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ABSTRACT

This thesis deals with the first measurements done with a cold neutron

beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The

experimental technique consisted of capturing polarized cold neutrons by nu-

clei to measure parity-violating observables from the emission of gamma rays

following neutron capture. The measurements presented here for the nuclei

Chlorine (35Cl) and Aluminum (27Al) are part of a program with the ultimate goal

of measuring the asymmetry in the angular distribution of gamma rays emitted

from the radiative capture of neutrons on protons (~n+p→ d+γ ) with a precision

better than 1 · 10−8, in order to extract the weak hadronic coupling constant due

to pion exchange interaction with isospin change equal with one (hπ
1). Based

on theoretical calculations the asymmetry in the ~n + p → d + γ reaction has

an estimated size of 5 · 10−8. This implies that the Al parity violation asymmetry

and its uncertainty have to be known with a precision smaller than 4 · 10−8. The

proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results

are presented for parity violation and parity-conserving asymmetries in 35Cl and

27Al. The systematic and statistical uncertainties in the calculation of the parity-

violating and parity-conserving asymmetries are discussed.
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Chapter 1

INTRODUCTION

A system can have positive or negative parity depending on its behavior under

a spatial inversion. Parity is a conserved symmetry if the Hamiltonian of the

system is invariant under spatial inversion. The conservation of parity was

believed to be a universal law of nature until the discovery of parity violation in

the decay of K mesons [1] and in the nuclear beta decay of polarized 60Co

[2]. This strong experimental evidence proved that the weak interaction violates

parity as it has been predicted earlier by Yang and Lee [3] who were awarded

the Noble Prize in Physics in 1957 for their penetrating investigation of the

parity laws which has led to important discoveries regarding the elementary

particles [4]. The other three fundamental interactions of nature, the strong,

electromagnetic, and gravitational forces are all believed to conserve parity.

However, the strong interaction at its fundamental level is an interaction

between quarks which are the fundamental constituents of visible matter.

Quarks are subject to both the weak and strong interactions. At present the

study of hadronic parity violation provides the only known window on weak

interactions between the up and down quarks.

The range of the weak interaction between quarks is significantly

smaller than the size of the nucleon, and the strong repulsion between

nucleons at short distances implies that the dynamical mechanism for the

weak NN interaction must involve meson exchanges, because the hadronic

interaction is mediated by these. The weak force between quarks is 10−7 times

smaller than the strong force and is responsible for parity-violating effects in

the nucleon-nucleon system. This hadronic weak interaction is sensitive to the
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quark-quark correlations in hadrons because the range of the W and Z bosons

exchanged between quarks is small compared with the nuclear size [5–9].

The weak nucleon-nucleon interaction is needed to understand a

variety of phenomena that involve parity violation in atomic, nuclear, and

hadronic systems. In atomic physics, parity violation is used to quantify the

effect of nuclear anapole moments, a parity-odd and time-reversal-even

electromagnetic moment, on nuclear structure. Very precise measurements

exist of parity violation in P -shell and light S −D -shell nuclei with parity

doublets, but shell model calculations converge slowly for parity- odd

operators. In heavy nuclei, parity violation involves convoluted theoretical

analysis that can give predictions for weak couplings. Last, but not least, parity

violation in electron scattering is widely used to isolate the role of strange

quarks in nucleon structure where the presence of weak quark-quark and

anapole moments effects must be taken into account.

The structure of the weak quark-quark interaction is well established in

the Standard Model of particle physics. However, for low energies, the parity

violation in the strangeness changing quark-quark interaction is not understood

due to the non-perturbative approach required for these calculations. There are

two independent models that describe the quark-quark weak interaction at

energies above and below the strong Quantum Chromodynamics (QCD) scale

Λ = 1 GeV. At energies above Λ and below the electroweak scale, the

quark-quark weak interaction is written in a current-current form that transforms

under isospin as ∆I = 0, 1, 2. For energies below Λ, pion exchange dominates

the low energy strong interaction between hadrons due to the chiral symmetry

breaking in QCD. For this low energy regime, five independent weak transition
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amplitudes are present in NN elastic scattering [10–12]: the ∆I = 1 transition

amplitudes in 3S1 − 3P1 and 1S0 − 3P0 partial waves; the ∆I = 0 transition

amplitudes in 3S1 − 1P1 and 1S0 − 3P0 partial waves; and the ∆I = 2 transition

amplitude in the 1S0 − 3P0 partial wave. A quantitative calculation in the

Standard Model to interpolate between these upper and lower energy limits is

not possible at this time.

A deviation in the weak amplitudes of the non-leptonic weak decay of

hyperons or kaons from their expected relative size, was the subject of many

previous works [13]. This non-leptonic weak amplitude is isospin dependent

and was seen mostly in the interaction between strange quarks. The

measurements in the NN and few nucleon systems may confirm that this

dependence is a characteristic of all light quarks. The source of the deviations

from the expected pattern of isospin dependence of the weak amplitude in the

non-leptonic weak decays can be understood by the study of the

~n+ p→ d+ γ reaction, i.e., the capture of polarized neutrons by protons. In

this reaction the change in isospin ∆I = 1 and the interaction between the

charged currents is suppressed by V 2
us/V

2
ud ' 0.1. Therefore the

~n+ p→ d+ γ reaction is sensitive to the neutral currents interaction. At the

same time, the main contribution is due to the long range pion exchange

because the deuteron is a loosely bound nuclear system. Due to the simplicity

of the neutron and proton system, this reaction is free from the uncertainties

present in the other nuclear many body systems.

Experimentally, the hadronic weak interaction has been observed in the

non-leptonic flavor changing decays of baryons and mesons [14,15] and in the

measurement of observables that conserve flavor but violate the parity
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symmetry [16,17]. Measurements have also been performed in few-body

systems, such as the pp and pα systems, and in nuclei ranging from the

P -shell nuclei like 18F to heavy nuclei such as 133Cs. The longest-range part of

the interaction is dominated by the weak pion-nucleon coupling constant, hπ
1.

Measurements of the circular polarization of photons in the decay of 18F [18]

imply a small value for hπ
1, while precision parity violation measurements in pp

and 133Cs seem to imply a large value for hπ
1 [19] relative to theoretical

estimates [13]. The origin of these discrepancies may lie in approximations

used to compute effects in nuclei, in the use of a model [13] as the basic

framework in one or more of the experiments. Ideally one would like to obtain a

set of numbers that are free from the uncertainties associated with many-body

nuclear physics and that do not require a meson-exchange model for

interpretation. Recently, a theoretical framework for such a program has been

developed with the ideas of effective field theory (EFT) [20].

Carrying out a program of hadronic parity violation measurements with

neutrons will allow one to arrive at a complete determination of the

leading-order parity-violating operators in a way that is independent of nuclear

model approximations. Central to this is the parity violation that can be related

with the asymmetry in the angular distribution of the gamma rays emitted at the

capture of polarized neutrons on protons. If the neutron spin is along the

vertical direction then the parity violating asymmetry is proportional with the

scalar product of the neutron spin and the momentum of the gamma rays ~s ·~kγ .

Under parity transformation the gamma ray momentum changes sign but the

direction of the neutron spin is not changed. The non-zero asymmetry in the

angular distribution of the gamma rays is proportional with the parity violation in

the weak interaction between the interacting particles. In the
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~n+ p→ d+ γ reaction, this parity-violating asymmetry is dominated by the

∆I = 1 transition amplitude in the 3S1 − 3P1 channel of the

strangeness-conserving hadronic weak interaction. The

~n+ p→ d+ γ parity-violating up-down asymmetry Aγ in the angular

distribution of the gamma rays with respect to the neutron spin direction was

measured as part of this work, in the first phase of the NPDGamma experiment

at the Neutron Scattering Center LANSCE at Los Alamos National Laboratory

[21]. The experimental result did not have enough statistical precision to

produce a definite result. After the completion of this experiment the entire

experimental setup was moved to the new intense pulsed Spallation Neutron

Source (SNS) at Oak Ridge National Laboratory.

This thesis describes the installation of the NPDGamma apparatus at

the SNS and its modifications, the implementation of a new way to polarize the

neutrons with respect to the one used at LANSCE, the SNS commissioning

measurements and calibrations at the new cold neutron beam line, and then

the parity violation measurements on the nuclei of Al and Cl. In Spring, 2012,

the experiment is switching to a liquid H2 target to measure the parity violation

on the ~n+ p→ d+ γ reaction.

The remainder of this thesis is organized as follows. In chapter 2 the

physics of the parity violation in the ~n+ p→ d+ γ reaction is briefly discussed,

followed by that related to the parity violation with polarized neutrons on the

nuclei of Al and Cl. Also presented in this chapter is a brief description of the

apparatus used at LANSCE and the results obtained in that experiment. The

experimental setup, design and construction of the apparatus for neutron

polarization, and the corresponding magnetic field measurements done at the
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experiment site, are described in chapter 3. The work continues with the

presentation of measurements for the neutron flux, neutron polarization and a

study of the detector alignment in chapter 4. The nuclei target measurements

discussed in chapter 5 were done in May and June 2011 as part of the final

commissioning of the ~n+ p→ d+ γ experiment. The procedures involved in

the data analysis and the study of the systematic and statistical errors are

presented in chapter 6. A summary and outlook are presented in chapter 7.

Work has also been done to help on the preparations of two future

experiments that will use cold and ultracold neutrons at the SNS. Appendices

B and C present finite-element calculations done for the design of coils and

magnetic shields for two experiments, namely a search for the neutron electric

dipole moment (nEDM) and precise measurements of the neutron beta decay

parameters (Nab). Both experiments aim to validate new theories that try to

extend the Standard Model. The nEDM experiment will establish a new upper

limit on the electric dipole moment of the neutron and establish possible new

sources of charge conjugation and parity (CP ) violation and time reversal

symmetry violation. The Nab experiment aims to measure with unprecedented

precision the parameters related with the neutron beta decay with a large field

expansion superconducting spectrometer and state-of-the-art position sensitive

silicon detectors.
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Chapter 2

PARITY VIOLATION IN THE HADRONIC INTERACTION

This chapter discusses the theoretical models that explain and predict the

asymmetry in the angular distribution of the gamma rays emitted from the

capture of polarized neutrons on the proton and heavy nuclei. Section 2.2

outlines the calculations of the weak meson-nucleon couplings of the hadronic

weak interaction and their connection with the asymmetry measured in the

~n+ p→ d+ γ reaction. Statistical models that are discussed in section 2.3

help to explain the amplification of the parity-odd effects in the radiative capture

of polarized neutrons in Cl and the cancellation of these effects for neutrons

captured in Al. Finally section 2.4 presents a summary of the measured

asymmetries in Al, Cl and H2 targets during the first phase of the experiment at

LANSCE.

2.1 Theoretical Models for NN Interaction at Low Energy

The mechanism of the weak NN interaction at low energies is not completely

understood due to the non-perturbative calculations required for the rigorous

description of QCD problems at low energies. Some aspects of the weak

interaction can be understood from experiments at the high-energy regime. To

probe the weak hadronic interaction at low-energy, the experiments are usually

done on complex nuclei and the weak force depends on the effective two-body

operators. The matrix elements of such operators are difficult to evaluate, due

to the uncertainties in the nuclear wave functions and the short-range

correlations. The weak interactions can be studied when the strong and the

electromagnetic interactions are forbidden due to a symmetry principle, such

as the S (strangeness) and C (charm) conservation. The analysis of the
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experimental results usually assume that the effective weak force originates

from a process where one nucleon emits a meson (π, ρ, ω, φ) through a weak

interaction and the meson is then absorbed by a second nucleon via strong

interaction [22]. Two models of the parity nonconserving (PNC) interaction

have been used. In the first one the matrix elements of the NN interaction are

expressed in function of five S-P amplitudes. In the second model the PNC

interaction is written as a potential due to the single meson (π, ρ, ω) and two

meson exchange ππ. There are several advantages of the second model over

the first one. The potential description of the low-energy PNC interaction

predicts correctly the energy dependence of the S-P amplitudes and the

strength of transitions between higher partial waves. In addition the effect of

the short range NN correlations on the PNC matrix elements can be estimated

in the meson exchange model.

One process that could contribute to the PNC interaction is the direct

exchange of W± and Z0 bosons. However due to small Compton wavelengths

of the bosons (about 0.002 fm) the direct exchange can occur only when the

nucleons overlap. This process can not happen at low energies due to the

strong repulsion forces between the two nucleons. The NN interaction takes

place at distances larger than the nucleon size, through the long-range meson

exchange (Figure 2.1). The long -range processes can be described without

explicit reference to the structure of the nucleons.

The relation between the parity non-conserving NN potential and the

theory of weak interaction between quarks can be understood from the

phenomenological current-current Lagrangian of the hadronic interaction:

L =
GF√

2
(J†wJw + J†zJz) + h.c. (2.1)
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Figure 2.1: The interaction between neutron and proton through pion exchange.

The charged and neutral currents are Jw and Jz respectively. If one neglects

the contribution of the heavy quarks c, b, t to the interaction, then only the

contribution of the light quarks u, d, s can be considered in the expression of

the charged current: Jw = cos(θc) · J0
w + sin(θc) · J1

w where θc is the Cabibbo

angle and sin(θc) = 0.22 [23]. Consider ∆I and ∆S the change in isospin and

strangeness of a nucleon due to the NN interaction. The current J0
w drives the

u→ d transition and transforms as ∆I = 1, ∆S = 0 while J1
w drives the u→ s

transition and transforms as ∆I = 1/2 and ∆S = −1. The neutral current Jz

has two components J0
z and J1

z which transforms as ∆I = ∆S = 0 and

∆I = 1,∆S = 0 respectively. The weak ∆S = 0 hadronic interaction is

therefore described by the sum of current-current terms:

L =
GF√

2
· (cos2 θcJ

0
w
†
J0
w + sin2 θcJ

1
w
†
J1
w

+ (J0
z
†
J0
z + J1

z
†
J1
z + J0

z
†
J1
z + J1

z
†
J0
z ) + h.c. (2.2)

The product of currents J0
w
† · J0

w transforms as ∆I = 0, 2 , while J1
w
† · J1

w

transforms as ∆I = 1. Therefore the ∆I = 1 component of the charged

current interaction is suppressed by tan2θc compared to the ∆I = 0, 2

component, but the contribution of the neutral-currents to the ∆I = 1 is not
9



suppressed. The neutral current is expected to dominate the ∆I = 1

component of the Parity Violating hadronic interaction. However this qualitative

argument is not valid if the strong interaction between quarks can significantly

alter the weak matrix elements between hadrons. The relative strength of the

three isospin components ∆I = 0, 1, 2 depends on the interplay between the

neutral and charged current.

To disentangle the neutral- and charged- current contributions, most of

the recent research was focused on determining the isospin dependence of the

flavor conserving ∆S = 0 hadronic weak interaction. More recently, the flavor

changing decays of the mesons have been described by effective field theories

like chiral perturbation theory, heavy quark and soft-collinear effective

theory [24–26] . In these theories the non-perturbative QCD interaction

coefficients are obtained from experiment, and the observables are calculated

in the effective field theory (EFT). A precise computation of the parity-violating

observables in the EFT frame needs input from a comprehensive experimental

program in the few body systems. The EFT can be used to explain the

simultaneous contribution of the parity-violating S-wave and parity -conserving

P -wave amplitudes in the hyperonic non-leptonic decay and the anomalously

large parity-violating asymmetries in the radioactive decay of hyperons.

According to the SU(3) flavor symmetry in the limit of degenerate up u, down d,

and strange s quarks, this asymmetry should vanish, because no apparent

QCD symmetries can enhance a particular reaction channel. The dominance

of the ∆I=1/2 channel over the ∆I=3/2 channel in the strangeness changing

non-leptonic decays can be understood from precise measurements of the

parity violation at 10−7 level or better, in the ~pp scattering, ~nα spin rotation and

polarized neutron capture on hydrogen.
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2.2 Parity Violation in the ~n+ p→ d+ γ Reaction

A calculation of the weak meson-nucleon couplings from the Standard Model

was first performed by Desplanques, Donoghue, and Holstein by using a

valence quark model in 1980 [13] and more recently in reference [27]. In this

model the observables are expressed in terms of six weak meson-nucleon

coupling constants: h1
π, h0

ρ, h
1
ρ, h

2
ρ, h

0
ω, h1

ω.

Adelberger and Haxton in 1985 [23] proposed an experimental

program and performed the calculations specifying the relation between the

corresponding observables and the weak coupling constants. In the

~n+ p→ d+ γ reaction the short range contribution is reduced due to the low

energy of the initial two nucleons and the weak binding of the deuteron.

Therefore, in this reaction, the long range of the ∆I = 1 part of the hadron

weak interaction is the most important component. The transition amplitudes of

the electromagnetic part of the Hamiltonian between the initial and the final two

nucleon states can be used to calculate the differential cross section. Most of

the gamma rays are produced in the parity-conserving magnetic dipole M1

transition of the strong interaction between the initial singlet and triplet S-wave

states 1S0, 3S1 and the deuteron bound state.

The weak interaction induces electric dipole E1 gamma transitions

between states of opposite parity such that the P -wave components 3P1, 3P0,

and 1P1 are mixed with the initial and final states. The interference between the

E1 and M1 transitions gives rise to a parity-odd asymmetry in the gamma ray

angular distribution. In the NPDGamma (~n+ p→ d+ γ ) experiment [28] the

neutrons are polarized in the vertical direction normal to the beam axis. In the

differential cross section (eq. 2.3), the up-down asymmetry Aγ multiplies the
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parity-violating scalar product of the neutron spin ŝn and the direction of the

gamma ray k̂γ emitted after neutron capture ŝn · k̂γ . The left-right asymmetry

Bγ multiplies the parity-conserving observable k̂γ · (ŝn × k̂n) where k̂n is the

momentum of the neutron. The parity-violating term is therefore maximum for

gamma rays emitted along the neutron spin direction parallel with the direction

of the magnetic field. There is very little mixing between the two asymmetries if

the misalignment angle between the vertical axis of the detector and the

direction of gravity is smaller than 1◦ ( [29]).

The differential cross section for the capture of polarized neutron by

nuclei is proportional with the factor:

dσ

dΩ
∝ 1

4π
(1 + Aγ cos θ +Bγ sin θ) (2.3)

In the above equation θ is the angle between the neutron spin direction

and the gamma ray initial momentum. In the absence of any systematic

effects, a non-zero asymmetry Aγ in the angular distribution of the gamma rays

with respect to the neutron spin direction comes from the small parity

non-conserving admixture of the P -wave states in the initial S -wave singlet

and the final S-wave triplet states:

ε =
〈ψk′ |W |ψk〉

∆E
. (2.4)

The allowed quantum numbers for the transition are k = {J, L, S, p}

(p = parity). The gamma ray asymmetry for this reaction has a simple form in

terms of the matrix elements between initial and final states:

Aγ ∝ Re
ε〈3P1|E1|3S1〉
〈3S1|M1|1S0〉

. (2.5)

The parity-odd amplitudes 〈ψk′|W |ψk〉 can be treated as perturbations.

These amplitudes can be estimated in the meson exchange picture and can be
12



parametrized by using effective field theory, or calculated in the lattice gage

theory. As mentioned earlier in the meson exchange picture the hadronic weak

interaction can be expressed completely in terms of six weak meson-nucleon

coupling constants OPV = a1
πh

1
π + a0

ρh
0
ρ + a1

ρh
1
ρ + a2

ρh
2
ρ + a0

ωh
0
ω + a1

ωh
1
ω. The

coefficient a∆I , with ∆I being the change in the isospin, are determined from

the evaluation of electromagnetic matrix elements for the

~n+ p→ d+ γ reaction. The only significant contribution to the NPDGamma

asymmetry comes from the weak pion exchange. The measured asymmetry

and the weak meson couplings are related [9,23,27,30–32] with three

coupling constants:

Aγ = −0.1069h1
π − 0.0014h1

ρ + 0.0044h1
ω . (2.6)

The interaction is therefore almost purely ∆I = 1 . The effect of the D- wave

state admixture in the deuteron ground state on these coefficients is negligible.

The ∆I = 1 part has been calculated before and the predicted best

value for h1
π is 4.7× 10−7 [22]. The most sensitive experiments designed to

measure the parity violation in the ∆I = 1 channel used the 18F gamma ray

circular polarization [18]. The results of these experiment and the arguments

of the meson model [33] suggest that h1
π ≤ 1.2× 10−7. The non-zero

measurement of the anapole moment of 133Cs [19] has been used to calculate

h1
π = (9.6± 2.2 (exp.)± 3.6 (theor.))× 10−7 [34]. Because the two values do

not agree in the limits of experimental errors, the ∆I = 1 part of the hadronic

weak interaction remains undetermined.

2.3 Parity Violation in Neutron Radiative Capture in Complex Nuclei

The compound nuclei produced after the neutron capture have a large number

(>106) of possible states with different parities and angular momenta. The
13



structure of the excited states in the compound nuclei can amplify the

parity-odd asymmetry in the angular distribution of prompt gamma rays emitted

from the nuclear transition to the ground state. The Fock space components of

the compound nuclear states are treated by statistical techniques as

independent random variables to calculate the root mean square of the

distribution of expected observables. This approach helped in the

understanding of certain global features of the nuclei structure [35], of the

distribution of the neutron resonance widths [36] and the isospin violation in

heavy nuclei [37].

2.3.1 Enhancement of Parity Violation in Compound Nuclei

Flambaum and Gribakin [38] suggested that the parity non-conservation and

time invariance can be enhanced 106 times in compound nuclei. They

described the problem of the correlations in the (n, γ) radiative capture in terms

of the mixing in the transient amplitudes. Two effects contribute about equally

(103) to this factor: (i) the significant difference between the S-wave amplitude

and the much smaller P -wave neutron capture amplitude (kinematic

enhancement) and (ii) the very large density of compound states which

provides mixing of opposite parity states at very small energy separations

(dynamical enhancement). Because of the complex structure of the compound

state, the dynamical enhancement is proportional with 1/
√
D where D is the

mean level spacing. The parity non-conserving effects in nuclear fission and

(n, γ ) reactions requires a resonance enhancement up to a factor D/Γ where

Γ is the compound state width. In the (n,γ) reaction, the parity-odd effect is

due to the mixing between the compound states either in the initial or final

nuclear states [39]. In heavy nuclei a neutron can capture in the S- or P - wave

states close to the neutron separation energy. The weak interaction mixes the
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two transition amplitudes from these states to lower states.

The relative magnitude of the weak interaction in the nuclear forces is

G ·mπ
2 = 2 · 10−7 . The reaction amplitudes for the capture of the slow neutron

in the S- and P - wave states, without the parity violation are presented in

Figure 2.2 below.

Figure 2.2: The reaction amplitudes for slow neutron capture in S- and P - wave
states without parity violation.

The first pair of diagrams (1a, 2a) corresponds to the direct radiative

neutron capture in S- or P -wave states followed by the transition into the final

state |f〉. The average distance between the compound levels in the region of

neutron threshold and of the final state respectively are Di = D(E ≈ Ei) and

Df = D(E ≈ Ef ). The number of the principal components in the wave

function of the final, initial and capture states are Nf , Ni and Nc respectively.

The numbers of principal components in the wave functions of the initial and

final states are inversely proportional with the mean level of spacing: Nf ≈

1MeV /D(Ef ) and Ni ≈ 1MeV /D(Ei), respectively. The diagrams (1a, 2a)

have one vertex of electromagnetic interaction proportional with 1/
√
Nf . The

second pair of diagrams (1b and 2b) represents the resonance neutron

capture. These diagrams correspond to neutron capture in the intermediate
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compound state (c=S or P ) and contain the neutron capture vertex (1/
√
Nc),

the Green function of the compound state NcD/(E − Ec + i · Γc/2) and the

photon emission vertex 1/
√
Nc. The mean-square estimate of the amplitudes

was calculated in [38] and the ratio between the resonance and the direct

capture amplitudes indicates that the resonance mechanism in the (n, γ)

reaction dominates the transitions into the complex final state (Nc � 1).

Consider E the neutron energy; Ec and Γc, the energy and width of the nearest

resonance and D(Ec) the average distance between the compound levels with

fixed quantum numbers at energy close to Ec. The ratio of the resonance

capture amplitude fa and the direct capture amplitude fb ( [38]) is equal with:

fa
fb

=
√
Nf

D(Ec)

E − Ec + iΓc
2

(2.7)

The direction and the resonant state amplitudes are comparable only if the

transition is in the final state. To calculate the amplitude of the transition to the

ground state, both the direct and resonance transitions are taken into account.

The amplitudes for the capture in the S and P - wave states are given by the

relations:

f1 = − 1

2k

{∑
s

〈f, γ |HEM | s〉 〈s |Hs| n〉
E − ES + iΓS

2

+ 〈f, γ |HEM | n〉

}
(2.8)

f2 = − 1

2k

{∑
s

〈f, γ |HEM | p〉 〈p |Hs| n〉
E − EP + iΓP

2

+ 〈f, γ |HEM | n〉

}
. (2.9)

For complex nuclei, the resonance capture state dominates the

parity-violating amplitude for transitions to the final state. The diagrams with

the weak mixing compound states give the dominant CP violating effects.

Consider R the radius of the nucleus. The mean square estimates of
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Figure 2.3: The amplitudes for slow neutron capture in the complex states or
simple final states.

the amplitudes are given by [11, 17]:

f3 ∼
1√
kR

√
Ni

Di(
E − ES + iΓS

2

) Di(
E − EP + iΓP

2

) (2.10)

f4 ∼
√
kR
√
Ni

Di(
E − ES + iΓS

2

) Di(
E − EP + iΓP

2

) (2.11)

f5 ∼
√
Nf√
kR

Di(
E − ES + iΓS

2

) · Df(
E − ω − E ′f +

iΓ′f
2

) (2.12)

f6 ∼
√
kR
√
Nf

Di

E − Ep + iΓS
2

· Df

E − ω − E ′f +
iΓ′f
2

. (2.13)

The amplitudes f5 and f6 can be neglected because they are√
Nf/
√
Ni smaller than f3 and f4 respectively. The amplitude f4 is due to the

P -wave capture and is suppressed by the factor 1/(kR) ∼ 102 − 103 in

comparison with f3.

After a neutron is captured on 27Al, the excited 28Al nucleus makes a

transition to the ground state with emission of prompt gamma rays in a

cascade. The contribution of the gamma cascade to the parity mixing in the

final state can be calculated in terms of the reaction amplitudes of the neutron

capture in S -wave or P -wave states.
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The contribution of the diagrams with P -wave mixing in the final state is
√
Ni/
√
Nf times smaller than the contribution of the diagrams with mixing in

the initial states. Therefore the mixing in the final state can be neglected for the

transitions to the low-lying states with Nf=1.

If the gamma ray transition does not go to the ground state after the

neutron capture, then at least one more gamma ray will be emitted. The

number of gamma quanta exceeds 2 or 3 times the number of captured

neutrons. The secondary gamma quanta influence the magnitude of the

correlations in the integral spectrum. In the presence of parity-odd mixing in

the initial state, only the first gamma quanta in the cascade contribute to the

correlation. In the case of a neutron capture in the S -wave and two gamma ray

transition with a weak interaction in the intermediate state, the four possible

diagrams are presented in Figure 2.4.

Figure 2.4: The diagrams for two quanta transitions with a mixing in the inter-
mediate states.

In this figure the gamma ray transitions from the capture state |s〉 to the

intermediate states with opposite parities |g〉 and |g̃〉 are magnetic M1 and

electric E1 dipole transitions respectively. These are the transitions
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|g〉 → |f〉+ |M1〉 and |g̃〉 → |f〉+ |E1〉 with amplitudes f8 and f9. The P-odd

mixing in the final state corresponds to the parity violation at the emission of

the first gamma quantum and comes from the interference between f8 with f11

and f9 with f10.

The interference of f8 with f11 and of f9 with f10 leads to parity violation

related with the first gamma quantum and corresponds to P -wave mixture in

the final state. The new effect due to the cascade is the interference of f8 with

f10 and f9 with f11. The amplitude of this interference is reduced by a factor√
Ni/Ng compared with the contribution of the amplitudes with mixing in the

initial state. The probability of the population in the intermediate states are

given by Wg and Wg̃:

Wg =

∣∣∣∣− 1

2k

〈g|M1| s〉 〈s|Hs| n〉
E − Es + iΓs/2

∣∣∣∣2 (2.14)

Wg̃ =

∣∣∣∣− 1

2k

〈g̃|E1| s〉 〈s|Hs| n〉
E − Es + iΓs/2

∣∣∣∣2 . (2.15)

There is a partial compensation between the terms f ∗8 f10 and f ∗9 f11.

This can be seen by writing the contribution of the weak force to the cross

section:∫
dω
2π

2
(2k)2

Re{f ∗8 f10 + f ∗9 f11} ∝ 2Wg
〈g|Hw| g̃〉
Eg−Eg ·

〈f |M1| ḡ〉 〈ḡ|E1|f〉
Γg

+

2W̃g
〈g̃|Hw|g〉
Eg−Eg̃ ·

〈f |E1|g〉 〈g|M1|f〉
Γg̃

= 2 〈g|Hw| g̃〉
Eg−Eg 〈f |M1| g〉 〈g̃ |E1| f〉

(
Wg

Γg
− Wg̃

Γg̃

)
.

(2.16)

The amplitudes of the electric E1 and magnetic dipole M1 transitions

differ by a phase factor equal with i. The above contribution to the cross

section will be zero if: ∣∣∣∣Wg

Γg

∣∣∣∣ =

∣∣∣∣Wg̃

Γg̃

∣∣∣∣ . (2.17)
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The appearance of the widths of the state g and g̃ is the only effect of the

secondary gamma quanta. Neither the contribution of the mixing in the final

state nor that of the cascade have the resonance enhancement factor

D/(E − Ep). For this reason there is an additional suppression of these

contributions with about two orders of magnitudes.

2.3.2 Parity Violation in Chlorine and Aluminum

Because of the large number of possible electromagnetic transitions in heavy

nuclei, the calculation of the parity-violating asymmetry from matrix elements of

the strong and weak Hamiltonian is not possible. However, statistical

arguments can be used to calculate the root mean square of the asymmetry

close to the neutron separation energy because of the large number of

uncorrelated random amplitudes in the calculation of the mean square matrix

elements. In reference [40] the authors calculated a root mean square gamma

ray asymmetry for 27Al equal with 1.3 · 10−7. This indicates a small

enhancement of the parity-odd effects for Al. This result was explained by the

random sign of the asymmetry for the different highly degenerate levels close

to the neutron capture level. The incoherent mix of the transition produces a

1/
√
N suppression.

The spin of 27Al is 5/2. Therefore in the capture state the Al nucleus can

be in the 2+ or 3+ state. The energy levels of 28Al have been determined mainly

from the (d, p) reaction. The energy of the nuclear levels were determined from

measurements of the gamma rays energies emitted at the transition of excited

28Al nucleus to the ground state [41]. Their measured Q value for this nucleus

is 7725.5 keV ± 1 keV. The density level above 5 MeV is considerable. Excited

states with well known spin and parities are very few [42]. The available spin
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and parity assignments are based upon beta decay and (d, p) reaction data.

Definite assignments exists: 3+ for the ground state, 2+ for the state at 31 keV

and 1+ for the state at 1373 keV. The gamma rays originate from both the

neutron captured and neutron inelastic scattering in Al and have energies

between 7.726 MeV and 0.3998 MeV. The lines at 844, 1014, 2212 and 2731

keV are due to the inelastic neutron scattering in 27Al. The 28Al nucleus, in the

ground state, beta decays to 28Si in excited 2+ state. A 1.78 MeV quanta is

emitted in the transition of excited 28Si to its ground state 0+.

