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ABSTRACT

Interictal spikes, together with seizures, have been recognized as the two hall-

marks of epilepsy, a brain disorder that 1% of the worlds population suffers from.

Even though the presence of spikes in brains electromagnetic activity has diagnos-

tic value, their dynamics are still elusive. It was an objective of this dissertation

to formulate a mathematical framework within which the dynamics of interictal

spikes could be thoroughly investigated. A new epileptic spike detection algorithm

was developed by employing data adaptive morphological filters. The performance

of the spike detection algorithm was favorably compared with others in the litera-

ture. A novel spike spatial synchronization measure was developed and tested on

coupled spiking neuron models. Application of this measureto individual epilep-

tic spikes in EEG from patients with temporal lobe epilepsy revealed long-term

trends of increase in synchronization between pairs of brain sites before seizures

and desynchronization after seizures, in the same patient as well as across patients,

thus supporting the hypothesis that seizures may occur to break (reset) the abnormal

spike synchronization in the brain network. Furthermore, based on these results, a

separate spatial analysis of spike rates was conducted thatshed light onto conflict-

ing results in the literature about variability of spike rate before and after seizure.

The ability to automatically classify seizures into clinical and subclinical was a

result of the above findings. A novel method for epileptogenic focus localization

from interictal periods based on spike occurrences was alsodevised, combining

concepts from graph theory, like eigenvector centrality, and the developed spike

synchronization measure, and tested very favorably against the utilized gold rule in

clinical practice for focus localization from seizures onset. Finally, in another ap-

plication of resetting of brain dynamics at seizures, it wasshown that it is possible

to differentiate with a high accuracy between patients withepileptic seizures (ES)

and patients with psychogenic nonepileptic seizures (PNES). The above studies of
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spike dynamics have elucidated many unknown aspects of ictogenesis and it is ex-

pected to significantly contribute to further understanding of the basic mechanisms

that lead to seizures, the diagnosis and treatment of epilepsy.
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Chapter 1

INTRODUCTION

1.1 OVERVIEW

Epilepsy affects around 50 million people worldwide and is one of the most com-

mon neurological disorders after stroke. It is characterized by two hallmarks:

epileptic seizures and epileptic spikes. Seizures occur due to the synchronous firing

of a massive group of neurons, and their duration may extend from seconds to min-

utes. The seizure (ictal state) causes temporary disturbance of brain function (eg.

motor, responsiveness, recall). Seizure onset and termination typically occur spon-

taneously, without any external intervention. The seemingly abrupt initiation and

termination of epileptic seizures reflects intrinsic but poorly understood properties

of the epileptic brain.

The other hallmark of epilepsy is the presence of interictal(between seizures)

spikes. Interictal Spikes (IS) are also abnormal, synchronized neuronal discharges

of group of neurons that can be observed in the electroencephalogram (EEG) of

patients with epilepsy. Interictal spikes are high amplitude (>50 µV) fast elec-

trographic activity followed by a slow wave (See Fig.1.1, 1.2), and last for only

a couple of hundreds of milliseconds when recorded at the brain surface (e.g. via

scalp electroencephalography - scalp EEG). Although spikes have been recognized

as a diagnostic tool for epilepsy, the reason for their occurrence still remains elu-

sive. Spiking may occur interictally, preictally (before seizures) and postictally

(after seizures), and the neural networks generating seizures and spikes may be dif-

ferent from each other. It has been demonstrated in an animalmodel of epilepsy

that every interictal spike is characterized by a pattern ofcellular discharge, called

paroxysmal depolarizing shift (PDS; See Fig.1.1D). PDS consists of a fast (200 to
1



500 Hz) sequence of action potentials, superimposed on a slow depolarizing poten-

tial [1]. Correlation of PDS and interictal spikes has been observed under multiple

experimental conditions. Investigation into the cause andeffects of interictal spikes

may give possible clues to epileptogenesis and may also serve to provide new treat-

ment avenues for epilepsy. From an engineering perspective, changes in interictal

or peri-ictal (around seizures) spiking could be used to predict an impending seizure

and explain the change in dynamics of the transition from interictal to ictal periods.

Figure 1.1: Interictal spikes recorded from (A) scalp EEG inhuman focal lesional
epilepsy (B) human focal idiopathic epilepsy (C) extracellularly in an experimental
in vitro model of focal epileptogenesis. (D) Paroxysmal Depolarizing Shifts (PDS)
recorded from hippocampal neuron in status epilepticus induced by sustained elec-
trical stimulation (Modified and reprinted from [1, 2], withpermission from Else-
vier Science)

1.1.1 Interictal spiking and interictal to ictal transition

A quantitative analysis of spiking in patients with temporal lobe epilepsy in the

past has revealed that the epileptogenic focus (the region of the brain that triggers

a seizure) generates spikes at maximum mean spiking rate, minimum variance in

inter-spike intervals, and minimum coefficient of variation in spiking [3]. Treating

interictal spikes as a point process, Sherwin [4] found thatthe distribution of inter-

spike interval became far less Gaussian prior to a seizure. Spatiotemporal changes

in preictal spike activity in human temporal lobe epilepsy [5] revealed that the de-

gree of bilateral dependence in medial temporal lobe spike activity increased prior
2



Figure 1.2: Epileptic spikes (red dots) observed in 10 seconds of interictal EEG
data from a patient diagnosed with right temporal lobe epilepy. The epileptogenic
focus for this patient is identified as RTD2, RTD3. (RTD-Right Temporal Depth
and ROF-Right Orbito Frontal)

to onset of a temporal lobe seizure, thus indicating that spikes may herald the inter-

ictal to ictal transition. Engel et al. reported that a high spiking rate was associated

with a low probability of occurrence of seizure [6]. A study conducted on amyg-

dala kindled epileptic rats [7], correlated severity of behavioral seizures with spike

frequency, and came up with the hypothesis that spikes may inhibit seizures. Con-

trary to this hypothesis, Gotman reported that, in amygdalakindled cats, interictal

spiking appeared as a result of seizures, and probability ofoccurrence of a seizure

is not affected by the spike rate [8]. Postictal increase in spike rate in human focal

epilepsy was observed independently by Gotman [9, 10] and Katz et al. [11]. It

3



was also noted in that study, that seizures occurred when thespiking rate was high

as well as when it was low, thus the hypothesis that spikes beget seizures, and the

view of spikes as “mini-seizures” may then stand invalid. Studies on the effects

of anti-epileptic drugs (AEDs) on spikes revealed that spiking was not affected by

medication [9, 12] while seizures were, an additional evidence that the mechanism

that generates spikes may differ from that of generating seizures. Recently, analysis

of EEG using data mining techniques found reproducible sequences of activation

pattern in interictal spike discharges [13]. Hidden Markovmodelling of spike prop-

agation was performed on interictal MEG data by Ossadtchi etal. [14]. The study

however was conducted in only one patient and the primary aimwas to localize the

epileptogenic focus.

1.1.2 Do Interictal Spikes Drive Epileptogenesis?

Jensen et al. studied the mechanisms behind the generation of spontaneous seizures

and spikes and suggested that seizures may occur due to non-synaptic (electrical-

gap) interactions while spikes to synaptic (chemical) transmission [15]. The study

points out that focal seizures arise independent of interictal spikes, as ictal events

(seizures) were observed even after interictal spikes wereabolished with synaptic

transmission blockers. Moreover, it has been pointed out that the area that produces

interictal spikes (called the irritative area) and the ictal-onset area may be different.

Thus the neural networks responsible for the generation of spikes and seizures ap-

pear to be different. Results thus indicate that the relation between epileptic spikes

and epileptic seizures is not straight-forward as one wouldexpect. Interictal spikes

are usually observed after a brain injury in human and experimental epilepsy, much

earlier than the onset of the first spontaneous seizure. Thusthe period between the

appearance of the first spikes and the first seizure offers a window for investiga-

4



tion into ictogenesis. Spontaneous neural activity similar to interictal spikes has

been observed in networks of self organization in the mammalian cortex and hip-

pocampus [16, 17, 18]. It has also been hypothesized that, with the aid of interictal

spikes, the injured axons of neurons may grow back into theiroriginal destination.

Axonal sprouting was observed in the dentate gyrus of the hippocampus during

epileptogenesis [19, 20]. The newly grown axon increases the positive feedback

in the network [21]. The excessive positive feedback makes the network unstable,

thus producing spontaneous seizures. Experimental evidence suggests that spikes

may play a role in other forms of synaptic plasticity, such aslong-term potentia-

tion (LTP) of synaptic strength [22]. This evidence indicates that interictal spikes

may play a role in guiding axons back into their network of origin and also help in

maintaining/generating synaptic plasticity.

1.2 RESEARCH OBJECTIVES

The major objective of this dissertation is to enhance the understanding of the dy-

namics of interictal spikes through a spatiotemporal dynamical analysis of their oc-

curences and in relation to epileptic seizure occurences. The majority of approaches

in the literature deal with increase or reduction in spike rate and its correlation with

seizure susceptibility and seizure severity. This has led to two contrasting views:

researchers observed increase in spike count preictally versus postictally, and the

reverse. Some of the few approaches which studied the spatio-temporal changes

of interictal spikes prior to an epileptic seizure include [4, 5]. Our work has been

inspired by Lange’s research on spatio-temporal evolutionof preictal spike activity

in human temporal lobe epilepsy. Lange pointed out that bilateral dependencies of

spikes increased prior to the onset of a seizure. He followeda qualitative approach

in relating how spiking in one region of the brain is related to another.

5



Ten years later, Iasemidis et al. observed that the brain transits to a state of

synchrony hours to minutes before an ictal onset and back to desynchronized state

after seizure termination [23, 24, 25]. This means that different regions of the brain

move or are driven into a pathological hypersynchronized state prior to an epileptic

seizure. Spikes were not considered separately in that analysis of EEG. Assuming

the brain as a network of coupled oscillators, they hypothesized that during the

preictal period the oscillators synchronize with each other and tend to have similar

epileptic activity. In that sense, spikes also will occur insynchrony as a seizure

approaches. This might give valuable insight into the process of epileptogenesis

and ictogenesis. The major objective of this research is to perform a systematic

study on this role of spikes in ictogenesis. We try to answer whether pre-ictal

synchronization of spikes is observed, and if so what is its relation with pre-ictal

entrainment of the EEG observed by Iasemidis et al.

Another open question this research addresses is epileptogenic focus localiza-

tion (identification of the region of brain that initiates the seizure) based on inter-

ictal spiking activity. Epileptogenic focus localizationhas been an active area of

research in the past decades. In the 80s, physicians relatedepileptogenic focus to

the region in the brain which had the highest spiking rate. However with the ad-

vancement of computers technology and quality of digital EEG recording units, it

has been observed that contrary to the popular belief, the epileptogenic focus is not

nevessarily the region with the highest spike rate. Clinically, current methods for

localization of the focus include the identification of the location of seizure onset

via EEG and imaging technologies. In this research, we investigated how interictal

spikes are related to epileptogenic focus and whether it is possible to localize the

epileptogenic focus from the interictal period.
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1.3 THESIS ORGANIZATION

The rest of this thesis is organized as follows. In Chapter 2,we first discuss spike

detection algorithms in the literature. We then introduce anovel spike detection

algorithm based on morphological filtering techniques and compare its performance

with an established spike detector from the literature. We then apply our spike

detection algorithm on the EEG data from five patients with temporal lobe epilepsy

and investigate long term trends in spike rate profiles at different brain regions.

In Chapter 3, we investigate the spatial synchronization ofspikes, develop mea-

sures of spike synchronization and compare them with existing ones in the liter-

ature. We then apply the developed measures and evaluate their performance on

coupled neuronal oscillator models that can generate spiking activity. We then ap-

ply the developed synchronization measures on interictal spikes detected from our

five patients and investigate the long-term and short-term trends in spike synchro-

nization profiles.

Chapter 4 describes the application of epileptic spike synchronization to local-

ization of the epileptogenic focus. We utilize a measure of connectivity from graph

theory and show its application to epileptic spike synchronization. We then apply

the developed measure on spikes from models of coupled oscillators and epilep-

tic spikes detected from the EEG of our five patients. A prospective epileptogenic

focus localization algorithm is described in this section.

In Chapter 5, we investigate the relation of seizure severity with peri-ictal spike

rate. We show that clinical seizures are preceded by high andspatially spread spike

activity while subclinical seizures are not.

In Chapter 6, we discuss the resetting of brain dynamics at seizures in terms of

spike synchronization and synchronization of brain dynamics. We quantify the dy-
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namical changes in spike synchronization profiles at seizures using a novel measure

for brain resetting. Comparison of brain resetting resultsfrom nonlinear dynamics

and the novel spike-based brain resetting results are presented in this section. We

herein also present the results of seizure resetting by analysis of scalp EEG from

epileptic and nonepileptic pyschogenic patients. We provide empirical evidence

that differential diagnosis is possible between those patients on the basis of reset-

ting of brain dynamics.

In Chapter 7, we provides the conclusion and future directions of this line of

research.
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Chapter 2

INTERICTAL SPIKE DETECTION

2.1 INTRODUCTION

Algorithms for automatic detection of epileptic spikes is avaluable diagnostic tool

for clinicians and researchers. Visual spike marking by an experienced EEGer is a

time consuming process and prone to bias, whereas automaticspike detection is a

difficult task because of the variation of spikes’ characteristic morphology across

elecrodes, both within a patient and across patients. A ruleof thumb for spike de-

tection among the clinical community is sharpness and distinguishability from the

background EEG. Such a simplistic definition of epileptic spikes makes the devel-

opment of a robust detection algorithm difficult. Over the years several spike de-

tection algorithms have been proposed. Broadly, these algorithms can be classified

into three types : mimetic-based, signal processing-based, and template-matching.

Gotman and Gloor [26] detected spikes by dividing the spike waveform into a

set of half-waves by distinguishing segments between amplitude extrema. Using

the distinguishability of the half-waves from the background, their sharpness and

duration were used to produce appropriate detection criteria. Gueds et al. [27] used

a similar set of attributes (sharpness of the peak, durationof the wave, and steepness

at the edges) to also come up with a spike detection algorithm. Instead of using the

absolute value of these attributes, they used relative attributes with respect to the

background. A rule-based variation of Gotmans algorithm was proposed and tested

on a single 320 sec EEG segment by Davey et. al [28].

Autoregressive (AR) modeling of EEG was used by Sankar et al.[29] to de-

tect spikes. AR coefficients were computed for every 5 secondsegment of EEG,

and the obtained coefficients were compared to a previously stored template of AR
9



coefficients for spike waveforms. The algorithm had a very low sensitivity and

specificity. Wavelet analysis of epileptic spikes was perfomed by Senhadji, Park,

Adeli [30, 31, 32]. Wavelet coefficients were computed from segments of EEG

data and later used as features for neural network training.Parameterization of

EEG spikes using the matching pursuit decomposition put forward by Mallat and

Zhang [33], was performed by Durka et al [34]. These parameters were later used

to detect spikes.

Neural Network-based interictal spike detection algorithm was performed by

Hellmanm, Ko, Ozdamar [35, 36, 37]. Ozdamar and Ko proposed an algorithm

which takes raw EEG fed to a neural network classifier for epileptic spike identi-

fication whereas Hellmann used morphological features of the wave as attributes

to neural network classifier. Wilson et al. developed a Multiple Monotonic Neural

Network (MMNN) for spike detection [38]. The neural networkused was similar

to the one proposed by Webber et al. [39], and assigned perception values to de-

tected spikes. A high perception (1) is assigned to an unambiguous spike and low

perception (0.1) is assigned to an ambiguous spike.

Morphological filter is an efficient tool to decompose raw EEGwaveform into

background activity and fast epileptic spike activity. Investigation into application

of morphological filter to spike detection was performed by [40, 41, 42]. The pri-

mary difference in the three methods is the selection of the structure element. Xu

et al. provided an efficient method to construct the structure element, however the

algorithm requires considerable optimization time.

2.2 MORPHOLOGICAL FILTERING BASED SPIKE DETECTION

Morphological filters (MF) are a class of nonlinear filters used to separate char-

acteristic morphologies in multi-dimensional signals. The theory behind math-
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ematical morphology was developed by Matheron and Serra in 1964 and it has

been widely applied to detect edges and to perform pattern recognition in images

[43, 44, 45, 46].

Morphological filters rely on a structuring element of a predefined shape that

probes the multi-dimensional signal. A wide variety of structuring elements can

be defined based on the shape of the morphology to be extractedfrom the signal.

