ηk,m, j +2dk,m, j +2 |rm|

)
rm

−
(

dk,m, j +2|rm|+ηk,m, j

)
rk, j

(2.12)

where ηk,m, j = (rk, j− rm)
T rm/dk,m, j, µ0 is the permittivity of free space, and dk,m, j is the

distance between the jth dipole source and the mth sensor. For the EEG, a similar equation

can be formed for the case of a single shell model, where the conductivity of the head is

assumed to be uniform over all the volume of the head. The potential then is given by [16]

u(rm;rk, j,q) =
1

4πσ
cos(αk, j)[

2
d3

k,m, j

(
|rk, j| cos(γk,m, j)− r

)
+
(
dk,m, j |rk, j|

)−1−
(
r |rk, j|

)−1

]

+
1

4πσ
sin(αk, j)cos(βk, j)sin(γk,m, j)[

2r
d3

k,m, j
+

dk,m, j + r
r dk,m, j (r−|rk, j|+dk,m, j)

]

where r is the radius of the head model, γk,m, j is the angle between the vector pointing to

the mth sensor and the vector pointing to the jth dipole location, αk, j is the angle between

the jth dipole orientation and the vector pointing to the jth dipole location, βk, j is the angle

between the plane formed by the jth dipole and the origin. Also, |rk, j|=
[
(r(x)k, j)

2 +(r(y)k, j)
2 +

(r(z)k, j)
2
]1/2 in (2.13).
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2.3 The Inverse Problem

The inverse problem is the estimation of the position and moments of the dipole sources.

As mentioned above, the inverse problem is the issue of localizing the state of dipoles.

Based on the forward model in the previous section, the measurements are linear with

respect to the moment qk and non-linear with respect to the dipole location rk, j [16, 17].

By separating the moment parameters qk from the non-linear location parameters rk, j, it

becomes less complicated to solve the inverse problem [16]. Therefore, the magnetic field

Equation (2.10) can be written as the inner product of the lead field vector g(rm,rk, j) and

the dipole moment qk. In the MEG case with m number of sensors, the magnetic field can

be expressed as 
bk, j(r1)

...

bk, j(rNs)

=


g(r1,rk, j)

T

...

g(rNs ,rk, j)
T

qk (2.13)

The same formation can be developed in the EEG case with the only difference that,

instead of using the magnetic field, the potential of Equation (2.13) is used. The leadfield

matrix, also known as ’gain matrix’, correlates the set of discrete sensor locations rm to

the dipole at rk, j [17]. The leadfield matrix for the MEG measurements is Equation (2.10)

and for the EEG, it is Equation (2.13). Therefore, considering Nd dipole sources and Ns

MEG/EEG measurements sensors over K time steps, the forward model can be expressed

by [17]

F = GQ+W (2.14)

where the Ns×K matrix F represents the field measurements of the sensors, the Ns× 3Nd

matrix G is the gain matrix of the leadfield (where 3Nd represents the 3-D moments of Nd

dipoles), Q is a 3Nd ×K matrix, that represents the moments of dipoles, and the Ns×K

matrix W represents the measurement noise. Equation (2.14) is significant in order to

optimize the problem and can be used in the particle filter algorithm as the measurement

equation when estimating the source location.
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2.4 EEG/MEG Artifacts

EEG artifacts are characterized as false alarm signals in the EEG/MEG data. The source

of artifacts can be very unexpected. The reason of that is the multiple sources that may

cause unwanted signals. Artifacts can be divided into two main categories, the external and

internal artifacts.

The external artifacts are mainly caused by the hardware. They can be any noise

coming from the electrodes or from any other hardware in use. They can also be caused by

magnetic fields of other devices close to the EEG hardware. In addition, if an electrode is

not attached properly on the patient’s head, this will result in a failure to record the right

potential of brain activity.

On the other hand, internal arifacts are caused by activities produced from move-

ments of the patient. The volume current discussed in the previous section is actually an

example of internal artifacts. There are a lot of muscles that can cause electric potential,

which can be picked up by the electrodes. The most important of those are the ocular ar-

tifacts, the myogenic artifacts and the cardiogenic arttifacts. Ocular artifacts are caused by

the movement of the eyes. Specifically, a movement of the eyelids or eyeballs results in a

change in the electrical field that is recorded by the electrodes. The signal characteristics

of ocular artifacts are standard, which makes it easier to identify them [20]. Myogenic ar-

tifacts are the different muscle potentials on the scalp that can be caused by the jaw and

various movements of the face. The last main category is the cardiogenic artifacts, which

are produced by the heart activity. A pulse of the heart produces an electric potential that is

noticeable on the scalp. Usually, those artifacts are more noticeable if the electrode is close

to a pulsating vessel. As a result, each time the heart produces a pulse, the electrode moves.

The main method used today to decompose the MEG/EEG signal from the artifacts

is the independent component analysis (ICA) integrated with time-frequency techniques

[21–23]. After the decomposition of the data based on the artifacts’ properties, the dipole

signal can be identified. This is another big area of research in which many papers have

been published.
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2.5 Electrode Systems

The aim of this thesis is to optimize the sensor configurations that need to be activated at

each time step. Therefore, it is important to introduce the sensor systems that are used

for the sensor placement and the sensor net structure. The sensor placement on a patient’s

scalp is really significant in order to obtain good measurements. A lot of electrode sys-

tems are proposed, but we discussed two of the most well known ones. The first one is the

international standard system for electrode placement, which is also known as the 10-20

system [24,25]. This system was first introduced by Jasper in 1958 [26], and it has been ap-

plied in the EEG ever since. The 10-20 system describes the locations that electrodes need

to be placed. These locations are calculated based on relative distances between cranial

landmarks over the head surface [24,25]. Even though this is the international standard, the

study of new methods for the signal source localization resulted in the development of other

systems, such as the 10-10 or 10-5, which basically increase the electrodes’ density [24].

