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ABSTRACT 

 There is a tremendous need for wireless biological signals acquisition for the 

microelectrode-based neural interface to reduce the mechanical impacts introduced by 

wire-interconnects system. Long wire connections impede the ability to continuously 

record the neural signal for chronic application from the rodent’s brain. Furthermore, 

connecting and/or disconnecting Omnetics interconnects often introduces mechanical 

stress which causes blood vessel to rupture and leads to trauma to the brain tissue. 

Following the initial implantation trauma, glial tissue formation around the 

microelectrode and may possibly lead to the microelectrode signal degradation. 

 The aim of this project is to design, develop, and test a compact and power 

efficient integrated system (IS) that is able to (a) wirelessly transmit triggering signal 

from the computer to the signal generator which supplies voltage waveforms that move 

the MEMS microelectrodes, (b) wirelessly transmit neural data from the brain to the 

external computer, and (c) provide an electrical interface for a closed loop control to 

continuously move the microelectrode till a proper quality of neural signal is achieved. 

 One of the main challenges of this project is the limited data transmission rate of 

the commercially available wireless system to transmit 400 kbps of digitized neural 

signals/electrode, which include spikes, local field potential (LFP), and noise. A 

commercially available Bluetooth module is only capable to transmit at a total of 115 

kbps data transfer rate. The approach to this challenge is to digitize the analog neural 

signal with a lower accuracy ADC to lower the data rate, so that is reasonable to 

wirelessly transfer neural data of one channel. 
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 In addition, due to the limited space and weight bearing capability to the rodent’s 

head, a compact and power efficient integrated system is needed to reduce the packaged 

volume and power consumption. 3D SoP technology has been used to stack the PCBs in a 

3D form-factor, proper routing designs and techniques are implemented to reduce the 

electrical routing resistances and the parasitic RC delay. It is expected that this 3D design 

will reduce the power consumption significantly in comparison to the 2D one. 

 The progress of this project is divided into three different phases, which can be 

outlined as follow: 

a) Design, develop, and test Bluetooth wireless system to transmit the triggering 

signal from the computer to the signal generator. The system is designed for three 

moveable microelectrodes. 

b) Design, develop, and test Bluetooth wireless system to wirelessly transmit an 

amplified (200 gain) neural signal from one single electrode to an external 

computer. 

c) Design, develop, and test a closed loop control system that continuously moves a 

microelectrode in searching of an acceptable quality of neural spikes. 

 The outcome of this project can be used not only for the need of neural 

application but also for a wider and general applications that requires customized signal 

generations and wireless data transmission. 
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CHAPTER 1 

INTRODUCTION 

Advanced integrated circuit technology and new biocompatible materials have 

enabled the development of sophisticated biomedical implants to record of neural activity. 

The recorded neural signals are very useful for neuroscientists to study modern systems 

neuroscience. There is a great need for technologies that enable neuroscientists and 

clinicians to observe neural activity associated with a task or behavior in real time [1], [2], 

[3]. Microelectrodes implanted in the brain can record extra-cellular potentials and 

provide excellent spatial and temporal resolution of neural activity [4]. Hence, 

implantable microelectrodes are widely used in clinically viable brain-machine interfaces 

(BMI) for neural signal acquisition. Advanced MEMS technology has the capability to 

develop large scale neural recording devices with as many as 100 independent electrodes 

to obtain multiple channels' of neural signal, which creates a significant impact in clinical 

medicine and the general neuroscience field with many potential applications [1], [3]. 

With the realization of multichannel recording technology, physiologists can comprehend 

the operation of individual neurons, understand the signal processing techniques and 

organization of biological neural networks and even control multiple prosthetic devices at 

the same time [5].  

1.1. Microelectrodes 

Most current designs of the microelectrodes for neural data recording are fixed, 

which means the depths and positions of the microelectrodes in the brain cannot be 

changed. They can only record activity of neurons in the region they are implanted 

initially. If the quality of the neural signal in that position is not acceptable for further 

analysis, there is no good method to adjust the position of the microelectrodes to search 
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for sites with better quality of recordings. MEMS technology enables the creation of 

miniaturized movable structures. Hence it was conceptualized that microactuators can be 

fabricated using this technology to move the electrodes [6], [7], [8]. A new actuation 

scheme for in-plane, bi-directional translation of polysilicon microelectrodes using 

electrothermal microactuators for brain implant applications has been designed in our 

laboratory [6], [9], [10], [11]. With movable microelectrodes design, it is very convenient 

to control the movements of multiple microelectrodes in order to search for acceptable 

quality of neural signals.  

1.2. Electronics to Control Movement of Microelectrodes and Record Neural Activity 

In order to control the movement of MEMS a microprogrammed control unit 

(MCU) provides the control signals to actuate the microelectrodes. Higher voltage and 

current are necessary to drive the electrothermal microactuators to move the multiple 

microelectrodes. Hence, the control signals from output pins of MCU have to be 

amplified and demuxed. 

1.3. Pre-Amplifier 

The voltages of neural signals in the brain are usually at the level of micron volts, 

which is in the same level as noise of the outside world. External interfering and noise 

signals would easily disturb the weak neural signals (<500uV) [11]. In addition, dc 

offsets of 1 to 2 volts are common across the microelectrodes because of the 

electrochemical effects at the electrode-neuron interface. Therefore, in order to keep the 

high enough signal to noise ratio (SNR) and reject the dc offsets at the input of 

microelectrodes during the neural data acquisition process, it is necessary to use a low 

noise bioamplifier to amplify the neural data first before processing and transferring it.  
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1.4. Analog to Digital Converter 

In order to enhance the signal to noise ratio (SNR) during the transmission 

process, make the data transferring easier, allow on-board digital signal processing for 

compressing neural data and achieve higher bandwidth, it is very necessary to digitize the 

analog data to digital format with on-board analog to digital converter (ADC)  before 

being transmitted to the outside world [5]. 