However there is no defined theory on the selection of an appropriate structuring

element. Commonly used structuring elements include squares, discs, parabolas

etc.

2.2.1 Morphological Filter Operators

Morphological filtering includes four basic operations formulated using Minkowski

addition and subtraction. Consider two setsX andY in Euclidian space, then their

Minskowski sum is defined as

X⊕Y = {x+y | x∈ X,y∈Y} (2.1)

i.e. every element ofX is added to every element ofY to produce the Minkowski

sum. Then four basic morphological operators can be defined as

1. Erosion

(x⊖ys)(t) = min{x(τ)−y(−(t− τ))}, τ ∈ D (2.2)

2. Dilation

(x⊕ys)(t) = max{x(τ)+y(−(t − τ))}, τ ∈ D (2.3)

3. Opening

(x◦y)(t) = [(x⊖ys)⊕y](t) (2.4)
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4. Closing

(x•y)(t) = [(x⊕ys)⊖y](t) (2.5)

wherex(t) is the raw data andy(t) is the structuring element andys(t) = y(−t), D

is the set of real numbers. The notation⊕, ⊖, ◦, • indicates Minkowski addition,

Minkowski subtraction, Opening and Closing operations respectively.

The effect of each of the four operations on a signal is shown in Fig. 2.1.

Erosion ofx(t) using y(t) will attenuate the peaks, whereas dilation enlarge the

valleys. The opening operation is erosion followed by dilation thus it smooths

the signal from below, i.e. it will cut down the peaks of the signal. The closing

operation is basically dilation followed by erosion and hasthe effect of smoothing

the signal from above by filling up its valleys. Thus, in principle, a combination of

opening and closing can be used to detect spikes in signal. From 2.1(a) and 2.1(b)

we can observe that the epileptic spikes occur with both positive and negative peaks.

Thus, to detect these spikes we follow the approach detailedin [42]. We obtain

OC(t)= x(t)◦y1(t)•y2(t) (Opening ofx(t) usingy1(t) and closing usingy2(t)) and

CO(t) = x(t) • y1(t) ◦ y2(t) (Closing ofx(t) usingy1(t) and opening usingy2(t)).

Thus the, combination of closing and opening will eliminateany spikes in the data

(see Fig. 2.2). Now we define ˆx(t),

x̂(t) = x(t)− OC(t)+CO(t)
2

(2.6)

From Fig. 2.2’s low panels we can observe that ˆx(t) contains just the spike

component devoid of any background activities.
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Figure 2.1: Illustration of the results of the four basic operations of a morphological
filter (a) on a negative spike (b) on a positive spike
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Figure 2.2: Extraction of epileptic spikes by morphological filtering from back-
ground EEG. (a) Filtering of a negative spike. (b) Filteringof positive spikes.
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2.2.2 Selection of structural elements

Selecting an appropriate structural element improves the efficiency and accuracy of

the spike detector. Due to the lack of theoretical framework, the task of selecting

a structural element becomes a non-trivial problem. Commonly used structural el-

ements include parabolic, triangular and line shaped elements (see Fig. 2.3). The

dynamical properties of EEG change over time, so the design of structuring ele-

ment should take into account these changes, i.e the structuring element should be

adaptive. Xu et.al proposed parabolic structuring elements whose width and height

are optimized to extract the peaks in the signal while at the same time supressing

the background activity [42]. We use a modified version of Xu’s algorithm for

designing the optimal structuring element.

(a) (b) (c)

Figure 2.3: Structural element commonly used in morphological filtering. (a)
Parabolic (b) Triangular (c) Line.

2.2.3 Design of structural element

We first define thenth-order difference ofx(t) as follows

dn(t) = |x(t +n)−x(t)| (2.7)

ThenD(n), the 75% quantile ofdn(t), is estimated for all values ofn. D(n) is

then an approximates the significant values ofdn(t). We then estimate the structur-
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ing elementsy(t) as

y(M−n) = y(M+n) =−aoptD(n), n∈ [1,M−1] (2.8)

whereM = (Nopt +1)/2, y(M) = 0. Nopt andaopt are the optimal width and op-

timal amplitude of the structuring element respectively (see Section 2.2.4). The

structuring element y(t) thus carries information about the average local variation

of the signal under consideration. For a signal with slow dynamics the structuring

element will be approximately flat, and for a signal with fasttransient activities the

structuring element will be sharp (see Fig. 2.4).

2.2.4 Optimization of structuring element

The length and amplitude of the structuring element play an important role in opti-

mal detection of epileptic spikes. We use the K-criterion detailed in [42] for optimal

selection of amplitude and width of the structuring element. For a signalx(t) we

estimate two structuring elementsy1(t) and y2(t). The shape of the structuring

element is estimated based on section 2.2.2. The width and amplitude of the struc-

turing elements are selected as follows

1. Intialize amplitudea1 and widthn1 of y1(t). Intialize amplitudea2 and width

n2 of y2(t). We choosea1. Value ranges fora1, a2, n1, n2 are provided below

2. Estimate ˆx(t) using Eq. 2.6.

3. EstimateNpz of x̂(t) as

Npz=
N−1

∑
t=1

Θ(x̂(t)∗ x̂(t+1)) (2.9)

where

Θ(x) = 1 x≤ 0

= 0 x> 0
(2.10)
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andN is the length of the signal ˆx(t)

4. EstimateRpz= Npz/N

5. EstimateI f = x̃/x̄, where ˜x= max(|x̂(t)|) andx̄= 1
N ∑N

t=1 |x̂(t)|

6. EstimateK = I f /Rpz

7. Repeat steps 1-6 for different values ofa1, a2, n1, n2

8. Select the maximum value ofK and the corresponding set ofa1, a2, n1, n2

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
(a)

Time (sec)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−4

−2

0

(b)

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
(c)

Time (sec)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−4

−2

0

(d)

Time (sec)

Figure 2.4: Shape change of structural elementg(t) with changes in dynamical
properties of signal. (a) EEG segment with slow dynamics (b)Structural element
for EEG segment in (a). (c) EEG segment with epileptic transients like spikes. (d)
Structural element for EEG segment in (c).

I f is the pulse index of ˆx and is sensitive to the transient component of the

signal.Rpz is the zero-crossing rate of ˆx and reflects the degree to which background
17



activity is to be compressed. A large value of K thus means that spike components

are better extracted and background activities are better compressed. To remove

effects of EEG scaling and other factors from affecting detector performance, we

normalize (using standard deviation) and filter the data between 0.1Hz and 30Hz

using a 4th order Butterworth filter. Values ofa1, a2 range between 0.1 to 2 (upto 2

standard deviation), andn1, n2 can range from 5 to 21 samples which corresponds

to 25 msec to 100 msec for a data sampled at 200 Hz (typical spike duration is

around 50-80 msec).

2.2.5 Detector Performance

Performance of the detector is dependent on how accurately it can detect spikes and

also how efficiently it can restrain background activities.We compare the perfor-

mance of four morphological filters

• Adaptive Morphological Filter (AMF) (see section 2.2.3)

• Modified Morphological Filter (MMF) [42]

• Morphological Filter with Parabolic Structure Element (MFP)

• Morphological Filter with Triangular Structure Element (MFT)

We used marked epileptic EEG spikes and artifacts from a public database [47].

The data set consisted of a total of 53 spikes in thirty 8 second epochs. Ten minute

of artifacts consisting of spike like events was also analyzed to test the specificity

of our algorithm. Fig. 2.5 shows the performance of the four spike detectors on the

data set. We can see from the plot that AMF and MFT has superiorperformance

compared to MMF and MFP. Even though the performance of MFT isslightly

better than AMF we selected AMF over MFT, since AMF adapts itself to changes
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in EEG dynamics within a recording site and also adapts to variability in EEG

across electrodes and patients.
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Figure 2.5: Performance characteristics of the four spike detector. The blue curve
denotes the detection characteristics curve for AMF, the red curve denotes the detec-
tion characteristics for MMF. The magenta line denotes the detection characteristics
for MFP and the black line denotes the detection characteristics curve for MFT.

To compare the efficiency of the detector in restraining background activity,

we select 50 EEG segments of duration 10 sec each, containingno epileptiform

discharges or activities. We estimated ˆx(t) for every EEG segment using each of

the four morphological filters. Since the EEG segment contains no epileptiform

discharges we assume that morphological filter should extract the background com-

pletely and ˆx(t) is the misfit. We therefore estimate the Signal to Noise Ratio(SNR)

for each segment for the four filters as:

SNR= 10log10

(Px

Px̂

)

(2.11)

wherePx andPx̂ are the powers of the signalsx(t) andx̂(t) respectively.

The mean SNR for the four filters are shown in Table 2.1. From this Table it

can be observed that the Adaptive morphological filter performs better in restraining

background activity than the traditional and improved morphological filters.
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Table 2.1: Performance of Morphological Filters in restraining background EEG

Type of Filter Mean SNR (dB)

Adaptive MF 22.84
Xu’s Improved MF 17.79

MF with parabolic Structure Element 16.86
MF with triangular Structure Element 16.30

2.2.6 Comparison with Persyst Spike Detector

We now compare the performance of the our spike detector withthe commercially

available software for epileptic spike detection called Persyst. Two hours of con-

tinuous intracranial EEG recordings of a single electrode from a single patient was

used for this purpose. Spikes were detected for this electrodes using DAMF and

Persyst. The sensitivity of Persyst spike detector was automatically set by the soft-

ware itself. The spikes picked up both the algorithms, the spikes missed by DAMF

but detected by Persyst and the spikes missed by Persyst but picked up by DAMF

is shown in Fig. 2.6. We can observe that spike detector basedon DAMF is more

robust when compared to Persyst.

2.3 DESCRIPTION OFEEG DATA :

EEG data from a total of five patients who underwent presurgical evaluation and

long-term intracranial EEG recordings were chosen for dynamical analysis. In-

formed consent for participation in this study was obtainedfrom all patients. The

recordings included 4-29 seizures (with clinical manifestation and sub-clinical seizures)

over a period of 5 to 13 days per patient (see Table 2.2).

2.3.1 Electrode Placement:

The five patients used in this study had the following electrode placement (also see

Fig. 2.7)
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Figure 2.6: Comparison of DAMF with commercially availablespike detector on
two hour EEG recorded from a single channel of a patient with temporal lobe
epilepsy. Average of spikes detected by (a) both DAMF and Persyst (b) Persyst but
missed by DAMF (c) DAMF but missed by Persyst. The perceptionlevel (thresh-
old) for the Persyst algorithm was fixed at 0.7. A higher or lower threshold did not
change the results. Approximately 50% of spikes detected byDAMF were detected
by Persyst. DAMF missed 65% of spikes detected by Persyst, the average of this
missed detection corresponds to the second panel in (b).

• A stereotactic placement of bilateral depth electodes in the hippocampi (RTD1

anterior to RTD6 posterior in the right hippocampus, with RTD1 adjacent to

right amygdala; LTD1 anterior to LTD6 posterior in the left hippocampus

with LTD1 adjacent to the left amygdala).

• Two subdural stip electrodes over the orbitofrontal lobes (LOF1 to LOF4 in

the left and ROF1 to ROF4 in the right lobe, with LOF1, ROF1 being most

mesial and LOF4 and ROF4 most lateral).

• Two subdural strip electrodes were placed bilaterally overthe temporal lobes

(LST1 to LST4 in the left and RST1 to RST4 in the right, with LST1, RST1

being more mesial and LST4 and RST4 being more lateral).
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Figure 2.7: Schematic diagram of the horizontal section of the brain showing the
depth and subdural electrode placement.

2.3.2 EEG Recording:

The EEG was recorded using a Nicolet BMSI 4000 EEG machine. The EEG signals

were recorded using an average common reference with analogband-pass filter set-

tings of 0.1 Hz -70 Hz. The data were sampled at 200 Hz with a 10 bit quantization

and recorded on VHS tapes continuously over days via 3 time-interleaved VCRs.

The data from tapes were subsequently decoded and transferred to computer media

for storage.

2.4 APPLICATION ON EEG DATA

Epileptic spikes were detected per electrode for the entireduration of recording

for each of the five patients using the improved morphological filter with adaptive

structuring element. Spike detection was expedited with the help of High Perfo-

mance Computing Cluster available at ASU. Two hundred and fifty six computer

cores were used at a time to speed up the calculations. The algorithm is computa-
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Table 2.2: Patient and EEG Data Characteristics

Patient Number of Duration Number of Focus
ID Electrodes (Hours) Seizures (Clinical Assessment)

1 28 200.2 30 Right temporal lobe
(RTD)

2 28 143.4 19 Right temporal lobe
(RTD)

3 28 149.6 23 Left temporal lobe
(LTD)

4 28 322.8 17 Right temporal lobe
(RTD)

5 28 268.6 7 Right temporal lobe
(RTD)

tionally efficient and is faster than real time (less than 0.5sec for 10 sec of EEG

from 28 channels). However, the volume of data to be analyzedwas approximately

2 weeks per patient, which necessiated the use of high computation power.

2.4.1 Long-term trends in spike rate

To investigate the long-term evolution in spike rate per brain site, we estimated the

number of spikes in every 10.24 second of EEG segment at each of the brain sites

for the entire duration of recording. Figs. 2.8, 2.9, 2.10 show the spike rate profiles

of six brain sites (one from each region) in a single patientswith temporal lobe

epilepsy. Each brain site has its own distinct spike rate profile. For the left sub-

temporal and left temporal depth regions, we can observe an immediate increase

in spike frequency following a seizure, whereas for the leftand right orbito frontal

there is an increase in spike frequeny prior to a seizure. Thebehavior of spike

activity in the right orbitofrontal is an interesting phenomenon. We can observe

long-term increase in spike frequency till the first clinical seizure for this electrode.

Also, across seizures and patients (See Fig. 2.11), there isan increase in the number

of spikes in the orbito frontal cortex preictally. Previousstudies in mesial temporal
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lobe epilepsy have shown functional connectivity and propagation of ictal activity

between hippocampi and orbitofrontal cortex in humans [48,49, 50]. These results

suggest that the orbitofrontal cortex can be involved in theinterhemispheric propa-

gation of mesial temporal lobe seizures. The spike rate profile of left orbitofrontal

cortex (LOF; See Fig. 2.10(a)) is similar to the one of right orbitofrontal (ROF).

Based on this observation we can hypothesise, a possible propagation pathway be-

tween the abnormal hippocampus and the orbitofrontal region which becomes in-

creasingly active during ictogenesis. Seizure itself thenget initiated as a defensive

mechanism of the brain to break this functional connectivity. We investigate these

phenomena in the next chapter where we measure functional connectivity in terms

of spike synchronization.
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Figure 2.8: Spike rate profile for two brain sites located in the left and right hip-
pocampal regions in Patient 1. (a) Left Temporal Depth (LTD). (b) Right Temporal
Depth (RTD). Vertical solid red lines denote clinical seizures and dashed red lines
denote subclinical seizures.

From Fig. 2.8(b) and 2.9(b) we notice that RST has a higher spike rate than

RTD, which is the clinically identified focus (first area thatshows seizure onset).

Fig. 2.12 shows the mean rate of spikes (number of spikes/30.72 sec) for the first

interictal segment of Patient 1. It can be observed that RTD1, RST2, RST3 and
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Figure 2.9: Spike rate profile for two brain sites located in the left and right subtem-
poral regions in Patient 1. (a) Left Sub Temporal (LST) . (b) Right Sub Temporal
Depth (RST). Vertical lines are as in Fig. 2.8
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Figure 2.10: Spike rate profile for two brain sites located inthe left and right
orbitofrontal regions in Patient 1. (a) Left Orbitofrontal(LOF) . (b) Right Or-
bitofrontal (ROF). Vertical lines are as in Fig. 2.8.
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Figure 2.11: Spike rate profile for the right orbitofrontal (ROF) region of three pa-
tients. Spike rate for the ROF region monontonically increases prior to epileptic
seizure. This might indicate existence of functional connectivity or pathways be-
tween the epileptogenic hippocampus and the ROF in the preictal period. Seizure
breaks this functional connectivity and a more normal functionality is restored.
Vertical red lines denote clinical seizures and dashed red line denotes subclinical
seizures.
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RST4 have the highest spike rate. RTD2 and RTD4 which are the clinically deter-

mined focus have very low spike rate (comparable to ROF3 and LOF4). Thus spike

rate may not provide us with accurate information about the location of the focus.

This is in agreement with the findings by Jensen et. al [15].

