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ABSTRACT  
   

Biological soil crusts (BSCs) are critical components of arid and 

semiarid environments and provide the primary sources of bioavailable 

macronutrients and increase micronutrient availability to their surrounding 

ecosystems. BSCs are composed of a variety of microorganisms that 

perform a wide range of physiological processes requiring a multitude of 

bioessential micronutrients, such as iron, copper, and molybdenum. This 

work investigated the effects of BSC activity on soil solution 

concentrations of bioessential elements and examined the microbial 

production of organic chelators, called siderophores. I found that 

aluminum, vanadium, copper, zinc, and molybdenum were solubilized in 

the action of crusts, while nickel, zinc, arsenic, and zirconium were 

immobilized by crust activity. Potassium and manganese displayed 

behavior consistent with biological removal and mobilization, whereas 

phosphorus and iron solubility were dominated by abiotic processes. The 

addition of bioavailable nitrogen altered the effects of BSCs on soil 

element mobilization. In addition, I found that the biogeochemical activites 

of BSCs were limited by molybdenum, a fact that likely contributes to co-

limitation by nitrogen. I confirmed the presence of siderophore producing 

microbes in BSCs. Siderophores are low-molecular weight organic 

compounds that are released by bacteria to increase element solubility 

and facilitate element uptake; siderophore production is likely the 

mechanism by which BSCs affect the patterns I observed in soil solution 
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element concentrations. Siderophore producers were distributed across a 

range of bacterial groups and ecological niches within crusts, suggesting 

that siderophore production influences the availability of a variety of 

elements for use in many physiological processes. Four putative 

siderophore compounds were identified using electrospray ionization 

mass spectrometry; further attempts to characterize the compounds 

confirmed two true siderophores. Taken together, the results of my work 

provide information about micronutrient cycling within crusts that can be 

applied to BSC conservation and management. Fertilization with certain 

elements, particularly molybdenum, may prove to be a useful technique to 

promote BSC growth and development which would help prevent arid land 

degradation. Furthermore, understanding the effects of BSCs on soil 

element mobility could be used to develop useful biomarkers for the study 

of the existence and distribution of crust-like communities on ancient 

Earth, and perhaps other places, like Mars. 
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CHAPTER 1 

OVERVIEW 

The purpose of my work was to assess the factors that control 

biological soil crust (BSC) growth and development, and to elucidate the 

mechanisms by which BSCs acquire much needed elements to support 

their physiology. To these ends, I utilized an assortment of complimentary 

techniques from a variety of disciplines, including: geochemistry, 

biochemistry, and molecular biology and microbiology. I found that 

biological activity in BSCs influenced the concentrations of a range of 

elements, and that they do so through the production of chelating 

compounds that increase element solubility and facilitate element uptake.  

Biological soil crusts are diverse microbial communities that colonize 

the soil surface in arid and semiarid environments. Crusts can include 

cyanobacteria, heterotrophic bacteria, archaea, algae, fungi, lichens, and 

mosses (Belnap et al., 2001); however, the BSCs used in my study were 

“dark” crusts dominated by cyanobacteria. Dark crusts represent one 

stage in crust succession and are characterized by an assortment of 

cyanobacteria, but are without substantial lichen or moss cover (Figure 

1-1; Garcia-Pichel & Belnap, 1996; Garcia-Pichel et al., 2001). Dark crusts 

were selected because I was interested in the effects of free-living 

cyanobacteria on soil element mobility. Crusts were collected from two 

field sites (Figure 1-2) located on the Colorado Plateau, north of Moab,  
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Figure 1-1. Dark, cyanobacteria-dominated crust in the field. Crusts are 
the dark grey to black material covering the soil. 

Green Butte 

Moab 5 miles 

N 

Sunday Churt 

Figure 1-2. Google Earth image of the filed sites used in my research. 
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UT. Chapter 1 covers work conducted with dark crusts from the Sunday 

Churt site (Figure 1-2; N 38°39′22.3″, W 109°39′13.8″), and the remaining 

chapters address studies performed with dark crusts from the Green Butte 

site (Figure 1-2; N 38°42′56.2″, W 109°41′32.7″). These sites were 

chosen because a significant amount was already known about the 

microbial communities and active physiological processes in these areas. 

This existing body of knowledge allowed me to address new research 

questions and put them in the ecological and physiological context for the 

crust ecosystem. 

It is important to understand the factors that contribute to BSC 

physiology because these factors promote BSC growth and development, 

which in turn positively influence the fertility of arid environments. 

Cyanobacteria are photosynthetic prokaryotes, some of which are also 

capable of converting atmospheric nitrogen gas (N2) into bioavailable 

ammonium (NH4
+), a process called nitrogen fixation. Cyanobacteria are 

one of the few microbes that fix N2 aerobically. On the Colorado Plateau, 

cyanobacteria in BSCs are the main source of bioavailable carbon 

(Beymer & Klopatek, 1991; Evans & Lange, 2001; Garcia-Pichel, 2002) 

and nitrogen (Rychert & Skujins, 1974; Jeffries et al., 1992; Steppe et al., 

1996; Belnap, 2002) to the immediate crust community, as well as to the 

surrounding ecosystem. Many cyanobacteria are filamentous and secrete 

exopolysaccharides, allowing them to stabilize the soil surface (Figure 1-3; 
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Campbell, 1979; Schulten, 1985; Danin & Ganor, 1991; Belnap & 

Garnder, 1993; Belnap, 2001; Belnap et al., 2001; Reynolds et al., 2006; 

Garcia-Pichel & Wojciechowski, 2009; Rossi et al., 2012). Taken together, 

the microbial activity of BSCs, particularly that of the cyanobacteria, serve 

to support arid land productivity and avert arid land degradation, or 

desertification. My research may provide useful crust conservation tools 

that could be used to combat desertification  a serious, and increasing, 

socioeconomical, hydrological, and ecological problem in the developed 

and developing world (Sheridan, 1981; Puigdefábregas, 1998; Arnalds & 

Archer, 2000; Pimentel, 2000; Weibe, 2003). 

Figure 1-3. Scanning electron micrograph (x100) of a cyanobacterial 
sheath binding soil particles together (photo courtesy of soilcrust.org). 
This image highlights the role that cyanobacteria play in soil 
stabilization, and also displays the intimate association between crust 
microbes and the soil solid-phase. 
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Biological soil crusts on the Colorado Plateau are capable of enduring 

extreme environmental conditions, such as intense UV radiation, 

infrequent and brief periods of hydration, and temperature fluctuations 

from below zero to 50°C  (Bowker et al., 2002). BSCs’ ability to thrive 

under these intense conditions makes them excellent analogues for life in 

other extreme environments, and thus, this work has astrobiological 

relevance. The results of my work could be used to establish biomarkers 

for investigating the presence of crust-like communities that might have 

existed on ancient Earth or, perhaps, on a slightly wetter, earlier Mars. 

Finally, BSCs differ from other soil microbial communities, such as 

those found in temperate forests or the rhizosphere. Crusts have different 

community compositions (Kuske et al., 2002) with lower species richness 

and diversity (Nakatsua et al., 2000), and they have a higher abundance 

of unique organisms, not previously identified or cultured (Garcia-Pichel et 

al., 2003). BSC’s ability to thrive under extreme conditions also makes 

them likely to possess distinct adaptations for survival (Gundlapally & 

Garcia-Pichel, 2006). 

Photosynthesis and nitrogen fixation provide BSCs with fixed carbon 

(C) and nitrogen (N), but in order to perform these vital physiological 

processes BSCs must have access to a range of other elements including, 

but not limited to, sodium, magnesium, phosphorus, potassium, 
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manganese, iron, nickel, copper, zinc, and molybdenum (Bertini et al., 

2007). Because BSCs live in a water-limited environment, their only 

source of these bioessential elements is the soil solid-phase. These 

elements exist either within mineral structures or adsorbed to the surfaces 

and interlayers of soil minerals and organics (Brady & Weil, 2002). The 

conduit between the soil solid-phase and the crust microbes is the soil 

solution; the fluid that exists in the soil pore-spaces when the crusts are 

wet, which only occurs during, and briefly after, a rain or snow event. 

When the crust is wet, some of the bioessential elements will dissolve or 

desorb automatically, allowing microbes to take them up. However, other 

elements will remain bound to the solid-phase due to chemical conditions 

that limit their solubility and prevent microbial uptake. Crust microbes 

must, therefore, have effective strategies to acquire the less soluble 

bioessential elements if they are to survive. The purpose of my research 

was to determine if I could demonstrate the effects of microbial activity on 

soil solution element concentrations and reveal what element acquisition 

strategies BSCs use. 

My first study focused on the elements required for biological nitrogen 

fixation (see Chapter 2). Nitrogen (N2) fixation is performed by prokaryotes 

using the enzyme nitrogenase that contains iron (Fe), molybdenum (Mo), 

and, in some organisms vanadium (V); N2 fixation is a critical process in 

BSCs. I expected the need for Fe, Mo, and V to be high in BSCs, and I 
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hypothesized that Fe, Mo, and V concentrations would be lower in crusted 

samples than in killed controls as the result of microbial uptake. I further 

hypothesized that if a bioavailable source of N were added to crusts, the 

soil solution concentrations of Fe, Mo, and V would be higher than they 

were in the absence of added N. I expected that N addition would cause 

N2 fixation to stop, thereby reducing the microbes’ need for Fe, Mo, and V. 

I used crusts collected in the field to conduct simulated rainfall 

experiments in the laboratory to test my hypotheses (see Chapter 2). As I 

expected, Mo and V concentrations were lower in crusted samples than in 

killed controls, indicating active microbial uptake. However, over the last 

24 h of the incubations, soil solution Mo concentrations increased, 

suggesting that microbial solubilization also played a role in Mo cycling 

within the experimental crusts. When soil solution concentrations of Mo 

and V were compared between crusts that received a N treatment (+N), 

and those that did not (–N), I found that V concentrations were higher in 

the +N group. This indicated that V need was higher when N2 fixation was 

active, suggesting that the crusts may have used V for N2 fixation. There 

was no difference between Mo concentrations in the +N and –N 

treatments, nor were there any differences in Fe concentrations between 

soil type or N treatment. The results of this work clearly show that BSCs 

actively change soil solution concentrations of Mo and V, and, in the case 

of V, the effect is dependent on N availability. The findings implied that Mo 
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and V may limit BSC N2 fixation, and therefore, may serve as potential 

candidates for fertilizers to promote crust conservation. In addition, if the 

effect of crusts on Mo and V leave characteristic signatures in solid-phase 

distributions of Mo and V, these elements may serve as effective 

biosignatures of ancient crust communities.  

In the next phase of my research, I expanded upon the work in 

Chapter 2, by investigating the effect of BSCs on soil solution 

concentrations of a larger suite of elements that included sodium, 

magnesium, aluminum, phosphorus, potassium, vanadium, manganese, 

iron, nickel, copper, zinc, molybdenum, arsenic, and zirconium (see 

Chapter 3). The initial goal was to see which elements changed 

concentration in ways consistent with biological processes, and which 

elements were dominated by abiotic processes. Aluminum (Al) and 

zirconium (Zr), were expected to demonstrate abiotic processes, such as 

adsorption or dissolution, while all the other elements investigated have 

multiple biological roles, and so I expected to see changes in 

concentrations that provide evidence for biological processes, such as 

uptake and microbial solubilization. The second goal of this work was to 

investigate the influence of N and molybdenum (Mo) addition on the soil 

solution concentrations of all elements. I hypothesized that magnesium 

(Mg), phosphorus (P), vanadium (V), manganese (Mn), nickel (Ni), and 

zinc (Zn) concentrations would increase in crusted samples when 
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bioavailable N was added. I further hypothesized that iron (Fe), copper 

(Cu), and Mo concentrations would decrease with N addition because N 

addition would stimulate microbial processes that require Fe, Cu, and Mo. 

Under Mo addition, I hypothesized that Mg, P, Mn, Fe, Ni, Cu, Zn, and Mo 

concentrations would decrease in crusted samples, and that V 

concentrations would stabilize. I did not expect any changes in sodium 

(Na), Al, potassium (K), arsenic (As), or zirconium (Zr) concentrations 

under either treatment (see Chapter 3). 

To test these hypotheses, I performed simulated rainfall experiments 

with water, N, and Mo additions (see Chapter 3). I found that Ni and Zn 

concentrations decreased, probably as a result of microbial uptake, while 

As and Zr concentrations decreased, likely due to biosorption. Increasing 

Cu concentrations were interpreted to result from microbial solubilization, 

increasing Al was supposed to result from cellular export, and increasing 

V and Zn was thought to result either from solubilization or export. 

Potassium and Mn showed increasing and decreasing concentrations 

during different incubation time periods, likely reflecting a shift in the 

balance among uptake, export, and solubilization. Phosphorus showed 

evidence for microbial solubilization as well as for abiotic processes. Iron 

concentrations showed a clear signal of abiotic mineral precipitation or 

adsorption. I also found that N addition resulted in reduced microbial 

solubilization. I interpret this to mean that when N2 fixation is active, BSC 
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need for other elements is high and so they actively solubilize elements 

form the solid-phase, probably through the production of organic 

chelators. When N is added, N2 fixation stops, element need is reduced, 

so chelator production decreases, and solubilization is depressed (see 

Chapter 3). This work added to the list of elements that may serve as 

effective fertilizers to be used in crust conservation, and suggested 

additional elements that may prove to be useful biomarkers. 

Next, I hypothesized that N2 fixation in BSCs from my field site was 

limited with respect to Mo (see Chapter 4). Limitation with respect to Mo, 

can result in co-limitation with respect to N (Saito et al., 2008) because of 

Mo’s widespread use in nitrogenase enzymes. I used the acetylene 

reduction assay, a proxy for N2 fixation, to measure N2 fixation rates in 

crusts that did and did not receive a Mo addition. I found that N2 fixation 

rates increased significantly when Mo was added  strong evidence for 

Mo-limitation. Based on my results, Mo fertilization would likely be an 

excellent BSC conservation tool as it would allow crusts to increase N2 

fixation, increasing the fertility of the BSCs and, ultimately, of the 

surrounding ecosystem.  

The work discussed above showed that biological processes in BSCs, 

such as microbial uptake and solubilization, alter the soil solution 

concentrations of many elements. I was then interested in the mechanism 

by which BSCs affect the observed soil solution concentration changes, 
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and I hypothesized that BSCs release siderophores to serve their element 

acquisition needs (see Chapter 5). Siderophores are low-molecular weight 

organic compounds that bind iron (Fe) with high affinity. They are released 

from bacterial cells to increase Fe solubility and Fe uptake. Though 

siderophores typically bind Fe, they are also capable of binding a range of 

other metals including, Mo (Litos et al., 2006; Bellenger et al., 2007; 

Monteiro et al., 2010), Mn (Saal & Duckworth, 2010; Szabó & Farkas, 

2011), Ni (Dimkpa et al., 2008), Cu (McKnight & Morel, 1980; Kim et al., 

2004; Bellenger et al., 2007), and Zn (Bellenger et al., 2007). Siderophore 

production is known to occur in soils (Powell et al., 1980; Akers, 1983; 

Holmström et al., 2004; Essén et al., 2006), but to date, it has not been 

investigated in BSCs.  

To test the hypothesis that BSCs produce siderophores, I used the 

chrome azurol S overlay (O-CAS) assay to screen crust microbes for 

siderophore production (Pérez-Miranda et al., 2007). I also used the 

traditional liquid CAS assay (Schwyn & Neilands, 1987) to test for 

siderophore production in two essential cyanobacterial members of dark 

crusts. The results of the screening assays confirmed that siderophore 

producers do exist in BSCs. I used nearly full-length 16S rRNA gene 

sequencing to identify the organisms that tested positive for siderophore 

production. I found that siderophore producers isolated from BSCs 

spanned a range of bacterial classifications and crust ecological roles. The 
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important crust cyanobacteria, Microcoleus vaginatus and Nostoc 

punctiforme, known for their crust building and N2 fixation capabilities, 

respectively, both produced siderophores in the liquid CAS assay. An 

additional 8 siderophore-producers were isolated from the O-CAS assay 

that, although not among the most abundant or most physiologically 

dominant groups, still play important roles in crust formation and function. 

These organisms included members of the Firmicutes, Alpha- and 

Betaproteobacteria, and cyanobacteria. Some of the siderophore-

producers were closely related to known microbes; however, others likely 

represented novel organisms that were not already in culture. 

Furthermore, the majority of siderophore producers made hydroxamate 

siderophores, but some made catecholate siderophores as well. The 

presence of both siderophore types has interesting implications for what 

metals can be bound (see Chapter 5). This is the first time that 

siderophore producers have been isolated from BSCs, and the results 

demonstrated that siderophore production is at least one mechanism 

driving the soil solution concentration changes described in Chapters 2 

and 3.  

The final step was to begin characterizing the siderophore compounds 

(see Chapter 6). To do this, I grew a large volume batch culture of the 

same Nostoc punctiforme described in Chapter 5. Siderophores were 

detected in the growth media after 6 weeks using the CAS assay. Cells 
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were removed, and organic fractions in the culture media were separated 

by column chromatography. The liquid CAS assay (Schwyn & Neilands, 

1987) was used to determine which eluant fractions contained 

siderophores, and those fractions were analyzed with and without Fe, 

using high performance liquid chromatography electrospray ionization 

mass spectrometry (HPLC-ESI-MS). ESI-MS revealed 4 putative 

siderophore peaks. The criteria for determining siderophores were peaks 

for which the unbound masses decreased in intensity, and the Fe-bound 

masses increased in intensity, with increasing Fe concentration. This is 

the typical first line of evidence for the siderophore-nature of a peak 

(Jessica Martin, personal communication).  

In order to confirm that these peaks represented siderophores, I 

hypothesized that peak intensities in the growth media would decrease 

with increasing Fe concentration in subsequent experiments with Nostoc 

punctiforme. To test this, I grew Nostoc under three different Fe 

concentrations, and used ESI-MS to scan for the putative siderophore 

peaks identified previously. However, intensities of the putative 

siderophore peaks increased with increasing Fe concentration, contrary to 

my hypothesis. It is possible this result occurred because the lowest Fe 

concentrations were too low to allow survival and led to a concomitant N-

limitation. I was also unable to measure the putatitive siderophore peaks 

in crust extracts from previous experiments. Therefore, although I have 
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determined the masses of four putative siderophores, efforts to confirm 

their siderophore-nature were inconclusive. Future work with modified 

experimental design and analytical methods could provide more definitive 

results (see Chapter 6). 

This work represents the first effort to asses biological soil crusts from 

a geochemical perspective. Microbes in the BSC community live in 

intimate association with soil minerals, and my studies demonstrate that 

through active manipulation of their geochemical environment, BSCs can 

create habitable zones in extreme environments.  

In summary, the results of my work demonstrate that crusts actively 

alter soil solution concentrations of bioessential elements. They do so 

through the production of siderophores by a variety of crust organisms that 

span a range of phylogenetic classifications and ecological roles. Four 

putative siderophore compounds were identified, but more work is needed 

to further confirm the siderophore-nature of these compounds. My results 

can be applied to the development of fertilization treatments to conserve 

and restore biological soil crust cover in order to prevent arid land 

degradation. Furthermore, my results provide insight into potential 

biomarkers for crusts that may be used to investigate the distribution and 

evolution of crust-like communities in extreme environments such as those 

that might have existed on ancient Earth and other places of 

astrobiological interest, such as Mars. 
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CHAPTER 2 

EFFECT OF NITROGEN-FIXING BIOLOGICAL SOIL CRUSTS ON SOIL 

SOLUTION TRACE METAL CONCENTRATIONS 

Abstract 

I studied the real-time effect of microbial activity on metal 

concentrations in the soil solution of biological soil crusts (BSCs) and how 

metal utilization by crusts changed with N availability. My focus was on the 

metals relevant for biological nitrogen (N2) fixation, i.e., iron (Fe), 

molybdenum (Mo), and vanadium (V). I hypothesized that biological 

utilization by soil microbes would decrease soil solution metal 

concentrations. Fe concentrations in soil solutions were not affected by 

biological activity nor did they change with N availability. In contrast, Mo 

concentrations in soil solutions were lower in crusted samples than in 

killed controls, regardless of N availability. This indicated that the 

biological Mo-requirement in BSCs is high and was consistent with the 

utilization of Mo in multiple metabolic processes, including: N2 fixation, 

assimilatory nitrate reduction, and nitrification. Similarly, concentrations of 

V in soil solution were lower in living crusts than in killed controls, which 

we interpreted as a signature of biological utilization. Soil solution V 

concentrations increased when N2 fixation was interrupted by the addition 

of fixed nitrogen. I, therefore, speculate that some BSCs, may have a 

requirement for V during N2 fixation. The results of this study show that 
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crust organisms actively alter soil solution metal concentrations in order to 

meet the significant metal requirements of N2 fixation. This alteration may 

reflect a signature of crust metabolism that could be relevant for studies of 

crust activity in ancient terrestrial environments and has implications for 

arid-land conservation. 

Introduction 

Biological soil crusts (BSCs) are diverse microbial communities that 

colonize soils in arid and semi-arid environments (Garcia-Pichel et al. 

2001; 2003). They cover large expanses between plants, and may include 

bacteria, archaea, algae, fungi, lichens, and bryophytes (Belnap et al. 

2001). These organisms live in a vertically-stratified structure (Garcia-

Pichel et al., 2003) similar to that of microbial mats (Cohen & Rosenberg, 

1989) and biofilms (Doyle, 1999). The community includes photosynthetic 

organisms and nitrogen fixers (Garcia-Pichel, 2002), and thus provides the 

primary source of carbon and nitrogen to the environment (Beymer & 

Klopatek, 1991; Evans & Ehleringer, 1993; Evans & Lange, 2001; Belnap, 

2002). The organisms in BSCs are adapted to withstand infrequent and, 

often, brief intervals of precipitation (Ashcroft et al., 1992), as well as 

intense UV radiation (Garcia-Pichel & Castenholz, 1991; Garcia-Pichel et 

al., 1992). Due to their crust-forming character, BSCs also play a critical 

role in erosion prevention in arid environments (Campbell, 1979; Schulten, 

1985; Belnap, 1993). 
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After water, nitrogen (N) is the second-most limiting resource to 

biological systems in arid environments (Schlesinger, 1996; Evans & 

Lange, 2001). Samples for this study were collected on the Colorado 

Plateau, where biological fixation of atmospheric nitrogen gas (N2) to 

ammonium (NH4
+) is the primary source of N (Rychert & Skujins, 1974; 

Jeffries et al., 1992; Steppe et al., 1996; Belnap, 2002). Wet and dry 

atmospheric N deposition have been shown to be minimal in this region 

(West & Skujins, 1977; Evans & Ehleringer, 1993). N2-fixation occurs 

during pulses of precipitation because crust organisms are only 

physiologically active when wet (Garcia-Pichel & Belnap, 1996). 

Cyanobacteria are the dominant group of N2-fixing organisms in the “dark 

crusts” used in the present study (Belnap et al., 2001; Yeager et al., 

2007). These “dark crusts” represent one type of crust, and they were 

chosen because they are dominated by diverse cyanobacteria with little to 

no lichen or moss cover (Garcia-Pichel & Belnap, 1996; Garcia-Pichel et 

al., 2001). 

Biological N2 fixation is performed by prokaryotes using the enzyme 

nitrogenase that requires more than 30 atoms of iron (Fe) and 2 atoms of 

either molybdenum (Mo), vanadium (V), or Fe at the active site where N2 

is reduced to NH4
+  (Burgess & Lowe, 1996; Eady, 1996; Howard & Rees, 

1996; Berman-Frank et al., 2003). The metal required at the active site is 

specific to the type of nitrogenase produced by an organism, which 
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depends on the particular nitrogenase genes the organism possesses. 

Thus, the ability to fix N2 imparts an absolute requirement for Fe, 

accompanied by a requirement for either Mo, V, or additional Fe, 

depending on the type of nitrogenase produced. To date, almost all 

cyanobacteria examined use the Mo-dependent nitrogenase; the only 

three cyanobacteria shown to produce V-dependent nitrogenase are 

freshwater strains of Anabaena (Kentemich et al., 1988; Thiel, 1993; 

Boison et al., 2006). No cyanobacteria have been found to produce Fe-

only nitrogenase. Therefore, it is not surprising that Mo-nitrogenase is 

found in the cyanobacterial-dominated dark crusts (Yeager et al., 2004; 

2007). Evidence does not yet exist for the presence of V- or Fe-

nitrogenase in BSCs of the Colorado Plateau; however, it is possible that 

some crust microbes produce these enzymes. Assuming that crust 

microbes behave like other organisms with alternative nitrogenase genes, 

if any crust organisms have the genes to produce V- or Fe-nitrogenase in 

addition to Mo-nitrogenase, they will only express V-nitrogenase in the 

absence of Mo, and only if both Mo and V are limiting, will they utilize Fe-

nitrogenase (Jacobson et al., 1986; Joerger & Bishop, 1988; Pau et al., 

1989; Luque & Pau, 1991; Jacobitz & Bishop, 1992).  

