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ABSTRACT  

   

Structural health management (SHM) is emerging as a vital methodology 

to help engineers improve the safety and maintainability of critical structures. 

SHM systems are designed to reliably monitor and test the health and 

performance of structures in aerospace, civil, and mechanical engineering 

applications. SHM combines multidisciplinary technologies including sensing, 

signal processing, pattern recognition, data mining, high fidelity probabilistic 

progressive damage models, physics based damage models, and regression 

analysis. Due to the wide application of carbon fiber reinforced composites and 

their multiscale failure mechanisms, it is necessary to emphasize the research of 

SHM on composite structures.  

This research develops a comprehensive framework for the damage 

detection, localization, quantification, and prediction of the remaining useful life 

of complex composite structures. To interrogate a composite structure, guided 

wave propagation is applied to thin structures such as beams and plates. 

Piezoelectric transducers are selected because of their versatility, which allows 

them to be used as sensors and actuators. Feature extraction from guided wave 

signals is critical to demonstrate the presence of damage and estimate the damage 

locations. Advanced signal processing techniques are employed to extract robust 

features and information. To provide a better estimate of the damage for accurate life 

estimation, probabilistic regression analysis is used to obtain a prediction model for 

the prognosis of complex structures subject to fatigue loading. Special efforts have 

been applied to the extension of SHM techniques on aerospace and spacecraft 



 

  ii 

structures, such as UAV composite wings and deployable composite boom 

structures. Necessary modifications of the developed SHM techniques were 

conducted to meet the unique requirements of the aerospace structures. The 

developed SHM algorithms are able to accurately detect and quantify impact 

damages as well as matrix cracking introduced. 
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Chapter 1 

INTRODUCTION 

1.1. Motivation for Structural Health Management 

Research in structural health management (SHM) has been highly motivated by 

safety and expense concerns in the last twenty years. SHM systems have found 

interesting applications in two types of structures: innovative new structures and aging 

structures. It has been applicable to instrument SHM system in new structures that 

present novel aspects in terms of design or materials. On the other hand, aging structures 

with known problems can benefit from SHM systems to extend the useful lifespan. The 

basic premise of an SHM system is that damages alter stiffness, mass or damping of a 

structure and in turn cause changes in its dynamic response. The complete health state of 

a structure can be determined based on presence, location, type and severity of damages 

and estimation of remaining useful life (RUL). Four key aspects are usually related to 

SHM: (i) environmental influence and operational load for components or systems; (ii) 

understanding of damage characterizations; (ii) monitoring and modeling of the growth 

of damage; and (iv) future performance of components or systems during the 

accumulation of damage. Development of SHM in these four aspects has impact on the 

entire product life cycle, from the design criteria to the decision making for maintenance 

strategy. Most in-service structures require maintenance to optimize their operation 

conditions and lifespan. These procedures prolong the useful life and prevent catastrophic 

failure. Recent development in advanced sensing techniques, material characterizations, 

pattern recognition, and data management allows improvement of SHM at various levels 
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of structures and systems. Recently, due to the rapid development of computing 

capabilities, real time damage state monitoring has become available for specific 

applications. Prognosis and the prediction of RUL also turn out to be a popular research 

area. However, there is no general SHM methodology that can be widely used in various 

conditions for different structures. Most developed SHM techniques only focus on special 

load conditions and pre-designed components. The in-situ diagnostic and prognostic 

technologies are in great demand for the real time detection of damage in both existing 

and new structures with minimum human involvement.  

The performance of complex engineering systems can gradually degrade due to 

fatigue, high operation temperature, and extreme environments, as shown in Figure 1. 

Current maintenance methods include schedule based maintenance (SBM) and 

maintenance triggered after failure. The goal of SBM is to prevent structural failure by 

following a planned maintenance schedule. If failure occurs prior of the scheduled 

maintenance, emergency repair is required. These methods have several drawbacks 

including high cost, unnecessary or unintended maintenance, and labor intensiveness. To 

address these issues, condition based maintenance (CBM) has been proposed. Instead of 

scheduling maintenance to a fixed time table, CBM uses SHM technologies to provide 

service according to the condition of structures. The working conditions of structures will 

be monitored and reported in real time. A key requirement for CBM is a thorough 

understanding of the ways in which system condition is degenerated. It is also important 

for the CBM system to keep abilities to detect, identify, and communicate all conditions 

that require maintenance immediately. Therefore, the integration of SHM and CBM has 
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opened a new research area for complex engineering structures and systems. 

 

Figure 1. Structural degradation process 

1.2. SHM for Composite Structures 

Carbon fiber reinforced plastic (CFRP) composite materials are on the cutting 

edge of engineering, with performance and costs suitable to applications including 

mechanical, aerospace and civil engineering. Advantages of CFRP materials include light 

weight, high strength to weight ratio, corrosion resistance, long life expectancy, etc. As 

shown in Table 1, the strength and stiffness of fibers used in modern CFRP composites 

are much higher than the traditional bulk materials.  

Table 1. Properties of composite reinforcing fibers 

Material 
E 

(GPa) 
   

(GPa) 
   

(%) 
  

(Mg/m
3
) 

E/  

(MJ/kg) 
     

(MJ/kg) 

cost 

($/kg) 

E-Glass 72.4 2.4 2.6 2.54 28.5 0.95 1.1 

S-Glass 85.5 4.5 2.0 2.49 34.4 1.8 22-33 

Aramid 124 3.6 2.3 1.45 86 2.5 22-33 

Boron 400 3.5 1.0 2.45 163 1.43 330-440 

HS 

Graphite 
253 4.5 1.1 1.80 140 2.5 66-110 

HM 

Graphite 
520 2.4 0.6 1.85 281 0.951.3 220-660 
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Compared to traditional metallic material systems, CFRP composites have special 

requirements for SHM techniques. The technical challenges come from the nature of 

materials as well as their unique structural degradation mechanisms. Matrix material 

systems impregnate fibers in CFRP composites. They also transfer load to fibers and 

protect fibers from abrasion and environmental corrosion. Since fiber orientation can be 

optimized in order to carry the highest load in the designed directions, this makes 

composite materials to be heterogeneous due to their different mechanical properties in 

different directions. Inappropriate manufacturing process, unsatisfactory maintenance, 

and harsh operational environment can cause invisible damage in composites and may 

result in catastrophic structural failure. In addition, the failure mechanisms of composite 

structures are complicated comparing to traditional metallic materials. Multiple types of 

damage, such as delamination, matrix cracking, and fiber breakage, often occur 

simultaneously. The structural failures of composites are usually caused by a combination 

of several damage types. Due to the addressed reasons, researchers are facing significant 

challenges to integrate novel SHM systems in composite structures and components.  

1.3. Key Issues of SHM in Composites 

The monitoring of composites can be performed at the material level, component 

level, and the structural level. At the material level, information related to the material 

behavior is provided. At the component level, the working conditions among multiple 

elements are studied. At the structural level, the global structure behavior and 

performance are investigated. The biomimetic approach can clearly explain the core 

procedure of SHM. If a human body is hurt, the pain is detected by the nervous system 
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and communicated to the brain. Once a patient realizes his illness and goes to see a 

doctor, the doctor will examine the patient and prescribe a cure, as shown in Figure 2. 

The concept can also be applied to the SHM system for composites. When the 

malfunction of composites is detected, several key issues need to be addressed to 

determine the state of damage. These key issues include: (i) whether there is damage 

(detection), (ii) where is the damage (localization), (iii) how severe is the damage 

(quantification), (iv) how long can the structure can be safely used (RUL/prognostics). 

The service and repair will be provided when the RUL reaches a critical level, as shown 

in Figure 2. These key issues will be further addressed in details.  

 

Figure 2. Explanation of SHM using biomimetic approach 

1.3.1. Damage Detection 

The first key issue of SHM is to identify the existence of damage in composite structures 

to prevent catastrophic failure. Many NDE methodologies can be extended for the 
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application of SHM. In fact, they are similar in many aspects. For example, both methods 

seek to detect the damage state, localize the damage position, and assess the damage 

severity. A variety of NDE techniques, such as ultrasonic scanning, acoustic emission, X-

ray, and infrared thermography, have been used to validate the SHM techniques for 

damage identification in composites (Amaro et al., 2012, Aymerich et al., 2010, 

Salamone et al., 2011, Liu et al., 2009, 2011a, 2011b). Typical NDE methodologies rely 

on off-line implementation for assessing the damage state without accelerating it. This 

may require the disassembly of components or structures for inspection. However, the 

goal of SHM is to complete the damage identification and state awareness on-line. In 

addition, SHM systems also investigate the load history and predict the RUL. For 

composite structures, due to their special assembly requirements, it is impossible to 

disassemble the components in-service. Therefore, unique SHM techniques are necessary 

for the in-situ application in composites.  

To date, the most useful SHM techniques developed for composites include 

vibration based approaches and guided wave (GW) propagation based approaches (Sohn 

and Farrar, 2001, Su et al., 2006). Montalvão et al., (2006) reviewed the development of 

vibration based SHM and damage detection techniques. Raghavan et al. (2007) reviewed 

the GW approaches on SHM in complex engineering structures. Typical vibration based 

approaches use modal analysis to estimate the state of structure based on the changes in 

modal properties, such as natural frequencies and modal shapes. The limiting issue with 

this approach is that modal properties are not sensitive to damage precursor and even 

small scale damage, such as matrix cracks and small delaminations. Other influences, 



 

  7 

such as temperature, can also change the modal properties. For example, Balmes et al. 

(2008) reported the temperature effects on vibration monitoring and a nonparametric 

damage detection algorithm was developed. It is difficult to estimate the structural state 

with high fidelity using the vibration approach for real applications. The GW propagation 

approach has been a hot research area in the last decade. Both active and passive sensing 

using the GW propagation has been used to address multiple damage types in composites 

including impacts and fatigue. Since the sensors are either surface mounted or embedded 

in composites, this approach can be used for structures with complex geometries. Passive 

sensing is appropriate for the online monitoring of fatigue and impact damage due to the 

energy efficiency and integrated sensing system. However, active sensing may result in 

better detection accuracy and fidelity since the excitation signal and frequencies can be 

optimized according to the structural geometry, material, and boundary conditions 

(Giurgiutiu et al., 2005). It is noted that the GW propagation approach requires advanced 

signal processing techniques to interpret sensing signals and extract appropriate features 

representing the damage. The signal processing techniques developed for GW include 

time series analysis, time-frequency analysis, statistical signal processing, etc (Mallet et 

al., 1993, Sohn, 2001a, Liu et al., 2012). 

1.3.2. Damage Localization 

Localization is an extension of damage detection in the process of SHM. In a 

large composite structure, it is necessary to localize the damage position when it is 

desirable to predict its growth rate and path. The location of existing damage determines 

how quick the damage will grow under certain internal or external loading conditions. 
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For example, the growth of delaminations in a composite unmanned aerial vehicle (UAV) 

wing is completely different when the delamination locates at the end of the wing as 

opposed to the tip of the wing, even if the applied load is the same (Seaver et al. 2010). 

Since the fiber orientation of CFRP composites can be optimized based on design 

criteria, the heterogeneous material properties make it difficult to localize damage. The 

methods to estimate the damage positions vary for different damage types, such as impact 

damage and delaminations. To locate impact damage in real time, acoustic emission and 

principal strain methods are the two popular approaches reported in literature (Meo et al., 

2005, 2010, Hiche et al., 2010, Salamone et al., 2011). The available sensors include fiber 

Bragg grating (FBG), lead zirconate titanate (PZT) and macro fiber composite (MFC). 

For existing delaminations, the ultrasonic active sensing approach has been proven useful 

(Liu et al., 2011c, Vizzini et al. 2011). The vibration approach which studies the 

curvature of modal vibration deflection shapes has been reported in literature (Staszewski 

et al., 2009). However, all of these techniques utilize the sensing data recorded from more 

than one sensor or spatial position to localize the damage. In addition, most developed 

techniques cannot localize multiple damages in structures. 

1.3.3. Damage Quantification 

Damage quantification provides an assessment of the severity and operating risks 

of existing damage. In SHM, the damage can be described as the change of material 

properties (Young’s modulus, shear modulus), geometric parameters (delamination size, 

shape), mechanical properties (stiffness, damping), and sensing features (damage index). 

When quantifying the damage, the objective is to use a physically meaningful parameter 
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to characterize the damage level. Therefore, the first step of damage quantification is to 

decide a quantification criterion for the composite structures. 

Quantification using material properties, geometries and mechanical properties 

requires the assistance of NDE technologies. For example, to measure the delamination 

size in composite panels, flash thermography, C-scan, or X-ray is required (Park et al., 

2006, Aktas et al., 2009, Soma Sekhar et al., 2006). To quantify the change of material 

properties such as modulus, strain gages or digital image correlation systems are 

necessary. The development of advanced sensing and signal processing techniques uses 

novel damage index/metrics to represent the damage propagation in composites. The 

counts and energy from acoustic emission systems can be used to represent the growth of 

delamination in composites under fatigue loading (Liu et al., 2009). The amplitude of 

ultrasonic waves can be used to quantify the damage in composite UAV wings (Matt et al. 

2005). The combination of traditional physical measurement of damage using NDE 

technologies can validate the quantification results of the advanced sensing approaches, 

which has been a common approach to validate the novel quantification metrics and 

methods. 

1.3.4. Prognostics 

Estimation of RUL and prediction of future states are the next logical step in 

SHM. Prognostic methodologies are crucial to avoid catastrophic failure, provide 

issuance of timely service and maintenance, and made decision for the employment of 

auxiliary systems to extend the structural service life. Prognosis systems attempt to 

forecast structural performance by assessing the current damage state, estimating the 
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future loading environments, and predicting the RUL and structural degradation process 

through simulation and/or prior knowledge. The successful development of a prognosis 

system will require the integration of many technologies including advanced sensing, 

signal processing, development of novel damage metrics, physics based modeling, and 

deterministic and probabilistic predictive modeling (Inman et al., 2005, Farrar et al., 2003, 

Mohanty et al., 2009a, 2009b, 2010). Farrar and Lieven (2007) reviewed the previous 

work on prognosis, addressed its unique requirements, and predicted the future research 

directions in details.  

Prognosis algorithms can be classified as physics based and data driven 

approaches. A combination of these two is also employable. Physics based models are 

useful for the prediction involving new loading conditions, environments and structural 

configurations. However, high computational load is always involved in the physics 

based approach. The data driven approach relies on the previous measurements and 

sensing features to assess the current damage conditions. Usually pattern recognition 

methods and system identification techniques are involved with this approach. Once the 

current damage condition is cleared, the prognosis goal will be specified. The most 

desirable objective of prognosis is to estimate how much time remains for the structures 

to be used safely. By training a mathematical predictive model, the future state can be 

estimated. Since the structural failure is expressed through specific indices as functions of 

the previous and current states, when any of these indices exceeds a predefined critical 

value, the structure at that point is considered to be failed. 
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1.4. Sensors and Sensing Techniques for SHM in Composites 

The development of SHM depends on the damage features extracted from sensing 

signals. Therefore, the capabilities of sensors significantly influence the application of 

SHM in complex engineering structures. The most popular sensors used in SHM include 

PZT wafers, MFC, optical FBG sensors, accelerometers, strain gages, acoustic emission 

sensors, etc. The recent development of smart particles and nano materials also lead to 

the integrated sensing capabilities in composites, which are also referred to as the self-

sensing materials (Liu et al., 2012b).  

1.4.1. Ceramic PZT Transducers 

Manufactured from piezoceramic elements, ceramic PZT transducers can be 

customized in a wide range of shapes and sizes. Typical ceramic PZT transducers are 

shown in Figure 3. They can be used as actuators and sensors. To serve as an actuator, the 

PZT converts an electrical signal into mechanical motion or force. When serving as a 

sensor, the PZT converts mechanical motion or force back into an electrical signal. 

Several approaches including elastic wave propagation, time-frequency analysis, 

impedance-based sensing method and wave energy analysis method have been developed 

for active sensing with ceramic PZT transducers. The advantages of ceramic transducers 

widen their applications. First, optimized excitation signals can be designed based on the 

geometry, shape, materials and even environmental influences. The designed excitation 

signals work in the most sensitive frequency range for composite structures which assist 

in identifying damage. Second, point-to-point measurements between actuators and 

sensors provide information to locate damage. Third, active sensing can combine several 
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different sensors into one sensing step. For example, Takeda et al. (2005) have reported 

the combination of PZT actuators and FBG sensors for active sensing. The main 

drawback of ceramic PZT is that they are fragile and cannot be applied to flexible 

structures. 

 

Figure 3. Ceramic PZT transducers (Figures from APC Ltd.) 

Windowed cosine waves and chirp waves are two important excitation wave 

forms for GW based analysis of SHM.  The two wave forms are introduced respectively 

as follows. Figure 4 shows an example of windowed cosine wave, which is also called 

burst wave. Properly designed windowed cosine wave has several important advantages. 

First, it has a centered peak in the time domain, as showed in Figure 4. Most energy of 

windowed cosine wave is concentrated near the peak.  The damage features are indicated 

in this relatively small central region. Second, the symmetric feature of windowed cosine 

waves helps to minimize the noise in the sensing signals. Errors in data collection can be 

easily recognized in the time domain. One traditional windowed cosine signal can be 

written in the form as below: 



 

  13 

                       (1) 

where    is the center of the carrier frequency,       is the short-duration smoothing 

window and      is the designed windowed cosine wave form. 