The spike frequency profiles at the epileptogenic focus for four patients with

temporal lobe epilepsy are shown in Fig. 2.13. We can see thatthere is no consis-

tent behavior over time and across patients, specific to the focal region. Seizures

tend to occur at high as well during low rates of spike activity. In Patient 1, we can

see a progressive increase in spike rate with increasing seizure activity, however

similar observations cannot be made across patients. In patient 4, we observe cir-

cardian oscillations in spike rate (according to the patient report, the majority of this

patient’s seizure occured during sleep). Relationship between epileptogenic focus,

interictal spikes and depth of sleep has been investigated in [51, 52, 53]. However

since the sleep stages were not marked for our patient we werenot able confirm the

results of this study.

2.5 CONCLUSIONS

In this chapter, we developed a novel method for detection ofepileptic spikes using

an improved morphological filtering technique. In particular morphological filter

was constructed using a data adaptive structuring element,which changes its width

and amplitude depending on the data under consideration. The performance of

the detector in identifying epileptic spikes from background EEG was tested and

compared with similar algorithms available in the literature on known data from

publically available database. We further tested the robustness of the detector in

compressing background EEG activity by applying the algorithm on segments of

EEG containing no epileptiform activity and estimating thesignal to noise ratio.
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Figure 2.12: Mean spike rate(# of spikes per 30.72 sec) at different brain sites for
the interictal segment of Patient 1. RTD (Right Temporal Depth), which is the
clinically identified focus, has lower mean spike frequencywhen compared to RST
(Right Subtemporal). This indicates that localization of epileptogenic focus is not
possible using spike counting techniques.

Based on analysis an ROC (Reciever Operating Characteristics), the detector was

constructed and an optimal threshold for detection was identified. Application of

the detector to EEG recordings from five patients with temporal lobe epilepsy was

then performed. We observed that a high spike rate was not correlated with the

location of the epileptogenic focus. In particular we observed, that the epileptogenic

focus might have similar spike rate as that of a normal brain sites. Spike rate at

the epileptogenic focus also did not show consistent trendsacross patients. An

interesting observation was the behavior of Orbito-Frontal brain region across all

patients. Progressively increasing spike rate was observed in these areas in the

preictal period of most of the seizures and was followed by supression of spike rate

in the postictal period.
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Figure 2.13: Spike frequency profile for the clinically accessed focus of four pa-
tients with temporal lobe epilepsy. Spike frequency was estimated by counting
the number of spikes in every 10.24 seconds. Spike frequencyfor (a)Patient 1
(b)Patient 2 (c)Patient 3 (d)Patient 4 are shown. Vertical red lines denotes clinical
seizures and vertical dashed red lines denotes subclinicalseizures

The results in this chapter suggest complex relationship between spike rate,

seizures and the epileptogenic focus. The rest of the dissertation is committed to

deciphering this complex relationship. Taking insight from the results in this chap-

ter, we set to test whether preictal spikes have more power, i.e. a tendency to spread

across brain sites or equivalently act as communicating agents. In the postictal pe-

riod, the ability of spikes to spread to multiple brain region may reduce due to a

resulting disconnection from the occurence of the seizure (the resetting of brain

dynamics)[54, 55]. We will be investigating this hypothesis in the next chapter,

where we study the synchronization of epileptic spikes and its relation to seizures.
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Chapter 3

SPIKE SYNCHRONIZATION

3.1 INTRODUCTION

Extracting information about neural codes in spike trains has been a key challenge

in understanding the dynamics of the epileptic brain. To this effect, many methods

of measuring spike train synchrony have been proposed. Mostof the approaches

discuss spike trains as point processes rather than continuous time processes. Con-

sidering the all-or-none nature of neural codes, a point process-based approach

seems a viable method for decoding the information residingwithin spike trains.

In [56], Victor et al. proposed a family of metrics that are sensitive to different

features of temporal coding such as absolute timing of individual pulses, duration of

interspike interval, and pattern recurrence. A method to identify similarity between

spike trains was also proposed by Victor [57]. The central idea of that proposed

metric includes the evaluation of the cost required to transform one spike train to

another through a series of elementary steps.

Cross-correlation between spike trains as a measure of synchrony was proposed

by Schreiber et al [58] . The method consists of filtering the observed spike train

with a Gaussian filter and estimating the cross-correlationbetween the filtered spike

trains which have now become a continuous time series. Quiroga et al. proposed

event synchronization as a measure to evaluate synchronization patterns in point

processes [59]. The measure is conceptually very simple andessentially counts the

number of event pairs that occurred close in time. Kreuz et al. put forward a family

of measures to estimate synchrony between spike trains [60,61, 62]. The mea-

sures termed as ISI-distance, Multivariate ISI-distance and Spike-distance evaluate

the degree of synchrony between bivariate point processes and multivariate point
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processes based on interspike interval and spike coincidence. The ISI-distance is

sensitive to firing rate of spikes and measures the similarity of interspike interval be-

tween two point processes. Multivariate ISI distance is an extension of ISI-distance

to multiple spike train. Spike-Distance was proposed to essentially overcome the

disadvantages of ISI-distance. Spike-Distance is sensitive to both firing rate of neu-

rons and to the fraction of coincident spikes. Spike distance is essentially parameter

free, time scale adaptive and time resolved.

In this chapter, we discuss different spike synchronization measures and their

application to spiking neuron models and EEG recordings of patients with temporal

lobe epilepsy. In particular, we discuss the measure of Spike-Distance developed by

Kreuz et al. [62] to estimate the synchronization between spike trains of different

brain sites. We first explain the theory behind spike distance and test it on coupled

neuronal models. We discover its limilations and propose a novel and improved

measure of spike synchronization based on event synchronization [59]. We then

apply the new measure of event synchronization and spike distance on epileptic

EEG data and observe the long-term and short-term trends in spike synchronization

that lead to seizures.

3.2 SPIKE DISTANCE

Spike-Distance is a measure of spike synchrony and is sensitive to spike timings

and fraction of coincident spikes. The advantage of spike distance lies in the fact

that it is parameter-free and time-scale adaptive. The measure is computationally

very simple and relies on the differences between spike times of two spike trains

under consideration and the interspike interval.

Consider two point processx andy containingMx andMy spikes respectively.

Let tx
i andty

j denote the time of occurence of spikes in processx andy respectively.
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We definetx andty the time series vector containing spike times ofx andy as

tx = {tx
1, t

x
2 . . . t

x
Mx
} (3.1)

ty = {ty
1, t

y
2 . . . t

y
My
} (3.2)

Now we definetP(t), the time instant of the previous spike as

tk
P(t) = max(tk

i |tk
i ≤ t), k∈ (x,y) and tk1 ≤ t ≤ tk

M (3.3)

Similarly we definetF(t), the time instant of the following spike as

tk
F(t) = min(tk

i |tk
i > t), k∈ (x,y) and tk1 ≤ t ≤ tk

M (3.4)

The interspike interval can be defined as

xk
ISI(t) = tk

F(t)− tk
P(t) (3.5)

We estimate the instantaneous difference between the previous and following spike

times ofx andy as

∆tP(t) = tx
P(t)− ty

P(t) (3.6)

and

∆tF(t) = tx
F(t)− ty

F(t) (3.7)

The locally weighted average of∆tP(t) and∆tF(t) is estimated as

< ∆t j(t)> j=P,F =

∑
j=P,F

|∆t j(t)| f (xk
j(t))

∑
j=P,F

f (xk
j(t))

where k∈ (x,y) (3.8)

To define a weighting function, we estimatedk
P(t) anddk

F(t) as

dk
P(t) = t − tk

P(t) (3.9)
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and

dk
F(t) = tk

F(t)− t (3.10)

The valuesdk
P(t) anddk

F(t) are the distance to the previous and following spike.

The weighting functionf (xk
P(t)) and f (xk

F(t)) are then defined as inverse of

the average value ofdk
P(t) anddk

F(t) overk = (x,y). We denote this average over

the two spike trainsk = (x,y), as〈dP(t)〉k and〈dF(t)〉k. Replacingf (xk
P(t)) and

f (xk
F(t)) in Eq. 3.8 we get

〈∆t j(t)〉 j=P,F =
|∆tP(t)| 1

〈dP(t)〉k + |∆tF(t)| 1
〈dF(t)〉k

1
<dP(t)>k

+ 1
<dF (t)>k

=
|∆tP(t)|〈dF(t)〉k+ |∆tF(t)|〈dP(t)〉k

〈dP(t)〉k+ 〈dF(t)〉k

(3.11)

The denominator of Eq. 3.11 is the mean inter spike interval (ISI) of spike trainx

andy, which we denote〈xISI(t)〉k. Thus Eq. 3.11 can be written as

〈∆t j(t)〉 j=P,F =
|∆tP(t)|〈dF(t)〉k+ |∆tF(t)|〈dP(t)〉k

〈xISI(t)〉k
(3.12)

To make the measure of spike distance time-scale invariant (i.e insensitive to com-

pression and stretching), we divide〈∆t j(t)〉 by 〈xISI(t)〉k. We thus get the instanta-

neous spike distance,S(t) as

S(t) =
|∆tP(t)|〈dF(t)〉k+ |∆tF(t)|〈dP(t)〉k

〈xISI(t)〉2
k

(3.13)

The bivariate spike distance is then estimated as

Ds =
1
T

T
∫

t=0

S(t)dt (3.14)

The value ofDs is bounded between[0,1] with a value of zero occuring only for

two perfectly identical spike trains.
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3.3 EPILEPTIC SPIKE SYNCHRONIZATION

A fundamental problem with bivariate spike distance is thatit leads to erroneous

values of synchronization if the spikes trains are well separated in time. For exam-

ple, if spike traintx occurs in the time interval[tx
A tx

B] and spike trainty occurs in

the time interval[ty
A ty

B], wherety
A >> tx

B, we obtainDs close to 0. This is due to

the localized nature of estimation of spike distance. We further investigate this in

the subsequent section. To overcome this we propose an improved version of event

synchronization [59] which is parameter-free and also takes into consideration the

local dynamics of the spike trains.

Consider two spike trainsx andy, as defined in Section 3.2 with their spike

times given in Eq. 3.2. We defineei(x|y) for spikei in processx as

ei(x|y) = 0.5exp
(

− dmin
i

(tx
i+1− tx

i )

)

i = [1,2. . . .Mx] (3.15)

wheredmin
i = min(ty

j − tx
i ) for j ∈ (1,2. . .My) such thatdmin

i ≥ 0. Similarly we

estimateei(y|x) for spikei in processy as

ei(y|x) = 0.5exp
(

− dmin
i

(ty
i+1− ty

i )

)

i = [1,2. . . .My] (3.16)

Now we estimate the symmetrical and asymmetrical combinations ofe(x|y) and

e(y|x) as

Q=

Mx−1
∑

i=1
ei(x|y)+

My−1

∑
i=1

ei(y|x)
√

(Mx−1)(My−1)
(3.17)

Ix→y = Nn

Mx−1
∑

i=1
ei(x|y)−

My−1

∑
i=1

ei(y|x)
√

(Mx−1)(My−1)
(3.18)

whereNn =
2

1−e−1 is the normalization factor so that the value ofIx−>y is bounded

between[−1 1]. Ix→y tends to 1 when processx drives processy and -1 when
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processy drives processx. Q takes values between[0 1], 0 when spike trains are

desynchronzied and 1 when there is perfect coincidence of spikes.

Figure 3.1: Pictorial representation of estimation of the measure Epileptic Spike
Synchronization

Quiroga’s definition of event synchronization laid a constrain parameterτ for

the time difference between spikes in two channels. Howeverdue to the dynamical

variation of EEG, a global definition ofτ is not intuitive. We compensate it by

using an exponential decay function of interspike intervalof the point process under

consideration. The modified measure of event synchronization incorporates the

firing rate of the process into the calculation, making it robust to dynamical changes.

3.4 APPLICATION TO SPIKING NEURON MODELS

In 1984, Hindmarsh and Rose introduced the Hindmarsh-Rose (HR) coupled neu-

ronal model for burst action potential generation [63]. Compared to the Hodgkin-

Huxley model [64] for action potential, the HR model is less complex and has better

convergence properties. We analyze the performance of Spike Distance (SD) and

Modified Event Synchronization (MES) in estimating synchronization and direc-

tion of coupling between coupled nonlinear HR models.
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The HR model can be described as follows

ẋi = yi −ax3
i +bx2

i −zi + I0i +
α
K

N

∑
j=1, j 6=i

(x j −xi)

ẏi = c−dx2
i −yi (3.19)

żi = r[s(xi −x0)−zi ]

wherex,y, andz represent membrane potential, fast current and slow current re-

spectively witha= 1.0, b= 3.0, c= 1.0, d = 5.0, r = 0.006,s= 4.0 andx0 = 1.6;

K is the number of connections per neuron. The amplitude of external current ap-

plied to neuroni is controlled by the parameterI0i . The value ofI0i ∈ [2.5 3.4]

is generated randomly, such that the oscillators have nonidentical properties. The

membrane potential for input currentI0 = 3.3 is shown in Fig. 3.2. Parameterα

determines the strength of coupling between the oscillators.
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Figure 3.2: Membrane potential generated using HR model

3.4.1 Uni-directionally Coupled Oscillators

Two coupled Hindmarsh Rose oscillator models were constructed with oscillator

X driving Y (See Fig. 3.3A). The coupling strength (α12) is varied from 0 (No
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Figure 3.3: Coupled oscillator network (A) Uni-directionally coupled Hindmarsh
Rose (HR) oscillators (B) Bi-directionally coupled HR oscillators

coupling) to 2.5 (High Coupling), whereasα21, the strength of coupling fromY to

X is kept at 0. The data is generated from Eq. 3.20 using a 4th order Runge-Kutta

integration method with integration step of 0.1. Per value of α12, 5000 points from

the time series of oscillatorsX andY are generated and the first cordinatex1, x2

are used. The process is repeated 1000 times for different values ofI0. TheDS, Q

andIX→Y are estimated for each realization. The variation ofDS, Q andIX→Y with

increasing coupling strength is shown in Fig. 3.4

From Fig. 3.4 we observe thatDS saturates to 0 forα12 close to 1.5, whereasQ

monotonically increases till perfect coincidence of spiketrains is achieved. The di-

rectional information transfer metricIX→Y increases monotonically tillα12 = 0.85

and then monotonically decreases and saturates atα12= 1.5 . The decrease inIX→Y

can be attributed to the increase in synchronization between the oscillators.

3.4.2 Bi-directionally Coupled Oscillators

Two bi-directionally coupled HR oscillators are constructed as in Fig. 3.3B. The

coupling strength (α12 = α21) is varied from 0 to 2.5 in steps of 0.025. Similar to
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Figure 3.4: Dynamical synchronization between coupled nonlinear HR spiking
neurons as a function of uni-directional coupling coefficient α12 for the oscilla-
tor model in 3.3A. The red line depicts the results from synchronization metricDS.
The values ofDS approach 0 (perfect coincidence of spikes) with increasingcou-
pling strength. The blue line depicts the modified event synchronization measureQ
and the black line depicts the directional information transfer metricIX→Y

.

the uni-directionally coupled oscillators, we generate 5000 points from time series

of oscillatorX andY for everyα are generated and the first cordinatex1, x2 are

used. The process is repeated 1000 times for different values of I0. The DS, Q

andIX→Y are estimated for each realization. The variation ofDS, Q andIX→Y with

increasing coupling strength is shown in Fig. 3.5

3.4.3 Spike Distance (SD) vs. Epileptic Spike Synchronization (ESS):

The analysis of both measures SD and ESS on coupled oscillators revealed that

ESS is more sensitive to subtle changes in synchronization compared to SD (see
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Figure 3.5: Dynamical synchronization between coupled nonlinear spiking neuron
models as a function of bi-directional coupling coefficientα for the oscillator model
in Fig. 3.3B. The red line depicts the synchronization metric DS. Observe that the
values ofDS approaches 0 (perfect coincidence of spikes) with increasing coupling
strength. The blue line depicts the modified event synchronization measureQ and
the black line depicts the directional information transfer metric IX→Y (note that it
has very small values for all coupling coefficient values).