Because crusts live in a water-limited environment, the only source of 

trace metals is the soil solid phase, i.e., minerals and organics. Crusts 

must obtain trace metals from the soil solid phase, either by taking 
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advantage of equilibrium dissolution following a wetting event, or by direct 

solubilization through the production of organic acids and metal chelators 

(Drever & Stillings, 1997; Kalinowski et al., 2000; Kraemer, 2004; 

Liermann et al., 2000; 2005). While the Colorado Plateau soils are 

dominated by quartz (~85%), they contain minor amounts (~10%) of clays 

and oxide/hydroxide minerals, that can provide a source of major cations 

and trace metals (Noonan, unpublished data; Reynolds et al., 2001; 

Reynolds et al., 2006). Previous work by Beraldi-Campesi et al. (2009) 

showed that crusted soil was depleted in calcium, chromium, manganese, 

copper, zinc, arsenic, and zirconium relative to nearby uncrusted soils; 

they interpreted the depletions as a signature of biological activity that 

mobilized the metals and left them vulnerable to leaching down the soil 

profile. Metal depletions in crusts suggest that BSCs are actively 

dissolving and/or desorbing metals from the solid-phase. The Beraldi-

Campesi et al. study was a survey of bulk soils collected from several 

different locations; it did not assess the behavior of metals in soil solution 

during active crust metabolism. The present study complements and 

expands upon Beraldi-Campesi et al. (2009) by experimentally 

manipulating BSCs and measuring how crust metabolism influences soil 

geochemistry when the organisms are physiologically active.  

As the conduit between microbes and minerals, I contend that the 

logical place to monitor biological influences on metal dynamics is in the 
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soil solution. Microbes are more likely to actively solubilize metals from the 

soil solid phase, including minerals and organics, if the available supply in 

the soil solution is insufficient for growth. Although microbial uptake will 

indirectly promote mineral dissolution by reducing soil solution 

concentrations, I postulate that limitation could still occur if rates of abiotic, 

equilibrium solid-phase dissolution are slower than rates of microbial 

uptake, or if BSCs are not wet long enough to achieve equilibrium 

between the solid-phase and soil solution. Therefore, I maintain that BSCs 

are likely to utilize direct dissolution strategies to obtain trace metals from 

the solid-phase if those metals exist at limiting concentrations in the soil 

solution. Using published data on cyanobacterial cellular metal contents 

and measured soil solution metal concentrations, I calculated that soil 

solution concentrations of Fe, Mo, and V are orders of magnitude lower 

than would be needed for BSCs to double their biomass. Thus, it is 

reasonable to expect that Fe, Mo and V availability limit growth of 

microbial populations in BSCs.  

I hypothesized that BSCs would alter the soil solution concentrations of 

limiting nutrients, particularly the trace metals Fe, Mo, and V. I predicted 

that concentrations of Fe, Mo, and V would be lower in the soil solution of 

crusted samples than in killed controls as a result of both microbial uptake 

in living crusts and metal release from biomass during sterilization of killed 

controls. Additionally, I hypothesized that the effect of BSCs on soil 
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solution concentrations of trace metals would depend on N availability, 

and I expected that concentrations of Fe, Mo, and V would be lower in the 

soil solution of crusts actively fixing N2 than in those not fixing N2. 

Methods 

Field Site and Sample Collection 

Individual samples of dark crusts and nearby uncrusted soil were 

collected at the “Sunday Churt” site (Garcia-Pichel et al., 2003) northeast 

of Moab, Utah on the Colorado Plateau (N 38°39′22.3″, W 109°39′13.8″) 

during October, 2007. Dark crusts were visually defined as areas with dark 

microbial cover and flat surfaces; these crusts were specifically targeted in 

order to avoid crusts with a high density of lichen cover. 

Sample collection and storage were modeled after Garcia-Pichel et al. 

(2003). Prior to collection, sampling areas were wetted lightly with distilled 

water to improve soil surface cohesion. Briefly, plastic Petri dish lids (50 

mm x 13 mm) were pressed into the soil surface. A plastic spatula was 

used to remove and invert the sample, allowing the bottom of the Petri 

dish to be inserted. Samples were stored dry in their original orientation for 

up to 6 months in the dark at room temperature (20ºC) prior to 

experimental manipulation (Campbell et al., 2009). 

Experimental Setup 

Simulated rainfall time-course experiments were conducted in 

incubation dishes modified from those described by Johnson et al. (2005). 
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Dishes were constructed using two plastic Petri dishes (50 mm x 13 mm). 

Small holes were drilled into the base of one dish, and a sampling port 

was drilled into the side of the other dish. The perforated dish was placed 

on top of the other dish, and they were sealed with three wraps of black 

electrical tape (Scotch® 3M Super33+) at the seam between the dishes. A 

WhatmanTM GF/F filter (55 mm diameter, nominal pore size 0.7 µm) was 

placed above the perforated surface and aligned so that the edges of the 

filter rose ~1 mm above the base of the dish (Figure 2-1). Soils were 

placed on top of the filter. Soil solution was collected through the sampling 

port with gentle vacuum suction applied with a 60 mL syringe. 

 
“Killed controls” were prepared by baking uncrusted soil at 500°C for 

18 h in a muffle furnace. Because heating removed organic carbon and 

Figure 2-1. Schematic of incubation dishes constructed from two plastic 
Petri dishes. Soils were placed into upper dish (A). Perforations (B, 
arrow) in the base of Dish A covered by a GF/F filter allowed soil 
solution to pass from the soil into the collection chamber (C) with 
sampling port. 
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nitrogen, it served to kill any soil microbes (Kang & Sajjapongse, 1980; 

Gustafsson et al., 1997; Acea & Carballas, 1999; Schumacher, 2002; 

Parlak, 2011). The predominant effect (if any) of heating on the mineral 

fraction of the soil should be to decrease the solubility of Fe (Kang & 

Sajjapongse, 1980; Quintana et al., 2007; Parlak, 2011), Mo, and V 

(Goldberg & Forster, 1998; Quintana et al., 2007). Cell lysis and the loss 

of biomass and soil organic carbon during heating, in contrast, are likely to 

increase the amount of soluble Fe, Mo, and V in killed controls by 

releasing metals present in cellular material and bound to organics. 

Therefore, I expected a modest increase in soluble metal concentration in 

the killed controls. 

Eighteen crusted samples and 18 killed controls were transferred to 

Petri dish chambers in their original orientation (crusts at the surface) and 

weighed to establish initial dry soil mass prior to incubation. Two different 

nitrogen treatments were applied (~12 mL): a no nitrogen, or water-only, 

addition (–N), and a water plus nitrogen addition (+N). In the –N 

incubations, 18 MΩ·cm carbon-free water was added (NANOpure® 

DIamondTM UV, Barnstead International, Dubuque, IA) to 9 crusted 

samples and 9 killed controls. In the +N incubations an aqueous solution 

of 0.8 mM ammonium nitrate (NH4NO3) in 18 MΩ·cm water was added to 

the remaining 9 crusted samples and 9 killed controls. This NH4NO3  
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concentration was chosen to raise the ambient NH4
+ and NO3

- 

concentrations by approximately a factor of four.  

 At each time point, soils were sacrificed for soil solution collection. 

Therefore, the time-course data do not represent sequential sampling of 

the same soils through time. Rather, the data are from a set of soils 

sacrificed at 0 h, a second set sacrificed at 24 h, and a final set sacrificed 

at 48 h. This method was used because the soils could not retain enough 

water to allow three sequential soil solution collections.  

The initial (0 h) samples were collected within 30 min of treatment 

water addition; 3 crusted samples and 3 killed controls from each 

treatment were sacrificed for a total of twelve 0 h samples (e.g., 3 –N, 

crusted; 3 –N, killed; 3 +N, crusted; 3 +N, killed). The remaining crusted 

samples and killed controls were transferred to a controlled environmental 

incubator maintained at 32°C ± 1°C with an average irradiance, measured 

as photosynthetically active radiation (PAR), of 115 µE m-2 s-1). This 

temperature is comparable to summertime temperatures at the collection 

site. The irradiance I used was likely lower than what would be measured 

in the field on a sunny day, but high enough to allow BSCs to 

photosynthesize (Garcia-Pichel & Belnap, 1996). Chambers were placed 

under inverted 250 mL glass beakers to minimize evaporative water loss 

while maintaining gas exchange. Irradiance and temperature measured 

under the beakers did not differ from the ambient incubator conditions. 
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Soil solutions were collected from 3 crusted samples and 3 killed controls 

sacrificed from each treatment at 24 h; the final set of soil solutions was 

collected from the last 3 crusted samples and 3 killed controls at 48 h. 

Soil Solution Processing 

After collection with the 60 mL syringe, the soil solution was transferred 

to an acid-washed (10% HCl) polypropylene centrifuge tube, that was 

weighed empty and weighed again after soil solution addition to determine 

the mass of water collected. Soil solution was filtered through a 0.45 µm 

polysulfone membrane filter (Supor®, PES, Pall Corporation, Port 

Washington, NY), and 0.25-0.5 mL were transferred into additional tubes 

for analysis of nitrate (NO3
-), ammonium (NH4

+), and dissolved metals. All 

tubes were pre-rinsed and leached for at least 24 h with 18 MΩ·cm 

carbon-free water prior to sample collection.  

Soil solution samples for NO3
- and NH4

+ analyses were diluted by a 

factor of 20-40 in 18 MΩ·cm water. Nitrate and NH4
+ samples were stored 

at 4°C and analyzed within fourteen days. Samples for dissolved metals 

were stored undiluted at room temperature and analyzed within thirty 

days. 

Nitrate was determined by ion chromatography on a Dionex Dual ICS 

2000/1500 Ion Chromatograph (column: 4 mm AS23; eluant: 4.05 mM 

sodium carbonate/0.72 mM sodium bicarbonate; supressor: ASRS 300; 

flow rate: 1 mL min-1). Ammonium was determined spectrophotometrically 
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using the Bertholet reaction on a Lachat Quick Chem 8000 Flow Injection 

Analyzer (Quick Chem method: 10-107-06-1-J). No additional sample 

preparation was required prior to analysis of NO3
- and NH4

+. Errors for 

NO3
- and NH4

+ represent the precision of triplicate analyses of quality 

control samples. Aliquots of soil solution for metals analysis were digested 

in concentrated nitric acid (HNO3) and hydrogen peroxide to dissolve 

precipitates and remove organic phases. Following digestion, the samples 

were heated to dryness and reconstituted in 2% HNO3. Concentrations of 

a suite of major and trace elements in the soil solutions were determined 

using inductively coupled plasma mass spectrometry (ICP-MS; Thermo 

Scientific X Series). Calibration of the instrument was obtained from a 

multi-element ICP-MS standard mixture. A mixed internal standard (Ge, Y, 

and In) was used to correct for instrumental drift throughout the runs. 

Errors for major and trace elements represent the standard deviation of 

triplicate instrument injections for individual samples. 

Acetylene Reduction Assays 

Nitrogenase activity was measured using a modification of the 

standard acetylene reduction assay (Capone, 1993; Jeffries et al., 1992; 

Berman-Frank et al., 2007). Because the nitrogenase enzyme can reduce 

acetylene (HC≡CH) to ethylene (H2C=CH2), in addition to reducing N2 

(N≡N) to NH4
+, if ethylene is observed during an incubation it is assumed  
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that nitrogenase is active. This time-series experiment monitored the 

reduction of acetylene to ethylene over 48 h.  

The acetylene reduction method was modified to accommodate the 

crust incubation dishes used in the –N and +N incubations described 

above. Polycarbonate Nalgene jars (125 mL; Nalge Nunc International 

Corporation; Rochester, NY) with rubber septa were used as incubation 

vessels. –N treatment water was added to 3 crusted samples and 3 killed 

controls. These crusts were similar to, but separate from, those used for 

soil solution collections. Dishes were placed in the Nalgene jars, and the 

lids were sealed with Parafilm® (American National Can) between the lid 

and jar. Air was removed (33 mL) from the jars using a 60 mL syringe, and 

33 mL of acetylene was added (~20% headspace volume; Berman-Frank 

et al., 2007). Headspace samples (1 mL) were taken immediately after 

addition of acetylene for an initial time point. After collection of the 0 hr 

headspace samples, jars were incubated at 115 µE m-2 s-1 PAR and 

32°C ± 1°C.  

Headspace samples (1 mL) were taken at regular intervals over a 

period of 48 h. After sample collection, gas concentrations were measured 

using a Hewlett-Packard 5890 Series II Gas Chromatograph (Injection 

temp: 80ºC) with a thermal ionization detector (200ºC) and a 

6' x 1/8" SS Porapak N 80/100 column (Ohio Valley Specialty Chemical, 

Marietta, OH) with helium carrier gas (14 mL min-1). Acetylene and 
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ethylene were well resolved with retention times of 3.8 and 2.4 min,  

respectively. Ethylene peak area was converted to moles using a five-

point calibration curve and then normalized to soil surface area. 

After 48 h of incubation, soils were removed from the Nalgene jars and 

allowed to dry. After drying, the same soils were rewetted with the +N 

treatment water. The acetylene reduction assay was repeated under the 

incubation conditions described above. Supplementary experiments 

showed that exposure to acetylene for 48 h did not measurably affect 

acetylene reduction rates (data not shown). 

Data Processing and Presentation 

Concentrations from all analyses, except the acetylene reduction 

assay, were measured as mass per unit volume (i.e., mg L-1). These data 

were converted to total moles in the soil solution and normalized to the dry 

mass of the soil, in grams (i.e., gdw-1). This normalization allows 

comparison of data from different time points without the influence of 

evaporative concentration changes.  

For nutrients (NO3
-, NH4

+) and the acetylene reduction assay, the 

method detection limit (MDL) was calculated according to Standard 

Method 1030C, using multiple measurements of a low concentration 

standard (Standard Method 1030C; Clesceri et al., 1998), and the limit of 

quantitation (LOQ) was calculated as 10 times the standard deviation of 

the same standard solution used to compute the MDL (Table 2-1). For 



 
34 

metal analyses, the limit of detection (LOD) and limit of quantitation (LOQ) 

were calculated as 3 and 10 times the standard deviation of a low 

concentration standard, respectively (Table 2-2). Measured concentrations 

below the LOD or MDL were plotted at zero. The few measured 

concentrations above the LOD or MDL, but below the LOQ were set to the 

LOQ value and used thus in downstream conversions and calculations.  

 
Table 2-1. Limits of detection and quantitation for the nitrate, ammonium 
and acetylene reduction assays. 
 

 MDLa LOQb 

Nitrate 0.11 µM 0.39 µM 
Ammonium 0.17 µM 0.56 µM 
Acetylene Reduction 3.5 nmoles 20 nmoles 
   

aMDL (method detection limit) calculated from Standard Method 1030C 
(Clesceri et al., 1998). 

bLOQ (limit of quantitation) calculated as 10 times the standard deviation 
of the low concentration standard used for the MDL calcuation. 

 

Table 2-2. Limits of detection and quantitation for iron, molybdenum, and 
vanadium analyses; all concentrations are in nM.  
 

 LODa LOQb 
Iron 0.644 2.145 
Molybdenum 0.062 0.209 
Vanadium 0.471 1.570 

 
aLOD (limit of detection) calculated as 3 times the standard deviation of a 

low concentration standard. 
bLOQ (limit of quantitation) calculated as 10 times the standard deviation 

of a low concentration standard. 
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Statistical analyses were performed using SigmaPlot v11.0 (Systat 

Software, Inc., Chicago, IL). Linear regression analyses were performed 

for each nutrient in each soil type for both treatments. Datasets were then 

compared using either a Student’s t-test or a Mann-Whitney Rank Sum 

Test. If both datasets passed the Shapiro-Wilk Normality Test, an Equal 

Variance Test and a Student’s t-test were performed (unpaired). If one or 

both datasets failed the Shapiro-Wilk Normality Test, a Mann-Whitney 

Rank Sum Test was performed. Concentrations of each nutrient in crusted 

samples were compared to concentrations of the same nutrient in killed 

controls within each treatment (i.e., –N crusted vs –N killed or +N crusted 

vs +N killed). Significant differences between crusted samples and killed 

controls were interpreted to mean that BSC activity influenced soil solution 

nutrient concentrations. Finally, concentrations of each nutrient in the –N 

crusted samples were compared to concentrations of the same nutrient in 

+N crusted samples (i.e., –N Mo vs +N Mo). Significant differences 

between –N and +N crusted samples were inferred to mean that the effect 

of BSCs on nutrient concentrations was N-dependent. Significance is 

assumed for p < 0.10; significant result are shown in bold.  

Results 

Nitrate 

At 0 h, nitrate (NO3
-) was measurable in crusted samples for both the  

–N and +N incubations, and in killed controls of the +N incubation only 
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(Figure 2-2a, b). Soil solution NO3
- concentrations in crusted samples 

rapidly decreased to below detection during both the –N and +N 

incubations (p = 0.06 and p = 0.01, respectively). Soil solution NO3
-  

 
Figure 2-2. Normalized soil solution concentrations of nitrate (NO3

-; panels 
(a) and (b)) and ammonium (NH4

+; panels (c) and (d)). Crusted soils are 
solid squares () and killed controls are open squares (); the open 
symbols are off-set by +2 h for clarity. Left-hand panels are from the –N 
incubation, right-hand panels are from the +N incubation. Error bars 
represent propagated error based on the analytical precision and the dry-
weight normalization calculations. Data plotted at zero were below the 
LOD. Each data point represents an individual sacrificed soil sample. 
Concentrations of NO3

- decreased rapidly in crusted samples, remained 
constant in +N killed controls, and increased very slightly in –N killed 
controls. Concentrations of NH4

+ in crusted samples increased significantly 
over the duration of the –N incubation (p = 0.07), while NH4

+ 
concentrations in crusted samples of the +N incubation and in killed 
controls of both incubations did not change significantly. 
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concentrations in –N killed controls increased slightly, but significantly 

(p = 0.01; Table 2-3), however concentrations were below the LOQ in all 

but one 48 h control, and below the LOD in half of the remaining soils. Soil 

solution NO3
- concentrations in +N killed controls were generally higher 

than in crusted samples (Figure 2-2b) and constant during the experiment 

(Table 2-3). No statistical comparison could be made between crusted 

samples and killed controls in either incubation because NO3
- decreased 

significantly in the crusted samples (Table 2-3, 2-4). For the same reason, 

NO3
- concentrations could not be compared between treatments (Table 

2-3, 2-5); but in both cases they decreased to near zero by 24 h. 

Ammonium 

Soil solution ammonium (NH4
+) concentrations in crusted samples 

increased significantly over the course of the –N incubation (p = 0.07; 

Figure 2-2c, Table 2-3). Concentrations of soil solution NH4
+ in killed 

controls of the –N incubation did not show a significant change over time, 

nor did those of the crusted samples or killed controls from the +N 

incubation. In general, soil solution concentrations of NH4
+ were lower in 

crusted samples than in killed controls (Figure 2-2c, d), however, this 

difference was only significant in the +N incubation (p = 0.07; Table 2-4). 

Ammonium concentrations could not be statistically compared between 

treatments because NH4
+ increased significantly in the –N incubation 

(Tables 2-3, 2-5), but they are generally somewhat higher (~2x). 



 

38 

Table 2-3. Results of linear regression analysis of concentration versus time for each nutrient, treatment, and soil type. 
 

Nutrient Treatment Soil Type 
Shapiro-Wilk 

Normality Test 
Constant Variance 

Test Slope R2 p-valuea 
NO3

- –N Crusted Passed Failed -0.0003 0.48 0.06 
 +N Killed Passed Passed 0.00002 0.63 0.01 
 –N Crusted Passed Passed -0.0012 0.71 0.01 
 +N Killed Passed Passed -0.0001 0.34 0.10 
        

NO4
+ –N Crusted Failed Passed 0.0002 0.46 0.07 

 +N Killed Failed Failed 0.0003 0.21 0.22 
 –N Crusted Passed Passed 0.00003 0.01 0.77 
 +N Killed Passed Passed 0.00003 0.01 0.84 
        

Fe –N Crusted Passed Passed 0.0006 0.01 0.77 
 +N Killed Failed Failed -0.0569 0.16 0.33 
 –N Crusted Failed Passed 0.00005 0.00 0.96 
 +N Killed Passed Failed -0.0094 0.16 0.32 
        

Mo –N Crusted Passed Passed 0.0010 0.70 0.01 
 +N Killed Passed Passed -0.0027 0.18 0.30 
 –N Crusted Passed Failed 0.00006 0.46 0.05 
 +N Killed Passed Passed 0.0009 0.13 0.39 
        

V –N Crusted Passed Failed 0.0003 0.17 0.27 
 +N Killed Passed Failed -0.0836 0.24 0.22 
 –N Crusted Passed Passed 0.00003 0.01 0.77 
 +N Killed Passed Passed 0.0024 0.00 0.88 

 

aSignificant values (p < 0.10) are shown in bold. 
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Table 2-4. Statistical comparison of nutrient concentrations in crusted soils and killed controls from the same treatment.  
 

Treatment Nutrient 
Shapiro-Wilk 

Normality Test 
Equal 

Variance Comparison Performed p-value 
Soil with Higher 
Concentrations 

–N NO3
- NCa NC NC NC NC 

 NH4
+ NC NC NC NC NC 

 Fe Failed NAb Mann-Whitney 0.36 NDc 
 Mo NC NC NC NC NC 
 V Failed NA Mann-Whitney <0.001d Killed 
       

+N NO3
- NC NC NC NC NC 

 NH4
+ Passed Passed Student’s unpaired t-test <0.001 Killed 

 Fe Failed NA Mann-Whitney 0.16 ND 
 Mo Passed NC NC NC NC 
 V Failed NA Mann-Whitney <0.001 Killed 

 
aNC indicates the statistical comparison was not calculated because one or both datasets changed significantly 

over time. 
bNA indicates a particular test did not apply to the given comparison. 
cND indicates no difference between soil types. 
dSignificant values (p < 0.10) are shown in bold. 
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Table 2-5. Statistical comparison of nutrient concentrations in crusted soils from the –N treatment with crusted soils 
from the +N treatment. 
 
 

Nutrient 
Shapiro-Wilk 

Normality Test 
Equal 

Variance Comparison Performed p-value 
Soil with Higher 
Concentrations 

NO3
- NCa NC NC NC NC 

NH4
+ NC NC NC NC NC 

Fe Passed Passed Student’s unpaired t-test 0.26 NDb 
Mo NC NC NC NC NC 
V Failed NAc Mann-Whitney 0.01d +N 

 

aNC indicates the statistical comparison was not calculated because one or both datasets changed 
significantly over time. 

bND indicates no difference between soil types. 
cNA indicates a particular test did not apply to the given comparison. 
dSignificant values (p < 0.10) are shown in bold. 
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Iron 

There were no significant changes in iron (Fe) concentration with time 

for either the –N or the +N incubation, nor were there any significant 

differences between soil solution iron (Fe) concentrations in crusted 

samples or killed controls (Figure 2-3a, b, Tables 3-5) or between 

treatments (Table 2-5). 

Molybdenum 

Concentrations of Mo in crusted samples increased significantly over 

the duration of both the –N and +N incubations (p = 0.01 and p = 0.05, 

respectively; Figure 2-3c, d, Table 2-3). There was no trend in Mo 

concentrations over time in the killed controls. Molybdenum 

concentrations in killed controls were generally two orders of magnitude 

higher than in crusted samples, however, p-values could not be calculated 

because Mo concentrations in crusted samples showed a significant 

increase with time (Table 2-3). Molybdenum concentrations in crusted 

samples did not vary between the –N and +N treatments (Figure 2-4a).  

Vanadium 

There were no significant changes in soil solution vanadium (V) 

concentration for any soil type over the duration of either the –N or the +N 

incubation (Figure 2-3e, f, Table 2-3). Vanadium concentrations were 

statistically higher in soil solutions of killed controls than in those of 

crusted samples (p < 0.001; Table 2-4). Soil solution V concentrations in  
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Figure 2-3. Soil solution metal concentrations normalized to soil dry-
weight; panels (a) and (b) are Fe, (c) and (d) are Mo, and (e) and (f) are V. 
Crusted samples are solid squares () and killed controls are open 
squares (). Left-hand panels are for the –N incubation, right-hand 
panels are for the +N incubation. Error bars represent propagated error 
based on the analytical precision and dry-weight normalization 
calculations. Each data point represents an individual sacrificed soil. The 
purpose of this figure is to highlight the differences between crusted 
samples and killed controls. Mo and V contents in killed controls were 
higher than those in crusted soils for both the –N and +N treatments. 
Results were significant for V (p < 0.001 for –N and +N). A statistical 
comparison between crusted samples and killed controls could not be 
performed for the Mo data because the crusted samples showed a 
significant increase with time. There was no statistical difference in Fe 
content between sample type or treatment. 
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Figure 2-4. Soil solution metal concentrations normalized to soil dry weight 
for crusted soils in –N (open diamond, ) and +N (solid diamond, ) 
treatments; (a) Mo, (b) V. The solid symbols are off-set by +2 h for clarity. 
Error bars represent propagated error based on the analytical precision 
and the dry-weight normalization calculations. Data plotted at zero were 
below the LOD. Mo contents in both treatments were vanishingly low over 
the first 24 h and increased significantly at 48 h, but they cannot be 
statistically compared because both show significant increases over time 
(Table 2-3). V concentrations were significantly higher in the +N incubation 
(p = 0.01). 
 
crusted samples differed by N treatment and were higher for the +N 

samples (p = 0.01; Figure 2-4b, Table 2-5).  