The parity violation in the radiative neutron capture in 35Cl was

measured before [43]. The neutron can be captured in a 2+ state located 130

eV below threshold or in a second state 2− that lies at 398 eV above

threshold.The big parity-violating asymmetry is due to the mixing of these two

states. Theoretical calculation of the parity-violating correlation ~sn · ~kγ in Cl

were done in the reference [44]. The predicted asymmetry:

Aγ = −(37± 18) · 10−6 is in agreement with the measured Cl

asymmetry [45,46]. The decay scheme for 36Cl from references [47,48] is

presented in Figure 2.5.
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Figure 2.5: The decay of 36Cl

2.4 The NPDGamma Experiment at LANSCE

The first phase of the NPDGamma experiment was completed at the Manuel

Lujan Jr. Neutron Scattering Center (LANSCE) at Los Alamos National

Laboratory in 2006. The experimental setup is discussed in [21] and is

reproduced in Figure 2.6. The linear accelerator delivers 800 MeV proton

beam to a proton storage ring where the beam is compressed to 250

nanoseconds wide pulses at the base and transported to a tungsten target.

The resulting spallation neutrons were cooled by a H2 moderator. The

backscattered neutrons from the moderator were transported through an

m = 3 supermirror guide to the NPDGamma experiment [49]. The supermirror

guide is covered with a multilayer of substrates that have different scattering
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length densities [50,51]. The multilayer is an aritifical one dimensional lattice

that allows for Bragg reflection of the neutron wave on the substrates for the

appropriate neutron momentum transfer. The neutrons incident on the

multilayer coating are totally reflected up to a critical angle θc. For an angle of

incidence θ > θc the neutron wave propagates in the material and can be

reflected at the interface between two layers. For this reason the material

reflectivity property is defined in terms of the momentum transfer

q = 4π/λ · sin θ. The m value of the supermirror is the ratio of the momentum

transfer of the supermirror and of the natural Nichel: m = qc/qc,Ni with

qc,Ni = 0.217 (1/nm).

The distance from the moderator to the target was about 22 meters.

After the guide exit, the neutrons were transversely polarized by transmission

through a polarized 3He cell. The polarization of 3He atoms, monitored through

NMR measurements, was reduced by the intense neutron flux [52]. The

neutron polarization was calculated for each run, from the fit of the

transmission spectrum with the expression P = tanh(σc · n · L · PHe) where σc

is the neutron capture cross section in 3He, PHe is the Helium cell polarization,

L is the length of the cell in the direction of the beam and n is the volume

concentration of 3He atoms in the cell. The neutron cross section in 3He is

given by σc = σ0

√
(E0/En) where σ0 =5333 barns is the neutron cross section

at thermal energy E0 =25.3 meV.

The neutron spin direction was reversed on a pulse by pulse basis by

passing through a radio frequency spin rotator (SR). After exiting the SR, the

neutrons entered in the 16-liter liquid H2 target, where 60% of the polarized

neutrons are captured on protons [53].The gamma rays emitted from the
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Figure 2.6: The schematic view of the flight 12 and the NPDGamma aparatus
at LANSCE.

neutron capture were detected in an array of 48 CsI(Tl) detectors operated in

current mode [28,54]. Each crystal was viewed by a vacuum photodiode.

Because of the high neutron flux, the gamma rays detectors had to be operated

in current mode. Three 3He parallel-plate ion chambers were used to monitor

the beam intensity and polarization. Two pairs of horizontal guide coils and two

pairs of vertical shim coils generated a vertical magnetic field of 9.8 Gauss

over all the NPDGamma apparatus to maintain the polarization of the 3He cell

and the polarization of the neutron beam. The gradient of this field was smaller

than 1 µT/cm such that the Stern Gerlach steering of the polarized neutron

beam was negligible, according to the calculations presented in section 6.4.

The target cryostat built from non-magnetic materials (Al, Cu) ,

consisted of an isolation vacuum chamber with neutron beam entrance and

exit windows, a Cu shield for thermal radiation and the target itself, covered

with thin sheets of Lithium Fluoride that absorbed almost completely the

neutrons scattered from the liquid H2 but was transparent for the high energy

gamma rays. The target triple containment boundaries between liquid H2 and
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the outside air were in place to prevent the mixing of H2 gas with the air above

the Low Explosion Limit and for a more efficient thermal isolation. Feedback

electric circuits with temperature and pressure sensors provided the stable

operation of the target during the data collection.

A chopper and a shutter were placed along the beam line between the

neutron source and the exit of the neutron guide. The shutter was closed

during the background measurements. The chopper was rotated with the

frequency of the beam (20 Hz). The opening angle of the chopper allowed to

select neutrons with energy between 2 and 15 meV. The beam was closed by

about 6 ms before the end of each neutron pulse to allow for the collection of

detector pedestals and background studies [49]. For neutrons with energy 3.3

meV the moderator brightness was 1.25× 108 n/(s · cm2 · sr · meV · µA ). The

integrated neutron flux at the end of the guide was 1.0× 109 ( n/cm2) when the

average proton current was 100 µA.

To ensure that the neutrons are not depolarized by inelastic scattering

about 99.98% of the liquid H2 has to be in "para" state in which the spins of the

two protons in the molecule are opposite.The neutron energy was too low to

excite the para-hydrogen molecules to the ground state of ortho-hydrogen [55].

During the filling of the target, the H2 gas cooled down to about 20 K,

condensated in liquid phase and was converted from ortho- to para- state by

passing through an Ortho-Para converter with Fe2O3 catalysis to speed up the

conversion.

The parity-violating and the parity-conserving asymmetries in the

angular distribution of the gamma rays were extracted from the signals of the

48 detectors mounted annularly around the liquid H2 target [40]. For the
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~n+ p→ d+ γ reaction the measured parity-violating and parity-conserving

left-right asymmetries were Aγ,UD = (−1.2± 2.1 stat.± 0.2 sys.)× 10−7 and

Aγ,LR = (−1.8± 1.9 stat.± 0.2 sys.)× 10−7, respectively. The precision was

limited by the low average power of the neutron beam (800kW) and the

decrease in the polarization efficiency of the 3He cell. Measurements with the

Al target were done in preparation of the H2 runs. The up down and left right

asymmetry for Al were Aγ,UD = (−0.02± 3)× 10−7 and

Aγ,LR = (−2± 3)× 10−7. The known parity-odd asymmetry for Cl was used to

verify the geometrical dependence of the detector pair asymmetries. The

up-down and left right asymmetries measured for Cl were

Aγ,UD = (−19± 2)× 10−6 and Aγ,LR = (−1± 2)× 10−7.
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Chapter 3

EXPERIMENTAL SETUP

The second phase of the NPDGamma experiment is being carried out at the

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL).

At this facility (figure 3.1) the fast neutrons are produced by a pulsed proton

beam sent into a Hg target. For each proton striking the nucleus, between 20

and 30 neutrons are expelled in addition to the daughter nucleus and

neutrinos. The phenomena is called spallation (or nuclear evaporation). In this

manner a neutron beam with an average power of 1.2 MW is produced by the

incidence of a pulsed, 60 Hz, 1 GeV proton beam on a Hg target.

Figure 3.1: Conceptual Design of the SNS site.

In the first section (front-end systems) of the linear accelerator,

negatively charged hydrogen ions are produced. Each ion consists of a proton

orbited by two electrons. The ions are accelerated and close to the end of the

accelerator they pass through a foil which strips off each ion’s two electrons

converting them to protons. The protons are then stored in a ring where they

accumulate in bunches that are released from the ring as proton pulses at 60
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Hz. The fast neutrons produced by spallation in the target are slowed down by

a cold liquid H2 moderator to less than 50 meV and then transported through a

curved m = 3 supermirror neutron guide (see section 2.4) to the experiment

located at the Fundamental Neutron Physics Beam Line (BL13). A schematic

of the layout of this experimental area within the SNS is shown in Figure 3.2.

Figure 3.2: The Fundamental Neutron Physics Facility at beam line 13.

The BL13 area is the only one at the SNS that is designed to do

experiments with cold and ultra-cold neutrons. The transport of these neutrons

through the curved guide reduces the gamma ray flux and the fast spallation

neutron components in the beam delivered to the experiment. The beam line is

equipped with two choppers and primary and secondary shutters. The opening

time window of the two choppers was adjusted to select only neutrons with

energies between 2.3 meV and 13.2 meV. All the main components of the

experiment are described in section 3.1. The magnetic coils and shielding is
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described in section 3.1.1.

During the data collection only the secondary shutter was operated.

The primary shutter was left opened until the end of a complete measurement

cycle. The pulsed structure of the neutron beam allows precise measurements

of the neutron time of flight and energy. However slow neutrons in two narrow

intervals centered at 14 Å and 28 Å could also pass through the chopper

windows and increased the detector signal near the start and end of each

pulse. The beam intensity was monitored for each pulse with two ionization

chambers located in front and after the SMP. The ionization chambers are

described in the section 3.1.2. Any false asymmetry due to the pulses that do

not have slow neutrons, was eliminated with proper cuts placed on the monitor

signal.

Because the neutron flux at BL13 is about 30 times of the flux of the

FP12 at LANSCE, it was decided to use a multi-channel Supermirror Polarizer

(SMP) [56–58] to avoid the decrease in the 3He spin filter efficiency with

neutron beam irradiation, that was observed at LANSCE. Neutron polarization

after the SMP depends weakly on the neutron wavelength and is predicted to

be larger than 95% if the internal magnetic field in the SMP is bigger than 300

G. The SMP is described in section 3.1.3.

The experiment uses a Spin Rotator (SR), described in subsection

3.1.4. The spin of the neutrons is reversed by passing through the SR that is

switched on during four pulses in each spin sequence of eight pulses. The

order for the switch on and off signals for the SR eliminates the false

asymmetry related with the drift in electronic pedestal and detector gains.To

measure the angular distribution of the gamma rays emitted from the capture of
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neutrons in the target, an array of 48 detectors was placed in a cylindrical

geometry around the target. Due to the high rate of gamma rays the detectors

have to work in current mode (subsection 3.1.5).

Some of the neutrons will capture in the SMP and will produce gamma

rays. To decrease the background contribution from the SMP, two lead walls

were placed downstream from the SMP and before the Spin Rotator (SR). The

upper limit of the SMP residual fields over the detector and the target is given

by the tight requirements on magnetic field gradients and direction. A

Compensation Magnet (CM) was placed around the SMP to cancel their

combined fringe magnetic field at the position of the detector [59].

Furthermore the combined fields of SMP, CM, and the four main coils of the

apparatus have to change sufficiently slowly over the length of the neutron path

so that the neutron spin can adiabatically follow the field direction. The

magnetic field configuration was designed by using a comprehensive finite

element model of the entire magnetic environment of the NPDGamma

experiment at the BL13, including the steel walls of the experimental shielding

enclosure. This is described in detail in section 3.2. Calculations have been

done with the code Opera13 to establish operational parameters and to design

the CM and the additional field correction coils, the shim coils.

Section 3.3 presents the magnetic field measurements carried out at

the BL13 and the calculation of the field direction, field gradient and the neutron

transport in the static field of the coils in order to address the field requirements

needed to decrease the systematic effects below the limit of the statistical

errors. Most of the magnetic field measurements were done inside the area of

the guide coils by moving manually two magnetic probes along vertical and
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horizontal Al rails. The field was measured over all the volume of the beam

before the installation of the NPDGamma apparatus inside the guide coils.

3.1 Main Components of the Experiment

A layout of the experiment main components and a three dimensional model

view of the experimental set-up are presented in Figure 3.3 and a downstream

model view in Figure 3.4. The four main coils produce a vertical field over the

volume of the target and spin rotator (SR). The currents in the right, left, front

and back shim coils produce a magnetic field that corrects the angle of the

main field. Current directions in the coils are indicated by arrows. The origin of

the coordinate system (x, y, z) is in the center of the detector. The center of the

detector is at 185 cm from the end of the super mirror polarizer (SMP). A

compensation magnet (CM) is placed around the SMP. After the SMP the

neutrons are polarized with their spin aligned with the vertical main magnetic

field. The direction of the neutron spin is reversed only in the SR, only during

four pulses in each sequence of eight pulses. The two radiological lead walls

decrease the background due to the gamma rays emitted from neutron capture

in the iron multilayer films of the SMP.

3.1.1 Magnetic Coils and Magnetic Shielding

The four main coils produced a vertical field over the volume of the target and

spin rotator. The currents in the outer pair and the middle pair of the main coils

are I1 and I2 respectively in Figure 3.3. The two middle and two outer (top and

bottom) main coils have 18 and 39 windings respectively, with nominal

operating current of 23 A. Inside each of the four main coils cases there are 12

additional windings powered by separate auxiliary power supply with 3.3 A.

The main coils and additional windings provide a homogeneous magnetic field

31



Figure 3.3: A sketch of the main components at the SNS BL13. All dimensions
are in centimeters.

of 9.4 Gauss in the center of the main coils.

In addition, there are two pairs of vertical shim coils attached to the Al

support frame. These coils are labeled FS (front shim), BS (back shim), RS

(right shim) and LS (left shim) coils in Figure 3.3 and are the red coils in Figure

3.4. Current directions in the coils are indicated by arrows. The center of the

coordinate system is defined by the intersection of the vertical axis of the main

coils with the axis of the beam. The origin of the coordinate system is in the

middle of the detector array.The coils in each pair have identical geometry and

the same number of turns. There are 28 windings in each side shim coils and

37 windings in each front and back shim coils. The two shim coils in one pair

are attached to the lateral vertical sides of the Al support structure of the main

coils. The function of this pair of coils is to produce a small magnetic field along

the x axis near the center of the main coils and to decrease the overall
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Figure 3.4: The NPDGamma main field coils (green), shim coils (red), gamma
detector array (yellow), spin rotator (blue), steel shield without roof (gray), SMP
and CM assembly (white) at BL13.

magnetic field component Bx by adjusting currents in the coil. The other two

shim coils are the two vertical coils installed on the upstream and downstream

ends of the main coils support structure. By adjusting the currents in this pair

of coils, the field component Bz, related with the neutron depolarization

through the field rotation in the (z, y) plane, can be decreased.

The floor, ceiling and the lateral walls of the BL13 enclosure are lined

with soft low-carbon steel plates to provide magnetic and radiological shielding.

These plates also form a return yoke for the field flux and attenuate residual

fields outside the BL13 enclosure to less than 25 mG to meet the facility

requirement. Furthermore, they attenuate the changing magnetic fields

generated outside the enclosure that otherwise could change the field

parameters in the experiment. The steel shield is asymmetric relative to the

main coils causing a misalignment in the direction of the magnetic field of the

main coils relative to the y direction inside the detector volume. For the same

reason, the field profiles along the x and y directions do not have a minimum
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located on the beam axis (the z axis). The finite-element calculations were

used to estimate the optimum ratio of the currents in the main coils. A goal was

to minimize the average field gradient in the y direction, dBy/dy over the

volume between the SR and the end of the liquid H2 target.The polarized

neutrons move through the magnetic field of the guide coils to the Spin Rotator

and to detector array where the target is located.

3.1.2 Beam Monitors

The neutron beam intensity was monitored by two parallel-plate ionization

chambers, called the monitors M1 and M2, filled with a mixture of 3He and N2

gas.The first monitor M1 is located immediately after the beam guide. The

second monitor is mounted on the surface of the first radiological wall located

just after the polarizer. Each monitors had 1 - mm -thick entrance and exit Al

windows and three internal copper grids. The central grid (the anode) is

connected to 5 kV voltage. The other two grids (the cathodes) are supplied

with -5 kV voltage. When the neutron beam passes through a monitor, some

neutrons are captured in 3He and produced alpha particles, tritium and gamma

rays that further ionize the N2 gas. The electrons and the positive ions drift to

anode and to the cathodes respectively and produce an electric current that is

amplified in a preamplifier circuit. The output signal is the voltage drop on a

resistor at the output of the preamplifier circuit.

For monitor M1, the partial 3He and N2 pressures are 14.8 torr and

736.8 torr respectively. Inside monitor M2, the partial 3He and N2 pressures

were 10 torr and 766.9 torr respectively. The calculated densities of Helium and

Nitrogen are 0.0022 kg/m3 and 1.176 kg/m3 respectively for M1, and 0.0033

kg/m3 and 1.129 kg/m3 for M2. Relative to the total mass of the monitor gas,
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the concentration of 3He inside M1 and M2 are 0.0018 and 0.0029 respectively.

A third monitor M3, used only for the beam profile and polarization

measurements, had a B4C plate located just in front of a CsI crystal. The

crystal was a cylinder with 3.81 cm radius and 7.62 cm length, placed inside a

thin Al cylindrical housing 0.8 mm thick with a front glass window 0.5 mm thick.

The neutrons are captured in 10
5B inside the plate and produce alpha particles,

6
3Li and gamma rays that are detected in the CsI crystal behind the plate. For

the asymmetry calculation, the cuts were placed on the M1 and M2 signals to

eliminate the spin sequences that can potentially introduce systematic errors in

the data analysis. A CAD model of the second monitor is presented in Figure

3.5

Figure 3.5: The CAD model of the second monitor mounted on the first radio-
logical Pb wall is seen along the neutron beam axis.
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3.1.3 Super Mirror Polarizer

The Super Mirror Polarizer (SMP) is made from 46 thin parallel and vertical

glass films with 0.1 cm distance between them. The stack of glass films is 40

cm long with a curvature radius of 9.6 m, and an active cross sectional area of

10 cm wide and 12 cm high. The magnetic field inside the SMP is between 300

and 380 Gauss.The two vertical surfaces of the glass films are covered with

reflecting layers of Fe/Si with an m = qc/qc,Ni number equal with 3 ( [56]). The

SMP has no anti-reflecting layers; instead neutrons with the wrong spin state

are absorbed in the 0.3 -mm -thick borofloat glass film substrate. The Fe/Si

coating was preferred over Fe/Co/V due to a reduced activation produced by

cold neutrons. For the magnetic field calculation over the volume of the SMP, it

is convenient to introduce a local system of reference x1, y1, z1 centered in the

center of the SMP. The z1 axis is the SMP axis and the vertical axis is y1. The

axis of the neutron beam after the SMP, is the z axis of the NPDGamma

experiment. The y axis is vertical and the x is horizontal and points to the

beam left wall as looking downstream. Because the neutrons are reflected on

the Fe/Si reflecting layers on the surface of the slightly bended glass films, the

z1 of the SMP is not parallel with the z of the beam but makes a small angle of

about one degree. The intensity of the reflected beam has a maximum when

the axis of the incident beam makes a 1.15◦ angle with the z1 axis of the SMP.

The polarization of the transmitted neutron beam is above 95% if the

magnetization of the iron films is aligned within 3◦ with the vertical plane of the

film. The magnetization of the film is saturated when the vertical component of

the magnetic field, applied parallel to the film surface, is bigger than 300 G.

This strong field in the SMP is produced by 12 pairs of NdFeB permanent
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magnet bars with 16 cm height and with square cross section of 1.5 × 2.0 cm2.

The bars are mounted to the right and left sides of the polarizing volume and

the field from the bars is then yoked with two steel plates, see Figure 3.8. The

polarizer and magnets are inside a 47.5 -cm -long gas tight steel enclosure.

3.1.4 Spin Rotator

The efficiency of the detectors will change slowly due to temperature and

crystal activation. In addition, the asymmetry cannot be calculated to the

required accuracy by measuring the signal in a detector for one spin state and

then for a later pulse with reversed spin state, due to the pulse-to-pulse beam

fluctuations. To reduce the false asymmetry generated by drift in the detector

gains, electronic pedestals and beam fluctuations, the direction of the neutron

spin is rotated by 180o in a resonant RF Spin Rotator (SR) [60] located before

the target. The Spin Rotator is turned off during the 1st, 4th, 6th and 7th pulses

and is switched on during the other four pulses in the spin sequence of eight

pulses. The spin is rotated by 180o only when the SR is turned on. The

sequence of the spin reversal was chosen to cancel the effects of the linear

and the second-order drift in the electronic pedestal or detector gain.

The SR operates according to the principle of Nuclear Magnetic

Resonance. A 27.5 - kHz magnetic field oscillates along the axis of the beam

while the static field of the four guide coils is normal to the axis of the SR. The

axis of the RF field is surveyed with the beam axis and it is normal to the main

static magnetic field. The RF field of the SR is produced by a 30 -cm -diameter

and 30 -cm -long solenoid held inside a 42 -cm -long and 42 -cm -diameter Al

cylinder with 0.1 -cm- thick entrance and exit windows and 0.25 -cm -thick wall.

The axis of the Al cylinder is coincident with the axis of the solenoid. The
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function of the Al cylinder is to shield the experiment against RF power of the

SR. For each pulse, the neutrons with different energies arrive to the detector

at different times. For this reason the amplitude of the RF field has to be

inversely proportional with the time of flight of each neutrons, in order to flip all

the neutron spins with maximum efficiency. It was proven [60] that the RF field

is well confined inside the SR due to the skin effect in Al walls, and the RF

control signals do not couple with the detector signal.

3.1.5 Detector System

The gamma rays from neutron capture on liquid para-hydrogen are detected by

the 48 detectors grouped in four rings, with 12 detectors in each ring (Figure

3.6). The liquid Hydrogen target is also presented in this figure. The axis of the

beam is coincident with the axis of the detector array and liquid Hydrogen

cryostat. Each detector is made from two optically coupled, rectangular CsI

crystals doped with Thallium. Thin Al walls cover the six facets of each cubical

15.2 × 15.2 × 15.2 cm3 detector that contains two identical CsI crystals. The

mean free path of 2.2 MeV gamma rays in CsI is about 5.5 cm such that 84%

of the incident gamma ray energy is absorbed. The eight surfaces of the

crystals are covered with Teflon and Al walls. The gamma rays produced in the

target interact with the CsI crystals by Compton scattering or photoelectric

effect, and produce optical photons. Each detector has a glass window and a

vacuum photodiode mounted on the back side of the detector, away from the

target. The optical grease between the crystals and the optical window, and the

aluminum housing protects the slightly hygroscopic CsI crystals. The optical

photons generated in the CsI crystals are reflected on the lateral and front walls

and are transmitted through the glass window on the back side of a detector

and enter into the S20 Hamamatsu vacuum photo-diode, producing an electric
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current. Because of the high neutron flux the gamma detector has to be

operated in current mode.

Figure 3.6: A view of the 48 detectors assembly and liquid H2 target cryostat.

The Al target placed in the center of the detector array is seen along the

beam, in the two dimensional sketch of Figure 3.7. In this figure only twelve

detectors in the first ring are seen. The detectors are numbered clockwise, as

looking downstream from the exit of the polarizer. In this figure only the 12

detectors in ring 0 can be seen.

The vacuum photo-diode current is amplified by a three stage low noise

current-to-voltage preamplifier circuit. Two 45 -Volt batteries apply a 90 -Volt

bias across the vacuum photo-cathodes. The electronic noise in the

preamplifier is reduced to the level of Johnson noise by different filter stages
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Figure 3.7: The sketch of the 12 detectors in the first ring and the Al target
(green) and the Al support are seen along the beam axis as looking down-
stream.

and ground isolation such that the time to measure the asymmetry to 1 · 10−8

limit is limited only by the counting statistics and beam intensity fluctuations.

3.2 Compensation Magnet Design and Implementation

The overall sensitivity of the NPDGamma experiment requires stringent control

of systematic effects [61]. In particular, the magnetic field requirements are

such that: (a) a field uniformity in the volume of the SR has to be better than

1% to assure a spin-flip efficiency bigger than 95% and to prevent a change in

the neutron kinetic energy; (b) the gradient of the vertical component of the

field dBy/dy has to be less than 3 mG/cm over the volume of the SR and liquid

H2 target in order to decrease the systematic error due to the Stern-Gerlach

effect for neutrons with spin up or down moving in a non-uniform magnetic

field; (c) inside the volume of the liquid H2 target the average angle of the field
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|θ| = |Bx/By| has to be less than 2 mrad, which is half of the accuracy of the

effective alignment of the detector array and (d) the overall change in magnetic

field vector, in the frame of the neutron, has to be small enough such that the

the neutron’s spin can follow adiabatically the change in the direction of the

field and that the depolarization is less than 1%. There is no tight specification

on |Bz/By|, because false effects in the NPDGamma experiment due to a z

component of the magnetic field are insignificant.

The Compensation Magnet (CM) placed around the Polarizer was

designed to cancel the fringe field of the SMP downstream at the position of

the SR and liquid H2 target while at the same time assuring a minimum

decrease in the magnetizing field inside the SMP. The combined field of SMP,

CM, and the main coils of the experiment has to change sufficiently slowly over

the length of the neutron path so that the neutron spin can adiabatically follow

the field direction. The design of the CM and the calculation of the optimum

position of the guide coils was done by using a comprehensive finite element

model of the entire magnetic environment of the NPDGamma experiment at

the BL13. The optimum number of NdFeB magnets and the geometry of the

CM that achieves the magnetic field requirements were determined by

finite-element calculations in Opera 3D model of the SMP and CM.

The geometry of the CM and SMP is presented in Figure 3.8. The red

arrows indicate the direction of the magnetization in the NdFeB magnets

(green) located between steel plates. The steel yokes and the Al plates are

presented in black and white colors, respectively. Figure 3.9 shows a

schematic cross sectional view of the CM along the beam axis of the SMP and

the CM, indicating the four Al posts at the corners of the CM and eleven small
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Al rectangular spacers (white) located between the NdFeB magnet bars

(black).

Figure 3.8: A schematic cross sectional of the SMP and the surrounding CM is
seen as looking upstream.

The CM is built from carbon-free steel and Al. The magnetic field in the

CM is produced by small NdFeB permanent bar magnets [62] with square

cross sections of 1.12 × 1.12 cm2 and with height of 5 cm. The SMP is 17.6

cm high, 17.2 cm wide, and 47.6 cm long. The bent glass films with Fe/Si

supermirror coating are not shown. The CM is 27.8 cm high, 28.4 cm wide and

50 cm long. The 44 magnets are installed in two pairs of rows; a pair on the

right side and the other pair on the left side of the CM z1-axis. The magnets are

grouped in four rows, two on each lateral side. This distribution of the magnets

provides a smaller decrease in the average field magnitude and uniformity in

the volume of the SMP compared with a CM with only two rows. The direction

of magnetization in the bar magnets of the CM is opposite to the magnetization
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in the SMP. The spacing between the top and bottom rows of magnets in the

CM was done to keep sufficiently uniform field bigger than 300 Gauss over the

entire volume of the SMP, while still generating a large enough magnetic dipole

moment to oppose that of the SMP.

Figure 3.9: The schematic cross sectional top view of the compensation magnet
(CM) where z1-axis is the common axis of the SMP and CM.

Figure 3.10 shows the calculated average magnitude of the magnetic

field produced by the SMP and the CM along their common z1 axis.The origin

of the coordinate system (x1, y1, z1) is in the SMP center.The average field is

calculated along twelve lines parallel to the axis of the CM and SMP

intersecting the x1, y1 plane at x1 =0, 1, 2, 3 cm and y1=0, 1, 2 cm.

The smallest residual field inside the SR and the detector is obtained for

N = 44 NdFeB magnets in each row. Results are shown for a SMP without the

CM and then with a CM that has different number of permanent magnets to

create the compensating field. The field is measured along 12 lines parallel to

the beam axis and downstream from the exist of the SMP (z1>25 cm). The

neutrons are polarized in the SMP centered at z1=0 cm. The field profile along
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the negative and positive directions of the z1 axis are expected to be symmetric,

because the change in the Earth magnetic field inside the NPDGamma

shielded enclosure is very small. The field is calculated from the center of the

SMP to the end of the detector. This is the region of interest where the fringe

field of the SMP and CM in the volume of the SR and the detector has to be

small enough, to decrease the field - related systematic errors to a minimum.

The average over several lines parallel to the beam axis is done to

account for the width and height of the neutron beam. In these calculations, the

main guide coils field and the shim fields are zero. The magnitude of the

remaining fringe field depends on the number of permanent magnets N in the

CM. The fringe fields of the SMP and CM partially cancel each other on the

beam axis in the experiment close to center of the SR. The magnitude of the

measured field component, corrected for the ambient field in the BL13 cave is

shown along a line parallel with z1 axis and at 0.8 cm above it. The other lines

show the fields produced by the SMP and the CM with a different number N of

permanent magnets used for each side of the CM. The locations of the SR and

the photon detector array on the z1 axis are indicated.

The results of the calculations of the magnetic field inside the SMP with

and without the compensation field are presented in Figure 3.11. The currents

in the main and shim coils are zero. In the two top graphs, the average field

magnitude is calculated over 25 lines parallel to x1 axis, at y1 = 0,±3,±5 cm

and z1 = 0,±10,±20 cm and over 35 lines parallel to z1 axis, at

x1 = 0,±2,±4,±5 cm and y1 = 0,±3,±5 cm. Inside the volume of the SMP

glass films (x1 from -4 cm to 4 cm and z1 from -20 cm to 20 cm) the magnitude

of the field inside the SMP is reduced by less than 35 Gauss by the CM leaving
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Figure 3.10: The average magnitude of the field is calculated along twelve lines
parallel to the axis of the CM and SMP. The black line, denoted N = 0, shows
the field produced by the SMP alone.

the total field strength larger than 300 G. This assures that the magnetization of

the Fe/Si layers is saturated as required for the maximum neutron polarization

efficiency. Without the CM the calculated field strength in the center of the

SMP is 415 G. The bottom graphs in this figure show the average angle

between the field direction and the y1 axis, acos(By1/B) in radians, as a

function of x1 and z1 calculated along the same directions as above, for zero

current in the main coils and shim coils. The results suggest that the field of the

CM changes the small angle By1/B less than 0.05 rad in the volume of the

SMP. Therefore the direction of the field is still almost parallel with the vertical

surface of the Fe/Si films as required.

The neutron beam polarization and the beam transmission through the

SMP both depend on the beam glancing angle on the surface of the reflecting

vanes. Because the neutron beam travels along the curved channels of the
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Figure 3.11: The average magnetic fields (top figures) and the angle between
the field and y1 axis (bottom figures) are calculated inside the SMP with and
without the CM.

SMP, the axis of the transmitted neutron beam (z) will be rotated relative to the

axis of the SMP z1. To maximize the neutron polarization and the polarizer

transmission, the SMP and CM are mounted on the adjustable table that can

be rotated around a vertical axis passing through a pivot point located under

the entrance face of the SMP. The rotation angle determines the angle

between the SMP z1 axis and the z axis of the experiment, and can be chosen

within a ±2.4o range. Furthermore, the table can be translated in the y1 and x1

directions. The rotation angle was optimized by studying the neutron flux and

polarization after the SMP. The changes in the field direction and in the field
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gradients over the SR and detector volume were calculated for two extreme

rotation angles of the SMP. The results suggest that the changes in the field

gradient dBy/dy and in the field angle θ are smaller than 0.05 mG/cm and 0.04

rad respectively. Figure 3.12 demonstrates the function of the shim coils. The

gradient of dBy/dy and the angle of the field projected in the (x, y) plane,

θ=Bx/By , calculated for four currents in the right shim coils in the region of the

SR and the detector, are averaged over 12 lines parallel to the beam axis and

passing through y= 0, 3, 6 cm and x = 0, 2, 4, 5 cm. In the model the angle

between z and z1 axes is 2.3o and the current in the right shim coil is varied.