Fig. 3.4 and 3.5). ESS also allows us to determine directional interactions between

spike trains using the metricIx→y. It should be observed that both SD and ESS are

time-scale invariant metrics, i.e. they are not affected bystretching or contracting

the spike train series. We now provide an extreme scenario ofSD, where the syn-

chronization metricDS estimates ambiguous values for synchrony. To show this,

we consider two spike trainsX andY where spike times were generated by a Gaus-

sian random process (see Fig. 3.6(a)). We estimate the SD andESS measures for

these spike trains and obtainDS= 0.062 andQ= 0.39. Now we shift the spike train
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Y by 5000 time points to obtain a new spike train series (see Fig. 3.6(b)). We re-

estimate the synchrony metrics and obtainDS= 0.20 andQ= 0. Observe that the

spike trainsX andY are totally offset in time, howeverDS gives non-zero values for

synchrony between the spike trains, whileQ converges to zero as expected. Even

the value ofDS for the case where the spikes inX andY occur within the same time

scale is quite low (DS = 0.062), indicating synchronization, however both spike

trains are uncoupled (since they are generated at random using independent seeds).

We further investigate this by providing an variable offsetto the spike trainY

(with respect to its initial spike times) and re-estimatingthe values ofDS andQ at

every offset value. The resultingDS andQ as a function of time offset are shown in

Fig. 3.7.

It can be observed from the figure that with increasing offsetthe estimate ofDS

tends to increase initially (indicating decreasing synchronization). This is mainly

due to the effect of increasing values of∆tP and∆tF with increasing offset in the

estimation ofS(t). However with increasing offset,〈xISI〉k tends to increase, coun-

tering the increase in∆tP and∆tF and thus decreasing the value ofS(t). It appears

that ESS performs better in quantifying synchronization between spike trains when

compared to SD.

3.5 APPLICATION TO INTERICTAL SPIKES

Epileptic spikes were detected per electrode for the entireduration of recording us-

ing improved morphological filter with adaptive structuring element as described in

Chapter 2. The proposed measures of synchrony (DS andQ) and direction (Ix→y)

were estimated from successive EEG segments of 30.72 seconds duration (6144

points per segment at 200 Hz sampling rate) and overlapped by10.24 seconds (2048

points) per pair of electrodes for the days of EEG recording per patient. The de-

40



0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time (Arbitrary Units)

X

Y

(a)

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time (Arbitrary Units)

X

Y

(b)

Figure 3.6: Comparison of SD and ESS. (a) Spike trainsX andY occur within the
same time frame (DS = 0.062,Q = 0.39) (b) Spike trainY is offset in time with
respect to spike trainX (DS= 0.20,Q= 0).
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Figure 3.7: Effect of spike train offset in the estimation ofsynchronization metrics
DS andQ. The red curve depicts an increasingDS value (decreasing synchroniza-
tion) upto an offset of around 2800 followed by decreasingDS value (increasing
synchronization). The blue curve depicts a decreasingQ value (decreasing syn-
chronization) with increasing offset as expected.

tection of spikes and estimation of measures of synchrony was performed using the

High Performance Computing facility at Arizona State University.

3.5.1 Optimal Window Size:

Selection of the optimal window size for estimation of measures of synchrony from

EEG data is of outmost importance. A low number of spikes per window will lead

to improper estimation of synchrony measures, while using alarge window size

may lead to non-stationarity issues. To obtain an optimal window size, we estimate

the spike rate metric as described in [65]. For a window of size T sec, containing

n spikes, the rate metricrT is given asn/T (the number of spikes per second).
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We estimaterT for T ∈ [10.24,20.48,30.72,40.96,51.20,61.44] sec in a pool of

electrodes from recorded EEG data. We then estimate the spatio-temporal average

differenceDTi
r,k for electrodek as follows

DTi
r,k =

1
N

6

∑
j=1, j 6=i

N

∑
t=1

(rk
Ti
(t)− rk

Tj
(t))2 (3.20)

whererk
Ti
(t) is the spiking rate metric at timet for electrodek for a window length

of Ti . The plot ofDTi
r,k for k ∈ [LTD2, RTD1, LST1, RST2, LOF4, ROF4] is shown

in Fig. 3.8. It can be observed thatDTi
r,k converges to a minimum forTi = 30.72.
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Figure 3.8: Selection of optimal window size. Values ofDTi
r,k are plotted for different

values ofTi .

Thus we use a window size of 30.72 for our ensuing analysis.

3.5.2 Long-term evolution of synchronization

Ictogenesis, the transistion of an epileptic brain from interictal to ictal states is a

significant area of research for understanding the dynamical behavior of the epilep-

tic brain. Previous work in our lab and elsewhere has shown that the transition from

an interictal state to ictal state is not abrupt [24, 23, 25, 66, 67, 68].
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Within the framework of spike synchronization presented inthe previous sec-

tions, we investigate whether there is any quantitative evidence supporting the long-

term evolution of the brain towards the first clinically manifested seizure in our

data. To this effect we did not consider subclinical seizures (seizures with no clin-

ical manifestation) in the analysis and followed only the trends in synchronization

from the start of an EEG recording till the first clinical seizure.

To extract the long-term trends from the synchronization profiles we use a

Hodrick-Prescott (HP) filter [69]. HP filter is used to separate cyclical from trend

components in the raw data, and has found application in the study of macroeco-

nomics. The filter can be formulated as follows. Consider a time seriesyt = ct +Tt ,

wherect is the cyclical component andTt is the trend component. We then minimize

the quantity’:

T

∑
t=1

(yt −Tt)
2+λ

T−1

∑
t=2

[(Tt+1−Tt)− (Tt −Tt−1)]
2 (3.21)

whereλ is a positive constant that penalizes the trend component. The first term in

Eq. 3.21 determines the goodness of fit and the second term is the second derivative

of the trend component and quantifies the smoothness of the trend component. As

λ →∞, the solution approaches the least squares fit and asλ → 0, the trend compo-

nentTt → yt . For our data, the performance of HP filter did not outperformthat of

a simple low-pass moving average filter. However, moving average filter suffered

from edge artifacts and hence we opted for HP filter.

Fig. 3.9 shows the long-term increase in spike synchronization in a subset of

pairs of electrodes in Patient 1. Similar behavior can be observed in subset of pairs

of electrodes in Patient 2 (see Fig. 3.10). This indicates that the brain transits from a

normal state to a state of abnormal synchronization during the interictal time period.

The incidence of seizure to break this abnormal synchronization was previously
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Figure 3.9: Long-term trends in spike synchronization (Q(t)) profile for six pairs of
electrode till the incidence of first clinical seizure in Patient 1. (a) LTD4-RTD4 (b)
LOF1-ROF1 (c) LTD3-LTD4 (d) ROF3-ROF4 (e) RTD3-RTD4 (f) RTD8-RTD10.
The red dashed line denotes subclinical seizures. The red solid lines denotes the
first clinical seizure. The black dashed line is the line of best fit for the smoothed
synchronization profile. Notice the gap in plottedQ(t) profile of approzimately 6
hours between the 3rd and 4th day, due to the presence of artifacts in the recorded
EEG data.
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Figure 3.10: Long-term trends in spike synchronization (Q(t)) profile for six pairs
of electrodes till the incidence of first clinical seizure inPatient 2. (a) LOF2-ROF3
(b) LTD2-LST3 (c) RST2-RST3. The vertical red and black dashed lines are as in
Fig. 3.9.

hypothesized by Iasemidis et. al. [23, 25]. However not all pairs of electrode exhibit

such an abnormal and progressive increase in synchronization. For example, in Fig.

3.11 we can observe that there are pairs of electrode where the synchronization level

remains approximately constant. This indicates that selection of appropriate pairs

is important in observing long-term trends in EEG. These results can be interpreted

in two ways

• As a seizure approaches, the spikes generated at one brain site propagate to

another site. This means that different parts of the brain start to synchronize

with each other thus enabling faster transmission of information among them.
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Figure 3.11: Long-term trends in spike synchronization profiles (Q(t)) for six pairs
of electrodes till the incidence of first clinical seizure inPatient 1. (a) LTD1-LTD4
(b) LTD2-LST1 (c) RTD1-RST2 (d) RTD1-LOF4 (e) RTD2-LOF4 (f)RST3-ROF3.
The vertical red and black dashed lines are as in Fig 3.9.
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• The dynamics of the underlying governing the brain sites synchronize which

leads to generation of spikes at the times of synchronization.

An important question that remains unanswered is the causalrelationship between

spikes and synchronization, i.e. whether spikes causes synchronization or vice

versa. At present, we lack any quantitative evidence supporting either case.

3.5.3 Interictal to Ictal Transition:

Previous studies from epileptic seizure prediction have revealed the existence of

a preictal period where the dynamics of different brain sites become entrained or

synchronized. The existence of a pre-ictal period providesus with a time window

where prediction of epileptic seizure and intervention to prevent seizure precipita-

tion becomes possible. However, physiological substrate of the observed entrain-

ment of dynamics was never established. In this section we further investigate

whether pre-ictal synchronization could be a physiological substrate for the epilep-

tic spikes can be observed and its relation with the preictalentrainment observed

by Iasemidis et.al in [23, 70, 71, 24, 25].

Fig. 3.12 shows the plots of synchronization profiles for three pairs of electrodes

from the left hemisphere (LTD1-LOF2), right hemisphere (RTD2-ROF3) and con-

tralateral hemispheres (RTD6-LOF2)as well as in the spatially averagedQ(t) pro-

file. We see that progressive increase in synchronization can be observed hours to

minutes prior to the onset of epileptic seizures denoted by red lines. Postictally

desynchronization of epileptic spikes occurs for over hours.

To compare across seizures and patients, for each brain sitei in every patient

we estimated the spatially averaged synchronization value(ESSiT) at timet as

ESSiT(t) =
Ne

∑
j=1, j 6=i

ESSi, j(t) (3.22)
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whereESSi, j(t) is the epileptic spike synchronization value at timet between brain

sitesi and j.

Fig. 3.13 shows the averageESST across seizures of four patients for two hours

of preictal and two hours of postictal centered at the seizure. The presence of high

preictal synchronization and postictal desynchronization across patients supports

our original hypothesis. We then tested whether such transistions from abnormal

synchronization to desynchronization are present during the interictal period. For

each patient, we randomly selectedNSZ time points in the interictal, whereNSZ is

the number of seizures the patient had in the duration of his/her EEG recording. We

then estimated the averageESST at these randomly selected time points from the

interictal periods (see Fig. 3.14). We observed that such a dynamical transition from

synchronization to desynchronization occurs mostly at seizures when compared to

interictal. We statistically validate this observation using our measure of resetting

in Chapter 6.

Fig. 3.15 compares the dynamical measure of synchronization (T-index) be-

tween lyapunov developed by Iasemidis et al. withQ(t) at a seizure. The pairs

were selected based on the criteria defined in [72] and their average T-index and

Q(t) profiles were estimated. Similar changes in dynamical synchronization can

be observed in both theQ(t) profile and T-index profile near seizures. Comparing

the long-term trends of synchronization in individual pairs using either measure,

we observe that there are pairs of sites where we can observe similar trends in both

profiles (see Fig. 3.16(a) and (b)) and pairs with opposite trends (see Fig. 3.16(c)).

3.5.4 Dynamical changes at sub-clinical seizures

Sub-clinical seizures are epileptic seizures with electrographic but without clini-

cal manifestations (correlates). Typically, the seizure manifests itself electrographi-
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Figure 3.12: Dynamical changes in synchronization profile (Q(t)) during seizures
for 40 hours of continuous EEG recording of Patient 1 for (a) LTD1-LOF2. (b)
RTD1-ROF3. (c) Electrode pair RTD6-LOF2. (d) Spatial average of Q(t) across
all pairs of sites. Red solid lines denote clinical seizures. The green horizontal bars
indicate gap in the recording.

cally around the focus. We can view sub-clinical seizures aselectrographic seizures

with spatially limited resetting power, i.e. we might be able to observe resetting

during these types of seizure in a few localized regions of the brain. Thus a metric

based on many pair counts may not be ideal for quantifying thedynamical changes

occuring at sub-clinical seizures.

Fig. 3.17 shows the dynamical changes in synchronization atsub-clinical seizures

from two patients. We can observe that there is sharp drop in synchronization at a
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Figure 3.13: Dynamical changes in spike synchronization profiles around seizures
in 4 hours of continuous EEG recording from four patients. (a) Patient 1. (b) Pa-
tient 2. (c) Patient 3. (d) Patient 4. The black vertical linedenotes the seizure
occurence. We can observe increased preictal synchronization and postictal desyn-
chronization. This supports our hypothesis that seizures occur to reset the abnormal
synchronization that may exist between brain regions
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Figure 3.14: Dynamical changes in spike synchronization profile at random time
points in the interictal period (4 hours of continuous EEG recording) from four
patients. (a) Patient 1. (b) Patient 2. (c) Patient 3. (d) Patient 4.

sub-clinical seizure. However the spatial extent of this change in dynamics is lim-

ited.

3.6 CONCLUSION

In this chapter, we investigated the spatial synchronization of interictal spikes in

EEG from patients with focal epilepsy. To measure the degreeof synchronization

between the spike trains of different channels, we used a modified version of event

synchronization. We called this Epileptic Spike Synchronization (ESS) proposed

by Quiroga et al. We also investigated a novel measure of spike synchrony, called
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Figure 3.15: Comparison between the measure of synchronization of nonlinear dy-
namics (T-index) and Spike Synchronization (Q(t)) around a seizure. The blue
curve denotes the T-index of preictally entrained pairs (selected based on the cri-
teria defined in [72]). The green horizontal line indicates the statistical threshold
of synchronization for Tindex. The black curve denotes the average spike synchro-
nization profile for the same pairs. The vertical red line denotes the seizure. Notice
that both profiles have been scaled down for representation purposes.

Spike Distance (SD), proposed by Kreuz et al. We evaluated the performance of

ESS and SD on uni-directionally and bi-directionally coupled spiking neuron mod-

els. Analysis revealed that ESS performed better than SD in measuring synchrony

between spike trains.

Subsequent application of measures of spike synchrony on epileptic spikes in

the EEG data from five patients revealed monotonically increasing long-term syn-

chronization between spike trains of different brain siteslong before the first clinical

seizure. The drop in synchrony at the onset of the first clinical seizure validates our

hypothesis that seizures occur to break high entrainment orsynchrony in the patho-

logical brain network. We also observed progressive increase in synchronization

in the preictal period and desynchronization in the postictal period of subsequent

seizures.
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Figure 3.16: Comparison between the measure of synchronization of nonlinear dy-
namics (T-index) and Spike Synchronization (1−Q(t)) for the electrode pairs (a)
LTD2-LTD3 (b) LTD3-RTD2 (c) LST4-LOF2. The blue curve denotes the T-index.
The green horizontal line indicates the statistical threshold of synchronization for
T-index. The black curve denotes the average spike synchronization profile for the
same site selected in the (average) T-index. The vertical red dashed line denotes the
clinical seizures. The vertical dashed black lines denote subclinical seizures.

The presence of preictal synchronization hours to minutes prior to the onset of

the ictal state implies the predictive value for seizure occurrence interictal spikes

may have. Based on these results a possible role of epilepticspikes n ictogene-

sis in unveiled. A simple computational model for generation of interictal spikes

has been proposed and discussed by Demont et al. [73]. The model simulated in-

terictal spike-like activity of different amplitude, duration and morphology when

the excitatory current (AMPA and NMDA) and inhibitatory (GABA) current to the
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Figure 3.17: Different trends of spike synchronization at subclinical seizures. (a)
Q(t) profile for the pair RTD1-ROF3 from Patient 2 (b)Q(t) profile for the pair
LOF3-ROF4 from Patient 3. The vertical red dashed lines denote subclinical
seizures.
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modeled neuronal network is tuned appropriately. With increased excitatory cur-

rent the amplitude of the spikes increased whereas the negative wave following the

spikes became more pronounced with decreased GABA conductance. With fur-

ther increase in excitatory current to the model and reducedinhibitatory current,

the model started generating ictal like activity. Such an increased excitation can be

caused by increase in positive feedback within the epileptogenic focus as proposed

by [74, 75, 76, 77, 78]. We propose that long prior to complex partial seizures the

excitation spreads and brain sites get recruited. When ictal activity finally begins,

it propagates to the recruited brain sites leading to secondary generalization. How-

ever, we found no substantial spread of interictal spike synchronization prior to a

subclinical seizures, and this might be why they remain tendto be localized to a

few brain regions mostly around the focus. This gives us a good general concept on

how interictal spikes and different types seizures may be related. However a formal

conclusion could be drawn only after investigating these phenomena using more

complex models of ictogenesis and engaging a larger patientpopulation.