Acetylene Reduction 

In the –N treatment of crusted samples, ethylene was detectable after 

22 h (Figure 2-5). Ethylene (C2H4) production rates ranged from 2.07 to 

9.74 nmol C2H4 cm-2 h-1 over the course of the incubation; the rates were  

essentially constant through time and were statistically different from zero 

(p < 0.01) for all crusted soils. In contrast, ethylene was never detected in 

killed controls (data not shown). 

 



 
44 

 
Figure 2-5. Ethylene production (nmoles cm-2 ) in 3 crusted soils, as a 
function of time for –N (0 to 48 h) and +N (340 to 390 h) incubations. Each 
color represents a single soil followed during the first incubation  
(–N), and again during the second incubation (+N). Samples on the right 
are the same samples from the left. The x-axis break represents the 
drying period between the two incubations. All crusted samples produced 
ethylene under –N conditions; after drying, no crusts displayed ethylene 
production until 360 h, when just one of the three samples produced a 
small amount of ethylene. 
 

After the –N acetylene reduction incubation, soils were allowed to dry, 

kept desiccated for 2 weeks in the dark, rehydrated with 0.8 mM aqueous 

NH4NO3, and used for the +N acetylene reduction incubation. All crusted 

samples produced ethylene in the –N incubation. In contrast, only one 

crusted sample produced a very small amount of ethylene toward the end 

of the +N incubation (Figure 2-5). This corresponds to a decrease in the 

average ethylene production rate from 2.26 nmol C2H4 cm-2 h-1 (–N) to  
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0.72 nmol C2H4 cm-2 h-1 (+N). No ethylene was detected in any of the other 

crusted samples or killed controls over the duration of the +N incubation.  

Discussion 

Effect of BSCs on Soil Solution Nutrient Concentrations 

In order to determine whether BSC activity altered concentrations of 

the nutrients NO3
-, Fe, Mo, and V, I compared their concentrations in the 

soil solutions of live crusted samples to concentrations in those of killed 

controls. The differences observed between the two soil types were  

interpreted to result from microbial activity. For example, using nitrate 

(NO3
-) as a model nutrient, I found that, in general, soil solution NO3

- 

concentrations were lower in crusted samples than in killed controls 

(Figure 2-2b). In addition, soil solution NO3
- concentrations in crusted 

samples were measurable at 0 h, but decreased significantly (Table 2-3) 

to below detection limits (0.11 µM) after 48 h in both the –N and +N 

incubations (Figure 2-2a, b), and I interpret the swift removal of NO3
- from 

the soil solution of live crusts to indicate microbial uptake.  

Because crusted soil NO3
- concentrations decreased significantly over 

the course of the incubation (Table 2-3), I could not statistically compare 

NO3
- concentrations between crusted samples and killed controls. 

However, lack of any change in soil solution NO3
- concentrations in the 

killed controls supports the conclusion that decreasing NO3
- in crusted 

samples is the result of microbial uptake. Soil solution NO3
- concentrations 
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in +N killed controls were above detection and stable over the course of 

the experiment (Figure 2-2a, b, Table 2-3). At the beginning of the +N 

incubation, the dry weight-normalized NO3
- concentrations in the killed 

controls were lower than those of the crusted samples even though the 

same amount of N was added to all soils. This is most likely due to 

differences in soil mass (killed controls happened to have slightly higher 

initial weights, so their normalized concentrations were lower), as well as 

the fact that killed controls started out with less NO3
- due to losses upon 

heating. In the –N killed controls, soil solution NO3
- concentrations were 

low throughout the incubation, which I expected since N was was removed 

from the soil by our high-temperature sterilization technique (Kang & 

Sajjapongse, 1980; Giovannini et al., 1990; Parlak, 2011). Concentrations 

of NO3
- in soil solutions of –N killed controls increased slightly over the 

course of the incubation, possibly as a result of desorption (Brady & Weil, 

2002). But, although the NO3
- concentrations in –N killed controls changed 

significantly over time, the direction of the change was opposite that of the 

crusted samples. Therefore, taken together, the invariant NO3
- 

concentrations in +N killed controls and the increasing NO3
- 

concentrations in –N killed controls are consistent with our interpretation 

that uptake by live crusts causes a decrease in soil solution NO3
- 

concentrations. 
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The fact that soil solution NO3
- concentrations were typically lower in 

crusted samples than in killed controls confirmed that BSC activity alters 

soil solution concentrations of limiting nutrients, causing nutrient 

concentrations to be lower in the soil solution of live crusts. The overall 

lower soil solution NO3
- concentrations in crusted samples of the +N 

treatment, coupled with the rapid decrease in soil solution NO3
- 

concentrations of crusted samples, were most likely caused by cellular 

uptake and assimilation under N-limiting conditions, rather than NO3
- being 

used for denitrification or anaerobic ammonia oxidation (anammox), as 

these two dissimilatory processes have been shown to be very low in 

comparison to N2 fixation in crusts (Johnson et al., 2007; Strauss et al., 

2012). I thus conclude that: (1) Mo-requiring assimilatory nitrate 

reductases were active under my experimental conditions, and (2) the 

behavior of NO3
- represented that of a limiting nutrient in the crust system. 

I expected that if crust organisms were also limited with respect to Fe, Mo, 

and/or V I would detect similar patterns in their concentrations over the 

course of the incubations. 

The expectation that Fe, Mo, and V would behave like NO3
- was only 

reasonable if the crust organisms were in need of these metals. I 

compared the amount of Fe, Mo and V theoretically present in the crust 

biomass (Madigan et al., 2003; Tuit et al., 2004; Tovar-Sanchez et al., 

2006; White et al., 2006; Beraldi-Campesi et al., 2009; Glass et al., 2009) 
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with the amount of each metal measured in the soil solution (see Table 

2-6 for an outline of this calculation and the input parameters used). The 

amount of metal in the soil solution was stoichiometrically 1-3 orders of 

magnitude lower than the amount calculated for the biomass. As 

discussed previously, removal of trace metals from the soil solution by 

BSCs will result in increased dissolution of metals from the solid-phase if 

the system is at equilibrium. However, I contend that it is possible for 

BSCs to be limited with respect to metals if dissolution rates are slower 

than microbial uptake rates or if the system is not active long enough to 

reach equilibrium. Therefore, I conclude it was reasonable to assume 

crusts were limited with respect to Fe, Mo, and V (Table 2-6); since the 

soils did not have enough dissolved Fe, Mo, or V in solution for crusts to 

double their biomass, I expected to see effects of microbial activity on soil 

solution metal concentrations. 

Similar to the pattern observed for NO3
-, soil solution concentrations of 

Mo and V were lower in crusted samples than in killed controls (Figure 

2-3c-f, Table 2-4). The results of this comparison were significant for V in 

both incubations (p < 0.001). While a statistical comparison between 

crusted soils and killed controls could not be performed for the Mo data 

because the crusted samples showed a significant increase in dissolved 

Mo with time, there are clearly observable differences between crusted 

samples and killed controls. I interpret lower metal concentrations in 
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Table 2-6. Comparison of metal availability in the soil solution to estimated metal contents in crust biomass derived 
from a range of cyanobacteria cellular metal contents. 

Metal:Carbon Ratios 

Cyanobacterium Metal Max. Min. Avg. 
Calculated Biomass 

Content (µmol)d 
Measured Soil Solution 

Content (µmol)5 

Trichodesmium spp.1,2 Fe 17a 134 75.5b 0.91 0.002-0.003 

 Mo 2 5 3.5 0.04 <0.001 

 V 9 22 15.5 0.19 0.001 
       

Nostoc 71203 Mo 10 100 55 0.66 <0.001 
       

Nostoc spp. CCMP25113 Mo 1 6 3.5 0.04 <0.001 
       

Crocosphaera spp.4 Fe   15.8c 0.19 0.002-0.003 

 Mo   0.70 0.01 <0.001 
1Tovar-Sanchez et al. (2006), 2White et al. (2006), 3Glass et al. (2009), 4Tuit et al. (2004), 5current study 

aMetal:Carbon ratios for Trichodesmium spp. were calculated from metal-to-phosphorus ratios from Tovar-Sanchez et al. (2006) and 
carbon-to-phosphorus ratios from natural Trichodesmium populations reported by White et al. (2006). 

bBold indicates averages calculated from the reported minimum and maximum values  
c Italics indicate values reported as averages in the literature 
dOutline of the calculation sequence to determine metal content in crust biomass: 
(1) Use total organic carbon (TOC) in crusted soils (0.65 wt%; Beraldi-Campesi et al., 2009); (2) Assume microbial biomass is ~2x 
TOC (Madigan et al., 2003); (3) calculate weight percent biomass; 2 x 0.65 = 1.3 wt % biomass; (4) Use average crust mass (23 g); 
(5) calculate g biomass; 1.3% x 23 g = 0.30 g biomass; (6) Assume microbial biomass is ~50% C by weight, calculate biomass 
carbon; 0.5 x 0.30 g = 0.15 g biomass C = 0.012 moles biomass C; (7) Use metal:carbon ratios of cyanobacteria from literature 
(Columns 3-5) and moles biomass C from step 4, calculate biomass metal; metal:carbon ratio x moles biomass C = µmol metal in 
crust (Column 6).
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crusted samples as evidence for Mo and V uptake by BSCs. Higher Mo 

and V in the soil solutions of killed controls was likely due to release of 

these metals from biomass during heating. The difference in Mo and V 

concentrations between crusted samples and killed controls is consistent 

with the prediction that crusts were limited with respect to Mo and V, and 

the hypothesis that BSCs alter soil solution concentrations of limiting 

nutrients. 

In contrast to the patterns described for NO3
-, Mo, and V, soil solution 

Fe concentrations in crusted samples and killed controls were not 

statistically different from one another, nor did soil solution Fe 

concentrations in crusted samples change significantly over the duration 

of the experiment (Figure 2-3a, b, Tables 2-3, 2-4, 2-5,). This result 

demonstrates that I cannot observe the effects of microbial activity on soil 

solution Fe concentrations under our experimental conditions. Soil solution 

Fe concentrations were generally high, and it is possible biologically-

mediated changes in soil solution Fe content were too small for my 

methods to detect, or that changes in Fe concentrations in BSCs are 

dominated by abiotic processes, such as adsorption/desorption reactions 

(Brady & Weil, 2002). 

Ammonium (NH4
+) did not behave like a typical limiting nutrient, most 

likely because multiple processes, both biotic and abiotic, influence NH4
+ 

dynamics in soil (Brady & Weil, 2002; Johnson et al., 2005; Strauss et al., 
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2012). However, I did observe a significant increase in soil solution NH4
+ 

concentrations in crusted samples over the course of the –N incubation 

(p = 0.07; Figure 2-2c, Table 2-3) that most likely reflects active N2-

fixation. The acetylene reduction rate data can be used to estimate N2-

fixation rates and, thus, how much NH4
+ could presumably be produced. 

The ethylene-to-equivalent-NH4
+ ratios used to estimate N2 fixation vary 

greatly (~2 to ~56; reviewed in Belnap, 2001); but regardless of the ratio 

used, all the measured acetylene reduction rates were sufficient to 

account for the observed increase in NH4
+ in –N crusted soils (calculation 

not shown). And, of course, NH4
+ oxidation would happen concurrently. 

Influence of N Availability on Soil Solution Trace Metal Concentrations 

From the previous analysis of crusted samples versus killed controls I 

can confidently say that BSC activity influences soil solution 

concentrations of NO3
-, Mo, and V. Next, I wanted to know if the effect of 

BSC metabolism on Mo and V was affected by N availability. In order to 

do this I compared soil solution concentrations of Mo and V between –N 

and +N treatments of crusted samples (Figure 2-4a, b, Table 2-5). I 

predicted that Mo and V concentrations would be lower in –N soils 

because the microbes would need more Mo and V for N2 fixation. When N 

was added (+N) I expected that Mo and V soil solution concentrations 

would be higher due to reduced metal requirements when N2-fixation was 

not active. The acetylene reduction assay, showed that N2 fixation was 
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inactive in the +N crusts and active in the –N crusts; i.e., BSCs fixed N2 in 

their natural N-limited state (–N), and N2-fixation ceased when N was 

supplied to N2-fixing crusts (+N; Figure 2-5). The absolute rates of 

ethylene production in my crusts were similar to other published values 

(Table 2-7; Belnap, 2002; Johnson et al., 2005; Housman et al., 2006; 

Strauss et al., 2012), including rates measured at the same “Sunday 

Churt” site (Table 2-7; Strauss et al., 2012). Additionally, crusts given no  

Table 2-7. Ethylene production rates (nmol C2H4 cm-2 h-1) in biological soil 
crusts. Values from Strauss et al. (2012) are from the same Sunday Churt 
site sampled for the current study. 
 

Ethylene 
Production Rate Reference 

0-5 Belnap, 2002 
4.8 Johnson et al., 2005 
0.2-1.2 Housman et al., 2006 
2-4 Strauss et al., 2012 
2.07-9.74 Current study 

 
additional nitrogen in week 2 of the acetylene reduction assay continued 

to fix N2 at rates comparable to those of week 1 (data not shown). I, 

therefore, conclude that prior and prolonged exposure to acetylene did not 

inhibit N2-fixation in crusts that received N in the second week of the 

experiment. Furthermore, I conclude that the absence of N2-fixation in +N 

crusted samples is indeed caused by alleviating N limitation. That 

organisms cease N2-fixation when N is available is a well-known 

physiological response in N2-fixing microorganisms, including 

cyanobacteria, where the activity and expression of nitrogenase are 
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repressed by bioavailable forms of N, like NH4
+ and NO3

- (Cejudo & 

Paneque, 1986; Kennedy & Toukdarian, 1987; Sanz et al., 1995; Sroga, 

1997; Flores & Herrero, 2005). Importantly for my study, this phenomenon 

provides an opportunity to experimentally contrast the geochemical 

consequences of N2-fixation, in that I can turn the process off while still 

maintaining an active microbial community. 

Regardless of N status, soil solution Mo concentrations in crusted 

samples were low for the first 24 h of incubation, and increased 

significantly after 48 h (p = 0.01 for –N and p = 0.05 for +N; Figure 2-4a, 

Table 2-3). Molybdenum dynamics were, therefore, independent of N 

addition, suggesting N2-fixation was not the only process driving Mo 

requirements in these soils. This is not too surprising in that I have 

evidence for the concurrent presence of assimilatory nitrate reduction (see 

above) that also uses a Mo-enzyme (Solomonson et al., 1984; Hille, 1996; 

Rubio et al., 1999; Rubio et al., 2002; Butler & Richardson, 2005) and for 

additional biological processes that require Mo as well (reviewed in 

McMaster et al., 2007).  

Increasing dissolved Mo concentrations, suggests microbial Mo uptake 

was not the only biological process that influenced Mo concentrations in 

crusted samples. Since N2 fixation rates and NO3
- dynamics indicated an 

active microbial community in the crusts with increased Mo 

concentrations, it is unlikely that the increase was caused by Mo release 
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from cells after lysis. When bulk pH was monitored over the incubation 

time no significant change was observed that could account for an 

increase in Mo solubility (data not shown). Additionally, killed controls 

exhibited no change in soil solution Mo concentrations over the course of 

the experiment (Figure 2-3c, d, Table 2-3). Therefore, I interpret the 

increase in Mo concentration in crusted samples to result from direct 

solubilization of solid-phase Mo by metabolically active crust microbes.  

Vanadium concentrations (in contrast to Mo) exhibited a response to N 

addition (Figure 2-4b, Table 2-5). In general, I observed that V 

concentrations in +N crusts were statistically higher than in –N crusts 

(p = 0.01). This is consistent with the hypothesis that microbial V uptake 

would decrease with N addition, resulting in increased soil solution metal 

concentrations. Vanadium requirements are relatively specific to N2 

fixation, but are not universal. Vanadium use for N2-fixation depends 

entirely on whether or not the organisms fixing N2 in BSCs have the genes 

to produce V-nitrogenase, which we do not know at this time. Vanadium 

use in nitrogenase also depends on whether or not organisms have 

sufficient Mo, since microbes will only produce V-nitrogenase under Mo-

deficiency (Jacobson et al., 1986; Joerger & Bishop, 1988; Pau et al., 

1989; Luque & Pau, 1991; Jacobitz & Bishop, 1992). In my case, Mo was 

below detection in all but the last hours of the incubations; concentrations 

were, therefore, low enough to expect the expression of V-nitrogenase to 
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be possible if the organisms have the capability. Thus, I interpret the lower 

soil solution V concentrations in the –N incubation as potential evidence 

that V may be taken up to supply nitrogenase when crusts are fixing N2. 

As a cautionary note one must recognize, that in principle, BSC organisms 

could use V in haloperoxidases, a group of enzymes that catalyze the 

halogenation of organic compounds in the presence of peroxides (Butler, 

1998; Littlechild, 1999). However, there is no logical reason to expect that 

haloperoxidase production would be dependent on N availability.  

Implications 

My results show that live crusts alter soil solution Mo and V 

concentrations, and that N cycling, in particular, may be linked to V 

availability in BSCs. Therefore, metal dynamics have the potential to 

provide clues about active biological processes and nitrogen availability in 

BSCs. Additionally, I provide experimental evidence to support the theory 

that metal depletions in soils may be a biosignature of BSC activity, as put 

forward by Beraldi-Campesi et al. (2009), and could be used to indicate 

the presence of crusts in terrestrial environments on the early Earth and in 

other places. However, the potential for a metal to be diagnostic of a 

particular biological process, or to serve as a biosignature, is entirely 

metal-specific and depends on both the abundance of the metal in the soil 

and the metabolic pathways that require the metal. 
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The results of this study may also prove useful for rangeland 

management on the Colorado Plateau and elsewhere. BSCs are crucial to 

ecosystem function in arid lands throughout the world, and understanding 

what controls their success is paramount for land conservation and 

restoration. Davidson et al. (2002) asserted that BSC management 

requires an understanding of the factors that limit BSC colonization, 

establishment, and growth rates. Similarly, Bowker et al. (2005) stressed 

the value in determining which micronutrients limit BSCs in order to 

develop BSC restoration techniques to combat desertification; they went 

on to propose that fertilization-based restoration methods would be 

appropriate to reduce soil fertility losses in arid environments throughout 

the world. My results show that Mo is actively manipulated by BSC 

community metabolism and that V may be a heretofore neglected nutrient 

that could be important for the ecology of BSCs. It remains to be 

determined if Mo and V additions increase the productivity and N2 fixation 

capacity of BSC communities in situ, before concluding whether or not Mo 

and V are good candidates for crust fertilization efforts. 
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CHAPTER 3 

EVIDENCE FOR MICROBIAL UPTAKE AND SOLUBILIZATION OF 

BIOESSENTIAL ELEMENTS IN BIOLOGICAL SOIL CRUSTS 

Abstract 

Biological soil crusts (BSCs) require a variety of elements to support a 

range of physiological processes, such as photosynthesis and nitrogen 

fixation, that contribute greatly to arid land fertility. Previous work has 

highlighted the effect of BSCs on soil solution concentrations of vanadium, 

iron, and molybdenum, and the current project was aimed at expanding 

the suite of elements investigated. The goal was to determine which 

elements in the soil solution were affected by biological processes such as 

microbial solubilization and uptake, and which elements were dominated 

by abiotic processes, like mineral precipitation or adsorption. I found that 

when crusts were metabolically active, nickel and zinc decreased, likely 

reflecting microbial uptake. Arsenic and zirconium also decreased, but 

probably as a result of biosorption. Aluminum, vanadium, copper, and zinc 

concentrations all increased when crusts were active. Increasing 

aluminum was interpreted to result from cellular export, perhaps in 

response to toxicity, while increasing copper was deemed the result of 

microbial solubilization. Increasing vanadium and zinc concentrations 

were more difficult to interpret as microbial solubilization and cellular 

export were both valid explanations. Potassium and manganese showed 
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changes in concentration that appeared to be caused by an alteration in 

the balance of biological processes, while phosphorus showed evidence 

for both biological and abiotic cycling. Iron showed a clear pattern that 

could be explained by abiotic mineral precipitation or adsorption. 

Comparison of concentrations in crusts that received water, molybdenum, 

and nitrogen additions showed that, in general, nitrogen addition reduced 

microbial solubilization of multiple elements. I conclude that this is the 

result of decreased element need that manifests in decreased production 

of metal chelators. This work supports previous findings that proposed 

manganese, copper, and zinc as potential biomarkers of past BSC 

communities, and further suggests that some elements may be useful 

fertilizers to sustain and promote BSCs in order to prevent arid land 

degradation.  

Introduction 

Biological soil crusts (BSCs) are microbial communities composed of 

bacteria, archaea, algae, fungi, lichens, and bryophytes (Belnap et al., 

2001) that are especially adapted to thrive in arid and semi-arid 

environments (Bowker et al., 2002; Gundlapally & Garcia-Pichel, 2006). 

BSCs perform a variety of valuable ecosystem services that include: input 

of fixed carbon (C) through photosynthesis (Beymer & Klopatek, 1991; 

Evans & Lange, 2001; Garcia-Pichel, 2002), input of bioavailable nitrogen 

(N) through N2 fixation (Rychert & Skujins, 1974; Jeffries et al., 1992; 



 
67 

Steppe et al., 1996; Belnap, 2002), enhanced iron (Fe) availability through 

siderophore production (see Chapters 5 & 6), and erosion prevention 

(Campbell, 1979; Schulten, 1985; Belnap, 1993). All these contributions 

serve to increase arid land habitability and reduce arid land degradation 

(Isichei, 1990; Belnap et al., 1994; Belnap, 1995; Bowker et al., 2008a). 

Therefore, sustaining and increasing BSC cover is critical for protecting 

and enhancing arid lands, and requires knowledge of the factors that limit 

and promote BSC growth and development (Davidson et al., 2002; 

Bowker et al., 2005). In addition to C, N, and water, limiting factors for 

crust ecosystems may include major elements such as magnesium and/or 

minor elements such as manganese and molybdenum. The dynamics of 

these, and in fact most, elements in the BSC system are not well 

understood; however, their availability likely plays an important role in 

BSC function. 

Living organisms require a suite of elements to build their biomass and 

perform physiological processes. The general categories of biologically-

relevant elements are shown in Table 3-1; the major and minor elements 

are generally considered essential for all life, while the rare elements are 

necessary or only possibly required in just a few organisms (Bertini et al., 

2007). The elements listed in Table 3-1 serve a range of functions in 

biological systems. Of the bulk elements, H, C, N, O, P, and S are the 

primary building blocks of biological macromolecules like proteins, lipids,  
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Table 3-1. Categories of bioessential elements. Major elements are 
required for all life, minor elements are generally considered necessary for 
all life, and rare elements are essential for a few organisms. Elements in 
bold are the focus of this study. 
 

Category Elements 

Major elements 

Hydrogen (H) 
Carbon (C) 
Nitrogen (N) 
Oxygen (O) 
Sodium (Na) 
Magnesium (Mg) 

Phosphorus (P) 
Sulfur (S) 
Chloride (Cl) 
Potassium (K) 
Calcium (Ca) 
 

Minor elements 

Boron (B) 
Fluoride (F) 
Silicon (Si) 
Vanadium (V) 
Chromium (Cr) 
Manganese (Mn)  
Iron (Fe) 

Cobalt (Co) 
Nickel (Ni) 
Copper (Cu) 
Zinc (Zn) 
Selenium (Se) 
Molybdenum (Mo) 
Iodine (I) 

Rare elements 

Arsenic (As) 
Bromine (Br) 
Strontium (Sr) 
Cadmium (Cd) 

Tin (Sn) 
Barium (Ba)  
Tungsten (W) 

 
polysaccharides, and nucleic acids. Other elements support the cycling of 

H, C, N, O, P, and S within cells by contributing to cellular maintenance 

processes such as charge balance and electrical potential (Na, K), 

enzymatic processes like electron transfer (Fe, Cu, Mo) and catalysis (Mg, 

Ca, V, Mn, Fe, Co, Ni, Cu; Fraústo da Silva & Williams, 2001; Bertini et al., 

2007). This list is not exhaustive, but should give the impression that a 

multitude of elements are critical to the functioning of biological systems. 

In the current study, I was interested in how BSCs affected the soil  
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solution concentrations of bioessential elements as a result of microbial 

uptake and/or solubilization. 

I focused on a group of elements from Table 3-1 (shown in bold) that 

are particularly relevant to prokaryotic C and N cycling within biological 

soil crusts, specifically: Mg, P, V, Mn, Fe, Ni, Cu, Zn, and Mo. 