1.5. Need for Wireless Systems 

A current limitation of neural signal and control signal transmission is the 

method of transmission of the signals to and from the data acquisition devices. Right now, 

for most neural signal recording, wired connections are used to transfer neural data from 

implanted microelectrode arrays to external instrumentations. Such wired connections are 

not limited by data transfer rate. Thus, those neural data recording devices must be 

connected to external equipments with relatively bulky wire bundles and connectors [1], 

[12]. In addition, external interference and noise would easily couple to the wires. Also, it 

is very inconvenient to continuously send control signal to movable microelectrodes or 

record neural activity from the rodent's brain for a relatively long time with the wire-

interconnects system. Furthermore, the test animal cannot move freely with the limited 

length of wire connection. In order to get rid of the trauma to the brain tissue caused due 

to the connecting and/or disconnecting of wired Omnetics
TM

  interconnects, this type of 

neural signal acquisition system must communicate with the external equipments and 

obtain power without the use of wires [11]. With the implantable units that utilize 

batteries for power and wireless telemetry for transmission of neural signals and control 

signals, the system avoids those issues associated with hard-wired connection. Although 
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it has to face the problems of fast discharging of the batteries and the requirement of high 

power consumption [5]. 

1.6. Wireless System-on-Package for Neural Recording and Control of 

Microelectrodes 

In an effort to create neural recording devices with wireless power and data 

transfer, microelectromechanical system (MEMS) electrode arrays are being combined 

with preamplifier and signal generator in 3D stacked PCBs [10], [11]. For now, an 

internal source (a coin-sized battery, for example) provides power for the implanted 

module. Ideally, these circuits should be wirelessly powered since rechargeable batteries 

are relatively large and have limited lifetimes. In addition, the systems will be tested on 

rodents, so such systems must deal with not only the power constraints, but also the size 

[13], [14]. The complete packaged system should be very compact. Furthermore, low 

power operation is essential for any small implanted electronics as elevated temperatures 

can cause damage to biological tissues [15], [16]. Moreover, by reducing the total length 

of the routing onboard, the 3D stacked technique consumes less power and decreases the 

space of the complete system. 

1.7. Thesis Overview 

Due to limited time and budget, the RN-41 Bluetooth module from Roving 

Networks is used in the wireless transmission, which has the maximum baud rate of 

115,200 bits/s. It is a very robust link both in signal integrity and transmission distance, 

and the wireless transmission quality has been tested within 15m (maximum distance in 

the lab). The ultimate goal is to achieve a fully implantable robotic microelectrode system 

for neural signal acquisition with the capability to manipulate the microelectrodes 

wirelessly. The main contribution of this thesis is to develop a completely packaged 
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system for enabling this goal. A design to wirelessly transfer one channel of 

microelectrode recording and control of movement of three microelectrodes in an array 

has been implemented. 

1.8. Thesis Outline 

The organization of the thesis is as follows: Chapter 2 presents the complete 

system design; Chapter 3 shows the results and analysis; Chapter 4 summarizes the thesis 

and presents the future plan.  
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CHAPTER 2 

SYSTEM DESIGN 

2.1. System Introduction 

There are two system designs in the project. The first one is the wireless 

transmission system for one channel to get a proper quality of neural signal with movable 

microelectrode closed loop control. The second one is manually controlling multiple 

microelectrodes movement by wirelessly sending triggering signal from an external 

computer to a microcontroller. 

2.2. System Flow 

 

Figure 1: Schematic representing the bi-directional flow of signals. Neural signals 

recorded from the rodent cortex are transmitted through the pre-amp to a microcontroller 

and transmitted wirelessly. Control/trigger signals from the computer are wirelessly 
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transmitted to the microcontroller, which generates the set of waveforms to move the 

appropriate microelectrode as selected by the demux. 

a) System 1 is designed for one microelectrode only due to both the data transfer 

limitation of the Bluetooth module and the sampling rate of the ADC in the 

microcontroller. As shown in Figure 1, first, the MEMS microelectrodes acquire 

the neural data from rodent's brain. Secondly, the preamplifier amplifies the 

neural data by 200 times. Thirdly, the ADC in the microcontroller samples the 

input amplified neural data with the frequency of 10 kHz. Fourthly, 

microcontroller sends the digitized neural signal wirelessly to external computer 

through Bluetooth module. Fifthly, computer displays the received neural data 

and stores it for further processing. Meanwhile, the control algorithm 

implemented on the microcontroller will keep checking the quality of the neural 

signal. If the signal quality is not acceptable, then the microcontroller will 

automatically send the control signal to MEMS chip to move the microelectrode 

until a proper quality of neural signal is achieved. Below is how the close-loop 

control works. 

i) Microcontroller keeps reading neural data in certain of window of time A 

(which can be programmed in the microcontroller). If the amplitude of the 

incoming signal is higher than the threshold, it is defined as a spike. The 

threshold is set as 3 times the standard deviation above the mean of the 

incoming data. Since the data sampling rate of the on board ADC is 10 KHz, 

and normally each spike lasts 1 to 3 millisecond, theoretically each spike 

could have no more than 30 samples. Therefore, when there is a spike being 

detected, start to transmit the next 30 points of neural data. After the 

transmission, microcontroller keeps searching spikes within the window A. If 
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there are more than 20 spikes being detected within the amount of neural data 

A, which means the quality of the neural signal is acceptable with the current 

position of microelectrode. Then after the process of reading A, recalculate 

the new threshold, then redo step 1. 

ii) If there are no enough spikes being detected in the window to time A, the 

microcontroller will automatically generate the movement waveforms to 

move the microelectrode by a single step. After the microelectrode 

movement waveforms are sent, redo step 1. 

b) System 2 is a wireless control system for multiple microelectrodes, which could 

manually control each one of the electrodes to move forward or backward 

individually with simple commands from external computer. With the capability 

of controlling more than 16 channels individually, it is designed for 3 

microelectrodes only due to the PCB space limitation. According to Figure 1, 

first, when you want to move the microelectrodes, simply type in the 

corresponding command in the Arduino software, the computer will send the 

wireless triggering signal to microcontroller though the Bluetooth wireless 

module. Secondly, when the microcontroller receives the trigger command from 

computer, it will send a confirmation signal back to the computer, and it will 

generate the corresponding control signals to the MEMS chip. Thirdly, the 

MEMS chip will control the movements of each electrode. 

i) Once the command of microelectrode's number and movement direction is 

input, the computer will wirelessly send it to the microcontroller through the 

Bluetooth module.  

ii) The microcontroller generates the corresponding four waveforms for the 

selected microelectrode.  
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iii) The waveforms are transmitted via the 555 Timers and the demultiplexers, to 

the MEMS chip. 

iv) The MEMS chip moves the microelectrode forward/backward. 