Figure 2.3 shows the 10-20 system, where A=ear lobe, Pg=nanopharyngeal, P= pariental,

F=frontal, Fp=frontal polar, and O=occipital [2].

Most of the current EEG tests use the EEG geodesic sensor net, which was first

proposed in 1993 [25]. The geodesic sensor net organizes and fixes the sensor on a 2-D

array. Sensors are fixed at each geodesic vertex, which insures that the arrays are evenly

distributed across the head surface [25]. The term geodesic is an approximation of a curve

using a straight line and is usually used for sphere shape approximations. Figure 2.4 indi-

cates how the human head is divided in different geodesic vertexes, indicating where the

electrodes need to be placed [25]. The particular example is for a 128 channel geodesic sen-

sor net. The position of each sensor is important to be specified accurately, because a wrong

placement will result in wrong electrical measurements, since electrical measurements are

related to brain anatomy.
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Figure 2.3: International 10-20 system diagram describing the location that each electrode
need to be placed on patient’s scalp; diagram taken from [2].
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Figure 2.4: Geodesic sensor net structure for 128-channel demonstrating the geodesic ver-
texes that each sensors need to be placed; diagram taken from [2].
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Chapter 3

DIPOLE SOURCE PARAMETER ESTIMATION USING PARTICLE FILTERING

Neural activity information can be obtained by estimating the location and moment of

dipole sources using MEG/EEG sensor measurements. As the parameters to be estimated

change with time are non-linearly related to the measurements, particle filtering can be used

for the estimation.

In this section, the state-space formation is first introduced. Subsequently, a review

of Bayesian theory is also presented in order to recursively estimate the dipole source un-

known parameters. Furthermore, the particle filtering algorithm is discussed and, finally, a

particle filter (PF) example on a multi-dipole case is presented .

3.1 Recursive Bayesian Estimation

Recursive Bayesian estimation is a process that recursively estimates the an unknown source

parameter or state xk of a dynamic system, where xk ∈ Rnx , from a noisy measurement

yk ∈ Rnx , and R represents all the real numbers and k ∈ N [27, 28]. The state at the current

time step is related to its value at the previous time step according to the state equation

given by

xk = fk−1(xk−1,vk−1) (3.1)

Equation (3.1) shows that it is calculated based on the (possibly) non-linear func-

tion fk−1(xk−1), which is written as a function of the prior state xk−1 and the modelling

error process vk−1. For example, in a radar application, the state equation can be a vec-

tor representation of the velocity, the acceleration and the position of a moving target. In

this specific case, the state space is the position and the moment of the dipole and is a six

dimensional vector. The measurement equation is given by

yk = hk(xk,wk) (3.2)

and it describes the measurement yk as a function of the state xk using the possibly non-

linear function hk(xk). As observed in Equation (3.2), yk is written as a function of the

target state xk and wk is the measurement noise vector.
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In order to solve the estimation problem of the state equation based on the mea-

surement equation, the Bayes’ theorem is applied. According to Bayes’ theorem, the con-

ditional distribution p(xk|Y1:k) represents the posterior information of xk given Y1:k, where

Y1:k = [yT
1 yT

2 ... yT
k ]

T [27]. Using the Bayes’ theorem formula given by

p(xk|Y1:k) =
p(yk|xk)p(xk|Y1:k−1)

p(yk|Y1:k−1)
(3.3)

where the denominator of Bayes’ theorem is given by

p(yk|Y1:k−1) =
∫

p(yk|xk)p(xk|Y1:k−1)dxk (3.4)

where the probability distribution p(xk) models the previous knowledge of xk and the likeli-

hood density function p(yk|xk) models the relationship between the measurement and state

equations.

In order to estimate the most probable state xk based on all measurements, the

probability density function p(xk|Y1:k) needs to be constructed. The construction process

can be divided in two stages: the prediction and the update stages [27,29]. In order to break

the process into these two stages, it is necessary to assume that the previous probability

density function p(xk−1|Y1:k−1) is known. The prediction stage involves the calculation of

the probability density function at time k using Equation (3.1) and applying the Chapman-

Kolmogorov equation, given by

p(xk|Y1:k−1) =
∫

p(xk,xk−1|Y1:k−1)dxk−1

=
∫

p(xk,xk−1,Y1:k−1)p(xk−1|Y1:k−1)dxk−1

=
∫

p(xk|xk−1)p(xk−1|Y1:k−1)dxk−1

(3.5)

Once the probability density function (PDF) at time step k is found, the measurement yk

can be obtained. Having all this information, the update stage can be built by applying the

Bayes’ theorem with equations (3.2) and (3.3). Once the PDF p(xk|Y1:k) has been com-

puted, the target state estimate can be calculated by applying the minimum mean-squared

error (MMSE) given by

x̂k|k = E[xk|Yk],
∫

xk p(xk|Y1:k)dxk (3.6)
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where E[xk|Yk] is the conditional expected value of xk. In addition, x̂k|k is the mean of the

p(xk|Y1:k). Once the new PDF of the current state is estimated using Equation (3.6), the

same procedure is repeated for the next time step based on the new state estimate. This

process is repeated in order to find an estimated solution, since, in general, this cannot be

solved analytically [27]. In order to solve this type of problem, filtering techniques are

required according to the nature of the model. Filtering techniques vary based on whether

the system is linear and/or Gaussian. In the case of a linear and Gaussian dynamic model,

the Kalman filter can be used. In the case of a non-linear and Gaussian model, the extended

Kalman filter can be used and in the non-linear, Gaussian or non-Gaussian dynamic model,

Particle filters can be used. These are some of the most known and most commonly used

Bayesian filtering techniques. The nature of the neural dynamic system makes particle filter

the best fit in this thesis. A brief introduction of particle filters follows.