 

Figure 4. 4.5-cycle windowed cosine signal 

One example of the chirp signal is showed in Figure 5. Chirp signal can be 

generated from a linear swept-frequency cosine signal. Mathematically, a chirp wave 

signal can be described as follows 

            (2) 

  
     

 
 (3) 

where       is the instantaneous frequency,    is the default frequency at the initial time, 

   is the default frequency at the end time, and t is the swept time. Compared with burst 

signals, chirp signals cover a wide frequency range. The average signal energy of chirp 

signal is much higher than that of a burst signal with the same amplitude. The stronger 

signal energy allows a higher signal to noise ratio. The second advantage of chirp signal 

is the signal can be designed to cover the exact frequency range needed. When excitation 
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signals sweep cross the damage area, the sensing signal will cover all sensitive 

frequencies. The damage features extracted from different frequency ranges can be fused 

into a critical index to clearly represent the degradation process. 

 

Figure 5. A chirp signal from 1 to 3 Hz 

1.4.2. Flexible MFC Transducers 

Flexible MFC transducers were first developed at NASA Langley Research 

Center. Active piezoceramic fibers are aligned in a unidirectional manner with 

interdigitated electrode patterns on polyimide film. Structural epoxy is used to host the 

MFC layers, as shown in Figure 6a). It is noted that the cross section of macro fibers is in 

the rectangular shape due to the method used to form the fibers, as shown in Figure 6b). 

The fibers are cut from piezoceramic wafers using a CNC controlled dicing saw. The 

interdigitated electrode patterns are made from copper-clad polyimide film using a photo 

resist and etch process. The macro piezoceramic fibers are mounted on the bottom 

electrode film using structural epoxy. The fibers are properly fixed and aligned when the 

epoxy is slightly heated. Then the top electrode film is applied. Finally all the MFC 

layers are placed in a vacuum hot press to prevent the voids in the epoxy matrix. The 

advantages of MFCs include extreme flexibility, durability and high electromechanical 
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coupling coefficients.  

 

(a) MFC structure 

 

(b) Cross section of macro fiber  

Figure 6. The structures of MFC actuator (Wilkie, 2000) 

MFCs have been used for dynamic testing and control, vibration sensing and 

actuation, and energy harvesting. For example, Ruggieroa et al. (2004) presented an 

experimental investigation of the vibration testing of an inflated, thin-film torus using 

MFCs as both actuators and sensors. Multiple actuators were used to properly excite the 

global modes of the structure and distinguish between pairs of modes at nearly identical 

resonant frequencies. In addition, MFCs can be applied to replace ceramic PZT 

transducers on flexible structures. Sodano et al. (2005) compared the energy harvesting 

capabilities of ceramic PZT wafers, MFCs, and bimorph Quick Pack actuators. Batteries 

are recharged to determine the charge time and maximum chargeable battery capacity. 

The experiments identified the feasibility of their use in practical applications. In this 

dissertation, the application of MFCs as both actuators and sensors is introduced in 

details in Chapters 6 and 7.  

1.4.3. Optical FBG Sensors 

Optical FBG sensors have made a significant entrance in the sensor panorama in 

the last ten years. FBG sensors are made from optical fibers which are thin glass fibers 

that are usually protected by a polymer coating or even a metal coating in extreme 
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conditions, as shown in Figure 7. Multiple gratings can be etched into a single fiber and 

multiple FBG optical fibers can be inserted in one cable for targeted application.  The 

grating in FBG typically has a sinusoidal refractive index variation over a defined 

wavelength. The reflected wavelength is called the Bragg wavelength. When a laser is 

sent into the optical fiber in FBG sensors, the light at designed wavelength is reflected. 

When the grating is compressed or stretched under mechanical or thermal load, the 

wavelength of reflected laser light changes slightly. By measuring the shift in laser 

wavelength, the mechanical or thermal load can be identified. 

 

Figure 7. FBG structure 

The application of FBG in CFRP composites can be classified into two categories: 

the surface mounted approach and the embedded approach. The surface mounted 

approach has been applied to detect and localize impact damages in composites. For 

example, Frieden et al. (2012) reported a damage localization method to predict the 

impact position based on interpolation of a reference data set. A high rate interrogation 

method based on intensity modulation of the Bragg wavelength shift was used to acquire 

the FBG signals. The localization method was found to have good prediction accuracy. 

The embedded approach is harder to achieve than the surface mounted approach due to 

the fabrication difficulties. Yashiro et al. (2005) developed an approach to predict 

multiple damage states in composite laminates using embedded FBG sensors. The 
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proposed approach is useful to explain the results of a quasi-static tensile test for a 

notched CFRP cross-ply laminate. Takeda et al. (2005) developed a damage detection 

method by combining PZT actuators with FBG sensors for embedment inside a lamina of 

composite laminates without strength reduction. PZT actuators generated Lamb waves in 

a CFRP laminate and the transmitted waves were received by an FBG sensor attached on 

or embedded in the laminate using a high-speed optical wavelength interrogation system. 

This system was able to detect interlaminar delamination in CFRP cross-ply laminates. 

1.4.4. Acoustic Emission Sensing Techniques 

Acoustic emission is well known in both the SHM and NDE communities. In 

ASTM standard acoustic emission is defined as “the class of phenomena whereby 

transient elastic waves are generated by the rapid release of energy from localized 

sources within a material, or the transient waves so generated” (ASTM E1316). In 

composite materials, acoustic emission sources can be from matrix cracking, fiber 

breakage, debonding and movement between fiber and matrix, delamination and fiber 

pullout. External noises can interfere with the acoustic emission signal and introduce 

background noise to sensing data. Background noise is commonly minimized with the 

establishment of appropriate test and evaluation thresholds. Remaining background noise 

can be filtered prior to analysis of the AE data. 

There are two types of acoustic emission signals, continuous and burst types. The 

waveform of continuous acoustic emission signals is similar to Gaussian random noise. 

However, the amplitude keeps changing with the released energy. Burst type acoustic 

emission signals are short duration pulses that are caused by the release of high amplitude 
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strain energy. They are used to indicate fast and large damage growth in structures. The 

monitoring of continuous acoustic emission signals relate to the continuous degradation 

process in structures. The combination of these two types of acoustic emission signals 

can be used to monitor the damage degradation process in composite structures. As 

shown in Figure 8, the commonly extracted acoustic emission parameters include peak 

amplitude, duration, rise time and counts. It has been found that using a fixed threshold 

just above the background noise level allows monitoring of the damage processes 

efficiently. 

 

Figure 8. Typical acoustic emission signal and available features (Huang, 1998) 

There are several advantages of the acoustic emission sensing technique. It can be 

used to detect and localize damage in structures in real-time. It is also sensitive to damage 

compared to other passive sensing techniques. Acoustic emission can be used to monitor 

both large structures and small structures. When used on small structures, acoustic 
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emission sensors can be concentrated around the critical components and areas. Acoustic 

emission sensing techniques require very little operator involvement once the experiment 

has been set up. The disadvantage is that acoustic emission sensing can be severely 

influenced by loading conditions. In addition, if the load or damage does not create a 

sufficient amount of energy, the specimen cannot generate detectable acoustic emission 

signals. 

1.5. Objectives 

The objectives of this dissertation are as follows: 

 Develop a general SHM frame work to detect, localize, quantify and estimate 

the RUL of CFRP composites. The developed methodologies are able to 

identify multiple damage types including matrix cracking, fiber breakage, and 

delaminations caused by fatigue and impact. 

 Develop robust damage detection methodology that integrates GW approach 

and time-frequency analysis algorithms. Define novel damage index/metrics 

to represent the severity of damage for quantification. 

 Expand damage detection method for localization in CFRP composites. The 

developed localization algorithm is able to estimate the confidence range of 

the damage position. 

 Develop a prognosis and RUL estimation algorithm to predict the future states 

of composites structures under fatigue loading. The developed prognosis RUL 

should be robust on different composite structures and loading conditions.  

 Validate the developed methodologies using complex composite structures, 
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such as flat and stiffened composite panels, UAV wings and deployable 

satellite booms. Provide necessary modification of the developed SHM 

algorithm for aerospace requirements. The SHM algorithms should be robust 

to fiber orientation, lay-up sequences, and environmental noise. 

1.6. The Outline of Dissertation 

This dissertation contains seven chapters and is organized as follows: 

Chapter 2 presents damage assessment methodology using GW approach and a 

time-frequency signal processing technique. Matching pursuit decomposition (MPD) 

algorithm is used for extracting wavelets from the Lamb wave signals in the time-

frequency domain. A small time-frequency atom dictionary is defined to avoid the 

exhaustive search over the time-frequency domain and to reduce the computation costs. 

A two-step damage detection approach, which uses both pulse-echo and pitch-catch 

active sensing schemes, is developed for the identification of delaminations. The 

delamination is quantified using a signal energy based damage index. The results show 

that the MPD algorithm can be used to identify the seeded delaminations in composite 

structures with complex geometries and material properties. The results of this chapter 

have been published in Journal of Intelligent Materials and Structures (Liu et al. 2012). 

Chapter 3 investigates the development of a new approach for SHM and damage 

localization using a guided wave based active sensing system. This approach uses time-

frequency analysis to calculate the difference between the time-of-flights (ToFs) of the 

converted modes for each sensor signal. The damage location and the group velocity are 

obtained by solving a set of nonlinear equations. The proposed method can be used for 
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composite structures with unknown lay-up and thickness. To validate the proposed 

method, experiments were conducted on both composite plates and stiffened composite 

panels. The locations of the delaminations in the composite specimens were validated 

using a flash thermography system. The accuracy of the developed localization method 

was experimentally examined. 

Chapter 4 presents a condition based prognosis approach to estimate the RUL of 

composite specimens in real time. On-line damage states are estimated with real time 

sensing information and are fed to an off-line predictive model to update future damage 

states and RUL. The on-line damage index or damage state at any given fatigue cycle is 

estimated using correlation analysis. The condition based prognosis model is used to 

estimate the cumulative fatigue damage in composite test structures under constant 

amplitude fatigue loading. Based on the on-line and past history state information, an off-

line model is developed to predict the future state and the RUL. The off-line model is a 

stochastic model which is developed based on a Gaussian process approach.  The 

procedure is validated against uniaxial fatigue loading as well as biaxial fatigue loading. 

Experimental validations demonstrate that the prediction capability of the prognosis 

algorithm is effective in predicting the RUL even under complex stress states. The results 

of this chapter have been published in Journal of Nondestructive Evaluation (Liu et al. 

2010). 

Chapter 5 extends the developed SHM algorithm before to a composite UAV 

wing. A novel damage detection methodology is demonstrated for monitoring and 

quantifying the impact damage propagation. Statistical feature matrices, composed of 
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features extracted from the time and frequency domains, are developed. Kernel Principal 

Component Analysis (KPCA) is used to compress and classify the statistical feature 

matrices. Compared with traditional principal component analysis (PCA) algorithms, the 

KPCA method demonstrates better feature clustering and damage quantification 

capabilities. A new damage index, formulated using Mahalanobis distance, is defined to 

quantify impact damage. The developed methodology has been validated using low 

velocity impact experiments with a sandwich composite UAV wing. 

A novel SHM methodology based on system identification techniques is 

presented to identify the damage in laminated composite booms in Chapter 6. NDE 

techniques, frequency response analysis and Auto-Regressive with eXogenous (ARX) 

input models are used to approximate the transfer functions between input and output 

sensing signals. Structural degradation is identified by examining the change of transfer 

functions at different damage states. A single-input-single-output (SISO) approach is 

adopted in this chapter. System identification techniques allow characterizing of 

structural degradation without the need for acquiring excessive training data. The 

proposed methodology is verified through experimentation where damage is gradually 

induced by flattening and wrapping the deployable boom samples around a circular hub. 

The results of this chapter have been published in Journal of Spacecrafts and Rockets 

(Liu et al. 2011d). 

Chapter 7 summarizes the research work of this dissertation, emphasizes the 

important original contributions and findings of this dissertation. The future research 

directions and recommendations are also discussed. 
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Chapter 2 

GUIDED WAVE BASED DAMAGE DETECTION IN COMPOSITES 

2.1. Introduction 

In composites, imperfections such as delaminations, fiber breakage, and matrix 

cracks can significantly alter the mechanical characteristics and eventually affect the life 

of the structure. The first objective of SHM is to detect the presence of defects and 

imperfections close to the nucleation stage so that proper steps can be taken to avoid 

system or sub-system level failure. The general purpose of damage detection using active 

sensing in SHM is to find the change of sensing features before and after structural 

degradation. Robust damage features can represent the damage initiation and monitor the 

damage propagation. Different techniques have been investigated in literature, such as 

vibration-based approach and piezoelectric impedance analysis (Doebling, et al., 1998; 

Park, et al., 2003). Multiple types of sensors including strain gages and FBG sensors have 

been used. However, due to the material complexity and structural requirement, most of 

these techniques are not sensitive enough to detect damage initiation in composites 

structures. 

Among various damage detection technologies under investigation, one of the 

most popular approaches for composite structures is the GW based techniques. These 

techniques involve exciting the structures with high frequency stress waves and 

processing the different structural response to detect and characterize in-situ damage 

within structures. Since mechanical, aerospace, and civil structures are composed of 

typical beam, plate, and shell structures, GW based techniques are applicable in 
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developing damage detection framework for such systems. Compared with traditional 

detection approaches, the advantage of GW is that an actuator-sensor pair has a high 

sensitivity to damages and a large coverage area. This allows the GW based techniques to 

be used for monitoring damage initiation in large scale structures. When stress waves are 

forced to follow a path by the two traction free surface boundaries, such as for thin plates 

and beams, GW is usually specified as Lamb wave. Surface-bonded/embedded 

piezoelectric wafer transducers are typically used as sensors and actuators for Lamb wave 

approach (Raghavan and Cesnik, 2007; Zhao, 2007). More details into the propagation of 

the Lamb waves can be found in (Kessler et al., 2002; Kim and Sohn, 2007; Giurgiutiu, 

2005; Su et al., 2006; Liu et al., 2012). Due to the superposition of shear wave and 

longitudinal wave, Lamb wave signals are also complex in nature. More than one Lamb 

wave mode can be generated simultaneously at any excitation frequency and each mode 

has a unique dispersion curve. Therefore, it is important to develop efficient analysis 

techniques to study the Lamb wave signals and isolate different Lamb wave modes. The 

motivation of this chapter is to investigate the GW based damage detection and related 

feature extraction techniques. 

2.2. Lamb Wave Based Damage Detection 

Due to the dispersive and multimode characteristics, Lamb wave is complicated in 

nature. The dispersion and multimode of Lamb wave can be theoretically analyzed by 

solving Rayleigh-Lamb equations defined for the symmetric and anti-symmetric modes 

on an infinite plate with a thickness of 2h 

                                                 (4) 
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where          
  ,         

 ,   is a wave mode, and    is the wave number for 

longitudinal wave and    is the wave number for shear wave. The dispersion curve can be 

expressed by the excitation frequency and plate thickness. The group velocity    can be 

defined as 

   
  

  
 (5) 

where   denotes an angular velocity. 

Typically, two types of Lamb wave modes, the symmetric (S mode) and the anti-

symmetric (A mode), are generated during wave propagation in thin plates. The Lamb 

wave modes with the lowest order are called S0 and A0 modes. The S and A modes 

convert into new modes when discontinuity such as thickness change is present in the 

plates. As shown in Figure 9, the S0 mode is first generated by the actuator. When the S0 

mode reaches the delamination, the wave mode converts into S0/S0 and A0/S0 modes 

above and below the delamination. The notation S0/S0 implies S0 mode converted from 

the S0 mode and A0/S0 denotes A0 mode converted from the S0 mode. When the S0/S0 and 

A0/S0 modes travel through the delamination zone, these two modes convert again into 

S0/S0/S0, A0/S0/S0, S0/A0/S0, and A0/A0/S0 modes. For small delamination size, the 

S0/S0/S0 and S0/A0/S0 modes combine together in the time domain, and are displayed as 

the S0 mode recorded by the sensor. The A0/S0/S0 and A0/A0/S0 modes combine together, 

and manifest as the converted mode recorded by the sensor. This phenomenon, indicating 

the generation of an additional Lamb wave, is called mode conversion (MC), and the 

associated mode is referred to as the MC mode. When a delamination exists in a thin 
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composite plate, there is a jump discontinuity in thickness at the delamination zone; as a 

result, the Lamb wave converts into the MC mode. The mode conversion of Lamb waves 

propagating in a composite plate with a single delamination is shown in Figure 9. The 

delamination can be detected by identifying the MC mode in a Lamb wave propagation 

signal. 