Table 1: Trigger Signals for Generating Movement Control Waveforms for 3 

Microelectrodes 

Trigger Signal Microelectrode Selection Direction Selection 

a 1 Forward 

b 1 Backward 

c 2 Forward 

d 2 Backward 

e 3 Forward 

f 3 Backward 

 

2.3. Pre-Amplifier PCB Design 

The pre-amplifier PCB is based on the Intan RHA2000 series amplifier chip, 

which is a fully integrated 46 dB (200 V/V) amplifier. This amplifier chip has  

a) low input-referred noise: 2 μVrms; 

b) low power operation: less than 500 μW per channel;  

c) low supply voltage requirements (2.9V-3.6V) permit operation from small 

batteries;  

d) upper cutoff frequency of all amplifiers set by external resistors: adjustable from 

10 Hz to 20 kHz;  

e) lower cutoff frequency of all amplifiers set by external resistor: adjustable from 

0.02 Hz to 1.0 kHz, true zero gain at DC rejects electrode offset voltages. 

All the features are suitable for the low-power wireless headstage for 

neurophysiology experiments. At the core of each RHA2000-series chip is an array of 
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low-noise amplifiers with a mid-band gain of 46 dB (200 V/V) and built-in filtering to 

isolate frequencies of interest.  

The amplifier has a 3rd-order Butterworth low-pass filter, which could minimize 

aliasing and reject the noise and signals that are beyond the desired. All possible DC 

offset voltages at the input pins are completely rejected by the internal capacitors, thus, 

eliminates the problems with built-in potentials at electrode-tissue interfaces [10]. 

The upper bandwidth of the amplifiers may be programmed to any value between 

10 Hz and 20 kHz, and the lower bandwidth from 0.02 Hz to 1.0 kHz, by means of three 

external resistors per chip. This flexibility allows the chips to be optimized for different 

types of signals (e.g., 0.1 – 100 Hz for EEG or EKG signals, 250 Hz – 7.5 kHz for neural 

action potentials). Frequency of 1-7.5 kHz is the range of neural spike potentials and 

local field potentials. Two off-chip resistors, RH1 and RH2, are tied to the pins setH1 and 

setH2 to set the upper bandwidth (fH) of the amplifiers. An external resistor RL tied to 

the pin setL to set the programmable lower bandwidth of RHA2000-series chip. 
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Figure 2: Schematic Design for Pre-Amplifier 

As shown in Figure 2, the RH1 and RH2 are chosen as 15.8 kΩ and 26.7 kΩ to 

set the upper bandwidth (fH) as 7.5 kHz, and RL is chosen as 86.6 kΩ to set the lower 

bandwidth (fL) as 1Hz [17]. 
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Figure 3: Printed Circuit Board Design for Pre-Amplifier 

As shown in the Figure 3, the PCB has two layers of routing, red and blue. All 

the electrical components and input output pins are on the red side of the PCB. 

2.4. Waveforms for Moving the Microelectrodes 

The moveable microelectrode MEMS chip needs four square waveforms to drive 

one microelectrode, which are forward drive, disengage reverse drive, reverse drive and 

disengage forward drive. The voltage level of forward drive and reverse drive is 7 V, and 

the voltage level of disengage reverse drive and disengage forward drive is 6.5 V. The 

period of the waveforms for a single step movement is 6t (where t is time period). Each 

time period t is set to 100 ms for visualization of movement of actuators. The Figures 

below are the waveforms for driving the microelectrodes. 
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Figure 4: Waveforms for Forward Actuation [18] 

 
Figure 5: Waveforms for Backward Actuation [18] 

As we can see, the forward and reverse driving signals share the same two 

waveforms: disengage reverse drive and disengage forward dive. However, they have one 

more separate waveform, which means the system requires four waveforms in total. 

One full cycle or "click" of actuator requires time T=6×t. 
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2.5. 555 Timer and Demultiplexer 

 
Figure 6: Schematic of Function of 555 Timers 

As shown in Figure 6, the 555 timers act like an amplifier in the system, except 

they will reverse the up level and low level.  

 
Figure 7: Schematic of Function of Demultiplexer 

As shown in Figure 8, the control signal decides which output channel is selected, 

and the output channel will output exact the same signal as input. Other output channels 

are idle at the same time.  
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Table 2: 1 to 4 Truth Table of Demultiplexer 

Control input pins 

(A••B) 

Output Microelectrode selection 

0000    1 

0001    2 

0010    3 

... ... ... 

 

Table 2 shows the truth table of the inputs and outputs of the demultiplexer. 

2.6. Breadboard Circuits Test of Generating Control Waveforms for Moving 

Microelectrodes 

 
Figure 8: Schematic Design for Waveform Generation of Movable MEMS 

The circuit is designed for wirelessly controlling 3 microelectrodes. As Figure 6 

described, the Bluetooth module waits for the trigger signal sent from external computer. 

The microcontroller generates the four corresponding movement waveforms when it gets 
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trigger signal from Bluetooth module. With two dual 555 timers and two dual 1-4 

demultiplexer, the microactuators in MEMS can receive the waveforms with high enough 

voltages and currents to drive the microelectrodes. The waveforms generated by this 

circuit are tabulated in Chapter 3. 

2.7. System Architecture 

Due to size limitation, the complete wireless transmitting and control headstage 

package should be as small as possible. They will be mounted on the rodents' head or 

placed as a backpack. Hence, based on the successful breadboard testing, the 3D System-

On-Package design was adapted. Instead of the normal 2D PCB design, multiple much 

smaller size PCBs are being stacked up together using wire bonding, which decreases the 

perimeter in a considerable way. 

 
Figure 9: System-on-Package Demo Error! Reference source not found. 
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As in the Figure 7, the top red layer is the microcontroller; the four blue layers 

are 555 timers, resistors and capacitors; the four cyan layers are four 1-16 quad-

demultiplexers; the bottom yellow layer is the Omnetics PCB; the side green vertical 

PCB is the Bluetooth module and the small purple one is the pre-amplifier PCB.  

The anticipated size of the complete 3D package is around 1.3×0.55×1.7''. 

2.8. Challenges and Approaches 

2.8.1. The need for 555 Timers and Demultiplexers 

There two kinds of control signal for the movement of a microelectrode. One is 

the microelectrode selection signal; the number of bits of this signal depends on the 

number of microelectrodes. The other one is the forward or backward movement control 

signal, which needs four bits to generate four waveforms. The number of digital output 

pins of the microcontroller is limited; hence, for controlling the movement of multiple 

microelectrodes, a one-to-many mapping strategy is needed. Demultiplexers are used for 

this purpose. For the demultiplexers, the control input is the selection signal from 

microcontroller, which decides which microelectrode is selected. A demux with one input 

and sixteen outputs and four control signals is used in the design, and it is capable of 

selecting for a maximum of sixteen microelectrodes. 

