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ABSTRACT 

 

 The front end of almost all ADCs consists of a Sample and Hold Circuit 

in order to make sure a constant analog value is digitized at the end of ADC. The 

design of Track and Hold Circuit (THA) mainly focuses on following parameters: 

Input frequency, Sampling frequency, dynamic Range, hold pedestal, feed 

through error. This thesis will discuss the importance of these parameters of a 

THA to the ADCs and commonly used architectures of THA. A new architecture 

with SiGe HBT transistors in BiCMOS 130 nm technology is presented here. The 

proposed topology without complicated circuitry achieves high Spurious Free 

Dynamic Range(SFDR) and Total Harmonic Distortion (THD).These are 

important figure of merits for any THA which gives a measure of non-linearity of 

the circuit. The proposed topology is implemented in IBM8HP 130 nm BiCMOS 

process combines typical emitter follower switch in bipolar THAs and output 

steering technique proposed in the previous work. With these techniques and the 

cascode transistor in the input which is used to isolate the switch from the input 

during the hold mode, better results have been achieved. The THA is designed to 

work with maximum input frequency of 250MHz at sampling frequency of 

500MHz with input currents not more than 5mA achieving an SFDR of 78.49 dB. 

Simulation and results are presented, illustrating the advantages and trade-offs of 

the proposed topology. 
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PREFACE 

 
 Track and Hold Amplifiers are a part of most data conversion systems. 

This study explains the bipolar THA architecture for high SFDR without any 

complex circuitry. This architecture is designed using 130 nm BiCMOS IBM8HP 

process. The output steering technique combines with cascade input buffer and 

emitter follower switch to give better results than the work which adopt only ones 

of these techniques. The work is divided into five chapters. A brief introduction to 

the contents of each chapter is outlined below. 

      Chapter 2 discusses various sample and hold architectures. The figure 

of merits and problems for any track and hold circuits are discussed in detail. The 

section after that presents three new S/H techniques, all of which try to minimize 

the errors caused by charge injection and/or clock feed through. This chapter also 

gives a background to bipolar track and hold circuits. 

Chapter 3 talks mainly about the design of SiGe HBT THA which mainly consists 

of design of the input buffer with emitter degeneration, output steering resistors, 

switching buffer (sampling buffer). Finally, the hold capacitor was chosen based 

on the kT/C noise requirement.  

This THA works with an input frequency of 250 MHz and a sampling 

frequency of 500 MHz.THD of -74 dB and SFDR as high as 77 dB was achieved 

with the output dynamic range of 1 Vpp. The tradeoff between linearity and speed 

of a THA can be well understood from the simulations. SFDR with change in the 

input frequency and sampling frequency has also been discussed. The simulations 

and results have been described in Chapter 4. 
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Chapter 5 finally concludes this work with the advantages and 

disadvantages of this topology. Comparison of the performance of this THA 

topology with other current topologies has been given in this section. 
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1. INTRODUCTION 

                As Data conversion systems continue to improve in speed and 

resolution, increasing demands are placed on the performance of high-speed 

sample-and-hold circuits. The throughput of the fastest analog-to-digital 

converters is typically limited by the speed and precision with which the 

comparison function can be performed. However, the maximum input signal 

bandwidth that can be accommodated by a converter at a specified precision is 

governed by the speed at which the input can be sampled. Most of the data 

conversion systems use Sample and hold circuit as their front end block. The held 

voltage at the output of the sample and hold circuit is utilized for analog to digital 

conversion by the rest of the blocks in analog to digital converters. The simplest 

sample and hold block with NMOS as switch and hold capacitor is given in the 

Figure 1. 

 

Figure 1 .Simplest Sample and Hold Circuit in MOS Technology [1], [2] 

Sample-and-hold amplifier circuits also known as track and hold Circuits 

or track and hold Amplifiers (THAs) are key building blocks for many discrete 

time signal processing applications. Their basic function is to transform input 

continuous signals into discrete time signals and amplify them. Sample-and hold 
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(S/H) amplifiers track an analog signal, and when given a hold command they 

hold the value of the input signal at the instant when the hold command is issued, 

thereby serving as an analog storage device. An ideal S/H amplifier would be able 

to track any kind of input signal, and upon being given a hold command store at 

its output, without delay, the precise value of the signal, and maintain this value 

indefinitely.  

            It is often desired to take a snapshot of a signal level at a particular time, 

and save it for later analysis. This is particularly important in analog-to-digital 

conversion, where changes in the input during the conversion period may lead to 

erroneous results. The idea is to save the value as the voltage across a capacitor, 

as shown in Figure 1.In many cases, sample and hold circuits are used to 

minimize errors due to different delays in internal operation of the data 

converters. The sample and hold circuits are necessary in data conversion to 

sample a continuously varying signal and hold it at a constant level for a specific 

period of time. This value is later used by successive stages of ADCs to give out a 

digitized output. 