Upto this point we investigated the dynamics of spiking activity in the interictal,

preictal and postictal periods. The role of epileptogenic focus in interictal spike

activity and ictogenesis needs to be further investigated.In the next chapter we

address exactly this question. In particular we investigate if we can localize the

epileptogenic focus by complementing our spatio-temporalanalysis of interictal

spikes with insights from graph theory and social networking.
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Chapter 4

EPILEPTOGENIC FOCUS LOCALIZATION

4.1 INTRODUCTION

An epileptogenic focus is defined as the particular area(s) in the brain that first

exhibits the electrographical onset of a seizure. Typically epileptogenic focus is

identified by physicians through visual inspection of ictalEEG and images of brain

produced by modalities like PET, MRI, SPECT. However visualmarking of seizure

onset is a time-consuming process and neccessiate the recording of seizures, which

means that the patient has to be admitted to the hospital and withdraw from his/her

antiepileptic medication.

Identification of the epileptogenic focus is the primary objective in presurgical

evaluation of patients who are deemed candidates for ablative removal of focus.

Once the focus is accurately identified, resection of focal tissue is performed to re-

duce seizure frequency or abolish seizures completely. A high success rate (around

70%) has been reported in these cases. However it should be noted that not all

epilepsy patients are candidates for surgery and hence control of epilepsy in all

patients is not possible using resective surgery.

Automatic identification of the epileptogenic focus has been widely discussed

in the literature. Techniques from information theory [79], nonlinear techniques

[80, 81] and dipole modelling [82, 83] have been applied in the past by researchers

towards localization of epileptogenic focus from EEG.

In this research we applied concepts from sociology and graph theory in com-

bination with spike synchronization to identify the epilepogenic foci from EEG. In

particular we utilized a graph theory concept named centrality, which is a measure

the relative importance of a vertex within the graph. Our underlying hypothesis
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here is that the epileptic focus is the most important node within a network and it

might have either the most or the strongest connection within the whole or subset

of the network.

4.2 EIGENVECTOR CENTRALITY

Eigenvector Centrality is a measure that quantify the relative importance of a node

in a network and was proposed by Bonacich [84, 85]. The central idea of eigen-

vector centrality is to weigh more the connections to important nodes than those

to insignificant nodes. Thus, a node having a number of significant connections is

given more weight compared to a node with large number of insignificant connec-

tions. Consider a graph withN nodes and strength of connection between nodesi

and j denoted bywi, j . The popularity scorePi of nodei is defined as the weighted

linear combination of popularity of all nodes connected to nodei, that is

λPi = wi,1P1+wi,2P2 . . .+wi,NPN (4.1)

whereλ is an arbitrary constant. We assume that the weightwi, j is zero (no con-

nection) or positive (connection). The system of Eq. 4.1 fordifferent values of

i ∈ (1,N) can be written in matrix form asλP=WPor (W−λ I)P= 0, which is

the familiar characteristic equation of finding the eigenvalues and eigenvectors of

W, whereλ are the eigen values andP are the eigenvectors. Since it is required that

λ and all the eigenvectors are positive, we tage the maximum eigenvalue and the

corresponding eigenvector as our desired centrality measure. Thus, the popularity

or centrality score (Pi) of nodei is theith component of the dominant eigenvector.

Applying the concept of centrality to our EEG data, we first define a time vary-

ing adjacency matrixW(t), whose element(wi, j = w j ,i) at time t is the synchro-

nization valueQi, j(t). A high value ofwi, j means stronger connection between

sites(i, j). The matrixW(t) has always a maximum positive eigenvalue [84]. We
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obtain the largest eigenvalue,λmax and the eigenvectorV that corresponds to the

λmax at every time instancet. We now define the central node (SN(t)) at timet as

the node having the highest popularity score, i.e.

SN(t) = i : Pi = max(P1,P2, . . . ,PN) (4.2)

The time-averaged significant node score,TASNi for nodei is then defined as

TASNi =
1
T

T

∑
t=1

Θ(SN(t) = i) (4.3)

whereT is an arbitrary time duration of observation andΘ(n) = 1, if n is true and

Θ(n) = 0, if n is false. TASNi is the probability that nodei is the most popular

or central node in the network. We hypothesize that the epileptogenic focus is the

most central node of the epileptic network and should have the highest value of

TASN.

4.3 APPLICATION TO SPIKING NEURON MODEL:

In this section, we construct a network of directionally coupled spiking Hindmarsh-

Rose neurons. The model is constructed such that it simulates the observed spiking

network in epileptic patients. A total of 3 subnetworks withHR neurons were

constructed (see Fig. 4.1). The first subnetwork (SB1) consists of Oscillators 1-6.

Oscillator 2 is coupled with Oscillator 1, 4, 5 and 6 at coupling strengthε. We add

Oscillator 3 which is coupled with Oscillator 1 at a couplingstrength ofε +0.4.

In the second subnetwork (SB2), Oscillator 7 is coupled withOscillators 8, 9, 10,

and 11 at coupling strength ofε. In the third subnetwork (SB3), Oscillator 12 (hig

spike rate) is coupled with Oscillator 13 with coupling strength ofε +0.5. For any

two oscillatorsi and j in a subnetwork, the coupling strength is varied from 0 (no

coupling) to 2.5 (high coupling). The data are generated from Eq. 3.20 using an

integration step of 0.1 and the 4th order Runge-Kutta integration method. Per value
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of ε, 5000 points fromx time series of the different oscillator are generated. The

process is repeated 1000 times for different values ofI0 for all the oscillators in the

network. Synchronization metric (Q) and significant node score (SN) are estimated

for each realization and stored. The TASN for each node is then estimated and is

shown in Fig. 4.2.

Figure 4.1: Network of Coupled Spiking Neurons. Oscillator2 is uni-directionally
coupled (coupling strength =ε) with Oscillators 1, 4, 5, and 6. Oscillators 1 and
3 have a strong uni-directional coupling (coupling strength = ε +0.4). Oscillator
7 is uni-directionally coupled (coupling strength =ε) with Oscillators 8, 9, 10 and
11. Oscillator 12 has a very high spiking rate and it is strongly coupled (coupling
strength =ε +0.5) with Oscillator 13.

From Fig. 4.2 we can observe that for low values of coupling (ε < 0.22), Os-

cillator 12 with the highest spike rate appears to be the mostsignificant node of the

network. With increasing coupling strength (ε > 0.22), we can see a progressive

increase in TASN score of Oscillator 2 and it becomes the mostprominent node.

However asε increases above 0.5, we can see an increase in TASN score of Oscilla-
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Figure 4.2: TASN score for oscillator network provided in Fig. 4.1 as a function of
coupling strength (ε). The TASN score for the oscillators 2, 7 and 12 are denoted
by red, black and blue solid lines respectively. The cyan solid line denotes the
TASN score for the oscillator 1, 4, 5, 6. The green solid line denotes the TASN
score for the oscillator 8, 9, 10, 11. The magenta and yellow solid line denotes
the TASN score for Oscillator 3 and 13 respectively. The dashed black line is the
synchronization metricQ between Oscillator 2 and 4 as a function of epsilon.

tors 1, 4, 5 and 6. This increase is due to the fact that with increasing coupling, the

behavior of the coupled oscillator tend to be similar, thus our ability to distinguish

the central node diminishes. Asε increases above 1, it becomes almost impossible

to distinguish the central node of the network. These results imply that it might not

be possible to identify a central node of a highly synchronized network. Associat-

ing this with epileptic EEG, in the peri-ictal (and especially in the preictal) periods

we might not be able to localize the epileptogenic foci accurately. However, during

the interictal period localization of foci should be possible. In the next section, we

show that epileptogenic focus localization is possible, using TASN in our patients

with intracranial EEG and temporal lobe epilepsy.
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4.4 APPLICATION TO EPILEPTIC EEG DATA :

We now combine the concept of centrality with the spike synchronization profiles

estimated from the EEG recordings as described in Chapter 2 and 3 for epilepto-

genic focus localization. For each patient, we divide the data into two segments.

Segment 1 (Interictal) is the period of time from the start ofthe recording till the first

clinically observed seizure. Segment 2 is the period of timefrom the first clinically

observed seizure to end of recording and including many clinical and subclinical

seizures per patient. Notice that in Segment 1, subclinicalseizures may have oc-

curred. The segmentation of data is performed to see whetherthere is a difference

in TASN profiles during the interictal versus more peri-ictal periods. We further

divide the Segment 1 and 2 into non-overlapping segments of two hours duration

and estimate the TASN at every subsegment.

Figs. 4.3 and 4.4 shows the meanTASNprofile for the interictal segment and

“peri-ictal” segment respectively for four patients with temporal lobe epilepsy. It

is noteworthy that we could localize the focus accurately from TASN profiles from

the interictal periods in four patients. Focus localization could not be achieved

from analysis of the “peri-ictal” periods. These results can be explained by the fact

that during the “peri-ictal” phase the brain is highly synchronized and, as we have

shown before, identification of epileptogenic focus from a highly coupled network

is difficult using the measure of centrality. This does not mean that it may not

be possible to localize the focus using “peri-ictal” data byanother method. It just

refers to the fact that the concept of centrality lays a constraint when the system is

highly coupled.

The significance of these results lies in the fact that it is not the absolute number

of spikes (spike rate) that matters when it comes to localization of epileptogenic
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focus. This is also clear from Fig. 2.12, where we plotted thespike rate for Patient 1.

From that Figure we can observe that the right sub-temporal grid (RST) spikes most

frequently without RST being the focus for Patient 1. The spikes in RST remain

local to the region and do not propagate, which we infer from Fig. (a). Spikes

in RTD, which is the epileptogenic focus for this patient, have more tendency to

spread and couple with other regions. So, RTD is a more central node than RST.

This focus localization algorithm did not work well for Patient 5. We investi-

gated the inconsistency in results for this patient by observing the synchronization

profile and raw EEG over time. Analysis revealed amplitude saturation of EEG

recorded from the focus during spikes and the spike detectorfailed to capture this.

This led to the bad estimation of the synchronization profiles that then directly af-

fected the focus localization algorithm. We suggest a clipping restoration algorithm

at the front end of the spike detector or increase the range ofrecording of EEG to

solve such problems in the future.

For Patient 3, we identified a left hippocampus (LTD) focus. The patient re-

port did not conclusively suggest a focus. Majority of the clinical seizures for this

patient originated from the left hippocampus (6 clinical seizures from the left, and

one from the right) whereas majority of the subclinical seizures from the right hip-

pocampus (12 subclinical from right hippocampus and 2 from left hippocampus).

Interictal spikes also occured bilaterally, and slightly more frequently from LTD.

We investigated this further by rank ordering the popularity scores. We defineRi ,

the rank of nodei at timet, as

Ri(t) =
1
Ne

(Ne−
Ne

∑
j=1, j 6=i

Θ(Pi > Pj).Θ(Pi 6= 0)) (4.4)

whereNe is the number of electrodes andPi is the popularity score for nodei and

Θ(n) is the Heaviside step function and is equal to 1 whenn is true, and 0 otherwise.
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Figure 4.3: TASN profile for four patients estimated from theInterictal Segment.
(a) Patient 1, (b) Patient 2, (c) Patient 3 (d) Patient 4.Tu is the arbitrary threshold
used for the purpose of detecting the outliers (Tu = µTASN+2.5σTASN).

We then define the time averaged rank for nodei as

TARi =
1
T

T

∑
t=1

Ri (4.5)

TheTARprofile for the four patients during the interictal segment is shown in

Fig. 4.5. From this figure, for Patient 3 there are high TAR values for LTD2 and

RTD1, indicating foci in both hemispheres. The clinical assesment suggested the

same behavior for this patient as we described above.
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Figure 4.4: TASN profile for four patients estimated from the“peri-ictal” Segment.
(a) Patient 1, (b) Patient 2, (c) Patient 3 (d) Patient 4.Tu is the threshold used for
the purpose of detecting the outliers (Tu = µTASN+2.5σTASN). Red color denotes
the focal sites per patient (clinically determined)

4.5 AUTOMATIC DETECTION OF EPILEPTOGENIC FOCUS FROMINTERICTAL

EEG:

In this section we discuss a possible algorithm that can be used online to automat-

ically detect the epileptogenic focus from interictal EEG data. To this effect we

subdivide Segment 1 into two hour epochs and estimate the TASN score for each

brain site. We perform Grubbs’ Outlier detection test [86] on the TASN score to

determine possible outliers. The fraction of such EEG epochs that exhibited an out-

liers for the interictal and “peri-ictal” period is shown inFigs. 4.6 and 4.7 respec-
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Figure 4.5: TAR profile for four patients estimated from the interictal segment.
TAR profile for 10 brain sites (sorted in descending order) of(a) Patient 1, (b)
Patient 2, (c) Patient 3, (d) Patient 4 are shown. The red bar represents the three
brain sites with the hightest TAR values. For Patients 1,2, and 4, all such sites reside
in the right hemisphere (correct focus laterization). We can observe that for Patient
3, the highest three TAR values are for LTD2, RTD1, and LST1, indicating central
nodes from both left and right hemispheres.
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tively. It can be seen that, on average, 50% of the time we could correctly identify

the epileptogenic focus from the interictal EEG. However, localization algorithm

performance from Segment 2 remained problematic.

| LTD | RTD | LST | RST | LOF | ROF |
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e 
ou

tli
er

 w
as

 d
et

ec
te

d

(a)

| LTD | RTD | LST | RST | LOF | ROF |
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e 
ou

tli
er

 w
as

 d
et

ec
te

d

(b)

| LTD | RTD | LST | RST | LOF | ROF |
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e 
ou

tli
er

 w
as

 d
et

ec
te

d

(c)

| LTD | RTD | LOF | ROF | LST | RST |
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 ti
m

e 
ou

tli
er

 w
as

 d
et

ec
te

d

(d)

Figure 4.6: Epileptogenic focus localization from interictal EEG data using TASN
and Grubbs’ outlier detection (see text). (a) Patient ,1 (b)Patient 2, (c) Patient 3,
(d) Patient 4.

We then ran the focus localization program in an online manner for a duration

of time till an outlier for focus localization is detected. The detected outlier was

compared with the clinically determined focus to estimate whether the localized site

is a true or a false focus candidate . Table 4.1 shows the focuslocalization results of

such an online focus localization attempt, as well as the average localization time
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it took for each of the four patients. From the Table we can seethat the average

localization time to accurately determine the focus was around 2 hours from the

beginning of the recording (Interictal 1) with an average accuracy rate of 90%.

The average length of stay in hospital to localize the focus nthese patients was

about 7 days per patient. Thus, our proposed algorithm coulddetermine the focus,

without seizure precipitation, in a fraction of time with 90% confidence,which is a

significant leap in the current technology of focus localization.
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Figure 4.7: Epileptogenic focus localization from periictal EEG data using TASN
and Grubbs’ outlier detection (see text). (a) Patient 1, (b)Patient 2, (c) Patient 3,
(d) Patient 4
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Table 4.1: Epileptogenic Focus Localization by TASN versusclinical assessment

Patient Focus Localized Localization True Detection
ID Clinical Assessment Using TASN Time Rate

1 RTD2, RTD3 RTD2, RTD3 1.5±5.6 hrs 1
2 RTD1, RTD2 RTD1, RTD2 1.3±4.2 hrs 0.85
3 - LTD4, LTD5 0.6±0.6 hrs 1
4 RTD1 RTD1 0.82±0.84 hrs 1
5 RTD1 - - 0

4.6 CONCLUSION

In this chapter we focused on epileptogenic focus localization using the interictal

spike synchronization across brain sites and a measure of centrality called eigenvec-

tor centrality. We first tested the developed measures on network models of spiking

neurons with various degrees of coupling. We observed that for low degrees of

coupling we were able to identify the focus precisely. However with increased

coupling and the network became strongly synchronized, ourability to localize the

focus with the proposed methodologies is reduced.

Focus localization was performed on fve patients with temporal lobe epilepsy

and we were able to accurately localize the focus in four patients. In the one patient

where our algorithm failed in identifying the focus, we observed that the EEG data

from the focus was saturating at spikes and hence we were not able to detect spikes

accurately using our spike-detection measures. We proposed an improvement in

the preprocessing of EEG data to counter this problem in the future.

The results revealed that the epileptogenic focus is the most central node of

the epileptogenic network and forms strong and significant connections with other

brain sites. Our analysis suggested that centricity of the focus is more prominent

during the interictal period than “peri-ictal” period. This is in agreeement with
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our results from the models we employed, where we observed aninverse relation-

ship between coupling and our ability to localize the focus.(Previous work from

Iasemidis et al. suggested existence of excessive synchronization in the brain net-

work in the preictal period [25, 87]. Preictal periods here are parts of the “peri-ictal”

periods.). In one of the four patients, the clinical assesment suggested bifocal ac-

tivities. We modified our measure by rank ordering the centricity values so that we

take in consideration more than one brain site and observed that, for this particular

patient, rank values were high for sites in both hemispheres, suggesting bilateral

foci. For the other patients all high rank values concentrated to the ipsi-lateral

hemisphere (hemisphere where the actual focus resided).