Cyanobacteria dominate C and N cycling in BSCs because they perform 

photosynthesis and N2 fixation, thus providing the primary sources of fixed 

C and N to the soil ecosystem (Rychert & Skujins, 1974; Beymer & 

Klopatek, 1991; Jeffries et al., 1992; Evans & Ehleringer, 1993; Steppe et 

al., 1996; Evans & Lange, 2001; Belnap, 2002). Photosynthesis converts 

inorganic carbon into organic carbon by coupling light capture to ATP 

synthesis using multiple reaction centers. Photosynthesis in cyanobacteria 

requires Mg in chlorophyll (Conant et al., 1931; Ferguson-Miller et al., 

2007), Mn in the oxygen-evolving complex (Umena et al., 2011), Cu in 

various components of photosynthetic (and respiratory) electron transport 

(Lockau, 1981; Peschek et al., 2004; Bernroitner et al., 2008), Zn in 

carbonic anhydrase (Smith & Ferry, 2000), and Fe in a variety of 

capacities (Raven et al., 1999; Ferguson-Miller et al., 2007). Nitrogen 

fixation depends on the nitrogenase enzyme that converts atmospheric 

nitrogen gas (N2) into bioavailable ammonium (NH4
+). Nitrogenases 

typically incorporate Mo and Fe, but some cyanobacteria are also capable 

of producing a V-dependent enzyme (Burgess & Lowe, 1996; Eady, 1996; 
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Howard & Rees, 1996; Berman-Frank et al., 2003). We cannot neglect the 

fact that N2 fixation is an energy-requiring process, and so also requires 

readily available Mg, P, and organic substrates to generate Mg-ATP; 16 

molecules of Mg-ATP are required per molecular of N2 reduced (Zhao et 

al., 2006). In addition, hydrogenase enzymes that require Fe and Ni, 

convert H2 to 2H+and thus provide a source of reducing power for N2 fixing 

organisms (Bothe et al., 2010).  

Ammonium oxidation and N assimilation are N-cycling processes that 

are also active in BSCs. Ammonium oxidation (AO) is the first step in 

nitrification that converts ammonia (NH3) into hydroxylamine (NH2OH). 

Rates of AO in BSCs have been shown to be comparable to those of N2 

fixation (Johnson et al., 2005; Strauss et al., 2012), and so AO is a 

significant contributor to N cycling in crusts. Organisms that perform AO 

produce the enzyme ammonia monooxygenase that requires both Fe and 

Cu (Holmes et al., 1995; Zahn et al., 1996; Ferguson, 1998). Nitrogen 

assimilation is a two-step process that first reduces nitrate (NO3
-) to nitrite 

(NO2
-) and then further reduces NO2

- to ammonia (NH3). The enzymes 

used to perform these processes are assimilatory nitrate reductase and 

nitrite reductase, respectively (Guerrero et al., 1981). The former requires 

both Fe and Mo (Rubio et al., 1999; Rubio et al., 2002), while the latter 

contains both heme- and non-heme Fe (Murphy et al., 1974; Aparicio et 

al., 1975; Lancaster et al., 1979).  
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In addition to the elements required for the specific physiological 

processes described above, I focused on elements required for general 

cellular maintenance such as Na and K that are important for establishing 

charge balance and osmotic and electric potentials (Booth et al., 1999; 

Fraústo da Silva & Williams, 2001; Epstein, 2003). I also examined 

arsenic (As) in part because it can be used as an electron acceptor, but 

also because it is known to be detrimental to some organisms so might 

reflect active detoxicfication processes. Finally, I included two elements 

that are not known to be biologically relevant (Al and Zr) to gain 

information about the behavior of elements that reflect abiotic processes in 

the BSC system. While the elements listed above are used in additional 

enzymes and processes not listed here, for the sake of brevity, I have 

chosen to focus only on the elements relevant to processes known to be 

active in BSCs. 

Previous studies have investigated the relationship between BSCs and 

soil elements. Rogers (1972) determined that lichen species distribution 

was somewhat dependent on Ca availability, which suggests that the 

BSCs used in that study were limited with respect to calcium. Another 

study conducted with crusts from the Colorado Plateau, demonstrated that 

manganese and zinc may limit the abundance of certain BSC lichens 

(Bowker et al., 2005), however, further investigations did not support the 

oridingal finding (Bowker et al., 2008b). Beraldi-Campesi et al. (2009) 
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showed that the soil contents of calcium, chromium, manganese, copper, 

zinc, arsenic, and zirconium were depleted in crusts when compared to 

neighboring uncrusted soils. The authors postulated the depletion was the 

result of microbial solubilization that made some elements susceptible to 

loss by leaching. To summarize, Rogers (1972) showed how soil nutrient 

content influenced BSC cover, while Beraldi-Campesi et al. (2009) looked 

at the effects of BSCs on soil elemental distributions. However, these 

studies were based on soil element contents, and, therefore, did not 

provide insight into the real-time influence of BSCs on soil element 

mobility. In an effort to fill this gap, I investigated elemental concentrations 

in the soil solution of live crusts from the Colorado Plateau to determine 

how physiologically active BSCs influence metal mobility (see Chapter 2). 

I determined that soil solution concentrations of V and Mo were lower in 

active crusts than in killed controls, which I interpreted to result from 

microbial uptake and subsequent loss from biomass during sterilization of 

the killed controls. I also observed that Mo concentrations increased in 

crusted samples over the duration of my experiment, suggesting Mo 

solubilization by the microbial community; the study focused only on the 

trace metals used in N2 fixation, and , thus, it remains to be seen if BSCs 

actively alter soil solution concentrations of other elements.  

BSCs are water-limited and so the soil solid-phase is their only source 

for bioessential elements, except C and N. The soils used in the current 
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study are dominated by quartz sands, but do contain ~10% clays and 

oxide/hydroxide minerals that could serve as a source of many elements 

(Noonan, unpublished data; Reynolds et al., 2001; Reynolds et al., 2006). 

Soil organics are also a potential source of bioessential elements (Brady & 

Weil, 2002). BSCs are only physiologically active when wet (Garcia-Pichel 

& Belnap, 1996), and so element acquisition has to occur during, or 

shortly after, rain or snow events. In order to obtain elements from the 

solid-phase, BSCs must either depend on abiotic dissolution, after which 

microbes can take up elements from the soil solution, or they must release 

organic acids and chelators into the soil solution to promote element 

solubility (Drever & Stillings, 1997; Kalinowski et al., 2000; Kraemer, 2004; 

Liermann et al., 2000; 2005). In both instances, the soil solution serves as 

the link between the solid-phase and the microbes, and so I proposed that 

monitoring soil solution concentrations of bioessential elements was an 

effective method to determine how BSCs influence element mobility in 

soils. 

The first goal of this work was to determine which elements were 

influenced by BSC activity and what processes contributed to increasing 

or decreasing element concentrations in the soil solution. By comparing 

concentration changes in crusted samples and killed controls it was 

possible to determine what processes were active. For example, changing 

concentrations of an element in living crusts, but not in killed controls, 
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were likely indicative of microbial processes; in contrast, changing 

concentrations in killed controls were more likely representative of abiotic 

processes. Microbial processes include solubilization, cellular export, 

uptake, biosorption, and indirect effects through the alteration of pH and 

redox conditions. Abiotic processes include precipitation/dissolution and 

adsorption/desorption reactions.  

The second goal was to establish how separate N and Mo additions 

influenced soil solution element concentrations. To achieve this goal, I 

added water, water plus N, and water plus Mo to different groups of crusts 

and compared trends and concentrations between and within the 

treatment groups. Different patterns in soil solution element concentrations 

in crusts that received different nutrient additions speaks to the influence 

of nutrient addition on biological processes that affect metals. I 

hypothesized that I would be able to see the effects of BSCs on 

bioessential element concentrations, and that the patterns in element 

concentrations would indicate whether biological removal (e.g., uptake) or 

addition (e.g., solubilization) processes were active.  

With N addition, I hypothesized that concentrations of Mg, P, V, Mn, Ni, 

and Zn would increase in crusted samples (Table 3-2). Previous work has 

shown that N2 fixation in BSCs ceases with the addition of bioavailable N 

(see Chapters 2 & 4), and I expected BSCs to need lower amounts of 

these elements when N2 fixation was inactive, thus leading to higher soil
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Table 3-2. Summary of hypotheses tested for different groups of elements under the N and Mo additions during 
week 2.  

 
Condition Elements Hypothesis Justification 

Mg, P, V, Mn, 
Ni, Zn Increase 

Decreased uptake of elements that support N2 
fixation because need is lower when N2 

fixation is inactive 

Fe, Cu, Mo Decrease Increased uptake to support increased rates of 
nitrate assimilation and ammonium oxidation 

Changes that result from 
N addition to crusted soils 

Na, K No change Need should not depend on N status 

Mg, P, Mn, Fe, 
Ni, Cu, Zn, Mo Decrease Increased uptake to support increased N2 

fixation 

V No change Reduced need when sufficient Mo is available 
resulting in stabilized concentrations 

Changes that result from 
Mo addition to crusted 

soils 

Na, K No change Need should not depend on Mo status 

All crusted soils Al, As, Zr No change 
No physiological requirement; Minimal 

changes expected for bulk pH and redox 
effects 

All killed controls All elements No change Minimal changes expected for bulk pH and 
redox effects 
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solution concentrations. Because rates of ammonia oxidation and N 

assimilation were anticipated to rise as a result of N addition, I expected 

concentrations of Fe, Cu, and Mo to decrease since these elements are 

required for AO and N assimilation. I predicted that increased need for 

these elements would result in decreased soil solution concentrations. I 

hypothesized that Mo addition would cause soil solution concentrations of 

Mg, P, Mn, Fe, Ni, Cu, Zn, and Mo to decrease in crusted samples (Table 

3-2). When crusts receive Mo, their N2 fixation rates increase (see Chapter 

4), so, consequently, their need for Fe and Mo would also increase. 

Increased need would result in increased uptake and subsequent 

decreases in soil solution concentrations. In order to increase N2 fixation, 

BSCs also need to increase other processes, such as photosynthesis, that 

require the elements Mg, P, Mn, Ni, Cu, and Zn. V concentrations were 

predicted to remain stable under Mo addition. If crusts have the genes for 

V-nitrogenase they will not express it when Mo is available (Jacobson et 

al., 1986; Joerger & Bishop, 1988; Luque & Pau, 1991; Jacobitz & Bishop, 

1992). Therefore, I expected that V would not be taken up by cells using 

Mo-nitrogenase.  

No changes were predicted for Na and K with either treatment because 

I did not expect their use in general cellular processes to change with N or 

Mo addition. I also did not anticipate changes in Al, As or Zr 

concentrations because these elements lack biological roles (Table 3-2). 
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Methods 

Soil Collection 

“Dark” crusts, a predominantly cyanobacterial community, were 

collected at the Green Butte site (Strauss et al., 2012) north of Moab, UT 

on the Colorado Plateau (N 38°42′56.2″, W 109°41′32.7″) during May, 

2009. Dark crusts have minimal lichen and moss content (Garcia-Pichel & 

Belnap, 1996; Garcia-Pichel et al., 2001); crusts were selected based on a 

visual assessment of surface topography and lichen cover in order to 

focus on processes driven by cyanobacteria. Soils were collected 

according to Garcia-Pichel et al. (2003). Briefly, the soil was lightly wetted 

with distilled water in order to increase surface soil coherence. Petri dish 

lids (50 mm x 13 mm) were placed into the soil and a plastic spatula was 

used to remove the lid and soil within. The soil was then inverted to allow 

the base of the dish to be inserted. Soils were stored dry and in the dark at 

room temperature (20ºC) until the experiment in October, 2009. Storage of 

this duration was expected to have little effect on BSC community 

composition (Campbell et al., 2009).  

Experimental Design 

The experiment was designed to simulate two sequential rainfall 

events. Incubation dishes were prepared using the method described in 

Chapter 2. Incubation dishes were constructed from the bottoms of 2 

plastic Petri dishes (50 mm x 13 mm). Approximately 20-25 small holes 
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were drilled into the base of one dish to allow soil solution to move from 

the first dish that held the soil into the second dish that served as a 

collection chamber. A sampling port was drilled into the side of the 

collection chamber. The dish with the perforated base was sealed to the 

top of the dish with the sampling port using 3 complete wraps of black 

electrical tape (Scotch® 3M Super33+). The sampling port was likewise 

sealed with electrical tape to prevent leaking. A WhatmanTM GF/F filter 

(55 mm diameter, nominal pore size 0.7 µm) was placed over the 

perforated base to prevent soil particles from entering the collection 

chamber.  

Twelve crusts were transferred to glass Petri dishes and autoclaved 

(121°C, 30 min) to serve as “killed controls”. Killed controls represent 

abiotic soils with mineralogy comparable to that of the crusted samples. I 

anticipated that autoclaving would cause cell lysis and release of 

intracellular material. As a result, I predicted that soil solution 

concentrations of biogenic elements would be higher in killed controls as 

compared to crusted samples. 

Twenty-four crusts and 12 killed controls were transferred to the 

incubation dishes and wetted with 15 mL deionized carbon-free (DI) water 

(18.2 MΩ·cm; NANOpure® DIamondTM UV, Barnstead International, 

Dubuque, IA). This same deionized water was used for all water additions 

and dilutions. Immediately after wetting, day 1 soil solutions were collected 
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through the sampling port using gentle vacuum suction applied with a 

60 mL syringe that drew the soil solution through the perforated surface 

and into the collection chamber. After collection, soils were moved to an 

environmental incubator maintained at 25°C and an irradiance (measured 

as photosynthetically active radiation) of 110 µE m-2 s-1 under fluorescent 

lights. This temperature is within the typical temperature range where the 

crusts were collected, and this irradiance level is sufficient for BSC 

photosynthesis (Garcia-Pichel & Belnap, 1996). On days 3 and 5, 10 mL 

of DI water were added to the soils to provide sufficient fluid for collection, 

and soil solution was collected as before. The water addition is necessary 

because the crusts will dry to the point where sample collection is 

impossible over the multi-day incubation. The volume and any 

concentration addition from this water was accounted for in subsequent 

calculations of actual soil solution concentrations. Days 1-5 represent 

week 1 of the experiment. After the day 5 soil solution collection, soils 

were removed from the incubator and allowed to dry in the dark for 5 days. 

On day 10, soils were transferred to clean incubation dishes with fresh 

GF/F filters and rewetted with 15 mL of one of three treatment waters. 

Treatments were as follows: 12 crusted samples and 6 killed controls were 

rewetted with DI water (+H2O soils), 6 crusted samples and 3 killed 

controls were rewetted with 5 mM ammonium nitrate (NH4NO3; i.e., +N 

soils), and 6 crusted samples and 3 killed controls were rewetted with 
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2 mM sodium molybdate (Na2MoO4•2H2O; i.e., +Mo soils). Immediately 

after rewetting, day 10 soil solutions were collected and the soils were 

placed in the incubator as before. On days 12 and 14, 10 mL of the same 

treatment water applied on day 10 were added to the soils and soil 

solutions were collected. Days 10-14 constitute week 2 of the experiment. 

Two milliliters of soil solution collected from each soil at each time 

point were filtered through 0.45 µm polysulfone membrane filters 

(Supor®, PES, Pall Corporation, Port Washington, NY) into acid washed 

polypropylene tubes and trace metals were analyzed within 8 weeks. On 

each collection day “water blanks” that were treatment water with no 

alterations were collected. Water blanks were collected before soil solution 

collection and again after every set of 12 soils were processed. Water 

blanks were analyzed alongside soil solutions, and they were used to 

correct for any element additions that resulted from the daily water 

supplements. 

Trace Metal Analysis 

Soil solutions and blanks were digested in concentrated nitric acid 

(HNO3) to dissolve precipitates and hydrogen peroxide to remove 

organics. After drying, samples were re-dissolved in 2% HNO3 and 

concentrations of elements were quantified by inductively coupled plasma 

mass spectrometry (ICP-MS; Thermo Scientific X Series). The instrument 

was calibrated using a multi-element ICP-MS standard, and instrumental 
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drift was corrected with a mixed internal standard containing Ge, Y, and 

In. Errors were defined as the standard deviation of triplicate injections for 

each sample. 

Data Processing 

The limit of detection (LOD) and limit of quantitation (LOQ) were 

calculated as 3 and 10 times the standard deviation of a low concentration 

standard, respectively. Measured concentrations below the LOD were set 

to zero, and concentrations between the LOD and the LOQ were set to the 

LOQ value for the particular element. Initial concentrations were corrected 

for the dilution that resulted from ICP-MS sample preparation according to 

Equation 1, and concentrations were converted from ppb to nM:  

Equation 1.  (Vfinal x Cfinal) ÷ Vinitial = Cinitial, 

where Vfinal = volume after digestion (mL), Cfinal = measured concentration 

(ppb), Vintial = volume collected from experimental soils (mL), and Cintial = 

concentration in the original soil solution (ppb). 

Any increase in concentration that resulted from the addition of 

treatment water at each collection time was accounted for by subtracting 

the quantity (nmol) of that element in the water blank from the quantity 

(nmol) in the sample or control. When soils started dry on days 1 and 10, 

the subtraction was done according to Equation 2. Here, the number of 

nanomoles of each element in the blank was calculated by multiplying the 

volume of water added by the concentration in the blank. This was then 
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subtracted from the number of nanomoles in the soil solution, calculated 

by multiplying the concentration measured in the soil solution by the 

volume of water added. In this case the volumes were identical since the 

soil started dry, but after being in contact with the soil, the concentration in 

the water changed. Therefore, it was possible to subtract what was in the 

water before addition to the soil. Finally, the nanomoles of a given element 

in the soil solution after blank subtraction were divided by the total volume 

to determine the concentration in the soil solution: 

Equation 2. ([soil solution]m x Vblank) – ([blank] x Vblank) = [soil solution]c 
          Vblank 

where [concentrations] are in nM, [soil solution]m is the concentration in 

the soil solution that was measured, Vblank is the volume of water, in L, that 

was originally added to the soil, and [soil solution]c is the concentration in 

the soil solution after subtraction of material in the added water.  

When soils were already wet (days 3 and 5, and days 12 and 14) the 

blank subtraction was performed according to Equation 3: 

Equation 3.  ([soil solution]m x V3) – ([blank] x V2) = [soil solution]c 
     V1 

where [concentrations] are in nM, [soil solution]m is the concentration 

measured in the soil solution, V1 = L of water in soil solution from previous 

addition(s), V2 = L of water added in current addition, V3 = total volume (L) 

in the soil solution after water addition, including water remaining in the 

soil from previous additions, and [soil solution]c is the concentration in the 
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soil solution before water addition. If the concentration of a particular 

element in the water blank was below detection, no subtraction was 

performed. When the blank subtraction resulted in a negative number the 

resulting sample or control concentration was set to zero. Error was 

propagated for each calculation using standard methods (Bevington & 

Robinson, 2002). All data processing was conducted using Microsoft 

Excel (Microsoft Corporation, Redmond, WA). 

Statistical Analysis 

Statistics were performed in SigmaPlot v11.0 (Systat Software Inc., 

Chicago, IL). P-values <0.10 are considered statistically significant. 

Linear regression analyses of concentration (nM) against time (h) were 

carried out for each element in each sample type for weeks 1 and 2, 

separately. For instance, Mg concentrations in crusted samples during 

week 1 were regressed separately from Mg concentrations in crusted 

samples during week 2.  

Week 1 concentrations of each element were then compared to week 

2 concentrations of the same element using a Wilcoxon Signed Rank 

Test. Comparisons were performed by soil type and treatment. For 

example, concentrations of Mg in crusted samples that received N in week 

2 were compared to concentrations of Mg in the same group of crusted 

samples from week 1.  
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Results 

Week 1 Trends 

Week 1 linear regression analyses were performed based on the 

treatment groups in week 2, even though all soils received water only 

during week 1. This allowed comparison of absolute concentrations and 

concentration changes between weeks 1 and 2. Tables 3-3a and 3-3b 

contain data for the crusted samples and killed controls of the +H2O 

experiment, respectively. Tables 3-3c and 3-3d contain data for the 

crusted samples and killed controls of the +N experiment, respectively and 

Tables 3-3e and 3-3f contain data for the crusted samples and killed 

controls of the +Mo experiment, respectively.  

Crusted Samples 

During week 1, concentrations of P (p < 0.001), K (p = 0.03), and Fe 

(p = 0.10) decreased, and V concentrations increased (p = 0.01) in the 

crusted samples of the +H2O treatment group (Table 3-3a). 

Concentrations of Ni (p = 0.01), Zn (p = 0.03), and As (p < 0.001) 

decreased in crusted samples of the +N treatment group (Table 3-3c). 

Concentrations of P (p = 0.02), K (p = 0.09), Mn (p = 0.06), and Zr 

(p = 0.07) decreased in crusted samples of the +Mo treatment group 

(Table 3-3e). All unspecified elements did not change significantly during 

week 1.
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Table 3-3a. Week 1 and week 2 linear regression results for concentration vs time in crusted samples of the +H2O 
treatment group. P-values ≤ 0.10 are considered significant and shown in bold. 
 

  Na Mg Al P K V Mn 
Week 1 Slope (nM h-1) 190864 -3765 211 -3958 -16889 65 22 
 Change None None None Decrease Decrease Increase None 
 R2 < 0.01 0.01 0.02 0.41 0.15 0.20 0.04 
 p-value 0.70 0.54 0.50 < 0.001 0.03 0.01 0.27 
         

Week 2 Slope (nM h-1) 9282000 95452 41404 13684 307282 1221 531 
 Change None Increase Increase Increase Increase None Increase 
 R2 0.01 0.16 0.08 0.12 0.15 0.08 0.18 
 p-value 0.64 0.02 0.11 0.06 0.03 0.12 0.02 

  Fe Ni Cu Zn As Zr Mo 
Week 1 Slope (nM h-1) -71 5 -4 -236 0 10 16 
 Change Decrease None None None None None None 
 R2 0.08 0.01 < 0.01 0.08 < 0.01 0.02 0.06 
 p-value 0.10 0.52 0.89 0.11 0.97 0.43 0.17 
         

Week 2 Slope (nM h-1) -560 15 316 1981 49 2 20 
 Change Decrease None Increase None None None None 
 R2 0.69 < 0.01 0.14 0.05 0.01 < 0.01 0.07 
 p-value < 0.001 0.86 0.04 0.20 0.64 0.75 0.13 
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Table 3-3b. Week 1 and week 2 linear regression results for concentration vs time in killed controls of the +H2O 
treatment group. P-values ≤ 0.10 are considered significant and shown in bold. 
 

  Na Mg Al P K V Mn 
Week 1 Slope (nM h-1) 1881906 26940 53 -21495 40346 -5 63 
 Change Increase None None Decrease None None None 
 R2 0.24 0.08 < 0.01 0.55 0.10 < 0.01 < 0.01 
 p-value 0.05 0.27 0.83 < 0.001 0.22 0.80 0.90 
         

Week 2 Slope (nM h-1) 5581984 57656 96939 74816 226684 1037 1024 
 Change None Increase None None None None None 
 R2 0.11 0.18 0.10 0.12 0.14 0.11 0.13 
 p-value 0.19 0.09 0.21 0.18 0.13 0.19 0.16 

  Fe Ni Cu Zn As Zr Mo 
Week 1 Slope (nM h-1) 692 58 -12 795 57 5 8 
 Change None None None None Increase None None 
 R2 0.12 0.07 < 0.01 0.06 0.25 0.01 0.02 
 p-value 0.18 0.32 0.96 0.35 0.04 0.75 0.60 
         

Week 2 Slope (nM h-1) -579 39 855 1219 8 -2 91 
 Change Decrease None None None None None Increase 
 R2 0.61 0.04 0.10 0.06 < 0.01 0.01 0.17 
 p-value < 0.001 0.47 0.21 0.34 0.90 0.71 0.10 
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Table 3-3c. Week 1 and week 2 linear regression results for concentration vs time in crusted samples of the +N 
treatment group. P-values ≤ 0.10 are considered significant and shown in bold.  
 

  Na Mg Al P K V Mn 
Week 1 Slope (nM h-1) -571740 -6761 -1155 -3289 -13988 30 -314 
 Change None None None None None None None 
 R2 < 0.01 0.01 < 0.01 0.05 0.01 0.09 < 0.01 
 p-value 0.78 0.66 0.95 0.41 0.74 0.23 0.95 
         

Week 2 Slope (nM h-1) 755569 0 -306 -1308 32680 -14 5 
 Change Increase None Decrease None None None None 
 R2 0.17 0.02 0.39 0.13 0.11 0.14 0.05 
 p-value 0.10 0.56 0.01 0.15 0.20 0.14 0.38 

  Fe Ni Cu Zn As Zr Mo 
Week 1 Slope (nM h-1) -224 -7 -52 -325 -6 9 7 
 Change None Decrease None Decrease Decrease None None 
 R2 < 0.01 0.38 < 0.01 0.28 0.68 0.08 0.05 
 p-value 0.93 0.01 0.79 0.03 < 0.001 0.28 0.39 
         

Week 2 Slope (nM h-1) -85 -24 -183 758 -7 1 5 
 Change None None None None None None None 
 R2 0.15 0.08 0.18 0.03 0.05 < 0.01 0.04 
 p-value 0.12 0.27 0.79 0.49 0.41 0.85 0.42 
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Table 3-3d. Week 1 and week 2 linear regression results for concentration vs time in killed controls of the +N treatment 
group. P-values ≤ 0.10 are considered significant and shown in bold.  
 