 

Figure 9. Schematic of Lamb wave propagation with an embedded delamination 

2.3. Feature Extraction Using Matching Pursuit Decomposition 

Feature extraction plays a significant role in Lamb wave based SHM system. The 

goal of feature extraction is not only to extract information to detect potential damage, 

but also to provide information for the characterization, quantification, and localization, 

which is used for RUL estimation. Traditionally, the well-known Fourier transform 

provides the ‘global’ information about the frequency content, and it is suitable for 

signals with stationary frequency content. However, the frequencies of Lamb wave 

signals vary in the time domain. This type of signals can be better represented in the 

time-frequency domain to extract time-varying frequency information. To analyze the 

time-varying sensor response effectively, the time and frequency domain characteristics 

must be considered simultaneously. These time-frequency representations (TFRs) 

characterize a given signal over the time-frequency plane by combining the time and 
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frequency domain information to yield more revealing information about the temporal 

localization of a signal’s spectral components. The MPD is a time-frequency based 

technique that decomposes a signal into highly localized time-frequency atoms and can 

provide a highly concentrated TFR (Mallat and Zhang, 1993; Qian and Chen, 1994; Das 

et al., 2009). It is an iterative algorithm that decomposes any signal into a linear 

expansion of waveforms that belong to a redundant dictionary. The dictionary of the 

MPD consists of a collection of time-frequency atoms which are the dilated (time-scaled), 

translated (time-shifted) and modulated (frequency-shifted) versions of a single basic 

atom. The basic atom is often chosen to be a Gaussian signal as Gaussian signals are the 

most concentrated signals in both time and frequency. 

For Lamb wave signals, the signal with finite energy      can be decomposed into 

a linear combination of time-frequency atoms. This type of infinite approximations can 

be written as 

        

 

   

      (6) 

where       is the time-frequency atom (sub-waveform) selected from the MPD 

dictionary   and    is the corresponding expansion coefficient. The finite linear 

combination of these time-frequency atoms can be used to provide an approximation of 

the signal with arbitrary accuracy. After N iterations, the resulting expansion can be 

expressed as 

         

 

   

      (7) 

The residual signal        with N iteration is 
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      (8) 

Because the signal has finite energy, the energy of the approximated signal is also 

preserved.  The energy conservation can be expressed as 

                
 

 

   

         
  (9) 

In order to find the best match between the signal and time-frequency atoms, the inner 

product of the signal and each time-frequency atom is calculated. Let       , the signal 

     can be decomposed into 

                         (10) 

where Rx is the residual signal after approximation using the time-frequency atom     . 

To minimize the energy of   , the proper      is selected from the dictionary D and      

satisfies 

                                 (11) 

where    is an optimality factor that satisfies       ,                  is the least 

upper bound of the inner product of            . The decomposition of signal      is 

completed by successive calculation with time-frequency atoms from the dictionary. Let 

      be the time-frequency atom of the ith iteration, the approximated signal at this 

iteration is 

                      (12) 

when i=0, let         . According to Equations 7, 10 and 12, the approximated signal 

with a total of N iterations is 
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 (13) 

and the original signal can be expressed as 

                     

 

   

      (14) 

where     is the residual signal at the Nth iteration. Although a redundant dictionary can 

provide flexible decomposition of the signal, the calculation cost is also high. To reduce 

the number of unnecessary time-frequency atoms, a modified MPD algorithm is used. 

The time-frequency dictionary of the MPD algorithm is optimized based on the features 

of the Lamb wave signals from the structures being interrogated. Limited sub-waveforms 

which can best represent the original signal are included in the dictionary. By using the 

optimized atom dictionary, the original signal can still be efficiently decomposed with 

high local time-frequency resolution.  

In this dissertation the actuation signal studied is a cosine windowed tone burst 

wave. According to the Lamb wave theory, only S0, A0 and the related converted modes 

exit as sub-waveforms. All the S0, A0 and the related converted modes can be obtained by 

the dilation and translation of the basic sub-waveform. This procedure reduces the size of 

the MPD dictionary significantly. It must be noted that the MPD algorithm efficiently 

yields a compact representation of the burst wave signals in terms of selected basic atoms 

in the dictionary. Therefore, it reduces the computational cost significantly. In addition, 

the unwanted noise is filtered out because the noise waveforms are typically orthogonal 

to the selected atoms. 
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2.4. Experimental Setup 

Experiments were carried out using both in-house fabricated composite flat plates 

and stiffened panels. The damage type investigated was embedded delaminations. The 

composite flat plates were fabricated with the dimensions of 330×330 mm
2
 and (0°/90°)3 

lay-up. Plain weave carbon fiber fabrics were used as the fiber system. The epoxy FS-

A23 (resin) and FS-B412 (hardener) (from Epoxy System Inc.) were used as the matrix 

system. Nine composite plates were fabricated in-house, one without delamination, and 

the other plates, each with at least one seeded delamination (5×5 mm
2
). Teflon patches 

were inserted during lay-up to generate the delamination. The dimensions of the plate and 

the PZTs are shown in Figure 2. The distance between the PZT pair was 127 mm, and the 

delamination was placed centrally between the two PZTs. The flash thermography was 

used to visualize the delaminations, and the images are presented in Figure 10.  

 

Figure 10. Composite flat plate sample with surface mounted PZTs 

Stiffened composite panels with (0°/90°)3 layup were fabricated in-house. Each 

panel has two co-cured blade stiffeners on its surface, as illustrated in Figure 11. The 
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same carbon fiber fabrics system and epoxy system were used. A total of nine PZT 

wafers and one PZT ring were surface bonded on the stiffened side of the panel surface. 

The dimensions of the structure and the locations of the PZTs are shown in Figure 12. 

Two composite panels were fabricated with seeded delaminations. Teflon patches were 

inserted during lay-up to simulate delaminations. The other two composite panels were 

fabricated without delaminations to study the healthy state of the composite panels. 

 

Figure 11. Stiffened composite panel with bonded PZT patches 

 

Figure 12. Dimensions of composite panel and PZT patches 

A 4.5-cycle windowed cosine burst wave was generated using a NI 5412 

waveform generator, and the Lamb wave signals were captured by a NI 5105 digitizer at 

a sampling frequency of 20 MHz. In order to optimize the central frequency of the 
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actuation signal, several actuation signals were generated using central frequencies 

varying from 50 to 300 KHz in 10 KHz increments. Ten observations were recorded at 

each frequency, and the sensor signal was averaged from the ten observations to reduce 

the sampling error. By studying the sensor signals as well as the dispersion curves of the 

S0 and A0 modes, it is noted that the Lamb wave signals with the central frequency of 180 

kHz is optimal for the present case and is used to excite the actuators. 

2.5. Results and Discussion 

2.5.1. Detection of Delamination in Composite Flat Plates 

The developed delamination detection technique by identifying MC mode in GWs 

is first studied in flat composite plates. The sensor signal recorded from the healthy plate 

is used as the baseline data and analyzed using the MPD algorithm. The TFR of the 

sensor signals collected from various composite samples with seeded delamination can be 

compared with the baseline TFR features. New Lamb wave modes (MC modes) can be 

identified to represent the existence of delaminations. The time of flight (ToF) 

information can also be easily obtained from the TFR and validated by the MPD signal 

approximation in the time domain. Based on the energy in each time-frequency atom, the 

signals are decomposed in descending energy order. The signal and the first six atoms 

associated with the healthy plate, plotted in the time domain, are shown in Figure 13 (a). 

The first six atoms containing 96.3% of the signal energy were decomposed from the 

sensor signal and rebuilt as the approximated signal, as shown in Figure 14. The residual 

signal is considered as the noise. Therefore, the approximated signal rebuilt from the six 

signal atoms can reasonably represent the sensor signal. The TFR of the signal is shown 
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in Figure 13 (b). Each Lamb wave mode needs to be identified after the signal 

decomposition. Based on the Lamb wave theory and the dispersion curves associated 

with each Lamb wave mode, the S0 mode has the highest velocity. Since the dimensions 

of the composite plate and PZT transducers are known, the S0 reflection mode can be 

identified. The group velocity of the S0 mode and the A0 mode are computed as 5.71 

m/ms and 2.03 m/ms, respectively. The S0, A0 and reflected S0 modes are distinctly 

displayed without any overlap, as shown in Figure 13 (b). In this TFR figure the brighter 

the time-frequency atom, the higher is signal energy contained in the local MPD atom. 

Comparing the results shown in Figure 13 (b) and Figure 14, it is noted that the S0 mode 

contains 62.8% of the signal energy, the reflected S0 mode contains 19.3% of the signal 

energy and the A0 mode contains 2.9% of the signal energy.  

  

(a) Sensor signal and MPD approximation (b) Time-frequency representation of sensor 

signal 

Figure 13. MPD time-frequency representation of sensor signal 
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Figure 14. Residual energy of MPD analysis for composite plate without delamination 

Eight composite plates with different seeded delamination patterns were tested, as 

shown in Figure 15. Using the MPD algorithm, the MC mode can be detected and 

represented in the time-frequency domain. Damage detection is conducted by identifying 

the MC mode in the sensor signal, which is generated by a stiffness change in the plate. 

Comparing the TFRs of the sensor signals collected from the healthy plate and from the 

plate with a 5×5 mm
2
 delamination, the MC mode is clearly detected between the S0 and 

S0 reflection mode, as shown in Figure 13. The TFRs for each delamination pattern and 

time domain signals are shown in Figure 16. For all the damage patterns studied in this 

section, the delamination can be clearly detected. This shows that the proposed 

methodology has reasonable reliability for detecting delaminations varying in size, 

location and number. Because the delamination is embedded during the fabrication, the 

influence of fabrication variation is insignificant in the detection of delamination. It is 
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noted that the ToF of the MC mode varies between different composite samples. This is 

caused by the variation in fabrication, and the different distances between the PZT 

actuator and the seeded delaminations in each sample. Because the 5×5 mm
2
 

delamination size is fairly small compared with the distance between PZTs, the energy of 

the MC mode is relatively low when compared with the energy of S0 and S0 reflection 

mode. After 6×10
-5

 s, there are several noticeable time-frequency atoms. These atoms are 

the superposition of several reflected and converted modes, but it is hard to identify the 

mode sources. Therefore, these reflection modes were not studied. The MC mode has 

clearer TFR with a larger delamination size. The advantages of using the MPD algorithm 

are clearly depicted in the results presented. The experimental results clearly demonstrate 

the efficiency of the developed approach to detect seeded delaminations with varying 

distribution through the composite test specimens. The time-frequency dictionary of the 

MPD algorithm is optimized based on the features of the Lamb wave signals obtained 

from the structure being interrogated. Limited sub-waveforms which can best represent 

the original signal are included in the dictionary. 

 

Figure 15. Different embedded delamination patterns 
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(a) Case 1, in-plane delamination at 

interface 1 

(b) Case 1, in-plane delamination at 

interface 2 

  

(c) Case 2, in-plane delaminations at 

interface 1 

(d) Case 2, in-plane delaminations at 

interface 2 
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(e) Case 3, through-thickness 

delaminations at interface 1 & 5 

(f) Case 3, through-thickness 

delaminations at interface 1 & 5 

  

(g) Case 4, through-thickness 

delaminations at interface 1 & 2 

(h) Case 4, through-thickness 

delaminations at interface 1 & 5 

Figure 16. Time-frequency representation of different delamination patterns 



 

  38 

2.5.2. Detection of Delamination in Composite Stiffened Panels  

For structures with large and/or complex geometries, two-step damage detection 

methodology using the pulse-echo and pitch-catch schemes can identify the existence of 

delamination damage. Further damage location information can be estimated following 

the same strategy. Using only one sensor and one actuator, pulse-echo approach can 

quickly detect the existence of damage in a large composite structure. A single PZT ring 

actuator with strong excitation signals is sufficient to interrogate the entire composite 

panel. The pulse-echo scheme can provide quick damage estimation at the global level. 

Once the delamination is detected, the pitch-catch approach will provide detailed 

information of damage location and severity using a PZT array with eight PZT wafer 

sensors. The detailed local detection information can be used for future prognosis and 

RUL estimation. The concept of the two-step global and local damage detection strategy 

can be applied to the SHM of large engineering structures such as aircraft wings and 

fuselages. Global detection can examine the structural integrity in a short time. Once 

potential structural damage is detected, local damage detection can identify the detailed 

location, severity, and damage type for the further maintenance.  

Pulse-echo scheme is first used to detect the existence of delamination. The 

complex geometry of the stiffened panel introduces reflection modes to the sensor signals 

when the pulse-echo scheme is used for damage detection. To successfully detect 

delamination, the different reflection modes need to be isolated and identified. When the 

S0 mode arrives at the T-section of the blade stiffener, the mode scatters into three 

components, one propagating in the plate, one propagating in the blade stiffener and a 
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reflection in the plate, as shown in Figure 17 (a). Similarly, when the component of the S0 

mode that is transferred into the blade stiffener reflects back to the T-section, this mode 

also scatters into another three components. Two of these propagate along different 

directions in the plate and the third is reflected back into the stiffener, as shown in Figure 

17 (b).  

Due to the Lamb wave scattering at the T-section, the S0 and A0 modes generated 

by the actuator propagate along different possible paths and finally are recorded by the 

PZT ring sensor. The eight shortest possible Lamb wave propagation paths are shown in 

Figure 17(c). Both the propagation distance and the group velocities of S0 and A0 modes 

are known, therefore the theoretical ToF along each propagation path can be calculated, 

as shown in Tables 2 and 3. Since PZT 22 is placed in the center of the panel, path 6 is 

the same in both the X and Y directions. Therefore, path 6 will contain Lambs waves 

from both the X direction and Y directions, which results in an increase in magnitude. 

 

  

Figure 17. (a) Lamb wave mode scattering into T-section; (b) Lamb wave mode 

scattering from T section; (c) Different paths of Lamb wave propagation in stiffened 

composite panel using the pulse-echo approach 

Table 2. ToF analysis for S0 mode 
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Path Distance 

(m) 

Group Velocity of 

S0 mode (m/ms) 

Time of Flight 

(ms) 

Path 1 0.13 5.25 0.0248 

Path 2 0.19 5.25 0.0362 

Path 3 0.25 5.25 0.0476 

Path 4 0.26 5.25 0.0495 

Path 5 0.32 5.25 0.0610 

Path 6 0.33 5.25 0.0629 

Path 7 0.39 5.25 0.0743 

Path 8 0.39 5.25 0.0743 

 

Table 3. ToF analysis for A0 mode 

 
Path Distance 

(m) 

Group Velocity of A0 

mode (m/ms) 

Time of Flight  

(ms) 

Path 1 0.13 1.47 0.0884 

Path 2 0.19 1.47 0.1292 

Path 3 0.25 1.47 0.1700 

Path 4 0.26 1.47 0.1768 

Path 5 0.32 1.47 0.2176 

Path 6 0.33 1.47 0.2240 

Path 7 0.39 1.47 0.2653 

Path 8 0.39 1.47 0.2653 

In Figure 18, the S0 mode conversion is considered when an S0 wave mode arrives 

at the stiffener. Mode conversion occurs at the T-section because of the thickness change. 

The original S0 mode converts into A0 and S0 modes and propagate along the 3 possible 

directions. Due to the low group velocity of the A0 mode, only the converted A0 mode 

reflected back to the PZT ring sensor was recorded in the experiment. However, the 
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reflected converted A0 mode cannot be clearly displayed in the TFR because of the low 

energy caused by wave scattering and attenuation. 

 
Figure 18.  Mode conversion at T section 

The healthy composite panel is used to identify each Lamb wave mode for the 

echo signal. A burst wave with a central frequency of 180 kHz was used to generate the 

Lamb wave. The Lamb wave echo signal was recorded from the PZT ring sensor. The 

TFR of the echo signal is shown in Figure 19. The first two atoms can be easily identified 

as the S0 mode propagates along paths 1 and 2, respectively. The experimental ToF of the 

two atoms matches with the theoretical calculation. Since paths 3 and 4 have close path 

lengths, the S0 modes propagating along the two paths overlap together in the time-

frequency domain and represent as the third atom in Figure 19. Similarly, the S0 modes 

propagating along paths 5 and 6 merges and is seen as the forth atom in Figure 19. The 

fifth atom is identified as the A0 mode since the experimental ToF of this mode matches 

with theoretical calculation shown in Table 3. The theoretical and experimental results 

for ToF are compared in Table 4. Due to the signal attenuation and multiple reflections 

and scatterings, it is noted that the S0 mode propagating along paths 7 and 8 lose most of 

the signal energy. There is no clear TFR for this mode in the time-frequency domain. It 
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can be reasonably concluded that the S0 mode, which propagates longer than path 7 and 8, 

can be ignored. 

Table 4. ToF comparison for S0 modes 

 
Theoretical Time of Flight 

(ms) 

Measured Time of Flight 

(ms) 

Path 1 0.0248 0.0248 

Path 2 0.0362 0.0365 

Path 3 0.0476 0.0499 

Path 4 0.0495 0.0499 

Path 5 0.0610 0.0615 

Path 6 0.0629 0.0615 

Delamination was detected in the damaged composite stiffened panel. Using the 

MPD time-frequency analysis algorithm, the TFR of the echo signal can be demonstrated, 

as shown in Figure 20. Compared to the TFR shown in Figure 19, the S0 mode 

propagating along path 1-6 and the A0 mode can be identified at the same time instance. 

In addition, one more atom is detected in this TFR. When the S0 modes propagate 

through the delamination of the composite panel, the two modes convert into a new mode, 

which can be named as the MC mode. In fact there are several MC modes due to multiple 

delaminations. After several reflections of the stiffeners and boundaries, the MC modes 

overlap and combine with each other. This combined MC mode is recorded by the PZT 

ring sensor. The new atom correlates with the delaminations in the composite panel. 