Unfortunately, ideal S/H amplifiers do not yet exist, and to be able to pick 

a S/H amplifier to suit a particular application, one must be familiar with how S/H 

amplifiers are characterized, and how the S/H specifications will affect 

performance. Over the years, various sample and hold architectures have been 

used [4]. The open loop configuration with buffered input and output is fast but 

the accuracy achieved is less. The closed loop sample and hold offers the 

advantage of better resolution/accuracy but is slow because of the global 
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feedback. Each topology has found its own application depending on the trade-

offs [4]. In addition, although CMOS transistors are widely used for the design of 

sample and hold circuits, the speed and noise constraints of CMOS limits its use 

in some high speed high performance track and hold circuits. 

Hence, for ADCs with high speed (greater than 150MHz), bipolar circuits 

have replaced CMOS. Bipolar junction transistors (BJTs) are inherently fast 

because of their increased transconductance (gm) [5].The majority and the 

minority carriers in BJTs contribute to higher gm and hence higher speed. SiGe 

BJTs offer even higher speed as compared to normal homojunction bipolar 

transistors due to the graded Ge in the base of the bipolar resulting in higher 

operating frequency and thus higher speed. Therefore SiGe HBTs are used for the 

design of track and hold circuits in this work. 

 Sample and hold circuits are characterized by various parameters and 

figures of merit. The acquisition time, aperture error, droop rate, hold pedestal are 

some of the major figures of merit for THAs [1],[2]. Major types of errors, clock 

feed through and charge injection are associated with a S/H implementation [2]. 

These errors limit the operating frequency for a S/H as they introduce distortion at 

higher input and sampling frequency increasing the total harmonic distortion 

(THD) and reducing spurious free dynamic range (SFDR).Various techniques 

have been incorporated to overcome these sources of errors in the sampled signal.  

          This thesis discusses the different sample and hold architectures, the 

parameters and the problems in all S/H circuits. This thesis explains the 

background work i.e the works published in [1],[2],and [3] in detail. Finally the 
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new implementation of a SiGe bipolar track and hold Circuit is presented. This 

high speed high SFDR sample and hold circuit was designed in IBM8HP 130nm 

BiCMOS process. The design mainly consists of an input buffer, emitter follower 

switch and a hold capacitor. The tradeoff between different parameters in the 

design, the advantages of this particular topology and the specifications achieved 

will be discussed in the following chapters. 

 

Thesis Structure 

Chapter 2 discusses the problems and ,figures of merit for any track and 

hold Circuit giving a complete background to the new design topology presented 

in the next chapter. Chapter 3 explains the new topology in detail, The design 

considerations involved in the design of cascaded input buffer, emitter follower 

switch and hold capacitor. Chapter 4 presents simulation results for the new 

topology. Chapter 5 concludes with results achieved and the comparison of the 

performance of the current design with other works. 
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2.  BACKGROUND 

Before discussing different sample and hold circuits, it is necessary to 

mention some performance parameters used in the characterization of S/H 

circuits. Later, the merits and drawbacks of each architecture and how each 

architecture overcomes the problems associated with S/H circuits are discussed. 

The hold pedestal or hold step is a serious problem in all S/H circuits. This 

is an error that occurs each time a sample and hold goes from sample mode to 

hold mode. During this change in operation, there is always a small error in 

voltage being held that makes it different from the input voltage at the time of 

sampling. This error should not be signal dependent otherwise it can introduce 

nonlinear distortion. 

A second important parameter is the speed at which a sample and hold can 

track an input signal when in sample mode. In this mode, sample and hold will 

have both small-signal and large signal-limitations due to its -3dB bandwidth. The 

-3dB bandwidth should be maximized for high speed operation. This can be done 

by decreasing parasitic capacitances. Having high slew rate is also an important 

factor which becomes critical in determining the speed of the S/H circuit. Slew 

rate of a circuit can be increased by increasing the quiescent current of the circuit. 

The droop rate in hold mode is another limitation. This error is a drop in 

output voltage, when in hold mode, caused by effects such as leakage currents due 

to finite base currents in bipolar transistors and reverse bias junction currents. In 

most CMOS designs, the gate current is typically neglected. However, the 

junction currents in the BJT architectures may contribute significantly to leakage 
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resulting in hold mode droop. In the Figure 2, figure of merits for any S/H circuit 

and some of the errors are illustrated. 

 

 

 

Figure 2. Performance parameters of Sample and Hold Circuit [3] 

Tac- Acquisition time- The time taken by the circuit to start tracking the input 

signal after the sample command is given is known as the acquisition time. 