3.2 Particle Filtering

The fact that the particle filter is suitable for the estimation of the state of a non-linear

dynamic model with non-Gaussian noise makes it the most suitable Bayesian approach

for the state estimate of the dipole source. The idea of particle filtering is to calculate

the posterior probability density function p(xk|Y1:k) at time k by using a set of N samples

(particles), {xi
k}N

i=1, where each particle has a corresponding weight, {wi
k}N

i=1. Therefore,

the posterior density from the previous sections at k can be approximated as

p(xk|Y1:k)≈∑wi
kδ (xk−xi

k) (3.7)

In Equation (3.7), xk represents the state at time step k, and xi
k, i= 1, ...,N are all the support

points with corresponding weights wi
k, i = 1, ...,N. In addition, all the weights are normal-

ized and, as a result, their sum for each state is one. The particle filtering method belongs to

the family of Sequential Monte Carlo methods, which are approximation methods that have

been developed and applied in the field of engineering over the last decades. The particle

filter, also known as Monte Carlo integration or Sequential Important Sampling (SIS), is

widely used in tracking approximation. The Monte Carlo estimation integral is given by

I =
∫

f(x)p(x)dx (3.8)
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IN =
1
N

N

∑
i=1

f(xi) (3.9)

where N is the number of samples (particles) and has to satisfy the condition N� 1 in order

to be distributed in line with p(x). Similarly, p(x) is defined as a probability density that

satisfies p(x)≥ 0 and
∫

p(x)dx = 1. According to the law of large numbers, if the samples

xi are independent, the integral of Equation (3.8) can be written in the form of a summation

as shown in Equation (3.9) [27]. Based on this approximation, as the number of particles

increases, the particle filter approaches the optimal Bayesian estimate.

As stated above, particle filtering can be applied to a non-linear Bayesian filter-

ing tracking problem. Equations (3.1) and (3.2) describe the state and measurement model

equations representing a dynamic system. Particles are composed from an importance dis-

tribution and each particle is weighted based on importance weights. This method is also

known as importance sampling [27, 29]. To clarify the importance sampling method and

the transformation of Equation (3.8) to Equation (3.9), Figure 3.2 demonstrates how the

continuous density function can be approximated by a discrete approximation. As it can

be seen on the figure the weights are larger on the peaks of p(x), while in the lower values

of p(x), the weights are smaller. In other words, the particles that provide good estimates

for the state have larger corresponding weights compared to the ones that have bad state

estimation. This method is ideal for solving the problem since p(xk|Yk) cannot be drawn in

closed form and, as a result, it cannot be used to draw samples from it. Therefore, p(xk|Yk)

is represented using Monte Carlo particles.

The particle filtering algorithm starts with drawing particles from an important den-

sity q(xk|xi
k−1,Yk) from the particles xi

0:k, i = 1, ...,N. As shown in Figure 3.2, each particle

is characterized with a corresponding weight, which is calculated using

wi
k ∝ wi

k−1
p(yk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1,Yk)
(3.10)

To simplify Equation (3.10), we can choose q(xi
k|xi

k−1,Yk) = p(xi
k|xi

k−1), and, as a result,

the weight equation can be written as

wi
k ∝ wi

k−1 p(yk|xi
k) (3.11)
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Figure 3.1: An illustration of the importance sampling method. The picture shows the rela-
tionship between the continues density function and the discrete approximation, by pointing
the importance of weights of the particles.

After the weights are calculated, all the weights are normalized so that their sum for each

state equals one. However, the importance weight of a particle sometimes becomes close

to zero after a few iterations, which makes it negligible in the calculation process. This

problem affects the accuracy of the method, since the weight is concentrated only on a few

particles. This problem is known as the degeneracy problem [27]. Using the importance

sampling method, the variance increases over time. As a result, the degeneracy problem

creates an unavoidable accuracy issue. In order to improve the accuracy of the particle

filter when degeneracy occurs, the resampling method is applied. The idea of resampling

is to exclude the low importance weights and expand the particles with greater importance

weight. Therefore, particles are concentrated where the p(xk|Yk) is larger. The degeneracy
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problem can be solved using the Ne f f , given by

Ne f f =
1

N
∑

i=1
(wi

k)
2

(3.12)

where 1 ≤ Ne f f ≤ N and wi
k represents the normalized weight. The larger the Ne f f is,

the smaller the level of degeneracy will be and the other way around. In order to solve

degeneracy problem a threshold value Nthr is defined. If the N̂e f f is smaller than a given

threshold Nthr , then perform resampling. Table 3.1 provides a summary of the main steps

of the particle filter algorithm, including resamlping.

Table 3.1: Particle Filter Sample Algorithm

1. Given x0 , generate N independent particles that
provide an estimate of the initial state distribution

2. For each particle:

• Draw xi
k ∼ p(xk|xi

k−1)

• Assign a weight for each particle
using wi

k = wi
k−1 p(yk|xi

k)

3. Normalize it using wi
k =

wi
k

∑
N
i=1(w

i
k)

2

4. Calculate Ne f f =
1

N
∑

i=1
(wi

k)
2

5. Define a threshold value and do the resampling using N̂e f f < Nthr

3.3 Use of Particle Filtering for Dipole Source Parameter Estimation

In order to use particle filtering to estimate the dipole source parameter, we need to first

identify the EEG/MEG dynamic system equations corresponding to (3.1) and (3.2). The

measurement equation is by yk = h(xk)+wk = GkQk +Wk. It depends on the lead-field

matrix Gk of EEG and MEG whose elements are respectively given by Equations (2.10)

and (2.13). The state equation is assumed of follow a first-order Markov chain model and is

given by xk = xk−1+vk where vk is the modelling process error, xk−1 = [rk−1, j qk−1, j] is the