Using the global pulse-echo scheme, the delaminations can be quickly detected by one 

single PZT ring sensor. However, the pulse-echo approach cannot provide more 
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information about the location, number of delaminations, etc. A local pitch-catch active 

sensing scheme is necessary to obtain these details. 

 

Figure 19. TFR and mode identification of echo Lamb wave using healthy stiffened panel 

 

Figure 20. TFR and mode identification of echo Lamb wave using stiffened panel with 

delamination 
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Once delamination is detected using the global scheme, local damage detection 

approach is used to find more detailed damage information. The pitch-catch scheme uses 

a sensor array with nine PZT wafers to detect the local delamination between the actuator 

and sensors. PZT 22, which is located at the center of the composite panel, is used as the 

actuator. A burst signal with a central frequency of 180 kHz is used as the excitation 

signal. The PZT sensor signal recorded from the healthy panel is used as the baseline data. 

The first five Lamb wave atoms in the TFR are identified using the baseline data. 

Delamination is detected by identifying the new MC modes in the signal recorded from 

the panel with delaminations, which is similar to the pulse-echo approach. 

Using the healthy composite panel, the sensor signal collected from PZT 21 is 

used to study the influence of the stiffened panel on the sensor signal. The first four 

possible propagation paths for PZT 21 are shown in Figure 21, and the associated TFR is 

shown in Figure 22. The first S0 and the following reflection of S0 modes are illustrated. 

The arrival of the A0 mode was recorded at 0.086 ms. The experimental ToF results 

matches with theoretical analysis. Similar time-frequency atoms with more attenuation 

and time shift can be identified in the signal collected from the other PZT sensors. 

 

Figure 21. Possible propagation paths for PZT 21 
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Figure 22. TFR of Lamb wave collected from PZT 21 using healthy panel 

Two delaminations were detected between PZTs 22 and 31 and PZTs 22 and 13, 

respectively. The TFR of the sensor signal recorded from PZT 31 using the healthy panel 

is shown in Figure 23. Each Lamb wave mode can be represented as a time-frequency 

atom in the TFRs. The location of each atom in the TFR can be verified by studying the 

ToF of each Lamb wave mode. As shown in Figure 23, the first time-frequency atom is 

identified as the first arrived S0 mode, the second and the third atoms are the S0 reflection 

modes due to the boundary and the stiffener. The fourth atom is the A0 mode. Similar 

atoms can be identified in the sensor signals recorded using the composite panels with 

seeded delaminations. However, using the damaged composite panel, the fifth atom in the 

TFR of the PZT 31 signal is identified as the converted mode caused by the delamination, 

as shown in Figure 24. Due to the delamination between PZTs 22 and 13, the converted 

mode is also detected in the signal recorded from PZT 13. However, in the sensor signals 

of PZTs 11 and 33, there is no such converted mode introduced by delamination. These 

results demonstrate that the two seeded delaminations are detected by the local PZT 
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sensor using the pitch-catch active sensing scheme. Using the proposed methodology, 

multiple delamination damages can be detected. 

 

Figure 23. TFR of Lamb wave collected from PZT 31 using healthy composite panel 

 

Figure 24. TFR of Lamb wave collected from PZT31 using composite panel with 

delaminations 

Although the developed damage detection schemes are validated using composite 

structures, the method can be extended to metallic and complex engineering structures. 

The mode conversions and signal energy reduction of Lamb wave due to damage are also 

true in metallic materials. The two-step global and local damage detection schemes 
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provide the quick damage detection option as well as the detailed damage awareness 

option. This is important especially for the SHM of complex engineering structures and 

systems. Therefore the developed global and local detection schemes using the MPD 

algorithm has potential application to detect different damage scenarios.  

2.6. Concluding Remarks 

In this chapter, damage detection method in carbon fiber reinforced composites 

using guided wave approach has been investigated. The guided wave propagation theory 

and MPD algorithm are introduced. Using the MPD algorithm, the Lamb wave signal can 

be represented in the time-frequency domain for the identification of different Lamb 

wave modes. Therefore, the sensing features can be extracted to represent the existence 

of delamination in composites. The developed method is experimentally validated using 

composite plates with seeded delaminations at difference interfaces. A two step strategy 

for detection and characterization of delaminations in stiffened composite panels is 

presented. A pulse-echo scheme rapidly detects the existence of delamination in the 

composite panels by identifying the converted modes caused by delaminations. Only one 

PZT ring sensor is required to detect the studied structure with a complex geometry. 

However, further damage state information, such as the location and number of 

delaminations, cannot be obtained. A pitch-catch scheme can detect the delamination in 

the area between PZT actuator and sensors. By studying the signal energy of the 

converted mode, the severity of the signal can also be estimated. Other useful diagnosis 

features for damage diagnosis and prognosis can be obtained using proper feature 

extraction algorithms. The results are significant because they demonstrate effective 
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damage detection and characterization in a composite structure with both a complex 

geometry and orthotropic material properties. 
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Chapter 3 

DAMAGE LOCALIZATION IN COMPOSITES 

3.1 Introduction 

The location of damage is necessary for further quantification and prognosis 

analysis when the existence of damage is detected. Damage localization techniques can 

be classified as either an active sensing approach or a passive sensing approach. Active 

sensing approaches can be used to localize the existing damage in composites. In passive 

sensing approaches, impact damage or propagating damage caused by fatigue can be 

monitored and the damage positions identified. 

Damage localization in composite structures requires accurate guided wave 

information and features. Most previous work focused on locating impact damage in 

composite structures using passive sensing approaches (Meo et al., 2005; Staszewski et 

al., 2009; Hiche et al., 2010). The traditional damage localization method is to use the 

triangulation method and the time of flight (ToF) information to obtain three ellipses 

requiring at least three active sensors. The intersection point of the three ellipses is 

considered to be the damage spot. Knowledge of group velocities of the guided wave in 

all directions is required for this approach (Gorman and Ziola, 1991; Coverley and 

Staszewski, 2003; Reynold et al., 2009). Neural network algorithms have been used to 

obtain the angle dependent group velocity profile (Moll et al., 2010). Other damage 

localization approaches include direct wave paths analysis between an actuator and 

multiple sensors (Sohn et al., 2005), the energy decay model (Wang and Yuan, 2006), 

principle stress directions for impact locations (Salamone et al., 2011), smart sensors and 
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sensing techniques, such as Laser Doppler Vibrometer (LDV) (Staszewski et al., 2009) 

and Fiber Bragg Grating (FBG) sensors (Hiche et al., 2010; Adewuyi and Wu, 2010). 

These approaches have been validated using isotropic and quasi-isotropic plates with 

simple geometries. However, limited work has addressed the extension of damage 

localization to general anisotropic composite structures with complex geometries. 

In this chapter, an active sensing based damage localization method is presented. 

The proposed methodology used a PZT sensor array to detect the delamination location. 

The MPD algorithm was used to compute the differences of ToF of the converted modes 

between master and slave sensors. To assess the delamination location in composite 

structures, the sensor locations and differences of ToF were used to create three nonlinear 

equations. The nonlinear equations were converted into an unconstrained optimization 

problem and solved using Newton’s method. Due to the redundancy of the PZT sensor 

array, a probabilistic location estimation algorithm was used to provide the confidence 

range of the delamination in the composite structures. Experiments were conducted using 

the composite structures with three types of layups and two types of carbon fiber fabrics. 

The proposed method does not require any information about the material properties, 

layup or thickness information. A confidence range for the estimated delamination is 

provided using the proposed methodology. 

3.2 Damage Localization Algorithm 

The delamination localization algorithm for composites is based on the difference 

of ToF of the converted modes caused by delamination. A piezoelectric based active 

sensing method is used to localize delamination in composites. The actuator and sensor 



 

  51 

placement is shown in Figure 25.  Providing that the center of the delamination in the 

composite plate is (xd, yd) and the sensor positions are (xi, yi) (i=1, 2,…, 6). The distance 

between the delamination and each PZT sensor is Di and expressed as 

  
         

         
  (15) 

For this technique, a Lamb wave is first generated by the actuator. When the 

Lamb wave propagates through the delamination area, mode conversions and reflections 

can scatter the Lamb wave in all directions in the composite. The ToF, Ti, from the 

delamination to the sensor, Si, combines with the group velocity, Vi, to yield a new 

expression for distance,  

        (16) 

 

 

Figure 25. Actuator and sensor placement on composite samples 

The group velocity of a Lamb wave is a function of fiber orientation, material 

properties, thickness, etc. As most composite structures are anisotropic materials which 

have different material properties in different directions, the group velocity is different 

for each direction. In short, Vi (i = 1, 2,…, 6) have unique values for various directions. 
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However, as shown in Figure 26 when two sensors S1 and S2 are placed close to each 

other but far from the delamination, we have D1, D2   d12. 

   

  
 

   

  
           (17) 

where d12 is the distance between sensors S1 and S2. We can assume    . The group 

velocities from the delamination to the sensors can be assumed to be the same.  

 

Figure 26. Scheme of optimized sensor arrangement 

         (i= 1,3,5) (18) 

Based on Equations 15, 16 and 18, three equations with eight unknowns are present and 

can be consolidated to yield a generic equation for comparing the two velocities, 

                  

  
 

                      

    
 (19) 

where i= 1,3,5. The unknown variables are xd, yd, and Ti (i=1,2,…,6) associated with 

delamination location and the ToF of propagated mode conversions resulting from wave 

interaction with the delamination. The nonlinear equations condensed in Equation 19 

cannot be solved because there are more unknown variables than equations. In order to 

provide additional information, one sensor is picked as the master sensor, and the other 
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sensors are used as slave sensors. The differences of ToF of the converted modes 

between the master sensor and each slave sensors can be written as, 

              (20) 

where      is the ToF of the converted mode for the slave sensor j (j=1,…5),    is the 

ToF of the converted mode for the master sensor, and       is the difference of ToFs 

between master sensor and slave sensor j. Using the time-frequency analysis approach, 

      can be solved by identifying the converted modes of the Lamb wave signal in the 

time-frequency domain. The selection of the master sensor is random. If sensor S1 is 

chosen as the master sensor, the nonlinear Equation 19 can be written as, 

                  

  
 

                  

        
   

                  

        
 

                  

        
   

                  

        
 

                  

        
   

(21) 

In Equation 21, there are three unknown variables in these three nonlinear 

equations. The unknowns are xd, yd, and T1. Theoretically, these equations can be solved. 

More Lamb wave propagation information, such as group velocities in different 

directions can also be calculated after solving Equation 21. 

Using the refined MPD algorithm, the guided wave signals from different sensors 

can be represented in the same time-frequency domain. The difference of ToFs between 

sensors can be compared and accurately calculated. This ToF information is used as input 

information for the damage location objective equations. 
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To efficiently solve the nonlinear equations, they are combined and solved using 

an unconstrained Newton’s method. Newton’s method has been proven to be an efficient 

iterative method for finding roots of equations (Rao, 1996). In optimization, Newton’s 

method is equivalent to iteratively minimizing a local quadratic approximation to the 

objective function.  

The localization objective Equation 21 can be written as, 

       (22) 

where F is the vector of the equations Fi (i=1,2,3) and x is the vector of the unknowns. 

For vector x, we have, 

x1= xd; x2=yd; x3=T1; (23) 

Assume at x*, we have F(x*)=0. Newton’s method converges to x* by computing the 

Jacobian matrix of the function F. The Newton’s iteration can be expressed as,  

                            (24) 

where    is the current point,      is the iteration point after   , and     

             . The Jacobian matrix      can be expressed as, 

     
     

  
 

 
 
 
 
 
 
 
      

   

      

   

      

   

      

   

      

   

      

   

      

   

      

   

      

    
 
 
 
 
 
 

 (25) 

For unconstrained optimization, the merit function measures the agreement between the 

function value and the ideal optimized value. Generally, the merit function can be written 

as a scalar valued function, 
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             (26) 

The solution x* of nonlinear equations F(x) = 0 are also the global minimum of the 

objective function f(x). Newton’s method is used to find the global minimum solution for 

the objective function. 

3.3 Probabilistic Estimation of Delamination Location Range 

Assuming that the same group velocities for the two nearby PZT sensors on the 

composite specimen introduces system estimation error to the proposed algorithm and 

increases uncertainty of the estimated delamination location. Probability based location 

estimation can provide a certain location range and improve the damage awareness in 

composite structures.  

Redundant PZT sensors are used in the proposed localization method. Four pairs 

of sensors are bonded on each composite sample. For every composite sample, round 

robin experiments were conducted. Each PZT transducer was used as an actuator once in 

the eight experiments. Based on Equation 26, eight delamination positions can be 

estimated. They are (xd,i, yd,i) (i=1,2,…8). Since a different actuator is used in each 

experiment, the experiments can be considered independent. The final delamination 

position (xd, yd) is defined as, 

   
     

   
   

 
,      

     
   
   

 
 (27) 

where (xd, yd) is the final estimated delamination position and n is the total amount of 

experiments conducted for each composite sample. For the cases studied in this chapter, n 

is equal to 8. 
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The delamination positions in the x and y axes are also independent to each other. 

To define the estimated data vector D, the following equation can be used, 

                                (28) 

The confidence range of the delamination can be estimated by calculating the standard 

deviation,    of vector D (Papoulis and Pillai, 2002), 

   
           

   

 
 (29) 

where    is the mean of vector D. For the case studied in this chapter, m is equal to 16. 

3.4 Experimental Setup 

Three experiments were conducted to validate the proposed localization 

methodology. In experiment 1, composite plates with a [0°/90°/0°]s layup were fabricated 

in-house. Plain weave fiber fabrics were used as the fiber system to simulate composites 

with quasi-isotropic material properties. In experiment 2, composite plates with   [(0° /90° 

/0°)pw/90°uni/(0° /90° /0°) pw] layup were fabricated. Both plain weave fiber fabrics and 

unidirectional fiber fabrics were used to obtain orthotropic material properties. In 

experiment 3, stiffened composite panels with two stiffeners were fabricated using 

[0°/90°/0°]s layup. Plain weave fiber fabrics were used as the fiber system. A two-part 

epoxy, FS-A23 (resin) and FS-B412 (hardener) from Epoxy System Inc., was used as the 

matrix system for all composite coupons. Delaminations were seeded in the composite 

plates and panels during fabrication using Teflon patches. Flash thermography (Echo 

Therm System) was used to validate the position and size of the delaminations. The 
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composite plates and stiffened panels with flash thermographic images are shown in 

Figure 27. 

  

(a) Composite plate (b) Stiffened composite panels 

Figure 27. Composite plates and stiffened panels used in experiments 

A PZT array using eight PZT transducers were bonded on the surface of the 

composite samples in four pairs, as shown in Figure 27. In each PZT pair, the two 

transducers were placed close to each other. One PZT was used as the actuator and other 

three PZT pairs were used as sensors. A waveform was generated using a NI 5412 

waveform generator, and the Lamb wave signals were captured using an NI 5105 

digitizer at a sampling frequency of 20 MHz. In order to optimize the central frequency 

of the actuation signal, several actuation signals were generated using central frequencies 

varying from 10 kHz to 300 kHz in 10 kHz increments. A 4.5-cycle cosine windowed 

burst signal with a central frequency of 180 kHz was chosen as the actuation signal. Ten 

observations were recorded at each measurement and the sensor signal was averaged 

from these observations to reduce the sampling error. Round robin tests were conducted 

to improve the localization accuracy.  
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3.5 Results and Discussion 

In experiment 1, the composite plate with quasi-isotropic material properties was 

tested. Baseline data was collected from the healthy composite sample. Guided wave 

sensor data was collected from the sample with seeded delamination. The Lamb wave 

signals were analyzed using the MPD algorithm. The Lamb wave modes recorded from 

both the healthy sample and the sample with seeded delamination were represented in the 

time-frequency domain. By comparing the two time-frequency representations (TFRs) in 

the time-frequency domain, the first converted mode caused by the delamination can be 

identified, as shown in Figure 28. From the TFRs of the master sensor and the nearby 

slave sensor, the difference of the ToF of the converted mode can be calculated, as shown 

in Figure 28. 

The delamination localization results are shown in Figure 29. The real 

delamination position is 10.2 mm away from the estimated delamination position, but still 

in the 95% confidence range of the estimated delamination area. The detailed real and 

estimated delamination positions are shown in Table 5. 

Experiment 2 validated the proposed methodology using the composite plates 

with orthotropic material properties. Both plain weave and unidirectional fiber fabrics 

were used. The ToF difference between PZT sensors were computed using the MPD 

algorithm. The delamination localization results show that the real delamination is 12.6 

mm off the estimated delamination position, as shown in Figure 30 and the detailed real 

and estimated positions are shown in Table 5. 
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Figure 28. TFRs of the Lamb wave signals collected from master sensor in healthy plate, 

master and slave sensors from damaged plate 

 

Figure 29. Estimated delamination position and confidence range for quasi-isotropic 

composite materials 
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Figure 30. Estimated delamination position and confidence range for orthotropic 

composite materials 

Experiment 3 validated the proposed methodology using the composite plates 

with two stiffeners. Similar to the approach used previously, the MPD algorithm was 

used to calculate the ToF difference between sensors. The delamination location was 

calculated by solving the optimization objective function. Localization results show that 

the real delamination position is 12.2 mm away from the estimated position, as shown in 

Figure 31. The detailed real and estimated delamination positions are shown in Table 5. 