Tap-Aperture time-The time taken by the circuit after the hold command is given 

to actually turn the switch off .This can also be defined as the time between the 

start of the hold mode and the instant when the circuit actually starts holing the 

voltage. 
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Ts-Settling time- The time required by the circuit to settle to a hold voltage within 

the specified error band in the hold mode. 

Vi-Instantaneous Input Voltage-The input voltage at a particular instant of time 

Vo-Instantaneous Output Voltage-The output voltage at a particular instant of time 

The random variation of the turn-off time of the switch results in uncertain 

sampling time. The difference between the time when the hold command is given 

and when the switch actually starts holding is known aperture error. This error in 

the holding/sampling instant results in amplitude error of the voltage which is 

held. In the Figure 3, this has been illustrated as Tap which is the time the circuit 

takes to actually sample the input voltage.  

 

Figure 3.Diagram which shows difference between when the hold command is 

given when actually data is held gives the aperture time [4] 



8 

 
 

 

2.1 Spurious Free Dynamic Range 

In wireless telecommunication applications, large oversampling ratios are often 

used and the spectral purity of the A/D converter is important. For such situations, 

a proper specification is the ratio between the powers of the signal component and 

the largest spurious component within a certain frequency band, called spurious 

free dynamic range (SFDR). The SFDR is usually expressed in dB as in 

equation(1) 

                           SFDR(dB)= 20 *log*(V ( fsig)/ V( fspur))……………………(1) 

where V( fsig) is the rms value of the fundamental and V( fspur) the rms value of 

the largest spurious signal. Spurious signals are undesired signals which could 

have amplitude or frequency changes. These signals may corrupt the actual 

desired input. The sources of spurious signals could be substrate noise, noise from 

the power supply or crosstalk. Normally the limiting factor of the SFDR in ADCs 

is harmonic distortion. In most situations, the SFDR should be larger than the 

signal-to-noise ratio of the converter. 

 

2.2 Non –idealities in Track and Hold Circuits 

A analog switch is the basic block in all sample and hold circuits. The 

on/off behavior of an analog switch is controlled by the gate voltages governing 

the presence of charge in the inversion channels underneath the gates in case of a 

CMOS switch. The dependence of the input voltages on the on/off behavior of 

switch is the cause of non-idealities in the sample and hold circuits. As CMOS 



9 

 
 

 

switches are ubiquitous, some of problems with these switches and remedies to 

over come these non-idealities have been discussed below. 

 

2.2.1 Charge injection 

Charge injection is a fundamental problem in analog circuits as well as in 

some digital circuits like memories. The most commonly accepted charge 

injection  mechanism (in the charge domain) occurs when the switch is turned off, 

dispersing the charge in the inversion channel, thereby forcing current to flow 

either into the substrate or the load capacitor at the MOSFET drain or source. This 

mechanism produces an error voltage on the load capacitor. This flow of electrons 

was first called charge feed through by Stafford et al. Sheu and Hu Shieh et al 

published analytical models of strong inversion channel injection and gate to 

drain overlap capacitive coupling in NMOS switches[5].Figure 4 shows an  

NMOS whose Clock goes from high to low. The charge is injected to left and 

right portion of the NMOS. 

 

 

Figure 4. Charge injection in source and drain junctions in a NMOS[1] 
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When a MOS switch is on, it operates in the linear region (when the Ids is 

proportional to overdrive voltage which is the gate source voltage minus the 

threshold voltage) and its drain-to-source voltage, VDS, is approximately zero. 

During the time when the transistor is on, it holds mobile charges in its channel. 

Once the transistor is turned off, these mobile charges must flow out from the 

channel region and into the drain and the source junctions. The charge injection 

error voltage on the S/H capacitor CL is determined by the difference between the 

coupled charge and the charge injected by the transistor current. A slower gate 

voltage signal provides the MOSFET drain current with additional time to 

compensate for the coupling error. Figure 5 shows an NMOS transistor with the 

hold capacitor .The amount of charge injected towards the capacitor is calculated 

in the equations (2),(3),(4)and (5). 

 

 

Figure  5. Sample and Hold Block with a sample switch as NMOS, a hold 

capacitor and an output buffer with unity gain [1] 

Figure 5 shows the block diagram of a simple sample and hold architecture. When 

clk  is high, Vl follows Vin. When clk  goes low, Vl will ideally stay constant from 

then on, having a value equal to Vin at the instance clk  went low.  
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This change in voltage due to charge injection will definitely affect the held value 

across the capacitor. In order to avoid charge injection, many methods were 

developed. The one of most important ones has been mentioned below. Figure 6 

shows a method to reduce the charge injection by the addition of a dummy 

transistor. 

 

 

Figure 6. Addition of a dummy transistor to reduce charge injection when the 

switch is off [2] 

It is assumed that half of the charge is injected to the left (towards Vin) 

and half of it towards the hold capacitor. So in some implementations such as the 

circuit shown in Figure 6, a dummy transistor which operates in the inverse phase 

of clock with size being half of switch is inserted in the signal path. This will 
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cancel the charge injection from the switch when the switch is turned off and the 

dummy transistor is on.  