The output pins of the microcontroller, Arduino Pro-mini, have an output voltage 

of 3.3 volts, which is not high enough to drive the microactuator to move the 

microelectrodes. The microactuator needs at least 7 volts for maximum displacement. So 

the 555 timers are used as an amplifier to provide higher voltages and current drives to 

the microactuator. 
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2.8.2. Data Transfer Rate Limitation 

In the original design the ADC on amplifier board has a sampling rate of 25 KHz 

per channel and resolution of 16 bit/sample, then the data transfer rate needs to be at least 

25KHz * 16 bit/sample = 400 Kbit/s per channel, which is beyond the maximum data 

transfer rate of Bluetooth (115.2 Kbit/s). Hence, it is reasonable to transfer the neural data 

of just one channel. Due to lower sampling rate and resolution, the on-chip ADC of the 

microcontroller has been chosen. With the sampling rate of 10 KHz and the ADC 

resolution of 10 bit/sample, it requires the data transfer speed at 10 KHz * 10 bit/sample 

= 100 Kbit/s, which is less than 115.2 Kbits/second. 
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CHAPTER 3 

DATA ANALYSIS AND RESULTS 

3.1. Breadboard Test 

3.1.1. Microcontrollers' Movement Control Waveforms with Cable Connection 

 
Figure 10: Screen Capture of Waveforms for Forward Actuation (Cable) 
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Figure 11: Screen Capture of Waveforms for Backward Actuation (Cable) 

An oscilloscope was used to test the control signal. The waveforms shown in 

Figure 10 and Figure 11 are the waveforms needed for driving microelectrodes forward 

and backward. All output waveforms have the up level of 7 volts, which are linear to the 

voltage of power supply. Period t is set as 1 ms during the test. 
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3.1.2. Microcontrollers' Movement Control Signal with Bluetooth Connection 

 
Figure 12: Screen Capture of Waveforms for Forward Actuation (Bluetooth) 
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Figure 13: Capture of Waveforms for Backward Actuation (Bluetooth) 

Figure 12 and Figure 13 shows that waveforms generated by the trigger signal  

sent through Bluetooth link are the same as cable connection.  The Bluetooth connection 

works properly for transmitting wireless movement signal. 

3.2. 3D System-On-Package Test 

The complete 3D System consists of multiple layers of PCBs, which are 

sandwiched by electrical interconnects. 
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3.2.1. Packaging Technique and Equipment 

 
Figure 14: Photograph of Custom-Built Packaging Platform 

Printed circuit boards and 3D stacked packaging were done on a custom-built 

platform for solder paste dispensing as shown in Figure 14. 
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3.2.2. Pre-Amplifier PCB 

 
Figure 15: Fully packaged printed circuit board with Intan pre-amplifier. Input connects 

to the electrodes through Omnetics and wire connection. Output connects to the input of 

microcontroller. 

The name of each component and the input/output pin is shown in Figure 12, the 

PCB of Pre-Amplifier. A soldering platform shown in Figure 14 was used to solder the 

tiny components onto the PCB, which required manual experience of surface-mount chip 

packaging. 
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3.2.3. 3D System-On-Package Demo 

3.2.3.1. Signal Modulation System — 555 timers & Demultiplexers 

 
Figure 16: Realization of 3D System-On-Package for Modulating Microelectrodes' 

Movement Signal 

Figure 13 shows the 3D System-On-Package of 555 Timer Circuits and 

Demultiplexers. The left four layers are four quad 1-16 demultiplexer; the right four 

layers are 555 timers, resistors and capacitors needed for modulating the waveform 

amplitudes. 
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3.2.3.2. Full Movement Signal Generating System 

 
Figure 17: Realization of Full Movement Signal Generating System 

As shown in the Figure 14, the top layer is the PCB with an Omnetics
TM

 

connector attached, whose male header will connect to the female header on the MEMS 

chip. The bottom layer is the microcontroller, Pro-Mini from Arduino, which would 

provide the initial control signal and movement waveforms. 

3.2.4. Demultiplexer Selection Result 

Table 3: Truth Table of 1 to 16 Demultiplexer 

Control input pins 

(        ) 

Output Microelectrode selection 

0000    1 

0001    2 

0010    3 

... ... ... 

 

Table 3 shows the truth table of the inputs and outputs of the demultiplexer in 3D 

System-On-Package Test. 
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0000 => microelectrode 1 

0001 => microelectrode 2 

0010 => microelectrode 3 

3.2.5. Microcontrollers' Movement Control Signal with Cable Connection 

 
Figure 18: Screen Capture of Waveforms for Forward Actuation (Cable) 
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Figure 19: Screen Capture of Waveforms for Backward Actuation (Cable) 

As shown in the Figure 18 and Figure 19, the 3D stacked package system for 

signal generating works successful. 
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3.2.6. Microcontrollers' Movement Control Signal with Bluetooth Connection 

 
Figure 20: Screen Capture of Waveforms for Forward Actuation (Bluetooth) 



30 

 

 
Figure 21: Screen Capture of Waveforms for Forward Actuation (Bluetooth) 

As shown in Figure 20 and Figure 21, the Bluetooth link in 3D stacked package 

system also works properly for transmitting trigger signal from an external computer to 

the microcontroller. 
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3.2.7. Microelectrode Movement Result 

 
Figure 22: Screen Capture of Microelectrode in Steady Position 

 
Figure 23: Screen Capture of Microelectrode in Moving Position 

As shown in Figure 22 and Figure 23, with the waveforms from package, the 

microactuator drove the microelectrode perfectly.   



32 

 

3.2.8. Tables of Size and Power Consumption 

Table 4: Component Parameter 

 Dimension  Average power 

consumption  

Weight  

Amplifier  0.52×0.69×0.06'' 

(13.2x17.5x1.5 mm)  

Less than 500uW per 

channel  

0.69 g 

Bluetooth  1.75x0.65" 

(1.5x13.2x25.8 mm)  

26.4mW (Sleep) 

90mW (Active) 

3.92 g 

Microcontroller 0.7x1.3" (18x33mm)  0.18uW (Power-save) 

0.36mW (Active) 

2 g 

555 Timer 

Circuit PCB 

0.55x0.8"  15mW  1.51 g 

Demultiplexer 

PCB  

0.55x0.8"  20mW  1.51 g 

Omnetics PCB 0.55x0.8" N/A 1 g 

3D Stacked 

Package 

1.3 x 1.4 x1.75'' N/A N/A 

 

The complete package was designed to mount on the headstage on the rodent's 

head. However, the table 4 shows that the package is still too large and too heavy, and it 

need to be mount as a backpack.  