Figure 3.12: The calculated field ratio Bx/By (top figure) and the field gradient
(dBy/dy) (bottom figure) are averaged over 12 lines parallel to the beam axis.
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3.3 Magnetic Field Measurements

After installation of the most of the SMP, CM, guide and shim coils at the BL13,

the magnetic fields were measured over the entire volume of interest. The

three components of the magnetic field, Bx, By and Bz, were measured with a

3-axis magnetic flux-gate probe (model Mag03-MS, Bartington Instruments)

attached with three screws to an Al frame on a dove-tail table that could slide

through the channel of a long Al extrusion supported by the main coils. For

measurements of the vertical component By, the Al frame was translated on

the surface of a vertical Al post mounted on a platform with three adjustable

feet. The level of the horizontal plate supporting the Al frame or the direction of

the vertical post could be adjusted relative to the direction of the gravity with an

accuracy of 0.9 mrad or less.

Because the steel shielding is not symmetric with respect to the beam

axis, the profile of the By component does not have a minimum on the beam

axis. To minimize the field gradient dBy/dy inside the beam volume between

the SR and the liquid H2 target, the distance between of the top main coil and

the steel floor was set equal to the optimum distance found from the

finite-element calculations. Figure 3.13 shows the results of these

measurements along three directions parallel to the beam axis at x = y = 0

cm, x = 4 cm, y = 0 cm and x =-4 cm, y =0 cm, with a 2.5 cm step. The field

in the center of the main coils was about 9.8 G. The calculated field

components are indicated by solid lines in the same figure for comparison. The

end of the SMP is at z =-185 cm when the center of the detector array is at

z =0 cm. The center of the liquid H2 target is at 3.8 cm downstream from the

detector center.
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The neutron depolarization probability increases with the rate of the

change in the magnetic field direction. In the measured field, the largest

change in the field direction takes place in the region of the field minimum. To

control the depolarization in the transition region between the end of the SMP

and the start of the guide coils, where the By component has a minimum

(Figure 3.13, bottom left), the main coils were mounted as close to the SMP as

allowed by radiological shielding. One of the criteria for the design of the CM

was to keep the depolarization of neutrons after the SMP small. The

depolarization probability on trajectories from the end of the SMP to the end of

the liquid H2 target, depends on the rate of change of the field direction

compared to the Larmor frequency of the spin in the field B. The depolarization

probability is described by the adiabatic factor λ equal with the ratio of the

Larmor frequency of the neutron spin, ωL = γ ·B, to the angular frequency of

the field rotation, ωB. It can be shown that the depolarization probability is

negligible if the adiabatic factor λ is much larger than one [63,64], where

λ =
ωL
ωB

=
γB

1
B2

∣∣∣ ~B × d ~B
dt

∣∣∣ . (3.1)

Here B is a static field and gamma is the neutron gyromagnetic ratio.

The adiabatic factor is calculated from the three measured field components

shown in Figure 3.13 for neutrons with kinetic energy of 20 meV, the upper limit

for the neutron energy in the NPDGamma experiment. At the field minimum

λ ≈ 20� 1 and because ωB is proportional with the neutron energy, the

depolarization probability is negligible. The electric currents in the right, left,

front and back shim coils were 0.54 A, 0.22 A, 0.47 A and 0.7 A respectively.

As seen from the figure at z = -146 cm, the field magnitude has a minimum of
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about 5 G.

Figure 3.13: The magnetic field components measured and calculated along
three lines parallel to the beam axis and the adiabatic factor λ for 20 meV neu-
trons.

To match the resonance frequency 27.4 kHz of the SR fixed by the

internal inductance and capacitance of its electric circuit, the static field for the

NPDGamma experiment was later set to 9.4 G. One possible source of a false

up-down asymmetry in the experiment is a shift in the center of the neutron

beam up or down relative to the center of the target, causing a change in the

acceptance solid angle of the detectors. This up-down shift is due to the

Stern-Gerlach steering effect, the neutron spin interaction with the field
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gradient dBy/dy. The size of the effect depends again on the neutron energy

and the size of the field gradients over the beam volume between the SR and

the end of the liquid H2 target. The measured gradients are shown in Figure

3.14 on the z axis at x = 0 cm and at four different y axis values. The left panel

shows the field gradient, dBy/dy calculated from the measured By field along

four lines parallel with z axis, at x = 0 cm and four y coordinate values. The

right panel shows the angle θ = Bx/By on the beam axis, measured for 0.54

Amp current in the right shim coil. The solid lines in both plots show the field

gradient and angle θ from the calculated field components by using a complete

model of the main coils, SMP, CM and magnetic shields.

The average gradient dBy/dy ≤ 3 mG/cm in the beam volume of

interest, less than the specification limit. In the same figure, the center of the

detector and liquid H2 target are at z=3.8 cm and 0 cm respectively and the

end of the SR is at about z = -40 cm.

For the up-down gamma asymmetry measurement, the axes of

symmetry of the detector array and the magnetic field have to be aligned

accurately to the y-direction. Because the efficiencies and gains of each 48

detectors are different, the effective locations of the detectors had to be

determined with a sealed gamma source placed in the center of the detector

array. The detector signals were measured when the gamma source was

moved at known positions on a grid in the (x, y) plane. On the basis of these

measurements, the up-down orientation of each detector is defined with the

accuracy of less than 4 mrad [65]. In order not to increase the systematic error

due to the alignment accuracy, the average angle θ = Bx/By of the magnetic

field over the volume of the beam and the target has to be between ±2 mrad of
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Figure 3.14: The field gradient dBy/dy and the angle θ = Bx/By, measured for
a 0.54 Amp current in the right shim coil, are compared with the calculated field
gradient and angle θ.

the vertical direction. Figure 3.14 shows the field angle θ = Bx/By on the

beam axis for two different currents on the left shim coil. The average value for

the angle θ meets the field specifications.

In section 6.4 the contribution to the false asymmetry from the Stern

Gerlach effect is calculated from the measured magnetic field gradients. The

measurements presented here confirm that the field gradient inside the beam

volume and between the SR and the end of the detector is smaller than 3

mG/cm. The volume average of the magnetic field direction in the target region

was measured to be aligned with the direction of the gravity, the y-axis, within

±2 mrad which is in agreement with the specification limit.
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Chapter 4

DETECTOR ALIGNMENT AND BEAM CHARACTERIZATION

MEASUREMENTS

This chapter presents the results of the preparatory measurements done with

the apparatus and the cold neutron beam at the SNS Fundamental Neutron

Beam Line 13. Section 4.1 presents the measurements of the misalignment in

the center of each detector, with a 137Cs radioactive source that was moved

over different points of a grid located in the vertical plane normal to and

centered with the beam axis. The techniques for the measurement and

calculation of the neutron flux incident on the target are presented in section

4.2 which is followed by beam profile measurements described in section 4.3.

The measurements of the neutron beam polarization are presented in section

4.4.

4.1 Alignment of the Photon Detector Array

Each of the 48 detector elements that form the detector array is made from two

identical CsI crystals 7.4 × 7.4 × 15 cm3 assembled side by side (Figure 4.1).

In this figure, U and D are the first pair of opposite detectors in a ring. The

precise knowledge of the real position of each of the detector geometrical

centers is crucial for a reliable calculation of the geometry factors that enter in

the determination of the experimental asymmetries. At least two factors may

cause the geometrical center to change from the ideal position. First, due to

radiation exposure over the years, either to different levels of radiation or being

affected differently by it, the two crystals that form a detector element can have

slightly different optical properties and efficiency and this could displace the

center of the active volume from the geometrical center. Second, the change in
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Figure 4.1: The 12 detectors in a ring, the direction of the magnetic field and the
position of the two CsI crystals in each detector

the expected position of the detector element center can also be due to

mechanical reasons: for example, bending or shifting in the Al support of the

detector assembly because the tolerance in the position of the detectors due to

mechanical stress is about 1 mm. Both of these contributions are expected to

change the angle of the detector center from its ideal position expected from

the geometry of perfect crystals and in the absence of mechanical stresses.

The position of the detector center relative to the center of axes is given

by the distance r and the two angles θ and ϕ measured relative to the beam

axis (z) and to the x horizontal axis. To measure the misalignment in the

centers of the detectors and for a more precise calculation of the geometry

factors, the detectors signals were recorded in the presence of a 137Cs source

that was moved with an automatic scanner over a grid in the vertical plane
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normal to the beam axis and passing though the center of each detector array

ring. There are 12 detectors in each ring and the measurements were repeated

for all four rings. The location of the grid plane is such that the nominal detector

element angle θ is always 90◦. If there is a change in the detector center along

z axis then the angle θ would become 90◦ + δθ, and sin θ becomes

sin(90◦ + δθ) = cos(δθ) =1 - (δθ)2/2. Therefore a small change in the angle θ

enters as a second order correction in the geometry factors of the 12 detectors

located in the ring with the source in its center. The angle ϕ between the radial

distance r to the geometrical center of the detector and the x axis is never

close to 90◦ or 0◦. For this reason, when the source is moved in different points

in the vertical plane, the geometry factors for the 12 detectors in that ring

depend mainly of the angle ϕ. The detector element misalignment is assumed

to be equivalent to a small rotation of the detector center about the z axis with

an angle δ in the expected detector angle ϕ. This allows for a simple correction

of the geometry factors. The rotation angle ϕ was calculated from the fit of the

detector signals measured for all the (x, y) positions of the source. The

detector signals were measured several times for a scan along the x axis at

positions (0, 1, 2, 2, 1, 0, -1, -2, -2) inches and in the same positions along the

vertical y axis. In addition the measurements were done at (1, -1) , (-1, 1), (-1,

-1) and (1, 1) inches.

For ideal detectors the geometry factors are equal with the detector

energy weighted scalar product of the initial momentum of the gamma ray and

the unit vector of the vertical ŷ and horizontal x̂ axes:

Gud =
〈
k̂γ · ŷ

〉
= 〈sin θ sin(ϕ)〉 (4.1)

Glr =
〈
k̂γ · x̂

〉
= 〈sin θ cos(ϕ)〉 (4.2)
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The dependence of the detector signal on the coordinates of the source

can be modeled in MCNPX by computing the energy deposition in the

detectors for each position of the source. The MCNPX output for the energy

deposition in a detector is given in MeV/gram, normalized to the number of

source particles.

The coordinates of the detector element center in the ideal position

(x, y) and the real position (x′, y′) are related through the rotation angle δ about

the z axis:

x′ = x cos(δ)− y sin(δ) ; y′ = x sin(δ) + y cos(δ) (4.3)

The change in the detector signal is expected to be the same when the two

directions of scanning (x, y) are rotated with an angle −δ while the center of the

detector is not changed. Therefore the MCNPX model was built for detectors

located in their ideal positions. The model was used to derive the dependence

between the energy deposition in each detector in a ring and the (x , y)

coordinates of the source moved in the vertical grid. The energy deposition in

each detector was calculated for each location of the source in the 441 points

of a 25.4×25.4 cm2 grid, larger than the real scan grid [65]. The energy

deposition in a detector was fit with an eight order polynomial in x and y:

f(x, y) =
k+l=8∑
k+l=0

pk,lx
kyl (4.4)

The fitting coefficients pkl were calculated for each detector. The detector

rotation angle δ was estimated from the fit of the measured detector signal

Y (d) with the fitting function f(x′, y′) that depends on the rotated axes of

coordinates. The relation between the two quantities involve the scaling

constant h and the misalignment angle δ:

Y (d) = h · f(x cos δ − y sin δ, x sin δ + y cos δ) (4.5)
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The scaling factor and the misalignment angle δ are calculated from the

minimization of the χ2 function. The geometry factors Gud =< ~k · ~y > and Glr

=< ~k · ~x > are calculated first for the ideal position of the detectors. The

adjusted geometry factors are then calculated from the ideal geometry factors

by using the misalignment detector angles:

Gud′ =
〈
k̂γ · ŷ′

〉
= 〈sin θ sin(ϕ+ δ)〉 =

〈
k̂γ · x̂

〉
sin δ +

〈
k̂γ · ŷ

〉
cos δ (4.6)

Glr′ =
〈
k̂γ · x̂′

〉
= 〈sin θ cos(ϕ+ δ)〉 =

〈
k̂γ · x̂

〉
cos δ −

〈
k̂γ · ŷ

〉
sin δ (4.7)

For any detector the correction angle is smaller than 0.04 (rad) as this is

illustrated in Fig. 4.2. The uncertainties come from the errors in the fit. The

estimation of the systematic errors due to these effects are discussed in

Sec. 6.3.

4.2 Neutron Flux Measurements

Measurements of the neutron flux in the center of the detector were done with

a Boron Carbide B4C placed at the center of the detector array at 45◦ relative to

the beam axis as shown in Fig.4.3. The MCNPX calculations of the neutrons

interaction with the plate were used to calculate the average energy deposition

in each detector divided with the number of neutrons incident in the plate. Also

the calculation of the fraction of neutrons captured in the plate indicated that

about 99% of the neutrons are captured in the plate. When neutrons are

captured in 10B the excited 11B nucleus splits into 7Li and 4He. With (94%)

probability the excited 7Li nucleus decays to the ground state emitting a 0.48

MeV gamma ray. With 6% probability 7Li is produced in its ground state with no

gamma ray emission. For each neutron captured, one gamma ray is emitted

with a probability given by the branching ratio.
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Figure 4.2: Misalignment angles for each of the 48 detectors

The neutrons captured in the plate produce gamma rays that are

detected in the 48 detectors. At the end of these measurements the B4C plate

was removed and a small cylindrical 137Cs gamma source was placed on the

beam axis and close to the center of a detector array. By taking the ratio of the

detector signals recorded from the two measurements, the integrated neutron

flux (n/s) and the spectral flux n/s/Å/cm2 were calculated. The calculation of the

neutron flux spectrum from the ratio of the time bin detector voltages measured

with the B4C plate and then with the Cs source, will be presented in the

subsections 4.2.1 and 4.2.2.
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4.2.1 The Boron Carbide Plate Method

In the absence of any collimator the neutron beam after the Super Mirror

polarizer is incident on a B4C plate (12 inches long, 7.25 inches high and 0.07

inches thick). The plate is placed in the center of the detector such that the

normal to the B4C plate makes an angle of 45◦ with the axis of the beam. The

setup is schematically shown in Fig. 4.3. The distances are measured from the

inner surface of the downstream Al wall.

Figure 4.3: A cross section through the center of the detector and B4C plate
in the horizontal plane of the beam axis. The red arrow indicates the beam
direction.

The detector signal is recorded in 40 time bins for each pulse. Because

the frequency of the neutron pulses is 60 Hz, the time bin interval is

∆tB = 0.417 ms. The detector signal is therefore a function of the neutron time

of flight tF . For each time of flight the DAQ reads a detector signal that is the

product of the number of neutrons ∆N(tF ) hitting the B4C plate in a time bin

interval ∆tB, the solid angle ΩB,i of the detector, the energy of the gamma
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radiation emitted from the neutron capture Eγ,B and the detector gain (Gi).

Thus, the number of neutrons per pulse incident on the plate at the time of

flight tF is the integral of the neutron flux spectrum over the time bin tB and the

corresponding wavelengths, divided by 60 because there are 60 neutron

pulses in each second:

∆N(tF )

∆tB
=

∆Nλ

60
=

1

60

∫ tF+∆tB

tF

∫ λ(tF+∆tB)

λ(tF )

d2N

dt · dλ
dλdt (4.8)

Because there are 40 time bins in each pulse, the detector signal is measured

for 40 neutron times of flight. The detector voltage VB at a time of flight tF is

equal with the product of the branching ratio (0.94) and the number of neutrons

hitting the B4C plate per pulse, divided by the time bin interval:

VB(tF ) = 0.94
∆Nλ

60 ·∆tB
ΩB,iEγ,BGi (4.9)

The number of neutrons per second is related with the number of neutrons per

one time bin:
∆Nλ

∆T
=

∆Nλ

∆tB

∆tB
∆T

=
∆Nλ

∆tB

1

40 · 60
. (4.10)

The detector voltage in the presence of the B4C plate is measured for each

time bin to calculate the neutron flux for each time bin:

VB(tF ) = 0.94
40 · 60

60

∆Nλ

∆T
ΩB,iEγ,BGi (4.11)

4.2.2 The Cesium Source Method

In these measurements the 137Cs source was placed on a 38 cm long Al bar at

about 0.64 cm downstream from the center of the detector array. The source

activity measured in 2002 was 5.2·10−3 Ci. Because the half life for 137Cs is

30.12 years, the source strength at the time of this experiment (July, 2011) is

4.2·10−3 Ci. The radioisotope 137Cs with atomic number Z=55, undergoes
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(100%) beta decay to 137Ba with atomic number Z=56). The mean beta energy

is 187.1 keV and the most intense gamma ray (0.662 MeV) is emitted in a

transition that has a branching ratio of 94.7%. With a probability of 85.1% from

the total number of disintegrations, the 0.662 MeV gamma rays are emitted at

the transition of the excited Ba nucleus to its ground state. The detector signal

in the presence of the source is independent of the neutron time of flight and is

equal with the product of the branching ratio (0.851), the activity of the source

S, the detector gain Gi, the gamma rays energy and the solid angle ΩCs,i:

VCs = 0.851 · S · Eγ,Cs · ΩCs,iGi (4.12)

The ratio of the two signals from the two methods is given by the ratio of

equations 4.12 and 4.11:

VCs
VB(tF )

= 0.9053
S · Eγ,CsΩCs

40∆Nλ
∆T
· Eγ,BΩB

(4.13)

so that:
∆Nλ

∆t
= 0.9053

VB(tF )

VCs

S · Eγ,CsΩCs

Eγ,BΩB

1

40
(4.14)

The spectrum distribution of the neutrons (n/Å/s) can be obtained by

dividing the neutron flux per unit time (n/s) with the wavelength interval for one

time bin that can be calculated from the measured path length of the cold

neutron from the center of the H2 moderator (just after the Hg target) to the

center of the detector L=17.58 m, the Planck constant h = 6.626 · 10−27 (erg ·

s) and the mass of the neutron m = 1.6749 · 10−24 (g), namely

∆λ =
dλ

dt
∆tB =

2π~
mL

1

40 · 60
= 0.0937 · 10−8c(m) (4.15)

4.2.3 MCNP Simulations

In order to calculate the ratio Eγ,CsΩCs/Eγ,BΩB Monte Carlo calculations were

done with the code MCNPX . The code calculates the energy deposition in
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each detector divided by the mass of the detector and the number of source

particles. For a model with the Cs source the code tracked only the photons

and all the photon cross sections libraries were used. The calculations were

done for a point source placed in the center of the detector array and also

displaced by 0.5, 1, 1.5, 2 and 2.5 cm downstream along the beam axis. The

agreement of the measured detector signal and the calculated energy

deposition is better for an offset of about 2.5 cm. For the model with the B4C

plate the trajectories of both neutrons and photons were calculated and the

neutron cross sections were used. In the MCNPX model the neutrons were

emitted at the exit of the SMP. The lead walls, polarizer, Al flange between the

lead walls, the concrete blocks and the two monitors were not modeled. The

flux in the center of the detector from the B4C plate has to be normalized to the

number of neutrons that hit the plate. By default the energy deposition tally is

normalized to the number of primary neutrons Ns generated in the code. For

the calculation of the neutron flux at the B4C plate, it was necessary to

calculate the energy deposition per number of neutrons captured in the plate

(Nc).

E

(
MeV

g ·Nc

)
= E

(
MeV

g ·Ns

)
Ns

Nc

(4.16)

The energy deposition in the detectors was also calculated in MCNP for a

0.662 MeV gamma point source placed in the center of the detector array.

From the MCNP model of the B4C plate, the energy of the gamma rays

deposited in the detectors was calculated for four neutron energies (4, 8, 10

and 14 meV) and for the 0.014 rad divergence of the beam, as calculated in

McStas [66]. The number of neutrons captured in the plate divided with the

number of source neutrons emitted is between 0.83 and 0.87 depending on the

neutron energy (from 4 meV to 14 meV). From the same model but without the
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B4C plate, the expected background due to the gamma rays emitted from the

Al stand or SR windows was calculated.

In each ring with 12 detectors there are four lateral detectors: 2 on the

left and 2 on the right of the beam. For example in the first ring (figure 3.7) the

beam-right and beam-left lateral detectors are (2, 3) and (8, 9) respectively.

Therefore there are eight pairs of lateral detectors for all four rings of detectors.

The flux was calculated from the signal of the 8 lateral detectors located on

beam-right (2, 3 ,14, 15, 26, 27, 30, 31) and 8 detectors on beam-left (8, 9, 20,

21, 32, 33, 44, 45) because for these detectors the flux of the gamma rays

emitted at the neutron capture in the B4C target is maximum.

The MCNP calculations were used to estimate the ratio of the gamma

rays energy deposition in each detector with and without the B4C plate, and in

the presence of the Cs source placed on the detector axis. The energy

deposition in a detector without the B4C plate is the calculated background.

The average energies deposited in the lateral detectors are calculated for five

initial energies of the neutron (4, 6, 8, 10 and 12 meV), for a model with and

without the B4C plate located in the center of the detector array (the green and

the red curve respectively in Figure 4.4). Their difference of the gamma ray

energy lost in the detectors with and without the plate (E2 − E1) is the gamma

rays energy deposition due to the neutron captured on the B4C plate.

To compare the calculation of the flux in the center of the detector with

the flux at the exit of the beam guide, the neutron transmission through the

materials located between the exit of the guide and the center of the detector

was calculated from MCNPX. The transmission factors through the two

monitors (M1 and M2), 2 meters of air and the SR are 0.97, 0.97 , 0.25, 0.9

63



Figure 4.4: The average gamma ray energies deposited in each pair of lateral
detectors is calculated for five neutron energies, for a model with and without
the B4C plate (E2 and E1 respectively).

and 0.99, respectively. With no collimator in the front of the SR only 0.5% of

the neutron beam flux is absorbed in the Lithium sheet with a rectangular hole

16× 16 cm 2, placed on the entrance window of the SR at 102 cm from the exit

of the polarizer. According to the McStas [66] calculations this rectangular hole

decreases the flux of the neutron beam with only 0.5%. The area of the beam

at the exit of the SMP is 120 cm2. From the measured beam divergence in the

x and y directions 11 · 10−3 rad and 14 · 10−3 rad respectively, the beam profile

in the vertical plane of the SR entrance window was calculated in McStas [66].

The beam profile calculations with boundaries defined by the projected surface

of B4C plate in the vertical plane normal to the beam (8.48× 7.25) inch2 proved

that about 0.6% of the beam flux passes above, below or around the lateral

sides of the plate.

The relative transmission of the neutrons through the monitor was

calculated in MCNPX from a tally of the number of neutrons passing through
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the entrance and exit windows of the monitor. The dependence of the

transmission on the neutron wavelength comes from the neutron energy

dependence of the 3He cross section.

T1 = 0.99216− 0.011705λ (4.17)

T2 = 1.0039− 0.007744λ (4.18)

The transmission through the air depends only weakly on the neutron

wavelength. For a distance d measured in cm, the average transmission for

neutrons with energies from 3 meV to 13 meV is equal with:

T3 = 100− 0.03 · d (%)

The number of neutrons captured in the two monitors normalized to the

number of source neutrons generated in MCNP is calculated for different

wavelengths in Figure 4.5. The transmission of the neutrons through the two

monitors can be seen in figure 4.6.

In the MCNPX model the detector center is at 242 cm distance from the

exit of the first monitor. The distance from the exit of Monitor 1 and the

entrance of Monitor 2 is 51 cm. The center of the detector is at 180 cm from

the exit of the CM and the Polarizer such that the transmission through the air

is 94.6%. The decrease in the neutron flux due to the Lithium sheet and the Al

windows of the SR is 2%. To calculate the neutron transmission through the

SR, the number of the neutrons passing through the entrance and the exit

surfaces of the SR were recorded in MCNP for three neutrons energies. The

thickness of the SR windows is 1 mm and the front thin window is covered on

both sides with Lithium sheet that has a square opening (16 cm × 16 cm). The

SR copper coils are winded on the surface of a plastic (polyethylene) hollow
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Figure 4.5: The number of neutrons captured in the two monitors (M1, M2)
divided with the number of source neutrons is calculated versus the wavelength.

Figure 4.6: The transmission of the neutrons through the two monitors is calcu-
lated for neutrons wavelengths from 2.5 to 5.5 Å.

cylinder with inner radius 11.8 cm. The inner surface of the plastic cylinder is

covered with Lithium sheet 0.32 cm thick. The composition of the Lithium sheet

in the model was 6Li3 (27%), 12C6 (15.9%), 16O8 (20.86%) 1H1 (4.18%), Si

(27.88%), Zn (0.15%) and 7Li3 (3%). The exit window of the SR is in contact
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with a Lead cylindrical wall with radius 21.7 cm and a square hall with

dimensions 21.82 cm × 21.91 cm. The transmission of the neutron beam from

the entrance window of Monitor 1 to the end of the detector stand is calculated

in MCNP for four neutron energies and presented in Figure 4.7. The neutron

transmission is the ratio of the neutrons crossing a surface normal to the beam

and the number of source neutrons generated in the code.

Figure 4.7: The neutron beam transmission is calculated along the neutron
beam axis from the entrance in the first monitor (d=0.4 cm) to the center of
the detector (d=221 cm) for four neutron energies.

The total transmission is the ratio of the neutrons crossing the vertical

surface through the center of the detector and the total number of neutrons

generated. In the absence of the SMP the total transmission calculated in

MCNP is 80% for 13 meV neutrons and 75% for 5 meV neutrons. For neutron

wavelength in Å, the total transmission depends almost linearly on the neutron

wavelength:

T = 0.8755− 0.02938 · λ (4.19)
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4.2.4 Neutron Flux and Transmission Results

The detector signals were measured in the presence and in the absence of the

B4C plate placed at the center of the array , at 45◦ relative to the beam axis.

The corrected detector signal is the difference between the signal measured

with the B4C plate and in the absence of the plate. The ratio of the corrected

detector signal measured with the B4C plate and with the Cs source was

calculated.

Figure 4.8: The detector signals averaged over runs and all time bins in a spin
sequence, was measured in the presence of the B4C plate (10 runs, red curve)
and without the plate (3 runs, blue curve).

The 48 detectors signals were measured for 10 runs, each run had

2500 spin sequences (see FIg. 4.8). The background is the detector signal

measured in the absence of the B4C plate for three runs with the same length

(blue line).The average detector signals in the absence of the B4C plate were

subtracted from the average detector signals measured with the plate. There

was no collimator in front of the SR. The measurements for both Cs source and
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Figure 4.9: The difference between the 48 detector signals measured with and
without the B4C plate, for three time bins (29, 30, 31).

B4C plate were done for the same detector gains.

For all runs the pedestal is calculated from the detector signals during a

missing pulse that occurs when a proton pulse is not delivered to the Hg target

but is dumped such that no neutrons are produced. The average detectors

voltage was calculated for each of the 40 time bins in a pulse and for all the

missed pulses in a run to get a run average pedestal. The average pedestal

was subtracted from the beam-on detector voltages. The average of detector

signals for the three runs with beam off is the background due to the gamma

rays coming mostly from the Al wall. The background corrected detector signal

for three time bins (29, 30, 31) is the difference between the detector signals

measured with and without the B4C plate, at these time bins ( Fig. 4.9).

The detector signals were recorded for the Cs source placed in the

center of the detector array. The measurements were done 10 times with the

Cs source and 11 times in the absence of the source. The 11 pedestal
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Figure 4.10: The average detectors signals with the Cs source (red curve) and
in the absence of the Cs source (blue curve) versus the detector number.

measurements were done with no Cs source before and after each

measurement with Cs source. The detector signals with the source, averaged

over 10 runs, and in the absence of the source, averaged over 11 runs, are

presented in Figure 4.10.

The detector signal, background corrected, for a Cs source placed in

the center of the detector array, Figure 4.11, shows slight bigger detector

signals in ring 4 (detectors 36 to 47) compared to ring 1 (detectors 0 to 11).

This difference is related to the average offset in the position of the Cs

source along the direction of beam axis relative to the center of the detector

array. For 1.5 cm displacement in the position of the Cs source, in the direction

of the beam and downstream from the detector center, the calculated data

agrees better with the measurements.

The flux in neutrons/ second is calculated from the average of the

detector signal over all 40 time bins in a pulse with B4C plate and Cs source
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Figure 4.11: The detector signals background corrected for a Cs source placed
in the center of the detector array.

according to the equation 4.14. From the ratio VB/VCs the average neutron flux

(over the 40 time bins) is calculated with the source strength S=4.2 · 10−3 Ci

=15.54 · 107 (1/s), Eg = 0.662 MeV, EB=0.48 MeV and ΩB= ΩCs in the relation:

F ′0 =
1

NB

NB∑
i=1

0.9053

40

vB,i
vCs

SEγ,CsΩCs

Eγ,BΩB

= 4.85 · 106{vB}
vCs

(4.20)

The ratio of the energies deposited in each detector can be calculated

in MCNPX for the B4C plate and for the 137Cs source E(Cs)/ E(B). This ratio

enters in the calculation of the neutron flux:

F0 = 0.9053
{vB}

40 · vCs
S · E(Cs)

E(B)
(4.21)

F0 = 1.407 · 108 {vB}
40 · vCs

E(Cs)

E(B)
(4.22)

The relation between the time bin and the neutron wavelength can be

calculated from the de Broglie relation and the time (ts=10.68 ms) spent by the

fastest neutron (with wavelength λS) to travel the distance L=17.56 m from the
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H2 moderator to the center of the target. Consider the time t measured from

the start of the data acquisition frame and tB the bin number (from 0 to 40).

The relation between wavelength and the time bin becomes:

λ =
h

mL
(t+ td) =

h

mL
(tB · 0.0004166 + td) (4.23)

The wavelength of the fastest neutrons that are not cut by the chopper is equal

with:

λS =
h

mL
td = 2.4

o

A (4.24)

λ = λS

(
tB

0.01068
0.0004166 + 1

)
= λS (0.039tB + 1) (4.25)

To calculate the flux of neutrons per unit area, unit time and Å, the wavelength

correspondence for one time bin can be calculated:

dλ = 0.0937 · dtB (4.26)

Therefore dividing the neutron flux (n/s) with the wavelength width of

one time bin 0.0937Å, one can calculate the flux per unit time and per neutron

wavelength.

In table 4.1, the flux is calculated for time bins 29, 30 and 31 or

neutrons with wavelengths from 5 Å to 5.2 Å, for each of the lateral detectors in

rings 2 and 3. The MCNPX calculations are done for a 2.5 cm offset of the

137Cs source downstream from the center of the detector array. The flux F ′0

was calculated with equation 4.20. The flux F0 was calculated from MCNPX

calculations of the ratio of the energies deposit in the detector in the presence

of the 137Cs source or the B4C plate. The flux per unit time and wavelength

F ′λ,0 and Fλ,0 are calculated by dividing the flux intensity F ′0, F0 with area of

the beam at the center of the detector (320 cm2) and with the wavelength

interval for a time bin (0.0916 Å). The beam power was 0.82 MW.
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Table 4.1: The ratio of the lateral detector signals measured with B4C plate (VB)
and with 137Cs source (VCs) is averaged for three neutron wavelengths (5, 5.1,
5.2Å).