 

2.2.2 Clock Feed through 

This parameter is a measure of how isolated the sampled signal is from the 

input signal when the circuit enters the hold mode. Ideally, the output voltage 

should no longer be affected by the change in the input signal voltage. But, there 

is always some signal feed through, usually through parasitic capacitors from the 

input to the output. Clock feed through is due to the gate-to-source overlap 

capacitance of the MOS switch. The clock feed through error is due to capacitive 

path to the S/H capacitor CL from the overlap capacitor Cgd and gate capacitor 

Cox. 

For the S/H circuit of Figure 1, the voltage change at Vout due to the clock feed 

through is given by the equation (6) 

                      )/()( hparasiticSSDDparasitic CCVVCV  …………………… (6) 

where Cparasitic is the parasitic capacitance . The error introduced by clock feed 

through is usually very small compare to charge injection. When the clock feed 

through is signal-independent  it can be treated as signal offset that can be 

removed by most systems. Thus, clock feed through error is typically less 

important than charge injection. 

 

2.3 Sample Hold Architectures 
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The symbol that is frequently used for the S/H amplifier in system block 

diagrams is a switch in series with a capacitor, as shown in Figure 4. Although the 

switch can control the mode of the device, and the capacitor can store a voltage, a 

S/H using just these two would have very poor performance. By studying the 

deficiencies of such a configuration, one can better appreciate the components 

that are added to this basic core to comprise a practical S/H amplifier. 

First, during the sample mode, the time taken to charge the capacitor for the 

S/H in Figure 7 is dependent on the source impedance of the input. A large source 

impedance would give a large RC time constant, leading to a high acquisition 

time. 

 

 

Figure 7.Sampling switch and a hold capacitor-the basic S/H block [4] 

 

To ameliorate this effect, the input is buffered with a operational amplifier (Op-

amp) as shown in Figure 8. The acquisition time will then be independent of the 

source impedance, and will be low due to the low output impedance of an 

operational amplifier. 
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Figure 8.Sample and hold block with an input buffer and an output buffer [4] 

Second, when in hold mode the hold capacitor will discharge through the 

load. Hence, the droop rate will be load dependent and could be very high. To 

ameliorate this problem, one buffers the hold capacitor from the output with an op 

amp. The droop rate will then be independent of the load, and will actually be 

rather low, due to the large input impedance of an op amp. Hence, in addition to a 

switch and a hold capacitor, a practical S/H amplifier must include input and 

output buffers. The two main variations of this structure, the open-loop and 

closed-loop architectures, differ in the manner of their feedback. 

In the open-loop architecture shown in Figure 8, the input and output 

buffer amps are each configured as voltage followers. The advantage of this 

architecture is its speed—the acquisition time and settling time are short because 

there is no feedback between the buffer amps. The disadvantage of this 

architecture is in its accuracy, which suffers because of the lack of feedback, 

causing the dc errors of both amplifiers to add. For applications requiring high 

accuracy, one can use the closed loop-architecture, with either a follower output 

(Figure.9) or an integrator output (Figure.10). The feedback significantly 

improves the accuracy of the S/H relative to the open-loop configuration, 

although the speed is somewhat less. 
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In both the open-loop architecture and the closed-loop architecture with 

follower output, the charge transfer, and hence the hold step, is a function of the 

input voltage. This is because the hold capacitor is connected to the input signal 

(through the input buffer amp). The closed-loop architecture with integrator 

output ameliorates this problem by connecting the hold capacitor to virtual ground 

instead of the input signal. Hence the charge transfer is constant. 

 

 

 

Figure 9.  The closed loop architecture of sample and hold circuit[4] 

 

 

 

Figure 10.  Closed loop architecture of Sample and Hold Circuit with integrator 

output [4] 
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3. BIPOLAR TRACK AND HOLD CIRCUIT DESIGN 

As in the case of any bipolar track and hold circuit [7],[8],[9] and [10], the  

design developed for this thesis also uses the conventional architecture with an 

input buffer, emitter follower switch buffer, a hold capacitor and finally an output 

buffer. Random noise is often the performance limitation of high accuracy THAs 

in high-bandwidth ADC applications [1]. If the sampled noise power of a THA is 

to be comparable with the quantization noise of a subsequent ADC, then that 

places a requirement that the integrated noise on the hold capacitors be 1/4 LSB 

or less. The emitter-switched topology allows for large signal voltage swing, 

which helps to meet this demanding requirement. However, the use of a large 

signal swing increases linearity errors. Thus, linearity compensation techniques 

become essential.  