 

Figure 31. Estimated delamination position and confidence range for stiffened panels  
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Table 5. Real and estimated delamination positions  

 

 

Real Position 

(unit: mm) 

Estimated 

Position 

(unit: mm) 

95% confidence 

range 

(unit: mm) 

Experiment 1 (235.4,190.7) (229.3, 199.5) 18.3 

Experiment 2 (240.1,120.9) (248.3, 130.5) 21.5 

Experiment 3 (110.2, 115.6) (119.3, 123.7) 19.8 

3.6 Concluding Remarks 

In this chapter, a delamination localization methodology using a guided wave 

based active sensing technique is presented. Due to the complexity associated with the 

interrogated composite structures, guided wave information and composite material 

properties are difficult to obtain. By solving an optimization function subject to three 

nonlinear objective equations, the delamination position can be estimated without 

knowing the group velocity or ToF for each wave mode. Information required for the 

proposed methodology includes the sensor position, and the difference of ToF of the 

converted modes caused by delamination between master sensor and slave sensors. By 

comparing the sensor data with the baseline data collected from the healthy samples, 

converted modes caused by the seeded delamination can be identified. Using the MPD 

algorithm, the guided wave signals are represented in the time-frequency domain, and the 

difference of the ToF of the converted modes between master and slave sensors can be 

calculated. The group velocities from the delamination to the two nearby PZT sensors are 

assumed to be the same. Redundant sensors are placed on the surface of composite 

samples. Probabilistic confidence range estimation provides the 95% confidence range 

for the estimated delamination positions.  
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The developed localization methodology is experimentally validated using in-

house fabricated composite plates and stiffened panels. Both healthy and damaged 

composite samples were fabricated using plain weave fiber fabric system and 

unidirectional fiber fabric system. The experimental results demonstrated that the real 

delamination positions can be accurately located in the 95% conference range of the 

estimated positions. 
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Chapter 4 

PROGNOSIS AND RUL ESTIMATION USING GAUSSIAN PROCESS 

4.1. Introduction 

Although the study of fatigue behavior in composites has been a popular research 

subject over the years, SHM and prognosis of composite structures is still at its infancy. 

The estimation of the reliability and remaining useful life (RUL) is important for 

condition-based system maintenance of composite structures because the composite 

structural components can be repaired or replaced in time prior to catastrophic failures. 

Generally, two approaches have been applied to the prognosis of composite structures. 

They are either physics based or probabilistic data driven based approaches. Physics 

based approaches model the degradation progress with tuned fatigue parameters. In 

literature, most research work about physics based fatigue models has been focused on 

developing phenomenological/empirical models to predict the mechanical properties of 

composites. Typically, these models describe strength or stiffness degradation during 

constant amplitude fatigue loading (Philippidis and Passipoularidis, 2007; Boerstra, 

2005). A detailed review is presented by Delgrieck and Paepegem (2001). However, a 

major drawback is that extensive experimental data is required to describe these models. 

In addition, most theoretical models developed for a particular material system need 

further investigation and evaluation when a different material system is used (Filis et al., 

2004; Epaarachchi, 2006). Furthermore, even for the same material system, damage 

mechanisms are different under static loading and fatigue loading (Bond and Farrow, 

2000). These reasons make the physics based models lack confidence in real-life 
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applications. It is noted that currently available, physics based propagation approaches 

are in general based on initial assumption of damage size. However, the composite 

degradation process is so complex that it is difficult to assume a damage state for 

developing a damage propagation model. Recently, Gobbato et al. (2008, 2009) 

published a probabilistic and mechanics based model to stochastically propagate the 

damage throughout the joints of unmanned aerial vehicles (UAVs). Real time monitoring 

of damage states using the state of the art SHM techniques is required to update the initial 

condition of the damage propagation model in real-time. Such condition based damage 

state forecasting will help to reduce the uncertainty in residual useful life estimation of 

composite structures. A condition based integrated prognosis model applied to metallic 

structure is presented by Mohanty, et. al (2009). 

In this chapter the above mentioned condition based prognosis approach is further 

extended to estimate the residual useful life of composite structures subject to constant 

fatigue loading in real-time. On-line damage states, which are estimated using real time 

sensing information, are fed to an off-line predictive model to update future damage 

states and RUL. The on-line damage index or damage state at any given fatigue cycle is 

estimated using correlation analysis. Based on the on-line information of the previous and 

current damage states, an off-line model is developed to predict the future damage state 

and estimate the RUL. The off-line model is a stochastic model which is developed based 

on the Gaussian process approach. The condition based prognosis model is used to 

estimate the cumulative fatigue damage in composite test structures under constant 

amplitude fatigue loading. The developed procedure is validated under uniaxial fatigue 
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loading as well as biaxial fatigue loading. Experimental validations demonstrate that the 

prediction capability of the prognosis algorithm is effective in predicting the RUL under 

complex stress states. 

4.2. Damage States Estimation and Prognosis Model 

The prognosis model comprises of two primary components: (1) on-line damage 

state estimation, (2) off-line damage state prediction. The on-line damage state is 

estimated based on real-time sensor measurements. Once the on-line state information 

becomes available, it is recursively fed to the off-line damage state predictive model to 

assess the future damage states and to calculate the associated residual useful life.   

The degradation process of composite structures is a complex phenomenon. Both 

damage types and sizes are time varying in nature, as they change with the loading 

spectra and the operational life. However, for any composite degradation system, the time 

varying transfer function or input-output relation can be described as shown in Figure 32.  

The transfer function represents the time degrading system at any damage state.  As the 

damage grows in the composite structure, the parameters of the transfer function also 

change.   

 

Figure 32. Transfer function for a general composite degrading system 

The transfer function      can be written as,  
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                   (30) 

where, X(s), Y(s) and N(s) are the input, the output and the noise at state s. 

For discrete-time systems, the transfer function in Equation 30 can be written as, 

                                     (31) 

where                  are the finite impulse response coefficients.  At any damage 

state, according to Equation 31, the lagged cross-correlation coefficients between two 

sensor signals can be expressed as, 

                                           

                 

 

(32) 

where m is the correlation lag number,        is the cross correlation coefficient and 

    is the auto correlation coefficient.  With the known time series input X(t) and output 

Y(t), the cross-correlation coefficients at different damage states can be obtained.  Rather 

than explicitly finding all the FIR coefficients and hence the transfer function H(s) based 

on the cross-correlation coefficient, a damage index is evaluated.  The damage index, 

which is based on the real-time input output measurements, equivalently estimates the 

damage state of the composite structure. The damage index is expressed as follows: 

    
     

        
         

   

     
        

   

  (33) 

where n is the damage level indicator,    
  represents the nth level cross-correlation 

coefficients and    
  represents cross-correlation coefficient at healthy condition, which is 

used as reference.  
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As mentioned earlier, once the real-time damage state is estimated, the 

information is sent to a predictive model to forecast the future states of the structure even 

though no real-time information is available.  The predictive model developed is based on 

Gaussian process (GP) which is the generalization of Gaussian distribution over a 

function space of infinite dimension (Büche, 2005). It is parameterized by a mean and a 

covariance function.  With state information available up to nth damage level, the 

predictive distribution at (n+1)th damage level can be given as: 

           
 

 
      

            
 

       

   (34) 

          
     (35) 

      

        
     (36) 

where       is the predictive mean at the (n+1)th damage level, and       
 is the 

associated error variance of the prediction,    is the     kernel matrix for the vector 

  ,   and    are the partitioned components of kernel matrix.   

For the future damage state prediction, the GP model given by Equations 34-36 

recursively predicts the future damage states based on the last on-line data available.  The 

training data set D and test input vector       can be written as, 
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  (38) 

where in Equations 37 and 38, the subscript n is the damage level to which the last on-

line data is available, the subscript    is the damage level after the availability of the last 

on-line data and the superscript p indicates the predicted damage index. 

4.3. Experimental Setup 

4.3.1. Uniaxial Loading Fatigue Tests and Experimental Validation 

To experimentally validate the prognosis model, a uniaxial tensile fatigue test was 

performed on a composite beam. The composite specimen loaded on the test frame can 

be seen in Figure 33. A four-ply composite beam was selected as the test specimen and 

was manufactured in-house with unidirectional carbon fiber/epoxy matrix composite 

materials. The matrix used was HEXION EPON 863 and EPI-CURE 3290.  The 

specimen had a stacking sequence of           and its dimensions are shown in Figure 

34 (a). Three strain gages were mounted on the surface of the specimen, two on the top 

side and one on the back side of the specimen, as shown in Figure 34 (b). The specimen 

was subjected to constant amplitude fatigue loading with maximum amplitude (    ) of 

11 kN and load ratio       on a MTS uniaxial fatigue frame operating at a frequency 

of 10 Hz.  It is noted that a 0.75 inch wide notch in the center of the specimen was made 

to create an initial damage. An Omega OM2-163 strain gage amplifier was used to 

amplify the strain signals and a 48 channel NI PXI system was used to acquire the strain 

gage signals.  In addition, the initial healthy state and final damaged state of the 

composite specimen was estimated by using flash thermography (Echo Therm) system. 



 

  69 

The flash thermographic images of the healthy and damaged states are shown in Figure 

35. The developed real-time MATLAB based prognosis algorithm was synchronized with 

the NI data acquisition system to estimate the current damage states and to predict both 

the future damage states and the residual useful life in real-time. 

 

Figure 33. Four-ply composite plate loaded in a MTS servo hydraulic test frame 

       

(a) Configuration of specimen (b) Test specimen with strain gages 

Figure 34. Unidirectional composite specimen 
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Figure 35. Echo therm images at health and damage states 

4.3.2. Biaxial Loading Fatigue Tests  

To validate the prognosis model under complex biaxial loading, another set of 

fatigue test was performed by applying bi-axial loading on a composite cruciform 

specimen. The composite cruciform specimen and the experimental setup can be seen in 

Figure 36. To uniformly distribute the load in the web area of the cruciform specimen, 

two interface areas were machined by CNC machine at both front and back sides of the 

specimen. The dimensions of the specimen are shown in Figure 37. The final failure of 

the cruciform specimen occurred due to the interface delamination in the web area. The 

specimen was subjected to a constant amplitude fatigue loading with maximum 

amplitude (    ) of 5 kips and load ratio      . It is noted that based on an uniaxial 

tensile tests with dog bone specimens, the yield stress is approximated as       kips. 

The specimen was loaded at a frequency of 10 Hz. It should be noted that both the x-axis 

and y-axis actuator of the biaxial frame were subjected to in-phase fatigue loading. 



 

  71 

Similar to uniaxial testing condition, for on-line state estimation, strain gage signals were 

used. One strain gage rosette was mounted in the web area of the cruciform specimen 

(gage area), and another strain gage rosette is mounted in the flange area (arm area).  The 

strain gage signals were conditioned by an Omega OM2-163 strain gage amplifier and 

acquired using a 48 channel NI PXI DAQ system.  

 

Figure 36. Composite cruciform specimen and experimental setup 

 

 

Figure 37. Configuration of composite cruciform specimen 
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4.4. Results and Discussion 

4.4.1. Prognosis Validation Using Unidirectional Fatigue Tests 

In order to evaluate the damage index in Equation 33, strain signals are mapped as input 

and output. For this purpose, three strain gages are mounted at different locations of the 

specimen. As shown in Figure 34 (b), strain gage 1 is furthest from the possible damaged 

area (i.e. area near the notch) compared to both strain gages 2 and 3. This causes the 

sensitivities of all three strain gages to be different. Strain gages 2 and 3, symmetrically 

placed around the pre-cut notch, are more sensitive to the damage compared to the strain 

gage 1. It is noted that the input strain gage should be ideally placed away from the 

damage area, such that the strain measurements from this gage will be least affected by 

the damage. To experimentally evaluate the proposed damage index, two different cases 

of input-output mapping, such as case I: input from sensor 1 and output from sensor 3 

and case II: input from sensor 2 and output from sensor 3, are considered. The estimated 

time-series damage index at different fatigue cycles is shown in Figure 38. It is noted 

from Figure 38 that both the time-series features show clear trends for damage growth 

during the entire fatigue process. However, it is seen that the time-series features with 

measurements from strain gages 1 and 3 is more sensitive compared with measurements 

from strain gages 2 and 3. The reason is that signals from strain gage 1 remain nearly 

uniform during the fatigue process whereas strain gages 2 and 3 capture more local strain 

changes due to fatigue.  The damage indices calculated from the correlation between 

strain gages 1 and 3 are used in the future damage state prediction and RUL estimation. It 
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is noted that the actual damage is equivalent to the damage indices that are estimated 

from the real-time sensor measurements. 

 

Figure 38. On-line damage states estimations 

Based on Equations 34 to 38, a multi-step ahead prognosis strategy is followed 

recursively to forecast the future damage state. The prognosis algorithm initiates after a 

certain damage level (six damage levels in the present case) to collect sufficient previous 

damage state information. The mean damage index for the next damage level is predicted 

using Equations 34 and 35. The predicted mean damage index is fed back to the 

prognosis model to update the training data matrix and the test input vector. The feedback 

process is continued recursively until the predicted damage index reaches its critical 

failure value. In the present case the critical damage index is chosen to be 0.7. However, 

it depends on the user to choose the critical damage index value based on the safety and 

application requirements. It is noted that damage index value of ‘1’ indicates complete 

failure. Figure 39 shows the predicted future damage states and RUL information. A 
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good correlation can be seen between the predicted and experimental damage states. It 

can be also seen that the accuracy of future damage state prediction improves as more 

and more experimental information (such as strain measurements and the corresponding 

estimated damage states) is available.  

 

Figure 39. Future damage state and RUL prediction 

 

4.4.2. Prognosis Validation Using Biaxial Fatigue Tests 

In the previous section it is found that the proposed prognosis model is capable of 

predicting the future damage states and remaining useful life under uniaxial fatigue 

loading. This section focuses on the experimental validation for biaxial fatigue loadings. 

The damage state prediction for the composite biaxial loading test is performed 

recursively with multi-step ahead prediction method discussed before. The predicted 

damage states with on-line data available up to certain fatigue instances are shown in 

Figure 40. It is noticed that unlike the uniaxial case where first six damage states were 

sufficient to start the prediction algorithm correctly, for biaxial loading case the 
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prediction algorithm waits several damage levels to forecast reasonably correct damage 

states. This is because damage state information (as estimated from on-line model) from 

the first several damage levels is not able to capture the complex damage growth 

dynamics of the structure. It is noted, that the ideal waiting time is equivalent of ‘d’ 

damage levels (ref. Equations 37 and 38), where ‘d’ is the input dimension of Gaussian 

process predictive model. Three prediction time-series are shown in Figure 40. They start 

from 164k cycles, 191k cycles and 218k cycles, respectively. The predicted damage 

states correlate well with the actual damage states. The residual useful life at a given 

damage level up to which the on-line data was available is also forecasted. Figure 41 

shows the comparison of predicted RUL and actual RUL calculated from the 160k cycles 

to the failure of cruciform specimen. It can be seen that there is a good correlation 

between predicted and actual RUL. From Figure 40 and Figure 41, it is also noticed that 

both the state prediction and RUL predictions are improved (i.e. close to actual) when 

more and more on-line information is available. 

 

Figure 40. Damage states and RUL prediction for composite cruciform specimen 
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Figure 41. Comparison of predicted RUL and actual RUL 

4.5. Concluding Remarks 

An integrated prognosis algorithm has been developed to forecast damage state 

and estimate RUL of composite test structures. The prognosis model combines two 

modules: (i) on-line damage state estimation module, (ii) off-line damage state and RUL 

prediction module. A damage index formulation has been evaluated and used to extract 

fatigue damage states from real-time strain gage measurements. Based on the on-line 

estimated damage states the second stage Gaussian process predictive model is used to 

forecasts the future damage states and the corresponding remaining useful life. It is found 

that there is a good correlation between the predicted damage states and actual damage 

states. The accuracy of predicted states and RUL improved at the later stages of fatigue 

life as more on-line information or states became available to the predictive model.  The 

prognosis model is validated for both uniaxial tensile fatigue test and biaxial fatigue test 

with carbon fiber epoxy matrix composite specimens manufactured in house.  
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Chapter 5  

LOW VELOCITY IMPACT DAMAGE MONITORING 

5.1. Introduction 

Impact has been the subject of many experimental and analytical investigations. 

Sources of low-velocity impacts include tool drop, runway debris, collision with vehicles, 

etc. The internal damage state after a low velocity impact in CFRP composites can be 

complex and multimodal, including matrix cracking, delaminations and fiber breakage. 