  Na Mg Al P K V Mn 
Week 1 Slope (nM h-1) -46455 32915 -163 -803783 47519 -39 -40 
 Change None None None None None None None 
 R2 <0.01 0.04 0.03 0.20 0.09 0.16 0.01 
 p-value 0.98 0.60 0.63 0.19 0.39 0.25 0.82 
         

Week 2 Slope (nM h-1) 222765 65880 -76 -1511 58544 -12 105 
 Change None None None None None None None 
 R2 < 0.01 < 0.01 0.28 < 0.01 < 0.01 < 0.01 0.01 
 p-value 0.99 0.96 0.14 0.96 0.98 0.98 0.79 

  Fe Ni Cu Zn As Zr Mo 
Week 1 Slope (nM h-1) 146 16 -57 -154 17 5 -7 
 Change None None None None None None None 
 R2 < 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01 0.01 
 p-value 0.89 0.91 0.83 0.77 0.81 0.85 0.77 
         

Week 2 Slope (nM h-1) 0.347 -11 -534 -842 31 1 -2 
 Change None None None None None None None 
 R2 0.04 < 0.01 0.03 0.04 < 0.01 < 0.01 < 0.01 
 p-value 0.62 0.94 0.65 0.62 0.96 0.89 0.99 
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Table 3-3e. Week 1 and week 2 linear regression results for concentration vs time in crusted samples of the +Mo 
treatment group. P-values ≤ 0.10 are considered significant and shown in bold.  
 

  Na Mg Al P K V Mn 
Week 1 Slope (nM h-1) 754793 -14630 220 -2440 -34458 21 -9 
 Change None None None Decrease Decrease None Decrease 
 R2 0.05 0.12 0.02 0.31 0.19 0.02 0.23 
 p-value 0.39 0.19 0.64 0.02 0.09 0.55 0.06 
         

Week 2 Slope (nM h-1) 17623904 203636 193407 38776 782722 3919 1512 
 Change None Increase Increase Increase Increase Increase Increase 
 R2 0.02 0.41 0.21 0.35 0.47 0.24 0.33 
 p-value 0.62 0.01 0.07 0.01 0.002 0.05 0.02 

  Fe Ni Cu Zn As Zr Mo 
Week 1 Slope (nM h-1) 58 5 -16 -279 5 -1 -5 
 Change None None None Decrease None Decrease None 
 R2 0.03 0.09 0.02 0.09 0.15 0.21 0.02 
 p-value 0.49 0.26 0.56 0.25 0.14 0.07 0.59 
         

Week 2 Slope (nM h-1) NMa -37 401 3706 NM -1 -1869 
 Change NM None None Increase NM Decrease None 
 R2 NM < 0.01 0.02 0.25 NM 0.23 < 0.01 
 p-value NM 0.84 0.60 0.04 NM 0.05 0.88 

 
aSome values were not measured (NM) due to instrument malfunction and lack of extra soil solution for repeat analysis.
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Table 3-3f. Week 1 and week 2 linear regression results for concentration vs time in killed controls of the +Mo 
treatment group. P-values ≤ 0.10 are considered significant and shown in bold.  
 

  Na Mg Al P K V Mn 
Week 1 Slope (nM h-1) 1466015 22317 -627 -28625 25865 17 197 
 Change None None Decrease Decrease None None None 
 R2 0.26 0.11 0.54 0.51 0.06 < 0.01 0.04 
 p-value 0.17 0.39 0.03 0.03 0.52 0.85 0.58 
         

Week 2 Slope (nM h-1) 29114529 331295 34995 248235 1264387 2063 4181 
 Change None None None Increase None None None 
 R2 0.03 0.11 0.18 0.44 0.21 0.22 0.20 
 p-value 0.66 0.34 0.23 0.04 0.18 0.18 0.20 

  Fe Ni Cu Zn As Zr Mo 
Week 1 Slope (nM h-1) 283 48 460 52 61 6 16 
 Change None None None None None None None 
 R2 0.02 0.04 0.03 < 0.01 0.10 0.02 0.02 
 p-value 0.73 0.61 0.68 0.95 0.41 0.73 0.72 
         

Week 2 Slope (nM h-1) NMa 644 3876 3336 NM 0 -63 
 Change NM None None None NM None Decrease 
 R2 NM 0.04 0.07 0.17 NM < 0.01 0.46 
 p-value NM 0.58 0.45 0.23 N 1.00 0.03 

 
aSome values were not measured (NM) due to instrument malfunction and lack of extra soil solution for repeat analysis. 
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Killed Controls 

In general, very few elements in the killed controls showed a 

statistically significant change in concentration over week 1. In the killed 

controls of the +H2O treatment group, P concentrations decreased 

(p < 0.001), and Na (p = 0.05) and As (p = 0.04) concentrations increased 

(Table 3-3b). No concentration changes were observed in killed controls of 

the +N treatment group (Table 3-3d). In the +Mo treatment group, only Al 

(p = 0.03) and P (p = 0.03) concentrations decreased and no elements 

increased (Table 3-3f). 

Week 2 Trends 

Crusted Samples 

With a second water addition in week 2, concentrations of Mg 

(p = 0.02), P (p = 0.06), K (p = 0.03), Mn (p = 0.02), and Cu (p = 0.04) 

increased in crusted samples of the +H2O treatment group (Table 3-3a). 

Concentrations of Fe decreased (p < 0.001) in the +H2O treatment (Table 

3-3a). In the +N treatment group, during week 2, only Na concentrations 

increased (p = 0.10) and only Al concentrations decreased (p = 0.01; 

Table 3-3c). In the +Mo treatment group concentrations of Mg (p = 0.01), 

Al (p = 0.07), P (p = 0.01), K (p = 0.002), V (p = 0.05), Mn (p = 0.02), and 

Zn (p = 0.04) increased in crusted samples, and no elements showed a 

decrease (Table 3-3e). 
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Killed Controls 

As in the week 1 killed controls, very few elements in the week 2 killed 

controls showed statistically significant concentration changes. In the 

+H2O treatment group, Fe concentrations decreased (p < 0.001), and Mg 

(p = 0.09) and Mo (p = 0.10) concentrations increased (Table 3-3b). No 

elemental concentrations changed in killed controls of the +N treatment 

group during week 2 (Table 3-3d). In the +Mo treatment group, Mo 

concentrations decreased (p = 0.03), and P concentrations increased 

(p = 0.04; Table 3-3f). 

Week 1 vs Week 2 

Changes in element concentrations from week 1 to week 2 for each of 

the three treatments are presented in Tables 3-4a, b, and c.  

Crusted Samples 

For crusted samples in the +H2O treatment group, Mo concentrations 

were higher during week 1 (p = 0.001; Table 3-4a). Concentrations of Al 

(p < 0.001), K (p = 0.01), V (p = 0.05), Mn (p = 0.02), Fe (p = 0.003), Cu 

(p = 0.07), and As (p < 0.001) were higher during week 2 (Table 3-4a). In 

the +N treatment group, Na (p = 0.02) and V (p = 0.03) concentrations 

were higher during week 1, and As concentrations were higher during 

week 2 (p = 0.01; Table 3-4b). For the +Mo treatment group, 

concentrations of Na (p = 0.01), Mg (p = 0.05), Al (p < 0.001), K (p = 0.04),  

V (p = 0.001), Mn (p < 0.001), Fe (p = 0.04), Cu (p = 0.002), As (p = 0.05),  
 
and Mo (p = 0.004) were higher during week 2 (Table 3-4c).  
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Table 3-4a. Results of the Wilcoxon Rank Sum test comparing week 1 
concentrations to week 2 concentrations in the +H2O treatment. 
Statistically significant p-values (< 0.10) are shown in bold. The week with 
the higher concentrations is indicated. 
 

  Na Mg Al P K V Mn 
Crusted Samples        

p-value 0.31 0.12 <0.001 0.20 0.01 0.05 0.02 
Week with higher 

concentrations 2 2 2 2 2 2 2 
        

Killed Controls        
p-value 0.15 0.03 0.02 0.86 0.64 0.08 0.76 

Week with higher 
concentrations 2 1 2 2 2 2 2 

 Fe Ni Cu Zn As Zr Mo 
Crusted Samples        

p-value 0.003 0.13 0.07 0.23 <0.001 0.90 0.001 
Week with higher 

concentrations 2 2 2 2 2 1 1 
        

Killed Controls        
p-value 0.62 0.38 0.78 0.25 0.41 0.21 0.31 

Week with higher 
concentrations 1 1 2 2 1 1 2 

 
 
Killed Controls 
 

As few elements exhibited statistically significant concentration 

changes in the killed controls, there were similarly few elements with 

statistically significant differences between week 1 and week 2. Mg 

concentrations were higher during week 1 in killed controls of the +H2O 

treatment group (p = 0.03; Table 3-4a), and concentrations of Al (p = 0.02) 

and V (p = 0.08) were higher during week 2 (Table 3-4a). For the +N 

treatment group, Al concentrations in killed controls were higher during  

 



 
94 

 
Table 3-4b. Results of the Wilcoxon Rank Sum test comparing week 1 
concentrations to week 2 concentrations in the +N treatment. Statistically 
significant p-values (< 0.10) are shown in bold. The week with the higher 
concentrations is indicated. 
 

  Na Mg Al P K V Mn 
Crusted Samples        

p-value 0.02 0.82 0.42 0.15 0.10 0.04 0.56 
Week with higher 

concentrations 1 2 1 1 2 1 1 
        

Killed Controls        
p-value 0.16 0.25 0.03 0.22 0.13 0.30 0.94 

Week with higher 
concentrations 2 2 1 1 2 2 2 

 Fe Ni Cu Zn As Zr Mo 
Crusted Samples        

p-value 0.38 0.31 0.13 0.21 0.01 0.91 0.68 
Week with higher 

concentrations 1 2 1 2 2 1 2 
        

Killed Controls        
p-value 1.00 0.69 0.57 0.38 0.36 0.22 0.13 

Week with higher 
concentrations 1 1 2 2 2 1 2 

 

week 1 (p = 0.01; Table 3-4b). In the +Mo treatment group, As 

concentrations were higher during week 2 (p = 0.03; Table 3-4c). 

Discussion 

Explanations for Changes in Concentrations During Week 1 and Week 2 

Changes in soil solution element concentrations provide clues to the 

processes that influence element distributions in physiologically active 

BSCs. I hypothesized that a concentration change observed in crusted 

samples, but not in killed controls, is diagnostic of a biologically-mediated 

process. The biologically mediated processes that occur in this system are  
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Table 3-4c. Results of the Wilcoxon Rank Sum test comparing week 1 
concentrations to week 2 concentrations in the +Mo treatment. Statistically 
significant p-values (< 0.10) are shown in bold. The week with the higher 
concentrations is indicated. 
 

  Na Mg Al P K V Mn 
Crusted Samples        

p-value 0.01 0.05 <0.001 0.63 0.04 0.001 <0.001 
Week with higher 

concentrations 2 2 2 2 2 2 2 
        

Killed Controls        
p-value 0.13 0.43 0.13 0.74 0.30 0.25 0.13 

Week with higher 
concentrations 2 2 2 2 2 2 2 

 Fe Ni Cu Zn As Zr Mo 
Crusted Samples        

p-value 0.04 0.53 0.002 0.12 0.05 0.88 0.004 
Week with higher 

concentrations 2 2 2 2 2 1 2 
        

Killed Controls        
p-value 0.84 0.58 0.13 0.43 0.03 0.91 0.41 

Week with higher 
concentrations 1 2 2 2 2 2 1 

 
uptake, biosorption, and solubilization. For instance, microbial uptake and 

biosorption cause soil solution concentrations to decrease. On the other 

hand, solubilization of elements by microbes causes soil solution 

concentrations to increase. Regardless of whether solubilization is direct 

or indirect, it still reflects a biological effect. In contrast, if a change occurs 

in both crusted samples and killed controls, it is most likely the result of an 

abiotic process. Abiotic processes that are likely to occur in this system 

are precipitation, dissolution, desorption, and adsorption; these strictly 

geochemical processes are generally redox- and pH-dependent. 

Precipitation and adsorption reactions cause soil solution concentrations 
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to decrease, while dissolution and desorption cause soil solution 

concentrations to increase. To summarize, changes affected by abiotic 

processes are likely to be observed in killed controls as well as in live 

crusts, while changes under the control of biological processes only occur 

in live crusts. Therefore, by comparing concentration changes in crusted 

samples and killed controls, it is possible to deduce which elements are 

influenced by microbial activity. This section assesses the probable 

causes of observed concentration changes, without accounting for 

differences among treatments. 

Evidence for Biological Processes 

My data demonstrate that soil solution concentrations of Al, K, V, Mn, 

Ni, Cu, Zn, As, and Zr are influenced by microbial processes. Some of 

these elements are subject to biological removal (uptake or biosorption), 

while others appear to be affected by biological solubilization. Specifically, 

Ni, Zn, As, and Zr all decreased during week 1 in crusted samples; Zr also 

decreased during week 2 (Figure 3-1a-d). These decreases are not 

Concentrations of Ni, Zn, As, and Zr do not decrease in any of the killed 

controls during week 1 or week 2. Therefore, I conclude that decreasing 

concentrations of Ni, Zn, As, and Zr are biological and the result of either 

microbial uptake or biosorption. Microbial uptake is concluded for Ni 

because Ni is needed in hydrogenase enzymes that convert H2 to 2H+  

 
 
 



 
97 

 
Figure 3-1. Elements with decreasing concentrations over time in soil crust 
incubations; the +N treatments are shown as squares (, ), the +Mo 
treatments are shown as triangles (, ). Panels are: Ni (a), Zn (b), As 
(c) , and Zr (d). Concentrations decreased significantly in crusted samples 
(, ), but not in killed controls (, ). Decreasing Ni (p = 0.01) and Zn 
(p = 0.03) concentrations were interpreted to result from microbial uptake. 
Decreasing As (p < 0.001) and Zr (Wk 1 p < 0.001; Wk 2 p = 0.05) 
concentrations were assumed to be the result of biosorption. When trends 
were stastically significant the regression lines are plotted. Error bars are 
based on triplicate ICP-MS injections and propagated error. Where error 
bars are not visible they are smaller than the symbols. 
 
during N2 fixation in BSCs (Tamagnini et al., 2002; Bothe et al., 2010). 

Microbial uptake is also presumed for Zn which is used in a variety of 

physiological processes (Vallee & Auld, 1990; Coleman, 1998). To our 

knowledge, Zr does not play any known physiological role, and while a 

physiological relevance for As has recently been suggested (Wolfe-Simon 

et al., 2011), no evidence exists for a biological As requirement or 

tolerance in BSCs. Therefore, the removal of As and Zr in live crusts is 

probably the result of either biosorption (Garnham et al., 1993; Chowdhury 
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& Mulligan, 2011; Kumar & Oomen, 2012) or the indirect effect of pH and 

redox changes caused by microbial activity. BSC activity can drive pH 

values close to 10 and create anoxic microenvironments (Garcia-Pichel & 

Belnap, 1996). Under reducing conditions, As exists as As(III), the 

adsorption of which increases with increasing pH (Adriano, 2001), and 

thus, As concentrations should decrease in the presence of actively 

metabolizing crusts. Under a wide range of pH conditions, Zr exists as 

Zr(OH)2 (Aja et al., 1995), and I expected Zr solubility, and therefore, soil 

solution concentrations, to decrease with increasing pH, similar to what 

occurs for Fe-hydroxide complexes (Brady & Weil, 2002).  

In contrast, Al, V, Cu, and Zn concentrations increased in some 

crusted samples (+H2O and +Mo; Figure 3-2a-d). That Zn concentrations 

increased in some samples (Figure 3-2d) and decreased in others (Figure 

3-1b), speaks to the variability in soil and crusts within our field site. 

Increasing Al, V, Cu, and Zn concentrations were not observed in any 

killed controls, and so I ruled out abiotic dissolution and desorption. 

Decreased microbial uptake would not result in increasing concentrations; 

rather, decreased uptake would likely cause concentrations to stabilize. 

Therefore, there are two reasonable explanations for the observed 

increase in Al, V, Cu, and Zn concentrations. The first is solubilization 

promoted by microbial production of organic acids (Drever & Stillings, 

1997; van Hees et al., 2000) and/or of siderophores (Kalinowski et al.,  
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Figure 3-2. Elements with increasing concentrations over time in soil crust 
incubations; the +H2O treatments are shown as circles (,), and the 
+Mo treatments are shown as triangles (, ). Al (a), V (b), Cu (c), and 
Zn (d) concentrations increased significantly in crusted samples (, ), 
but not in killed controls (, ). Increasing V and Zn concentrations 
(p = 0.01 & p = 0.04, respectively) are either the result of microbial 
solubilization or cellular export. Increasing Al concentrations (p = 0.04) are 
believed to result from cellular export. Increasing Cu concentrations 
(p = 0.04) are thought to be caused by microbial solubilization. Significant 
trends are shown by regression lines. Error bars are based on triplicate 
ICP-MS injections and propagated errors. Where error bars are not visible 
they are smaller than the symbols.observed in the +N (Ni, Zn, As) and 
+Mo (Zr) treatment groups. 
 
2000; Liermann et al., 2000; 2005). Siderophores are low molecular 

weight organic compounds that bacteria produce to increase element 

solubility and facilitate element uptake (Lankford, 1973; Neilands, 1973). 

Though most siderophores typically bind Fe, some are known to bind Al 

(Roy & Chakrabartty, 2000), V (Bellenger et al., 2008), Cu (McKnight and 

Morel, 1980; Kim et al., 2004; Bellenger et al., 2007), and Zn (Bellenger et 

 



 
100 

al., 2007). Crusts contain organisms that produce siderophores (see 

Chapters 5 & 6), so it is possible that metallophore production is 

responsible for the increasing Al, V, Cu, and Zn concentrations. Cu is 

absolutely required by BSC microbes for photosynthetic and respiratory  

electron transport (Lockau, 1981; Peschek et al., 2004; Bernroitner et al., 

2008) as well as for ammonium oxidation (Holmes et al., 1995; Zahn et al., 

1996; Ferguson, 1998). The size, concentrated charge, and single 

oxidation state of Zn make it a valuable element in a variety of biological 

processes (Vallee & Auld, 1990; Coleman, 1998). Vanadium can be used 

in haloperoxidases (Butler, 1998; Littlechild, 1999) and in the alternative 

vanadium-dependent form of nitrogenase found in some bacteria (Eady, 

1996); though we note, there is only indirect geochemical evidence that V 

is used in the latter within BSCs (see Chapter 2), and no evidence for the 

former. Although Al has no known physiological role, it could be 

solubilized serendipitously. It is logical, then, to assume the increases in 

soil solution Al, V, Cu, and Zn are due to active solubilization of Cu and Zn 

by siderophores, with the side-effect of increasing Al and V concentrations 

as well. 

The second possible explanation for increasing Al, V, Cu, and Zn 

concentrations is export from biomass. Though I had no reason to expect 

cell death and lysis under my experimental conditions since previous 

experiments showed continual nitrate uptake and nitrogen fixation over the 
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timescale of our experiment (see Chapters 2 and 4), it is possible that Al, 

V, Cu, and Zn are actively pumped out of microbial cells because they had 

reached toxic levels or they are no longer required. Average Al 

concentrations in the soil solution of crusts are ~5 µM, but can reach 

250 µM; this is well within range of toxic Al concentrations observed for 

N2-fixing soil and root nodule bacteria (reviewed in Piña & Cervantes, 

1996). Average soil solution V concentrations, on the other hand, were 

0.1 µM, and never exceed 0.5 µM. This is much lower that the 10 µM 

concentrations reported to be toxic for Azotobacter vinelandii fixing N2 with 

V-nitrogenase (Bellenger et al., 2011), although, this concentration does 

reach the 0.2-16.5 µM V level found to decrease photosynthesis in lakes 

(Nalewajko et al., 1995). Concentrations of Cu in the soil solution of 

crusted soils are generally less than ~0.5 µM, somewhat lower than the 

1 µM toxic concentrations reported for cyanobacteria and algae 

(Chakraborty et al., 2010). Average soil solution Zn concentrations were 

0.6 µM in crusts, which exceed the toxic levels (0.12 to 0.5 µM) reported 

by Paulsson et al. (2000) and Chakraborty et al. (2010). Cyanobacteria 

typically manage Zn toxicity by storing Zn in metallothioneins (Blindauer et 

al., 2002; Blindauer, 2008), but most bacteria deal with toxic levels of Zn 

levels by actively pumping Zn out of the cell (Nies, 2003). Therefore, 

increasing Zn concentrations may be the result of tightly regulated Zn 

export from bacterial cells (Hantke 2001; 2005). 
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I conclude that active export of Al resulting from toxicity is likely to be 

the primary cause of increasing Al concentrations, but that export of Cu is 

probably not the cause of its increased concentrations as Cu does not 

appear to exist at toxic concentrations within crusts. This further supports 

the interpretation that microbial solubilization is the cause of increasing Cu 

concentrations. The results are inconclusive for V and Zn as their 

concentrations just barely reach reported toxic levels, and so it is unclear 

whether solubilization or export is a more logical explanation for increasing 

V and Zn concentrations. 

The concentrations of K and Mn decreased during week 1 and 

increased during week 2 in crusted samples (+Mo), but not in any of the 

killed controls (Figure 3-3a-b). The change in slope suggests the balance 

of microbial processes shifted during week 2 from uptake to solubilization. 

I postulate that decreasing concentrations are the result of microbial 

uptake and that increasing concentrations are the result of solubilization 

for Mn, and cellular release for K. Mn is used in a multitude of 

physiological processes (Fraústo da Silva & Williams, 2001), but probably 

the most relevant in BSCs is the use of Mn in the oxygen-evolving 

complex of photosynthetic cyanobacteria (Umena et al., 2011). Therefore, 

microbial uptake of Mn is a logical explanation for decreasing Mn 

concentrations in crusted samples. When Mn concentrations increase 

during week 2, I assumed it was the result of Mn solubilization by  
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Figure 3-3. Potassium (a) and manganese (b) concentrations for crusted 
samples () and killed controls () in the +Mo experiment. Both 
elements decreased during week 1 and increased during week 2. 
Decreasing K concentrations (p = 0.09) were interpreted as microbial 
uptake, and increasing K concentrations (p = 0.002) were thought to result 
from cellular export. Decreasing Mn concentrations (p = 0.06) were 
interpreted to result from microbial uptake, and increasing Mn 
concentrations were thought to come from microbial solubilization 
(p = 0.02). Significant trends are shown by regression lines. Error bars are 
based on triplicate ICP-MS injections and propagated errors. Where error 
bars are not visible they are smaller than the symbols. 
 
chelators, such as siderophores that have been shown to bind Mn (Parker 

et al., 2004; Bellenger et al., 2007; Saal & Duckworth, 2010; Szabó & 

Farkas, 2011).  
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Bacteria use K for osmotic and pH balance as well as for regulation of 

enzymes and genes (Suelter, 1970; Booth, 1985; Epstein, 1986; 

Sutherland et al., 1986; Csonka & Hanson, 1991); cellular K 

concentrations are generally understood to be under the direct regulation 

of the bacterium (Epstein, 1986; Booth et al., 1999; Fraústo da Silva & 

Williams, 2001). Potassium binds weakly to organic compounds (Fraústo 

da Silva & Williams, 2001) so solubilization by chelation is not likely to be  

a dominant biological process influencing K mobility. Therefore, I believe 

that decreasing soil solution K concentrations is the result of microbial 

uptake, while increasing soil solution K concentrations are the result of 

active microbial export. Both processes are likely to occur as crusts 

engage in a range of metabolic processes. 

Evidence for Abiotic Processes 

When concentration changes were observed in killed controls I 

assumed that the changes were driven by abiotic processes. Increasing 

concentrations, such as those observed for Na, Mg, and P could be 

caused by dissolution and desorption reactions. Na and Mg are found in 

evaporite minerals such as salts and sulfates. With water addition, I 

expected these minerals to dissolve, resulting in increased soil solution Na 

and Mg concentrations, though this was not observed in all soils. In 

addition, water may compete with cations, like Na and Mg, for adsorption 

sites in clays, thus driving soil solution cation concentrations higher. 
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Phosphorus concentrations increased during week 2 in both the 

crusted samples and killed controls of the +Mo treatment group (Figure 

3-4a-b). Because P concentrations increased in killed controls, I initially 

assumed that other increases in P concentration were abiotic as well. 

However, the increase in killed controls was observed only in soils that 

received Mo (Figure 3-4b). Under the pH conditions of our soils, Mo exists 

primarily as the molybdate ion (MoO4
2-; Adriano, 2001), while P exists 

primarily as the very similar hydrogen phosphate ion (HPO4
2-; Brady & 

Weil, 2002). Molybdate added at 22 µM is high enough to compete with 

HPO4
2- for anion adsorption sites (Brady & Weil, 2002) and could result in 

increased P concentrations in the soil solution. If this is the case, 

increasing P concentrations in crusted samples that did not receive a Mo 

addition (Figure 3-4a) likely reflect biological solubilization as described 

above for other elements.  