We finally discussed the implementation of our algorithm as an online focus

localization algorithm. Using Grubbs’ outlier detection method on our final cen-

trality measures and and was able to localize the focus on average at 40 percent

of the time when the patient was in interictal period. Further analysis revealed

that online epileptogenic focus localization is possible using as least as two hour

of interictal EEG. So, in addition to the benefits of having a pretty accurate focus

localization assistive tool this would reduce significantly the duration of hospital

stay for an epileptic patient, and hence cut down the relatedmedical expenses and

other overhead costs.
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Chapter 5

SEIZURE CLASSIFICATION

5.1 INTRODUCTION

The nature of spiking in the preictal and postictal periods,has been a point of con-

tention in the epilepsy community. Increased rate of epileptic spikes has been ob-

served in the preictal as well as in the postictal, thus raising doubts whether epilep-

tic spikes are actually precursors to a seizure or the aftershocks resulting from the

occurence of a seizure. Attempts have been made to relate spike frequency to med-

ication, drowsiness, seizure susceptibility, severity etc [3, 26, 51, 53, 88]. In this

chapter we try to study seizure severity and preictal spiking, and find out if they

correlate.

5.2 SEIZURE SEVERITY AND PREICTAL SPIKING

We compared the spike rate in the preictal period and postictal periods of 90 seizures

across five patients with temporal lobe epilepsy. At every seizure onset timetsz, we

define a 20 minute preictal windowW1(t) = [tsz−20min, . . .tsz] and 20 minute pos-

tictal window,W2(t) = [tsz+Dsz. . . tsz+25min], whereDsz is the maximum dura-

tion of seizures in our data (Dsz of 5 minutes in our analysis). Spike ratesSPRE and

SPOSTwere estimated every 10.24 seconds in the 20 minute preictalwindowW1(t) ,

and 20 minute postictal windowW2(t) respectively. Mann-Whitney U Test was per-

formed to compare the distributions ofSPRE andSPOST, and test the null hypothesis

(H0) thatSPRE= SPOST against the alternative hypothesis (H1) thatSPRE 6= SPOST.

In case the null hypothesis is rejected we check whetherSPRE > SPOST using the

Z-test (since U-test is not directional). Fig. 5.1 shows theresults of this analysis

for four our of the five patients. For visualization purposesthe results are color-
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coded with red indicating that preictal spike rate is largerthan the postictal spike

frequency (SPRE> SPOST), green that preictal and postictal spiking are statistically

the same (SPRE= SPOST), and blue that preictal spike rate is smaller than postictal

(SPRE< SPOST).
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Figure 5.1: Comparison of spike rate per electrode site in the preictal and pos-
tictal segments across seizures in four patients with temporal lobe epilepsy. (a)
Thirty seizures in Patient 1, (b) 19 seizures in Patient 2, (c) 23 seizures in Patient
3 and (d) 17 seizures in Patient 4 were compared using Mann Whitney U test (See
Text). Horizontal axis denotes seizure number and verticalaxis denote brain site
for which the preictal and postictal spiking rates are compared. Red boxes indi-
cate thatSPRE> SPOST, green boxes indicateSPRE= SPOSTand blue boxes indicate
SPRE< SPOST

From Fig. 5.1, we observe that there are a class of seizures where we observe an

increased spike rate in the preictal period compared to the postictal periods across
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a number of brain sites; for example, seizures 4, 5, 8, 9, 11 ,15 in Patient 2 and

seizures 5, 6, 7, 9, 10 ,11, 14, 15 in Patient 4. Based on this observation, we tried

to address whether a classification of seizure severity based on preictal spike rate is

possible.

We classified the seizures into the two several classes: clinical complex partial

seizures (CPS) and subclinical seizures (SCS). The classification of seizures was

performed by an expert physician by observing the behavioral and clinical symp-

toms of the patient during the event as well as electrographic signature of each

seizure.

Our underlying hypothesis is that, a complex partial seizure is preceded by in-

creased spike rate followed by postictal supression of spiking, and that a subclinical

seizure, which is a less severe seizure, may not be accompanied by such increased

spike frequency preictally and or reversal (resetting) of spike rates.

5.2.1 Classification using number of sites spiking preictally - Method 1

We first checked whether a seizure classification based onSPRE andSPOSis possible

by counting the number of sites that show significant preictal spike frequency when

compared to the postictal one per seizure. We then constructed a feature space,

by defining two parameters for every seizure. We defineFPR(k) at seizurek, the

fraction of brain sites where we observe larger spike rate inthe preictal than the

postictal:

FPR(k) =
1
Ne

Ne

∑
i=1

Θ(SPRE> SPOST) (5.1)

whereNe is the number of brain sites andΘ(n) = 1 , if n is true andΘ(n) = 0,

if n is false. The statistical test for checkingSPRE > SPOST is outlined in section

5.1. Similarly we defineFPO(k) at seizurek as, the fraction of brain sites where we
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observe larger spike rate in the postictal than the preictal:

FPO(k) =
1
Ne

Ne

∑
i=1

Θ(SPRE< SPOST) (5.2)

FPR andFPO are the feature space for the classification algorithm, which we

then implement using K-means with cluster size of two. Fig. 5.2 depicts the clas-

sification of seizures based on the preictal and postictal spike rate. We can observe

that most of the complex partial seizures fall in the clusterwith high values ofFPR

(red cloud) whereas the subclinical seizures tend to have low values ofFPR (blue

cloud). This means that during a subclinical seizure less sites tend to spike in the

preictal period and this may be a reason for subclinical seizures to be less severe

than compared to a complex partial seizures. We define our classification accuracy

as

ACC=
Nc

NSZ
(5.3)

whereNc is the number of correct classification andNSZ is the number of seizures.

Using this method we were able to classify 88% of the seizuresaccurately into

clinical and subclinical seizures. Interestingly, as per each patient’s clinical report,

some of the missclassifications were not severe seizures, like ‘Auras’, ‘Simple Par-

tial’, ‘Brief Complex partial seizures’ or Subclinical seizures followed immediately

(within 3 minutes) by a complex partial seizure. From Fig. 5.2, we can also see that

the separation between the two classes of seizures mainly depends on the number of

sites showing increased preictal spike rate and is independent of the number of sites

showing increased postictal spike rate. This supports our hypothesis (see Chapter

3) that synchronized preictal spiking across sites and might have predictive value

for seizures.
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(a) (b)

(c) (d)

Figure 5.2: Classification of seizure’s severity. The feature space for the classifi-
cation is defined byFPR andFPO that is the number of sites per seizure that show
SPR> SPO andSPR< SPO (see Eq. 5.2.1 and 5.2.1). Classification of each seizure
was performed using K-means clustering on all the seizures from four patients with
temporal lobe epilepsy (a) Patient 1, (b) Patient 2, (c) Patient 3, (d) Patient 4. The
clouds denote the two classes the seizures were classified into. We not that most of
the SC seizures were classified in the blue cloud and most of the CP seizures in the
red cloud. Cloud point ‘SC’ mean Subclinical Seizure and cloud point ‘CP’ mean
Clinical Partial Seizure
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5.2.2 Classification using preictal/postictal spike rate -Method 2

We extended the analysis further by checking whether the preictal/postictal spike

rate alone can be related to seizure severity. To test this, we repeat the analysis for

each brain site by estimating the mean preictal spike rate (SFPR) and postictal spike

rate (SFPO). The feature space is now defined by the mean spike rate themseleves

over the preictal and postictal, rather thanFPR andFPO. This allows us to address

the question whether the intensity of preictal spiking and postictal spiking intensity

relate to the severity of a seizure. We then classify every seizure based onSFPR and

SFPO and obtain the classification accuracy as described in Eq. 5.3; i.e. we perform

classification of seizures usingSFPR andSFPO of each brain sites and estimate the

classification accuracy thereby obtaining a distribution of classification accuracies

for a single patient. The distribution of classification accuracy is shown in Fig. 5.3,

with the red arrow indicating the classification accuracy using Method 1. We can

observe that across patients, Method 1 performs better in classifying seizures than

Method 2.

From Fig. 5.2, we observe that a complex partial clinical seizure is typically pre-

ceded by an increased spike rate across a set of sites and is followed by supression

of this activity in the postictal. However, from Fig. 5.4 we are not able to make any

such meaningful conclusion. For Patient 1, the subclinicalseizures had larger spike

frequency in the preictal/postictal period when compared to clinical seizures. In

Patient 2, most clinical seizures had increased spike rate in the preictal and supres-

sion in the postictal, whereas the subclinical seizures hadlower preictal spike rate

compared to clinical seizures. Results from Patients 3 and 4were similar to Patient

1. These results indicates that single channel studies of spike frequency changes

may be insufficient to elucidate the relationship between spikes and seizures.
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We further estimate, for each method the rand index and adjusted rand index

[89, 90] which is a measure of similarity between two data clusters. Table 5.1 is the

summary of classification of seizures using the two methods described before.

Table 5.1: Seizure Classification Results

Patient Seizure Type Method 1 Method 2
ID CPS SCS ACC RI ARI Brain Site ACC RI ARI

1 23 7 0.83 0.71 0.42 LOF4 0.90 0.81 0.57
2 9 10 0.89 0.80 0.60 ROF3 0.89 0.80 0.60
3 6 17 0.91 0.83 0.64 RST2 0.69 0.56 0.06
4 10 7 0.88 0.78 0.55 LOF1 0.82 0.69 0.39
5 6 1 0.85 0.41 0.71 LST1 1 1 1

5.3 CONCLUSION

In this chapter, we focused on understanding the relationship between “peri-ictal”

spiking and seizure severity. The motivation for this studywas previous work on

the predictive value of preictal spiking for seizures [26, 88]. We investigated this

question both via changes in peri-ictal spike rates, as wellas just single-channel

temporal changes in spike rates.

We first defined a feature space for classification of seizure severity based on

the fraction of sites having increased preictal spiking compared to postictal and

vice versa. We classified the space using K-means and obtained an overall clas-

sification accruacy of 88% across patients and consistent results within a patient.

We found that severity of a seizure is directly related to thefraction of sites having

higher preictal spike rate when compared to postictal spikerate (criterion); i.e. be-

fore a severe seizure spikes tend to appear across more brainsites. This supports

our hypothesis in Chapter 3 that synchronized firing of spikes occurs prior to an

epileptic seizure.
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Figure 5.3: Accuracy of seizure classification. The distribution of accuracy of clas-
sification via Method 2 for (a) Patient 1 (b) Patient 2 (c) Patient 3 (d) Patient 4
is shown. The red arrow indicate the classification accuracyusingFPO andFPR

(Method 1 - see text)

We then tested whether preictal/postictal spike rate alonecan provide informa-

tion about seizure severity. Following similar steps as in the previous method we

obtained a maximum classification accuracy of around 84%. However the two iden-

tified classes of seizures via this classification method were not consistent with any

common preictal/postictal spike rate criteria across patients.
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(a) (b)

(c) (d)

Figure 5.4: Classification of seizures severity using preictal/postictal spike fre-
quency. The feature space for the classification is defined bySFPR andSFPO (See
Text). Classification was performed using k-means clustering algorithm. (a) Pa-
tient 1, (b) Patient 2, (c) Patient 3, (d) Patient 4. The brainsite used to estimate the
preictal and postictal spike rate of each seizure in this figure was the one with the
maximum classification accuracy in Fig. 5.3. The red and blueclouds denote the
the two classes. Cloud point ‘SC’ mean subclinical seizuresand cloud point ‘CP’
mean clinical partial Seizures
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Chapter 6

RESETTING OF SYNCHRONIZATION AT SEIZURES

6.1 INTRODUCTION

We have shown in the past [91] that epileptic seizures are notabrupt transitions into

and out of an abnormal ictal state, but instead they follow a dynamical transition that

evolves over minutes to hours. During this pre-ictal dynamical transition, multiple

regions of the brain progressively approach a similar dynamical state. In Chapter

3, we showed that there is a dynamical transition of criticalsites from a synchro-

nized (entrained) state during the preictal to a desynchronized (disentrained) state

during the postictal. Epileptic seizures (ES) typically reset the pre-ictal dynami-

cal entrainment and lead to the disentrainment of dynamics of the focus from the

rest of the brain. (When epileptic seizures do not reset the established pathology

in brains dynamics, cluster of seizures and/or status epilepticus may result [87]).

We have called this reversal of dynamics “brain resetting atepileptic seizures” and

we have observed it in focal as well as generalized seizures,within and across

patients [54, 55]. Previous studies using nonlinear measures of STLmax and T-

index demonstrated that dynamical resetting is quite specific to epileptic seizures;

that is, dynamical resetting occurs with significantly higher probability at epileptic

seizures compared with randomly selected time points in interictal periods (Signif-

icance levelα = 0.05). Furthermore, the observed dynamical resetting in patients

with epilepsy is significantly sensitive (p<0.01) and specific (p<0.05) to seizures

[55]. Other groups have independently observed similarly reversal trends using

more classical methods of signal processing [92, 93]. This observation may reflect

a passive mechanism e.g., high electrical activity during aseizure depletes critical

neurotransmitters and thus deactivates critical neuroreceptors in the entrained neu-
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ronal network. An alternative explanation is an active mechanism, that is, seizure

activity releases neuropeptides that may subsequently contribute to the temporary

repair of the pathological feedback network that allowed the preictal dynamical en-

trainment to occur. Such an explanation is analogous to mechanisms attributed to

seizures associated with electroconvulsive therapy (ECT)[94, 95].

6.2 CHAOS AND RESETTING AT SEIZURES

In this section, we investigate the possibility of differential diagnosis of patients

with epileptic seizures (ES) and patients with psychogenics non-epileptic seizures

(PNES) by an advanced analysis of dynamics of their (EEG). The underlying prin-

ciple was resetting at epileptic seizures and absence of resetting at PNES.

6.2.1 Psychogenic Non-Epileptic seizures

In a recent critical review, Bodde et al. [96] presented a working definition of PNES

as an observable abrupt paroxysmal change in behavior or consciousness, that re-

sembles an epileptic seizure, but that is not accompanied bythe electrophysiologi-

cal changes of epileptic seizure or clinical evidence for epilepsy. Despite being dis-

cussed in the scientific literature for over a century, the etiology and mechanisms of

PNES are not well understood. Although there is no consensuson the psychogenic

features that lead to PNES, it is believed that a combinationof psychogenic mech-

anisms and trigger mechanisms are at play [96, 97]. A traumatic experience in the

past is found in 90% of PNES patients [98, 99, 100, 101]. Combined with the lack

of understanding of the physiological mechanisms of PNES isa lack of understand-

ing of the clinical manifestations of PNES. The presentation of PNES can also be

indistinguishable from epileptic seizures [102].

Neurologists diagnose PNES based on seizure semiology, psychiatric history,

seizure provocation techniques, postictal prolactin assay, and psychological testing
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[102, 103, 104]. The gold standard for diagnosing PNES is currently video-EEG

monitoring (VEM) [103, 105, 106], but it has its limitations[107, 108]. While VEM

can misdiagnose PNES for epilepsy, epileptic seizures can also be misdiagnosed as

PNES [96, 109]. Although the prevalence of PNES (2 to 33 per 100,000 [103, 110])

is much less than epilepsy (4-6 per 1,000 [103, 111], 25% to 30% of the patients

referred to epilepsy centers for long-term EEG monitoring for spell characteriza-

tion are eventually diagnosed with PNES [96, 112, 113]. The situation is compli-

cated by the finding that 5% to 40% of PNES patients also have epileptic seizures

[96, 114, 115]. Due to the high number of PNES patients in epilepsy centers and

epilepsy monitoring units (EMUs), the ability to differentiate reliably and quickly

between epileptic and non-epileptic events is critical forproper treatment of PNES

patients and for reduction of the associated economic burden. There are at least

three major concerns with the misdiagnosis of PNES as epilepsy. First, prognosis

for PNES is worse if wrong diagnosis is perpetuated as the appropriate treatment

is not prescribed. Second, if PNES is misdiagnosed for ES, and antiepileptic drugs

(AEDs) are taken, unnecessary side effects may result. Third, the financial cost may

be substantial [37]. The considerable social stigma attached to epilepsy can lead to

patient hostility when the diagnosis is changed from epilepsy to PNES, especially in

those patients who have been misdiagnosed for a long period of time [96, 116]. It is

estimated that up to 75% of PNES patients, who do not have concomitant epilepsy,

are initially treated with antiepileptic drugs (AEDs) [99,105, 117] and can suffer

from debilitating side effects. Estimates of the annual cost of misdiagnosing PNES

ranged from 0.5 to 4 billion in the 1990’s [118]. Another attempt at such an estima-

tion concluded that the cost of misdiagnosing and treating PNES is similar to the

cost of treating intractable epilepsy, which in 1995 was approximately $231,432 per

patient [96]. Sadly, these three broad categories of concern are so significant be-
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cause of the general principle that once a patient has been diagnosed with epileptic

seizures it is perpetuated and requires an unusual intervention before the initial di-

agnosis is overturned [118, 119, 120]. For many reasons (e.g., infrequent episodes,

not witnessed by medical personnel, or superficially resembling epileptic seizures),

there can be a delay in the diagnosis of PNES, estimated to be between 7 and 10

years [105, 120, 121]. Delays in diagnosis have been prognostically associated with

poorer likelihood of remission of PNES [120, 121, 122].