Det# Ring VB/VCs F ′0
(n/s)
108

F ′λ,0
n/s/Å
109

ECs/EB
D=2.5 cm

F0

(n/s)
108

Fλ,0
n/s/Å
109

14 2 87.8 4.26 4.63 1.33 4.11 4.46
15 2 87.7 4.25 4.62 1.32 4.08 4.43
20 2 86.6 4.20 4.57 1.30 3.95 4.29
21 2 82.6 4.01 4.36 1.29 3.76 4.09
26 3 88.9 4.31 4.69 1.52 4.77 5.18
27 3 90.1 4.37 4.75 1.49 4.73 5.15
32 3 94.0 4.56 4.96 1.41 4.65 5.05
33 3 93.5 4.54 4.93 1.40 4.60 5.00

From the measured detector signals and the MCNPX calculation of the

ratio of the energy deposition with the 137Cs source and the energy deposition

with the B4C plate, the flux per unit time, unit wavelength and 5.1 Å neutrons,

averaged over the eight lateral detectors in rings 2 and 3 is equal with:

F ′0 = (4.71± 0.15) · 109(n/s
◦
A) for λn = 5.1

◦
A (4.27)

For each of the 40 time bins in a neutron pulse, the ratio of the detector

signal measured with a B4C plate and the detector signals measured with a

137Cs source placed in the center of the detector array was calculated. The

measurements of the pedestal were done before and after each measurement

with the 137Cs source. The ROOT NPDGamma libraries [67] were used to read

the binary data in trees and branches. The detector signal was read first for all

dropped pulses in a run to calculate the pedestal for each time bins. The

"dropped" pulse is detected if the time average of the monitor 2 (M2) signal for

a pulse is smaller than 0.25 Volts. For each pulse with beam on and for each

time bin the pedestal was subtracted from the beam-on detector signal. The

73



final mean and the error of the mean over all the runs were calculated for each

time bin and for the lateral detectors. The ratio of the detector signals for a B4C

plate and a 137Cs source placed in the center of the detector is presented in

Figure 4.12 for the lateral detectors in ring 2 and 3. The deeps in the plot occur

at the Al Bragg edges (4.0 Å and 4.6 Å) where the neutron scattering cross

section increases.

Figure 4.12: The ratio of the detector signals measured with a B4C plate and a
137Cs source placed in the center of the detector is calculated for wavelengths
between 2.7 Å and 5.9 Å.

The neutron flux was calculated from detector signals for each time bin

and the MCNPX calculation of the energy deposition in the detectors for a

137Cs and a B4C plate according to the relation:

F0,I =
S · 0.85

0.94

VB,I
VCs,I

〈ECs,IΩCs,I〉
〈EB,IΩB,I〉

1

40
(4.28)

The average of these eight values of the neutron per unit time and wavelength

is calculated for each neutron wavelength inside the useful range in Figure

4.13. The neutron flux spectrum per unit time, area, wavelength and beam
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power, for neutrons with wavelength between 2.7 Å and 5.9 Å , or time bins

from 6 to 36, can be seen in Figure 4.14.

Figure 4.13: The neutron flux spectrum is calculated per neutron wavelength
and unit time for neutron between 2.7 Å and 5.9 Å, from the measured detector
signals with 137Cs source and B4C plate.

The average flux per unit time can be calculated from the neutron flux

versus time bin by summing the fluxes for each time bin and dividing with the

number of time bins (N=36 for these calculations).

F̄ =
1

N

∑
i

F (λi) =
(9.6± 0.03) · 109

36
= 0.27 · 109(n/s) (4.29)

All these results can be used to compare the flux measurements at the

end of the beam guide with the flux measured in the center of the NPDGamma

detector with the 137Cs source and B4C plate (Figure 4.15). Because the

effective cross section area of the beam in the center of the detector is not

known, the flux measured at the exit of the guide was multiplied with the cross

section area of the polarizer, 120 cm2, such that both fluxes in this figure are in

units of n/s/Å/MW.
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Figure 4.14: The neutron flux spectrum per neutron wavelength, area, time and
beam power is calculated for 2.7 Å to 5.9 Å neutrons, from the detector signals
measured with 137Cs source and B4C plate.

The ratio of the two fluxes and the MCNP calculation of neutron

transmission through the two monitors, air and SR, was used to calculate the

neutron transmission TP through the polarizer (SMP) for wavelengths between

2.6 and 6.0 Å (see table 4.2 and Figure 4.16). In table 4.2 the transmission

of the SMP is calculated from the ratio of the neutron fluxes in the center of the

detector array (φ2) and at the exit of the beam guide (φ1).

Φ2

Φ1

= T1(λ) · TP (4.30)

The average transmission of the polarizer is 25.8% in agreement with

the McStas calculations [66].
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Figure 4.15: The neutron flux spectrum measured at the exit of the beam guide
(the blue curve) and at the center of the detector (red curve).

Table 4.2: The transmission of the neutrons T1 in the absence of the SMP,
calculated in MCNPX, versus neutron wavelength.

λ
Å

Φ2 / Φ1 T1 TP

2.77 10.56 0.781 0.135
3.16 14.184 0.769 0.184
3.48 16.173 0.759 0.213
4.20 20.416 0.737 0.277
4.98 22.17 0.712 0.311
5.50 22.81 0.696 0.328
6.28 24.34 0.671 0.363

4.3 Beam Profile Measurements

The beam profile was measured by using two Cadmium (Cd) pinholes and a

6Li glass detector connected to a photomultiplier tube [68]. The neutrons are

captured in 6Li and produce alpha and tritium particles, with 4.8 MeV energy

release. Each of the two particles deposit their energy in the scintillator

material and the light of the scintillator is detected in the PMT. The first pinhole
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Figure 4.16: The transmission of the SMP is calculated from the ratio of the flux
in the center of the detector and at the exit of the beam guide, divided with the
transmission through the monitors, air and SR.

(0.58 cm radius) was installed in front of the SR at 45 cm upstream from the

detector shield and at 1.5 inches below the beam axis. The second pinhole

(0.07 cm radius) was located just in front of the 6Li detector that was mounted

with the PMT tube on the XY scanner placed in front of the Beam Stop at 144

cm from the end of the detector shield (Figure 4.17). The areas of the pinholes

were measured with a high resolution scanner. The data were taken with

counting electronics coupled to the NPDGamma data acquisition. The

photo-multiplier tube was connected to a group of high pass and low pass

filters, a discriminator, a logic gate and a counter.The beam profile

measurements were used to calculate the neutron flux at the beam stop.

The counts were measured first for a translation of the 6Li detector in

the x direction (Figure 4.18) and then along the y direction at the x-position of

the peak (Figure 4.19). In these figures the distances are measured in the

local coordinates of the scanner with the origin at the center of the scanner’s
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Figure 4.17: The experimental set-up for the beam profile measurements.

travel. The beam profile along the y direction has two peaks. The structure in

the y scan was supposed to be caused by the incomplete opening of the

shutter and the location of the first pinhole at 3.81 cm below the beam center

coupled with a displacement in the neutron moderator with 1 cm in the vertical

direction. When the shutter is completely open the angle of the shutter blade

edge relative to the vertical axis is 0◦. This angle is not zero when the shutter is

not completely open. The beam profile was calculated by modeling the

geometry of the BL13 beam guide in McStas [69] for different rotation angles

of the shutter located at 11 m downstream from the target. For a shutter

rotation angle of 5◦ the distance between the peaks in the simulated and the

measured beam profile are about the same. However because the tolerance in

controlling the angle of the shutter when it is fully open is smaller than 0.5◦,

such big misalignment angle was ruled out.

The first pinhole decreases the raw neutron flux measured in neutrons

per second with a factor equal with the ratio of the areas of the pinhole 1 and

the neutron beam guide Ag = 120 cm2. The areas of the first and second

pinholes are A1 = 0.529± 0.007 cm2 and A2 = 0.0077± 0.0004 cm2

respectively. If F0 and F1 are the neutron fluxes before and after the pinhole 1
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Figure 4.18: The neutron beam profile measured along the x direction. The
origin is at the center of the scanner’s travel.

Figure 4.19: The neutron beam profile measured along the y direction. The
origin is at the center of the scanner’s travel

then one can write the relation:

F0 =
Ag
A1

F1 (4.31)

The flux after the second pinhole F2 is measured at the position of the 6Li glass

detector for different positions for the scanner. The ratio of the fluxes after and

before the second pinhole, F2/F1, is equal with the product of the integrated

areas under the x and y scanning histograms Sx · Sy and the product of the

scanning steps ∆x ·∆y, divided with the product of the pinhole 2 area A2 and

the number of peak reading (counts/s) m0. The logic gate received a signal T0
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for each proton pulse that was delivered in the Hg target. Each point in the

histogram is a reading of the counter after 999 T0 signals. The number of

counts were divided by 60 to get the number of counts for one neutron pulse.

The step sizes along the two directions were ∆x = 1/4 (inches) and ∆y = 1/8

(inches).

F0 =
Ag
A1

F1 =
Ag
A1

Sx · Sy ·∆x∆y

A2 ·m0

(4.32)

According to this formula the calculated neutron flux was

(2.78± 0.18)109 (n/s) at 800 kW power, in the wavelength range 4.26 Å to 5.26

Å. With the expected attenuation of the neutron beam in air (25%), beam

monitors M1 (2.44%), M2 (1.7%) the discriminator level (7.9%) and detector

efficiency (0.1%) the calculated neutron flux at the exit of the Polarizer was

(5.7± 0.37) · 109 (n/s/MW). To calculate the polarizer transmission this result is

divided with the flux measured at the exit of the beam guide 2 · 1010 (n/s/MW).

The ratio of the neutron flux after and before the Polarizer is 28% as expected

for the Polarizer transmission for neutrons in the above wavelength range.

4.4 Measurement of the Neutron Polarization through Transmission

The polarization of the neutron beam was measured by transmission through a

Helium cell. After passing through the Helium cell the neutrons were captured

in the B4C plate at the entrance of monitor M3, producing gamma rays that

were detected in a CsI crystal inside the same monitor, after the plate. The CsI

crystal was optically coupled with the B4C plate. The M3 signal was measured

for each time bin. Monte Carlo calculations of the energy of the gamma rays

deposited in the CsI crystal per incident neutron were performed to calibrate

the M3 monitor. To derive the relation of the neutron polarization let’s consider

that a neutron beam with cross section A is incident on a 3He cell with
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thickness dx and N+ and N− the numbers of neutrons with spin up and down,

passing through area A in unit time. The beam polarization is given by:

Pn =
N+ −N−
N+ +N−

(4.33)

The polarized neutron beam can be described by a two dimensional vector

[70,71]. The components of the vector are the relative number of neutrons in

the two polarization states:

|Bpol〉 =

 1 + Pn

1− Pn

 (4.34)

For a completely unpolarized beam the two dimensional vector |B0〉 is obtained

from the above relation with Pn=0. The neutrons are polarized by passing

through the channels between two thin glass films of the SMP. Only the

neutrons with spin direction parallel with the direction of magnetization in the

Fe/Si films on the surface of the glass films can pass through the SMP. If PSM

is the SMP polarization efficiency then the effect of SMP on the neutron spin

state can be described with the matrix:

BSM =

 1 + PSM 0

0 1− PSM

 (4.35)

The off diagonal terms related with the neutron spin flip in the polarizer are

very small. The neutron beam incident on the SMP is not polarized. The

polarization of the beam after passing through the SMP is equal with

BSM |B0〉 =

 1 + PSM

1− PSM

 (4.36)

In the NPDGamma experiment the neutron beam also passes through a SR

that rotates the spin with 180◦ for each neutron in the beam. If ε is the SR
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efficiency then the SR efficiency matrix is given by:

Psf =

 1− ε ε

ε 1− ε

 (4.37)

The polarization state of the neutron beam after passing through the SMP and

SR is given by:

PsfBSM |B0〉 =

 1 + PSM(1− 2ε)

1− PSM(1− 2ε)

 (4.38)

The 3He cell is placed in a magnetic field aligned with the vertical direction.

Consider n the total concentration of 3He atoms in the cell and n1 , n2 the

concentration of the atoms with spin up and down respectively. The cross

sections of the 3He atoms with spins parallel and opposite to the neutron spin

are σ1 and σ2respectively. The thermal cross section for 3He and neutron with

parallel spins is essentially negligible compared with the cross section for the

two particles with opposite spins (10,666 b at neutron speed 2200 m/s ) [72].

The neutron beam was polarized in the vertical direction of the field with the

neutron spin pointing up. In this case the decrease in the flux of neutrons

incident on polarized 3He cell is proportional with the concentration if 3He with

spin down (n2), with their cross section σ2 and with the thickness of the cell dx

in the direction of the beam:

dT+

T+

= −n2σ2dx (4.39)

Depolarized 3He has equal number of atoms with spin-up and spin-down. The

average cross section of depolarized 3He for a completely polarized neutron

beam is equal with:

σ =
σ1 + σ2

2
∼=
σ2

2
(4.40)
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The polarization of the 3He is given by the equation:

PHe =
n1 − n2

n1 + n2

(4.41)

The transmission of the spin-up neutrons that passed through a cell of

thickness l can be calculated after integration of equation 4.39.

T+(l) = T+(0) exp(−nσ(1− PHe)l) (4.42)

T−(l) = T−(0) exp(−nσ(1 + PHe)l) (4.43)

The relative numbers of the spin-up and spin down neutrons incident on the

3He cell are equal with:

T±(0) =
N±
N

(4.44)

The transmission of a neutron beam through the 3He cell is related with the

polarization of the beam (P ), the cell polarization (PHe) and transmission

through the empty cell Tg:

T (l) = Tg

[
1 + Pn

2
exp(−nσ(1− PHe)l) +

1− Pn
2

exp(−nσ(1 + PHe)l)

]
(4.45)

T (l) = Tge
−nσl [cosh(nσlPHe) + Pn sinh(nσlPHe)] (4.46)

For the calculation of the neutron polarization, the transmissions of the neutron

beam through depolarized 3He cell and a cell polarized in the same direction

and in the opposite direction of the neutron spins were measured.

The transmission of the beam through depolarized 3He cell is given by:

T0(l) = Tge
−nσl (4.47)

The transmission of a fully depolarized neutron beam through a polarized 3He

cell was calculated from the average of the two neutron beam transmissions
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measured with SR on and off:

Tpn0(l) = Tge
−nσl cosh(nσlPHe)

The relative transmission of a polarized beam through the 3He cell with the

polarization direction opposite to the direction of the neutrons is given by the

relation:

R1 = T1(l)/T0(l) = cosh(nσlPHe)− Pn sinh(nσlPHe) (4.48)

After the direction of the Helium spins is reversed by using Adiabatic Fast

Passage, the transmission of the polarized neutron beam is given by:

R2 = T2(l)/T0(l) = [cosh(nσlPHe) + Pn sinh(nσlPHe)] (4.49)

The factor nσl can be written as a function of the neutron wavelength (λ, Å),

the cell length (l, cm) and the Helium pressure (P , atm) in the cell at room

temperature: nσl = 0.0733 · P · λ · l

The flipping ratio is the ratio of the neutron transmission through the cell

when the neutron and Helium spins are parallel and antiparallel respectively.

This ratio can be measured by flipping the neutron spin direction with the SR

turned on, while the direction of the 3He spin is fixed (AF coils off) or the 3He

spins are flipped with the AFP coils and the SR is off. Both methods were used

to calculate the neutron polarization and the results compared. The flip of the

3He spins with the AFP coils allows the calculation of the neutron polarization

without knowledge of the SR efficiency. In this case the neutron polarization is

calculated from the quantities R1 and R2 for each time bin:

Pn =
R2 −R1√

(R2 +R1)2 − 4
(4.50)

For the second method the SR is turned successively on and off for all

eight pulses in the spin sequence. The transmission of the neutron beam
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through the Helium cell was measured with the SR turned on (Ton) and off

(Toff) and normalized with the transmission of the neutron beam through

depolarized cell (T0). In the experiment the direction of 3He polarization and

the direction of the neutron spin before the SR are opposite. With the SR

switched on the relative neutron flux measured after the cell is given by:

Rsf =
Tsf

T0

= cosh(nσ · l · PHe)− (1− 2ε)Pn sinh(nσ · l · PHe) (4.51)

By combining the neutron beam transmission when the SR is turned off

( 4.48) and on ( 4.51) the relation between the neutron polarization and the

efficiency of the SR can be derived:

Pn =
Rsf −R1√

((2ε− 1)R1 +Rsf)2 − (2ε)2
(4.52)

The above equation is used for the calculation of the SR efficiency after the

measurement of the two flipping ratios R1 and Rsf with the SR off and on

respectively. This was done for the 3He cell centered in 9 points of a grid in the

vertical plane xy normal to the beam, with a 4 cm distance between the points.

On axis the efficiency of the SR is 99 ±1 % and decreases to 94±1 % at 3.5

cm from the axis [60].

The transmission measurements through a polarized 3He were also

used to adjust the RF current amplitude, and the current in the guide field. For

these measurements the SR was turned on and off on pulse by pulse bases

such that there were 4 pairs of pulses with spin off and on in each spin

sequence. The experimental set-up used for all polarization measurements is

presented in Figure 4.20

For the calculation of the flipping ratio the pedestal signal was

measured with the same monitor M3 and the secondary shutter closed Tped. In
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Figure 4.20: The experimental set up used for the 3He cell measurements.

this case the flipping ratio is the ratio of the background corrected transmission

with the SR turned on and off:

Rsf =
Ton − Tped

Toff − Tped

(4.53)

The amplification level of the current in the SR coils was adjusted for the

maximum flipping ratio. For the optimum RF current in the SR, the flipping ratio

was measured for different currents in the guide coils such that the guide fields

was changed between 9.2 Gauss and 9.6 Gauss 4.21. The maximum is close

to 9.4 Gauss as expected for the characteristic RF resonance frequency 27.4

kHz of the SR.

The polarization measured with the SR to reverse the direction of the

neutron spin is in very good agreement with the polarization measured with SR

off and by flipping the spin of the 3He atoms with the AFP coils as in Figure

4.22 ( [73]).
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Figure 4.21: Flipping ratio as a function of the time bin and the magnitude of the
magnetic field of the coils.

The polarization was measured for different concentrations of 3He to

calculate the uncertainty in polarization due to uncertainty in the concentration

of 3He (Figure 4.23). In this figure the polarization is corrected for the

electronic pedestal and for the efficiency of the SR. The average polarization

decreases from 0.944 at 51% 3He polarization to 0.939 at 22% 3He

polarization.
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Figure 4.22: The polarization measured when SR is off and the 3He spin is
flipped with AFP coils (red dots) and when the AFP coils are off and the SR is
on (green dots) to flip the neutron spin.

Figure 4.23: The polarization was measured at different concentrations of 3He
in the cell. The neutron spin is flipped with the SR.
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Chapter 5

PARITY MEASUREMENTS FOR ALUMINUM AND CHLORINE

This chapter describes the properties of the Al and Cl targets, the data

collection process and the initial cuts used in the data analysis.

5.1 The Aluminum and Chlorine Targets

The Cl target is a thin hollow cylinder, 0.56 cm thick along the beam axis with

inner and outer radius equal with 5.72 cm and 6.15 cm, respectively. The

upstream and downstream faces of the Cl target are 0.76 mm and 2.67 mm

thick, respectively. The target was filled with liquid carbon tetrachloride CCl4.

The natural Cl contains two isotopes 35Cl and 37Cl with natural abundances

75.53% and 24.47%, respectively. The thermal neutron capture cross sections

are 45 barns for 35Cl and 0.005 barns for 37Cl. After the neutron capture in 35Cl

the radioactive isotope 36Cl with a lifetime of 3 · 105 years is produced. The

center of the Cl target was on the neutron beam axis and at 1.25 inches

downstream from the center of the detector stand.

The Al target is a stack of 35 parallel disks (Al 6061) placed in the slots

of an Al holder. Each disk is 5.72 cm in diameter, 0.25 cm thick and the gap

between two disks is 0.35 cm. The target was aligned with the z axis. The

center of the Al target was close to the center of the detector array. The

distance from the last disk to the outside surface of the end Al plate of the

detector stand was 17.6 cm. The total length of the target is 27.1 cm. Disk 35

is the farthest disk downstream from the end of the SR and disk 1 is the

closest. The center of the detector stand is very close to the center of the Al

target as seen in Figure 3.7 in section 3.1.

90



5.2 Data Acquisition and Electronics

The data acquisition user interface at BL13 was installed on the control

computer (Clover) that had the data acquisition user interface. Clover was

connected by an Internet cable with the Hazel computer that communicated

with the three VME crates (VME1, VME2, VME3) telling them to take data. The

communication between the networked computers was done through SSH a

network protocol for secure data communication, remote shell services and

command execution (Figure 5.1). The Cyclonus computer had two network

cards and was the bridge machine for DAQ. The first network card was

connected to the ORNL network. Cyclonus could be logged in remotely by a

user with both ORNL and Cyclonus account. The second network card was

connected to the private network of the Hazel, Clover, H2 target DAQ and

B-Field computers. The data were transfered first to Clover where it was

stocked on removable hard drives. When a predefined number of

spin-sequences per run were read in Clover, the run with a given name was

copied back to Hazel and then transfered over the Internet to a remote

computer (Basestar). A diagram of the link between the three modules and the

computers is presented in Figure 5.1.

When the Al and Cl data were collected, the H2 target DAQ, and the

Hydrogen alarm computer did not exist. The magnetic field was recorded in

LabView running on the B-Field computer that was not connected to the Hazel

computer. The data from each pulse was written to three data files,

corresponding to each of the three VME modules that it came from. The proton

current and the T0 signal from accelerator control, were recorded in the VME1

module. The detector signals were digitized in ADC counts. Instead of
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Figure 5.1: A diagram of the data acquisition network for the NPDGamma ex-
periment.

collecting the signal for each detector,and for each pulse, the data acquisition

recorded four average signals, one for each detector ring and 48 difference

signals relative to the ring average, one for each detector. The average and

difference signals were recorded in 100 time bins with each time bin summed

over 20 difference and 25 sum samples. The sum and the difference signals

are read in the ADC channels in the VME3 and VME2 crates, respectively. The

detector signal was reconstructed by adding the average and the difference

signal. The reconstructed detector signal was copied into the data stream that

was eventually written on the removable hard drive in Clover.

In addition to the sum signals, the current and the voltage of the SR,

92



and the output voltages of the two beam monitors M1,M2 were read into the

VME3 crate. The detector signals were digitized in ADC counts. The VME3

recorded the four sum signals, one for each of the four detector rings. The 48

difference detector signals relative to the sum signal was recorded in VME2

module. The reconstructed detector signal (the sum plus the difference signal)

was calculated in the on-line Root data analysis program installed on Clover.

The first VME1 crate received a TTL pulse (T0) from the accelerator

with a 60 Hz frequency, when the proton pulse was incident on the Hg target.

The signal was transmitted to a delay module and to a logic coincidence

module. The output signal from the coincidence module was transmitted to the

VME2 and VME3 crates triggering the reading of the three monitors, SR and

detector signals (Figure 5.2). In this diagram different kinds of modules are

depicted with different colors. Each module is labeled with two numbers X.Y

where X is for the location of the module inside the crate and Y denotes a

submodule.

The VME2 crate collected the 320 x 48 difference detector signals:

each spin sequence has 320 time bins for each detector. The data collection

was triggered by the T0 signal received by the VME3 crate. For each pulse, the

Joerger clock generates 1000 pulses to trigger the ADC that digitized the

detector signals. A diagram of the VME2 crate is presented in Figure 5.3.

VME3 contained one ADC unit with 12 channels. A diagram of the

VME3 crate is presented in Figure 5.4. The first 4 channels received the

average detector signal from each ring. The three monitor signals were recored

in the next 3 channels. The other 5 channels were not used for data collection.

The VME3 data stream had ADC data with 12 entries and each entry had 320
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Figure 5.2: The electronic diagram of the VME1 module

time bins.

The digital acquisition timing diagram for VME3 crate is presented in

Figure 5.5. The T0 signal from accelerator, at the beginning of each pulse,

triggered the Joerger module to start generating pulses. The output pulses

from Joerger triggered the ADC module that read the detector sums and the

differences. Instead of reading the data after each pulse, the data were

accumulated during eight pulses and read out to the disk during the 9th pulse.

The blank pulse was received by the VME3 crate every 9th pulse. This pulse

stopped the reading of the data and generated the data transfer from the ADC

unit in the VME3 crate to the data stream and eventually to the hard drive on

Clover.
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Figure 5.3: The electronic diagram of the VME2 module

Data for each spin sequence is preceded by a header that included: the

date and time, the time in microseconds since the last pulse , the pulse number,

the Spin Sequence information, time since the last writing of the data and the

number of records written. For the future H2 data collection the transient seen

in the Al and Cl data will have to be eliminated. This will be accomplished by

alternating the spin sequences in the pattern A B A B, where A= 0, 1, 1, 0, 1, 0,

0, 1 and B=1, 0, 0, 1, 0, 1, 1, 0. Moreover the old Spin Sequencer was

replaced with a new one that was built at Los Alamos in Spring 2012.

The magnetic field was read by the two magnetic probes located above

and below the SR . Each probe had three flux gates to measure the three field

components. The six field components will be written during the H2 data runs

into the data stream of the NPDGamma data acquisition. The asymmetry in
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Figure 5.4: The electronic diagram of the VME3 crate

the angular distribution of the gamma rays was measured for about 2000 good

data runs, with 3750 spin sequences in each run. The data runs were

transfered to a remote computer (Fiver) over the net. After the measurements

were completed, Fiver was replaced with a new and faster computer

(Basestar).

5.3 Calculation of the Geometry Factors

The geometry factors for the Al target were calculated first with two models in

GEANT4 and MCNPX. GEANT4 was used to simulate the gamma rays emitted

from the target. The capture and scattering of the neutrons was simulated in

MCNPX. GEANT4 is written in C++ and the source code can be modified to
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Figure 5.5: The digital aquisition timing diagram

save in files any quantities that are needed at the end of the calculations.

However because GEANT4 does not have cross section libraries for the cold

neutron capture and scattering in Al, it was decided to write special MCNPX

subroutines for recording the initial direction the emitted gamma rays and their

energy deposition in each detector. These quantities are necessary for the

calculation of the energy weighted average sums of the scalar products of the

gamma ray momentum and the x or y directions. For the final MCNPX

calculations both the neutrons and the photons were simulated [65]. The

results of the two calculations of the geometry factors (in GEANT4 and

MCNPX) were very similar. The MCNPX model of the target and detector

assembly is presented in Figure 5.6. The center of the axes of coordinate is in

the center of the detector assembly. The z axis is along the beam axis,
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indicated by the red arrow.

Figure 5.6: The MCNPX model of the Al target located inside the detector as-
sembly is seen in the horizontal plane xz of the beam axis.

The number of neutrons captured in each disk divided with the number

of source neutrons is calculated for neutron energies between 2 meV and 13

meV in Figure 5.7. The center of the target is at z=0 cm. The data were fitted

with an exponential decay with three fitting parameters y0, A1, z1:

Nc/N0 = y0 + A1 · exp(−z/z1) (5.1)

The relative number of the gamma rays emitted from a disk is equal with the

relative ratio of the number of neutron captured in a disk. This ratio is

maximum for 2 meV neutrons and for the first disk center at z=-14 cm.

The ratio of the neutron flux N(z) passing through a disk centered at

(0,0,z) and the neutron flux in the first disk N1 is calculated in MCNP for each
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Figure 5.7: The number of neutrons emitted from a disk centered at z divided
with the number of neutrons emitted in the first disk N0 is calculated along the z
axis of the target.

disk. The exponential fitting function is equal with:

N(z)/N1 = −0.674 + 1.690 · e(z−1.548)/62.255 (5.2)

The errors in the calculation of the geometry factors are related with the

uncertainty in the position of the target along the beam axis ± 0.2 cm and with

the modeling of the energy distribution of the neutrons in the beam. The

geometry factors are calculated for gamma rays with an initial energy of 2 MeV

in Figures 5.8 and 5.9.

The geometry factor in the up-down (UD) or left-right (LR) directions are

the average scalar product of the unit vector of the initial momentum of the

gamma-ray emitted from the target and the unit vector of the vertical y axis or

horizontal x axis respectively. The average of the scalar product is weighted
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with the gamma ray energy deposition in the detectors :

GUD
d =

〈
k̂ · ŷ

〉
=

∑N
j=1 Ej(k̂j · ŷ)∑N

j=1 Ej
; GLR

d =
〈
k̂ · x̂

〉
=

∑N
j=1 Ej(k̂j · x̂)∑N

j=1Ej
(5.3)

Figure 5.8: The geometry factor GUD
d is calculated for Al target and each of the

48 detectors.

A Root and C++ code was used for reading the binary data ( [67]). The

binary data, organized in groups of eight pulses (a spin sequence), was read in

branches and trees. For the Al and Cl runs only the raw data read from the

three VME crates are written in branches. The subsequent branches in the

data tree were created from the raw data. The branches for the 48 detector

signals in ADC counts and volts, with 320 time bins for each spin sequence,

were calculated from the detector sum and differences. The header quality bit

constructed from the VME2 and VME3 headers was set to zero if the spin

sequence was right and data were not corrupted. The asymmetry branch was

calculated for 24 pairs of detectors and 40 time bins.
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Figure 5.9: The geometry factor GLR
d calculated for Al target and each of the 48

detectors.

5.4 Upper Cuts on Monitor and Detector Signals

The eight pulses in a spin sequence are counted from 0 to 7. The SR is turned

off during pulses 1,2, 4 and 7 and is turned on during pulses 0, 3, 5 and 6. The

time frame for one pulse was 1/60 seconds. The SR ramp signal was

generated in the Joerger module located in the VME3 crate after a predefined

delay time relative to the start of the T0 signal. The ramp was triggered at the

starting edge of the Delay Generator gate. Due to jitter in electronic signal

there was a drift between the start of the gate and the T0 pulse. In this case

the SR signal could shift in time and the spin sequence was changed. These

sequences had a non-zero header quality bit at the start of the data tree and

were eliminated from analysis. A run was rejected if it was corrupted during the

data transfer or the beam was off during the run.

During some pulses the proton beam was not delivered to the Hg target
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such that no neutrons were generated in the spallation target. The sequences

with dropped pulses were eliminated from analysis. This was done by

calculating the average monitor M2 signal for each pulses (CUT1). If all eight

average values are bigger than 0.11 Volts then the spin sequence did not have

dropped pulses. The synchronization of the two choppers located upstream on

the beam guide and their opening angle allowed a small fraction of slow

neutrons with wavelength in two narrow windows centered at 14 Åand 28Å to

mix with the neutrons in an earlier pulse. The dropped pulses close to the end

of a spin sequence will cause the slow neutrons in the first two pulses of the

next spin sequence to be absent. The pulses with missing slow neutrons can

be a source of false asymmetry if they occur at the same position in a spin

sequence. A second cut (CUT2) was used to eliminate the spin sequences

with such pulses. The sum of the monitor M2 signal from time bins 30 to 35 in

a pulse, was calculated for each eight pulses in a spin sequence. The

difference between the maximum V 2max and minimum V 2min of the eight

sums was divided with the average of the eight sums between time bins 17 and

20 (VS2). The second cut selected only the spin sequences for which the ratio

of the difference V 2max − V 2min and the average VS2 is smaller than 0.12:

(V 2max − V 2min)/VS2 < 0.12

The upper limit CUT2 was estimated from the histogram of the above

ratio for all spin sequences with no dropped pulses (Figure 5.10). The third cut

(CUT3) eliminated the spin sequences with pulses that had the average

monitor signal very different compared with the average monitor signal for the

other pulses in a spin sequence. Therefore CUT3 eliminated the spin

sequences with unacceptable drops in the beam intensity for one or more
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Figure 5.10: The histogram of the ratio (V 2max-V 2min)/{VS2} is calculated for all
spin sequences that do not have dropped pulses.

pulses in a spin sequence. Like the dropped pulses, these drops in the beam

intensity occurred usually at the same pulse position in the spin sequence. For

this cut the pulse areas of the eight monitor M2 pulses were calculated for each

spin sequence that passed the first two cuts. The difference between the

maximum and the minimum of the eight pulse areas (S2max-S2min) was divided

with the time average {Vm2} of all eight monitor M2 pulses in the spin

sequence. A histogram of this ratio over all spin sequences for 20 runs that

passed the first and second cut is presented in Figure 5.11. Because the

shoulder in this histogram is located at values bigger than 0.35 the upper limit

of the second cut was chosen equal with 0.35. For the fourth cut, the maximum

and the minimum area (Dmax, Dmin) of the eight detector pulses, were

calculated for each spin sequence that passed the first three cuts. The
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Figure 5.11: The histogram of the ratio (S2max-S2min)/{Vm2 } is calculated for all
spin sequences that do not have dropped pulses and passed the second cut.

difference Dmax −Dmin was divided with the time average detector signal over

all spin sequence Dss. The histogram of these ratios for all spin-sequences

that passed the Monitor cuts is presented in Figure 5.12. The histograms has

two peaks. The presence of the second peak is due to transient signals from

Spin Sequencer that are overlapped with the detector signals recorded in the

presence of the beam. As a consequence a fourth cut was placed on the ratio

CUT4= (Dmax −Dmin)/Dss. If CUT4=0.4 then this cut eliminates about 0.5%

of the spin sequences. The detector pair asymmetries for Al target were

calculated for CUT4 between 0.2 to 1 in section 6.8.