In the absence of Mo addition to killed controls, P concentrations 

decreased, demonstrating the typical behavior of P in soils (Figure 3-4) 

where phosphate tends to form insoluble precipitates with Al- and Fe-

hydroxides, and can precipitate as insoluble Ca-phosphate minerals 

(Brady & Weil, 2002). This effect will be exacerbated with increasing pH 

(Brady & Weil, 2002), and pH has been shown to increase in 

photosynthetic crusts (Garcia-Pichel & Belnap, 1996); although, I did not 

observe changes in bulk pH during the incubations (data not shown). 
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Figure 3-4. Phosphorus concentrations in crusted samples (, ) and 
killed controls (, ) of the +H2O treatment (a) and the +Mo treatment 
(b). In the +H2O treatment, P decreased significantly during week 1 for 
both crusted samples (p < 0.001) and killed controls (p < 0.001), but 
increased significantly during week 2 in the crusted samples (p = 0.06) 
only. In the +Mo treatment, P decreased significantly during week 1 in 
both crusted samples (p = 0.02) and killed controls (p = 0.03), and 
increases significantly during week 2 in both crusted samples (p = 0.01) 
and killed controls (p = 0.04). Increasing P concentrations in the +Mo 
treatment group are interpreted to result from competition with molybdate 
(MoO4

2-) for adsorption sites. Since no Mo was added in the +H2O 
treatment group, increasing P concentrations in those samples is 
assumed to be caused by microbial solubilization. Significant trends are 
shown by regression lines. Error bars are based on triplicate ICP-MS 
injections and propagated errors. Where error bars are not visible they are 
smaller than the symbols. 
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Decreasing concentrations, like those found for Fe (Figure 3-5), are 

most likely controlled by precipitation and adsorption reactions. Fe forms 

highly insoluble oxide and hydroxide minerals (Brady & Weil, 2002); 

therefore, it is not surprising that concentrations of Fe decreased in some 

soils. Similar to Fe, Al concentrations decreased in killed controls (data not 

shown), which is the opposite pattern from the increasing Al 

concentrations described above that were attributed to microbial 

solubilization. Al also forms insoluble oxide and hyroxide minerals, 

especially at elevated pH (Brady & Weil, 2002). It is possible that the 

dominant processes controlling Al solubility vary depending on what 

microbial processes are active and whether or not siderophores are 

produced.  

 
Figure 3-5. Iron concentrations in the +H2O treatment for crusted samples 
(; p < 0.001) and killed controls (; p < 0.001). Decreasing Fe 
concentrations were interpreted to result from abiotic precipitation and/or 
adsorption reactions. Significant trends are shown by regression lines. 
Error bars are based on triplicate ICP-MS injections and propagated 
errors. Where error bars are not visible they are smaller than the symbols. 
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Effect of Nitrogen and Molybdenum Addition to Crusted Samples 

Not all of the concentration changes described above occurred in all 

treatment groups (i.e., +H2O, +N, +Mo). Therefore, it is possible that some 

patterns are related to the treatment addition. Here I compare week 2 

trends between treatment groups, and contrast pre- and post-treatment 

concentrations within treatment groups, to determine what elements were 

affected by N and Mo addition. All the concentration changes discussed 

below occurred in crusted samples during week 2, and are deemed to be 

biologically-mediated based on an evaluation of concentration changes in 

killed controls. 

In general, I expected that N addition (which stops N2-fixation) would 

cause increases in soil solution concentrations of those elements that are 

linked to N2-fixation, but which do not participate in other N-cycle 

processes (Mg, P, V, Mn, Ni, Zn), because lower amounts of these 

elements would be needed when N2-fixation was inactive. I demonstrated 

previously that addition of NH4NO3 decreased N2-fixation rates to very 

near zero (see Chapters 2 & 4). I also predicted that concentrations of 

elements used in N assimilation and ammonium oxidation (Fe, Cu, Mo) 

would decrease when N was added because higher amounts of these 

elements would be needed in order to process the added NH4NO3 (Table 

3-2). 
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With Mo addition, I anticipated decreases in concentrations of 

elements used directly for N2-fixation (Fe, Mo) as well as in those 

elements that indirectly support N2-fixation (Mg, P, Mn, Ni, Cu, Zn). 

Evidence exists for Mo-limitation of N2 fixation in BSCs, and Mo addition 

has been show to result in increased N2 fixation rates (see Chapter 4). 

With increased N2-fixation rates, the microbial need for other metals 

involved in N2-fixation would also increase, causing increased microbial 

uptake and subsequently, decreased soil solution concentrations. I 

expected that V would be an exception to this rule. Even if crust 

organisms possess the genes for V-nitrogenase, they will only express 

them in a situation of Mo-limitation (Jacobson et al., 1986; Joerger & 

Bishop, 1988). The addition of Mo would preclude the expression of V-

nitrogenase by providing sufficient Mo to allow production of Mo-

nitrogenase. Therefore, I expected soil solution V concentrations to 

stabilize (Table 3-2). 

I did not anticipate concentration changes for Na and K with either 

treatment because I thought the need for these elements would be the 

same regardless of N or Mo availability, nor did I predict changes in Al, As, 

or Zr concentrations because they lack biological function in BSCs (Table 

3-2).  

Many elements showed significant trends in concentration in crusted 

samples over the duration of the incubations (Tables 3-3a, c, e). 
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Therefore, it is not absolutely valid to use statistical comparisons, such as 

the Wilcoxon Rank Sum test, to make inferences about long term effects 

of treatments. However, comparing week 1 and week 2 concentrations 

using the Wilcoxon test was useful in evaluating the influence of my 

treatments within the timeframe of the experiment.  

Contrary to my hypothesis, Al concentrations increased when Mo was 

added (p = 0.07; Table 3-1e), but exhibited no change in concentration for 

the +H2O treatment groups (Table 3-1a), and decreased in the +N 

treatment (p =0.01; Table 3-1c). When week 2 Al concentrations were 

compared to week 1 Al concentrations, I found that week 2 concentrations 

were higher in +H2O and +Mo crusts (p < 0.001; Tables 3-4a-c, Figure 

3-6a), and that week 1 concentrations were higher in the +N treatment 

group (p = 0.03; Figure 3-6a, Table 3-4b). As discussed above, it is 

possibile that Al is inadvertantly solubilized by microbial metallophores 

released into the soil solution to obtain other elements specifically needed 

for physiological processes (see Chapters 5 & 6). When N is added, N2 

fixation stops (see Chapters 2 & 4), thus lowering elemental requirements. 

Metallophores are typically produced under element-limitation, so, I expect 

that decreased element need would also result in decreased metallophore 

production. Therefore, Al concentrations increase when Mo is added and 

show higher concentrations in crusts that were fixing N2 (+H2O, +Mo) 

because higher metallophore production in these soils led to solubilization  
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Figure 3-6. Average concentrations of Al (a), K (b), Mn (b) and Cu (d) in 
crusted samples. Colors denote treatments: +H2O (black), +Mo (grey), and 
+N (white). K (p = 0.01, 0.04); Mn (p = 0.02, <0.001) and Cu (p = 0.07, 
0.002) were all higher in week 2 of the +H2O (black) and +Mo (grey) 
treatments, respectively. Al was higher in week 2 of the +H2O treatment 
(p < 0.001). In the +N treatment, while Al concentrations were higher 
during week 1 (p = 0.03), K concentrations were higher during week 2 
(p = 0.10), and there were no differences between week 1 and week 2 for 
Mn and Cu. Lack of higher week 2 concentrations for Al, Mn, and Cu with 
N addition is presumed to result from decreased metallophore production 
when N2 fixation is inactive. 
 
of Al. The Al concentrations were lower when N was added because 

metallophore production was depressed as a result of decreased element 

need, and Al solubility was then dominated by abiotic reactions. 

K and Mn increased when H2O (p = 0.01, 0.02) and Mo (p = 0.04, 

<0.001) were added, but showed no trend when N was added (Tables 3-
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1a, c, e). Cu concentrations increased in +H2O crusted samples only. 

Likewise, in week 2, K, Mn, and Cu concentrations were higher in the H2O 

and +Mo treatments (Figure 3-6b-d). There was no difference between 

weeks 1 and 2 in the +N treatment, with the exception of K which had 

higher concentrations during week 2 (p = 0.10; Figure 3-6b). Higher K 

concentrations were interpreted to result from cellular export. It is possible 

that the addition of NH4NO3, altered the osmotic and/or charge balance 

within cells, thus changing the cycling of K. Increasing Mn and Cu 

concentrations were thought to be the consequence of solubilization, 

therefore, like Al, higher Mn and Cu concentrations in week 2 are 

consistent with persistent metallophore production when N2 fixation is 

active (+H2O, +Mo), and diminished metallophore production when N2 

fixation stops (+N).  

V concentrations increased in crusts that received the Mo addition, but 

did not change significantly in +H2O or +N crusts. Increasing V 

concentrations could be either the result of solubilization or cellular export. 

However, as described above, it is difficult to distinguish between the two 

processes based on the data available. 

Zn concentrations also increased only in +Mo crusts; however, there 

were no differences in Zn concentrations between week 1 and week 2 for 

any treatment group.  
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Zr concentrations decreased during week 2 when Mo was added, but 

Zr also decreased during week 1. Therefore, I conclude that decreasing Zr 

concentrations are not related to Mo addition; they are likely the result of 

removal processes (i.e., biosorption) that are active in crusts of the +Mo 

treatment group and inactive in other treatment groups presumably due to 

the natural variability in crusts. 

Summary & Implications 

The results of this study provide real-time evidence for microbial 

solubilization of solid-phase elements in Colorado Plateau BSCs. This 

supports the conclusions of Beraldi-Campesi et al. (2009), who found that 

Mn, Cu, and Zn were depleted in the solid-phase of crusted soils relative 

to proximate uncrusted soils. They interpreted the depletions to be the 

result of microbial mobilization of Mn, Cu, and Zn that left them 

susceptible to leaching. The current study found that, at least in some 

crusts and during some point during the incubations, Mn, Cu, and Zn 

concentrations increased, and microbial solubilization was a logical 

explanation for the trend. Although Mn concentrations did decrease during 

week 1, prolonged microbial activity in the +H2O and +Mo treatments 

eventually led to increasing Mn concentrations. Therefore, I concur that 

Mn, Cu, and Zn depletions measured in crusted samples by Beraldi-

Campesi et al. (2009) were the result of leaching after microbial activity 

mobilized these elements.  
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Beraldi-Campesi et al. (2009) also found that As and Zr were depleted 

in crusted soils, however, I did not observe evidence for microbial 

solubilization of As and Zr. Soil solution concentrations of As and Zr seem 

likely to have been influenced by biosorption over the course of our 

experiments; therefore our results for these elements do not reflect the 

patterns reported by Beraldi-Campesi et al. (2009). But, it is possible that 

over the longer timescales needed to influence the soil solid-phase these 

two elements could exhibit different patterns. 

If prolonged solubilization consistently results in increasing Mn, Cu, 

and Zn mobility that lead to depletions of Mn, Cu, and Zn in the soil solid-

phase, these depletions may serve as useful biomarkers of past BSC 

communities, as put forth by Beraldi-Campesi et al. (2009). Reliable 

biomarkers of soil microbial communities would be valuabe tools for 

studying the evolution of early terrestrial land colonization, and could also 

be used to evaluate the past existence of life elsewhere, such as on Mars.  

 Since BSCs are known to contain organisms that produce 

siderophores, low-molecular weight organic chelators that bind Fe and 

other metals with high affinity, we assume siderophore-production is the 

likely mechanism by which BSCs influence metal mobility (see 

Chapters 5 & 6). Soil organisms are also known to produce organic acids 

that increase the mobility of solid-phase elements (Drever & Stillings,  
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1997), and produce a characteristic pattern of dissolution that may be 

useful as signature of past biological activity (Neaman et al., 2005a, b).  

Finally, Mn and Zn have been implicated previously as limiting factors 

for the development of lichenized crusts (Bowker et al., 2005), however, 

further studies did not support this original finding (Bowker et al., 2008b). 

My results suggest that Mn and Zn concentrations are manipulated by 

dark crusts dominated by cyanobacteria, that represent an earlier 

successional stage of crust development. Therefore, although Bowker et 

al. (2008b) did not find evidence for Mn and Zn limitation in the more 

developed, lichenized crusts, Mn and Zn may be important factors in 

earlier stages of crust succession, such as the dark cyanobacterial crusts 

used in the current study. For this reason, Mn and Zn may have potential 

utility as fertilizers that could promote the growth and development of dark 

crusts. These elements could prove useful for efforts to increase crust 

cover and thereby decrease arid land degradation. 
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CHAPTER 4 
MOLYBDENUM LIMITS NITROGEN FIXATION IN BIOLOGICAL SOIL 

CRUSTS 

Abstract 

Biological soil crusts (BSCs) are critical components of many arid 

ecosystems. Not only do BSCs serve as ecosystem engineers providing 

carbon, nitrogen, and structure to soils, but they also play a vital role in 

arid land fertility even after the establishment of higher plants and animals. 

Nitrogen is often limiting in BSCs, despite the presence of cyanobacteria 

capable of nitrogen fixation. It has been shown in other ecosystems that 

nitrogen fixation is limited by additional nutrients such as phosphorus, iron, 

or molybdenum (Mo). In the current study, I found that Mo addition 

significantly increased nitrogen fixation rates, supporting my hypothesis 

that nitrogen fixation in BSCs of the Colorado Plateau is limited with 

respect to Mo. My results suggest that Mo fertilization of BSCs may be a 

viable conservation and restoration technique to facilitate the growth and 

development of BSCs and, thus, reduce the degradation of arid lands. 

Introduction 

Nitrogen (N) is a limiting factor for biological systems across multiple 

environments (Vitousek & Howarth, 1991; Vitousek et al., 2002; Galloway 

et al., 2004). While anthropogenic N is now a significant source for 

terrestrial N ecosystems, biological N2 fixation (BNF) is still the dominant 

source of bioavailable N to most ecosystems (Galloway et al., 2004). 
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Globally, BNF contributes almost 200 Tg of fixed N per year (Cleveland et 

al., 1999). However, in many ecosystems, BNF is restricted or limited by 

other resources such as water and light (Jones, 1977; Coxson & Kershaw, 

1983; Belnap, 2001), or phosphorus and trace metals like iron and 

molybdenum (Vitousek & Howarth, 1991; Berman-Frank et al., 2001; 

Sañudo-Wilhelmy et al., 2001; Mills et al., 2004; Zerkle et al., 2006; Glass 

et al., 2010). 

In arid ecosystems, like the Colorado Plateau, N is the second-most 

limiting factor after water (Schlesinger, 1996; Evan & Lange, 2001). 

Because wet and dry N deposition rates are very low in this area 

(~4 kg h-1 yr-1; West and Skujins, 1977), biological N2 fixation is the 

primary source of bioavailable N to the ecosystem (Rychert & Skujins, 

1974; Jeffries et al., 1992; Steppe et al., 1996; Belnap, 2002), providing up 

to 13-25 kg h-1 yr-1 (West & Skujins, 1977; Belnap, 2002). N2 fixation can 

be performed by a diversity of prokaryotes that possess genes for the 

enzyme nitrogenase, which catalyzes the conversion of atmospheric 

nitrogen gas (N2) to ammonium (NH4
+). The dominant N2-fixing organisms 

on the Colorado Plateau are cyanobacteria in biological soil crusts (BSCs; 

Belnap et al., 2001; Yeager et al., 2007), complex microbial consortia that 

construct vertically stratified biosedimentary structures in arid and semi-

arid environments (Belnap et al., 2001; Garcia-Pichel et al., 2001; 2003). It 

is the N2 fixation activity of cyanobacteria in BSCs, either as free-living 
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organisms or as symbionts within lichens, that provides bioavailable N and 

helps to creates a hospitable environment for life to thrive (Evans & 

Ehleringer, 1993; Belnap, 2002). 

Limitation of N2 fixation by other nutrients is common in many 

ecosystems (Vitousek & Howarth, 1991; Berman-Frank et al., 2001; 

Sañudo-Wilhelmy et al., 2001; Mills et al., 2004; Zerkle et al., 2006; Glass 

et al., 2010). This type of limitation is termed co-limitation, and occurs 

when the low availability of one nutrient provokes limitation with respect to 

another nutrient (Saito et al., 2008). Co-limitation of Mo and N has been 

observed in a variety of aquatic cyanobacteria, in which the activity of 

nitrogenase, N2 fixation rates, and growth of the organisms were 

dependent on Mo concentration (Fay & de Vasconcelos, 1974; ter Steeg 

et al., 1986; Zerkle et al., 2006; Glass et al., 2010). In these cases, higher 

Mo availability reduced the effects of N limitation. Mo limitation has also 

been observed in forest soils where the addition of Mo enhanced N2 

fixation activity (Silvester, 1989; Barron et al., 2009), although I note, 

these studies were conducted with heterotrophic N2-fixing bacteria and not 

with cyanobacterial soil crusts. To my knowledge, Mo-limitation in BSCs 

as a contributing factor to N-limitation has only been investigated in one 

study (Hartley & Schlesinger, 2002), and this work was conducted in the 

Chihuahuan Desert of New Mexico. In the current study I hypothesized 

that N2 fixation in BSCs of the Colorado Plateau is limited by Mo, and I 
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present experimental results showing that N2 fixation rates in BSCs 

increase with Mo addition. I chose to focus on Mo in this study because 

previous work showed that BSCs actively influence soil solution Mo 

concentrations (see Chapter 2); no such biologically-mediated changes in 

soil solution Fe concentrations were observed, so I did not investigate the 

presence of Fe-N co-limitation. 

The most common and efficient form of the nitrogenase enzyme 

requires 2 atoms of molybdenum (Mo) at its active site and more than 30 

atoms of iron (Fe) for electron transfer (Burgess & Lowe, 1996; Eady, 

1996; Howard & Rees, 1996; Berman-Frank et al., 2003). Two Mo-

independent versions of nitrogenase exist that use either vanadium (V) or 

additional iron (Fe) at the active site (Eady, 1996; Zhao et al., 2006); 

however, both forms are much less widespread than the Mo-dependent 

enzyme (Young, 1992; Zehr et al., 2003). All three versions of nitrogenase 

are produced by different, yet, closely related genes, and cyanobacteria 

typically possess only the genes for the Mo-nitrogenase (Young, 1992). 

The V-nitrogenase has been found in just three strains of freshwater 

Anabaena (Kentemich et al., 1988; Thiel, 1993; Boison et al., 2006); to 

date, no cyanobacteria have been discovered that have genes for the Fe-

nitrogenase. Roughly 80-90% of the N2 fixing community in biological soil 

crusts is made up of Nostoc species that have the Mo-nitrgoenase 

(Yeager et al., 2004; 2007). The putative existence of V-nitrogenase in 
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BSCs is based on indirect geochemical evidence (See Chapter 2); 

molecular biology techniques have been, as yet, unable to detect V-

nitrogenase genes in BSCs (Noonan, unpublished data). Therefore, it can 

be assumed that the majority of the N2 fixation that takes place in BSCs is 

dependent on the availability of Mo. 

The bioavailability of Mo is determined by its speciation, which in turn 

is controlled by the redox conditions and pH of the environment, as well as 

the presence of other elements (Adriano, 2001). Microenvironments of pH 

and redox conditions exist in active BSCs, with pH ranging from 7-10 and 

redox conditions varying between oxic and anoxic (Garcia-Pichel & 

Belnap, 1996). In the oxic microenvironments at all pH values reported, 

Mo will exist primarily as the molybdate ion (MoO4
2-). In the anoxic 

microenvironments, Mo will exist as molybdenum sulfides (MoS2; Adriano, 

2001). Mo is one of the least plentiful trace metals in soil (Wedepohl, 

1995; Alloway, 1995). Its low abundance is often exacerbated by its high 

solubility under oxic conditions that leaves it vulnerable to leaching (Reddy 

& Gloss, 1993) as well as its tendency to adsorb strongly to soil 

components like oxide minerals (Adriano, 2001). Adsorption of Mo to 

exchange sites in clays (Adriano, 2001) and organics (Wichard et al., 

2009) provides a mechanism of Mo retention that leaves it relatively 

bioavailable. Colorado Plateau soils are quite low in organics, with total 

organic carbon contents at less than 1% by weight (Beraldi-Campesi et 
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al., 2009). However, the soils do contain ~10% clay by weight (Noonan et 

al., unpublished data), so it is presumable that much of the bioavailable 

Mo in these soils is from the exchangeable pool. Crusts may access these 

exchangeable Mo stores through siderophore production.  

Siderophores are low molecular weight organic compounds produced 

by microbes to increase metal solubility and facilitate metal uptake. 

Sideophores have been shown to promote the dissolution of clay minerals, 

thus liberating adsorbed metals (Rosenberg & Maurice, 2003), and 

although most siderophore typically bind Fe, some microbes produce 

siderophores capable of binding Mo as well (Liermann et al., 2005; 

Bellenger et al., 2007). Crust organisms have been shown to produce 

siderophores, and it is possible that some of them have Mo-binding 

capabilities (see Chapters 4 & 5). Therefore, siderophore production is 

one mechanism by which crust microbes might access clay- and organic-

bound Mo. Abiotic processes in BSCs should also increase Mo availability 

because Mo adsorption to minerals and organics decreases with 

increasing pH (Goldberg & Forster, 1998; Adriano, 2001). Photosynthesis 

creates micro-zones of pH up to ~10 (Garcia-Pichel & Belnap, 1996), so 

Mo should be very soluble in these microenvironments. The average Mo 

concentration in the soil solution of BSCs is ~30 nM, reflecting its relative 

solubility and bioavailability in the crust system (See Chapter 2). Active N2 

fixation by BSCs has been measured in the field by multiple researchers 
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(Belnap, 2002; Johnson et al., 2005; Housman et al., 2006; Strauss et al., 

2012), so 30 nM Mo is obviously sufficient for crust microbes to fix N2. 

However, it is possible that with increased Mo availability, N2 fixation rates 

in BSCs could be amplified. 

Additional N fixation in BSCs could enhance the ability of crusts to 

provide other critical ecosystem services, such as fixed C input (Beymer & 

Klopatek, 1991; Evans & Lange, 2001; Garcia-Pichel, 2002) and erosion 

prevention (Campbell, 1979; Schulten, 1985; Belnap, 1993). Loss of BSC 

cover has been connected to arid land degradation (Isichei, 1990; Belnap 

et al., 1994; Belnap, 1995; Bowker et al., 2008a), a process that has 

serious ecological, political, and socioeconomical implications (Sheridan, 

1981; Puigdefábregas, 1998; Arnalds & Archer, 2000; Pimentel, 2000; 

Weibe, 2003). Conserving existing BSCs and increasing BSC cover is, 

therefore, paramount to preserving arid land fertility. However, little is 

known about the factors that control BSC growth and development 

(Belnap et al., 1994; Bowker et al., 2005; 2008b). Determining whether or 

not the BSC N-cycle is limited by other resources, like Mo, could provide 

valuable information that will help develop tools for BSC conservation and 

management.  
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Methods 

Crust Collection and Storage 

Twelve crusts were collected in May, 2009 at the Green Butte site 

(Strauss et al., 2012) located north of Moab, UT on the Colorado Plateau 

(N 38°42′56.2″, W 109°41′32.7″). Crusts with minimal lichen and moss 

cover were selected based on a visual assessment in order to target “dark 

crusts” that were dominated by cyanobacteria (Garcia-Pichel & Belnap, 

1996; Garcia-Pichel et al., 2001). Sampling was based on methods 

outlined in Garcia-Pichel et al. (2003). The soil surface was sprayed lightly 

with distilled water, plastic Petri dish lids (50 mm x 13 mm) were pressed 

into the soil, and crusts were collected by inserting a plastic spatula under 

the dish. Inversion of the soil allowed the bottom of the dish to be inserted. 

Soils were allowed to dry and stored at room temperature in the dark until 

the current study. Soils can be stored without affecting community 

composition under these conditions for up to 24 months (Campbell et al., 

2009).  

Experimental Design 

Crusts were fully wetted and allowed to dry once per week for the 3 

weeks preceding the study to allow the crusts to come out of dormancy 

since they had been in storage for ~2 years.  

At the beginning of the experiment, all crusts were wetted with 10 mL 

sterile, 18.2 MΩ·cm carbon-free water (NANOpure® DIamondTM UV, 
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Barnstead International, Dubuque, IA). Water was sterilized by 

autoclaving. Crusts were sealed in airtight containers constructed from 

polycarbonate Nalgene jars (125 mL) with rubber septa in the side and 

parafilm between the lid and the jar. Nitrogen fixation activity was 

measured with a modified acetylene reduction assay (Capone, 1993; 

Jeffries et al., 1992; Berman-Frank et al., 2007). Nitrogenase converts 

nitrogen gas (N≡N) to NH4; the enzyme will also reduce the triple bond in 

acetylene (C≡C) to form ethylene (H2C=CH2). Therefore, monitoring 

ethylene production provides a proxy for N2 fixation. Briefly, 33 mL of air 

was removed from the chamber with a 60 mL syringe, 33 mL of acetylene 

was added (~20% headspace volume; Berman-Frank et al., 2007), and 

ethylene production was monitored by gas chromatography. Immediately 

after acetylene addition, 1 mL of headspace gas was collected in a 3 mL 

syringe for a 0 h timepoint. Crusts were incubated at 32 ± 2°C under 

fluorescent lights (irradiance =120 µE m-2 s-1). This temperature was 

similar to summertime temperatures observed at the field site and the 

luminosity is sufficient to allow crust cyanobacteria to photosynthesize 

(Garcia-Pichel & Belnap, 1996). Headspace aliquots (1 mL) were taken 

approximately 3 times a day for 2 days to establish pre-treatment ethylene 

production rates.  