During the neural signal transmission process, microcontroller and pre-amplifier  

only consume very little power. Most the power consumption is based on the Bluetooth 

module. Therefore, according to the table 4, a 3.3V 250 mAh coin cell battery (825 mW) 

with dimension of 20×3.2 mm can power the process of neural signal transmission only 

for approximate 9 hours (825 mW / 90 mW).  

3.3. Electrical Characteristics of Stacked 3D Package 

Table 5: Electrical Characteristics 

Parameter Min. Typ. Max. Unit 

Supply Voltage (DC) 6.5 7 9.5 V 

Output Voltage 6.5 7 9.5 V 

Output current (Sending 

Control waveforms) 

70 72 100 mA 
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Output current 

(Standby/Idle) 

0.27 0.3 0.45 mA 

 

The output parameters are measured from the output pins of demultiplexers. 

Table 5 shows the current and voltage output parameter. 6.5 volts is the minimum voltage 

needed for movement waveforms. 9.5 volts is the maximum voltage that the stacked 3D 

package can generate. Both voltage and current meet the requirement to make 

microactuator drive the microelectrodes to move. 

3.4. Wireless Neural Data Acquisition Testing 

Since the moveable microelectrodes MEMS is not finished yet, sinusoid dummy 

signals are used to test the wireless neural data transmission. Furthermore, the 

microcontroller cannot read the negative voltage; an offset voltage was added to the input. 

Tested with dummy signal that is provided by a waveform generator. 

 
Figure 24 Operating Principle of ADC 

The microcontroller (Arduino Pro-Mini) has an on-chip analog-to-digital 

converter that reads this changing voltage and converts it to a number between 0 and 

1023 (10 bits resolution). When there are 0 volts going to the pin, and the input value is 0. 

When there are 1.1 volts going to the pin and the input value is 1023. In between, it 

returns a number between 0 and 1023 that is proportional to the amount of voltage being 

http://arduino.cc/en/Reference/AnalogRead


34 

 

applied to the pin. This means that it will map input voltages between 0 and 1.1 volts into 

integer values between 0 and 1023. This yields a resolution between readings of 1.1 volts 

/ 1024 units or 0.0011 volts (1.1 mV) per unit [20]. Hence, the actual values are needed to 

be converted by being divided by 1024 and then times 1.1 V. 

3.4.1. Result Comparison of Different Amplitude 

 
Figure 25: Result with SineWave_100Hz_100mV Input 

 

 
Figure 26: Result with SineWave_100Hz_50mV Input 
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Figure 27: Result with SineWave_100Hz_10mV Input 

The horizontal ordinate is the number of sampled neural data. Figure 25, Figure 

26 and Figure 27 shows that at the same frequency of 100 Hz, the quality of received 

signals decreased with the input voltages decreasing. The Peak-to-Peak values of the 

results are less than inputs, which may be caused by noise interference and low sampling 

accuracy.  However, their qualities are acceptable. 

3.4.2. Result Comparison of Different Frequency 

 
Figure 28: Result with SineWave_200Hz_50mV Input 
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Figure 29: Result with SineWave_350Hz_50mV Input 

 
Figure 30: Result with SineWave_500Hz_50mV Input 

The Nyquist rate ( Nf ) is the minimum sampling rate required to avoid aliasing, 

equal to twice the highest frequency ( B ) contained within the signal. 

2Nf B
                                                                                  Formula 1 

To avoid aliasing, the sampling rate ( Sf ) must exceed the Nyquist rate ( Nf ) 

S Nf f                                                                                     Formula 2 

Normally the sampling rate should be at 3 to 4 times the Nyquist rate to get better 

output signals. 

4S Nf f                                                                                Formula 3 
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Total sampled data numbers of 11249, 74532 and 361958 were stored in the 

computer when the wireless transmissions were tested at durations of 10s, 60s and 300s. 

1 11249 /10 1125Sf Hz   

2 74532 / 60 1242Sf Hz   

3 361958 / 300 1206Sf Hz   

The three formulas show that the sampling frequency approaches 1.2 kHz. 

According to formula 1 and formula 3, the signal with frequency below 

1200 / 4 / 2 150B Hz  would have a good quality.  

As shown in the Figure 26, Figure 28, Figure 29 and Figure 30, the result has 

visible aliasing started at the frequency of 200 Hz, and serious aliasing occurred at 

frequency of 350 Hz and 500 kHz. 

It takes about 100 microseconds (0.0001 s) for the microcontroller to read an 

analog input, so the maximum reading rate is about 10,000 times a second [20]. 

Therefore, the sampling rate of the microcontroller should be 10 kHz. However, the 

process of converting analog signal to digital signal may cost some time and delay the 

sampling rate, which leads to the fact that the actual sampling rate is around only 1.2 kHz. 

3.5. Close Loop Control Testing 

Since there is no neural signal to test, a dummy signal provided by a signal 

generator is used. The voltage of the dummy signal was increased/decreased manually to 

imitate the input neural signal. When the voltage is steady, all the sampled value are 

smaller than or equal to the threshold (sum of mean plus 3 times the standard deviation), 

which indicates the quality of the input signal is not acceptable. Then the system would 

automatically send the movement waveform to the MEMS to move the microelectrode. 

(For convenient observation, here I just changed the code to turn on a red LED instead). 
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Moreover, when the voltage was increased, the input samples became larger than the 

threshold. When there were more than 20 points of sampled data being larger than the 

threshold, which indicates that the quality of the signal is acceptable for further analysis, 

instead of sending any movement waveforms, the microcontroller transferred the neural 

data. The process is similar to the system 1, which was introduced in introduction. 

 
Figure 31: Screen Capture of Bad Signal Quality 

Figure 31 shows the result of bad signal quality, and the microcontroller will 

generate the movement waveforms.  
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Figure 32: Screen Capture of Good Signal Quality 

Figure 32 shows the quality of the input signal is acceptable, and the system will 

start to transfer data. 
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CHAPTER 4 

SUMMARY AND DISCUSSION 

4.1. Performance and Stability Analysis 

4.1.1. Wireless Movable Microelectrode Trigger Signal's Transmitting and 

Corresponding Control Signal's Generating 

For transmitting control signals for movable microelectrodes, the fully packaged 

system was tested with Bluetooth link for different ranges. It turns out the Bluetooth 

communication link worked properly for at least a 15 meters range, which is the longest 

distance from the workspace to the door. That distance is long enough for transmitting 

control signal wirelessly for such implantable applications. 