In summary, the first cut on spin sequences with bad header eliminated

0.22% from the total 3750 number of spin sequences in each run. The second
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Figure 5.12: The histogram of the ratio (Dmax − Dmin)/Dss is calculated from
all spin sequences in 100 runs that passed the first three monitor cuts.

and third cut eliminated 5.93 % , 0.62% respectively. The fourth cut on detector

signal, for CUT4 =0.5, eliminated 0.3% spin sequences.The total fraction of

spin sequences rejected was 6.98%.

For each time bin and each accepted spin sequence, the detector

electronic pedestal was subtracted from the detector signal. The spin

sequences with dropped pulses were used to calculate the pedestals. The

average detector signal between time bins 16 and 35 was calculated from the

dropped pulse (Vped). From the beam-on pulse preceding the dropped pulse,

the time average detector signal between the time bins 16 and 35 (Vtop) and

the average in the first 9 time bins of the pulse Vstart were calculated. These
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three quantities can be used to calculate the g factor:

g =
Vstart − Vped
Vtop − Vstart

(5.4)

The average of this ratio calculated for a few runs with dropped pulses is

between 0.9 and 1.3 for all detectors [74]. All three average signals Vtop, Vstart

and Vped are calculated for positive detector signals. It is expected that the shift

in the electronic pedestal will increase the three average signals with the same

amount. However when the gamma background is low, i.e. the beam just starts

to ramp up after a long beam-off period, the pedestal Vped calculated with the

table of g factors, and measured average Vtop and Vstart can be negative:

Vped = Vstart − g · (Vtop − Vstart) < 0 (5.5)

This can happen at the beginning of the target irradiation when the

gamma background is small such that Vstart is close to the detector pedestal.

To avoid this problem, the histograms of the g-fraction gF = g(Vtop/Vstart − 1)

were accumulated over 1000 runs, for each detector, from spin-sequences with

dropped pulses. The average values of the 48 histograms were saved in a file.

These values were later read from the file to calculate the pedestal Vped for a

spin sequence that passed all the cuts. The ratio Vtop/Vstart is always bigger

than one and gF = g · (Vtop/Vstart − 1) is a number between 0 and 1 such that

Vstart (1− gF ) is always positive if the average detector signal in the first 9 time

bins of a pulse (Vstart) is positive. For each detector the change in the

g-fractions gF from one run to another is negligible. The root mean square of

the histograms of the 48 detector’s pedestals is between 1.4 · 10−4 and 3 · 10−4

and the average pedestal values Vped are between 0.68 and 0.74.

For each pulse i in a spin sequence, the detector pedestal was

calculated from the average detector voltage over the first 9 time bins at the
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Figure 5.13: The pedestal divided with the pulse average of the detector signal
is calculated for each detector number.

start of the pulse Vstart and from the detector g-fraction gF read from the file. In

figure 5.13 the pedestal for the spin sequence is the average of the eight

pedestals calculated for each pulse:

Vped[i] = Vstart[i](1− gF )i = 0 . . . 7 (5.6)
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Chapter 6

DATA ANALYSIS

This chapter describes the analysis of the 35Cl and 27Al data. The detector

signals are read during the time interval of a group of eight neutron pulses

called spin sequence. The data is transfered to the disk during the 9th neutron

pulse. Each neutron pulse is divided in 40 time bins and the detector signal is

read at each time bin. For accepted spin sequences the asymmetry is

calculated for each time bin in the range [T1, T2] . The first time bin T1 is given

by the switch-on time of the SR. The last time bin T2 has to be smaller than the

last time bin in the pulse when the chopper is closed. The analysis results

presented here were done for T1=8 and T2=38, respectively, in order to avoid

the calculation of the asymmetry during the SR ramp up and during the last

time bin when the chopper is closed. Section 6.1 describes two methods used

to calculate the experimental asymmetries. Sections 6.2 and 6.3 present a

discussion of the main contributions to the statistical and systematic

uncertainties, respectively. Additional sources of false asymmetries are

discussed in sections 6.4 and 6.5. The technique for the correction of

electronic transients in the detector signals are discussed in sections 6.7 and

6.1. The results for the parity-violating and parity-conserving asymmetries are

discussed in section 6.8 for 27Al and section 6.9 for 35Cl.

6.1 The Procedures for Asymmetry Calculation

The asymmetry can be calculated for each of the 48 detectors or for each of

the 24 opposite detector pairs in all four rings. There are two methods used for

the asymmetry calculation, called the arithmetic mean and the geometry mean.

The asymmetry per detector can be calculated only from the arithmetic mean.
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Both the arithmetic and geometry means can be used for the calculation of the

24 detector pairs asymmetry. The calculation of transient parameters and of

the corrected asymmetry were done starting from the ratio of opposite detector

signals at each time bin.

6.1.1 Arithmetic Mean Asymmetry

Consider D1 and D2 the signals of two opposite detectors (1, 2) in a ring and

(k, l) two pulses with the neutron spin up and down respectively. After the SMP

and before the SR, the neutron spin is pointing up, in the direction of the main

field. After passing through the RF field of the SR the neutron spin is flipped

down during the pulses with the SR turned on and is up for the other pulses. In

each sequence the SR is on during pulses 0, 3, 5, 6 and it is switched off

during pulses 1, 2, 4 and 7. The sign of the asymmetry in the angular

distribution of the gamma photons emitted from the target depends on the

direction of the neutron spin. For this reason the asymmetry term

Pd(t) = (A1Gd
UD +A2Gd

LR), with the geometry factors Gd
UD and Gd

LR, in the

time bin depending detector signal (eq. 6.1) is multiplied by a constant sk

equal with +1 or -1 for pulses with neutron spin up or down respectively. The

detector d has a gain factor fd. In the absence of transient signals, the detector

output is proportional with the gamma rays energy lost in the detector Ik(t) (in

the absence of the asymmetry term) times a factor that depends on the

asymmetry:

Dk,d(t) = fdIk(t)(1 + (A1Gd
UD + A2Gd

LR) · sk) (6.1)

During the analysis of the Al data, it was observed that the asymmetry

computed for each detector is always shifted to negative values such that the

average detector asymmetries were between −10−7 and −10−5. This
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unexpected result was explained by performing beam-off measurements of the

monitor and detector signals with their power source cables disconnected from

the power source in the VME3 module and connected to a battery. The output

of the two monitors, four detector-ring sums and 48 detector differences read in

the ADC were mixed with a much smaller transient signal output from the Spin

Sequencer located in VME3 module. The transient was generated at the end

of each spin sequence, during the 9th pulse when the data were transfered to

the computer. According to the monitor measurements the transient is a simple

exponential decay. The asymmetry depends on detector number d and only

weakly on the time bin due to the wavelength dependence of the SMP

polarization efficiency. To calculate the asymmetry term in the presence of

transient signals that are not related with the neutron beam, the formula of the

detector signal for each time bin has to include the time dependence of the

transient signals in addition to the detector yield due to the gamma rays from

the neutron capture in the target.

Dk,d(t) = fdIk(t)(1 + P (t) · sk) + V · e−(t+k·T )/τ (6.2)

The asymmetry factors A1 and A2 are proportional with the parity-violating and

parity-conserving asymmetries, AUD and ALR respectively through the neutron

polarization Pn and the efficiency ε of the SR:

AUD = A1/(Pnε) ; ALR = A2/(Pnε) (6.3)

The asymmetry ratio at each time bin and for each detector can be

calculated from the ratio of the difference and the sum of the detector signal

measured at the same time bin, for two pulses with neutron spin up (k) and
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spin down (l):

Pd(t) =

(
Dk,d(t)−Dl,d(t)

Dk,d(t) +Dl,d(t)

)
(6.4)

In the asymmetry calculated with the above formula, the transient

signals not related with the neutron beam give rise to a false additive

asymmetry. At the same time the beam intensity fluctuations contribute to the

errors in the calculated asymmetry. To avoid these problems the asymmetry

has to be calculated for detector pairs. In addition, to reduce the noise

contribution to the asymmetry, the average detector signals over the four pulses

with spin up and four pulses with spin-down is calculated at each time bin:

D↓,d(t) =

∑
k=0,3,5,6Dk,d(t)

4
; D↑,d(t) =

∑
l=1,2,4,7Dl,d(t)

4
(6.5)

Neglecting the small change in the ideal position of the detector center

due to the small differences in the efficiencies of the two halves of CsI crystals

in a detector, the geometry factors for any pair of opposite detectors in a ring,

have opposite sign:

GUD(d1) = −GUD(d2); GLR(d1) = −GLR(d2) (6.6)

In consequence the asymmetry for two opposite detectors are also expected to

have opposite signs. In the absence of the transient the beam intensity Ik(t)

exactly cancel in the ratio of opposite detector signals recorded at the same

time bin. In the presence of the transient the ratio depends on the beam

intensity through the factor V/Ik(t) where the amplitude of the transient V is

10−4 smaller than the pulse average detector signal. For this reason the

contribution of the beam intensity fluctuation to the asymmetry calculated from

opposite detectors ratio is negligible. The difference of the asymmetries for a

pair of opposite detectors divided with two is named the detector pair
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asymmetry. The statistical errors due to counting statistics and beam

fluctuations are expected to be smaller when the asymmetry is calculated for

the ratio of detector signals compared with the asymmetry calculated from the

ratio of the detector signals differences and detector signals sums.The detector

pair asymmetry is calculated for each time bin with the relation:

P1,2(t) =
P1(t)− P2(t)

2
=

D↑,1(t)−D↓,1(t)

2(D↑,1(t) +D↓,1(t))
− D↑,2(t)−D↓,2(t)

2(D↑,2(t) +D↓,2(t))
(6.7)

The detector signals for a time bin at two different pulses in a spin

sequence are about the same: Dk,2(t) +Dl,1(t) ∼ Dk,1(t) +Dl,2(t) and the

above equation becomes:

P1,2(t) =
(D↑,1(t)−D↓,1(t))− (D↑,2(t)−D↓,2(t))

(D↑,1(t) +D↓,1(t)) + (D↑,2(t) +D↓,2(t))
(6.8)

The time average of the pair asymmetry ratio is calculated over time bins (from

T1 to T2) in a the spin sequence and over all Ns accepted spin-sequences for

all runs.

P̄1,2 =
1

Ns

Ns∑
s=1

T2∑
t=T1

1

2
(Ps,1(t)− Ps,2(t)) (6.9)

The calculations are done for about 2000 good Al runs and each run

has about 3750 spin sequences. In average about 7% of the spin-sequences

are rejected for each run. The final asymmetry ratio for each detector is the

average over time bins and over the number of accepted spin sequences.

6.1.2 The Geometry Mean Asymmetry

The correction of the transient signal is possible only in the ratio of opposite

detector signals for each time bin. Two geometry mean methods , presented in

appendix A, were used to calculate the Al asymmetry. For clarity only the

second method is presented here. The Al asymmetries were calculated with

both methods and agree with each other in the limit of the statistical errors.
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In the following equations, Dd(k, t) and fd are the detector signal at

time t and pulse k and the detector gain. Ik(t) is the average gamma yield in

each of the 48 detectors. Therefore Ik(t) is a function of the neutron beam

intensity at pulse k and time bin t. The transient amplitude and decay times are

Vd and τ respectively. The detector asymmetry Pd(t) has a weak time

dependence due to the wavelength dependence of the SMP polarization

efficiency. For a neutron pulse k with spin up the ratio of the signals for two

opposite detectors in a ring is equal with:

D0(k, t)

D6(k, t)
=
f0Ik(t)(1 + P0(t)) + V0 · e−(t+kT )/τ

f6Ik(t)(1 + P6(t)) + V6 · e−(t+kT )/τ
(6.10)

To cancel the multiplicative detector gains, the above ratio is multiplied

with the inverse of the signal ratio for the same pair of detectors for a neutron

pulse j with spin down:

D6(j, t)

D0(j, t)
=
f6Ij(t)(1− P6(t)) + V6 · e−(t+jT )/τ

f0Ij(t)(1− P0(t)) + V0 · e−(t+jT )/τ
(6.11)

The above ratios can be written in terms of the relative transient

amplitudes v0 = V0/D̄0 and v6 = V6/D̄6. The relation is simplified by

introducing the time dependent functions u0(t) and u6(t):

u0,6(t) = v0,6e
−t/τ D̄0,6

f0,6Ik(t)
(6.12)

For clarity the following notations are introduced:

qk = e−kT/τ ; qj = e−jT/τ (6.13)

The transient decay parameter is q1=exp (-1/τ ) with the decay time in units of

time bins. With this notation T = 40 is the number of time bins in one pulse.
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The product of the opposite detector ratios at two pulses k and j is

equal with:

D0(k, t)

D6(k, t)
· D6(j, t)

D0(j, t)
=

1 + P0(t) + u0(t)qk

1 + P6(t) + u6(t)qk
· 1− P6(t) + u6(t)qj

1− P0(t) + u0(t)qj
(6.14)

To decrease the computing time the detector ratio is averaged over the four

spin up and the four spin down pulses in a spin sequence. The product of the

two average ratios is calculated at each spin sequence.

R0,6(t) =

〈
D0,↑(t)

D6,↑(t)

〉
·
〈
D6,↓(t)

D0,↓(t)

〉
(6.15)

The calculation of the raw and the corrected asymmetry from the product

R0,6(t) is presented in appendix A.2. The uncorrected asymmetry for each

time bin in the time interval [T1, T2] is the ratio

Q0,6(k, t) = (
√
R0,6(t)− 1)/(

√
R0,6(t) + 1). The corrected asymmetry P for

each detector pair is considered constant over the time bins [T1, T2]. The

corrected asymmetry P , the relative transient amplitudes v0, v6 and the

transient decay rate q1 , are calculated from the minimization of the χ2, for each

accepted spin sequence:

χ2
e =

t=T2∑
t=T1

(
Q0,6(t)− P − u0(t)− u6(t)

16

(∑
k,↑

qk −
∑
j,↓

qj

))2

(6.16)

The time average of the asymmetry over the time bins from T1 to T2, P̄ , is

calculated for each accepted spin -sequence and each detector and saved in a

histogram. The calculations are done for the detector pair asymmetry. The

asymmetries of the two opposite detectors P6 = −P̄ and P0 = P̄ are saved in

the histograms for detectors 0 and 6. At the end of all the runs the average and

the standard deviation of the 48 histograms are read. The transient

contribution is reduced in the asymmetry ratio and the offset calculated over all

24 pair asymmetries is much smaller than the fitting errors. The relative
114



transient amplitudes, the asymmetry term and the transient decay parameters

are the four fitting parameters that can be determined from the minimization of

the χ2 function for each spin sequence. The weights used in this function are

the variances of the asymmetry ratios Q0,6(t) and can be calculated at the end

of each run.

The number of degrees of liberty is (T2-T1 + 1)− 4. This procedure was

used to calculate the corrected asymmetry for Al and Cl. The results are

presented in section 6.1.

6.2 Statistical Errors

The fluctuation in the beam intensity and in the number of gamma rays per

time bin detected in two opposite detectors contribute to the statistical errors in

the calculation of the asymmetry. These two sources of statistical uncertainty

are much bigger than the contribution of the electronic noise in the detectors

preamplifier circuits. The fluctuation in the beam intensity cancels out in the

ratio of the two detector signals averaged over the same pulse. Because the

precision in the calculation of the fitting parameters is related with the standard

deviation of the ratio Īk/Ī it is important to determine the standard deviation in

the ratio of the time average over a pulse and over a spin sequence of the

detector signals D̄k/D̄. This ratio is affected by fluctuations in the beam

intensity from pulse to pulse in the same sequence. The statistical errors from

the counting statistics of the gamma rays detected in opposite detectors in a

time bin, are calculated from standard deviation of the ratio of two opposite

detector signals averaged over the same pulse. The root mean square of the

histogram of this ratio can be calculated for each pulse in a spin sequence, for

all good spin sequences in a run. The ratio of the average opposite detector

signals calculated for one run and for 20 run, in Figure 6.1, is proportional with
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the ratio of the detector gains. According to these results, the detector gains

were matched with a precision better than 15%. If the asymmetry is calculated

Figure 6.1: The ratio of the pulse average of two opposite detectors signals is
calculated for each detector pair for one run and for 20 runs.

for detector pairs with the geometry mean of the ratio of two opposite detector

signals then the errors due to beam fluctuations cancel in the difference of the

asymmetries for pairs of opposite detectors. In contrast the counting statistics

uncertainties due to the number of gamma rays per time bin detected in two

opposite detectors will add in quadrature in the difference of the asymmetries.

For this reason it is important to know how much is the contribution of the two

sources of statistical errors. A quick way to estimate the statistical errors from

counting statistics is to calculate the ratio of the pulse average detector signal

for two opposite detectors (d1 and d2), for each accepted spin sequence (s) in a

run (r). The pulse index k runs from 0 to 7.

D̄d1,k =
1

T2 − T1 + 1

T2∑
t=T1

Dd1(k, t) ; D̄d2,k =
1

T2 − T1 + 1

T2∑
t=T1

Dd2(k, t) (6.17)
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Rd1,d2,k =
D̄d1,k

D̄d2,k

(6.18)

Because the contribution of the transient is negligible in the last four pulses of

the spin sequence, the average ratio Ud1,d2 is calculated over pulses k=4, 5, 6

and 7:

Ud1,d2 =
1

4

7∑
k=4

Rd1,d2,k (6.19)

For each spin sequence the relative squared standard deviation in the ratio Rk

is calculated. The average over all good spin sequences in a run

σ2
d1,r

=
1

Nr

Nr∑
s=1

1

2
· 4

3

7∑
k=4

(Rd1,d2,k − Ud1,d2)2

4U2
d1,d2

(6.20)

To calculate the variance for the other detector d2 in the pair it is justified to

change the order of the detector indexes in equations 6.19 and 6.20:

Rd2,d1,k =
D̄d2,k

D̄d1,k

Ud2,d1 =
1

4

7∑
k=4

Rd2,d1,k (6.21)

σ2
d2,r

=
1

Nr

Nr∑
s=1

1

2
· 4

3

7∑
k=4

(Rd2,d1,k − Ud2,d1)2

4U2
d2,d1

(6.22)

The factor 4/3 accounts for the removal of one degree of freedom taken by the

calculation of the average ratio U . Because two opposite detectors contribute

equally to the uncertainties of the counting statistics the factor of 1/2 is

introduced.

The final variance due only to counting statistics is the weighted sum of the

inverses of the variances calculated at each run.

1

σ2
R

=
NR∑
r=1

Nr

σ2
d,r

(6.23)

The sum is over all the good runs analyzed and Nr is the number of accepted

spin sequences in a run. The average standard deviation over pulses 4, 5, 6, 7

and all accepted spin sequences is calculated for each detector presented in
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Figure 6.2: The relative standard deviation σ (d, r) averaged over 4 pulses (4,
5, 6, 7) and over all good spin sequences in 587 runs, is calculated for each
detector.

Figure 6.2. The standard deviation does not depend on the number of runs.

The fractional standard deviation given by equation 6.23 is presented in Figure

6.3. Because there are about 2000 good Al runs, the fractional standard

deviation due to the counting statistics is expected to be between 5 · 10−7 and

6 · 10−7. A plot of the variances of the square of the ratio of opposite detector

signals averaged over pulses 4, 5, 6 and 7 is presented in Figure 6.4.

6.3 Systematic Errors in the Calculation of the Asymmetry

The systematic errors can be instrumental or can arise from the observables

correlated with the direction of the neutron spin neutron spin that contribute to

the false asymmetry in the angular distribution of the gamma rays. The

instrumental systematic errors could be the spin-flipper correlated electronic

pick-up systematic effects, or transient signals from the spin sequencer that is
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Figure 6.3: The fractional standard deviation due only to the counting statistics
is calculated after 587 and 1631 runs for each detector.

mixed with the real detector signal. The upper limit of the spin-flipper electronic

pick-up effects can be measured by illuminating the detectors with LED signal

and operating the SR in the same conditions like those for beam-on

measurements.

The systematic errors that arise from the interaction of the polarized

neutrons with nuclei other than H2 (Al, Lithium, steel shield) or with magnetic

field can give rise to additional contribution to the asymmetry measured with

the H2 target. The Al left-right parity-conserving asymmetry involves the

correlation between the vector product of neutron spin and momentum of

incident neutron ~Sn × ~kn with the momentum of the neutron after interaction ~k′n

(the spin-orbit coupling) or with the momentum of the gamma ray after
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Figure 6.4: A plot of the variances of the relative difference in the detector sig-
nals averaged over pulses 4, 5, 6, 7 and over all spin sequences

.

scattering ~k′γ (the parity-allowed asymmetry in the direct neutron capture). The

direction of the gamma rays emitted from the neutrons captured in Al, the

direction of the momentum of the electron emitted in the beta decay of 28Al,

and the angular distribution of the prompt gamma rays emitted from Al are all

correlated with the incident neutron spin. The bremsstrahlung radiation emitted

by the accelerated beta particles in the electric field of the parent nucleus 28Si

(internal bremsstrahlung) or of the other Al nuclei in the material (external

bremsstrahlung) contribute to the background asymmetry. Also the momentum

of the electrons or photons emitted in the beta decay of the free polarized

neutrons is correlated with the spin of the neutrons. All these effects were

calculated and in some cases measured. Their magnitude is smaller or equal

with 10−8 with the biggest contribution coming from the external

bremsstrahlung in Al.
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The first systematic errors in the Al and Cl asymmetry is related with the

transient signal from the Spin Sequencer in the VME3 data acquisition module.

The presence of the transient signals mixed with the detector beam signal was

discovered after the collection of the Al and Cl data. The calculation of the

asymmetry from the ratio of the difference and the sum of detector signals at

each time bin showed a negative shift of the 48 detector asymmetries to about

−4 · 10−7. The signal of the monitor M1 was measured with a 9 Volts battery

connected to the M1 channel to understand the source of the external signals

overlapped with the detector signal (Figure 6.5). The transient signal is

generated during the 9th pulse at the end of each spin sequence, when the

data were transfered to the disk. During this short time a transient signal with

an exponential time decay is generated in the Spin Sequencer and mixed with

the detector beam signal collected during the next spin sequence. The relative

amplitude of the transient relative to the detector signal is between −2 · 10−5

and −1 · 10−4 and the decay time is about 0.01 seconds or 24 time bins. The

instrumental systematic errors that are not correlated with the neutron spin can

only shift the center of the asymmetry for all 12 detectors in each ring with the

same quantity. The shift is smaller than 10−8 if the asymmetry is calculated for

detector pairs. The up-down and left-right asymmetries are calculated after

dividing the two fitting parameters (A1, B1) in the chi2 function with the neutron

beam polarization P and SR efficiency εsf and neutron spin flip scattering in

the target ∆dep. The fitting parameter also depend on the geometry factors

Gd
UD and Gd

LR. The non-random errors in the calculations of the neutron

polarization, SR efficiency, neutron spin flip scattering and geometry factors

are the source of systematic errors in the calculation of the asymmetry. The

systematic error in the asymmetry calculation is proportional with the
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asymmetry and therefore are smaller than the statistical errors expected from

beam intensity fluctuations and counting statistics:

σsys
Aγ

=

√(σP
P

)2

+

(
σsf
εsf

)2

+
(σG
G

)2

+

(
σdep
∆dep

)2

(6.24)

The uncertainties in the measured beam polarization and SR efficiency

are 2% and 1% respectively. The spin flip depolarization in the target was

estimated from the geometry of the Al and Cl target to be 1%. The average

uncertainty in the geometry factors for the 48 detectors is 5.27%. Therefore the

relative systematic errors for the four contributions is equal with 5.8%. The

most important sources of systematic errors are therefore related with the

interference of transient signals with the detector signals and the physical

processes due the external bremsstrahlung and strong and electromagnetic

spin-orbit neutron scattering in Aluminum.

Figure 6.5: The standard deviation of the ratio of two opposite detector signals
averaged over a pulse was calculated from the histograms for each pair.

If the asymmetry is calculated for each detector with the arithmetic
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mean, then the shift in the asymmetry averaged over 48 detectors is between

−10−7 and −8 · 10−7. When the asymmetry is calculated for detector pairs with

the geometry mean, the average shift in the asymmetry is smaller than 10−8.

The analytical calculation of the ratio of opposite detector signals (section 6.1)

the false asymmetry due to the transient signal is reduced with two orders of

magnitude in this case.

The second source of instrumental systematic errors were discovered

from the measurements of the detector signal when the pair of light emission

diodes (LEDs, located inside each detector) were turned on. The

measurements were done with the SR turned on or off and in the absence of

the beam. The results indicate the presence of a second transient additive

signal that seems to be ring dependent and is due to the mixing between

output signal of the Spin Sequencer and the signal from the sum and

difference for the four detector rings. The decay time and the amplitude of the

transient signal relative to the pulse average detector signal is calculated in the

next section. To calculate the parity in the presence of the transient it is

necessary to calculate all three fitting parameters (the transient amplitude,

decay time, and parity) by the minimization of the χ2 function. In order to

cancel the beam intensity fluctuations the ratio of the signals of the two

opposite detectors in a ring is calculated at each time bin. In section 6.7 the

average detector signal is calculated for each pulse in the spin sequence and

is divided with the spin sequence average of the detector signal. This

procedure does not eliminate the fluctuations in the beam intensity at each

pulse. However the procedure can be used to calculate the relative transient

signal and the transient decay time for each spin sequence. The calculation of

the asymmetry from the ratio of the opposite detectors signals at each time bin,
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averaged over four pulses with spin up, multiplied with the inverted detector

ratio average over four pulse with spin down is presented in section 6.1.

The Al asymmetry ratio is calculated for each sequence that passed the

four cuts described in section 5.4. Most Al data runs had 3750 entries except

the first few data runs that had 2500 entries. Each entry in the data run is a

record of the detector signal for eight pulses. Each pulse is 1/60 seconds long

such that the time for one data entry is 9/60 seconds. The first bit in each 9

pulse entry is the header quality bit that is equal with zero for the correct SR

sequence. The entry was not analyzed if the header quality bit was not zero.

6.4 The Stern-Gerlach Contribution to the False Asymmetry

The neutrons are moving in the static field of the main and shim coils from the

exit of the SMP to the beam stop. The field gradient interacts with the neutron

magnetic moment to shift the neutron position. The displacement of the

neutron beam center along the vertical and horizontal axes normal to the beam

is the source of a false asymmetry because the gamma yield in a detector

depends on the position of the neutron beam center. The neutron has spin 1/2

and a magnetic moment µn = −9.6623 · 10−27 (J/T). Considering

µN = 5.0508 · 10−27 (J/T) , gn=-3.826 the neutron g-factor and ~S the neutron

spin, the force acting on the neutron with magnetic moment ~µ = gn(µN/~)~S

moving in a non-uniform magnetic field is given by the relation:

~F = −2µn
~
~∇(~S · ~B) (6.25)

The magnetic moment of the free neutron along the vertical y direction

is µy = gnµN ·ms = ±µn where ms = ±1/2 is the neutron magnetic number.

For simplicity consider the vector ~σ = 2~S/~ along the direction of the neutron
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spin. The three components of ~σ can be ±1. The force components along the

x, y and z axes are given by the relations:

Fx = −µn(σx ·
∂Bx

∂x
+ σy ·

∂By

∂x
+ σz ·

∂Bz

∂x
) (6.26)

Fy = −µn(σx ·
∂Bx

∂y
+ σy ·

∂By

∂y
+ σz ·

∂Bz

∂y
) (6.27)

Fz = −µn(σx ·
∂Bx

∂z
+ σy ·

∂By

∂z
+ σz ·

∂Bz

∂z
) (6.28)

The force components Fx and Fy displace the beam center in the x and

y directions such that the false asymmetry will add to the measured left-right

and up-down directions. Due to the neutron spin precession about the static

magnetic field aligned with the vertical axis, the time average of the

components of the neutron spin in the horizontal plane xz is zero. In general

the angle between the magnetic field vector and the z axis is θ and the angle

between the field projected in the xy plane and the x axis is φ. In this

semi-classical approach the neutron spin is aligned with the direction of the

field such that:

〈Fx〉 = −µn(
Bx

B
· ∂Bx

∂x
+
By

B
· ∂By

∂x
+
Bz

B
· ∂Bz

∂x
) = −µn

~B

B
· ∂

~B

∂x
(6.29)

〈Fy〉 = −µn(
Bx

B
· ∂Bx

∂y
+
By

B
· ∂By

∂y
+
Bz

B
· ∂Bz

∂y
) = −µn

~B

B
· ∂

~B

∂y
(6.30)

The Fz component of the force cannot produce a false asymmetry in the

gamma ray angular distribution relative to two directions normal to the beam

axis. The average angles of the field and the average magnetic field gradients

were calculated from the magnetic field measurements. The average field
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Table 6.1: The relative field components and the field gradients along the three
axes and the components of the Stern Gerlach force.

Bx/B By/B Bz/B dBx/dx dBy/dx dBz/dx
10−3 10−3 10−5 10−5 10−5

T/m T/m T/m
3.63 0.9998 1.13 0.40 1.01 0.41

± 0.12 ± 0.03 ± 0.02
dBx/dy dBy/dy dBz/dy dBx/dz dBy/dz dBz/dz

T/m T/m T/m T/m T/m T/m
10−5 10−5 10−5 10−5 10−5 10−5

1.41 1.68 1.47 0.40 0.048 1.67
±0.29 ±0.11 ± 0.36 ± 0.01 ± 0.007 ± 0.01
Fx/µn Fy/µn Fz/µn ax ay az
T/m T/m T/m m/s2 m/s2 m/s2

10−5 10−5 10−5 10−5 10−5 10−5

1.02 1.69 0.052 5.84 9.70 0.30
±0.03 ±0.11 ±0.001 ±0.17 ±0.63 ±0.01

inside the coils was 9.77 Gauss. After passing the SR the neutron spin was

rotated with 180 degrees. The average field gradients were calculated from the

measured gradients along horizontal and vertical directions in the limits of the

beam volume and between SR and detector. The absolute values of the

average field gradients and the components of the Stern-Gerlach force are

calculated in the table 6.1.