The design presented here adopts the output steering technique from [8] 

and the switched emitter follower from [7].In addition to this, the current design a 

incorporates cascode transistors which connect to actual load RL during the track 

mode .During the hold mode, cascode transistors are connected to dummy loads 

and hence the output of the input buffer is isolated from the input signal. The 

circuit shown in Figure 11, was designed for a supply voltage of 3.3V. The input 

buffer and switching buffer are implemented with npn transistors only in order to 

achieve high speeds.  

The switch is isolated from the input buffer by emitter follower transistors. 

This helps to reduce sampling-pedestal error. When switching from track to hold 

mode, i.e. when the hold signal is given, the transistors with the hold signal draws 
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all the current brings the emitter follower off. So, the emitter follower is off and 

hence holding the charge at the end of track mode in the hold capacitors. One of 

the main advantages of this implementation is that it does not need non-

overlapping clocks. 

 

 

 

Figure 11.  Schematic of Switched buffer THA with input buffer, switching buffer 

and hold capacitor  

The differential output Voutp and Voutm drive a unity gain output buffer. 

The output buffer is needed in order to avoid the load from affecting the hold 

capacitor  
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3.1 Input Buffer 

The input buffer consists of input transistors with one pair of cascode 

transistors which connect to actual loads RL during the track mode and other pair 

of cascode transistors which connect to dummy loads Rd during hold mode. The 

resistor values are chosen based on the noise requirement for 10-12bit ADC. The 

input transistor uses a degeneration resistor in order to improve linearity. The 

degeneration resistor decreases the gain of the input but increases the linearity of 

the track and hold circuit. By increasing the degeneration resistor value, the SFDR 

and THD increased but the signal swing comes down drastically. The two current 

sources shown in Figure 12 are ideal and biased at 600uA .The implementation of 

the current sources is discussed later in the chapter. The output of the input buffer 

goes to an emitter follower switching buffer. As the cascode transistors connected 

to the actual load are off, the output is isolated from the input. This is isolation is 

large because now the input transistors are connected to dummy loads. This 

brings down signal feed through and hold pedestal error by a significant amount. 

The figure below gives a closer schematic of the input buffer. 
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Figure 12. Schematic of the Input Buffer 

 

3.2 Switching Buffer 

The emitter follower switching buffer consists of three npn transistors. 

The emitter follower shields the actual switch from the input buffer. The 

schematic of the switching buffer is given in Figure 13. 
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Figure 13. Schematic of the Emitter follower Switching Buffer 

In the track mode, the transistor below the emitter follower is on, charging 

the hold capacitor. In the hold mode, the transistor connected to the base of the 

emitter follower is on, bringing down the voltage at the base of the emitter 

follower until it is off. Hence the input buffer is isolated now from the hold 

capacitor. So, the charge now is same the charge stored in the hold capacitor at 

the end of track mode. The track and hold mode transistors were sized in order to 
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have minimum distortion and less acquisition time. The sizes of these transistors 

are given in Table 1. 

3.3 Constraint on the hold capacitor 

The value of the hold capacitor is primarily dictated by the kT/C noise 

requirement [1],[2],[7]. Bigger hold capacitors are efficient as they reduce the 

droop and feed through. But they limit the bandwidth of the circuit. The increase 

in the hold capacitor also increases the current modulation at the hold node and 

increases the distortion. The kT/C requirement provides the following minimum 

value for the hold capacitor by the given equation (7) 

                               12// 2CkT  [2]………………………………… (7) 

where   is the LSB of an n bit ADC i.e  =Vref/2n. 

Based on the requirement for 11 bit ADC, C should be atleast 1.5pF. 

The table below gives the values of sizes of all the components in the final 

circuit schematic Figure 11. 
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Table 1. Values of the circuit components presented in the circuit design 

In order to reduce the thermal noise contribution of the resistors (the 

integrated noise across the bandwidth of interest) in the input buffer, the current in 

the input buffer was increased ten times and the resistor values were scaled and 

accordingly the load and the dummy resistors were sized to be 100 Ohms and the 

degeneration resistor about 250 Ohm. Now the SNR (due to thermal noise of 

resistors) increased from 72 dB to 82 dB. But, this increased the power 

consumption of the S/H core. 