The impact damage can propagate under service loading leading to catastrophic structural 

failure. Therefore, it is critical to develop accurate and robust SHM methodologies to 

detect and monitor the damage initiation due to low velocity impacts. Advanced sensing 

and associated signal analysis/interpretation approaches have been well-developed to 

monitor impacts on composite structures with simple geometries. Meo and Zumpano, 

(2005) developed an in-situ impact damage detection and identification methodology 

using piezoelectric sensors and guided wave propagation approaches. Moll et al. (2010) 

developed a multi-site impact damage localization approach applicable to anisotropic 

wave propagation which did not assume any simplifications regarding to anisotropic 

wave propagation. Hiche et al. (2011) developed a strain amplitude-based algorithm for 

impact localization on composite laminates using FBG sensors. However, due to the 

complex damage mechanisms, most of the published data driven approaches only 

validated the methodologies on plate-like or sandwich composite structures. Due to the 

associated challenges, very limited work has been reported on application to complex 

geometries and real applications. 
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Obtaining a proper feature representation of the damage state from the sensing 

data is a fundamental problem in SHM. Generally, not all of the original features are 

beneficial for damage detection and classification. Some of the features include a 

significant amount of noise and will negatively influence the performance of SHM 

system. Therefore it is essential to remove the noisy features or derive some new features 

from original data space, so that only the necessary information is retained for damage 

classification, quantification and prognosis. Traditionally, linear feature extraction and 

selection are conducted in the original input space. Therefore nonlinear relationships 

cannot be extracted from the original dataset. For example, only features from time 

domain or frequency domain are considered in some of the PZT based active sensing 

approaches (Sohn et al. 2001; Su, et al., 2006; Tang, et al. 2011). However, the nonlinear 

structural degradation process may not be fully represented by time or frequency domain 

features. It is necessary to develop robust feature extraction/selection methodologies to 

represent the multiscale structural damage in heterogeneous material systems.  

This chapter extends the damage quantification work on composite wing sections 

using FBG sensors initiated by Seaver et al. (2010). A new feature selection methodology 

for impact damage detection and quantification using kernel method and a guided wave 

based active sensing approach is developed. The effects of statistical feature selection 

using KPCA from the time and frequency domains are studied. A robust SHM feature is 

extracted using KPCA to represent the low velocity impact damage on a composite 

sandwich wing structure. A damage index based on Mahalanobis distance is used to 

quantify the damage. The methodology is applied to a composite wing of an UAV. 
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5.2. Statistical Feature Extraction 

Selection of appropriate features, which are sensitive to damage but robust to 

noise, is a key issue in SHM. Statistical features have been demonstrated to be useful to 

represent damage in complex engineering structures (Sohn et al., 2001). A PCA based 

multivariate statistical technique integrated with Q- and T
2
- measures was able to 

distinguish cracks in a steel plate and identify an added mass on an aircraft turbine blade 

(Mujica et al., 2011). The method has been proven to be useful in both the low frequency 

range using vibration based approaches and high frequency range using guided wave 

based active sensing approaches. However, PCA can only extract linear features. Because 

most complex engineering systems are associated with nonlinearity, nonlinear features 

can be more useful for damage detection and quantification. A nonlinear statistical 

feature extraction method is used in this work to identify and quantify low velocity 

impact damage in a composite wing. 

5.2.1. Statistical Analysis Using KPCA 

KPCA is a nonlinear extension of PCA and can be used to extract the nonlinear 

relation among variables (Scholkopf et al., 2000; Cao et al., 2007). In KPCA, a nonlinear 

kernel function is used instead of a linear function; the PCA can now be performed in a 

high-dimensional space which is nonlinearly related to the input space. Assuming the 

input data is mapped into the centered feature space  , we have 

      

 

   

   (39) 

The covariance matrix is defined as 
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  (40) 

The eigenvalues   and eigenvectors V satisfy 

       (41) 

It must be noted that the solutions for V which satisfy Equation 41 lie in       (j=1…N). 

Therefore we can write 

                       (42) 

and  

     

 

   

      (43) 

where     (j=1,…,N) are the coefficients. The Kernel matrix K can be defined as 

         
                   (44) 

Based on the application, different kernel functions, such as sigmoid kernels and 

polynomial kernels, can be selected to get the best performance. A Gaussian kernel 

function is used to nonlinearly map the input data to the high dimensional space. The N 

dimensional Gaussian kernel is defined as 

         
 

      
  

 
    

    (45) 

where  determines the width of the Gaussian kernel. The new eigenvalues obtained from 

the KCPA analysis are used as the new feature vectors for the impact damage 

quantification.  
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5.2.2. Mahalanobis Distance Based Damage Index 

The low velocity impacts are quantified using a Mahalanobis distance based 

damage index. The use of Mahalanobis distance has been demonstrated as a useful 

parameter for feature classification and quantification (Sohn, 2007).  Two feature vectors 

   and    are assumed to have      the same distribution with the covariance matrix S. The 

Mahalanobis distance    is expressed as 

                          (46) 

where     represents the inverse of the covariance matrix S. The Mahalanobis distance is 

used to define a new damage index for impact damage quantification in this paper. 

Denoting the KPCA feature vector at the i
th

 damage state       and the KPCA feature vector 

at the healthy state   
     ,  the damage index     corresponding to the i

th
 damage state can be 

defined as 

      
           

      

     
        

      
 (47) 

5.3. Experimental Setup 

A sandwich composite UAV wing was used as the test article to assess the damage 

propagation due to multiple impacts. The wing is composed of four layers of carbon fiber 

fabrics; two layers were made from woven fiber fabrics (C282 carbon fabrics) and two 

layers were made from unidirectional fiber fabrics (3K T300 5” uni tape). The lay-up of 

the composite skin is [±45º woven /0º uni /0º uni /±45º woven]. The epoxy resin used is 

MGS L285 with MGS H287S hardener. There is an aluminum core at the center which 

can be used to connect the wing to the UAV fuselage. The rest of the wing has a foam 
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core made from Last-A-Foam. The cross-section of the wing has an airfoil shape. The 

geometry and cross-section of the wing is shown in Figure 42. 

 

Figure 42. Geometry and cross-section of composite wing 

A series of impact tests were conducted to investigate the effects of low velocity 

impacts on the composite wing. A pair of customized wing fixtures was fabricated to 

clamp the wing. The experimental setup is shown in Figure 43 (a). A swing arm impact 

system is used in the experiment. The diameter of the impactor head is approximately 

32mm. Both the impact force and velocity were recorded to estimate the impact energy 

deposited in the test article. The impact force was measured using a dynamic load cell 

(Model: Dytran 1061V4), and the velocity and position of the swing arm was measured 

using a rotary encoder. By running several trial tests, an appropriate initial height of the 

impact head was determined to ensure damage of the foam core but not the composite 

skin. The impact energy is about 11J for each impact test.  
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Figure 43. a) Experimental setup: composite wing in the fixture; b) Low velocity 

impact system 

The impact area was divided into eight sections. A total of ten impact tests were 

conducted. The exact impact locations are shown in Figure 44. No visible damage was 

observed on the composite skin during the first eight impacts. However, the ninth and 

tenth impacts introduced sever visible dents on the composite skin, as shown in Figure 45. 

 

Figure 44. Impact sequence during experiment 
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Figure 45. Visible damages in composite skin after impacts 9 and 10; a) Damage after 

impact 9; b) Damage after impact 10 

Nondestructive tests using the flash thermography (Thermal Wave Imaging Inc., 

Model: EchoTherm) were conducted to visualize the extent of damage. Flash 

thermography utilizes high density flash heat generated by infrared heat lamps to excite 

the specimen with thermal radiation. Two infrared cameras record the thermal images 

with respect to time to evaluate the change in temperature field over time. Structural 

damage and imperfections can be differentiated from undamaged material due to their 

difference in local thermal diffusivity. Flash thermography images were taken before and 

after each impact, as shown in Figure 46. Prior to impact testing, no structural defect was 

detected because the temperature in the test field decays at a constant rate. However, after 

each impact, the red spots in the flash thermography images demonstrate the varying 

thermal diffusivity at the impact area. This indicates damage propagation and structural 

degradation caused by the series of low velocity impacts.  

A wing autopsy test was conducted after the tenth impact to diagnose the exact 

nature of the damage in the composite wing. Multiple types of damage including foam 
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cracking, debonding between foam core and composite skin, and fiber breakage and 

delaminations in the composite skin were detected, as shown in Figure 47. 

 

Figure 46. Flash thermography images of the damage area before and after impact tests 

1-8 

 

 

Figure 47. Composite wing autopsy after impact test 10 

To detect and quantify the impact damage, a guided wave based active sensing 

approach using MFC transducers is used in this paper. Two MFC transducers were 

surface instrumented on the composite wing. The positions of MFCs are shown in Figure 

48. A 4.5-cycle cosine windowed tone burst wave was used as the excitation signal. The 

excitation waveform was generated using the NI 5412 waveform generator, and the Lamb 
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wave signals were captured using the NI 5105 digitizer at the sampling frequency of 20 

MHz. In order to optimize the central frequency of the excitation signal, several signals 

were generated using central frequencies varying from 10 to 300 kHz in 10 kHz 

increments. Ten observations were recorded at each frequency and the sensor signals 

were averaged from these observations to reduce the sampling error. After preliminary 

tests and signal processing, the optimal frequency selected was 100 kHz. The sensor 

signals were collected at the healthy state and following the fifth and tenth impacts, as 

shown in Figure 49. 

 

Figure 48. Surface instrumented MFC transducers for active sensing 

 

Figure 49. Original sensing signals from healthy state, impacts 5 and 10 
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5.4. Results and Discussion 

To monitor the condition of the composite sandwich wing, nine statistical features 

of the MFC sensor signals in the time and frequency domains are extracted to represent 

the characteristics of damage. At each damage state, every observation provides one 

feature vector, denoted as {            }. Because 100 observations are recorded at each 

damage state, 100 statistical feature vectors can be obtained. First, five statistical features 

are extracted from the time domain of the sensor signals. These features are Root-Mean-

Square (RMS), variance, Kurtosis, peak value and peak to peak value. Using Fast Fourier 

Transform (FFT) and Hilbert Transform (HT), the MFC sensor signals are transformed to 

the frequency domain. The power spectrum energy is calculated as the sum of the 

frequency amplitude using FFT. The Hilbert spectrum is calculated using HT. The max 

Power Spectrum Densities (PSD) and max HT amplitude are also considered as statistical 

features. A detailed definition of each statistical feature is presented in Table 6.  

Table 6. Definition of statistical features in time and frequency domains 

Name Definition 

RMS       
 

 
     

 

   

 

Variance      
 

   
         
 

   

 

Kurtosis      
 

 
   

 

 

   

 

Peak Value             
Peak to Peak 

Value 
                       



 

  88 

PSD        
 

   
    

    

 

    

 

 

 

Signal 

Energy  
         

 

 

 

Max HT 

Amplitude 
           

 

 
 

    

   
  

 

  

  

HT Area         
 

 

 

 

The extracted statistic features are shown in Figure 50. It is noted that these 

features can provide rough trends of structural degradation. However, these feature trends 

are not constant and it is difficult to estimate which features are more sensitive to impact 

damage. In addition, some of these original statistical features repeatedly demonstrate 

similar sensing information. Briefly stated, advanced techniques are required to extract 

more robust features and reduce the redundant features. 

 

Figure 50. Statistical features extracted from time and frequency domains 
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For the purpose of comparison, both the KPCA and PCA techniques are applied 

to the original statistical features {           }. Every ten feature vectors are 

combined to build the feature matrix for the PCA and KPCA analysis. The feature matrix 

can be expressed as                   , where m is the number of feature in 

each feature vector and n is the number of observations in each feature matrix.  

The key issue in the KPCA algorithm is to transform the input features into a high 

dimensional feature space using nonlinear mapping. In this paper, the nonlinear mapping 

is conducted using the kernel function as shown in Equations 44 and 45. The first three 

principal components using KPCA and PCA methods are extracted at three states: the 

healthy state, the state following the fifth impact, and the state following the tenth impact. 

The cluster analysis results are shown in Figure 51 and Figure 52. The traditional PCA 

algorithm can extract and select features in the original input space, but cannot handle the 

 

Figure 51. Typical PCA features for healthy state, impacts 5 and 10 



 

  90 

nonlinear relationships in the input features well. This indicates the lack of a clear 

separation between damage states using the PCA method. However, the KPCA 

representations in Figure 52 show clear separation among the three states. This 

demonstrates that KPCA can extract the higher order and nonlinear information that is 

more useful to demonstrate the effects of low velocity impact to the composite wing. 

Further, more robust damage quantification results can be obtained when the KPCA 

features are used. 

 

Figure 52. Typical KPCA features for healthy state, impacts 5 and 10 

The Mahalanobis distance based damage index, Equation 47, is used to quantify 

the extent of the low velocity impact damage. Ten KPCA feature sets at each damage 

state are obtained using the developed algorithm. The average features calculated from 

these feature sets are used as the input to quantify the damage. As shown in Figure 53, 

the low velocity damage propagates almost at a constant rate during the first eight impact 

events. However, the damage propagation is much faster during the last two impacts. 

This can be explained as follows. During the first eight impacts, the impact head hits a 
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new section on the wing surface, as shown in Figure 53, and since each impact introduces 

the same amount of energy into the wing, the propagation rate is consistent. The last two 

impacts were between multiple previous impact sections. Although there was no visible 

surface damage shown after the first eight impacts, the wing foam cracked and there were 

delaminations between the composite skin and foam. When these areas were further 

impacted the damage severity increased significantly even though the impact energy was 

still the same. This illustrates the critical nature of repetitive low velocity impact damage 

on composite wing, which may lead to catastrophic failure.  

 

Figure 53. Damage quantification using Mahalanobis distance based damage index 

5.5. Conclusions 

An impact damage monitoring and quantification methodology using KPCA 

algorithm is developed in this chapter. Statistical features are extracted from the sensor 

signals in the time and frequency domains. Choosing an appropriate kernel function, the 

statistical features are mapped to a high dimensional space for feature clustering. The 

kernel eigenvalues obtained from the original statistical feature datasets represent the 

damage propagation caused by impacts, which are considered as new feature datasets for 



 

  92 

damage quantification. Redundant features are compressed during the KPCA analysis. A 

novel Mahalanobis distance based damage index is defined to quantify the impact 

damage.  

Low velocity impact experiments were conducted on a sandwich composite wing 

to validate the developed methodology. MFC based active sensing was used for damage 

detection. After each impact, flash thermography images were taken to detect the 

presence of sub-surface (invisible) damage. A wing autopsy was conducted after the last 

impact to examine the exact nature of the damage in the composite wing. Multiple types 

of damage including fiber breakage, foam cracking, delaminations in the composite skin, 

and delaminations between composite skin and foam core, were detected. By studying the 

MFC sensor data, the damage quantification results show steady structural degradation 

after the initial eight impacts, followed by rapid damage progression over the last two 

impacts. 
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Chapter 6 

APPLICATION OF SHM TECHNIQUES TO ON-ORBIT SATELLITE BOOM 

STRUCTURES 

6.1 Introduction 

The integration of composites into spacecraft is challenged by the risk of damage 

initiation and propagation during storage, launch and service life. Elastically deployable 

composite booms are being developed for space utility. Matrix cracks are considered a 

primary form of damage caused by packaging prior to launch. However, while on orbit, 

most damages are induced by the environmental effects on the polymers. A well-

developed structural health monitoring system will provide information for the dynamic 

control of the satellite and the condition of the deployable mechanisms on the space 

vehicle. A structural health monitoring methodology, based on the system identification 

techniques, is proposed to identify the structural degradation in laminated composite 

booms. Non-destructive evaluation techniques, frequency response analysis and ARX 

input models are used to approximate the transfer functions between input and output 

sensing signals. Structural degradation is identified by examining the change of transfer 

functions at different storage states. A single-input-single-output approach is adopted in 

this paper. The proposed methodology is validated through experimentation where matrix 

cracking is gradually induced by packaging the sample. 

Advanced carbon/epoxy composites have been widely used for a variety of 

structural components in spacecraft due to their light weight, dimensional stability, and 

optimized mechanical properties (Fortescue et al., 2006). On-orbit satellite systems 
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operate in a harsh environment and the structural degradation of composite components 

can be caused by various sources such as atomic oxygen, ultraviolet (UV) radiation, 

proton and electron radiation, vacuum, and thermal cycling (Reilly and Terrance, 2006; 

Arritt et al., 2007; Arritt et al., 2008). Although the coefficient of the thermal expansion 

(CTE) of composites is commonly near zero and significantly less than typical aluminum, 

composites are just as vulnerable to the environmental influences.  High vacuum pressure 

can lead to material outgassing, UV can deteriorate the surface matrix and discolor the 

surface changing the thermal performance, and debris can shatter supports, as was the 

case for the Cerise microsatellite that had a catalogued item locally vaporized by impact 

on its Earth pointing boom (Harland and Lorenz, 2006).  Like most space mishaps, the 

system was recoverable, but difficult to diagnose. The mechanical behaviors of polymeric 

matrix materials have been comprehensively addressed by Yekani Fard et al. (2011a, 

2011b, 2011c, 2012). 

Damage in composite satellite structures, such as matrix cracks and matrix-fiber 

debonding, causes the degradation of structural stiffness and can affect the dynamic 

response of the satellite system during maneuvers such as slewing or deployments. 