The neutron displacements ∆x and ∆y were calculated for a distance

l = 1 meter between the center of the SR and the center of the detector array

and for neutrons with wavelengths between 2.3 Åand 6Å. If the neutron is

moving parallel with the beam axis then the displacements are equal with:

∆x =
〈Fx〉
m

l2

2 · v2
(6.31)

∆y =
〈Fy〉
m

l2

2 · v2
(6.32)

〈Fx〉
m

=
9.6623 · 10−27

1.6749 · 10−27
(
Bx

B
· ∂Bx

∂x
+
By

B
· ∂By

∂x
+
Bz

B
· ∂Bz

∂x
) (6.33)
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The maximum displacement occurs for neutrons with the smallest speed

v = 590 m/s:

∆x =
〈Fx〉
m

l2

2 · v2
= 0.83 · 10−10 (6.34)

∆y =
〈Fy〉
m

l2

2 · v2
= 0.15 · 10−9 (6.35)

The false asymmetry for each detector is equal with the difference of the

acceptance solid angles for the two directions of the neutron spin divided with

the sum of the two solid angles:

Af =
Ωup − Ωdown

Ωup + Ωdown

(6.36)

The distance from the detector center on the beam axis to the center of any

detector is approximately r0=0.286 m. The false asymmetry will be calculated

for pair detector D1 centered at (xc, yc, zc). To calculate the contribution to the

left-right asymmetry, consider first the displacement in the x direction. The

solid angles for the two directions of the neutron spin are:

Ωup =
∆A

r2
0 − 2xc∆x+ ∆x2

∼=
∆A

r2
0

(
1 +

2xc∆x

r2
0

)
(6.37)

Ωdown =
∆A

r2
0 + 2xc∆x+ ∆x2

∼=
∆A

r2
0

(
1− 2xc∆x

r2
0

)
(6.38)

In general the displacement vector is ∆~r = ∆x · x̂+ ∆y · ŷ such that the false

asymmetry is equal with:

Af =
Ωup − Ωdown

Ωup + Ωdown

=
2~r0∆~r

r2
0

≤ 2∆r

r0

(6.39)

Therefore the false asymmetry due to the Stern-Gerlah effect is

expected to be 0.12 · 10−8. This values is smaller than 10−8, the experimental

limit due to the statistical errors.
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6.5 The Contribution of the Spin-Orbit Interaction

Spin orbit interaction appear in both strong and electromagnetic NN

interactions. The center of a neutron beam polarized along the vertical axis is

displaced along the horizontal direction normal to beam axis, after interacting

with the nuclei in a target. The direction of the displacement depends on the

initial direction of neutron spin. The effect was explained for the first time by

Schwinger [75]. The calculation of the false asymmetry in the measurement of

the parity conserving asymmetry was done for liquid para H2, Al and other

nuclei in [61]. The neutron capture cross section is proportional with 1/v and

at low neutron energies the contribution of the strong interaction to the

interference between elastic and inelastic processes (n, n′) (n, α), (n, γ)

becomes relevant.

Consider the neutron moving along the z axis with momentum ~p1 and

the target nucleus fixed at a distance b from the z axis. The distance b is

smaller than the atomic radius a but bigger than the radius of the nucleus R

such that the neutron and the nucleus interact only through electromagnetic

forces. After scattering the neutron has momentum ~p2. The spin of the neutron

Figure 6.6: The direction of the initial and final neutron moment, the neutron
spin and the scattering angles are presented in three dimensions.
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~sn (Figure 6.6) is along the direction of the vector ~n = (~p1 × ~p2)/|~p1 × ~p2|

normal to the reaction plane of the neutron. The analyzing power is the relative

difference in the cross sections when the spin of the neutron is aligned parallel

(+) or opposite (-) to the direction of the vector ~n. In the frame of the neutron,

the nucleus is moving with a velocity ~v. The moving electric field generates a

magnetic field at the position of the neutron:

~B =
~E × ~v
c2

(6.40)

If φ is a spherical symmetric effective potential, then the electric field is

~E = −∇φ and the electric potential V (r) = −eφ. In this case the magnetic

field is equal with ~B = 1
e
dV
dr

(
~r
r
× ~v

c2

)
. In general b can be smaller than the

radius of the nucleus such that the interaction involves both strong and

electromagnetic forces. In this case the scalar product of the neutron magnetic

moment and the magnetic field is added to the strong potential Vs in the total

Hamiltonian of the spin-orbit interaction:

H = Vs − ~µ · ~B . (6.41)

With the neutron g-factor gn = −3.826 and Mp the mass of the proton, the

relation between the neutron magnetic moment ~µ and neutron nuclear spin ~S is

given by:

~µ = −gn
e

2 ·Mp

~S . (6.42)

With the ratio gn/2= - 1.913 and the nuclear magneton µN = (e~)/(2Mp), the

electromagnetic part of the interaction is equal with:

Hem =
gn

2MpMn · r · c2

dV

dr
(~S · ~L) (6.43)

In the above equation Mn and Mp are the mass of the neutron and proton

respectively. Due to the screening of the electrons in the atom, the effective
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charge Q of the nucleus seen by the neutron is smaller than the charge of the

protons in the nucleus Z · e. If the electric potential of the nucleus has spherical

symmetry then V (r) = −(e ·Q)/r and the electromagnetic spin-orbit

interaction is inversely proportional with r3. The waves scattered at an angle θ

are generated at a distance r from the nucleus such that 2p · r · sin(θ)/2 ≈ ~

with p = ~k. Therefore the electromagnetic scattering occurs for the range of

scattering angles [75]: 1/(k ·R)� 2 sin(θ/2)� 1/(k · a).

The calculation of the strong and electromagnetic contributions to the

analyzing power was done in [61] to provide an estimate of the left-right

asymmetry. Their analysis of the spin -orbit scattering of low energy neutrons

is presented here. The analyzing power is the difference between the neutron

capture cross section for the two states of the neutron spin:

A(r) =
dσ/dΩ+ − dσ/dΩ−
dσ/dΩ+ + dσ/dΩ−

(6.44)

The analyzing power can be expressed as a function of the coherent g(θ) and

incoherent h(θ) scattering lengths. Because the strong interaction is spin

dependent, the total coherent scattering length g(θ) is a sum of the scattering

lengths for all the nuclear spin states. The inelastic and the capture processes

are more probable at low energy of the neutron because the cross section

varies like 1/v. The inelastic processes contribute to the imaginary part of the

scattering length of the strong interaction:

g(θ) = gel(θ) + gin(θ) (6.45)

At low energy the most relevant contribution to g(θ) is only from the neutrons in

S wave state. Consider P (0) and P (1) the projection operators onto the spin

state S = 0 and S = 1 respectively. The phase shift in the neutron scattered
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wave in singlet and triplet S wave states are δ0(1S0) and δ1(3S1) respectively.

For a neutron with momentum k the elastic contribution to the scattering length

of the strong interaction is equal with:

gel(θ) =
1

k

 P0[δ0(1S0) + iδ2
0(1S0)]+

P1[δ1(3S1) + iδ2
1(3S1)]

 (6.46)

If the amplitude of the neutron capture is ac then the contribution of the

inelastic channels to the cross section is given by:

σin(θ) =
4πac
k

(6.47)

The inelastic scattering length can be calculated from the optical theorem :

gin(θ) = i · ac · P (1). For Al the contribution of the electromagnetic part of the

spin-orbit interaction to the analyzing power is between 2 · 10−8 and 6 · 10−8.

The bound coherent and incoherent scattering lengths are bc = 3.45 fm and

bic = 0.26 fm respectively, where 1 fm = 10−15 m. The analyzing power due to

both strong and electromagnetic interaction for 9 meV neutron and a 45◦

neutron scattering angle is 1.4 · 10−7. There is also an additional contribution

from the left-right parity-conserving asymmetry due to direct neutron capture

[29,76]. This contribution was not calculated yet for low energy neutrons

captured in Al. The calculated spin-orbit analyzing power for Aluminum is

about 30% smaller than the left-right asymmetry extracted from the Aluminum

data (section 6.8).

6.6 Asymmetry Contribution of the Bremsstrahlung Radiation

After the capture of polarized neutron in 27Al the excited 28Al is partially

polarized in the direction of the incident neutron spin. A fraction of the 28Al

polarization is carried away by the prompt gamma rays emitted at the transition

to the ground state. The asymmetry in the angular distribution of the promt
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gamma rays is the main source of the background contribution to the

asymmetry measured with the H2 target. In the ground state 28Al beta decays

in 28Si. Because the weak interaction does not conserve parity, the direction of

the emitted electron is correlated with the spin of the polarized 28Al nucleus.

The radiation emitted from the accelerated beta particle in the electric field of

the parent nucleus 28Si (internal bremsstrahlung) or from the beta particle

moving through the material (external bremsstrahlung) is correlated with the

direction of the momentum of the beta particle and with the direction of the

neutron spin due to the weak interaction. In addition some of the free neutrons

in the beam can decay into protons, electrons and neutrinos. The direction of

the electron is correlated with the neutron direction due to the parity violation in

the neutron decay. The delayed gamma radiation emitted at the transition of

excited 28Si in its ground state can also have an asymmetry in its angular

distribution because the Si nucleus has a small polarization. All these three

contributions to the false asymmetry are expected to be smaller for the

NPDGamma experiment at SNS compared with LANSCE because the

frequency of the neutron pulses (60 Hz) is three times bigger than that at

LANSCE (20Hz). However previous calculations indicated that the external

bremsstrahlung in Al is only one order of magnitude smaller than the predicted

size of the ~n+ p→ d+ γ parity-odd asymmetry [21].

The half life of 28Al (2.4 minutes) is large relative to the time interval

(1/60 s) between two neutron spin flips. In addition the electromagnetic

transition further reduces the correlation between the neutron spin and the spin

of the compound 28Al nucleus. The spin of 27Al in its ground state is 5/2. The

state has positive parity. Therefore the S-wave capture state of 28Al can have

an angular momentum of 2 or 3. After the polarized neutron is captured the
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28Al is also polarized. The polarization of 28Al in the ground state was

estimated by calculating the population of the magnetic states in the capture

state and modeling the gamma decay process by assuming either three , four

or five transitions [21] . The estimated polarization of 28Al is 0.16+/-0.03. The

interaction with the magnetic field of the conduction electrons and the

spin-lattice interaction decreases the relaxation time of polarized 28Al. It was

found that the main contribution to the systematic error due to the Al

asymmetry comes from external bremsstrahlung (10−8) in the 28Al beta decay

while the internal bremsstrahlung in the same process is small, 0.2 · 10−9. The

asymmetry of the prompt gamma rays emitted at the transition of exited 28Al to

the ground state was measured and the results are presented in section 6.8.

The asymmetry in the distribution of the delayed gamma rays emitted at the

transition of 28Si in the ground state is negligible. The neutrons spin-electron

correlation in the free beta decay is Asn,kβ =-0.117 [77]. At LANSCE the

fraction of neutrons that decay before stopping in the H2 target was 2.5 · 10−7

[21] such that the contribution of the external and internal bremsstrahlung from

the free neutron beta decay to the false asymmetry were 3 · 10−11 and

2.4 · 10−11, respectively.

6.7 Transient Correction in the Pulse Average Detector Signals

The detector signal is the sum of the neutron beam signal (at 60 Hz) due only

to the gamma rays from the neutrons captured or inelastically scattered in the

Al target, and a transient exponential signal. The weak time dependence of the

parity P (t) due to the small neutron time of flight dependence of the

polarization efficiency of the Super Mirror Polarizer is neglected. The time t

and the decay time τ are considered to be in units of one time bin (1/60/40

seconds). The signal for each detector, during a spin sequence number S, and
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time bin t in a pulse number (k=0. . . 7) is given by:

Ds,k(t) = f · Ik(t)(1 + P · sk) + V · e−(t+k·T )/τ (6.48)

In the above relation f is the detector gain, the transient amplitude and

decay time are V and τ , and sk is +1 or -1 for pulses with neutron spin up or

spin down respectively. For the SR sequence used during the Al data runs

(June, July 2011) the array of eight integers is equal with:

sk = {−1; 1; 1;−1; 1;−1;−1; 1} (6.49)

The pulse average detector signal is different for each pulse due to the

beam fluctuations. The fitting function is obtained from the right hand side of

equation 6.48 with the approximation:

f Īk ∼= hĪ = W (6.50)

The other fitting parameters are the parity P , the decay parameter q and the

relative transient amplitude v:

v =
V

fĪ
(6.51)

The fitting parameters were calculated for each spin sequence from the

derivatives of a χ2 function with no weights:

χ2
e =

7∑
k=0

(
D̄k −W (1 + Psk + vstq

k)
)2

(6.52)

The fitting parameters w, P , v , q do not change if the above χ2 function is

divided with a constant like for example the square of the average detector

signal in a spin sequence. Because the detector signal is read in ADC counts,

Dk is a big number but the ratio Dk/Ds is a number close to unity. The

normalized χ2 function is given by:

χ2
n =

7∑
k=0

(
Rk − w(1 + P · sk + v · stqk)

)2
(6.53)
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Rk =
D̄k

D̄s

(6.54)

After the fitting parameters are calculated, w is multiplied back with Ds to get

its value in the original (not normalized) χ2 function.

From the derivatives of the χ2 function (eq. 6.53) the equations for P , v are

given by:

w =

∑7
k=0Rk(1 + Psk + vstq

k)∑7
k=0(1 + Psk + vstqk)2

(6.55)

∑7
k=0Rksk
8 · w

= P + vst

∑7
k=0 skq

k

8
(6.56)∑7

k=0 Rkq
k

8w
=

∑7
k=0 q

k

8
+ P

∑7
k=0 skq

k

8
+ vst

∑7
k=0 q

2k

8
(6.57)

The sums calculated for each detector are:

S0 =

∑7
k=0 Rk

8
S1 =

∑7
k=0Rksk

8
S2 =

∑7
k=0 skq

k

8
(6.58)

S3 =

∑7
k=0 q

k

8
S4 =

∑7
k=0 Rkq

k

8
S5 =

∑7
k=0 q

2k

8
(6.59)

The equations can be solved exactly. The parity is calculated first from

the relation:

P =
(S2S4 − S1S5)S1 − (S0S2 − S1S3)S1S3

(S2S4 − S1S5)S0 − (S0S2 − S1S3)(S4 − S1S2)
(6.60)

The relative transient amplitude v and w are then calculated:

v · st =
S1S3 − P (S4 − S1S2)

S2S4 − S1S5

(6.61)

w =
S0 + P · S1 + v · stS4

1 + 2v · st · P · S3 + P 2 + v2s2
tS5 + 2P · v · stS2

(6.62)

The corrected Al asymmetries for each detector are presented in Figure

6.7. A positive shift in the average over all detector asymmetries indicate that

there are additional transient signals not included in the fitting function. When
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Figure 6.7: The asymmetry ratio for Al, for each detector is averaged over all
good spin sequences in 2000 runs. The red line is the fit with the 48 detector
geometry factors.

the detector asymmetry was calculated for fitting functions with an extra

constant or a linear time depending term in addition to the exponential

transient, the asymmetry shift was still present.

Figure 6.7 presents the average relative transient amplitude and its

standard error that are read from 48 histograms at the end of the loop over

runs.The fitting parameters are A1 = (−1.31± 0.693) · 10−7,

B1 = (2.33± 0.69) · 10−7 and C = (−6.85± 0.42) · 10−7 , for a reduced

χ2=1.49 and goodness of the fit Q=0.017 . The error bars are calculated from

the error matrix at the end of the runs. The up-down and left-right asymmetries

are Aud = (−1.42± 0.75) · 10−7 and Alr = (2.53± 0.75) · 10−7. The relative

transient amplitude v and the decay parameter (q1 = exp(−1/τ)) are

calculated also from the fit , for each spin sequence. The results agree with the
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Figure 6.8: The relative transient amplitude is calculated for each accepted spin
sequence and each detector number from the minimization of the χ2 function.

transient amplitude and decay times extracted from the fit of the measured

transient signal when a 9 Volts battery was connected to the ADC inputs of the

12 sum/difference modules for a detector ring [78].

The uncertainty in the relative transient amplitude is due to both the

beam fluctuations and the counting statistics. The beam fluctuations hide out

the transient signal making the fit calculations at each spin sequence not

reliable.In Figure 6.9 the decay parameter is calculated for each detector and

each accepted spin sequence in the 2000 runs and saved in a histogram.

A plot of the pulse average detector voltage can be seen in Figure 6.10.

The average is done over all eight pulses in a spin sequence. For each good

spin sequence the fitting parameters w,P , v and q were calculated from the

minimization of the normalized χ2 function. After the four fitting parameters are

calculated, the relative fitting constant w was then multiplied with the average
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Figure 6.9: The average decay parameter over all accepted spin sequences is
calculated from 48 histograms.

detector signal in the spin sequence to calculate W in units of volts. This was

done for all good spin sequence in all runs.

One could conclude that the beam fluctuations makes the extraction of

the asymmetry from the fit not reliable. The scatter plot of the relative

amplitude calculated for each spin sequence is presented in Figure 6.11. The

addition of another linear transient term to the fitting function did not decrease

the spread in the relative transient amplitude.

The effect of the transient signals mixed with the detector rings sum and

difference signals cannot be eliminated from the fit of the eight pulse average

detector signals. A complete correction is possible in the ratio of opposite

detector signals for each time bin, if all the transient signals are included in the

fitting model. This procedure was described in the section 6.1.
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Figure 6.10: The average detector signal in volts is calculated over all good spin
sequences in 1850 Al runs.

Figure 6.11: A scatter plot of the relative transient amplitude versus the average
detector voltage in a spin sequence, is accumulated over 6.29 · 106 accepted
spin sequences.
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6.8 Asymmetry Measurements for Aluminum

The most important background contribution to the measurement of the

asymmetry in the ~n+ p→ d+ γ reaction are the gamma rays emitted from the

neutrons captured in the Al walls of the liquid H2 target and on the windows of

the SR. From the MCNP calculations done for the H2 target at SNS, the

background is expected to be about 15% of to the total measured asymmetry

with the H2 target ( [65]). The shift in the measured asymmetry due to the

background can be calculated if the asymmetry in Al is known.The Al

asymmetry is subtracted from the total asymmetry measured with the liquid H2

target. To measure the asymmetry in liquid H2 with an uncertainty better than

1 · 10−8 the measurement of the Al asymmetry have to be done with a precision

better than 4 · 10−8. If Np and Nb are the gamma rays yields from neutron

capture on H2 and Al walls respectively, then the total measured asymmetry is

equal with:

Araw · (Np +Nb) = Ap ·Np + Ab ·Nb (6.63)

The fraction of background signal divided with the proton signal is given by

ε = Nb/Np. This fraction can be calculated from MCNPX simulation and is

expected to depend on the ring number. After the Al asymmetry is measured,

the H2 asymmetry can be calculated:

Araw = Ap · (1− ε) + Ab · ε (6.64)

The statistical error in the asymmetry measured with the H2 target is also

increased due to the background asymmetry:

σp
2 =

σ2
raw

(1− ε)2
+ σ2

b ·
ε2

(1− ε)2
(6.65)
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The statistical errors in the asymmetry measured with the H2 target and Al

target runs are σraw and σb respectively. The required precision in the

measurement of the ~n+ p→ d+ γ asymmetry is σp = 10−8. The statistical

errors for Al are σb = 3.5 · 10−8. To get the required limit of statistical

uncertainty σp < 10−8 in the measurement of the asymmetry in

~n+ p→ d+ γ reaction, the statistical uncertainty in the asymmetry measured

with the liquid H2 target has to be 0.67 · 10−8 , or smaller. This requires about 6

months of continuous data collection.

The Al asymmetry is calculated for each accepted spin sequence, each

pair of opposite detectors and for each time bin in the range [T1,T2]. At each

spin sequence the asymmetry is averaged over time bins from T1 = 8 to

T2 = 38. If P = (P0 − P6)/2 is the parity calculated for a pair of opposite

detectors then P and −P are the asymmetries that were computed in the two

detector histograms, because the geometry factors for two opposite detectors

have opposite signs. The first and second detectors in a pair are always

located in the first half of the ring (beam right) and in the second half of the ring

(beam left) respectively. At the end of the runs the average asymmetry ratio

and the standard errors are read from the histograms. A number of 1957 good

Aluminum runs were analyzed. The asymmetry for Aluminum, not corrected for

the transient, is computed with the first geometry method and a detector signal

cut equal with 0.4 and presented in Figure 6.12. The three fitting parameters in

Figure 6.12 are: A1= (−6.62± 3.26)10−8 , B1= (2.08± 0.33)10−7 and the

offset C=(0.06± 1.9)10−8, for a reduced χ2= 1.49 and a goodness of the fit

Q=0.198. For a SR efficiency 0.98± 0.02 and a neutron polarization

0.94± 0.02, the up-down and left right asymmetries are equal with:

Aud = (−7.19± 3.55)10−8 , Alr = (2.25± 0.36)10−7
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Figure 6.12: The raw asymmetry for 1900 Al runs is calculated from the ratio of
the opposite detector signals with the first geometry mean method.

The transient corrected asymmetry was calculated from the fit at each

good spin sequence. The standard deviation in the ratio of opposite detector

signals was calculated for each pulse and over all accepted spin sequences.

The counting statistics contribution to the uncertainty in the asymmetry was

calculated from the ratio of opposite detector signals (equation 6.23), and were

used for the weights in the χ2 function. The corrected asymmetry for 1800 Al

runs are presented in Figure 6.13. The two asymmetries calculated with

transient correction, averaged over CUT4=0.4, 0.6 and 0.8 are equal with:

Aud = (−7.21± 1.06(stat)± 0.74(sys)) · 10−8,

Alr = (2.82± 0.13(stat)± 0.07(sys)) · 10−7.

The asymmetry ratio was calculated for each time bin, before the

correction of the transient, and averaged over all good spin sequences (Figure

6.14). As expected the time bin asymmetry ratio oscillates about zero in

142



Figure 6.13: The corrected asymmetry for 1800 Aluminum runs is calculated
from the ratio of the opposite detector signals with CUT3 equal with 0.3.

contrast with the time depending behavior of the asymmetry ratio calculated

from the arithmetic mean (the ratio of detector differences over detector sums).

This means that this procedure can correct the transient contribution. The

parity violating and parity conserving asymmetries in Al, not corrected for the

transient, is calculated for different values for the CUT4 on detector signal and

for 1943 runs, in figures 6.15 and 6.16 respectively.

For a CUT4 equal with 0.3 about 50% of the spin sequences are

rejected from analysis. Both up-down and left-right asymmetry decrease when

CUT4 is decreased below 0.35, because more spin sequences are eliminated

from analysis.

Between 0.4 and 0.6, the reduced χ2 is about 1.45. When CUT4 is 0.3

the reduced χ2 is 1.17. The quality of the fit is worse when CUT4 is equal or

bigger than 0.8. Therefore the contribution of the instrumental systematic
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Figure 6.14: The asymmetry ratio calculated for each time bin (from 6 to 38)
and averaged over all 6.49E6 spin sequences in the 1852 Al runs.

errors from the transient signals, becomes important in the absence of the cuts

placed on detector signal. The average of the two Al asymmetries is calculated

for detector cuts 0.35, 0.4, 0.6 and 0.8. The standard deviation of the four

asymmetries is the systematic error due to the transient signals:

Aud = (−6.98± 3.6(stat)± 0.9(sys)) · 10−8 and

Alr = (2.11± 0.36(stat)± 0.3(sys)) · 10−7.

The up-down and left-right Al asymmetry were calculated also with the

first geometry mean for CUT4=0.3, 0.4, 0.6, 0.8 and 1. The averaged over the

three pairs of asymmetries calculated for CUT4 equal with 0.4, 0.6 and 0.8 are

in agreement with the average asymmetries calculated with the second

geometry mean: Aud = (−6.43± 3.26(stat)± 0.81(sys)) · 10−8 and

Alr = (1.98± 0.33(stat)± 0.26(sys)) · 10−7.
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Figure 6.15: The up-down asymmetry for Aluminum calculated for different cuts
on detector signals.

Figure 6.16: The left-right asymmetry for Aluminum calculated for different cuts
on the detector signal.
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6.9 Asymmetry Measurements for Chlorine

The parity-violating asymmetry for Cl was measured before at ILL [43],

Saint Petersburg [46] and Los Alamos [45]. The measured parity violating

asymmetries were:

(−21.2± 1.7) · 10−6, (−27.8± 4.9) · 10−6and(−19.2± 1.2)10−6, respectively.

In this work the calculations were done for the 96 Cl data runs (from run

number 63098 to 63189). The Cl measurements were done before the Al

measurements (93 runs) and then close to the end of the Al data runs (132

runs). It was noticed that the asymmetry measured with the CCl4, gradually

decreased in time due to target leaks and evaporation. The parity-odd (PV )

and the parity-allowed (PC) asymmetries are calculated here for a neutron

polarization P=0.94 ± 0.02 and a SR efficiency e=0.98 ± 0.02.

First the Cl asymmetry are calculated for each detector with the

arithmetic mean procedure, Figure 6.18). The fitting parameters were

calculated from the minimization of the χ2 function with the detector geometry

factors for Cl: A1 = (−2.25± 0.03) · 10−5, B1 = (3.12± 3.15) · 10−7 and

C = (3.61± 1.90) · 10−7

The up-down and left-right asymmetries are:

Aud = (−2.44± 0.08) · 10−5, Alr = (3.42± 3.42) · 10−7.

In addition, the geometry mean procedure was used to calculate the

two asymmetries for detector pairs with the Cl target (Figure 6.17). The fitting

parameters are:

A1 = (−2.23± 0.02) · 10−5, B1 = (4.31± 1.93) · 10−7,
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Figure 6.17: The asymmetry ratio for the CCl4 target is calculated for each of
the 24 pairs of detectors with the geometry mean method.

C = (0.55± 1.12) · 10−7, with the reduced χ2=1.56, goodness of the fit 0.904.

The two fitting parameters are divided with the neutron polarization and SR

efficiency to get the parity-odd (up-down) and the parity-allowed (left-right)

asymmetries in Cl: Aud = (−2.42± 0.07) · 10−5 Alr = (4.68± 2.10) · 10−7

For the Cl target the correction of the false asymmetry due to the

transient was done in the ratio of each pair of opposite detectors. The parity,

the transient amplitudes, and the decay rate are calculated for each pair and

each spin sequence and written in four histograms. The average fitting

parameters are read from the histograms at the end of the loop over runs.The

uncertainty in the fitting parameters is calculated from the curvature matrix. If

ak and aj are fitting parameters and A(x) is the fitting function for the

147



Figure 6.18: The asymmetry ratio for the CCl4 target is calculated for the 48
detectors with the arithmetic mean method.

asymmetry then the elements of the curvature matrix are given by the relation:

αk,j =
N∑
i=1

1

σ2
i

· dA(xi)

dak
· dA(xi)

daj
(6.66)

The summation is over all time bins in the interval [T1, T2] and over all pairs of

pulses (k, j) with opposite spin, a total of (T2-T1+1)*16 points. In this relation σi

is the standard deviation of the measured asymmetry Ak,j,t. The uncertainties

in the fitting parameters are the square root of the diagonal elements in the

error matrix. From the χ2 function with the 48 detector geometry factors the

three fitting parameters are: A1 = (−22.65± 0.20)10−6 ,

B1 = (5.30± 1.98)10−7 , C = (−0.56± 1.20)10−7.
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Chapter 7

SUMMARY AND OUTLOOK

This work described the installation, commissioning and first asymmetry

measurements for the ~n+ p→ d+ γ experiment at the SNS, ORNL. The first

phase of this experiment was carried out at LANSCE. Some of the main

modifications needed to run the experiment at the SNS were presented in this

thesis: the polarization of the neutrons by transmission through a Super Mirror

Polarizer, and the building of a Compensation Magnet around the Super Mirror

Polarizer to decrease their total fringe field at the center of the detector array

[59].

Two procedures were used to calculate the asymmetry for detector pairs

for both Al and Cl targets. The most important systematic errors come from the

overlap of the Spin Sequencer transient signals with the detector signals

related to the neutron beam. The contribution of the transient to the false

asymmetry was identified in the calculation of the asymmetry from the ratio of

the difference and the sum detector signals in the arithmetic procedure. When

the asymmetry is calculated for a pair of opposite detectors the contribution of

the beam intensity fluctuations cancels out. The contribution of the transient is

significantly reduced when the asymmetry is calculated for each time bin from

the geometrical mean of the product of opposite detector signal ratios.

The measurements of the asymmetry for the Cl4C target were done to

check the sensitivity of the apparatus and the detector alignment relative to the

beam axis. The asymmetry was extracted from 96 data runs collected with a

thin Cl4C target placed in the center of the detector array. The results are

presented in table 7.1. The up-down asymmetry is two order of magnitudes
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bigger than the left-right asymmetry. For this reason the asymmetry for Cl can

be calculated with both arithmetical and geometrical methods. The present

result agrees well with previous measurements and it is the most precise

measurement up to now.

Table 7.1: Parity-violating (up-down) and parity-conserving (right-left) asymme-
tries for Cl.

Method Target Aud
10−5

Alr
10−7

χ2

reduced
Reference

Geometry Cl −2.42±0.07 4.68± 2.10 1.2 this work
Arithmetic Cl −2.44±0.08 3.42± 3.42 2.21 this work
Arithmetic Cl −2.12±0.17 - - [43]
Arithmetic Cl −2.78±0.49 - - [46]
Arithmetic Cl −1.9± 0.2 −1± 2 - [40]

For the Al target the parity-violating up-down asymmetry is about eight

times smaller than the parity-conserving, left-right asymmetry. In table 7.2 the

asymmetries obtained in the present work are compared with those measured

in previous experiments. Because the up-down asymmetry for Al is smaller

than 10−7 the contribution of the transients had to be greatly reduced. To this

end the asymmetry was calculated only for detector pairs from the geometry

mean of the ratio of detector signals at each time bin. Two contributions to the

false asymmetry were identified from the measurement of the sum and

difference of module detector signals. The first contribution is related with the

exponential transient decay and was corrected from the fit of the detector ratio

signals. The second contribution was discovered in the measurements of the

detector signals exposed to the two detectors LEDs in the absence of the

neutron beam. The asymmetry calculation of Al was derived from the fit of the

detector signal ratio written as a function of time bins and for each spin

sequence. The systematic errors related with the interaction of the neutron
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spin with the magnetic field were calculated both in the vertical and horizontal

direction.

Table 7.2: The raw and the corrected asymmetry ratio for Al. The corrected
asymmetry is Geometry1 (stat.only)

Method Target Aud
10−8

Alr
10−7

χ2

reduced
Reference

Geometry2 Al −6.98± 3.60 2.11± 0.36 1.45 this work
Geometry2
(stat.only)

Al −7.21± 1.06 2.82± 0.13 21 this work

Geometry1 Al −6.43± 3.26 1.98± 0.33 1.46 this work
Arithmetic Al −8.0± 28 −2.0± 3.0 - [40]

The present Al results for the parity violation up-down asymmetry are

consistent with previous measurements and they are significantly more

precise. The statistical errors for this observable are smaller than σb = 4 · 10−8.

If the asymmetry with the H2 target is be measured with an uncertainty smaller

than 10−8 then the uncertainty in the calculated proton asymmetry would be

σp = 1.35 · 10−8. Thus, this will allow the first statistically significant

measurement of the asymmetry in the ~n+ p→ d+ γ reaction with the present

apparatus at the SNS.

Three physical processes can contribute to the left-right asymmetry

related with the parity-conserving scalar ~kγ · (~sn × ~kn). The first process is due

to the interaction of the neutron spin with the magnetic field gradients (the

Stern Gerlach effect). Due to this interaction the center of the neutron beam is

displaced along the positive or negative direction of the vertical axis depending

on the direction of the spin. The displacement was calculated for all energies of

the neutrons, from the measured field gradients in the detector volume. The

false asymmetry due to this displacement is smaller than 10−8 and is therefore

negligible compared with the statistical uncertainties. The second process,
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called the Mott- Schwinger effect, is due to the spin-orbit interaction of the

neutron spin with the electric field of the nucleus that is moving in the reference

frame of the neutron. In this case the spin dependent shift in the beam center

is due to both the electromagnetic and the strong spin-orbit interactions [61].