6.2.2 Measures of Chaos

The brain is inherently a nonlinear and nonstationary system. Among the important

measures of the dynamics of a nonlinear system are the Lyapunov exponents that

measure the average information flow (bits/sec) the system produces along local

eigendirections through its movement in its state space [23, 70, 71]. Positive Lya-

punov exponents denote generation of information while negative exponents denote

destruction of information. A chaotic nonlinear system possesses at least one pos-

itive Lyapunov exponent, and it is because of this feature that its behavior looks

random, even though as a system it is deterministic. Methodsfor calculating these

measures of dynamics from experimental data have been published [123, 124].

Iasemidis et al. have shown that for a non-stationary systemwith transients like

epileptic spikes, using the short-term maximum Lyapunov exponent (STLmax) is

a more accurate characterization of the average information flow than the one us-

ing the regular maximum Lyapunov exponent (Lmax) [23, 71]. STLmax is estimated

from sequential EEG segments of 10.24 sec in duration per recording site over the

entire EEG recording to create a set ofSTLmax profiles over time. TheSTLmax pro-

files computed over space and time characterize a spatiotemporal chaotic signature

of the epileptic brain.
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6.2.3 Dynamical Entrainment

Analyzing scalp, subdural, and depth EEG from patients witheither temporal or

frontal lobe epilepsy, we have shown that theSTLmax profiles at brain sites system-

atically converge to similar values tens of minutes before aseizure. We have called

these brain sites critical sites and their convergence entrainment or synchronization

of the dynamics. In summary, the epileptic brain appears to be progressively en-

trained by the focal sites, leading to loss of relative independence of normal brain

sites in processing of information long before a seizure develops (See Fig. 6.1(a),

(b), (c) left panels) A statistical measure of entrainment between two brain sitesi

and j, with respect to a measure of their dynamics (e.g.,STLmax), has been devel-

oped in the past [55, 125, 126]. Specifically, the T-indexTi j between measures at

electrode sitesi and j and at timet is defined as

Ti j (t) =
√

m
|D̂i j (t)

σ̂i j (t)
(6.1)

where|| is the absolute value, and̂Di j (t) and σ̂i j (t) denote the sample mean and

standard deviation respectively of all the m differences between theSTLmaxvalues

(oneSTLmaxvalue is produced per 10.24 sec EEG segment) at electrodesi and

j, within a moving windoww(t) = [t, t −m∗ 10.24sec] over the available EEG

recording (see Fig. 6.1 d).

We have defined disentrainment (dynamical desynchronization) between elec-

trode sitesi and j whenTi j (t) is significantly different from zero at a significance

level α. The disentrainment condition between the electrode sitesi and j, as de-

tected by a paired t-test, isTi j (t) > tα/2,m−1 , wheretα/2,m−1 is the 100(1−α/2

critical value of the t-distribution with m-1 degrees of freedom. IfTi j (t)< tα/2,m−1

(which means that we do not have satisfactory statistical evidence at theα level

that the differences of values of a measure between electrode sitesi and j within
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the time window w(t) are not zero), we consider that sitesi and j are entrained with

respect toSTLmax at time t. Usingα = 0.01 andm = 60, that is, using a window

w(t) of 10 minutes in duration, the thresholdTth =2.662. It should be noted that

similarSTLmaxvalues does not mean that the sites interact. However, progressive

convergence over time ofSTLmaxpoints to a diminishing probability that the sites

are unrelated [127, 25]. In accordance to the T-index between brain sites at timet

we define its equivalent for a single site with respect to the evolution of its dynamics

between two consecutive time windows. The single channel T-indexTi(t) is given

by

Ti(t) =
√

m
|L̂i(t)− L̂i(t+h+m)

σ̂ p
i (t)

(6.2)

whereL̂i(t) is the sample mean of theSTLmaxvalues in the moving windoww(t)

of lengthm, σ̂ p
i (t) the pooled standard deviation (average of standard deviations) of

theSTLmaxvalues in the windowsw(t) andw(t+h+m), andh a buffer separating

these two windows which we took equal to the maximum durationof a patients

recorded seizures.

6.2.4 Dynamical Resetting

We have shown that the observed spatial entrainment of dynamics at critical brain

sites in the pre-ictal period is changed to disentrainment in the postictal period of

epileptic seizures [7-9]. We have named this phenomenon dynamical resetting.

Those studies on intracranial EEG from epileptic patients also demonstrated that

dynamical resetting is quite specific to epileptic seizures; that is, dynamical re-

setting occurs with a significantly higher probability following epileptic seizures

compared to randomly selected time points in interictal periods (statistical signifi-

cance levelα = 0.05). Epileptic seizures reset the excessive pathological entrain-

ment occurring minutes prior to their onset and appear to play a homeostatic role

85



Figure 6.1: Resetting of brain dynamics at seizures / events. Left panels: Epileptic
seizure #3 from patient E5. Right panels: Event #1 from patient P5. (a) Scalp EEG
recordings 1 minute perictally (event at t=0). (b) Smoothedsalp EEG recordings
1 hour perictally (event at t=0). (c) SmoothedSTLmax profiles from a pair of elec-
trodes over the same time interval as in (b). (d) T-index profiles from the pair of
electrodes in (c) and an additional preictally entrained pair. The horizontal dotted
line is theTth for entrainment.

86



of restoring the balance between synchronization and desynchronization of brain

dynamics [9].

One way to quantify dynamical resetting at seizures is via the number of pre-

ictally entrained pairs of sites that reset in the immediatepostictal period. The pairs

of sites (i, j), whoseTi j (t) values is belowTth for w(t) immediately prior to seizure

onset are selected as entrained pairs for that seizure. (Note: the results we report

herein do not change significantly, and the final conclusionsremain the same, if

we select as entrained pairs the ones that remain entrained for every t within the

whole interval of 10 minutes before a seizure onset.) By dividing this number of

pairs of sites by the total number of available pairs of recording sites, we define the

entrainment powerEP(t) at timet as

EP(t) =
2

Ne(Ne−1)

Ne−1

∑
i=1

Ne

∑
i=i+1

Θ(Ti j (t)< Tth) (6.3)

Out of those pairs of sites, a subset of pairs will get disentrained after the seizure

(Ti j (t) > Tth at some timet in the immediate after the seizures end time interval).

Moreover, only a portion of this subset of disentrained pairs of sites (i, j) will also

have their corresponding individualSTLmaxvalues significantly change with re-

spect to the values they had during the preictal entrainment(Ti > Tth andTj > Tth).

Fig. 6.1 illustrates the application of these resetting conditions at a typical seizure

in an ES patient and an event in a PNES patient.

Considering the above conditions for resetting, and by dividing this number of

pairs of sites by the total number of available pairs of recording sites, we can define

the resetting powerRP(t) at timet mathematically as

RP(t) =
2

Ne(Ne−1)

Ne−1

∑
i=1

Ne

∑
i=i+1

Θ(Ti j (t)< Tth)Θ(Ti(t)> Tth,Tj(t)> Tth)

Θ(∃t ′ ∈ [t, t+h+m] : Ti j (t
′)> Tth)

(6.4)
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whereNe is the total number of available electrode sites, andΘ is the Heaviside

function such thatΘ(A) = 1 if A is true andΘ(A) = 0 if A is false.

We apply the same methodology to check for resetting of dynamics at non-

seizure points too. Actually, we applied this methodology for every single available

time pointt on theSTLmaxprofiles per recording site, that is, for every 10.24 sec on

the available EEG from every electrode and patient. For consistency in statistics,

we have kept the same values for m and h for the analysis at non-seizure points

too, that is, m=60 points (10 minutes) and h=maximum duration of seizures per

patient. As a result, we end up with a value of our measures of entrainment (EP)

and resetting (RP) for every 10.24 sec per EEG recording.

For a specific time pointt0, in a recording of lengthNrec, the entrainment power

is EP(t0) and the resetting power isRP(t0). We can then define the EP score and

the RP score as

SEP(t0) =
1

Nrec

Nrec

∑
t=1

Θ(EP(t)> EP(t0)) (6.5)

SRP(t0) =
1

Nrec

Nrec

∑
t=1

Θ(RP(t)> RP(t0)) (6.6)

These scores quantify how unlikely it is to observe larger entrainment and re-

setting power at a timet anywhere in the entire EEG recording than those at timet0.

SEPandSRPare simple counting metrics on the sets ofEP andRPvalues respec-

tively, therefore, these scores are independent measures of the overall entrainment

and resetting power over an EEG recording. In this sense, theSEPandSRPval-

ues in different recordings (patients) can be directly comparable. For bothSEP

andSRPscores, small values indicate a rare event of high entrainment or resetting

respectively.

From Eq. 6.6, the SEP and SRP values at seizure points can be perceived as the

p-values of testing if the respective entrainment (EP) and resetting (RP) at a seizure
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are significant different than in the interictal period. Therefore, by using Fishers

method for combining p-values [128] we can obtain the statistical significance of

overall entrainment and resetting at seizures per patient.Givenk, with k equal to a

patients number of seizures, p-valuespi , the quantity

X2 =−2∑
i

log(pi) (6.7)

follows a χ2-distribution with 2k degrees of freedom. Substituting forpi the SEP

and SRP values at seizure pointst and comparing the obtainedX2 with the appropri-

ateχ2-distribution we can estimate the combined p-value for eachpatients seizures.

A small combined p-value indicates significant entrainment(EP) or resetting (RP)

at seizures for each patient.

6.2.5 Data Analyzed

Long-term (days) scalp EEG recordings from six patients diagnosed with psy-

chogenic non-epileptic seizures and five patients with epileptic seizures were an-

alyzed (see Table 6.1). EEG signals were recorded from twenty-nine channels

overlaying 6 brain regions using a standard EEG montage (extended international

10-20 system) including auricular references. The analog data were low-pass fil-

tered at 70 Hz and then digitized at 200 Hz (sampling frequency) and stored on

a digital hard drive in Nihon-Kohden data format. No other (digital) filters were

applied to the EEG data before the subsequent dynamical analysis. This analysis

was conducted continuously (without subjective or objective rejection of any EEG

data segment from the dynamical analysis for any reason, even when artifacts are

present and irrespectively of the vigilance state of the patient) and sequentially for

non-overlapping 10.24 sec running windows over the entire scalp EEG available

over days per patient.
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Table 6.1: Patient and EEG Data Characteristics

PatientAge Number
of
Events

Average
Event
Du-
ration
(sec)

EEG
Recording
Duration
(hrs)

Clinical
Assement of
Events

Focus

E1 35 5 84 52 Parital Com-
plex Seizures

Right
Tempo-
ral

E2 69 2 38 69.5 Intractable
Parital Com-
plex Seizures

Left
Fron-
totem-
poral

E3 54 2 90 142.5 Epilepsy
without
right frontal
polymicro-
gyria

Right
Fronto-
central

E4 45 5 94 64 Temporal
Lobe Partial
Epilepsy

Left
Tempo-
ral

E1 18 5 52 48 Intractable
Epilepsy

Not Lo-
calized

P1 23 4 100 106.5 Non-Epileptic
spells

N/A

P2 39 3 280 52 Non-Epileptic
spells

N/A

P3 49 2 480 70.5 Non-Epileptic
spells

N/A

P4 22 3 1200 24 Non-Epileptic
spells

N/A

P5 64 2 380 28.5 Non-Epileptic
spells

N/A

P6 39 5 25 72 Non-Epileptic
spells

N/A
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6.2.6 Dynamical Resetting following ES and PNES

We estimated the EP and RP measures over the entire availableEEG recording

from each patient, and subsequently the SEP and SRP scores for each seizure /

event. As an example, we demonstrate the distributions of EPand RP for one

patient with epilepsy (E1) and one with PNES (P5) in Fig. 6.2.The entrainment

power (EP) observed at seizures (indicated by black vertical lines) in either patient

is not statistically different from the one observed interictally. This is not the case

for the resetting power (RP). The RP values for the epilepticpatients seizures fall

into the higher end of the resetting distribution, while forthe PNES patient they do

not. That was a typical trend across patients from the two groups that is statistically

quantified by the SEP and SRP measures.

In Table 6.2, we present the SEP and SRP values for all events (epileptic seizures

and PNES) per patient. The SRP values for patient E1 are very low (0.022 to 0.065)

indicating seizures with high resetting power. Patient P5 in contrast has high SRP

values (0.389 and 0.536) indicating that the resetting observed at his PNES events

is not different with respect to other points in the interictal period. All epileptic

seizures, except the ones of patient E3, exhibited significantly low SRP values.

Even though the finding for patient E3 was an outlier in our analysis of dynami-

cal resetting at epileptic seizures, this patients medicalhistory was consistent with

short but frequent episodes of seizure clusters / status epilepticus, an indication of

a serious pathology of brains dynamics where individual epileptic seizures (like the

two ones we herein analyzed from this patient) cannot reset the dynamics [87]. All

PNES patients exhibited non-significant resetting at theirevents (significantly large

SRP values).
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Figure 6.2: Distribution for the measures of (a) entrainment power (EP) and (b) re-
setting power (RP) estimated every 10.24 sec over the entireEEG recordings from
patient E1 (Left panels) and patient P5 (Right panels). The black vertical lines indi-
cate the position of the EP and RP values at seizure / events per patient (5 seizures
for E1, 2 events for P5). For both patients, the power of entrainment (EP) values
at events fall relative close to the center of the corresponding distribution render-
ing them statistically non-significant, while the power of resetting (RP) values at
seizures for patient E1 are located near the tail of the distribution rendering them
statistically significant.

Furthermore, PNES patients exhibited less entrainment andresetting at events

than the ones by ES patients. In Fig. 6.3 we show the boxplots for SEP and SRP

values at events, taken from Table 2, for the two groups of patients, along with

the p-value of the performed Students t-test for equality ofmeans between the two

groups. Since these p-values are less than 0.001, the two groups of epileptic seizures

and PNES are statistically different with respect to eitherentrainment or resetting.

For the group of PNES patients, the mean values of SEP and SRP at events is near
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Table 6.2: SEP and SRP values for ES and PNES events

Patient with ES SEP SRP Patient with PNES SEP SRP
(Seizure No.) -ES- -ES- (Seizure No.) -PNES- -PNES-

E1(1) 0.370 0.044 P1(1) 0.810 0.585
E1(2) 0.342 0.058 P1(2) 0.736 0.193
E1(3) 0.361 0.065 P1(3) 0.909 0.185
E1(4) 0.334 0.056 P1(4) 0.414 0.490
E1(5) 0.137 0.022 P2(1) 0.890 0.200
E2(1) 0.700 0.132 P2(2) 0.147 0.224
E2(2) 0.661 0.596 P2(3) 0.206 0.525
E3(1) 0.043 0.069 P3(1) 0.749 0.207
E3(2) 0.358 0.054 P3(2) 0.913 0.128
E4(1) 0.048 0.118 P4(1) 0.981 0.303
E4(2) 0.395 0.106 P4(2) 0.521 0.454
E4(3) 0.109 0.081 P4(3) 0.499 0.407
E4(4) 0.113 0.096 P5(1) 0.477 0.389
E4(5) 0.174 0.126 P5(2) 0.209 0.536
E5(1) 0.046 0.058 P6(1) 0.182 0.665
E5(2) 0.179 0.223 P6(2) 0.484 0.174
E5(3) 0.139 0.008 P6(3) 0.440 0.786
E5(4) 0.117 0.280 P6(4) 0.693 0.195
E5(5) 0.008 0.006 P6(5) 0.949 0.786

0.5 indicating a random entrainment and resetting at events, while for the group

of epileptic patients the means are quite lower, indicatinghigh entrainment and

resetting at seizures.