Structural degradation needs to be monitored to update the dynamic control system of the 

spacecraft. Developing a SHM system for monitoring the flexible structures of a satellite, 

such as the composite booms, will allow the satellite guidance, navigation, and control 

(GN&C) systems to incorporate any quantified stiffness degradation values into future 

functions. A properly designed SHM system will be able to detect, classify, localize 

damage and determine if the composite components of the satellite will continue to 
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perform safely and sufficiently. Price et al. (2003) developed an integrated health 

monitoring system for real-time sensing of impact damages in aerospace vehicles using 

piezoelectric Polyvinylidene Fluoride (PVDF) transducers based passive sensing and a 

self-organizing approach. Prosser et al. (2004) compared a variety of sensor types, such 

as fiber optic sensors, carbon nanotube sensors, and acoustic emission sensors, and 

reported the data processing techniques for the sensor placement optimization and the 

damage identification of composite components in space vehicles. Zagrai et al. (2010) 

detected and located loose bolts in complex space structures with a large number of 

bolted joints using the embedded ultrasonic acoustic-elastic method and the integrity of 

the bolted joint was evaluated by the stress-induced phase shift in the recorded elastic 

wave signals. However, few on-orbit influences are considered in the previous literature. 

A SHM system for on-orbit composite components needs to be used not only to 

determine the status of a satellite structure prior to launch but also for the on-orbit 

detection of damage. This can be seen in the case of the deployable antenna of the Mars 

Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) project on Mars 

express. The deployable antenna was made with glass fibers and collapsed in a manner to 

deploy using stored elastic energy. When it was time to deploy on-orbit, the risk was 

considered unacceptable and it was never released due to the concerns of deployment and 

how guidance and other functioning instrumentation would be impacted along with the 

inability to diagnose any conditions after deployment (Harland and Lorenz, 2006).  

Although significant research on SHM of composites has been reported in the last 

decade, most of the published work focuses on the macro scale damage, such as 
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(a)           (b)  

Figure 54.  (a) Deployable DLR CFRP boom and (b) Solar sail (Leipold et al., 2003; 2005) 

delamination and impact damage. Well-developed SHM techniques, including acoustic 

emission methods, have also shown to be effective in detecting macroscale damage in 

composites. However, the dominant structural degradation mode induced into a flexible 

composite boom prior to launching is matrix cracking. As shown in Figure 54, the carbon 

fiber reinforced plastics (CFRP) boom in the stowed configuration and the fully deployed 

solar sail is developed by the German Aerospace Center (DLR). Both the CFRP booms 

and solar sail membranes are used as critical structural components of the propulsion 

system for the Synthetic Aperture Radar (SAR) satellites. When the solar sail membranes 

and CFRP boom are packed into a small volume, matrix cracking is introduced to the 

boom structure due to the flattening and wrapping procedure. The detection of matrix 

cracking in composites requires more sensitive and reliable techniques. However, 

research in monitoring micro matrix cracks in composites is still in its infancy. In 

addition, most current non-destructive evaluation (NDE) techniques, such as x-ray, 

ultrasonic scan, and radiography, are costly, time-consuming, labor-intensive, and do not  

satisfy the responsive ground-base or on-orbit service. A SHM system that automatically 

monitors and detects on-orbit degradation of composite components is required for the 
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reliable use of composite satellite structures. 

System identification techniques have been used for structural evaluation of both 

metallic and composite structures to interpret data and extract diagnostic features. The 

extraction of damage-sensitive features from experimental measurements or simulation, 

and the statistical analysis of these features determine the current state of the system’s 

health. Nonparametric models, such as frequency response methods, and parametric 

models, such as state-space models, are the two main approaches for system 

identification techniques. Park et al. (2009) used an inverse method for identifying the 

damage location and the impact force time history on composite plates using the state-

space estimation techniques. The transfer function at any point was constructed by 

interpolating four neighboring known transfer functions.  However, the actual damage 

induced in the composite samples by the impact loading was not clarified. Different types 

of structural damage, such as fiber breakage and delamination, can be introduced by 

different impact velocities and energies. The nature of impact damage introduced into 

their composite specimens needs to be demonstrated and the method also needs to prove 

functionality on complicated structures. Sohn et al. (2001) presented a damage feature 

extraction approach by combining the Auto-Regressive (AR) and Auto-Regressive with 

eXogenous input (ARX) models and applied the two techniques to fiber optic strain 

gauge data obtained from two different structural conditions of a surface-effect fast patrol 

boat. Although the damage features were identified by combining the two models, the 

procedure needs to be examined with composite structures and under more operational 

conditions before it can be applied as a SHM system for composite components. Mohanty 
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Figure 55. SHM of composite booms based on a system identification approach 

et al. (2009) proposed an unsupervised system identification based techniques to estimate 

the time-series fatigue damage states for metallic materials. To estimate the 

nonparametric damage state, ultrasonic broadband active sensing and correlation analysis 

were used. In most cases, the system identification techniques showed acceptable 

performance for visible damage, such as cracks in metal and delamination in composites.  

In this chapter, a system identification-based SHM technique is proposed to 

quantify the structural degradation of the composite booms used in satellite applications, 

as shown in Figure 55. Low frequency broadband sweep excitations are applied to the 

modeled samples using MFC transducers. Structural degradation and changes in dynamic 

response of the samples are determined from the frequency response of measured 

actuator and sensor signals. The transfer functions of single-input-single-output (SISO) 

approach are estimated using the ARX model to identify the damage levels. A damage 

index is defined to describe the structural degradation condition in the booms. Both local 



 

  99 

and global structural degradation estimations are completed by using the MFC data 

collected from different positions. The proposed method has been validated 

experimentally.  

6.2 SHM Framework for a Satellite Structure 

6.2.1 Frequency Response Method of System Identification 

The frequency response method for system identification characterizes the 

response of the composite boom subject to a sweep excitation. The frequency response is 

estimated using spectral analysis and can be expressed in a cross-correlation function and 

auto-correlation function. For time domain input signal,    , and output signal,     , the 

spectral densities,         and        , of the relevant measured input and output are 

written as (Klein and Morelli, 2006) 

                      (48) 

) 

 

                      (49) 

) 
where        and       , are the finite Fourier transforms of the relevant measured input 

and output, and         is the conjugate of       . 

By applying the finite Fourier transform to measured input and output data, an 

estimate of the frequency response function can be written as 

      
       

       
 

             

             
 (50) 

where the frequency response function,      , is a complex vector. Both input-output 

amplitude ratio and phase shift are considered. The amplitude ratio,     , and phase, 

    , can be expressed as 

                                (51) 
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  (52) 

The frequency response method constitutes a describing function which linearly 

characterizes the behavior of the input-to-output MFC transducers. Once the transfer 

function of the MFC transducers changes due to induced matrix cracking, the Bode plot 

of input-output sensor measurements will indicate the change of the transfer function and 

provide guidance for the future construction of a system transfer function model. Further 

details are explained later in the paper. 

6.2.2 Transfer Function Estimation Using ARX Model 

In this study, an ARX model is utilized to estimate the transfer function of the 

composite active sensing system. Traditional autoregressive (AR) and autoregressive 

moving average (ARMA) models are fitted to the sensing signals (output signals) and do 

not consider the excitation signals (input signals). ARX model considers the excitation 

signals as additional information in a time series model. The input-output model can be 

reasonably estimated using the ARX model and the linear least squares method (Yoshida 

and Kumar, 1999; Yang and Makis, 2010). As a typical example of the “black box” 

model, the model is widely used due to its simplicity. Ignoring the estimation error, the 

ARX model which describes the relationship between input,     , and output,     , is 

shown in Equation 53 (Juang, 1994) 

                        

                     
(53) 

where    and    are the parameters of the ARX model,   is number of poles and   is 

number of zeros. Once m and n are calculated, the ARX can be written as ARX (m, n) 

model. The model assumes that the sampling interval is uniform in the time domain. In 
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order to determine the next output value given by previous observation, it is easier to 

write Equation 53 as 

                                    

          

(54) 

The parameters of the ARX model,    and   , are calculated from the sensor 

measurements ,               using the linear least squares method. For a more compact 

notation, these adjustable parameters can be written in a vector form 

                     (55) 

and the previous input-output measurement can be written as 

 According to Equation 56, the output estimation of the ARX model is 

It is noted that the calculation of the next output measurement from previous data in 

vector   depends on all the parameters in vector   . The calculated value,          is 

different from the real measurement,     . 

All the unknown parameters in vector   are calculated using the least squares method. 

From the recorded input-output measurement,     , the unknown parameters can be 

calculated by minimizing the error,          between the real output measurement,     , 

and the calculated output,        . Here, 

                                        (56) 
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    Set the derivative of         to zero,  

resulting in, 

Because     has been defined by the previous input-output measurement, all the 

parameters for the ARX model can be calculated using Equation 62 

The goal of system identification is to obtain a transfer function that predicts the 

output using input of the system reliably. From a given set of experimental data, the 

modeled data,        , is compared with the experimental data,       to minimize the 

error between the two data sets. Once    is calculated, the transfer function can be 

obtained from Equation 57. 

6.2.3 Structural Degradation Identification Using Damage Index 

The accuracy and sensitivity of the defined damage index is critical for 

identifying matrix cracks in composites. Ideally, a composite structure without damage 

can be modeled as a linear system. However, composite structures present more nonlinear 

properties when non-visible damages, such as matrix cracks, are introduced (Polimeno 

and Meo, 2009; Van Den Abeele1 et al., 2000a, 200b). Although the ARX model can be 

expressed as shown in Equation 53, an error term,       should be introduced to this 

model for the reconstruction accuracy. The modified ARX model can be expressed as 
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(64) 

It is assumed that the error between the measurement and estimation obtained by 

the ARX model is caused mainly by the nonlinear properties of matrix cracking in 

composites. The estimation error becomes larger when more nonlinearities due to matrix 

cracks are introduced. A clear definition of estimation error,     at storage state, s, is 

expressed as: 

                      

 

   

             

 

   

 (65) 

 where      and      are the parameters of the ARX model at storage state, s,      

                are the sensor output measurements at storage state, s,  and      

               are the sensor output measurements at storage state, s. By carefully 

choosing the order of the ARX model, a damage index can be defined as: 

     
        

    
 

(66) 

where    is the estimation error for the referred initial storage level. When the healthy 

state of the structures is known,    is the     storage state with respect to the healthy state 

(s=0). However, when the healthy state is unknown, the defined damage index,    , can 

still be used to compare the later storage state with the reference storage level (the first 

available storage state).  

6.3 Experimental Setup 

To validate the system identification based SHM framework, a flattening and 

wrapping experiment was performed on composite booms, which were supplied by the 
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Air Force Research Laboratory, Space Vehicles Directorate (AFRL/RVSV). The 

materials used for the composite booms are CFRP in uni-directional tape and plain weave 

fabric forms, both using Hexcel® IM7 fibers and M72 resin. A boom is composed of two 

flanges. The cross section of the boom is shown in Figure 56. The stacking sequence of 

each flange is  0  tape 0  tape    5  weave  0  tape  0  tape  (0  is the long axis of the boom). 

These two laminates overlap at the ridge to form a  0   0     5   0   0 ]s stacking sequence. 

The boom specimen was instrumented with four MFC transducers (Smart Material Corp., 

Model: M 2814 P1), as seen in Figure 57. In order to obtain proper bonding conditions 

between the boom and the sensors, the sample surface was prepared with abrasive paper 

and cleaned with cotton tipped applicator. Stewart-MacDonald super glue (Model: 20-X) 

was used as the adhesive. Outgassing properties of this particular adhesive are not critical 

at the stage of research, but consideration should be addressed when applied to systems 

containing optical payloads where outgassing is a concern.  

 

Figure 56. Cross section of AFRL composite boom 
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Figure 57.  Composite boom specimen 

The primary source of degradation to the boom structure occurs during the 

flattening and wrapping process of the boom around a hub that is used to store the boom 

prior to deployment. The extent of structural degradation, due to wrapping the boom 

around the hub, can be critical in the system response depending on the size of the 

deployable relative to the system. As the stiffness changes, due to matrix microcracking, 

the system’s response will be affected. The structural degradation incurred by storing the 

structure has been simulated experimentally using a wrapping fixture, as shown in Figure 

58. The wrapping fixture consists of a 1 ″ diameter hub around which the boom sample 

is wound. This fixture was constructed to test 2 ″ samples. The boom was clamped as 

shown in Figure 58 (a) with a 2″ long clamping surface, flattening the clamped end of the 

boom to the hub. The boom was then wrapped taut around the center hub and clamped at 

the preset location. The rate of wrapping was approximately 1 inch per second, which 

was necessary to ensure the boom flattened properly and to maintain as little gap as 

possible from the center hub. Similar wrapping and deploying rates were used by the 

CFRP boom and solar sail membrane of the SAR satellites developed by DLR [10].  
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(a)   

(b)  

Figure 58. Composite boom in the wrapping machine at (a) Initial position of composite 

and (b) Final wrapped position 

The storage states were generated six times by wrapping the boom specimens to 

different arc lengths, as shown in Figure 59. Before any damage was introduced to the 

boom specimen, vibration based modal analysis test and MFC based active sensing 

baseline data were collected. State 1 was wrapping the specimen around the hub to 

introduce matrix cracks up to the section indicated (arc length 5”). The boom specimen 

was clamped at the preset location for 30 seconds before being deployed to its initial 

position. Both modal analysis and MFC active sensing data were collected after the 

deployment. In the second step, both states 1 and 2 were used (arc length 11”) and in step 

3 to 6, states 1, 2 and 3 were all used (arc length 17”) to introduce matrix cracks to the 

boom structure. The sensor data collecting procedure used for state 2-6 was the same as 

used for state 1. At the end of each state the boom specimen was fully deployed to the 

original position. Both modal analysis and active sensing were conducted. 
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Figure 59. Six storage states for the composite boom flattening/wrapping test 

Current NDE techniques, such as flash thermography and ultrasonic scan, can 

hardly detect matrix cracking in composites. However, matrix cracking and structural 

stiffness degradation can be detected by the shift of resonant modes using vibration 

modal analysis. In order to validate the matrix cracking induced by flattening and 

wrapping of the boom, the first three resonant modes were measured experimentally 

through a scanning head laser vibrometer coupled with a vibration shaker. The 

experimental setup of vibration modal analysis is shown in Figure 60. Three steps were 

used to ensure the laser points were in the exact locations during each scan. First, the 

length from the free end of the boom to the custom made fixture was the same in each 

scan. Then, the sample was clamped at the same position on the shaker according to the 

marks drawn on the shaker fixture. Finally, the vibrometer scan head was fixed and the 

position of boom on the shaker was adjusted slightly so that each scan was started from 

the same point, as shown in Figure 60. The shift of first resonant mode can be seen in 

Figure 61. The first resonant mode shows the clearest shift after matrix cracks are 

induced into the sample. After flattening and wrapping the sample five times, the first 
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resonant mode stops decreasing, which means matrix cracking damage ceases to increase 

in the composite boom sample. 

 

Figure 60. Experimental setup of vibration modal analysis 

 

 

Figure 61. Resonant mode shift 

A 48 channel DAQ was used for active sensing using the MFC transducers. A 

broadband sweep signal with frequency varying from 10 Hz to 1 kHz is used for active 

sensing of the MFCs and the excitation signal collected from MFC 1 is shown in Figure 
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62 (a). A representative sensor signal from MFC 4 at the initial condition is shown in 

Figure 62 (b). The power spectral density plots of both the input and output signals at the 

healthy and six storage states are shown in Figure 63. With constant input signals, the 

differences of the power spectral density at different storage states are not clear. The 

frequency response method and the ARX model are used for more sensitive and robust 

structural degradation identification. 

(a)  

(b)  

Figure 62. (a) Broadband chirp input signal for MFC 1; (b) Measured output 

signal for MFC 4 
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Figure 63. Power spectral density of input MFC 1 and output MFC 4 signals at different 

storage states 

6.4 Results and Discussion 

6.4.1 Frequency Response Method of Input-Output MFC Transducers 

The frequency response method can be used to analyze the input/output 

relationship and to non-parametrically understand the key aspects of the system before 

moving to the more complex parametric modeling stages. The information obtained is the 

basis for identifying parametric transfer function models. In this paper, a SISO frequency 

response method is used to analyze the change of transfer functions at different storage 

states. The input signals are collected from MFC 1 and output signals are collected from 

MFC 4. The sensor input/output signals cover the entire damage area and can be used for 

global damage characterization. The plots for amplitude and phase versus frequency, 

which can be calculated using Equation 48-52, are showed in Figure 64.  
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 In Equation 50 the frequency response is determined from the ratio of the cross-

correlation spectrum estimate,        , and auto-correlation spectrum estimate,        . 

As described before, the amplitude change of the frequency response at a relatively low 

frequency range (from 10 Hz to 200 Hz) is mainly caused by the presence of nonlinear 

properties when matrix cracks are introduced. The understanding of nonlinearity in 

damaged composite structures helps to choose a proper model for the transfer function 

estimation and design the damage index based on the estimated damage index.  

The frequency response method provides an approach to select frequency ranges 

for the input/output pair to include only relevant data. As shown in Figure 64, the 

amplitude has a clear response at a low frequency range from 10 Hz to 200 Hz. The phase 

also has obvious responses in the same frequency range. This quick analysis helps to 

choose the frequency range, which provides useful data for the transfer function 

estimation. 