For Al the electromagnetic part of the left-right asymmetry is between 2 · 10−8

and 6 · 10−8 for neutron energies between 2 meV and 14 meV. However for this

energy range the inelastic scattering dominates the imaginary part of the

scattering amplitude and the contribution of the strong spin-orbit interaction is

important. The interference between the electromagnetic spin-orbit scattering

and the strong spin-orbit elastic and inelastic scattering amplitudes in Al

increases the total analyzing power to 1.4 · 10−7 [61]. The third contribution is

due to the parity-conserving part in the direct neutron capture in Al. This

contribution has not been calculated for Al. For the ~n+ p→ d+ γ reaction the

asymmetry due to this contribution [29] is equal with 0.67 · 10−8. For Al the

direct capture mechanism for slow neutrons was considered in the calculation

of the cross section [76]. It is expected that the present result will stimulate

further theoretical work.
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APPENDIX A

Asymmetry Calculation from the Ratio of Detector Signals
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A.1 Introduction

Two geometry mean procedures for the calculation of the asymmetry
are discussed in this appendix. The correction of the transient signal is based
on the minimization of the χ2 function derived from the ratio of opposite
detector signals for each time bin from T1=8 to T2=38. From the minimum of
the χ2 function, the parity, the transient amplitude and the transient decay rate
are calculated for each spin sequence and for each detector. At the end of all
the runs the uncertainty in the fitting parameters are calculated from the error
matrix. The contributions of the counting statistics to the statistical uncertainty
is calculated from the relative standard deviation of the opposite detector
signals.

A.2 The First Geometry Mean

There are six pairs of opposite detectors in each ring. In this section the
calculations are done for the two opposite detectors 0 and 6 , in ring 0. The
results are valid for any pair of opposite detectors. For each accepted spin
sequence the ratio of opposite detector signals D0(k, t)/D6(k, t) is calculated
at each time bin t between T1 and T2 and each pulse k in the spin sequence.
The ratio is multiplied with the inverted ratio of the detector signals D̄6(t)/D̄0(t)
at the same time bin, where D̄0,6(t) are the average of the detector signals at
time t over the eight pulses in the spin sequence.

Consider fd the detector gain and Ik(t) the average gamma flux (at
pulse k and time bin t) over all directions of the initial gamma ray momentum.
The transient model is a simple exponential decay. The transient amplitude
and decay times are Vd and τ respectively. The procedure presented in here
allows the calculation of the corrected detector asymmetry Pd(t) at each time t.

D0(k, t)

D6(k, t)
=
f0Ik(t)(1 + P0,t · sk) + V0 · e−(t+kT )/τ

f6Ik(t)(1 + P6,t · sk) + V6 · e−(t+kT )/τ
(A.1)

Consider the time t and decay time τ in units of time bins and T=40 the
number of time bins in a pulse. For clarity the following quantities are
introduced:

q1 = exp(−1/τ) ; q = exp(−T/τ) = q40
1 ; (A.2)

s8 =
1

8

7∑
k=0

qk ; st =

∑T2
t=T1 q

t
1

T2 − T1 + 1
(A.3)
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The average detector over the spin sequence and the average detector voltage
at time bin t over all eight pulses in a spin sequence are given by the relations:

D̄d =
1

T2 − T1 + 1

T2∑
t=T1

D̄d(t) = fdĪ + Vds8st (A.4)

D̄d(t) =
1

8

7∑
k=0

Dd(k, t). (A.5)

At time bin t and pulse k, the ratio of the detector signals corrected for the
transient is given by the ratio:

D0(k, t)− V0q
t
1q
k

D6(k, t)− V6qt1q
k

=
f0Ik(t)(1 + P0,t · sk)
f6Ik(t)(1 + P6,t · sk)

(A.6)

To cancel the detector gains the ratio of the corrected detector signals
(equation A.6) is multiplied with the inverse ratio of sequence-average
corrected-detector signals at the same time bin t:

D0(k, t)− V0q
t
1q
k

D6(k, t)− V6qt1q
k
· D̄6(t)− V6 · s8q

t
1

D̄0(t)− V0 · s8qt1
=
f0Ik(t)(1 + P0,t · sk)
f6Ik(t)(1 + P6,t · sk)

· f6Ī(t)

f0Ī(t)
(A.7)

The transient amplitude divided with the pulse average of the transient
corrected detector signal, can be written for each detector in the pair:

v0,6 =
V0,6

D̄0,6

(A.8)

V0,6

D0,6(k, t)
= v0,6

D̄0,6

D0,6(k, t)
≈ v0,6

D̄0,6

D̄0,6(t)
(A.9)

Introduce the product of the detector signal ratio and average detector signal
ratio, for each time bin:

R0,6(k, t) =
D0(k, t)

D6(k, t)

D̄6(t)

D̄0(t)
(A.10)

The product of relative transient voltages is equal with:

Q0,6(k, t) =
1− v6q

t
1q
k D̄6

D6(k,t)

1− v0qt1q
k D̄0

D0(k,t)

· 1− v0q
t
1s8

1− v6qt1s8

(A.11)

Q0,6(k, t) = 1 + v0q
t
1

(
qk

D̄0

D0(k, t)
− s8

)
− v6q

t
1

(
qk

D̄6

D6(k, t)
− s8

)
(A.12)
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R0,6(k, t)

Q0,6(k, t)
=

1 + P0,t · sk
1 + P6,t · sk

(A.13)

The asymmetry P0,t = −P6,t in the presence of the transient is calculated from
equation A.13:

P0,t · sk =
R0,6(k, t)−Q0,6(k, t)

R0,6(k, t) +Q0,6(k, t)
(A.14)

If the transient is neglected, the uncorrected asymmetry is equal with:

A0,6(k, t) =
R0,6(k, t)− 1

R0,6(k, t) + 1
(A.15)

Taking in account the transient signal, the corrected asymmetry can be written
as a function of the uncorrected asymmetry:

P0,t · sk = A0,6 − v0q
t
1(

qkD̄0

D̄0(k, t)
− s8)

1− A2
0,6

2
+ v6q

t
1(

qkD̄6

D̄6(k, t)
− s8)

1− A2
0,6

2
(A.16)

The asymmetry for Al target is smaller than 10−6. Therefore the second order
term A0,6 < 10−12 is negligible compared with the first order terms and can be
neglected. There are four pulses with neutron spin up (sk = 1 for k=1, 2, 4, 7)
and four pulses with neutron spin down (sj = −1 for j=0, 3, 5,6). It is
convenient to calculate the average asymmetry for the two groups of pulses in
each spin sequence:

P↑,t =
1

4

∑
k

A0,6(k, t)− v0q
t
1

8

∑
k

(
qkD̄0

D0(k, t)
− s8

)
+
v6q

t
1

8

∑
k

(
qkD̄6

D6(k, t)
− s8

)
(A.17)

P↓,t =
1

4

∑
j

A0,6(j, t)− v0q
t
1

8

∑
j

(
qjD̄0

D0(j, t)
− s8

)
+
v6q

t
1

8

∑
j

(
qjD̄6

D6(j, t)
− s8

)
(A.18)

The average corrected asymmetry over all eight pulses in spin sequence, at
time bin t is P̄ (t) = (P↑,t − P↓,t)/2. The average uncorrected asymmetry is
Ā(t) = (

∑
j A0,6(j, t)−

∑
k A0,6(k, t))/8 at each time bin. The sum of the

equations A.17 and A.18 is zero because the sum of the asymmetries over all
pulses in a spin sequence is expected to be zero. Consider
Ē(t) = (

∑
j A0,6(j, t) +

∑
k A(0, 6)(k, t))/8 and four sums that depend on time

bin and the decay parameter:

A0(t) =
1

8

∑
k

(
qk

D̄0

D0(k, t)
− s8

)
; A6(t) =

1

8

∑
k

(
qk

D̄6

D6(k, t)
− s8

)
(A.19)

B0(t) =
1

8

∑
j

(
qj

D̄0

D0(j, t)
− s8

)
; B6(t) =

1

8

∑
j

(
qj

D̄6

D6(j, t)
− s8

)
. (A.20)

163



The relative transient amplitudes v0 and v6 of the transient signal can be
calculated from the minimization of the χ2

1 function:

χ2
1 =

∑
t

(
Ē(t)− v0q

t
1

2
(A0(t) +B0(t)) +

v6q
t
1

2
(A6(t) +B6(t))

)2

(A.21)

The fit was done for each accepted spin sequence. The fitting
parameters v0 and v6 were calculated from the equations dχ2

1/dv0 = 0 and
dχ2

1/dv6 = 0 . The transient parameter q1 was calculated by iterations: q1 was
decreased from 0.98 and 0.94 with a 0.002 step.The decay parameter q1 and
the relative amplitudes v0 and v6 were stored in histograms. The average fitting
parameter q1 was about 0.96 for each detector, in agreement with the
measurements of the detector signals in the absence of the neutron beam, with
SR and DAQ in the beam-on operating condition, and with a battery connected
to the 12 ADC inputs for each detector ring. The corrected asymmetry P (t) at
each time bin was calculated from the equation:

P (t) = A(t)− 1

2
v0q1(A0(t)−B0(t)) +

1

2
v6q

t
1(A6(t) +B6(t)) (A.22)

The time average of the corrected and uncorrected asymmetries were
calculated at each spin sequence:

P̄ =

∑T2
t=T1

P (t)

T2 − T1 + 1
(A.23)

Ā =

∑T2
t=T1

A(t)

T2 − T1 + 1
(A.24)

For opposite detectors the parity terms are equal and opposite
P6(t) = −P0(t) at each time bin. For each accepted spin-sequence the
algorithm calculated the time average corrected detector-pair asymmetry P̄
and stored the two corrected detector-asymmetries P̄0 = P̄ and P̄6 = −P̄ in
two histograms. For the same spin sequence the uncorrected time average
detector-asymmetries Ā0 = Ā and Ā6 = −Ā were stored in separate
histograms. The calculations were done for all 24 detector pairs and for about
2000 Al runs. At the end of all runs the average and the root mean square
(rms(k), k=0 up to 47) of the 48 detector-asymmetry histograms were
calculated and used to extract the optimum fitting parameters (A1, B1, C) from
a second χ2

2 function that depends on all 48 geometry factors:

χ2
2 =

47∑
k=0

1

σ2
k

(
P̄k − (GUD

k A1 +GLR
k B1 + C)

)2
(A.25)
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The variance is equal with σ2
k = Ns/rms(k)2 with Ns the number of accepted

spin sequences in all runs. The parity-violating asymmetry AUD and
parity-conserving asymmetry ALR are calculated by dividing the fitting
parameters A1 and B1 with the neutron polarization Pn = 0.94 and the
efficiency of the Spin Rotator ε = 0.98. The calculation of the uncorrected
asymmetries was done with the χ2

2 function in equation A.25 with P̄k replaced
with the uncorrected detector-asymmetry Āk.

A.3 The Second Geometry Mean

For each accepted spin sequences, and each time bin, the asymmetry
can also be calculated from the product of the signal ratio of two opposite
detectors in a ring averaged over four pulses with neutron spin up times the
inverted signal ratio of the same detectors averaged over the other four pulses
with neutron spin down. Consider the two opposite detectors 0 and 6 in the first
ring. For a neutron pulse k with spin sk=+1 the ratio of the signals of a pair for
the two opposite is equal with:

D0(k, t)

D6(k, t)
=
f0Ik(t)(1 + P0(t)) + V0 · e−(t+kT )/τ

f6Ik(t)(1 + P6(t)) + V6 · e−(t+kT )/τ
(A.26)

To cancel the multiplicative detector gains, the above ratio is multiplied
with the inverse of the signal ratio for the same pair of detectors for a neutron
pulse j with opposite spin:

D6(j, t)

D0(j, t)
=
f6Ij(t)(1− P6(t)) + V6 · e−(t+kT )/τ

f0Ij(t)(1− P0(t)) + V0 · e−(t+kT )/τ
(A.27)

The above ratios can be written in terms of the relative transient amplitudes
v0 = V0/D̄0 and v6 = V6/D̄6. The numerator and denominator are divided with
average gamma ray yield at time t.

D0(k, t)

D6(k, t)
=

1 + P0(t) + v0
f0·Ik(t)

e−(t+kT )/τ

1 + P6(t) + v6
f6·Ik(t)

e−(t+kT )/τ
(A.28)

D6(j, t)

D0(j, t)
=

1− P6(t) + v6
f6·Ij(t)e

−(t+jT )/τ

1− P0(t) + v0
f0·Ij(t)e

−(t+jT )/τ
(A.29)

The notation is simplified by introducing the time functions v0(t) and
v6(t):

u0,6(t) = v0,6e
−t/τ D̄0,6

f0,6Ik(t)
(A.30)
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qk = e−k·T/τ ; qj = e−j·T/τ (A.31)

D0(k, t)

D6(k, t)
· D6(j, t)

D0(j, t)
=

1 + P0(t) + u0(t)qk

1 + P6(t) + u6(t)qk
· 1− P6(t) + u6(t)qj

1− P0(t) + u0(t)qj
(A.32)

The gamma yield in the absence of the asymmetry Ik(t) depends on the pulse
number (k) in a spin sequence. For each time bin this term can be
approximated with the average gamma yield for the spin sequence Ī(t). The
average detector signal D0(t) in a spin sequence is the average of the eight
detector signals D0(k, t) at the same time bin t:

D0(t) =
1

8

7∑
k=0

D0(k, t) =
1

8

7∑
k=0

f0Ik(t) + V0e
−t/τ 1

8

∑
k

qk (A.33)

The parity term cancel in the sum over the eight pulses in a spin sequence
because the term Ik(t) is multiplied with the parity that has opposite signs for
pulses with spin up or down. Therefore the term f0Ik(t) can be approximated
with the average over the eight pulses:

f0Ik(t) ∼= f0Ī(t) = D0(t)− V0e
−t/τq8 (A.34)

D̄0

r0Ik(t)
∼=

D̄0

D0(t)− V0e−t/τq8

(A.35)

To decrease the computing time the average detector ratios are
calculated for the four pulses and four pulses with spin down:〈

D↑,0(t)

D↑,6(t)

〉
= 1 + 〈(P0(t)− P6(t))〉+ u0,t

∑
k,↑ q

k

4
− u6,t

∑
k,↑ q

k

4
(A.36)

〈
D6,↓(t)

D0,↓(t)

〉
= 1− 〈(P6(t)− P0(t))〉+ u6,t

∑
j,↓ q

j

4
− u0,t

∑
j,↓ q

j

4
(A.37)

For opposite detectors P6(t) = - P0(t). The second order terms P0
2,

u0,6
2 and P0 · u0,6 can be neglected in the product of the two detector signals

ratio:〈
D↑,0(t)

D↑,6(t)

〉〈
D↓,6(t)

D↓,0(t)

〉
= 1+2(P0(t)−P6(t))+(u0,t−u6,t)

(∑
k,↑ q

k

4
−
∑

j,↓ q
j

4

)
(A.38)

For each spin sequence and each time bin, the product of the average detector
ratios is calculated:

R0,6(t) =

〈
D0,↑(t)

D6,↑(t)

〉
·
〈
D6,↓(t)

D0,↓(t)

〉
(A.39)
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The asymmetry term P0 is considered constant over the time bins [T1,
T2]. The transient decay parameter is q1=exp (-1/τ ) with the decay time in units
of time bins. With this notation T = 40 is the number of time bins in one pulse
and q = e−T/τ =q1

40 . The asymmetry ratio for each time bin in the time interval
[T1, T2] is calculated from the ratio Q(k, t) = (

√
R0,6(t)− 1)/(

√
R0,6(t) + 1):

Q0,6(t) =
P0(t)− P6(t)

2
+
u0(t)− u6(t)

4

(∑
k,↑ q

k

4
−
∑

j,↓ q
j

4

)
(A.40)

To calculate the raw asymmetry for each accepted spin sequence the
time average of the ratio Q0,6(t) from T1 to T2 is saved in a histogram. At the
end of the loop over runs, the average and the standard deviation of the four 24
histograms are read. Because the calculated transient amplitude had a
gaussian distribution, the asymmetry was calculated at each spin sequence to
reduced the contribution of the fluctuations in the transient amplitude.

The corrected asymmetry P0 , the relative transient amplitudes v0, v6,
the transient decay rate q1 , are calculated from the minimization of the χ2

function for each spin sequence:

χ2
e =

t=T2∑
t=T1

(
Q0,6(t)− P0(t)− u0(t)− u6(t)

16

(∑
k,↑

qk −
∑
j,↓

qj

))2

(A.41)

The time average of each detector pair asymmetry is calculated over
the time bins from T1 to T2 , for each spin -sequence and saved in a histogram.
At the end of all the runs the average and the standard deviation of the 24
histograms are read. The transient contribution is reduced in the asymmetry
ratio and the shift in the asymmetry is much smaller than the fitting errors.

If the fit is done only at the end of the runs, the χ2 function is a sum over
all spin sequences and over the time bins.The weights used in this function are
the variances of the asymmetry ratio Q0,6(t) and can be calculated at the end
of the runs from histograms of the raw asymmetry. All the results presented
here were obtained by calculating the asymmetry at each spin sequence and
the average asymmetry for each pair was read from histograms at the end of
all runs.

χ2
e =

t2∑
t=t1

1

σ2
k,j,t

(
A0,6(t)− P0 − (

D̄0

D0(t)
v0 −

D̄6

D6(t)
v6)qt1

qk − qj

4

)2

(A.42)

The number of degrees of liberty is (T2-T1 + 1)− 4. This procedure was used
to calculate the corrected asymmetry for Al and Cl.
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APPENDIX B

The Neutron Electric Dipole Moment Experiment at SNS
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B.1 Introduction

The neutron has a well known magnetic moment and zero charge. Due
to its three quarks structure, the neutron can have an electric dipole moment if
the centers of the negative and positive charge distributions do not coincide.
However an electric dipole moment of the neutron has not been observed and
it is expected to be less than 10−33 e · cm in the Standard Model, five orders of
magnitude smaller than the current experimental limits. Other theoretical
models that extend the Standard Models (the Supersymmetry, Higgs fields and
Left-Right Symmetry) predict a neutron Electric Dipole Moment (nEDM) of
10−26 to 10−28 e· cm that could be measured. A measurement of an nEDM at
this level could validate these theoretical models and explain the unbalance of
the matter and antimatter in the universe. A non-zero electric dipole moment of
the neutron violates both the time reversal invariance and the charge and parity
(CP) symmetry. This can be seen by looking to the equation of the potential
energy of a neutron placed in the magnetic and electric fields.

H = − ~E · ~p− µ · ~B · ~S (B.1)

Here ~p and µ~S are the electric and the magnetic dipole moments of the
neutron. The electric and magnetic fields are ~E and ~B respectively.

During the experiment the electric and magnetic fields will be aligned in
the same direction with very good precision such that the direction of the
neutron spin is aligned with the direction of the electric dipole moment. Under a
parity transformation the electric dipole moment and the electric fields are
reversed but the direction of the neutron magnetic moment and of the magnetic
field do not change. Under the time reversal operation both the magnetic field
and the magnetic moment change direction but the electric field and dipole
moment are conserved. Therefore if there is a change in the neutron potential
energy after a change in the direction of the electric fields then it has to be due
to a non-zero electric dipole moment if all the other systematic errors are ruled
out.

The goal of the neutron electric dipole moment experiment at the SNS is
to measure the neutron electric dipole moment or to establish a new limit at the
level 10−28 e· cm. The experiment has to solve technical problems related with
the stability of the high electric field inside the measurement cell, the transport
of the polarized 3He, with negligible depolarization, from the Atomic Beam
Source (ABS) located outside the nEDM magnetic shields to the injection cell
in the Upper Cryostat and finally to the measurement cells in the Lower
Cryostat. The systematic errors related with the motion of the neutron spin in
non-uniform magnetic field have to be eliminated by reducing the magnetic
field gradients inside the measurement cell to less than 10−6 (1/cm) [79].
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Next sections present the results of the finite-element calculations done
in Opera 3D, TOSCA, (Vector Fields) to calculate the attenuation factor of the
four Mumetal shields plus one Superconducting shield of the lower cryostat,
the three Mumetal shields of the upper cryostat, the calculation of the magnetic
field gradient inside the measurement cells and the spin transport of the
polarized 3He from the exit of a quadrupole magnet ABS to the center of the
injection cell.

B.2 The Design of the Coils

In order to decrease the Earth magnetic field gradients inside the
measurement cells, the lower cryostat has five concentric cylnidrical shields:
four ferromagnetic shields and one superconducting shields. The cylindrical
superconducting shield has radius 69 cm and length 415 cm. The Metglas
shield has a radius 67 cm and length 415 cm. The three external Mumetal
shields, 80 cm long, have radii 60, 65 and 70 inches.

In the Tosca model there are 40 coils and 8 correction coils placed on
the surface of a cylinder 415 cm long, and radius 65 cm surrounded by the
cylindrical Metglas shield. Each coil has a saddle shape: there are two straight
wires parallel with the axis of the cylinder and two ending arcs bended around
the rim of the cylindrical support. The resulting coils, the superconducting,
Metglas and Mumetal shields have the same axis.

The position of each coil is given by the angle θJ (J=1... N/2) and by the
coordinates xJ and yJ of their center. The electric current in the straight wires
above an below the xz plane is coming out and enters into the page
respectively. The direction of the main magnetic field close to the center of the
coils is along the x axis. The coil is named cosine theta coil if the angle for the
straight wire on the cylindrical surface is given by the formula:

sin θJ =
xJ
R

=
2J − 1

N
, J = 1, 2...N/2 (B.2)

B.3 The Calculation of the Magnetic Field of the Upper Cryostat

The beam of 3He atoms is polarized by passing through the ABS
quadrupole magnet 128.6 cm long placed outside of the upper cryostat. Only
the 3He atoms with the same direction of the spin normal to the ABS axis can
pass through the magnet. The axis of the ABS magnet is at 45◦ relative to the
axis of the upper cryostat. The polarized 3He atoms have to move from the exit
of the ABS to the injection cell, located close to the center of the upper cryostat
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cosine theta coils. Along their path the atoms move in the magnetic field of the
transport coils. The geometry of these coils and their optimum electric currents
were designed with finite-element analysis performed in Opera3D. The
calculations allowed to evaluate the change in the magnetic field inside the
injection cell due to the ABS quadrupole. The 99% polarized 3He atoms are
collected in the injection cell located on the axis and close to the center of the
cylindrical coils of the upper cryostat with three Mumetal shields. These coils
provide a uniform magnetic field of the injection cell where the polarization of
the 3He atoms has to be preserved during the storage time of about 240
seconds. The beam of polarized atoms enters at 45◦ incidence angle on the
surface of the super-fluid 4He that fills the Helium injection cell. At the end of
the collection time the super-fluid Helium is transferred to the two
measurement cells inside the lower cryostat. Inside these cells, the magnetic
field gradient along the direction of the main field x has to be smaller than 10−6

(G/cm) for a field in the center equal with 10 mG.

The magnetic field of the upper cryostat coils can increase the
asymmetry and the field gradients in the two cells of the lower cryostat.
Finite-element calculations of a model with upper and lower cryostat were done
to estimate the maximum current in the upper cryostat coils for which the field
gradient inside the lower cryostat is still within specification. The relaxation
time of 3He depends on the magnetic field gradients in the upper cryostat
injection cell and was calculated for a temperature equal with 0.35 K inside the
injection cell of the upper cryostat coils and transport solenoids. The average
field gradient dBx/dx in the measurement cells was calculated for a range of
electric currents the upper cryostat coils. The magnetic field gradients in the
region of the He injection cell were calculated in the presence of the ABS
magnet, transport solenoids, Mumetal and Metglas shields.

The model considered in this section includes the lower and the upper
cosine theta coils, the transport solenoids and the Metglas and
Superconducting shields. The model does not have the three external Mumetal
shields of the lower cryostat (with radii 106.68 cm, 121.92 cm, 137.16 cm), and
the three external Mumetal shields of the upper cryostat (with radii 95.25 cm,
105.41 cm, 115.57 cm). The lower cryostat has 48 modified B0 coils (R=65 cm,
K=0.003, L=416 cm) with the first Metglas shield (R=67 cm, L=416 cm, 0.025
cm thick),and the superconducting shield (R=69 cm, L=416 cm, 0.051 cm
thick). The upper cryostat has 24 modified cosine theta coils (R=20.8 cm,
K=-0.004) inside a cylindrical Metglas shield (R=21.5 cm, L=134 cm, 0.051
thick, with two gaps 6 cm wide). The center of the 24 coils is on the axis of the
cylindrical Metglas shield with two gaps. The axis of the coils coincide with the
axis of the Metglas shield. The center of the upper cryostat 24 cosine theta
coils and their Metglas shield is located at xc=41 cm, yc=137 cm and zc=50 cm
if the origin of the reference system is at the intersection of the vertical axis of
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the upper cryostat external shields and the horizontal axis of the external
shields of the lower cryostat. The role of the external Mumetal shields is to
screen the external magnetic field of the Earth and of the ABS quadrupole
magnet. With J the coil number, between 1 and N=20, the angles of the upper
cryostat cylindrical coils are given by the relation:

tan θJ =
(1−K1)2√
(2J−1)2

N2 − 1
(B.3)

Here the angular parameter K1 is a number between -1 and 1. The
magnetic field gradients in the central region of the upper cryostat N=20 and
M=4 coils depend on the angular parameters K1 and K2 of the N and M coils
respectively. The extra M=4 coils are placed on the same cylindrical support
like the N=20 coils. Their angular position on the support cylinder is given by
the above equation with K1 replaced by K2 and N replaced with M.

According to the finite-element calculations done for N=20 cylindrical
coils placed inside the cylindrical Metglas shield with two gaps (12 cm wide),
the field gradients close to the center of the coils decrease when K1 is
decreased from 0 to less then -0.04. However the parameter K1 can not be
smaller than -0.04 because in this case the distance between the last two pairs
of coils become smaller than the gap width (12 cm). For this reason the extra
M=4 coils with the same radius like the N=20 coils are introduced in the model.
The optimum angular parameter K2 of the M coils was estimated by computing
the field gradients for different values of K2.

The polarized 3He atoms that exit from the ABS magnet enter the
magnetic field of three transport solenoids TR1, TR2, TR3 in Figure B.1. The
first transport solenoid TR1 is 79 cm long. The second solenoid TR2 (radius
R=6.3 cm) and the third solenoids TR3 (radius R=10.3 cm) are 59 cm long and
are coaxial. The solenoids are modeled like one ideal cylindrical coil with the
outside radius 0.5 cm bigger than the inner radius.There are 24 cosine theta
coils (R=20.8 cm, L=125 cm) inside the Metglas shield of the upper cryostat
(R=21.5 cm, L=134 cm, with two gaps 12 cm wide) centered at xc=41 cm,
Yc=137 cm and zc=50 cm.The polarized 3He beam coming from ABS
quadrupole magnet passes along the axis of the transport solenoids and
reaches the injection cell centered at 16 cm above the center of the 24 coils.

In the center of the first transport solenoid TR1 the field is about equal
with the field in the center of the 24 cosine theta coils. In the center of the
second transport solenoid TR2 the field varies between 450 mG and 1000 mG.
In order to cancel the external fringe field on the common axis, the current in
the third transport solenoid TR3 flows in the opposite direction to the current in
the second transport solenoid TR2. The common axis of the ABS quadrupole
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Figure B.1: The coils located inside the magnetic shields of the lower cryostat
and upper cryostat.

magnet and transport solenoids makes a 45◦ angle with the axis of the upper
cryostat cosine theta coils.

The axes of the two cylindrical shields of the Upper and Lower Cryostat
are normal. The model was built in Preprocessor by using three meshes. The
base planes of the first and second mesh are parallel with the vertical xy plane
normal to the axis z of the lower cryostat . After the base plane was completed
the two meshes were extruded in the z direction. The base plane of the third
mesh is in the horizontal xz plane. The third mesh was extruded in the vertical
y direction to model the cylindrical Metglas shield (R=21.5 cm) with two gaps
12 cm wide. The vertical axis of the third mesh intersects the horizontal xz
plane in x=41 cm, y=0 cm,z=-52 cm.

The angular parameter of the lower cryostat N=40 cosine theta coils is
K=0.003 and their radius and length are 65 cm and 416 cm respectively. On
the same cylinder there are another 4 pairs of gradient coils with the same
position and length like the 3rd, 8th , 13th and 18th pairs of B0 coils. The
magnetic field in the two measurement cells was calculated first for a simple
model that has only the lower cryostat B0 coils with the Metglas and
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Superconducting shields with no end caps. For this model the magnetic field is
normal to the vertical plane yz and tangent to the horizontal planes xz and the
plane xy passing through of the center of the B0 coils. In this case the smallest
volume average field gradient < dBx/dx > /B0 in the measurement cells of
the lower cryostat is obtained when the electric current in the 8 gradient coils
(I8) is 1/10 the current in the 40 coils (I40). The magnetic field variation in the
measurement cell is the ratio (B −B0)/B0 (%) where B0 is the field in the
center of the cell. The average relative field variation, calculated along
directions parallel with z axis and for three magnetic fields B1 in the center of
the upper cryostat coils is presented in Figure B.2. The average field gradient
dBx/dx calculated on three vertical planes (z=0, 10 , 25 cm and y=0cm, 1cm
. . . 5 cm) and for three values of the magnetic field B1 in the center of the upper
cryostat coils and of the transfer solenoids. for the same magnetic fields in the
center of the upper cryostat coils is presented in Figure B.3.

In these calculations the magnetic field in the center of the lower
cryostat B0 coils is 22 mG and the electric currents in the lower cryostat 48
coils are I40=60 mA and I8=10 mA respectively. If the electric currents in the 24
coils of the upper cryostat and in the transport solenoids is switched off, there
is still a residual magnetic fields (0.12 mG) in the center of the upper cryostat
coils that is due to the 22 mG field in the measurement cells of the lower
cryostat. Even for zero currents in the upper cryostat coils and solenoids, the
field in the measurement cells has a small asymmetry in the z direction, due to
the presence of the upper cryostat Metglas shield. The ratio between the
magnetic field B1 in the center of the injection cell and the fields BR1, BR2 in
the center of the transport solenoids can be maintained constant if the 24 coils
are connected in series with the coils of the transport solenoids.

If the field inside the measurement cells is asymmetric along the z and
y direction then the statistical errors related to the geometric phase of the spin
precession depends also on the field gradients dBy/dy and dBz/dz. The
average magnetic field gradients divided with the field in the center of the cell
are calculated along directions parallel with the vertical axis in Figure B.4 for
the same magnetic fields in the center of the upper cryostat coils B1 and
transport solenoids BR1, BR2 considered above. For zero current in the upper
cryostat coils and transport solenoids and B0=22.1 mG in the center of the
lower cryostat coils, the fringe fields in the center of the upper cryostat coils
and two transport solenoids are B1=0.2 mG, BR1=0.033 mG and BR2=0.0205
mG respectively. The magnetic field in the center of the measurement cells is
about 22 mG. For the range of the fields B1, BR1, BR2 considered, the
average gradient < dBy/dy > /B0 increases linearly with the increase in the
field of the upper cryostat coils B1. For B1=36.8 mG, the field gradients in the
two cells are < dBy/dy > /B0 (left cell) = 1.112 · 10−6 (1/cm) and
< dBy/dy > /B0 (right cell) = 1.158 · 10−6 (1/cm).
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Figure B.2: The magnetic field variation in the two measurement cells are cal-
culated for two magnetic fields B1 in the center of the upper cryostat shields.

Figure B.3: The average magnetic field gradient dBx/dx/B0 is calculated in the
right and left measurement cells and for three currents in the upper cryostat
coils and transfer solenoids.