3-D moment and location vectors representation in Cartesian coordinates for the jth dipole

at time step k−1 and xk = [rk, j qk, j] are the unknown state parameters to be estimated for

each dipole. We will demonstrate next the use of the particle filter in estimating neural
20



activity. For this example, all the sensors are used and the main focus is on showing the

performance of the particle filter. We evaluate the performance of the estimation, using the

root mean-squared error (RMSE). The mean-squared error (MSE) is given by

MSE(k), Exk,yk [(xk− x̂k)(xk− x̂k)
T ]

=
∫ ∫

(xk− x̂k)(xk− x̂k)
T p(yk|xk)p(xk)dxkdyk

(3.13)

By applying the Monte Carlo integration approximation, Equation (3.13) can be written in

a summation form as

MSE(k)≈ 1
N

N

∑
i=1

1
M

M

∑
`=1

(xi
k− x̂k(y`,ik ))(xi

k− x̂k(y`,ik ))T (3.14)

where xi
k are independent and identically distributed (i.i.d) samples drawn from the real

state distribution p(xk) at time step k, y`,ik are i.i.d samples drawn using the measurement

model (Equation (3.2)), and x̂k(y`,ik ) is the state estimate using the particle filter algorithm.

As previously stated, for the Monte Carlo approximation, as the number of sample in-

creases, the results become more accurate. Therefore, the highest the number of M and N

in Equation (3.14), the more accurate the results will be. The RMSE J is the square root of

the MSE which it can be calculated by

J(k) =
√

MSE(k) (3.15)

In this section, two examples of particle filtering algorithm are introduced to show

the effectiveness of the method on the neural source localization problem. The first example

is shown in Figure 3.3 and is a tracking study case for 3 dipoles. In this example, probability

hypothesis density filtering (PHDF) is used with particle filters in order to track the number

of MEG neural dipole sources and their unknown states [11]. The PHDF is used to identify

the number of sources and then to recover their location, amplitude and orientation. After

the PHDF is applied, the particle filter algorithm is used to estimate the dipole location.

In the figure, the continuous line indicates the true dipole location and the circles show the

particle filter estimation. From the figure, it can be observed that the particle filter algorithm

has a really good performance. The circles are almost in the same path as the true dipole

location.
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Figure 3.2: 3-Dimensional plot of 3 dipole tracking using particle filter

The second example shows the performance of a particle filter algorithm and a

multiple particle filter algorithm in a 2-dipole tracking case [30]. As the number of dipoles

increased, the number of dimensions in the state model Equation (3.1) also increased. The

multiple particle filter algorithm is usually used when the number of particles is high in

order to reduce the complexity of the problem and also reduce the RMSE performance.

Therefore, as shown in Figure 3.3, in the case of multiple dipoles, the use of the multiple

particle filter algorithm will be more efficient. Both of the methods provide good estimation

performance, but the estimation performance of the multiple particle filter is better than the

one of the single particle filter.
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Figure 3.3: 3-Dimensional plot of 2 Dipole tracking using Particle Filter and Multiple Par-
ticle Filter

Based on the above examples, it can be concluded that the particle filter algorithm

is well-suited for the neural tracking state estimation. Its advantage is that it can be used in

a non-linear, Gaussian or non-Gaussian dynamic model, which makes it the best fit in this

thesis state estimation problem.
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Chapter 4

SENSOR SCHEDULING OPTIMIZATION PROBLEM

Sensor scheduling is a process to allocate sensing resources by optimizing a performance

metric over a future time-horizon under constraints. The aim of this work is to reduce

the number of sensors while maintaining reasonable estimation performance. As a result,

the recorded data for storage and transmission will be reduced, which will also result in

reducing the overall power consumption. Therefore, the power constraint of the current

AEEG methods will be minimized. The proposed solution of this project is to minimize

the number of sensors that are activated at each time step. Reducing the number of sen-

sors will result in minimizing the power consumption of the system. Less sensors means

less data for storage and transmission. We propose two different sensor configuration ap-

proaches towards solving this problem. The first proposed solution is to adaptively choose

the sensor configuration for measurements at each time step that minimize the predicted

root mean-squared error (RMSE) as the performance metric. The second proposed solution

is a heuristic method that maximizes the SNR, using the distance between the sensor loca-

tion and the estimated dipole location at the previous time step as the performance metric.

4.1 Sensor Scheduling Using Predicted RMSE

In order to be able to find the optimal sensor configuration using the Bayesian filtering

approach, we need to modify the Bayesian problem formulation discussed in Chapter 3.

Specifically, we replace the state equation (3.1) and measurement equation (3.2), respec-

tively with

xk ∼ p(xk|xk−1) (4.1)

yk ∼ p(yk|xk,zk) (4.2)

where xk and yk are the state and measurement vectors as before. We consider the problem

where Ns sensors need to be configured, and we define the sensor configuration vector

zk = [zk,1 zk,1 . . . zk,Ns ]
T. The sensor configuration vector is comprised of the binary values,

zk,m ∈ [0,1]. When zk,m = 1, this indicates that the mth sensor is selected. The measurement

used at time k depends on this configuration, so the data used is yk(zk) = Yk,Ns . Based on

Equations (4.1) and (4.2), the filtering problem is to estimate the unknown state xk based on
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k measurements Yk, which are obtained from k sensor configurations zk. Assuming that Ns

sensors can be used at each time step k, then there are R= 2Ns possible sensor configurations

zk,n, n = 1, . . . ,R that can be chosen at time k. A sensor configuration of length Ns is defined

as a binary sequence of length Ns that uses the position of a binary digit in the sequence

to determine if a sensor is on or off. If the digit is one, then the sensor will be used for

measurements; if it is 0, then the sensor will not be used.