 

Figure 64. Frequency response of input/output signal measured from MFCs 1 and 4 
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 A key aspect for the frequency response method is the direct and accurate 

identification of time delays. The linear relationship between the time delay,    and 

frequency response phase shift with frequency,   (rad/s), is expressed as: 

      (2) 

where   is the angle of phase shift at frequency,   . From the frequency response plot 

shown in Figure 64, the phase shift after storage state 2 has a clear change in the 

frequency range of 10 Hz to 100 Hz, which indicates the change of time delay due to 

induced damage. It can be used as a feature to quickly demonstrate the existence of 

damage in the composite booms. This also indicates that the time delays are more 

sensitive in the specific frequency range as more damage is introduced. In the selected 

sensing frequency range, the velocities of the elastic waves are more sensitive to the 

change of structural stiffness which is caused by matrix cracking. The time delay feature 

is useful for transfer function estimation.   

6.4.2 Transfer Function Estimation and Order Selection of ARX Model 

By carefully choosing the order of the ARX model, SISO transfer functions can 

be estimated accurately and efficiently.  As shown in Equation 65, the order of the ARX 

model is the sum of the order of output, n, and the order of input, m. The value of m and n 

can be different. The criterion of selecting the proper order number is to get the most 

reasonable estimation with the smallest order number. In order to find the optimized 

order number, a set of estimations is needed. Experimental measurements from MFC 1 

and MFC 4 at the healthy state are used as input/output pair for the order analysis. The 

vertical axis in Figure 65, which is called the unexplained output variance, is the ARX 
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model estimation error for the number of orders shown in the horizontal axis. As the 

order number increases, the estimation error decreases. The sum of m and n is the main 

influence of the estimation error, but each value of m and n is also considered in order to 

get the minimum order number. Although the estimation accuracy can be improved with 

a high-order ARX model, the calculation cost increases dramatically. Ideally, by 

choosing an ARX model with an infinite order number, the estimation error can be 

completely removed. However, at the same time, the calculation cost will be infinitely 

high. After the order number increases up to 40, the slope of estimation error decreases 

dramatically. In this paper, the order of the ARX model is chosen as 40. The input order, 

m, and output order, n, need to be chosen. The goal is to minimize the sum of m and n 

and an ARX (28,12) is used for the ARX model.  

 

Figure 65. Estimation error with different order number 

To check the estimation accuracy of the chosen model, one pair of experimental 

input/output signal collected from MFC 1 and 4 is used to train and validate the ARX (28, 

12) model. The first half of the signal in the time domain is used to train the model and 
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the second half of the measured output is compared with the simulated output. The 

comparison of simulated output signal and experimental output signal can be seen in 

Figure 66.  The experimental output signal can be accurately simulated by an ARX (28, 

12) model.    

 

Figure 66. Comparison of simulated and experimental signals  

6.4.3 Storage State Identification Using Damage Index 

To evaluate the storage state of the entire composite boom sample subject to 

flattening and wrapping around the circular hub, both global damage estimation and local 

damage estimation are carried out. Global damage estimation uses MFCs 1 and 4, which 

cover the entire boom. The damage index obtained from global damage estimation shows 

the average damage condition along the entire boom. In Figure 67, the estimation starts 

from the healthy state at which the damage index is zero. However, as the flattening and 

wrapping induces matrix cracking into the boom, the damage index grows gradually. 

Global structural degradation estimation provides a clear trend of damage growth. It is 

noted that the damage caused by matrix cracking is introduced into the boom structure 
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gradually in the first five steps. However, an equilibrium state was detected in step 6. The 

feature trend obtained from damage index analysis can be validated by the vibration 

modal shift analysis, which is shown in Figure 61.  

 

Figure 67.  Global storage state estimation 

More damage accumulates in the region between MFCs 1and 2, as this area has 

been wrapped six times during the experiment. The global structural degradation 

estimation cannot highlight such local storage states. In order to concentrate on the 

hotspot between MFC transducers, local damage estimation analysis is used. The local 

storage state estimation for the region between MFCs 1 and 2 is shown in Figure 68. This 

region is close to the clamping area of the boom specimen. The damage was induced 

since the step 1. In the first three steps, it is noted that the damage index has a clear 

increase which indicates the matrix cracking propagation during multiple flattening and 

wrapping procedures. However, the damage index of this region reaches an equilibrium 

state after step 4. Compared with the global estimation results in Figure 68Figure 70, the 

local storage state estimation is more sensitive to the matrix cracking damage. The reason 

is that the first two storage states contain both healthy and damaged sections in the 
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monitored area. This increases the estimation error,   , at the initial state. The sensitivity 

of the damage index decreases as long as the reference becomes larger. Generally 

speaking, the damage index should provide more sensitivity for local storage state 

estimation.  

 

Figure 68. Local storage state estimation near MFCs 1 and 2 

The local storage state estimation for the section between MFCs 2 and 3 is shown 

in Figure 69. As the region was not used in step 1, the damage index keeps constant in 

this step. It is noted that the matrix cracking originated in the section between MFCs 2 

and 3 in step 2, 3, and 4. The clear feature trend can be seen in Figure 69. A similar trend 

for the damage parameters in the region between MFCs 2 and 3 can be seen as observed 

from the region between MFCs 1 and 2. An equilibrium state in the local section was 

achieved after flattening and wrapping the boom specimen three times and the local 

damage index does not show significant increase in step 5 and 6. For the region between 

MFCs 3 and 4, in step 1 and 2, the local damage index stays near zero as no severe matrix 

cracking was introduced, which also indicates a healthy local structural condition, as 

shown in Figure 70. The fist local matrix cracking was induced in step 3, and the damage 
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index features keep increasing in step 3, 4 and 5. However, because the boom specimen 

reaches an equilibrium condition, the damage index does not increase significantly in step 

6. Because all the three local regions research the equilibrium state in step 6, the global 

damage index in this step also indicates equilibrium in this step. 

 

Figure 69. Local storage state estimation between MFCs 2 and 3 

 

Figure 70. Local storage state estimation between MFCs 3 and 4 

6.5 Concluding Remarks 

The system identification techniques based structural health monitoring approach 

is proposed to investigate damage caused by matrix cracking in composite booms subject 

to flattening and wrapping around a circular hub. Both the frequency response method 

and Auto-Regressive with eXogenous input model are used to perform single-input-
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single-output transfer function estimation and storage state identification. A flexible MFC 

actuator excites the boom specimen and response is captured by three MFC sensors using 

low frequency sweep signals to provide experimental input/output data. The frequency 

response method is used to non-parametrically analyze the relationship between 

input/output sensor signals and select a relevant frequency range. It also provides useful 

information for the transfer function analysis using the Auto-Regressive with eXogenous 

input model. The order of the Auto-Regressive with eXogenous input model is decided 

by considering both the estimation accuracy of the model and the calculation cost, and 

the Auto-Regressive with eXogenous input (28, 12) model is chosen. The order selection 

of Auto-Regressive with eXogenous input model is validated by comparing the simulated 

and experimental output signals. The damage index estimation using the residual error of 

the Auto-Regressive with eXogenous input model provides a clear trend of global 

damage growth because the composites will present nonlinear structural properties when 

matrix cracks are introduced. An equilibrium state for the composite boom was achieved 

after flattening and wrapping the boom specimens five times. Local storage state 

estimation is completed between each MFC sensor. The newly defined damage index is 

more sensitive in a localized region, but still provides decent global state estimation for 

the entire length of the composite booms. Results show that storage state estimation using 

an Auto-Regressive with eXogenous input model correlate with the trends and rate of 

decay seen from first natural mode shifts using vibration modal analysis techniques. This 

type of integrated setup is a more feasible method of acquiring dynamic characteristics on 

orbit as the size, weight, and power requirements are significantly less. For future 
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research, the detection of the equilibrium state can be used for the prelaunch quality 

assurance testing to ensure that a boom structure at equilibrium is inspected before launch. 

Further research is also needed for qualifying installation methods and hardware for 

space environment and analyzing the effect of space conditions on sensing performance.  
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Chapter 7 

SUMMARY AND FUTURE DIRECTION 

The research work presented in this dissertation is focused on the development of 

a general and comprehensive framework for SHM and prognosis of complex carbon fiber 

reinforced composite structures. The research objective is to detect, localize, and quantify 

the damage and to estimate the RUL of structures. The proposed framework aims to 

reduce labor costs by automating the process and enabling in-situ SHM. The methods 

developed have been tested on flat plates, stiffened panels, UAV wings and deployable 

satellite boom structures. This dissertation addresses the following issues: 

1. Damage detection using Lamb wave techniques and time-frequency analysis 

approaches 

2. Damage localization in flat and stiffened composite panels using GW 

techniques 

3. Prognosis and RUL estimation of composites under uniaxial and biaxial 

fatigue loading 

4. Impact monitoring and quantification on UAV composite wings 

5. Application of SHM to deployable composite boom structures 

 The following sections summarize the work presented in this dissertation and 

suggest future research directions to further extend the application of SHM to real 

engineering composite structures, and eventually provide applicable techniques for 

aerospace engineering. 
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7.1. Damage Detection 

A robust delamination detection using GW techniques and MPD algorithm based 

time-frequency analysis is presented. Lamb wave mode conversions were used to detect 

delaminations of different sizes in composite components with various mechanical 

properties and geometries. The MPD algorithm provides good time-frequency resolution 

and is capable of filtering noise from sensor signals. The computational efficiency was 

increased by reducing the MPD atom dictionary. The developed algorithm was 

experimentally validated using composite laminates and piezoelectric transducers in 

pitch-catch mode. The results obtained indicate that the methodology is capable of 

differentiating between multiple Lamb wave modes, including the symmetric, anti-

symmetric, reflected, and converted modes. The use of the MPD technique resulted in 

significantly improved time frequency resolutions of the converted mode, which was then 

used to detect the existence of damage. The developed detection methodology was 

further tested using stiffened composite panels. A two-step strategy using pulse-echo and 

pitch-catch schemes was developed for detection of delaminations in stiffened composite 

panels. The pulse-echo scheme was able to rapidly detect the existence of delamination in 

the composite panels through identification of the converted modes caused by 

delaminations. The geometrically complex structure was then interrogated using a single 

PZT ring sensor. The pitch-catch scheme was able to detect delamination in the area 

between the PZT actuator and sensors. By studying the signal energy of the converted 

mode, the severity of the signal was also estimated. 
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For damage detection, Lamb wave signals recorded from the healthy panels are 

required in order to help define a reference state for the identification of the converted 

modes caused by delaminations. However, these reference signals may not always be 

available for the application. Therefore, developing unsupervised damage detection 

approaches for composite structures is one extension of the methods developed in this 

dissertation. Sandwich composite structures have also been widely used in aerospace 

applications, but currently these methods are still not fully mature to be used for the 

damage detection. A modification of the developed detection method for sandwich 

composite structures can result in significant impact on real time aerospace structure 

applications, such as airplanes and spacecrafts. 

7.2. Damage Localization 

Once the presence of damage is detected in composite structures, the next step is 

to determine its location of damage in order to provide necessary damage assessment and 

service. A localization method, which estimates the damage position by solving an 

optimization function subject to three nonlinear objective equations, was developed. This 

methodology required information of the sensor position, and the difference of ToFs of 

the converted modes caused by delamination between the master sensor and slave sensors. 

By comparing the sensor data with the baseline data collected from the healthy samples, 

converted modes resulting from the seeded delamination were identified. Using the MPD 

algorithm, the guided wave signals were represented in the time-frequency domain, and 

the difference of the ToF of the converted modes between master and slave sensors were 

calculated. The group velocities from the delamination to the two nearby PZT sensors 
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were assumed to be the same. Redundant sensors were placed on the surface of 

composite samples. Probabilistic confidence range estimation provides a 95% confidence 

range for the estimated delamination positions. 

For future research, environmental effects should be taken into consideration 

before the application of localization method in real structures. The difference between 

ToFs of two nearby sensors can vary significantly due to temperature change; as a result, 

the environmental effects can severely decrease the accuracy of the algorithm. Another 

route for improvement is to incorporate the dispersive effects of GW into the MPD atom 

library. In this case, the signal decomposition accuracy will be significantly improved 

which will result in more accurate ToF calculation and damage position estimation. 

Increases in computational efficiency will also benefit from the implementation of an 

adaptive version of the MPD algorithm.  

7.3. Damage Prognosis and RUL Estimation 

In this dissertation, an integrated prognosis algorithm was developed to forecast 

damage states and estimate RUL of composite test structures. The prognosis model 

combined two modules: on-line damage state estimation and off-line damage state and 

RUL prediction. A damage index formulation was evaluated and used to extract fatigue 

damage states from real-time strain gage measurements. Based on the on-line estimated 

damage states, the second stage Gaussian process predictive model was used to forecasts 

future damage states and the corresponding remaining useful life. A good correlation 

exists between the predicted damage states and actual damage states.  The accuracy of 

predicted states and RUL improved at later stages of fatigue life as more on-line 
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information or states became available to the predictive model.  The prognosis model was 

validated for both uniaxial tensile fatigue and biaxial fatigue tests with composite 

specimens manufactured in-house. 

The following several topics need to be addressed in the future research. Due to 

the unique fabrication procedures for CFRP composites, the material properties and 

structural performance may vary with slight fiber orientation changes. Therefore, before 

in-situ prognosis and RUL estimation can be achieved, advanced robust sensing 

techniques, physics based modeling, and prognosis mathematical algorithms need to be 

improved. The advanced sensing techniques should be robust to various loading 

conditions and environmental impacts. Physics based modeling can improve the current 

knowledge of composites structures, especially in the case of fracture and fatigue. 

Improved prognosis mathematical models can accurately study the degradation trend 

from previous structural information and more accurately predict future structural 

condition states. By combining these three aspects, future prognosis techniques will not 

only increase structural lifespan and reduce maintenance costs, but also result in “smart” 

composite structures. 

7.4. Application of SHM to Aerospace and Space Vehicles 

Since aerospace and space vehicles represent some of the most advanced 

technologies in the world, integrating applicable SHM techniques in composites used in 

airplanes and spacecrafts will be beneficial in achieving the goal of overall structural 

integrity. This dissertation addressed the monitoring and quantification of impacts on 

UAV composite wings using the KPCA algorithm. Statistical features were extracted 
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from the sensor signals in the time and frequency domains, and were mapped to a high 

dimensional space for feature clustering through use of an appropriate kernel function. 

The kernel eigenvalues obtained from the original statistical feature datasets represented 

the damage propagation caused by impacts, which were considered as new feature 

datasets for damage quantification. Redundant features were compressed during the 

KPCA analysis. A novel Mahalanobis distance based damage index was defined to 

quantify impact damage. Low velocity impact experiments were conducted on a 

sandwich composite wing to validate the developed methodology. MFC based active 

sensing was used for damage detection.  After each impact, flash thermography images 

were taken to detect the presence of sub-surface (invisible) damage. A wing autopsy was 

conducted after the last impact to examine the exact nature of the damage in the 

composite wing. Multiple types of damage including fiber breakage, foam cracking, 

delaminations in the composite skin, and delaminations between composite skin and 

foam core, were detected. By studying the MFC sensor data, the damage quantification 

results showed steady structural degradation after the initial eight impacts, followed by 

rapid damage progression over the last two impacts.  

The investigation of SHM on satellite used deployable composite boom structures 

is a valuable endeavor for the future in space applications. In this dissertation, the system 

identification techniques based SHM approach was proposed to investigate damage 

caused by matrix cracking in composite booms subject to flattening and wrapping around 

a circular hub. Both the frequency response method and ARX input model were used to 

perform SISO transfer function estimation and storage state identification. A flexible 
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MFC actuator excites the boom specimen, and the response was captured by three MFC 

sensors using low frequency sweep signals to provide experimental input/output data. 

The frequency response method was used to non-parametrically analyze the relationship 

between input and output sensor signals and select a relevant frequency range. This also 

provided useful information for the transfer function analysis using the ARX model. The 

order of the ARX model was decided by considering both the estimation accuracy of the 

model and the calculation cost. The order selection of ARX model was validated by 

comparing the simulated and experimental output signals. The damage index estimation 

using the residual error of the ARX input model provided a clear trend of global damage 

growth because the composites presented nonlinear structural properties when matrix 

cracks were introduced. An equilibrium state for the composite boom was achieved after 

flattening and wrapping the boom specimens five times. Local storage state estimation 

was completed between each MFC sensor. The newly defined damage index was more 

sensitive in a localized region, but still provided reasonable global state estimation for the 

entire length of the composite boom. Results showed that storage state estimation 

correlated with the trends and rate of decay seen from first natural mode shifts using 

vibration modal analysis techniques. This type of integrated setup was a feasible method 

of acquiring dynamic characteristics on orbit as the size, weight, and power requirements 

were significantly less than traditional methods.  

More fundamental research is required for the future integration of SHM in 

aerospace and spacecraft vehicles. The uniqueness of aerospace engineering is the first 

key issue. For example, the composite wings and fuselages for airplanes, such as the 
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Boeing Dreamliner and Airbus A380, have complicated lay-up sequences, coatings, 

shapes and geometries. To design efficient SHM systems to cover such large structures 

with high accuracy and low costs is a large challenge. Vibration and noise can also 

introduce a significant amount of error in both the sensor data and extracted damage 

features. Other issues including temperature effects, lighting, power supply, and risk 

assessment should be considered as a system instead of as an independent factor.  

Finally, environmental factors also need to be considered in the development of 

advanced structural materials, designs, and sensing systems for SHM. Radiation, 

temperature control, and power supply are the three most obvious environmental issues. 

Research of SHM for the next generation of spacecrafts should carefully study these 

influences and fully demonstrate their impact before implementation. 
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