175



Figure B.4: The average magnetic field gradients dBy/dy/B0 calculated in the
left and right measurement cells for three currents in the upper cryostat coils
and transport solenoids.

In contrast to the significant increase of the gradients in the above two
figures, the volume average of the magnetic field gradient in the z direction
{dBz/dz/B0} changes less significantly in response to the increase in the B1

field from 0 to 73.7 mG (Figure B.5 ). In this figure the average relative field
gradient is calculated along directions parallel with the z axis, inside the
boundaries of the left and right measurement cells.

The longitudinal relaxation time T1 of 3He inside the injection cell at 0.35
K and collection volume AB1 placed on the axis of the upper cryostat 24
cosine theta coils is calculated in Figure B.6 for a field B0=22 mG in the center
of the lower cryostat coils and two sets of magnetic fields in the upper cryostat
(B1) and transport coils (BR1, BR2). The relaxation time is calculated along
directions parallel with the vertical axis y1 and horizontal axis x1 of the 24
cosine theta coils in the upper cryostat.

The angle parameters for the 20 and 4 coils is K1 =-0.04 and K2 = -0.1
respectively. The center of the global reference system xyz is in the center of
the upper cryostat Mumetal shields and on the axis of the B0 coils in the lower
cryostat. The origin of the local reference system x1, y1, z1 is in the center of
the upper cryostat N=20 cosine theta coils with the x1, y1, z1 axes parallel with
the x, y, z axes.
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Figure B.5: The average magnetic field gradients dBz/dz/B0 is calculated in-
side the left and right measurement cells of the lower cryostat, for three currents
in the upper cryostat coils.

Figure B.6: The longitudinal relaxation time of 3He atoms at 0.25 K is calculated
for different currents in the upper cryostat coils and transport solenoids.
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The main field inside the upper cryostat coils is in the z direction
(parallel with the vertical yz plane). The spin of the polarized 3He atoms at the
exit of the ABS magnet is perpendicular to the axis of the quadrupole magnet
and parallel with the plane defined by this axis with the vertical axis of the
upper cryostat cosine theta coils. Therefore the spin of the 3He atoms has to
rotate with 45◦ along their path from the exit of the ABS magnet to the center of
the injection cell for both models. The main field inside the Helium injection cell
is along the x direction that is also the direction of the main field inside the B0

coils in the lower cryostat. Because the polarization of the 3He spin has to be
preserved during its transport from the injection cell to the two measurement
cells there are coils around the transport tube from the injection cell to the
measurement cell that make a field uniform field in every point of the tube.

The diagram of the upper cosine theta coils, ferromagnetic shield and
injection cell seen in the horizontal plane xz are presented in Figure B.7. The
center of the global reference system xyz is at the intersection of the vertical
axis of the upper cryostat external shields and the horizontal axis of the B0

coils of the lower cryostat. The center of the upper cosine theta coils (in red),
and their ferromagnetic shield with 2 gaps (12 cm wide) is at x=0 cm, y=137
cm, z=-52 cm at 52 cm distance from the vertical axis y of the Mumetal shields.
The local coordinate system x1, y1, z1 is in the center of the upper cosine theta
coils and ferromagnetic shield.

The direction of the magnetization vector in each of the four ABS
magnets is normal to the axis of the 3He beam. The nominal distance from the
exit of the ABS quadrupole and the center of the injection cell is 191 cm
measured along the axis. The axis of the ABS quadrupole magnet is
coincident with the axis of the 3He transport solenoid.

The magnetic field along the axis of the transport solenoid is calculated
from the center of the 3He injection cell to the exit of the ABS quadrupole, for
two lengths and electric currents of the transport solenoid (Figure B.8). In the
left figure the length of the transport solenoid is 49 cm and the field in its center
is 77 mG. In the right figure the length of the transport solenoid is 116 cm, with
a field along its axis changing from 77 mG to 1000 mG.

The magnetic field gradients inside the Helium injection cell have to be
small such that the relaxation rate of 3He is bigger than 10,000 seconds at
T=0.35 K. At this temperature the diffusion coefficient of 3He in 4He is
D=1.8/T 7 =2797 (cm2/s). The relaxation rate 1/T1 is proportional with the
diffusion coefficient D:

1

T1

= D
|∇By|2 + |∇Bz|2

B2
0

1

1 + (ω0τc)2
(B.4)
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Figure B.7: The model of the upper cryostat external shields, coils, ferromag-
netic shield and ABS magnet.

Figure B.8: The magnetic field along the axis of the transport solenoid is calcu-
lated for a 49 cm long and a 116 cm long transport solenoid in the left and right
figures respectively.
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At T=0.35 K the collision time for 3He in super fluid 4He is τ = 6.387 · 10−4(s).
The effective mass of 4He is 2.2 times bigger than the mass of the 3He atoms
that is m3He=3.01603 atomic mass units . The Larmour frequency ω0 of 3He
given by:

ω0 = 2.03789 · 104 ·B(rad / s). The depolarization of 3He inside the
injection cell is smaller than 1% during the collection time, if the relaxation rate
is smaller than:

1

T1

= D

∣∣∣~∇By

∣∣∣2 +
∣∣∣~∇Bz

∣∣∣2
B2

0

< 10−4(s) (B.5)

Therefore there is an upper limit of the transversal spatial field gradients
that can be tolerated inside the volume of the 3He injection cell:

√∣∣∣~∇By

∣∣∣2 +
∣∣∣~∇Bz

∣∣∣2
B0

< 1.9 · 10−4(cm−1) (B.6)

If the field inside the transport solenoid increases and becomes bigger
than the field inside the cylindrical coils of the upper cryostat, the asymmetry of
the magnetic field along the vertical y axis and horizontal x of the coils volume
also increases. The magnetic field asymmetry along these directions has to be
minimized in order to decrease the spatial field gradients and to increase the
relaxation time T1. Therefore the magnetic field along the axis of the transport
solenoid has to increase from small values (closer to the Helium injection cell)
to about 1000 mG inside the region of the transport solenoid closer to the ABS
magnet outside the Mumetal shields.

The magnetic field along the vertical or horizontal axes of the upper
cryostat cosine theta coils can also be asymmetric due to the magnetization of
the Mumetal shields. The field asymmetry along the horizontal direction due to
the magnetic field of the transport solenoid can be decreased by increasing the
electric current in two of the M=4 extra coils located on the same cylindrical
support like the N=20 coils. The magnetic fields inside the center of the 20
cosine theta coils and transport solenoid are Bc = 53.6 (mG) and Bs=36.6
(mG) respectively. On the surface of the ABS magnet the field is about 0.85
Tesla. The magnetic field of the Earth (500 mG) was not considered in these
calculations.

The He atoms can lose their polarization in the regions of very small
magnetic field. The transport solenoid has to be longer than 49 cm. Along the
axis of the transport solenoid the magnetic field has to vary from about 50 mG
close to the injection cell to about 1000 mG close to the ABS magnet. A field
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Figure B.9: A two dimensional map of the magnetic field calculated in a plane
perpendicular to the axis of the ABS magnet.

map in a plane transversal to the axis of the quadrupole located at 10 cm from
the exit face of the quadrupole is presented in Figure B.9. The y and x axes
make a +45o and -45o angle with the axis of the ABS magnet that is
perpendicular to the plane of the page.

The relative spatial gradients
∣∣∣~∇Bx

∣∣∣ /B,
∣∣∣~∇By

∣∣∣ /B and
∣∣∣~∇Bz

∣∣∣ /B were

calculated along directions parallel with the vertical axis (y1) of the upper
cryostat coils. The center of the local system of reference x1, y1, z1 is located in
the center of the cylindrical coils of the upper cryostat. Between y1=-30 cm and

y1=10 cm the spatial gradients
∣∣∣~∇Bx

∣∣∣ /B and
∣∣∣~∇Bz

∣∣∣ /B are between 1 · 10−4

(1/cm) and 1 · 10−3 (1/cm). The spatial gradient
∣∣∣~∇By

∣∣∣ /B is about 10−4 (1/cm).

The longitudinal relaxation time T1 is calculated at T=0.35 K along the same
directions.

To understand the effect of the ABS quadrupole magnet and external
Mumetal shields, the longitudinal relaxation time of 3He will be calculated along

181



Figure B.10: The longitudinal relaxation time of 3He along the axis of the up-
per cryostat coils is calculated at T=0.35 K for two magnetic fields inside the
transport solenoid.

the axis of the 20 upper coils for both models, with and without the ABS
magnet in the model.

The geometry, magnetic field and position of the transport solenoid are
the most important factors that determine the value of the relaxation time of
3He inside the injection cell. To prove this point we consider two position of the
axis of the transport solenoid. The model has only the ferromagnetic shield
with two gaps (12 cm wide), the upper cryostat coils (N=20, M=4) and the
transport solenoid 49 cm long with its axis passing through the center of the
3He injection cell. The external Mumetal shields and of the ABS magnet are
not built in the model. The relaxation time and the relative field gradients along
the axis of the 20 coils remain about the same when the field in the center of
the transport solenoid is doubled from 56 mG to 92.6 mG (figure B.10). The
electric current in the upper cryostat coils is the same in both cases. Only the
current in the transport solenoid (49 cm long) is increased. Therefore the
decrease in the relaxation time due to the 100% increase of the field inside the
transport solenoid is small when the 49 -cm- long transport solenoid is used.

The fringe field of the same transport solenoid in the 3He cell has to be
small (less than 20 mG). At the same time the rate of change in the direction
and magnitude of the field has to be small enough to prevent the loss in the
3He polarization. To satisfy these conditions there are three groups of transport
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solenoids with different currents. The first solenoid (TR1, R=6.3 cm) is close to
the 3He injection cell and has a field of 38 mG at its center. The second
transport solenoid has two concentric cylindrical solenoids and a field on its
axis equal with 470 mG. The inner solenoid (TR2) has a current I1, radius
R1=6.3 cm. The outer solenoid (TR3) has current I2 and radius R2=10.3 cm.
The electric currents in the outer and inner solenoids flow in opposite direction
to cancel their fringe magnetic fields inside the volume if 3He injection cell.

The longitudinal relaxation time of 3He at 0.35 K is calculated along the
horizontal axis x1 and the vertical axis y1 of the upper cryostat cylindrical coils
in the presence and in the absence of the ABS magnet (Figure B.11. The
magnetic fields in the center of the cosine theta coils and transport solenoids
B1=18 mG, BR1=37 mG and BR2=470 mG. The ABS magnet does not
significantly change the magnetic field gradients and the relaxation time in the
volume of the upper cryostat coils. The relaxation time is small because the
angular parameter K2 of the M=4 coils was not optimum and the axis of the
transport solenoids passes through the center of the injection cell. The
common axis of the transport solenoids passes through the center of the
injection cell (xc =41 cm, yc =137 cm, zc =52 cm).

Figure B.11: The longitudinal relaxation time of 3He at 0.35 K is calculated along
the vertical axis y1 and the horizontal axis x1 of the upper cryostat cosine theta
coils.

The relaxation time T1 is bigger than 104 seconds only for a radial distance
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smaller than 2.5 cm from the vertical axis y1 and for |y1|<10 cm. This values of
the relaxation time are due to both the asymmetric position of the upper
cryostat coils and the particular choice of the electric currents in the 24 upper
cryostat coils and transport solenoids. The magnetic field (38 mG) in the center
of the first transport solenoid is two times bigger then the field in the center of
the upper cryostat coils (17 mG) and the axis of the transport solenoid passes
through the center of the upper cryostat coils. The magnetic field asymmetry
along the vertical direction increases the spatial field gradients and decreases
the relaxation time T1. The increase in the field gradients are due to the fringe
magnetic fields of the transport solenoid inside the 3He cell.

B.4 Conclusion

The relaxation time of 3He inside the injection cell is bigger than 10,000
seconds for the optimum electric currents in the upper cosine theta coils, even
in the presence of the ABS quadrupole and for a field of 500 mG on the axis of
the transport solenoid and outside the external shield. In this case the
asymmetry of the magnetic field inside the He injection cell and the AB1
collection volume is small. The minimum relaxation time in the injection cell is
10,000 seconds. The change in the magnetic field gradients inside the upper
cryostat coils due to the 20 mG field in the center of the lower cryostat B0 coils
is negligible.
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APPENDIX C

The Nab experiment at SNS
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C.1 Introduction

The Nab experiment proposed a precise measurements of a the
electron-neutrino correlation parameter and b the Fierz term. The goal
accuracy is ∆a/a =10−3 and ∆b = 10−3. The neutrons will pass through the
center volume of a field expansion spectrometer and some will decay in this
volume.The proton and electrons originating from the free beta decay of the
neutron inside the spectrometer are detected by two Silicon detectors located
at the two ends of the spectrometer [80].

The measurement method for a is based on the linear dependence of
the cosine of the angle between the electron and neutrino momenta cos θe,ν and
the square of the proton momentum. Consider pp the momentum of the proton.
Due to this linear dependence the slope of the pp2 probability distribution is
given by β · a where β =v/c. In the decay volume the field is about 4 Tesla
dropping out quickly in order to align the proton momenta along the direction of
travel. Two segmented Silicon detectors located at each end of the solenoid
can detect the protons and electrons in an effective 4π geometry. The fringe
field outside the spectrometer has to be decreased to less than 0.05 Gauss
outside the concrete walls of the beam line 13, to meet the SNS requirements.
Both active and passive shields are used to meet this requirement. The design
of the low carbon steel shield and the calculation of the forces on the the
superconducting coils were done in Opera 3D, Tosca, Vector Field.

C.2 The geometry of the Nab coils

The six pairs of the Nab are modeled like simple circular solenoids
(Figure C.1). Two solenoids in a pair have the same center on the z axis. The
currents in the two solenoids are the same but they flow in opposite direction
such that the magnetic fields of the outer and inner solenoids cancel at a
certain radial distance from the z axis. The point where the two fields cancel
depends on the radii, length and radial thickness of the two solenoids. In
addition a passive magnetic shield is located at a radial distance of about 100
cm from the z axis of the spectrometer. In this section the sum of the magnetic
fields of the two solenoids of a pair is calculated at 100 cm, 200 cm and 300
cm from the z axis for three values of the electric current densities in the coils.

The two Si detectors of the Nab spectrometer have to be in a small
magnetic field. Close to the center of the spectrometer the magnetic field along
the z axis is a second power function of z: B(z) = B0(1− α(z − zc)2) where
B0 is the field at z = zc. The second derivative of the magnetic field divided
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Figure C.1: The model of the six pairs of Nab solenoids is presented in Modeler,
Opera 3D

with −2 ·B0 is α. The geometry of the inner coils is constrained by the
experiment requirement on the magnetic field profile along the z axis. For this
reason the radius of the outer solenoid is varied, keeping the radius of the inner
solenoids, the radial thickness and the length of the two solenoids fixed. This
calculation of the optimum radius of the outer solenoid is done for two values of
the current density in the wire.

The magnetic field of the solenoids without magnetic materials was
calculated by Biot Savart integration. Each solenoid was modeled like one big
coil with rectangular cross section, inner radius R1 and outer radius R2 and a
radial thickness ∆R = R2 −R1. Consider ∆Z the length of the solenoid along
z axis. For a total current in the solenoid equal with n · I the current density in
TOSCA model is:

JT =
nI

∆R ·∆Z
(C.1)

In the TOSCA the units for ∆R and ∆Z are cm and the units for the current
density are A/cm2. The total current in the solenoid is n · I, where n is the
number of wires and I is the electric current in the wire. The wire has circular
cross section.

The electric current density in the wire can calculated if the diameter d0

of the wire is known. If the solenoid is made from n loops of wires with
diameter d0 then the total current in the solenoid is equal with

nI = Jw

⌈
n · πd

2
0

4

⌉
= Jw

[
∆R

d0

∆Z

d0

πd2
0

4

]
= Jw

∆R ·∆Z · π
4

(C.2)

Jw =
4nI

∆R ·∆Z · π
=

4

π
JT (C.3)

The position of the centers of the solenoids, and the geometry of the solenoids
are presented in table C.2.The number of turns N is calculated for a diameter
of the wire equal with d0=0.01 cm. The electric current in a wire is I=3.5 (A).
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Table C.1: The position of the solenoid center zm, the inner radius of the
solenoid Rin, the radial thickness of the solenoid ∆R, the length of the solenoid
∆Z and the total current in solenoid n · I.

Coil zm
cm

Rin

cm
∆R
cm

∆Z
cm

n · I
kA

Jw
kA/cm2

Nb.
loops

C1i 237.5 31.61 0.03 465 488.25 44.56 139500
C1o 237.5 54.6 0.01 465 -162.75 -44.56 46500
C2i 500 15.89 0.21 40 294 44.56 84000
C2o 500 27.18 0.07 40 -98 -44.56 28000
C3i -61.9 15.90 0.2 56.13 392.91 44.56 112260
C3o -61.9 26.28 0.07 56.13 -137.52 -44.56 39292
C4i 0 5.23 2.46 4.28 368.51 44.56 105288
C4o 0 12.76 0.31 8.56 -92.88 -44.56 26538
C5i -11.55 20.44 3.97 3.97 551.63 44.56 157608
C5o -11.55 37.29 2.29 2.29 -183.54 -44.56 52440
C6i -31.41 21.65 3.68 3.68 473.98 44.56 135423
C6o -31.41 39.13 2.12 2.12 -157.3 -44.56 44943

For JT = 35 kA/cm 2 the maximum field along the axis of the solenoid is
4 T. The electric current density in the wire is calculated from equation C.3. For
a 38 gauge wire (d0=0.01 cm) the current in the wire is 3.5 (A) and the number
of loops for each solenoid is presented in the last column of table C.2.

The Nab solenoids are made from the same wire winded in the same
direction +z for the inside coils and in the opposite direction −z for the outside
coils. The solenoids are connected in series.

The magnetic field was calculated in the radial direction from the center
of each pair of solenoids in the absence of the magnetic shield. For the
geometry of the solenoids presented above, the magnetic field at 100 cm from
the axis is smaller than 1 Gauss in the planes of the coil pairs 1, 2, 3, 4 but is
bigger than 7 Gauss in the plane of the coil pairs 5 and 6. At 200 cm distance
from the axis the field is smaller than 1 Gauss for all six pairs of solenoids. The
solenoids C5i and C6i have radii 20.44 cm and 21.65 cm, about equal with the
distance 19.86 cm between their planes, to provide a uniform field over the
active volume of the neutron beam in between their planes.

The magnetic field profile is calculated along the z axis and two other
directions parallel with z axis lines in Figure C.2.

Along directions parallel to the z axis, at R < 3 cm and -4 cm < z < 4
cm the magnetic field has a maximum B0 and it can be fitted well with a
second order polynomial function. The fit for three lines parallel with the z axis
at radial distance 0, 1, 2 cm from it is presented in table C.2. The units for α
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Figure C.2: The magnetic field is calculated along directions parallel with the z
axis at three radial distances R=0 , 2 and 4 cm from this axis.

Table C.2: The coefficient α, from the quadratic fit of the magnetic field, along
three directions parallel with z axis at 0 cm, 1 cm and 2 cm distance from it.

R(cm) α2

coils and shield
1/cm2

α2

coils without shield
1/cm2

0 -0.0179 -0.01793
1 -0.0185 -0.01845
2 -0.0203 -0.02026

are 1 /cm2 while z is measured in cm.

B(z)/B0 = (1 + b · z + α2 · z2) (C.4)

C.3 The calculation of the forces on the Nab coils.

The closed loop conductors can be modeled with the ideal solenoids
provided in Tosca, with uniform current density over their cross section area.
The solenoids are read in Post-Processor and the fields are calculated by Biot -
Savart integration. To model the real current distribution in the real coils, the
current density flow in all the mesh points inside the coils is calculated by
solving the current flow problem in Tosca. The outside of the coils is air and is
not part of the mesh. After the current flow model is solved the magnetic fields
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inside the conductors are known and then the forces per unit volume ~J × ~B
can be calculated in any point inside the coil.

One expects that the sum of the forces acting on all the coils is zero
because the two forces acting on any pair of coils have opposite directions and
their sum is zero. In addition if the solenoids are perfectly centered on the z
axis, the radial components of the total force acting on each solenoid is
expected to be zero. The maximum number of points (i.e. the order of the
Gaussian integration) along the two directions of the cross section and along
the direction of the current is 32. Due to numerical errors there are small
components of the forces along x or y directions that are not zero. These small
errors are related with the Euler angles θ, φ, ψ that give the orientation of the
solenoids relative to axes. For one pair of solenoids built by reflection of one
coil in a plane, the total force is exactly zero. If the pair is not built by reflection
of one coil, then there are components of the total force that are not exactly
zero. The solution is to rotate the coils with 180◦ about their common axis. The
force components for the rotated coils along the radial directions (x, y) have
negative sign and almost the same magnitude like the forces for the initial coils.
One can consider the average of the corresponding values for each component
of the total force. This method was used to calculate the forces on all 12 coils
of the Nab spectrometer: only the forces along z were calculated in the
presence of the passive shield.

The forces between the coils calculated in the presence of the magnetic
shield are presented in table C.3. The number of Gaussian points in the
integration of ~J × ~B over the volume of the coil was 10 along the all three
cylindrical coordinates: the radial distance r, the angle φ and the coil axis z.
The total force along the z axis does not increase the presence of the shield,
and is still 0.048 (KN) much smaller than the forces on the coils. The forces are
almost not changed in the presence of the steel shield.

The most precise method for the calculation of the forces in
Post-Processor in the presence of magnetic materials is the field integration;
the magnetic field inside the volume of the coils is calculated by the integration
of all the field sources (magnetization and currents in the coils). The precision
is increased if the self forces of the coil are omitted and if the number of
Gaussian points is increased. The ideal coil is divided in 12 segments with
equal length and the forces Fx, Fy, Fz are calculated for each segment. The
radial force for each segment is equal with:

Fr =
√
F 2
x + F 2

y (C.5)

The force density per unit coil volume is calculated in the table C.4
along the radial and the axial directions when the axes of the coils and shield
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Table C.3: The forces acting on each solenoid of the Nab spectrometer in the
presence of the shield are compared with the forces in the absence of the shield
in the last column.

Coil Fz
kN
coils
shielded

Fz
kN
coils not
shielded

Fz/ V
N/cm3

coils
shielded

Fz/V
N/cm3

coils not
shielded

V
cm3

C1i -5.68 -5.68 -2.073 -2.074 2740.389
C1o 0.05 0.045 0.053 0.030 1582.132
C2i -1.39 -1.39 -1.551 -1.671 834.586
C2o 1.14 1.14 2.855 2.360 482.037
C3i 85.86 85.86 76.701 76.944 1115.912
C3o -55.38 -55.38 -85.922 -81.862 676.539
C4i -33.10 -33.10 -45.909 -78.334 422.492
C4o 36.61 36.61 174.614 171.866 213.046
C5i -188.26 -188.26 66.928 -85.753 2195.437
C5o 5.42 5.41 335.978 4.283 1265.030
C6i 156.03 156.02 -88.723 78.960 1975.996
C6o -1.33 -1.33 -63.580 -1.170 1135.970
total 0.05 0.05

coincide (dx=0 cm) and when the coils are moved in the direction of the y axis.
The volume density of the radial forces in each coil (for dy=0) is Frad/V . The
change in the torque component along x axis with the increase in the distance
dy is presented in the last column. To estimate the effect of the misalignment
on the axes of the coils and shield, a one half model of the shield was built in
Tosca. The field was tangential to the vertical yz plane. The centers of the coils
are located on the same vertical axis z1. The centers of the coils located on z1

axis were displaced relative to the axis of the shield (z axis) with a distance dy
= 0.2, 0.4 . . . , 1.6 cm in the direction of the y axis. Therefore the radial forces
change more quickly with the distance dy between the two axes. For about 2
cm distance the y component of the total force exerted on the coil is about 0.3
Newton. The force in the axial direction depends very weakly on the distance
between the two axes as expected.

The total Fy force on all of the 12 coils depends linearly on the distance
dy between the two axes of the coils and of the shield (Figure C.3). The axis of
the coils is moved with dy cm relative to the vertical z axis of the shield. The x
component of the total force is smaller than 10−9 N. The torque in the x
direction is calculated for the same displacements dy of the coils center and
the vertical axis of the shield in Figure C.3. The total torque acting on the 12
coils is still small (42 N · cm for a displacement dy=1 cm). The y and z

191



Table C.4: The change rate of the axial force components Fz and Fy (on each
of the 12 coils) with the displacement dy of the coils center from the z axis of
the shield is calculated from the linear fit.

Coil dFz/dy
N/cm
10−3

Fz
N
dy=0

dFy/dy
N /cm
10−3

Frad/V
N/cm3

dy=0

dτx/dy
N

C1i 1.143 -5680.3 47.874 14.244 -5674.8
C1o -1.762 44.528 -58.322 1.2399 37.82
C2i -0.066 -1.671 -0.213 58.814 -1393.6
C2o 0.090 2.359 -0.354 16.502 1136.1
C3i -0.060 76.940 94.652 40.877 85866
C3o 0.015 -81.855 -101.66 49.108 -55386
C4i 0.274 -33095 -18.068 174.49 -33094
C4o 0.034 171.86 18.282 236.46 36614
C5i -0.102 -85.751 -411.33 108.15 -188200
C5o 0.165 4.2787 -482.65 115.28 55407.4
C6i -23.155 156020 -325.28 133.64 1.56E5
C6o 0.426 -1.166 -414.08 95.846 -1307.6

Figure C.3: The total y component of the force acting on the 12 coils of the Nab
spectrometer when the centers of the coils are moved with dy cm relative to the
vertical axis z of the steel shield.
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Figure C.4: The x component of the total torque ~τ = ~r× ~F on the coils relative to
the center of the axes is calculated for different distances dy of the coils center
relative to the vertical z axis.

components of the torque are smaller than 10−8 N· cm.

The calculation of the rate increase in the force for each coil when the
center of the axis is moved in the x direction with a distance dx is presented in
the table C.5. Due to the symmetry the Fy component of the force is zero in all
cases. The weak dependence of the Fz component on the distance dx is
quadratic. For small changes in x the linear fit of Fz versus y is very good.

The x component of the torque on each coil is calculated in Figure C.3
for different values of dy from 0.2 cm up to 1.6 cm. For two coils (C5i, C6i) the
increase in the torque dτx/dy is −1.88 · 105 N and 1.56 · 105 N. For coils C3i

and C3o the increase in the x component of the torque is 85.87 · 103 N and
−55.38 · 103 N respectively.

The total force in the x direction is proportional with the displacement
dx of the coils center relative to the shield center Fx(N) = 0.1428 (cm)

C.4 The magnetic field outside the magnetic shield of the Nab spectrometer

The shield is built from four vertical pairs of plates, 656 cm long and
5.08 cm thick. Two vertical plates in a pair are joined at their corners like in
Figure C.6. The shield is symmetric relative to the vertical planes xz and yz.
The total volume of the four pair of pillars is 0.998 m3 and the total mass is
7840 kg. Each corner is made from one plate 34.92 cm wide, 5.08 cm thick
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Table C.5: The increase in the Fx component of the force with a displacement
dx in the center of the coils relative to the center of the shield.

Coil dFx/dx
N/cm
10−3

Fx|dx =
0
N
10−5

dFz/dx
N/cm
10−3

C1i 48.11 -6.12 17.77
C1o -58.35 5.91 -2.34
C2i 0.23 -2.49 0.46
C2o -0.37 2.52 -0.68
C3i 94.82 -23.42 -17.88
C3o -101.83 23.3 20.11
C4i -18.09 3.61 13.84
C4o 18.29 -2.06 -9.36
C5i 483.23 -133.5 5.98
C5o -411.63 43.12 -4.51
C6i -326.18 54.3 -29.75
C6o 414.58 -54.4 31.31

Figure C.5: The x component of the torque acting on each of the 12 coils of the
Nab spectrometer is calculated for different distances between the center of the
coils and the vertical z axis.
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Figure C.6: One quarter of the magnetic shield of the Nab spectrometer is seen
in a cross section normal to the axis of the spectrometer.

and a second plate 40 cm wide with the same thickness. The long plates are
fixed (by welding or screws) to four steel corners at both the top and the bottom
of the shield. The four steel corners (1.27 cm thick) are welded along their
short edges into a square and attached with screws (or welded) to a big square
plate (200.34× 200.34) cm2 with circular holes with radius 91.44 cm (Figure
C.6). Taking in account the thickness of each cap (2.54 cm) the total length of
the shield is 662 cm.

Each of the two steel end caps are 2.54 cm thick and are made from
two plates (Figure C.7). The total mass of the caps is 528.2 kg. The x and y
axes are axes of symmetry for the four corners. The magnetization curve used
in the calculations was that for C1010 with composition C (0.08% to 0.13%),
Mn (0.3% to 0.5%) and Iron (99%) is presented in figure C.4.

The complete model of the Nab spectrometer and the passive shield is
presented in Figure C.9.The center of the coils C4i, C4o is at z=0 cm. The
steel shield is 662 cm and starts at z1=-116 cm and ends at z2= 546 cm.

The magnetic field is calculated along directions parallel with the z axis,
in the xz plane, at radial distances bigger than 140 cm from the z axis in Figure
C.10. The maximum field is due to the pair of solenoids 5 and 6 centered at
-11.55 cm and -31.41 cm. The fringe field is smaller than 1 Gauss at all five
radial distances from the z axis. A field smaller than 0.5 Gauss is calculated at
a radial distance bigger than 180 cm from the z axis. The field decreases to
about 0.1 Gauss between z=230 cm and z=400 cm because the z component
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Figure C.7: Each of the two end caps of the magnetic shield of the Nab spec-
trometer are made from two steel plates with a circular holes (A) and four corners
(B). For clarity only one steel corner is presented.

Figure C.8: The magnetization curve of the low carbon steel (C1010) used in
the Tosca calculation of the magnetic field of the Nab spectrometer.
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Figure C.9: The magnetic shield and the 6 pairs of coils is presented in Post
Processor, Opera 3D.

Figure C.10: The magnetic field is calculated along five directions parallel to the
z axis at five radial distances from this axis and outside the steel shield, for a
722 cm long shield.
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Figure C.11: The difference between the magnetic fields of the Nab coils in the
absence and in the presence of the steel shield is calculated along the axis of
the Nab coils.

Figure C.12: The coefficient α is calculated along three lines parallel with the z
axis at 0 cm, 2 cm and 4 cm distance from this axis, in the presence of the steel
shield.
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of the field changes sign in this region. The shielding factor is the ratio of the
magnetic fields in a point outside the shield in the absence B0 and in the
presence of the steel Bs.

The magnetic field is calculated along three lines parallel with the z axis
at x=0, 2, 4 cm and y=0 cm. The difference between the magnetic fields
calculated along the z axis in the absence of the steel shield B0 and in the
presence of this shield B1 is presented in Figure C.11 for a 722 cm long shield.
The coefficient α is calculated as a function of z for three lines parallel with the
z axis in Figure C.12. In this figure the magnetic field is calculated in Tosca by
double integration in the presence of the coils and magnetic shield.

C.5 Conclusion

In the presence of the steel shield the magnetic field along the axis of
the six pairs of the Nab solenoids changes with less than 2 Gauss, and the
coefficient α is almost the same. The fringe magnetic field is smaller than 0.5
Gauss at a radial distance bigger than 180 cm from the axis of the
spectrometer. The sum of the forces on the 12 Nab coils, increases with about
0.5 N for a 1 cm displacement along x and y axis, of the coils center relative to
the shield axis.The increase in the sum of the torque component τx on all six
pairs of Nab coils is 42 (N / cm) for each cm displacement of the coils axis in
the radial direction. The increase in the torque on each coil show a much
bigger increase: a maximum 1.8 · 105 (N · cm)/cm for coils C5i and C6i.
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