 

 

 

Components Value 

Vdd 3.3 

N1,N2 12u/120n 

N3,N4,N5,N6 4.8u/120n 

Rl,Rd 1.05k Ohm 

Ibias1,Ibias2 600u 

Rdegeneration 2k Ohm 

N7,N10 800u/120nm 

N8,N11 10.2u/120nm 

N9,N12 8u/120nm 

Ch 1.62pF 
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3.4 Implementation of current source in the input and switching buffer 

The ideal current sources were implemented as constant gm current 

sources. A general schematic of the constant gm current source is shown in the 

Figure 14 below [1] 

 

Figure 14. Schematic of a Constant gm current source [1] 

This circuit was used to provide a constant current of 600uA and 1.85mA 

for input buffer and switching buffer respectively. This circuit provides a constant 

current which is independent of the supply voltage. The op-amp between the two 

branches reduces the Vds mismatch, leading to lesser mismatch between the 

current branches I ref1 and Iref2. The higher the gain of the op-amp the better 

matching between the transistors.Morever,Vgs2 should be smaller than Vgs1 to 

accommodate for higher W/L with same current  in both the branches .The width 
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of M2 is K times larger than M1 ( 12  K ) and L1 = L2   so that gate source 

voltage of M1 is greater than M2. Neglecting mismatch and  effects, the current 

mirror M4, M5 provides Iref1= I ref2. Equations (8)-(12) derive the expression for 

transconductance (gm) in constant gm current source. 

                                          IRVgsVgs  21 ……………..……………………. (8) 

                             
IRVIVI

ThnThn 
21

22
 ………….………………….. (9)

 

                                  

2

1
2

112










KR
Iref

 ……………………..…………. (10)
 

                                       Irefgm 2 ………………………………............ (11) 

Substiting for refI ,    

                                             Rgm 1
……………………………………… (12)

 

This result is independent of MOSFET parameters (such as   and VTH) and 

supply voltage. The variation in gm over temperature, however, is directly 

affected by the temperature co-efficient of R.  
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4. SIMULATION AND RESULTS 

The simulation results of the THA circuit are presented in this chapter. 

The results include the output swing, SFDR, THD, SFDR with respect to input 

frequency and, SFDR with respect to temperature, etc..This chapter also gives a 

brief overview of the importance of coherent sampling. Finally the chapter ends 

with a table containing all the figures of merit for the S/H circuit. 

According to the Nyquist sampling theorem, the sampling frequency 

should atleast twice the highest frequency of the input signal. In order to meet this 

criteria, for a sampling frequency of 500MHz, the highest input frequency is 

250MHz. Figure 15 below is the transient output of the S/H circuit with an input 

frequency of 244.1MHz and sampling frequency of 500MHz. Figure 16 shows 

that the output dynamic range of S/H circuit is 1V. Figure 17 shows closer 

transient output with the clock signal with maximum acquisition time which is 

233.8ps. 
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Figure 15. Output of the Track and Hold Circuit. 

 

Figure 16. Output showing the total voltage swing  of 1V 
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Figure 17. The output of THA showing the maximum acquisition time  

 

4.1 Importance of Coherent Sampling and cause of spectral leakage 

In order to measure the spurious free dynamic range or total harmonic 

distortion (THD), the transient signal has to be converted to its frequency domain 

counterpart. This can be done with a discrete Fourier transform or fast Fourier 

transform (FFT).FFT is a very useful tool to investigate the performance of S/H 

circuits and data converters. 

Coherent sampling refers to the relation between the input frequency (fin), 

sampling frequency (fs), number of cycles in the sampled set (N) and the number 

of samples(M) which is generally chosen to be an integer with a power of two. 

The higher the value of M, higher the resolution of the FFT. Equation (13) gives 

coherent sampling condition. 
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                                                     fin/fs=N/M…………………………………(13) 

where it is necessary for N to be an integer. 

Due to the fact that only take finite number of samples of the time domain 

signal is taken, a window, generally  is used to capture or rather take a snapshot of 

the time domain signal. If this window covers the signal in such a way that the 

complete cycle is not included within, then this causes discontinuity with the next 

sample leading to spectral leakage. Figure 18 shows the time domain and 

frequency spectrum of signal sampled non-coherently. Figure 19 shows an FFT of 

a signal sampled coherently. So, a clear distinction is seen between the case where 

there is no spectral leakage and one where there is spectral leakage. 

Spectral leakage can be reduced following the coherent sampling formula 

and also by using a window with better frequency response. A window is a 

mathematical function which has a zero value outside a certain interval. There are 

various types of window functions depending on the characteristics of their main 

and side lobes and their application [18]. A rectangular window has high side 

lobes but a Hann window has moderate side lobes. It is known that the Hann 

window has a good frequency response as compared to rectangular window[18]. 
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Figure 18. Time domain illustration of the signal when coherent sampling 

constraint is not followed [20] 

 

 