The sensor scheduling optimization problem is to find the sensor configuration at

each time step that optimizes a cost function under some constraints: (a) that the RMSE

only increases by a small amount compared to when all available sensors are used, and (b)

the overall power constraint does not exceed a given value. As it is mentioned in Chapter

3, in order to use the Bayesian approach, we begin by assuming that some initial state

probability density function p(x0|y0,z0). Then, sequentially, at time step k, the posterior

distribution p(xk|Yk,Zk) is computed as

p(xk|Yk,Zk) ∝ p(yk|xk,zk)
∫

p(xk|xk−1)p(xk−1|Y?
k−1,Z

?
k−1)dxk−1 (4.3)

where the star notation indicates the chosen optimum sensor configuration that maximizes

the estimation performance for the previous state estimate xk−1. Thus, p(xk−1|Y?
k−1,Z

?
k−1)

is the previous state posterior distribution at time step k−1, which is obtained based on the

optimally selected sensor configuration z?k−1. Using the likelihood p(yk|xk,zk) of measure-

ment yk that is obtained from the optimum sensor configuration z?k , the posterior distribution

of the previous time step p(xk−1|Y?
k−1,Z

?
k−1) is updated to obtain p(xk|Yk,Zk). Taking the

average of the posterior distribution p(xk|Yk,Zk), the state estimator at time step k, x̂k, is

obtained. The performance metric in this case is the predicted RMSE Jp and is given by

Jp(zk),
(
Exk,yk [(xk− x̂k)(xk− x̂k)

T ]
)1/2

=

(∫ ∫
(xk− x̂k)(xk− x̂k)

T p(yk|xk,zk)p(xk|yk−1,zk−1)dxkdyk

)1/2 (4.4)

where

p(xk|yk−1,zk−1) =
∫

p(xk|xk−1)p(xk−1|Y?
k−1,Z

?
k−1)dxk−1 (4.5)

The predicted RMSE Jp, in Equation (4.4) can be simplified by approximating it using
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Monte Carlo integration

Jp(zk)≈

(
1
N

N

∑
i=1

1
M

M

∑
`=1

(xi
k− x̂k(y`,ik ))(xi

k− x̂k(y`,ik ))T

)1/2

(4.6)

For each sensor configuration zk, a corresponding predicted RMSE is calculated. In Equa-

tion 4.6, the first summation is for the number of state particles N and the second summation

is for the number of measurement particles M, which are drawn based on each state particle

i = 1, ...,N. Equation (4.6) shows the computational complexity of the predicted RMSE

method. As the number of measurement and state particles increases, the cost increases as

well. Considering the measurement equation of the dipole source model in Equation (3.2),

each dipole has six unknown parameters: 3-D Cartesian coordinates of position and 3-D

Cartesian coordinates of moment. Note that since the moment and position are non-linearly

related in the measurement model, they can be separated in order to simplify the complexity

of the problem even if we are interested in only estimating the position of the dipole source.

The sensor configuration that provides the minimum predicted RMSE value is the

optimum one z?k that will be used. The more the number of possible sensor configurations,

the higher the calculation cost will be. The computational cost constraint of the predicted

RMSE method results in a limitation in the number of sensor configurations. If the number

of sensor configurations R is more than 10, this method cannot be used and there are other

approximation methods that can solve this optimization problem based on the nature and

the properties of the optimization problem. Some of those are branch and bound or convex

relaxation approximations [31, 32]. The optimum sensor configuration z?k can be obtained

using a

z?k = argmin
zk

Tr(Jp(zk)) (4.7)

where Tr(.) represents the matrix trace and is minimized based on a constraint to limit the

total power consumption to P:
M

∑
m=1

zk,mCm ≤P, (4.8)

where Cm is the power consumption of the mth sensor. In order to solve the above problem,

the particle filter algorithm is used two times. The second particle filter is used to esti-

mate the x̂k(y`,ik ) of the predicted RMSE equation (4.4), which will be used to choose the
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optimum sensor configuration. The first particle filter is used to update the previous time

step posterior distribution based on the measurements of the optimum sensor configuration.

A block diagram of the dipole state estimation and sensor scheduling method is shown in

Figure 4.1.

Using the state evolution  N 

number of particles are 

drawn  with a corresponding 

weight  for each sensor 

configuration  zk

For each particle i, 

M number of 

measurement particles 

are generated 

Second PF

First PF

For all yk

and
Minimize

Subject to

Figure 4.1: Sensor optimization diagram using the predicted RMSE. In this diagram the
state estimation and sensor optimization methods are demonstrated.

4.2 Sensor scheduling with Maximum SNR

The second approach to find the optimum sensor configuration uses the distance between

the previous state estimate xk−1 and the sensor locations as the performance metric. The

fact that the variance of the dipole movement is not that large between each time step,
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makes the use of the previous state estimate xk−1 a good estimation. Based on the leadfield

for MEG in Equation (2.10) and EEG Equation in (2.13), the distance between the sensors

and the dipole location is very important. As the distance between the dipole and electrode

increases the primary current strength decreases. Therefore, this method maximizes the

signal-to-noise ratio (SNR) of the measured sensor data. Suppose that at some time step k

the parameters of the dipole sources (rk,qk) are given and are fixed. From Equation (2.10)

and (3.2), the SNR of the measurement from the mth sensor can be represented by

SNRm
k =

Nd

∑
j=1

(
bk, j(rm)

)2

σ2 ≈
Nd

∑
j=1

(
bk, j(rm)

)2 (4.9)

where bk, j(rm) is the magnetic field measured from the mth sensor, σ2 is the variance of

measurement noise and Nd is the number of dipole sources. From Equation (2.10), the mag-

netic field is a function of the distance dk,m, j between the mth sensor and jth dipole source.

Figure 4.2 shows the relationship between the signal amplitude and the distance dk,m, j. It

can be observed that as the distance increases, the amplitude of the signal decreases, as well

as the corresponding SNR. Since the MSE in estimation is expected to be lower with higher

SNR measurements, using the sensors with smaller dk,m, j can provide better neural tracking

performance.