From the testing results above, the Bluetooth communication module worked 

very successfully for transmitting control signals. However, there were noise issues 

during the testing process. The breadboard-based Bluetooth wireless transmission system 

is very stable for signal generating and transferring, while the 3D stacked package system 

is not stable enough, which may be due to the PCB design is not robust enough to shield 

the outside interference. There are two possible reasons for non-robust signal 

transmission: one is the exposed wire connections due to the multiple stacking of PCBs 

brings about a lot of noise and interference; the other one is that the antenna of the 

Bluetooth module may also draw noise into the system. Hence, a grounded metal box was 

added to shield the outside noise. Further testing showed the package had reduced outside 

noise interference during signal transmission. 

4.1.2. Wireless Neural Signal Acquisition 

Wireless neural signal transmission performance was tested with dummy signals 

for different amplitudes and different frequencies. As the results shown above, the 
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Bluetooth link works fine for transmitting the neural data with the speed below 115,200 

bps, which avoids all the disadvantages that cable connection causes. However, even 

though the accuracy of the microcontroller is fine for the neural signal sampling, the 

sampling rate of on-chip ADC is not acceptable for transmitting neural signal. 

A typical neuron generates 10-100 spikes per second when active. Resting or 

"spontaneous" activity of neurons ranges up to 1-10 spikes per second. While the data 

sampling rate of the on board ADC is 10 KHz. Furthermore, normally each spike is less 

than a millisecond in duration, so theoretically each spike could only have less than 10 

samples with current microcontroller. In fact, the sampling rate is around 1.2 kHz, which 

is even smaller than 10 KHz. It is not acceptable for neural signal transmission and 

analysis. 

4.2. Future Work and Improvement 

The low voltage level output waveforms of microcontroller need to be amplified 

before sending to the MEMS chip. If there is a MCU with output voltage reaching 7 volts, 

there is no need of 555 timers circuits to modify the movement waveforms. 

Furthermore, there are both negative and positive voltages of neural signal, while 

the microcontroller, Arduino Pro-Mini, cannot read negative voltages. It is necessary to 

add an offset voltage on the neural signal to realize the complete signal transmission, 

which will add more noise to the neural signal. 

So in order to obtain the signals with better quality, a new MCU with the 

capability to read both positive and negative analog input is needed. In addition, to 

acquire a better-reconstructed neural signal after the transmission, the MCU should have 

an on-chip ADC with higher sampling rate (>20 kHz) and higher resolution (>16 bits). 
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The pre-amplifier PCB designed based on the Intan amplifier could only amplify 

the neural signals for 200 times, while as requirement the amplified signals are still too 

low for further processing and analyzing. Therefore, a second stage amplifier may be 

added after the pre-amplifier to further amplify the neural signal. 

Data transfer rate is relatively low for neural data transmission. It is the most 

important thing to find out or design a wireless module with a proper size to satisfy the 

higher data transfer rate, especially for multiple channels' signal recording, which is the 

trend right now. 
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APPENDIX A 

ARDUINO CODE FOR WIRELESS CONTROLLING MOVABLE 

MICROELECTRODES 

  



46 

 

int pin1 = 13;    // Trigger Signal 

int pin2 = 12;    // Trigger Signal 

int pin3 = 11;    // Trigger Signal 

int pin4 = 10;    // Trigger Signal 

int pin5 = 6;      // Select Signal A0 

int pin6 = 7;     // Select Signal A1 

int pin7 = 8;     // Select Signal A2 

int pin8 = 9;     // Select Signal A3 

 

void setup() { 

  Serial.begin(115200); 

  pinMode(pin1, OUTPUT); 

  pinMode(pin2, OUTPUT); 

  pinMode(pin3, OUTPUT); 

  pinMode(pin4, OUTPUT); 

  pinMode(pin5, OUTPUT); 

  pinMode(pin6, OUTPUT); 

} 

 

void loop() { 

  if (Serial.available() > 0) { 

    char value = Serial.read(); 

    if (value == 'a') {                 //Select Microelectrode 1 and Drive it Forward 

       

      //Select E1    Demux Output 0.    A3A2A1A0 = 0000.  The 555 Timer will reverse the 

       //signal, so if we want A3A2A1A0 = 0000, we provide A3A2A1A0 = 1111; 

 

      digitalWrite(pin5, HIGH);          

      digitalWrite(pin6, HIGH); 

      digitalWrite(pin7, HIGH); 

      digitalWrite(pin8, HIGH); 

       

      // Forward Waveform 

      digitalWrite(pin1, LOW); 

      digitalWrite(pin2, HIGH); 

      digitalWrite(pin3, LOW); 

      digitalWrite(pin4, LOW); 

      delay(1); 

      digitalWrite(pin1, HIGH); 

      delay(1); 

      digitalWrite(pin2, LOW); 

      delay(1); 

      digitalWrite(pin4, HIGH); 

      delay(1); 

      digitalWrite(pin1, LOW); 

      delay(1); 

      digitalWrite(pin4, LOW); 

    } 

     

    else if (value == 'b') {                //Select Microelectrode 1 and Drive it Backward 

 

      // Select E1    Demux Output 1. A3A2A1A0 = 0000.  The 555 Timer will reverse the  

       //signal, so if we want A3A2A1A0 = 0000, we provide A3A2A1A0 = 1111; 

 

      digitalWrite(pin5, HIGH);          
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      digitalWrite(pin6, HIGH); 

      digitalWrite(pin7, HIGH); 

      digitalWrite(pin8, HIGH); 

       

      //Reverse Waveform 

      digitalWrite(pin1, LOW); 

      digitalWrite(pin2, HIGH); 

      digitalWrite(pin3, LOW); 

      digitalWrite(pin4, LOW); 

      delay(1); 

      digitalWrite(pin3, HIGH); 

      delay(1); 

      digitalWrite(pin2, LOW); 

      delay(1); 

      digitalWrite(pin4, HIGH); 

      delay(1); 

      digitalWrite(pin3, LOW); 

      delay(1); 

      digitalWrite(pin4, LOW); 

    } 

     

     

     else if (value == 'c') {            //Select Microelectrode 2 and Drive it Forward 

       