Once ethylene was detected at 4 or more time points, 5 mL of 

treatment water were added. There were two treatments: +H2O and +Mo. 
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The +H2O treatment (sterile, 18 MΩ·cm water) was added to half the 

crusts (#1-6), and the +Mo treatment (sterile, 2000 nM NaMoO4·2H2O in 

18 MΩ·cm water) was added to half the crusts (#7-12). The Mo 

concentration was chosen based on published non-limiting Mo 

concentrations previously used for N2-fixing freshwater and coastal 

cyanobacteria (Glass et al., 2010). 

After treatment addition, headspace samples were collected 3 times a 

day for 2 more days to determine post-treatment ethylene production 

rates.  

Ethylene and acetylene were determined using a Hewlett-Packard 

5890 Series II Gas Chromatograph (Injection temp: 80ºC) with a thermal 

ionization detector (200ºC) and a 6' x 1/8" SS Porapak N 80/100 column 

(Ohio Valley Specialty Chemical, Marietta, OH) with helium as a carrier 

gas (14 mL min-1). Acetylene and ethylene were easily distinguished from 

one another with retention times of 3.8 and 2.4 min, respectively. The limit 

of detection (LOD) for ethylene was a peak area of 65, corresponding to 3 

times the standard deviation of a low concentration standard. Values 

below the LOD were set to zero. Ethylene peak areas above the LOD 

were converted to nanomoles using an eight-point calibration curve. Final 

ethylene concentrations were normalized to soil surface area to yield final 

concentrations as nmol ethylene per square centimeter of crust 

(nmol cm-2). 
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Statistical Analysis 

Pre-treatment and post-treatment ethylene values (nmol cm-2) were 

plotted against time (h) for individual crusts. A linear regression analysis 

was performed to obtain separate pre- and post-treatment slopes, R2 

values, and slope p-values for each individual crust. The slopes 

correspond to the pre- or post-treatment areal ethylene production rates 

(nmol cm-2 h-1). 

Pre-treatment rates from each treatment group were compared to one 

another using a Mann-Whitney Rank Sum Test to verify that all crusts had 

relatively similar rates before treatment water was added. Post-treatment 

rates from each treatment group (+H2O, +Mo) were compared to pre-

treatment rates for the same crusts using a Wilcoxon Signed Rank Test.  

All statistical analyses were performed in SigmaPlot v11.0 (Systat 

Software Inc., Chicago, IL). Results are considered statistically significant 

for p < 0.10, and significant values are shown in bold in all tables and 

figures. 

Results 

Pre-Treatment Rate Comparison 

There was no statistically significant difference between the pre-

treatment ethylene production rates of the +H2O and +Mo treatment 

groups (p = 0.24; Table 4-1). 
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Table 4-1. Results of comparison tests showing what comparison was 
done, the test used, the p-value, and interpretation. Significant values 
(p < 0.10) are highlighted in bold. 
 

Comparison Test 
Performed p-value Interpretation 

+H2O pre-treatment 
rates vs +Mo pre-
treatment rates 

Mann-
Whitney 0.24 No statistical 

difference 

+H2O pre-treatment 
rates vs +H2O post-

treatment rates 
Wilcoxon 0.69 No statistical 

difference 

+Mo pre-treatment 
rates vs +Mo post-

treatment rates 
Wilcoxon 0.03 Post-treatment 

rates higher 

 
Water Treatment 

 
Pre-treatment rates for the +H2O soils ranged from 1.08 to 

3.34 nmol cm-2 h-1 and post-treatment rates ranged from 0.28 to 

3.34 nmol cm-2 h-1 (Figure 4-1a, Table 4-2). Four of the six crusts had 

significant pre-treatment rates, and five of the six crusts had significant 

post-treatment rates (p < 0.10, Table 4-2). All but one pre-treatment and 

one post-treatment rate, had R2 values greater than 0.75, indicating a 

strong correlation between time and ethylene production (Table 4-2). 

When pre- and post-treatment rates for the water only treatment were 

compared, there was no significant difference (p = 0.69; Table 4-1). 

Mo Treatment 

For the +Mo soils, pre-treatment rates ranged from 0.28 to 

3.07 nmol cm-2 h-1, while post-treatment rates ranged from 1.48  
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Figure 4-1. Area normalized ethylene production (nmol cm-2) as a function 
of time. Panel (a) shows the results for the crusts that received the +H2O 
treatment (crusts 1-6, open symbols), and panel (b) shows the results for 
the +Mo treatment (crusts 7-12, solid symbols). Water was added to all 
crusts at 0 h, and ethylene production was monitored for 36 h (pre-
treatment rates). Treatment water (+H2O or +Mo) was added at 40 h 
(indicated by the vertical lines), and ethylene production was measured for 
an additional 48 h (post-treatment rates). Ethylene production did not 
change after the +H2O treatment (p = 0.69), but ethylene production 
increased significantly after the Mo addition (p = 0.03). 
 
to 7.82 nmol cm-2 h-1 (Figure 4-1b, Table 4-1). Only two of the pre-

treatment rates were significant (crusts #9 and #11); four post-treatment 

rates were significant (p < 0.10, Table 4-1). The R2 values were in general, 
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greater than 0.80 except for two pre-treatment rates and three post-

treatment rates. All R2 values for the +Mo treatment were above 0.35, 

which still points to a strong correlation between time and ethylene 

production (Table 4-1). After Mo addition, post-treatment rates were 

significantly higher than pre-treatment rates (p = 0.03, Table 4-2). 

Discussion 

A process (in this case, N2 fixation) is limited by a particular nutrient (in 

this case, Mo), if addition of that nutrient results in an increase in the 

process rate (Gibson, 1971). With the addition of Mo, ethylene production 

rates, and therefore, N2 fixation rates, increased significantly at the 97% 

confidence level (p = 0.03, Table 4-2). Since addition of Mo resulted in 

increased N2 fixation rates, we conclude that N2 fixation in biological soil 

crusts from the Colorado Plateau is limited with respect to Mo.  

It is difficult to use ethylene production rates to calculate exact N2 

fixation rates, because the ethylene-to-NH4
+ conversion factor varies 

greatly among organisms and environments (see review in Belnap, 2001). 

However, it is valid to assume that increased ethylene production rates 

are caused by increased nitrogenase activity and, therefore reflect 

increased N2 fixation rates. 

The lack of statistically significant differences between pre-treatment 

rates of the two treatment groups (p = 0.24; Table 4-2) demonstrated that 

all crusts were in a similar physiological state prior to treatment water  
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Table 4-2. Results of linear regression ethylene production (nmol cm-2) vs 
time for pre- and post-treatment incubations. Slopes and slope standard 
error, p-value, and R2 are reported. P-values < 0.10 indicate slopes that 
are statistically different from zero and represent a significant change over 
time (bold). Slopes are ethylene production rates (nmol cm-2 h-1). After 
40 h of incubation, crusts 1-6 received the +H2O treatment, and crusts 7-
12 received the +Mo treatment. Significant results are highlighted in bold. 
 

aThe linear regression analysis reported the slope standard error.  
 

 

 Pre-treatment Post-treatment 

Sample 
Slope  

(nmol cm-2 h-1) 
Std 
Erra p-value R2 

Slope  
(nmol cm-2 h-1) 

Std 
Err p-value R2 

+H2O         

1 1.17 0.32 0.07 0.87 2.84 0.76 0.02 0.78 

2 2.59 0.44 0.03 0.94 2.20 0.26 <0.001 0.95 

3 2.54 0.92 0.22 0.88 0.28 0.30 0.40 0.18 

4 1.08 0.98 0.47 0.55 1.36 0.26 0.01 0.88 

5 2.07 0.26 0.02 0.97 3.34 0.74 0.01 0.84 

6 3.34 0.23 0.005 0.99 1.64 0.41 0.02 080 

+Mo         

7 1.21 0.43 0.11 0.80 4.21 0.97 0.01 0.82 

8 1.15 0.65 0.22 0.61 1.48 0.99 0.21 0.36 

9 3.07 0.44 0.02 0.96 7.82 1.36 0.005 0.89 

10 0.47 0.43 0.39 0.37 4.13 0.64 0.003 0.91 

11 0.28 0.09 0.09 0.82 1.67 0.90 0.14 0.46 

12 1.75 1.48 0.36 0.41 2.42 0.98 0.07 0.60 
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addition. Ethylene production rates did not change in crusts that received 

the +H2O treatment (p = 0.69; Table 4-2), confirming that water addition 

alone was insufficient to influence nitrogenase activity in these crusts. It 

was important to verify this fact to show that changes resulting from Mo 

addition were triggered by the metal, and not by rewetting. Additionally, 

the results of the +H2O treatment established that prolonged exposure to 

acetylene did not have a detrimental effect on N2 fixation rates as rates 

were constant over the 4 days of incubation. Finally, crusts are quite 

heterogeneous, and the lower N2 fixation rates in some crusts likely reflect 

the variable amounts of nitrate, ammonium, and Mo present in individual 

crusts (see Chapters 2 & 3). The range in observed N2 fixation rates are of 

course due, in part, to the ambient N and Mo concentrations in the soil. 

Previous work has demonstrated Mo-limitation of N2 fixation in aquatic 

cyanobacteria and in soil heterotrophic bacteria. In pure culture studies of 

cyanobacteria, Mo concentrations of 10 nM or less caused decreased 

nitrogenase activity, N2 fixation rates, and growth (Fay & de Vasconcelos, 

1974; ter Steeg et al., 1986; Zerkle et al., 2006; Glass et al., 2010). In both 

lab and field studies, increased Mo concentrations resulted in increased 

nitrogenase activity (Fay & de Vasconcelos, 1974; ter Steeg et al., 1986; 

Silvester, 1989; Zerkle et al., 2006; Barron et al., 2009; Glass et al., 2010). 

Mo limitation was also shown to result in symptoms of N-starvation (Fay &  
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de Vasconcelos, 1974), indicating that low Mo concentrations can result in 

co-limitation with respect to N (Glass et al., 2010).  

The average crust Mo concentration was ~30 nM, however, the 

median concentration was only ~12 nM, and it was not uncommon to 

measure Mo concentrations below our detection limit (see Chapters 

2 and 3). This reflects the patchiness in Mo availability created by 

differences in soil Mo contents, pH, redox potential, and the abundance of 

other elements over small spatial scales (Adriano, 2001). While the Mo 

concentration required to induce Mo and N co-limitation varies by 

organism, less than 10 nM Mo was shown to reduce nitrogenase activity in 

freshwater and coastal Nostoc species (Glass et al., 2010) that are closely 

related to the dominant crust N2-fixers. Therefore, concentrations at or 

below 12 nM are definitely approaching the point at which they may limit 

crust N2-fixation ability. Further studies with different Mo concentrations 

would help to elucidate how much Mo is required to achieve maximum 

fixation rates in crusts. 

If, as this study shows, Mo limits N2 fixation in BSCs, Mo may serve as 

an appropriate fertilizer to increase arid land fertility in some areas. Mo 

application has been shown to increase nitrogenase activity in temperate 

and tropical forest soils (Silvester, 1989; Barron et al., 2009), and I have 

shown that under laboratory conditions, supplemental Mo increases N2 

fixation rates in Colorado Plateau BSCs. Therefore, it is reasonable to 
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infer that Mo fertilization in the field could enhance N2 fixation on the 

Colorado Plateau, and possibly elsewhere. Increasing bioavailable N 

could improve BSC growth and development, making it possible to expand 

BSC coverage. Furthermore, because BSCs are net N-exporters (Johnson 

et al., 2007), increasing BSC N2 fixation would provide additional N to the 

ecosystem as a whole. This increased N availability would benefit soil 

ecosystems and higher plants. Together, increasing BSC and plant cover 

could help to mitigate arid land degradation (Evans & Ehleringer, 1993; 

Bowker et al., 2005; Byers et al., 2006; Bowker, 2007). 

Using estimates of soil characteristics and published values of cellular 

Mo contents it is possible to perform a back-of-the-envelope calculation to 

determine how much Mo would be required to double crust cover at my 

field site. Using the density of quartz (2.65 g cm-2), the depth of peak 

cyanobacterial abundance (2 mm; Garcia-Pichel et al., 2003), the weight, 

and total organic carbon (TOC) content of the soil (~0.65%), combined 

with the following assumptions: that microbial biomass is about 2 times 

TOC (Madigan et al., 2003), that Nostoc species, the dominant N2 fixers, 

make up 0.8% of the community (Potrafka et al., unpublished data), and 

that Mo-to-C ratios in Nostoc ranged from 0.9-2.3 µmol Mo per mol C 

(Glass et al., 2010), I calculated there is approximately 0.02-0.05 µmol Mo 

in one square meter of 2 mm deep crust. Therefore, it would take ~20-

50 mmol Mo to fertilize 1 km2 of crust. I realize that this is a very rough 
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estimate, and it assumes that Nostoc species are the only organisms 

fixing N2 in the crusts, which may not be the case. However, it does 

provide an idea of how much Mo would be needed to double Nostoc 

biomass which would serve to double crust cover or, perhaps, to develop 

an equivalent amount of new crust cover in a disturbed area. 

Crusts are susceptible to a variety of disturbances, such as pollution 

and mechanical destruction, that reduce crust species diversity, biomass 

content, and extent of cover (Belnap & Eldridge, 2001). Many 

disturbances can lead to decreased N2 fixation activity (Terry & Burns, 

1987; Jeffries et al., 1992; Evans & Belnap, 1999), and this results in 

serious negative effects for ecosystems that rely on crusts for bioavailable 

N (Evans & Ehleringer, 1993). Recovery times are estimated to be 

anywhere from a few to a few thousand years and depend on a variety of 

factors, including the type and severity of the disturbance, the soil 

characteristics, and the colonizing organisms (Belnap & Eldridge, 2001). 

N2-fixing cyanobacteria typically appear during the second phase of 

colonization after large filamentous cyanobacteria like Microcoleus 

species have stabilized the soil (Belnap & Gardner, 1993; Belnap, 2002; 

Redfield et al., 2002). Inoculation of disturbed surfaces with cyanobacteria 

and lichens has had some success in boosting recovery rates (St. Clair et 

al., 1986; Belnap, 1993; Buttars et al., 1998; Xiao et al., 2011), however 

the influence of fertilization on crust recovery and nitrogenase activity has 
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been inconsistent (Davidson et al., 2002; Hartley & Schlesinger, 2002; 

Maestre et al., 2006). Restoration efficacy depends strongly on specific 

site characteristics (Bowker, 2007; Bowker & Belnap 2008), and so it is 

vital to know whether or not Mo addition could increase BSC recovery in 

different locations. 

Emphasis on BSC recovery is very important for the restoration of arid 

lands, especially because it may speed the recovery of the entire 

ecosystem (Bowker, 2007). Because BSCs serve as effective ecosystem 

engineers (Bowker et al., 2006; Byers et al., 2006; Bowker, 2007), they 

may facilitate restoration (Byers et al., 2006), and so it is important to 

know what factors influence their growth and development (Bowker et al., 

2005). The results of the current study indicate that, in some areas at 

least, crust N2 fixation is limited by Mo, which may lead to co-limitation 

with respect to N. Similar investigations in other sites are necessary to 

determine the extent of Mo-N co-limitation in crusts, and to establish 

where Mo fertilization may be a suitable restoration technique. 

References 

Adriano, D.C. 2001. Trace elements in terrestrial environments: 
Biogeochemistry, bioavailability, and risks of metals. New York: 
Springer-Verlag. 

 
Alloway, B.J. 1995. Heavy metals in soils. London, UK: Blackie Academic 

& Professional. 
 
Arnalds, O. and S. Archer. 2000. Introduction. In Rangeland 

desertification, ed. O. Arnalds and S. Archer:1-4. Dordrecht: Kluwer 
Academic Publishers. 

 



 
146 

Barron, A.R., N. Wurzburger, J.P. Bellenger, S.J. Wright, A.M.L. Kraepiel, 
and L.O. Hedin. 2009. Molybdenum limitation of asymbiotic 
nitrogen fixation in tropical forest soils. Nature Geoscience 2: 42-
45. 

 
Bellenger, J.P., F. Arnaud-Neu, Z. Asfari, S.C.B. Myneni, E.I. Stiefel, and 

A.M.L. Kraepiel. 2007. Complexation of oxoanions and cationic 
metals by the biscatecholate siderophore azotochelin. Journal of 
Biological Inorganic Chemistry 12: 367-376. 

 
Belnap, J. 1993. Recovery rates of cryptobiotic crusts: Inoculant use and 

assessment methods. Great Basin Naturalist 53: 89-95. 
 
________. 1995. Surface disturbances: Their role in accelerating 

desertification. Environmental Monitoring and Assessment 37, no. 
1-3: 39-57. 

 
________. 2001. Factors influencing nitrogen fixation and nitrogen release 

in biological soil crusts. In Biological soil crusts: Structure, function, 
and management, ed. J. Belnap and O.L. Lange:241-261. Berlin 
Heidelberg New York: Springer. 

 
________. 2002. Nitrogen fixation in biological soil crusts from southeast 

Utah, USA. Biol Fertil Soils 35: 128-135. 
 
Belnap, J. and D. Eldridge. 2001. Disturbance and recovery of biological 

soil crusts. In Biological soil crusts: Structure, function, and 
management, ed. J. Belnap and O.L. Lange: 503. Berlin: Springer. 

 
Belnap, J. and J.S. Gardner. 1993. Soil microstructure in soils of the 

Colorado Plateau: The role of the cyanobacterium Microcoleus 
vaginatus. Great Basin Naturalist 53: 40-47. 

 
Belnap, J., K.T. Harper, and S.D. Warren. 1994. Surface disturbance of 

cryptobiotic soil crusts: Nitrogenase activity, chlorophyll content, 
and chlorophyll degradation. Arid Soil Research and Rehabilitation 
8: 1-8. 

 
Belnap, J., J.H. Kaltenecker, R. Rosentreter, J. Williams, S. Leonard, and 

D. Eldridge. 2001. Biological soil crusts: Ecology and management, 
ed. United States Department of the Interior Bureau of Land 
Management, Technical Reference 1730-2. 

 
 
 



 
147 

Beraldi-Campesi, H., H.E. Hartnett, A. Anbar, G.W. Gordon, and F. 
Garcia-Pichel. 2009. Effect of biological soil crusts on soil elemental 
concentrations: Implications for biogeochemistry and as traceable 
biosignatures of ancient life on land. Geobiology 7, no. 3: 348-359. 

 
Berman-Frank, I., J.T. Cullen, Y. Shaked, R.M. Sherrell, and P.G. 

Falkowski. 2001. Iron availability, cellular iron quotas, and nitrogen 
fixation in trichodesmium. Limnology and Oceanography 46, no. 6: 
1249-1260. 

 
Berman-Frank, I., P. Lundgren, and P.G. Falkowski. 2003. Nitrogen 

fixation and photosynthetic oxygen evolution in cyanobacteria. 
Research in Microbiology 154: 157-164. 

 
Berman-Frank, I., A. Quigg, Z.V. Finkel, A.J. Irwin, and L. Haramaty. 2007. 

Nitrogen-fixation strategies and Fe requirements in cyanobacteria. 
Limnology and Oceanography 52, no. 5: 2260-2269. 

 
Beymer, R.J. and J.M. Klopatek. 1991. Potential contribution of carbon by 

microphytic crusts in pinyon-juniper woodlands. Arid Soil Research 
and Rehabilitation 5: 187-198. 

 
Boison, G., C. Steingen, L.J. Stal, and H. Bothe. 2006. The rice field 

cyanobacteria Anabaena azotica and Anabaena sp. Ch1 express 
vanadium-dependent nitrogenase. Archives of Microbiology 186: 
367-376. 

 
Bowker, M.A. 2007. Biological soil crust rehabilitation in theory and 

practice: An underexploited opportunity. Restoration Ecology 15, 
no. 1: 13-23. 

 
Bowker, M.A. and J. Belnap. 2008. A simple classification of soil types as 

habitats of biological soil crusts on the Colorado Plateau, USA. 
Journal of Vegetation Science 19, no. 6: 831-840. 

 
Bowker, M.A., J. Belnap, V.B. Chaudhary, and N.C. Johnson. 2008a. 

Revisiting classic water erosion models in drylands: The strong 
impact of biological soil crusts. Soil Biology and Biochemistry 40: 
2309-2316. 

 
Bowker, M.A., J. Belnap, D.W. Davidson, and S.L. Phillips. 2005. 

Evidence for micronutrient limitation of biological soil crusts: 
Importance to arid-lands restoration. Ecological Applications 15, no. 
6: 1941-1951. 

 



 
148 

Bowker, M.A., J. Belnap, and M.E. Miller. 2006. Spatial modeling of 
biological soil crusts to support rangeland assessment and 
monitoring. Rangeland Ecology and Management 59: 519-529. 

 
Bowker, M.A., G.W. Koch, J. Belnap, and N.C. Johnson. 2008b. Nutrient 

availability affects pigment production but not growth in lichens of 
biological soil crusts. Soil Biology and Biochemistry 40: 2819-2826. 

 
Burgess, B.K. and D.J. Lowe. 1996. Mechanism of molybdenum 

nitrogenase. Chemical Reviews 96: 2983-3011. 
 
Buttars, S.M., L.L. St. Clair, J.R. Johansen, J.C. Sray, M.C. Payne, B.L. 

Webb, R.E. Terry, B.K. Pendleton, and S.D. Warren. 1998. 
Pelletized cyanobacterial soil amendments: Laboratory testing for 
survival, escapability, and nitrogen fixation. Arid Soil Research and 
Rehabilitation 12, no. 2: 165-178. 

 
Byers, J.E., K. Cuddington, C.G. Jones, T.S. Talley, A. Hastings, J.G. 

Lambrinos, J.A. Crooks, and W.G. Wilson. 2006. Using ecosystem 
engineers to restore ecological systems. Trends in Ecology and 
Evolution 21, no. 9: 493-500. 

 
Campbell, J.H., J.S. Clark, and J.C. Zak. 2009. PCR-DGGE comparison of 

bacterial community structure in fresh and archived soils sampled 
along a chihuahuan desert elevational gradient. Microbial Ecology 
57: 261-266. 

 
Campbell, S.E. 1979. Soil stabilization by a prokaryotic desert crust: 

Implications for precambrian land biota. Origins of Life 9: 335-348. 
 
Capone, D.G. 1993. Determination of nitrogenase activity in aquatic 

samples using the acetylene reduction procedure. In Handbook of 
methods in aquatic microbial ecology, ed. P.F. Kemp, B.F. Sherr, 
E.B. Sherr and J.J. Cole: 621-631. New York: CRC Press LLC. 

 
Cleveland, C.C., A.R. Townsend, D.S. Schimel, H. Fisher, R.W. Howarth, 

L.O. Hedin, S.S. Perakis, E.F. Latty, J.C. Von Fischer, A. Elseroad, 
and M.F. Wasson. 1999. Global patterns of terrestrial biological 
nitrogen (N2) fixation in natural ecosystems. Global 
Biogeochemical Cycles 13, no. 2: 623-645. 

 
Coxson, D.S. and K.A. Kershaw. 1983. Rehydration response of 

nitrogenase activity and carbon fixation in terrestrial nostoc 
communie in stipa-bouteloua grassland. Canadian Journal of 
Microbiology 29: 938-944. 



 
149 

Davidson, D.W., M.A. Bowker, D. George, S.L. Phillips, and J. Belnap. 
2002. Treatment effects on performance of N-fixing lichens in 
disturbed soil crusts of the Colorado Plateau. Ecological 
Applications 12, no. 5: 1391-1405. 

 
Eady, R.E. 1996. Structure-function relationships of the alternative 

nitrogenases. Chemical Reviews 96: 3013-3030. 
 
Evans, R.D. and J. Belnap. 1999. Long-term consequences of disturbance 

on nitrogen dynamics in an arid ecosystem. Ecology 80, no. 1: 150-
160. 

 
Evans, R.D. and J.R. Ehleringer. 1993. A break in the nitrogen cycle in 

aridlands? Evidence from delta15N of soils. Oecologia 94: 314-317. 
 
Evans, R.D. and O.L. Lange. 2001. Biological soil crusts and ecosystem 

nitrogen and carbon dynamics. In Biological soil crusts: Structure, 
function, and management, ed. J. Belnap and O.L. Lange: 263-279. 
Berlin: Springer-Verlag. 

 
Fay, P. and L. De Vasconcelos. 1974. Nitrogen metabolism and 

ultrastructure in Anabaena cylindrica. Archives of Microbiology 99: 
221-230. 

 
Galloway, J.N., F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, 

S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. 
Holland, D.M. Karl, A.F. Michaels, J.H. Porter, A.R. Townsend, and 
C.J. Vorosmarty. 2004. Nitrogen cycles: Past, present, and future. 
Biogeochemistry 70: 153-226. 

 
Garcia-Pichel, F. 2002. Desert environments: Biological soil crusts. In 

Encyclopedia of environmental microbiology, ed. G. Bitton:1019-
1023. New York: John Wiley. 