Figure 19. Spectral leakage when coherent sampling was not followed 

4.2 Spurious Free Dynamic Range (SFDR) 

 This is one of the important measure of the fidelity of circuits in data 

conversion. By definition, SFDR is measure of strength of the fundamental signal 

to the highest spur in the output .This is used as an indicator of the amount of non-

linearity present in the circuit. Therefore, SFDR signifies the lowest energy input 

signal level that can be distinguished from the signals that are spurious. From the 

definition of SFDR, any signal below the SFDR cannot be identified as a pure 

signal instead of a spurious one. As the spurious signal can mask the desired ones, 

this is very important figure of merit. 
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In the Figure 20, the input frequency is selected 244.1MHz in order to 

make sure coherent sampling constraint is satisfied with a sampling frequency of 

500MHzaccording to equation(13). The FFT of the transient signal is generally 

between 0 to fs/2. The even order harmonics are not present in the FFT because 

we are using a fully differential THA. However, the third order harmonic (3*input 

frequency) for example would be at 732.4MHz.As the FFT gives only fs/2 

frequency, the higher harmonics are aliased back into this band. The higher 

harmonics aliased back within fs/2 can be found by the formula |nfs+ kfn| where n 

is an integer and k is the harmonic. So, the third harmonic would be aliased back 

at |500M+3*244.1M| which would be at 232.4MHz. Similarly, the fifth harmonic 

is aliased back at |2*500M+5*244.1M|=220.7MHz. As the third harmonic is 

highest spur in the FFT between 0 to fs/2, SFDR in this case is the power in dB in 

the fundamental tone at 244.1MHz minus the power in dB in the third harmonic. 

Hence the SFDR is 78.49dB.  
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Figure 20. SFDR of the THA 

 

4.3 Total Harmonic Distortion (THD) 

            Ideally, an amplifier has to provide the same gain irrespective of the input 

given. In other words, the gain of the amplifier should not be dependent on the 

input. But, large signal analysis of single and differential amplifiers circuits 

exhibit a nonlinear gain[1],[2]. In a differential pair, the output variation heavily 

nonlinear as the input level increases. The input and output characteristic of an 

amplifier can be approximated in the equation (14) as 

                             ....)()()()( 3
3

2
2

1
1  txtxtxty    ………………….. (14) 

The non linearity of a circuit can also be characterized by applying a sinusoid at 

the input and monitoring the output. If tAty cos)(   

                      ....coscoscos)( 321  tAtAtAty    …………….. (15) 
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From the equation (16), it can be observed that higher order terms yield higher 

harmonics. The even and odd order terms result in even and odd harmonics, 

respectively. The magnitude of the nth harmonic grows in proportion to the nth 

power of the input amplitude. This effect is quantified by adding the power of all 

the harmonics except the fundamental tone and normalizing the sum to the power 

of the fundamental as written in equation (17).This metric is termed as Total 

Harmonic Distortion. This undesirable in most signal processing systems 

including data converters and S/H circuits. 

                                      1

22
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2
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2
2 ...
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VVVV

THD



…………………….. (17)

 

 In S/H circuits, the input buffer and output buffer which are unity gain amplifiers 

contribute to non-linearity or distortion. The switches or the switching buffers add 

to distortion in the hold mode due to feed through and the hold pedestal problem. 

In the track and hold circuit, the linearity of input and output buffer is increased 

with the addition of degeneration resistors. As the design is fully differential, 

there is no contribution to non-linearity from the even order terms [1].From the 

Figure20, it can be seen that the THD for a up to fs/2 is < -74dB.Apart from the 

fundamental tone, among the higher order harmonics aliased back , third, fifth and 

seventh harmonics have significant power which contribute to the THD. The 

power of ninth and higher terms are neglected as they do not have significant 

power. 
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4.4 The effect of Temperature on SFDR 

Temperature affects various device characteristics in BJTs thereby varying 

the performance of circuits. Mobility degrades with the increase in temperature. 

Initially between -20 degrees to 40 degrees there is an increase in SFDR and after 

40 degrees, SFDR decreases drastically. Typically, the base transport in BJTs 

reduces with temperature, primarily because the mobility and recombination 

lifetime are reduced with increasing temperature. Occasionally the transport factor 

initially increases with temperature, but then reduces again [19].As the base 

transport factor decreases, the speed of the transistors reduce and hence SFDR 

decreases with increase in temperature. Figure 21 shows the behavior of SFDR 

with respect to temperature. 

 

Figure 21. SFDR v/s Temperature 
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The temperature was varied from -20oC to 70oC, SFDR varied from 70 to 

82dB.The FFT of the transient output of the THA was simulated on all process 

corners. The THA works on all process corners for a voltage supply change of 

+5% and temperature range of -20 oC to 70oC. 