      // Select E2    Demux Output 2. A3A2A1A0 = 0001.  The 555 Timer will reverse the  

       //signal, so if we want A3A2A1A0 = 0001, we provide A3A2A1A0 = 1110; 

 

      digitalWrite(pin5, LOW);          

      digitalWrite(pin6, HIGH); 

      digitalWrite(pin7, HIGH); 

      digitalWrite(pin8, HIGH); 

       

      // Forward Waveform 

      digitalWrite(pin1, LOW); 

      digitalWrite(pin2, HIGH); 

      digitalWrite(pin3, LOW); 

      digitalWrite(pin4, LOW); 

      delay(1); 

      digitalWrite(pin1, HIGH); 

      delay(1); 

      digitalWrite(pin2, LOW); 

      delay(1); 

      digitalWrite(pin4, HIGH); 

      delay(1); 

      digitalWrite(pin1, LOW); 

      delay(1); 

      digitalWrite(pin4, LOW); 

       

       

    }  

     

    else if (value == 'd') {             //Select Microelectrode 2 and Drive it Backward 

       

      // Select E2    Demux Output 3. A3A2A1A0 = 0001.  The 555 Timer will reverse the  

       //signal, so if we want A3A2A1A0 = 0001, we provide A3A2A1A0 = 1110; 



48 

 

      digitalWrite(pin5, LOW);          

      digitalWrite(pin6, HIGH); 

      digitalWrite(pin7, HIGH); 

      digitalWrite(pin8, HIGH); 

       

      //Reverse Waveform 

      digitalWrite(pin1, LOW); 

      digitalWrite(pin2, HIGH); 

      digitalWrite(pin3, LOW); 

      digitalWrite(pin4, LOW); 

      delay(1); 

      digitalWrite(pin3, HIGH); 

      delay(1); 

      digitalWrite(pin2, LOW); 

      delay(1); 

      digitalWrite(pin4, HIGH); 

      delay(1); 

      digitalWrite(pin3, LOW); 

      delay(1); 

      digitalWrite(pin4, LOW); 

    }  

     

    else if (value == 'e') {            // Select Microelectrode 3 and Drive it Forward 

       

      // Select E3    Demux Output 4. A3A2A1A0 = 0010.  The 555 Timer will reverse the  

       //signal, so if we want A3A2A1A0 = 0010, we provide A3A2A1A0 = 1101; 

 

      digitalWrite(pin5, HIGH);          

      digitalWrite(pin6, LOW); 

      digitalWrite(pin7, HIGH); 

      digitalWrite(pin8, HIGH); 

       

      // Forward Waveform 

      digitalWrite(pin1, LOW); 

      digitalWrite(pin2, HIGH); 

      digitalWrite(pin3, LOW); 

      digitalWrite(pin4, LOW); 

      delay(1); 

      digitalWrite(pin1, HIGH); 

      delay(1); 

      digitalWrite(pin2, LOW); 

      delay(1); 

      digitalWrite(pin4, HIGH); 

      delay(1); 

      digitalWrite(pin1, LOW); 

      delay(1); 

      digitalWrite(pin4, LOW); 

       

       

    }  

     

    else if (value == 'f') {             // Select Microelectrode 3 and Drive it Backward 

       

      // Select E3    Demux Output 5. A3A2A1A0 = 0010.  The 555 Timer will reverse the  

       //signal, so if we want A3A2A1A0 = 0010, we provide A3A2A1A0 = 1101; 
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      digitalWrite(pin5, HIGH);          

      digitalWrite(pin6, LOW); 

      digitalWrite(pin7, HIGH); 

      digitalWrite(pin8, HIGH); 

       

      //Reverse Waveform 

      digitalWrite(pin1, LOW); 

      digitalWrite(pin2, HIGH); 

      digitalWrite(pin3, LOW); 

      digitalWrite(pin4, LOW); 

      delay(1); 

      digitalWrite(pin3, HIGH); 

      delay(1); 

      digitalWrite(pin2, LOW); 

      delay(1); 

      digitalWrite(pin4, HIGH); 

      delay(1); 

      digitalWrite(pin3, LOW); 

      delay(1); 

      digitalWrite(pin4, LOW); 

    }  

     

    else if (value == 'z') {         //Test Connection with on-board LED (pin 13) 

 

      digitalWrite(13, HIGH); 

      delay (1000); 

      digitalWrite(13, LOW); 

    }  

     

     

    Serial.println(value);    //When microcontroller received the data, return it to computer                  

                              // and show it on screen to confirm the successful transmission. 

  } 

 

}  
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APPENDIX B 

ARDUINO CODE FOR WIRELESS NEURAL SIGNAL TRANSMISSION WITH 

MOVABLE MICROELECTRODES CLOSED LOOP CONTROL 
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#define Analog_In A1 

#define SAMPLES 100        // sample numbers for standard deviation 

 

int s_val[SAMPLES]; 

int flag = 0;                          // Detected spike numbers during data amount of A 

int data_amount = 100000; //data_amount is the amount of neural data (A) that determine  

                                              //whether the quality of neural data is acceptable. 

int senserValue = 0; 

 

float sampleSum = 0; 

float meanSample = 0; 

float sqDevSum = 0;           // variance 

float stDev = 0;                   // standard deviation 

float threshold = 0; 

 

  

int pin1 = 2;    // Trigger Signal 

int pin2 = 3;    // Trigger Signal 

int pin3 = 4;    // Trigger Signal 

int pin4 = 5;    // Trigger Signal 

int pin5 = 6;    // Select Signal 

int pin6 = 7;    // Select Signal 

 

void setup() { 

  Serial.begin(115200); 

  //for (int thisPin = 2; thisPin < 8; thisPin++) { 

  //      pinMode(thisPin, OUTPUT); 

  //} 

  pinMode(pin1, OUTPUT); 

  pinMode(pin2, OUTPUT); 

  pinMode(pin3, OUTPUT); 

  pinMode(pin4, OUTPUT); 

  pinMode(pin5, OUTPUT); 

  pinMode(pin6, OUTPUT); 

  pinMode(5, OUTPUT); 

  pinMode(13, OUTPUT); 

  analogReference(INTERNAL); 

} 

 

void loop() { 

   

/*-----------------------------------------------------------------------------------------------------*/   

     // calculate mean and standard deviation  

      

     sampleSum = 0; 

     for(int a = 0; a < SAMPLES; a++) { 

        s_val[a] = analogRead(Analog_In); 

        sampleSum += s_val[a]; 

     } 

 

     meanSample = sampleSum/float(SAMPLES); 

   

     // HOW TO FIND STANDARD DEVIATION 

     // STEP 1, FIND THE MEAN. (Just did.)   