In addition, in Chapter 2, it was indicated that artifacts are produced by movement

charge from other surrounding tissues that do not contain valuable information about the

areas of neuron activity. In general, artifacts’ signals are everywhere in the head volume.

The idea of this method is that the further the sensor is from the dipole source, the weaker

the valuable information about the dipole source is. When the dipole is far from the sensor,

the dipole signal is weak and the artifacts signals dominate. Therefore, taking those infor-

mations as a fact, it can be concluded that the sensors close to the dipole contain the most

valuable information. This method is not proved mathematically but is a method based on

the model and experimental observations. Moment is another significant information about

the dipole, which is not consider in this method because it is believed that distance is in

greater importance.

To begin this approach, the same assumption that the initial state p(x0|Y0,Z0) is
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Figure 4.2: Amplitude of the sensor signal as a function of the distance between the sensor
and the dipole source

known is required. Therefore, given the posterior distribution of the previous time step

p(xk−1|Y?
k−1,Z

?
k−1), the distance between each dipole and each sensor is calculated. As-

suming there are Nd number of dipoles and Ns number of sensors, the distance matrix can

be calculated by using Euclidean distance equation which is given by

d j,m =
√

(x j− xm)2 +(y j− ym)2 +(z j− zm)2 (4.10)

where m = 1, ...,Ns is the variable for the number of sensors, j = 1, ...,Nd is the variable for

the number of dipoles, and (x j,y j,z j) and (xm,ym,zm) are (x,y,z)-coordinates of the sensor

location and the dipole location, respectively. For each dipole, the sensors are sorted in

ascending sequence based on their distance from the dipole, d̃k,m. The first s sensors are

selected to estimate the dipole states, where s is the number of sensors to be used depend-

ing on power constraint in Equation 4.8. Using the above procedure the optimum sensor

configuration z? can be calculated. Using the optimum sensor configuration z?, a particle

filter algorithm is used to obtain p(xk|Yk,Z?
k). Using the optimum sensor configuration z?k ,

the likelihood p(yk|Xk,Z?
k) is calculated and used to update the posterior distribution of the

previous time step p(xk−1|Y?
k−1,Z

?
k−1).
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Table 4.1: Proposed Sensor scheduling with Maximum SNR Sample Algorithm

1. Calculate the predicted state of the dipole source x̃k at time k using the particles x(i)k−1

and weights w(i)
k−1 at time k−1 based on the state model

x̃k =
N

∑
i=1

pxk−1|xk(x
(i)
k−1)w(i)

k−1,

where N is the number of particles and pxk−1|xk(·) is the state updating equation. Ex-
tract the predicted dipole location r̃k from x̃k.

2. For each sensor m, calculate the distance between the sensor location rm and the
predicted dipole source location r̃k, j as

d̃k,m = ||rm− r̃k, j,q||, m = 1, . . . ,M,

where || · || denotes Euclidean distance.

3. Sort the sensors in increasing order of d̃k,m. Choose the first s sensors to estimate
the dipole states, where s is the number of sensors to be used depending on power
constraint in Equation 4.8.

4. the scheduled sensor configuration z∗k is then used to obtain the measurement yk(z∗k)
at time k and estimate the state x̂k using Particle Filter algorithm.

The advantage of the proposed method is the low computational cost since the

optimization problem can be calculated fast. This is an advantage that makes that method

easy to implement on hardware, which is the main purpose of this thesis. The next chapter

will compare and analyse the results of both methods.
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Chapter 5

SIMULATIONS AND RESULTS

For the simulations, all the algorithms and experiments were run on a MATLAB software.

For all the experiments, MEG synthetic data were used and analysed based on the proposed

optimization methods. For all the simulations, the number of dipoles are known, since the

focus of this thesis is to localize the state of the dipole. Therefore, 2 dipoles are used and

the number of sensors are 149 for each case. The data were created by inserting current

dipoles into the sphere head model and calculating the resulting magnetic field using Equa-

tion (2.10) with Gaussian noise. This section presents all the results using both methods,

using the predicted MSE and the distance between the sensors location and the previous

state estimate as the performance metric. A number of figures and tables illustrate the per-

formance of each method, introducing their advantages and disadvantages. A Monte Carlo

simulation was run for each experiment in order to get a more reliable and good perfor-

mance estimation. The first section analyses the performance of the predicted MSE method

and the second section the distance between the sensors’ previous state estimate.

5.1 Predicted RMSE results

The predicted RMSE method was introduced in the previous section and can be calculated

based on the Equation (4.6). As explained in the previous section, the number of sensor

combinations are 2R, where R is the number of sensor configurations. Because of the

high computational cost in the calculation procedure, we eliminate the first summation of

equation over all the state particles N by taking their expected value. This approximation

eliminates the computational cost by N times, which is the number of state particles. This

made the algorithm much faster, since the number of particles that are used is 2500. This

is an important approximation, which results in elimination of the high computational cost

of this method. Even though this is an approximation, because of the small variance of the

state particles, the performance of the estimation is not affected. Therefore, Equation (4.6)
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is approximated to

Jp(zk)≈

(
1
N

N

∑
i=1

1
M

M

∑
`=1

(xi
k− x̂k(y`,ik ))(xi

k− x̂k(y`,ik ))T

)1/2

≈

(
1
M

M

∑
`=1

(xk− x̂k(y`k))(xk− x̂k(y`k))
T

)1/2
(5.1)

In the simulations, 50 measurement particles (M=50) are used. The number of

sensors for the MEG data are 149, which makes it impossible to use this method since the

number of combinations is too large (2149). The maximum number of sensor configura-

tions that can be used are usually 10, depending on the number of particles. In this case, the

number of particles is large, which makes even 15 a large number of sensor configurations.