Finally, in Table 6.3, the combined p-value for each patients events is shown.

According to the combined p-values, entrainment is significant (p<0.05) for two,

while resetting is significant for four out of the 5 epilepticpatients. For patients

with PNES, both resetting and entrainment are not significant. It is noteworthy

that while p-values (i.e., SEPs or SRPs) of some individual events may not be low

enough to be statistically significant, combined through Fishers test to form the

combined p-value per patient may reach statistical significance levels.
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Figure 6.3: Boxplots (box-and-whisker diagrams) from 19 events in each of the
two groups of ES and PNES patients based on the values of the score of (a) entrain-
ment power (SEP), (b) resetting power (SRP) measures from Table 2. Each box
represents the interquartile range of the mean of each measure across events, the
bar within the box represents the median of the measures, andthe bottom and top
whiskers represent the 1.5 times below and above the lower and upper quartiles re-
spectively. The corresponding p-value for the t-tests of equality of means between
the two groups are very low (p<0.001) for either measure, with resetting having
an edge over entrainment, indicating significant difference between the two groups
of patients in terms of entrainment and resetting with respect to their respective in-
terictal values. These results appear to be promising for the use of SEP and SRP
measures in differential diagnosis between ES and PNES.

Table 6.3: Statistical significance of entrainment and resetting per patient via Fish-
ers combined p-test

Patient Entrainment Resetting
(combined p-value) (combined p-value)

E1 0.305 0.001
E2 0.832 0.281
E3 0.083 0.025
E4 0.028 0.012
E5 0.002 0.001
P1 0.942 0.328
P2 0.340 0.322
P3 0.952 0.112
P4 0.923 0.481
P5 0.343 0.570
P6 0.675 0.563
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6.3 SPIKES

In this section we investigate dynamical resetting at seizures using spike synchro-

nization profiles we estimated and discussed in Chapter 3. Weshowed in Chapter 3,

the presence of synchronized spiking across pairs of sites in the preictal periods and

desynchronization in the postictal ones. Figs. 3.13 and 3.14 indicate that dynamical

resetting occurs more prominently at seizure time points compared to interictal time

points. We develop here a measure to quantify these dynamical changes at seizures

based upon changes in the number of synchronized pairs peri-ictally.

6.3.1 Measure of resetting based on spike synchronization

One way to quantify dynamical resetting at seizures is via the number of preictally

synchronized pairs of sites that may then desynchronize in the immediate postictal

period. At time pointt, for the each pair of sites(i, j), we define asQpre
i j (t) the

vector that has as components the spike synchronization values within the preictal

windowwpre(t)= {t−60∗10.24, . . ., t} andQpost
i j (t) as the vector of spike synchro-

nization values in the postictal windowwpre(t) = {t+dsz, . . . , t+dsz+60∗10.24},

wheredsz= 5mins is the average duration of a seizure. We then perform Mann-

Whitney’s U test to compare the distribution ofQpre
i j (t) andQpost

i j (t). Since Mann-

Whitneys U test can only suggests that the distributions aredifferent (strictly that

the medians of the two distributions are different), we perform a Z-test on the dis-

tribution to test whether the mean of one distribution is larger than the other. We

now define the resetting power (RPQ(t)) at timet as

RPQ(t) =
2

Ne(Ne−1))

Ne−1

∑
i=1

Ne

∑
j=i+1

ΘM(Qpre
i j (t) 6= Qpost

i j (t))Θ(Zi j (t)> Zthr) (6.8)

whereΘM denotes the Mann-Whitney U test outcome and is equal to 1 whenthe

distributions are dissimilar.Θ(n) is the Heaviside step function and is equal to 1
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whenn is true and is equal to 0 whenn is false.Zthr is the statistical threshold on the

Z-score and is set to 4 (corresponding to a significance levelof α =< 0.001) and

Ne is the number of available electrode sites. It should be noted here that the dis-

tributions may not normal in nature, however we use z-score as a way to determine

which distribution has a larger mean without paying attention to the significance

level α. Along similar lines we check for the opposite hypothesis; i.e. there is

more postictal synchronization compared to preictal synchronization. We define

the inverse resetting power (IRPQ) at timet as

IRPQ(t) =
2

Ne(Ne−1))

Ne−1

∑
i=1

Ne

∑
j=i+1

ΘM(Qpre
i j (t) 6= Qpost

i j (t))Θ(Zi j(t)<−Zthr) (6.9)

We now estimate theRPS(t), i.e. the resetting power using theSTLmax profiles,

as defined in the previous section. Comparison betweenRPS andRPQ measures of

resetting at seizures is provided in Fig. 6.4. It is interesting to observe that bothRPS

andRPQ follow similar trends across seizures in both patients analyzed, indicating

robustness of resetting at seizures. The probability distribution of the new measure

of resetting power (RPQ) is shown in Fig. 6.5 for three of our patients.

To statistically validate the significance of resetting at seizures compared to

interictal, we define the resetting score (SRPQ) at timet0 as

SRPQ(t0) =
1

Nrec

Nrec

∑
t=1

Θ(RPQ(t)≥ RPQ(t0)) (6.10)

whereNrec is the recording length of the EEG. Along similar lines, we also estimate

the inverse resetting score (SIRPQ) at timet0 as

SIRPQ(t0) =
1

Nrec

Nrec

∑
t=1

Θ(IRPQ(t)≥ IRPQ(t0)) (6.11)

The resetting score quantifies how unlikely it is to observe large resetting power

at a timet anywhere in the entire EEG recording compared to those at time t0.
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Figure 6.4: Comparison betweenRPS andRPQ resetting measures at seizures for:
(a) Patient 1, (b) Patient 2. The blue curve denotes the resetting power(RPS) at
seizures estimated using theSTLmax profiles. The black curve denotes the resetting
power(RPQ) at seizures estimated using the spike synchronization profiles.
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SinceSRPQ is an independent measure of overall resetting power, we cancompare

the values ofSRPQ across patients. EachSRPQ can be perceived as thep value of the

test that “resetting at timet0 is significantly different than anytime in the interictal

period”. Therefore, by using Fischer’s method for combining p values [128], we

can obtain the statistical significance of the overall resetting power at seizures per

patient. Givenk a patient’s number of seizures andpi the p values at each one of

them , the quantity

X2 =−2∑
i

ln(pi) (6.12)

follows a χ2 distribution with 2k degrees of freedom. Substitutingpi with the

SRPQ values at seizure pointstsz, and using the thus obtainedX2 with appropriate

χ2 distribution, we can estimate thecombined P valuefor each patient. A small

combinedp value suggests significant resetting at seizures for that patient. We also

estimate thecombined P valueusing theSIRPQ score. The combinedp values using

SRPQ andSIRPQ for the five patients analyzed is shown in Table 6.4. As thesep

values are less than 0.001, we can state that statistically significant resetting occurs

at epileptic seizures compared to random point in the interictal. However thep

values for the inverse case is not significant in four out of five patients, which means

that preictal synchronization and postictal desynchronization is more prominent

that preictal desynchronization and postictal synchronization.

To test whether the observed resetting depends on the spike rates the brain sites

exhibit in the preictal and postictal periods, we re-estimatedSRPQ using sites that

had no change in spike rate in the preictal versus the postictal period (See Sec.

5.1). Towards this goal, we took the following steps: 1) Remove channels which

have no significant spike rate, for example, we required a minimum of 10 spikes

in the preictal or postictal segment. 2) Select the 10 sites with the minimum spike
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Figure 6.5: Probability distribution of resetting powerRPQ estimated every 10.24
seconds over entire EEG recordings from (a) Patient 1, (b) Patient 2, (c) Patient 3.
The arrows denote the resetting power at seizures points andare mostly into the tail
of the distribution with high values of resetting power.

Table 6.4: Statistical significance of resetting per patient (Fischer’s combinedp
test)

Patient ID Number
of Clinical
Seizures

Combined
p value
(SRPQ)

Combined
p value
(SIRPQ)

Combined
p value
(STLmax)

1 23 < 0.001 < 0.001 < 0.001
2 9 < 0.001 0.28 < 0.001
3 6 < 0.001 0.61 < 0.001
4 10 < 0.001 0.98 < 0.001
5 6 < 0.001 0.76 < 0.001
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Table 6.5: Statistical significance of resetting using sites with no spike rate changes
at seizures per patient (Fischer’s combinedp test)

Patient ID Number
of Clinical
Seizures

Combined
p value
(SRPQ)

1 23 < 0.001
2 9 < 0.001
3 6 0.03
4 10 < 0.001
5 6 0.049

rate changes peri-ictally per seizure. The re-estimatedSRPQ scores are provided

in Table 6.5. From this table we can observe thatSRPQ scores for all patients are

also statistically significant (α = 0.05). Thus preictal synchronization and postic-

tal desynchronization of spikes does not depend on changes in spike rates but on

changes in spike synchronization between brain sites.

6.4 CONCLUSIONS

In this chapter, we investigated resetting of brain dynamics using measures for

epileptic spike synchronization and chaos (STLmax).

Analysis of long-term scalp EEG recorded from patients withES and PNES

was performed on the basis of resetting of brain dynamics. This study showed that

analysis of brain dynamics constitutes a valuable route fordifferentiation between

epileptic seizures and non-epileptic seizures of psychogenic origin. The initial basis

for the produced results was the previously observed pathological gradual conver-

gence of the rates of generation of information between critical brain sites in the

order of tens of minutes before an epileptic seizure (dynamical entrainment), and

their quick divergence (dynamical disentraiment) after seizures end, thus implying

a functional role of epileptic seizures for the recovery from the developed pathol-
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ogy of brains dynamics. Combining both observations, we have called dynamical

resetting the phenomenon of the preictal entrainment and postictal disentrainment.

We herein developed new measures of entrainment (entrainment power EP) and

resetting (resetting power RP) of brain dynamics, at any time point in the challeng-

ing, but clinically practical, condition of EEG recorded from patients with scalp

electrodes. We then developed statistical measures of thisentrainment (SEP) and

resetting (SRP) at ES or PNES events per patient with respectto his/her interictal

EP and RP values. On the basis of the SEP and SRP values, we haveshown at

a high level of statistical significance that: a) PNES patients exhibit less level of

dynamical entrainment and resetting at events than ES patients at seizures (see Fig-

ure 6.3;p < 0.001), and b) Events in PNES patients do not reset brains dynamics

(see Table 6.3); combined p-values per patient> 0.1), while they typically do (4

out of 5 patients) in ES (combined p-values< 0.05). These results, combined with

prior ones from intracranial EEG in ES by Iasemidis et al. [55, 54], show quanti-

tatively that epileptic seizures typically reset the brains dynamics. They also show

that PNES events typically do not.

The results on ES and PNES from this study suggest that the proposed method-

ology of measuring the resetting of brain dynamics could be useful for differenti-

ation between PNES and epileptic seizures. Future studies with a larger number

of PNES and ES patients, as well as PNES patients with concomitant epilepsy, are

contemplated to further investigate the sensitivity and specificity of our results and

the possibility for the development of a robust diagnostic tool for PNES. In addition

to shedding light on the mechanisms of generation of ES and PNES, such analyti-

cal tools could drastically reduce years of diagnostic delays, improve very early the

quality of life of patients with PNES, and reduce the associated health care costs.
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In Chapter 3, we had shown through application of measures ofspike synchrony

on epileptic spikes from five patients that the epileptic brain transits to a state of

high synchrony prior to a seizure and is followed by dynamical desynchronization

in the postictal. We quantified this observed change in preictal/postictal synchro-

nization by a measure of resetting (Resetting Power;RPQ) based on the fraction of

pairs that synchronize preictally and desynchronize postictally. RPQ profiles were

estimated at every time point for the entire duration of depth EEG recordings of five

patients with temporal lobe epilepsy. We further developeda statistical measure of

resetting (SRPQ) at seizures with respect to interictalRPQ values. On the basis of

SRPQ values, we have shown with high level of statistical significance (p< 0.001)

resetting of epileptic spike synchronization occur more commonly at seizures than

interictally. Comparison with our previous measures of resetting based onSTLmax

and T-index profile, we observed a similar trend in this newlyintroduced power of

resetting. To determine any effect of spike rate on the resetting metric, we tested

for resetting, on channels that exhibit no change in their preictal/postictal spike rate.

We also then observed significant resetting (α = 0.05) on all the patients. Hence

we conclude that resetting at seizures occur independentlyof the values of spike

rate at brain sites.
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Chapter 7

CONCLUSIONS

The main objective of this PhD dissertation was to investigate the role of spike ac-

tivity in ictogenesis. Through the study of interictal spike synchronization, we were

able to localize the epileptogenic focus. Through the studyof prei-ictal spike syn-

chronization were were able to show resetting of spike synchronization at seizures

in patients with focal intractable epilepsy. Long term intracranial electroencephalo-

graphic (EEG) recordings from five patients were used for this study. Dynamical

changes at ninety six seizures clinical and subclinical across five patients were an-

alyzed using advanced measures of spike synchronization and nonlinear dynamics.

In Chapter 2, a novel and online spike detection algorithm based on morpholog-

ical filtering technique was developed and tested. Spike detection was performed

on EEG data from five patients with focal epilepsy and long term trends in spike

rate profiles were investigated. In particular, we observedincreased activation of

epileptic spikes for EEG signals recorded from the orbito-frontal cortex in the preic-

tal period followed by supression in the postictal, both across seizures and patients.

The spike rate profiles of the epileptogenic focus failed to show consistency across

seizures and patients with seizures occuring at periods of low as well as high rate

of spike activity.

In Chapter 3, we developed a novel measure of synchronization between spike

trains called as Epileptic Spike Synchronization (ESS). ESS was evaluated on uni-

directionally and bi-directionally coupled spiking neuron models and its ability to

measure spike synchronization was tested at various degrees of coupling. Applica-

tion of ESS to spike trains detected from different brain sites was then performed
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and long-term trends in spatiotemporal spike synchronization was observed. Study

showed that across seizures and patients that there is an increase in synchronization

between pairs of sites preictally followed by desynchronization postictally.

In Chapter 4, we investigated the connectivity of the epileptogenic focus with

the rest of the brain in terms of graph theory and the spike synchronization mea-

sures we developed in Chapter 3. A measure to quantify the degree of centrality

(Eigenvector Centrality) of a node in a network was developed and was tested on

network models of coupled neurons. The centricity measure was then applied to

the matrix of synchronization profiles of pairs of electrodeover tume for the entire

duration of EEG recording. Focus localization was achievedusing the estimated

centricity values over time from the interictal EEG data. This analysis revealed that

the focus acts as the most central node of the epileptic network and forms strong and

significant connection with other regions of the brain in terms of synchronization of

their spike occurence. Based on this observation, we developed a focus localization

algorithm that accurately identified the epileptogenic focus in all patients prior to

the onset of the first clinical seizure (interictal period).

In Chapter 5, we classified seizures based on their preictal and postictal spike

rate. We compared the severity of seizures with the preictal/postictal spike rate

they exhobit across brain sites and showed that a severe seizure is preceded by

increased spike frequency across a higher number of brain sites and is followed by

suppression of spike rate. A classification accuracy of 88% was observed using

a K-means classifier with two states to separate clinical seizures from subclinical

seizures.

In Chapter 6, we quantified the previously observed reversalof dynamics at

seizures, in terms of preictal spike synchronization and postictal spike desynchro-

nization, using a measure of resetting. Further statistical analysis revealed that re-
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setting of spike synchronization occurred more prominently at seizures than in the

interictal periods. Along similar lines, we developed a measure of resetting in terms

of synchronization of chaos (STLmax). CApplication of this measure to the EEG

from with epileptic seizures and patients with psychogenicnonepileptic seizures

revealed that differential diagnosis is possible between the two groups of patients,

with epileptic seizures resetting the brain dynamics by psychogenic nonepileptic

seizures not.

Overall, we laid down a mathematical framework within whichinterictal spikes

were investigated in terms of their spatio-temporal dynamics. The hypothesis that

were postulated and tested in this research can further the understanding of epilep-

togenesis and ictogenesis, the development of better seizure prediction algorithms

as well as the control of seizures through electrical or other physiological inter-

vention. Investigation of the significance of different types of epileptic spikes and

validation of the results inmore subjects and types of seizures within the framework

we developed appear to be feasible and worth pursuing endeavours in the near fu-

ture.
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