     // STEP 2, sum the squares of the differences from the mean 
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       sqDevSum = 0.0; 

   

     for(int a = 0; a < SAMPLES; a++) { 

         // pow(x, 2) is x squared. 

         sqDevSum += pow((meanSample - float(s_val[a])), 2);  //Variance 

     } 

   

      // STEP 3, FIND THE MEAN OF THE SUM OF SQUARES 

      // STEP 4, TAKE THE SQUARE ROOT OF THAT 

   

     stDev = sqrt(sqDevSum/float(SAMPLES));   // TADA, STANDARD DEVIATION.                                                                                                                                                                                                   

                                                                                //This is in units of sensor ticks (0-1023) 

      

//     Serial.print("meanSample: "); 

//    Serial.println(meanSample, DEC); 

//     Serial.print("stDev: "); 

//     Serial.println(stDev, DEC); 

//     delay(3000); 

 

/*-----------------------------------------------------------------------------------------------------*/         

      

                                              // analysis the neural data 

      

 //       Serial.print("meanSample: ");     //Check the value of mean and standard Deviation 

//        Serial.println(meanSample, DEC); 

//        Serial.print("stDev: "); 

//        Serial.println(stDev, DEC); 

 

          threshold = (meanSample+5*stDev+10) ;  // Calculate the threshold 

 

//        Serial.print("threshold: ");                         //show the value of threshold 

//        Serial.println(threshold, DEC); 

//        delay(3000); 

   

//        sensorValue = analogRead(Analog_In);  //show the input analog value 

         

          Serial.print("sensorValue: "); 

          Serial.println(analogRead(Analog_In), DEC); 

 

//        delay(3000); 

         

     for(int i = data_amount; i >0; i--) {    

                     // Reading all data_amount (100000) points.  

                     // If there is no enough points being larger than standard deviation,  

                     // which indicates the quality of neural signals not acceptable, 

                     // Then, we move the electrode forward by one-step. 

                                        

        if (analogRead(Analog_In) > threshold) {                              

 

          // detetcted a spike. 

           

            flag += 1;                       //The detected spike number increases 

            Serial.print("flag: "); 

            Serial.println(flag, DEC); 
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            // pin 13 is on, which indicates we get one spike 

            digitalWrite(13, HIGH);   // set the LED on 

            delay(3000);        

            digitalWrite(13, LOW);    // set the LED off 

            delay(1000); 

         

            // after confirming the spike, start to transfer neural signal 

         

//Assumeing the sampling rate is 10kHz, each spike last 1to 3 ms, then there are 

 //approximately 30 samples at most for each spike. Transfer the following 30 signals 

            

  for (int j = 30; j > 0; j--) {   

 

                      Serial.println(analogRead(Analog_In), DEC); 

                    

              } 

             

        } 

         

        if (i == 1) { 

             

            if (flag > 20) {           

             

                flag = 0;              //reset the counter 

                i=data_amount;  //reset the counter 

             

            } 

         

        } 

         

    } 

   

/*------------------------------------------------------------------------------------------------------*/         

        

  // move the microelectrode 

   

  //Select Microelectrode 

  digitalWrite(pin5, LOW);          

  digitalWrite(pin6, LOW); 

       

  // Forward Movement Waveform 

  digitalWrite(pin1, HIGH); 

  digitalWrite(pin2, LOW); 

  digitalWrite(pin3, HIGH); 

  digitalWrite(pin4, HIGH); 

  delay(1); 

  digitalWrite(pin1, LOW); 

  delay(1); 

  digitalWrite(pin2, HIGH); 

  delay(1); 

  digitalWrite(pin4, LOW); 

  delay(1); 

  digitalWrite(pin1, HIGH); 

  delay(1); 

  digitalWrite(pin4, HIGH); 
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  //delay(3000); 

 

  // LED shows whether the movement signal is sent or not. 

   

  digitalWrite(5, HIGH);   // set the LED on 

  delay(2000);        

  digitalWrite(5, LOW);    // set the LED off 

  delay(1000); 

 // } 

   

  

} 
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APPENDIX C 

PROCESSING CODE FOR WIRELESS NEURAL SIGNAL TRANSMISSION WITH 

MOVABLE MICROELECTRODES CLOSED LOOP CONTROL 
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 // Graphing and Storing Sketch 

 //This program takes ASCII-encoded strings 

 // from the serial port at 115200 baud and graphs them. It expects values in the 

 // range 0 to 1023, followed by a newline, or newline and carriage return 

  

 

 import processing.serial.*; 

  

 Serial myPort;        // The serial port 

 int xPos = 1;           // horizontal position of the graph 

  

     PrintWriter output; 

     float actual_value; 

  

 void setup () { 

 // set the window size: 

 size(800, 600);         

  

     output = createWriter( "analog_data.csv" );  //Store the neural data as file        

                                                                 //analog_data.csv. 

  

 // List all the available serial ports 

 println(Serial.list()); 

 // I know that the first port in the serial list on my laptop 

 // is always my  Arduino, so I open Serial.list()[0]. 

 // Open whatever port is the one you're using. 

  

 myPort = new Serial(this, Serial.list()[0], 115200); 

 //myPort = new Serial(this, "COM4", 115200); 

  

 // don't generate a serialEvent() unless you get a newline character: 

 // myPort.bufferUntil('\n'); 

 // set inital background: 

 background(0); 

 } 

 void draw () { 

 // everything happens in the serialEvent() 

 } 

  

 void serialEvent (Serial myPort) { 

 // get the ASCII string: 

 String inString = myPort.readStringUntil('\n'); 

  

 if (inString != null) { 

 // trim off any whitespace: 

 inString = trim(inString); 

 // convert to an int and map to the screen height: 

 float inByte = float(inString);  

 //inByte = map(inByte, 0, 1023, 0, height); 

  

     //output.println(2*inByte);  //print the line into excel file 

     output.println(inByte);  //print the line into excel file 

  

 // draw the line: 

 stroke(127,34,255); 
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 line(xPos, height, xPos, height - inByte); 

// point(xPos, height-inByte); 

 // at the edge of the screen, go back to the beginning: 

 if (xPos >= width) { 

 xPos = 0; 

 background(0);  

 }  

 else { 

 // increment the horizontal position: 

 xPos++; 

 } 

 } 

 } 