 

4.5 The effect of sampling frequency on SFDR 

With the increase in sampling frequency, the behavior of the circuit 

degrades due to the non-idealities present. The clock feed through poses a 

constraint on the sampling frequency at which the circuit can operate. Higher 

frequency operation requires smaller hold capacitors as bigger capacitors restrict 

the bandwidth of the circuit. But, the noise requirement on the hold capacitor 

poses a constraint on the minimum value of the hold capacitor. So, this limits the 

operating frequency of the circuit. These problems and non-idealities lead to hold 

mode distortions degrading the SFDR and THD of the circuit. Using smaller hold 

capacitors also lead to leakage and droop problems at high frequencies hence the 

resolution of the Sample and Hold circuits and A/D converters decrease at high 

frequencies. Figure 22 shows the behavior of SFDR with change in sampling 

frequency. 
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Figure 22 .SFDR v/s sampling frequency 

 

As the sampling frequency increases from 0.5GHz to 1.5GHz, the SFDR comes 

down from 78.49 dB  to 55dB. 

The performance parameters of the current THA has been summarized in 

Table 2 below. 
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Technology 130nm 

Power Consumption 50mW 

Vdd 3.3V 

Dynamic Range 1Vpp 

SFDR 78.49dB 

THD <-74dB 

Acquisition time 233ps 

Droop rate 243n/838.4ps 

Hold Settling Time 9.356ps 

 

Table 2. Summary of the performance of current THA 
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5. CONCLUSION 

This chapter gives an overview of what was achieved from the techniques 

in the new bipolar SiGe THA topology. This chapter also gives a comparison of 

the performance of the current THA with other works.  

 
Current 

design 
[7] [8] [9] 

Frequency of 

Operation 
500Msps 1G 1G 500Msps 

Acquisition time 335ps 400ps --- ---- 

Analog Input 1Vpp 400mVpp 1Vpp ---- 

SFDR 78.49dB 62dB 62dB 62dB 

THD <-74dB < -60dB <-62dB <-62dB 

Supply Voltage 3.3V 3.3V 5.2V 1.8V 

Power Consumption 

of THA core 
50mW 350mW 75mW 15mW* 

 

Table 3. Comparison of the current work with other Bipolar THAs 

*without the inclusion of power consumption by the current sources 
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This THA works for a maximum sampling frequency of 500 MHz and 

input frequency of 250 MHz according to Nyquist rate criterion. An output 

dynamic range of 1Vpp has been achieved for a supply voltage of 3.3 V. The 

maximum acquisition time for this THA is 233ps which is lesser than 400ps as 

stated in [7]. The main reason for lesser acquisition time is the use of SiGe HBTs 

which are faster than normal BJTs. The maximum droop rate is 243 nV/838.3 ps 

which is considerably less. 

The current bipolar design combines the output steering technique from 

[8] and the emitter follower switch from [7],[9].From the Table 3,it can be 

clearly concluded that the SFDR and THD is higher than other THAs. The use of 

cascode transistors and dummy loads provide better hold mode isolation which 

leads high SFDR without any complex circuitry. The power consumption is 

50mW including the power consumption of the constant current sources 

excluding the output buffer. The power consumption in [8] is clearly higher than 

the THA presented in this Thesis. The reason could be the use of auxiliary 

buffer. The power consumption given in [9] is 15mW. However, the power 

consumed by the current sources has not been included. If the contribution from 

the constant current sources is included to the power, this will be more than 50 

mW. It can be concluded that the output steering technique along with the 

cascode transistors and emitter follower switching buffer prove to provide 

efficient hold mode isolation and reduce signal feed through with lesser power 

consumption. 
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The current work can be extended to higher frequencies. Operation at 

higher frequencies poses a challenge because the signal feed through and other 

non-idealities increase which would degrade the SFDR and THD. This can be 

overcome by adding compensation circuit to provide better hold mode isolation 

between the hold node and input. Addition of these compensation circuits would 

increase the power consumption. Hence, techniques to improve the SFDR which 

do not power consumption have to be developed. 
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APPENDIX A 

THA MEASUREMENT SETUP 
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A . THA MEASUREMENT SET UP 

The hold voltage of the THA is very inportant as this is voltage which is 

processed further in A/D converters. Inorder to check the accuracy of the hold 

mode volatage ins a Track and Hold circuit generally two sample and hold 

circuits are casecaded and operated with different clocks.The idea behind this is 

the beat frequencies obtained by different clocks of the two sample  and hold 

circuits. The beat frequencies obtained by the different clock signals of the two 

sample and hold amplifiers are used in this case.If fs1/n is applied as input to the 

first S/H with n=2,3,4,5…, a beat frequency occurs when the second sample and 

hold circuit is clocked with a sampleing ferquency of fs1/n.The sub-sampling gives 

smaller change in steps between the successive samples.The acquisition accuracy 

of the second circuit is increased .The final waveform can be analysed and 

information about the hold mode performance of the first sample and hold circuit 

can be determined without an A/D converter. One sine wave generator is used to 

generate input for the first sample and hold circuit at beat frequency. Another sine 

wave gerator is used which goes to a clock buffer  which provides the clock signal 

for the first S/H circuit. Each Track and hold circuit has its own bandgap 

references and clock buffers. 

 

 

 

 

 