Thus, the sensors are grouped in order to show and prove that the method can be used in

order to find the optimum sensor configuration based on the predicted RMSE. In the exper-

iment, we use total of 3 groups of fixed sensors, 2 groups of 50 and one of 49. The purpose

of the experiment is to show that the predicted RMSE can actually predict the real RMSE

and can be used as an optimization method for choosing the best sensor configuration. The

results of the method could be even better if the sensors were distributed differently among

the three groups. In each time step, two of the groups had to be activated and eliminate

one. In this case, there are 3 possible combinations for each time step. For each time step,

the combination that minimizes the predicted RMSE is the one that will be chosen as the

optimum configuration.

In Figures 5.1 and 5.2, the predicted RMSE performance is compared to the actual

RMSE for the first four time steps for each dipole. Furthermore, the actual RMSE using

all sensors without any sensor scheduling is also demonstrated in the figures. Both figures

show that the predicted RMSE can actually approximate the actual RMSE, which proves

that the proposed method works. In addition, it can be observed that the use of sensor

scheduling can achieve a good tracking performance compared with using all the sensors.

Figure 5.3 demonstrates the overall performance of both dipoles, which makes the statement

that the predicted RMSE method can actually predict the actual RMSE even stronger. It also

shows that good tracking results can be achieved with sensor scheduling compared using

all the sensors.
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Figure 5.1: Actual RMSE Vs Predicted RMSE performance for the first 4 times steps of
dipole 1.

1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

cm

Number of time steps k

 

 
Actual RMSE with all sensors
Actual RMSE
Predicted RMSE

Figure 5.2: Actual RMSE Vs Predicted RMSE performance for the first 4 times steps of
dipole 2.
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Figure 5.3: The total actual RMSE Vs Predicted RMSE performance for the first 4 times
steps of both dipoles.

Table 5.1 shows the results of the actual RMSE and the predicted RMSE over all

time steps. The results show a small difference between the actual RMSE and the predicted

RMSE. Based on these results, the method proves to provide good tracking estimation

performance. The performance of the method could be improved even more if we used

a larger number of particles. However, this is a trade-off, since the larger the number of

particles, the higher the computation cost is. Furthermore, this proves that the predicted

RMSE can actually predict the actual RMSE. This is an important result that demonstrates

that this method can be effectively used to provide the optimum sensor configuration that

minimizes the actual RMSE.

Table 5.1: Predicted RMSE Method Results.

Number of Sensors Predicted RMSE RMSE

100 0.3937 0.4626

5.2 Sensor scheduling with Maximum SNR Results

For the second method, 3000 particles (N=3000) were used. Simulations were performed

for different numbers of sensors s per dipole to show the performance of the proposed algo-
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rithm. Monte Carlo simulations were performed for each study case to improve the relia-

bility and accuracy of the results. Table 5.2 shows the results by using the proposed method

for different values of activated sensors. The results are also plotted in Figure 5.7, where

it shows that the method can provide a good tracking performance after approximately 30

sensors, 15 for each dipole. Based on the plot, as the number of sensors increases, the

dipole tracking performance does not show a significant improvement. This shows that by

reducing the sensor numbers, it is possible to get a good estimation of the location of the

dipole. This also proves the importance of distance between the sensors location to the

source localization. Moreover, the method shows that one of the dipole has better tracking

performance than the other.

Table 5.2: Second Method Results for 5 Time Steps.

Number of Activated RMSE Dipole 1 RMSE Dipole 2 RMSE Total
Sensors (cm) (cm) (cm)

6 1.2487 1.2181 1.2334
10 0.9527 1.3854 1.1691
20 0.5347 0.7764 0.6556
30 0.4559 0.5602 0.5081
40 0.4361 0.6081 0.5221
50 0.4018 0.5968 0.4993
60 0.3667 0.5979 0.4823
70 0.4006 0.6008 0.5007
80 0.3811 0.5665 0.4738
100 0.3944 0.5664 0.4804

In order to present a more complete picture of the method, plots of the tracking

performance in the case of a total of 60 sensors are shown below. The tracking performance

of both dipoles are shown in 3-D plots. Calculating the distance between each dipole and

the sensors, the first 30 closer to each dipole are selected. Figures 5.4 and 5.5 show a 3-D

plot of dipole 1 and dipole 2 tracking performance for five time steps (k=5). The figures

prove the effectiveness of the method. Figure 5.6 provides a more clear picture to the reader

of how the method works. It shows the tracking performance of both dipoles and, at the

same time, it shows the activated sensors for the last time step. From the figure, the reader

can observe that the sensors that are close to the dipoles are activated and used for the

solution of the inverse problem.
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Figure 5.4: 3-D demonstration of the 2 dipole tracking performance using distance as per-
formance metric. This figure shows dipole 1 tracking for 30 sensors per dipole.

5.3 Simulation Results for Sensor Scheduling Method

The previous sections shows the tracking performance of the sensor scheduling method,

but it is important to demonstrate the meaning of sensor Scheduling. The main purpose of

implementing sensor scheduling in the beginning of this thesis was to reduce the amount

of data and reduce the power constraint. Table 5.3 shows the tracking performance and

the data amount using all sensors and just 60 sensors using the distance method. Based

on [33], for EEG/MEG test at each time step each sensor data word is 4 bytes. In Table

5.3 the RMSE performance for each dimension is demonstrated and the total data amount

at the same time. Based on the results it can be observed that the performance of the

distance method is almost the same with using all the sensors in x,z dimension and there is

36



−4.5
−4

−3.5
−3

−2.5
−2

−1.5
−1

−0.5

−6.5
−6

−5.5
−5

−4.5
−4

−3.5
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

 

xy

 

z

Estimated Dipole Position
REAL Dipole Position

Figure 5.5: 3-D demonstration of the 2 dipole tracking performance using distance as per-
formance metric. This figure shows dipole 2 tracking for 30 sensors per dipole.

a small gap between the y dimension. However, the amount of data generated by using all

the sensors with significantly large. The goal of this thesis report it was to get reasonable

good result and at the same time reduce the amount of data. To make this statement more

realistic, it is important to see in a real EEG/MEG test for epilepsy how much data are

generated for a ten minute period. For a typical epilepsy monitoring usually the sample rate

is 2000 samples per second [33]. For a ten minute recording the data using all the sensors

will be 715.2 MB and by just using 60 sensors will be 288MB. This shows how the sensor

scheduling can significantly reduce the amount of data and at the same time get reasonable

good dipole estimation performance. In addition, the power consumption of one wireless

EEG sensor is on the order of 10 mW [34, 35]. For a total of 60 sensors the total power

consumption will be 600mW compared to 1490mW using all the sensors.
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Figure 5.6: 3-D demonstration of the 2 dipole tracking performance using distance as per-
formance metric. This figure shows both dipole tracking performance for 30 sensors per
dipole and the activated sensors for the last time step.

Table 5.3: Simulation results demonstrating the data amount for each time step assuming
that each sensor data word is 4 bytes per time step.

Number of Acti-
vated Sensors

RMSE
x (cm)

RMSE
y (cm)

RMSE
z (cm)

Data stored per
time step (byte)

Wireless power
consumption
(mW)

60 Sensors with
Maximum SNR
method

0.2998 0.2446 0.1674 240 600

Using all 149
sensors

0.2991 0.2286 0.1656 596 1490
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Chapter 6

CONCLUSION

The neural system activity is a big area of study that can diagnose the existence and the

cause of brain disorders. The number of people that suffer from brain disorders has in-

creased dramatically and the study of those disorders is much needed. One of the most

known brain disorders is Epilepsy, which is characterised by transient and unexpected elec-

trical disturbances of the brain. The high rates of people who suffer from epilepsy increases

the need of further studying it. This thesis focused in the source localization of those abnor-

mal disturbances of the brain. Using brain activity monitoring data coming from MEG and

EEG tests, doctors can diagnose the different brain disorders. Both tests are performed by

collecting data from multiple sensors (electrodes), which are attached on a patient’s head.

The last couple of years a new technique known as Ambulatory EEG is used for improving

the quality and accuracy of brain disorders. According to this method, the EEG system is

portable and can be used in the natural environment of the patient, which might be one of

the reasons that cause the seizure disorder. The disadvantage of the current AEEG is the

inconvenience to the patient due to the electrode’s wires and the weight of the system. To

overcome the disadvantages of the current AEEG, a new method called wearable EEG is

proposed in order to replace the heavy and inconvenient AEEG. The proposed devices are

smaller, they can be attached on the scalp of the patient, and can record EEG for longer

periods of time [4–6]. The proposed method will provide long term monitoring of brain

activity, which is important for some brain disorders that require long term monitoring in

order to observe higher likelihood of seizures. There are several obstacles that researchers

need to overcome in order to make AEEG a reliable and beneficial device for studying brain

disorders. One of the constraints of the new device is the large amount of data for storage

and transmission that long period recordings require [4]. According to [4], the amount of

data for the 24 period recording is estimated to be 1GB. This results in the power constrain

issue, since in order to obtain long term recordings, large amount of power are needed. This

thesis paper examines the power constraint issue and provides two sensor scheduling algo-

rithms that reduce the number of sensors that are activated in each time step. Less sensors
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will result in less data to store and transmit.

The first proposed algorithm uses the predicted RMSE as the performance metric

for optimum sensor configuration selection. This method proved that it can predict the

optimum sensor configuration and can improve the accuracy performance of the dipole

estimation. Its main disadvantage is the high computational cost, which makes it unrealistic

for hardware implementation. Even though the calculation cost is reduced by N times using

an approximation, it cannot be implemented for large amount of sensor configurations. The

second proposed algorithm is a heuristic method based on the distance between the sensors

and the previous time step state estimate. Since the movement variance of the dipole at each

time step is not significantly large, the results prove that this is a good estimation. The plot

of RMSE with respect to the number of activated sensors shows that after approximately 30

sensors (15 for each dipole), the RMSE are stable and there is no significant improvement in

the error performance. This demonstrates that by reducing the sensor number, it is possible

to get a good state estimate of the location of the dipole. This also proves the importance

of distance between the sensors location to the source localization. The advantage of the

second proposed method is the low computational cost, which makes it ideal for hardware

implementation. Although the first method provides better estimation results with lower

RMSE, it has the disadvantage high computational cost. Therefore, there is a trade off

between the two methods.

Overall, both methods demonstrate that good estimation results can be achieved

with less sensors. This is important because reducing the number of sensors at each time

step results in significantly reducing the amount of data that are transmitted and stored each

time step. This solves the power constraint issue that was the main motivation of this the-

sis. In addition, in real data, fewer sensors will result in less external (hardware noise) and

internal artifacts, which will improve the quality of measurements. Artifacts, which are

basically the measurement noise in this case, is another big area of study and a lot of re-

search is conducted on how to decompose the dipole signal from artifacts. Implementation

of the proposed method can possibly reduce the EEG/MEG artifacts because the idea of

sensor scheduling is to select the sensors that provide the best measurements. Rejecting
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the sensors with bad measurement could result in reducing the amount of artifacts in the

recorded data. This can be part of future work and study, since this thesis did not focus on

the artifacts removal.

Neural signal activity is a big area of research and a lot of future work can be

done to solve the power constraint issue, including improving algorithm development or

hardware development. In real world implementations, algorithms should provide good

estimation performance and low computational cost. As the number of sensors increase,

the computational cost increases. Some approximation methods based on convexity of the

system have been proved to provide results with low computational cost and good estima-

tion performance. Therefore, proving that the optimization problem is a convex function,

branch and bound methods or any other convex relaxation based methods can be used to

solve the aforementioned problem [31, 32].
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