 
Garcia-Pichel, F. and J. Belnap. 1996. Microenvironments and microscale 

productivity of cyanobacterial desert crusts. Journal of Phycology 
32: 774-782. 

 
Garcia-Pichel, F., S.L. Johnson, D. Youngkin, and J. Belnap. 2003. Small-

scale vertical distribution of bacterial biomass and diversity in 
biological soil crusts from arid lands in the Colorado Plateau. 
Microbial Ecology 46: 312-321. 

 
 
 



 
150 

Garcia-Pichel, F., A. Lopez-Cortes, and U. Nubel. 2001. Phylogenetic and 
morphological diversity of cyanobacteria in soil desert crusts from 
the Colorado Plateau. Applied and Environmental Microbiology 67, 
no. 4: 1902-1910. 

 
Gibson, C.E. 1971. Nutrient limitation. Water Pollution Control Federation 

43, no. 12: 2436-2440. 
 
Glass, J.B., F. Wolfe-Simon, J.J. Elser, and A. Anbar. 2010. Molybdenum-

nitrogen co-limitation in freshwater and coastal heterocystous 
cyanobacteria. Limnology and Oceanography 55, no. 2: 667-676. 

 
Goldberg, S. and H.S. Forster. 1998. Factors affecting molybdenum 

adsorption by soils and minerals. Soil Science 163, no. 2: 109-114. 
 
Hartley, A.E. and W.H. Schlesinger. 2002. Potential environmental 

controls on nitrogenase activity in biological crusts of the northern 
Chihuahuan desert. Journal of Arid Environments 52: 293-304. 

 
Housman, D.C., H.H. Powers, A.D. Collins, and J. Belnap. 2006. Carbon 

and nitrogen fixation differ between successional stages of 
biological soil crusts in the Colorado Plateau and Chihuahuan 
desert. Journal of Arid Environments 66: 620-634. 

 
Howard, J.B. and D.C. Rees. 1996. Structural basis of biological nitrogen 

fixation. Chemical Reviews 96: 2965-2982. 
 
Isichei, A.O. 1990. The role of algae and cyanobacteria in arid lands. A 

review. Arid Soil Research and Rehabilitation 4: 1-17. 
 
Jeffries, D.L., J.M. Klopatek, S.O. Link, and J. Bolton. 1992. Acetylene 

reduction by cryptogamic crusts from a blackbrush community as 
related to resaturation and dehydration. Soil Biology and 
Biochemistry 24: 1101-1105. 

 
Johnson, S.L., C.R. Budinoff, J. Belnap, and F. Garcia-Pichel. 2005. 

Relevance of ammonium oxidation within biological soil crust 
communities. Environmental Microbiology 7, no. 1: 1-12. 

 
Johnson, S.L., S. Neuer, and F. Garcia-Pichel. 2007. Export of 

nitrogenous compounds due to incomplete cycling within biological 
soil crusts of arid lands. Environmental Microbiology 9, no. 3: 680-
689. 

 
 



 
151 

Jones, K. 1977. The effects of moisture on acetylene reduction by mats of 
blue-green algae in sub-tropical grassland. Annals of Botany 41: 
801-806. 

 
Kentemich, T., G. Danneberg, B. Hundeshagen, and H. Bothe. 1988. 

Evidence for the occurrence of the alternative, vanadium-containing 
nitrogenase in the cyanobacterium Anabaena variabilis FEMS 
Microbiology Letters 51: 19-24. 

 
Liermann, L.J., R.L. Guynn, A. Anbar, and S.L. Brantley. 2005. Production 

of a molybdophore during metal-targeted dissolution of silicates by 
soil bacteria. Chemical Geology 220: 285-302. 

 
Maestre, F.T., N. Martín, B. Díez, R. López-Poma, F. Santos, I. Luque, 

and J. Cortina. 2006. Watering, fertilization, and slurry inoculation 
promote recovery of biological crust function in degraded soils. 
Microbial Ecology 52: 365-377. 

 
Mills, M.M., C. Ridame, M. Davey, J. La Roche, and R.J. Geider. 2004. 

Iron and phosphorus co-limit nitrogen fixation in the eastern tropical 
North Atlantic. Nature 429: 292-294. 

 
Pimentel, D. 2000. Soil erosion and the threat to food security and the 

environment. Ecosystem Health 6, no. 4: 221-226. 
 
Puigdefábregas, J. 1998. Ecological impacts of global change on drylands 

and their implications for desertification. Land Degradation and 
Development 9: 393-406. 

 
Reddy, K.J. and S.P. Gloss. 1993. Geochemical speciation as related to 

the mobility of F, Mo and Se in soil leachates. Applied 
Geochemistry Supplmentary Issue 2: 159-163. 

 
Redfield, E., S.M. Barns, J. Belnap, L.L. Daane, and C.R. Kuske. 2002. 

Comparative diversity and composition of cyanobacteria in three 
predominant soil crusts of the Colorado Plateau. FEMS 
Microbiology Ecology 40: 55-63. 

 
Rosenberg, D.R. and P.A. Maurice. 2003. Siderophore adsorption to and 

dissolution of kaolinite at pH 3 to 7 and 22°C. Geochimica et 
Cosmochimica Acta 67, no. 2: 223-229. 

 
Rychert, R.C. and J. Skujins. 1974. Nitrogen fixation by blue-green algae-

lichen crust in the great basin desert. Soil Science Society of 
America Proceedings 38: 768-771. 



 
152 

Saito, M.A., T.J. Goepgert, and J.T. Ritt. 2008. Some thoughts on the 
concept of colimitation: Three definitions and the importance of 
bioavailability. Limnology and Oceanography 53: 276-290. 

 
Sañudo-Wilhelmy, S.A., A.B. Kustka, C.J. Gobler, D.A. Hutchins, M. Yang, 

K. Lwiza, J.A. Burns, D.G. Capone, J.A. Raven, and E.J. 
Carpenter. 2001. Phosphorus limitation of nitrogen fixation by 
Trichodesmium in the central atlantic ocean. Nature 411: 66-69. 

 
Schlesinger, W.H. 1996. Biogeochemistry, an analysis of global change. 

San Diego: Academic Press. 
 
Schulten, J.A. 1985. Soil aggregation by cryptogams of a sand prairie. 

American Journal of Botany 72, no. 11: 1657-1661. 
 
Sheridan, D. 1981. Desertification of the United States. Council on 

environmental quality. Washington, D.C.: U.S. Government Printing 
Office. 

 
Silvester, W.B. 1989. Molybdenum limitation of asymbiotic nitrogen 

fixation in forests of pacific northwest America. Soil Biology and 
Biochemistry 21, no. 2: 283-289. 

 
St. Clair, L.L., J.R. Johansen, and B.L. Webb. 1986. Rapid stabilization of 

fire-disturbed sites using a soil crust slurry: Inoculation studies. 
Reclamation and Revegetation Research 4: 261-269. 

 
Steppe, T.F., J.B. Olson, H.W. Paerl, R.W. Litaker, and J. Belnap. 1996. 

Consortia N2 fixation: A strategy for meeting nitrogen requirements 
of marine and terrestrial cyanobacterial mats. FEMS Microbiology 
Ecology 21: 149-156. 

 
Strauss, S.L., T.A. Day, and F. Garcia-Pichel. 2012. Nitrogen cycling in 

desert biological soil crusts across biogeographic regions in the 
southwestern United States. Biogeochemistry 108: 171-182. 

 
ter Steeg, P.F., P.J. Hanson, and H.W. Paerl. 1986. Growth-limiting 

quantities and accumulation of molybdenum in Anabaena 
oscillarioides (cyanobacteria). Hydrobiologia 140: 143-147. 

 
Terry, R.E. and S.J. Burns. 1987. Nitrogen fixation in cryptogamic soil 

crusts as affected by disturbance. 369-372. 
 
 
 



 
153 

Thiel, T. 1993. Characterization of genes for an alternative nitrogenase in 
the cyanobacterium Anabaena variabilis. Journal of Bacteriology 
175, no. 19: 6276-6286. 

 
Vitousek, P.M., K. Cassman, C.C. Cleveland, T.E. Crews, C.B. Field, N.B. 

Grimm, R.W. Howarth, R. Marino, L. Martinelli, E.B. Rastetter, and 
J.I. Sprent. 2002. Towards an ecological understanding of 
biological nitrogen fixation. Biogeochemistry 57/58: 1-45. 

 
Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in 

the sea: How can it occur? Biogeochemistry 13: 87-115. 
 
Wedepohl, K.H. 1995. The composition of the continental crust. 

Geochimica et Cosmochimica Acta 59, no. 7: 1217-1232. 
 
West, N.E. and J. Skujins. 1977. The nitrogen cycle in North American 

cold-winter semi-desert ecosystems. Oecologia Plantarum 12, no. 
1: 45-53. 

 
Wichard, T., B. Mishra, S.C.B. Myneni, J.P. Bellenger, and A.M.L. 

Kraepiel. 2009. Storage and bioavailability of molybdenum in soils 
increased by organic matter complexation. Nature Geoscience 2: 
625-629. 

 
Wiebe, K. 2003. Linking land quality, agircultural productivity, and food 

security. Washington, DC: USDA Economic Research Service, 
Agricultural Economic Report No. 823. 

 
Xiao, B., Q. Wang, Y. Zhao, and M. Shao. 2011. Artificial culture of 

biological soil crusts and its effects on overland flow and infiltration 
under simulated rainfall. Applied Soil Ecology 48: 11-17. 

 
Yeager, C.M., J.L. Kornosky, D.C. Housman, E.E. Grote, J. Belnap, and 

C.R. Kuske. 2004. Diazotrophic community structure and function 
in two successional stages of biological soil crusts from the 
Colorado Plateau and Chihuahuan desert. Applied and 
Environmental Microbiology 70, no. 2: 973-983. 

 
Yeager, C.M., J.L. Kornosky, R.E. Morgan, E.C. Cain, F. Garcia-Pichel, 

D.C. Housman, J. Belnap, and C.R. Kuske. 2007. Three distinct 
clades of cultured heterocystous cyanobacteria constitute the 
dominant N2-fixing members of biological soil crusts of the colorado 
plateau, USA. FEMS Microbiology Ecology 60: 85-97. 

 
 



 
154 

Young, J.P.W. 1992. Phylogenetic classification of nitogen-fixing 
organisms. In Biological nitrogen fixation, ed. G. Stacey, R.H. Burris 
and H.J. Evans. New York: Chapman and Hall, Inc. 

 
Zehr, J.P., B.D. Jenkins, S.M. Short, and G.F. Steward. 2003. Nitrogenase 

gene diversity and microbial community structure: A cross-system 
comparison. Environmental Microbiology 5, no. 7: 539-554. 

 
Zerkle, A.L., C.H. House, R.P. Cox, and D.E. Canfield. 2006. Metal 

limitation of cyanobacterial N2 fixation and implications for the 
precambrian nitrogen cycle. Geobiology 4: 285-297. 

 
Zhao, Y., S.-M. Bian, H.-N. Zhou, and J.-F. Huang. 2006. Diversity of 

nitrogenase systems in diazotrophs. Journal of Integrative Plant 
Biology 48, no. 7: 745-755. 



 
155 

CHAPTER 5 

DESERT BIOLOGICAL SOIL CRUSTS HOST NOVEL SIDEROPHORE-

PRODUCING MICROORGANISMS 

Abstract 

Biological soil crusts (BSCs) are pioneering microbial communities that 

increase arid ecosystem habitability. BSCs are successful pioneers in part 

because they fix carbon and nitrogen. These and other physiological 

processes active in BSCs require an assortment of metals that are largely 

insoluble in soil environments; however, BSCs thrive despite this high 

potential for metal limitation. I hypothesized that BSC microbes produce 

siderophores to increase metal solubility and facilitate metal uptake. I 

confirmed siderophore production in two dominant crust cyanobacteria. 

Furthermore, I isolated 8 additional siderophore-producers from less 

dominant BSC groups. The 16S rRNA gene sequences of these isolates 

place them in the Firmicutes, Alpha- and Betaproteobacteria, and the 

cyanobacteria. The BSC siderophore-producing isolates span a range of 

phylogenetic groups and physiological capabilities. While some 

siderophore-producers are not among the abundant groups, they may play 

a previously unrecognized role in increasing metal availability. This is the 

first report of siderophore production in BSCs, and thus, it is an important 

step towards understanding biologically-mediated metal cycling in arid 

ecosystems. Studying siderophore production in BSCs provides insight 
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into how BSCs tackle the challenge of acquiring insoluble metals, and may 

help conservationists determine useful strategies for BSC growth by 

facilitating metal acquisition.  

Introduction 

Biological soil crusts (BSCs) are complex microbial communities that 

colonize plant interspaces in arid and semi-arid environments (Belnap et 

al., 2001; Garcia-Pichel et al., 2001; 2003). They contain organisms that 

develop a vertically stratified, cohesive structure (Garcia-Pichel et al., 

2003) similar to that of microbial mats (Cohen & Rosenberg, 1989) and 

biofilms (Doyle, 1999), and therefore, play a vital role in erosion prevention 

in arid lands (Campbell, 1979; Schulten, 1985; Belnap, 1993). Crusts 

include a diverse array of microorganisms, including bacteria, archaea, 

algae, fungi, lichens, and bryophytes (Belnap et al., 2001). The community 

performs a variety of metabolic processes, most notably photosynthesis 

and nitrogen fixation that supply bioavailable carbon (C) and nitrogen (N) 

to the entire BSC ecosystem (Beymer & Klopatek, 1991; Evans & 

Ehleringer, 1993; Evans & Lange, 2001; Belnap, 2002).  

Crusts require a range of metals for use in enzymes and complex 

metabolic machinery (e.g., Photosystem I). One would not, a priori, expect 

metal availability in soil to be a problem since microbes are surrounded by 

metal-bearing minerals. However, even though metals may be abundant, 

they are not always present in bioavailable forms. For example, iron (Fe), 



 
157 

a key micronutrient in many BSC processes, usually comprises 1-6% of 

soil by weight (Powell et al., 1980). But, Fe solubility is pH-dependent, 

therefore; under typical environmental conditions (pH 6-7), Fe 

concentrations in the soil solution rarely surpass 10-18 M, which is more 

than 10 orders of magnitude lower than the micromolar (10-6) 

concentrations required by most bacteria (Lankford, 1973). Iron availability 

in BSCs is of specific concern because when BSCs are physiologically 

active, pH values can reach 10 or higher (Garcia-Pichel & Belnap, 1996), 

which renders Fe even less soluble (Brady & Weil, 2002). Furthermore, an 

average 80 cm2 crust requires up to 1 µmol Fe if one assumes the entire 

community is composed of cyanobacteria (see Chapter 2). This value is 

one to two orders of magnitude greater than the amounts of Fe present in 

the soil solution (see Chapters 2 and 3). In order to meet their metal 

demands despite the unfavorable environmental conditions, BSCs must 

have effective strategies for obtaining adequate amounts of Fe from their 

environment.  

Siderophore production is one strategy soil microorganisms use to 

cope with low metal availability (Powell et al., 1980; Akers, 1983; 

Holmström et al., 2004; Essén et al., 2006). Siderophores are defined as 

low molecular weight organic compounds that bind Fe with high affinity 

(Lankford, 1973; Neilands, 1973), though some siderophores are capable 

of binding additional bioessential metals, such as molybdenum (Mo; Litos 
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et al., 2006; Bellenger et al., 2007; Monteiro et al., 2010), manganese 

(Saal & Duckworth, 2010; Szabó & Farkas, 2011), nickel (Dimkpa et al., 

2008), copper (McKnight & Morel, 1980; Kim et al., 2004; Bellenger et al., 

2007), and zinc (Bellenger et al., 2007). Siderophores are known to 

increase mineral solubility (Kalinowski et al., 2000; Kraemer, 2004; 

Liermann et al., 2000; 2005), and to facilitate microbial metal uptake 

(Neilands, 1973; Bellenger et al., 2008). Liermann et al. (2000) and 

Kalinowski et al. (2000) showed that Fe release from hornblende was 

enhanced in the presence of siderophore-producing bacteria. In addition, 

Liermann et al. (2005) found that Mo was similarly released from silicates 

in the presence of an N2-fixing microbe capable of siderophore production. 

Mo-release was not observed when N2-fixation was inactive, nor was it 

detected in the presence of a microbe incapable of N2-fixation. Liermann 

et al. (2005), therefore, clearly show that active N2 fixation, metal need, 

and siderophore production are inextricably linked, and a similar situation 

may exist for BSCs. 

Previous work suggests that BSCs directly influence metal distributions 

in the soil mineral phase (Beraldi-Campesi et al., 2009) and soil solution 

(see Chapter 2). When examining bulk soils collected in the field, Beraldi-

Campesi et al. (2009) found that some elements were depleted in crusted 

soil relative to adjacent uncrusted soils. They postulated this was the 

result of biological activity that solubilized metals and left them vulnerable 
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to leaching down the soil profile (Beraldi-Campesi et al., 2009). In 

laboratory studies of soil solutions from physiologically active crust 

communities, I found evidence that concentrations of many metals were 

influenced by biological processes such as uptake and solubilization (see 

Chapters 2 & 3). My studies demonstrate that BSCs actively alter the soil 

solution concentrations of metals and suggest a mechanism for the solid-

phase metal distributions observed by Beraldi-Campesi et al. (2009).  

It is plausible that BSCs affect these changes in the soil solution and 

solid-phase through siderophore production. Siderophores have been 

found in soils (Powell et al., 1980; Akers, 1983; Holmström et al., 2004; 

Essén et al., 2006), but their presence has not been studied in BSCs. 

However, some of the organisms that have been identified previously in 

BSCs (Garcia-Pichel et al., 2001; Gundlapally & Garcia-Pichel, 2006) are 

known to produce siderophores in other environments (Ito and Neilands, 

1958; Peters & Warren, 1968; Umamaheswari, 1997; Temirov et al., 2003; 

Silva-Stenico et al., 2005; Dertz et al., 2006; Simionato et al., 2006; 

Lacava et al., 2008; Beneduzi et al., 2010; Raza & Shen, 2010). 

Following from the results of Beraldi-Campesi et al. (2009) and 

Chapters 2 & 3, I hypothesized that BSC microbes influence soil metal 

dynamics through the production of siderophores. I predicted that the 

siderophore producers would be dominant crust organisms that perform 

Fe-intensive metabolisms (i.e., photosynthesis and N2 fixation). I 
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confirmed siderophore production in two previously isolated crust 

microbes (Microcoleus vaginatus and Nostoc punctiforme) that play 

important roles in the BSC community. I also isolated 8 additional 

siderophore-producing microorganisms from BSCs and characterized 

them by 16S rRNA gene sequencing. I present the phylogenetic affiliations 

of these siderophore-producers, followed by a discussion of the relevance 

of these organisms to BSC community structure and function. I also 

speculate as to the probable siderophore compounds produced by these 

microbes. Overall, it is clear from my results that siderophore production is 

important for BSC function, though it is not universal among BSC 

community members. Even so, siderophore production is likely to 

influence metal dynamics in the ecosystem as a whole. 

Methods 

Soil Collection 

Soils with relatively flat surfaces and minimal lichen cover, as 

determined by a visual assessment, were sampled at the Green Butte site 

northeast of Moab, UT (Strauss et al., 2012; N38°42′56.2″, 

W109°41′32.7″) in 2009. I modeled soil collection procedures and storage 

after Garcia-Pichel et al. (2003) and Chapters 2 and 3. Briefly, sampling 

areas were lightly wetted with distilled water and collected in disposable 

Petri dishes (50 mm x 13 mm). Soils were dried and stored in the dark at  
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room temperature (Campbell et al., 2009) until biomass was removed for 

isolation and identification of siderophore-producers.  

Culture Techniques and CAS Assay 

Cultures were grown on modified BG-11 agar plates (Allen and 

Stanier, 1968). Unless otherwise indicated, the media contained (per liter) 

149.6 g NaNO3, 20 g glucose, 7.5 g MgSO3•7H2O, 3.6 g CaCl2•2H2O, 

0.715 g H3BO3, 0.453 g MnCl2•4H2O, 0.055 g ZnSO4•7H2O, 0.098 g 

Na2MoO4•2H2O, 0.02 g CuSO4•5H2O, 0.01 g NiCl2•6H2O, 0.01 g 

CoCl2•6H2O, 0.009 g Na3VO4, 0.243 g FeCl3, 1 g Na2CO3, 1.53 g K2HPO4, 

0.03 g citric acid, 0.093 g Na2EDTA, 15 g BactoTM Agar, and 0.3 g 

cyclohexamide. The siderophore production assays (O-CAS and CAS), 

utilized agar and liquid media that was prepared without metals and 

without Na2EDTA. All media were prepared with 18 MΩ·cm carbon-free 

water (NANOpure® DIamondTM UV, Barnstead International, Dubuque, IA) 

Crust biomass was transferred to trace metal-free agar plates in one of 

two ways. First, surface crust (~0.5 mm) and sterile deionized water were 

slurried at a 1:2 ratio; 100 µL of this slurry was pipetted and spread evenly 

over the agar. Second, biomass material was manually removed from the 

crust with flame-sterilized tweezers and transferred directly to the agar. 

Cultures of the crust organisms Microcoleus vaginatus and Nostoc 

punctiforme, previously isolated in the Garcia-Pichel lab, were grown in 

liquid media alongside the crust biomass plates. I used agar plates with 
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four different carbon (C) and nitrogen (N) combinations to select 

organisms with different physiological capabilities (Table 5-1). Plates 

without C or N (–C–N) were intended to select for photosynthetic 

organisms capable of fixing N2. Plates without C, but with N (–C+N), were 

designed to select for phototrophic organisms that do not fix N2. Plates 

with C and without N (+C–N) were used to select for heterotrophic 

N2fixers. Finally, plates with C and N (+C+N) were intended to select for 

heterotrophic organisms not able to fix N2 (Table 5-1). Each biomass 

source was transferred to one plate of each of the C/N conditions. Plates 

were incubated for 40 days at room temperature. The –C plates were 

incubated under ambient laboratory light conditions (10 µE m-2s-1 

measured as photosynthetically active radiation); the +C plates were 

incubated in the dark. M. vaginatus and N. puntiforme were grown on –

C+N agar plates under ambient light conditions. 

After microbial growth was observed on a plate, 15 mL of CAS agar 

was overlain on the surface of that plate. CAS agar contained (per liter) 

60 mg chrome azurol S, 1.6 mg FeCl3, 3.6 mg HCl, 73 mg 

hexadecyltrimethylammonium bromide, and 9 g BactoAgar (Schwyn and 

Neilands, 1987; Perez-Miranda et al., 2007). The original color of the CAS 

agar and liquid media was dark blue. In the presence of siderophores, this 

color changed to yellow or purple constituting a positive CAS assay  
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response. A positive control was prepared with Bacillus cereus ATCC 

13061. Agar without added biomass was used as a negative control.  

Table 5-1. Results of the O-CAS screening assay of soil slurries and 
manually selected biomass showing the media used, expected metabolic 
capabilities for each media type, the total number and percentage of those 
plates that exhibited a color change, and which color change (type of 
siderophere) was observed. 
 

Plate 
media 

Total # 
plates 

Heterotrophos (H) or 
autotrophs (A) 

expected 

Selective 
for N2 
fixers? 

# (%)  of plates 
with color 
change 

Yellow 
(hydroxamate) 

Purple 
(catecholate) 

-C-N 13 A Y 6 (46%) 6 0 

-C+N 12 A N 10 (83%) 10 0 

+C-N 11 H, A Y 8 (73%) 4 4 

+C+N 11 H, A N 10 (91%) 10 0 

 
Plates were incubated until a color change was detected (generally 3-

14 days). Colonies that displayed a color change were transferred to agar 

plates with added metals and Na2EDTA. Organisms were isolated by 3-5 

successive single-colony streaks. After isolation, I confirmed which strains 

produced siderophores using the traditional liquid CAS assay (recipe as 

above without BactoAgar; Schwyn and Neilands, 1987). Siderophore 

production by M. vaginatus and N. punctiforme was evaluated using the 

traditional liquid CAS assay. 

Siderophore-Producer Identification 

DNA was purified from liquid-grown cultures with the FastDNA® Spin 

Kit (MP Biomedicals, Solon, OH) and the 16S rRNA gene was amplified 

using primers 8F and 1492R from Lane (1991). Amplified DNA was 
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extracted from a low-melt agar gel and sequenced directly via 8F and 

1492R priming sites to obtain at least 1200 bp sequences at the DNA 

Laboratory at Arizona State University. Sequencing reactions were 

performed with a BigDye® v3.1 Sequencing Kit on a 3730 DNA Analyzer 

(Applied Biosystems) per the manufacturer’s protocol. Raw sequences 

were edited in MEGA (Tamura et al., 2007), and alignments and 

phylogenetic analyses were performed on the Ribosomal Database 

Project (RDP) website (Cole et al., 2007; 2009). Most-likely taxonomical 

identifications were determined using RDP’s Classifier (Wang et al., 2007) 

and SeqMatch. 

Pyrosequencing 

Microbial community composition was determined by 16S rRNA gene 

tagged pyrosequencing. DNA was extracted from BSC samples using the 

UltraClean Soil DNA Extraction Kit (MoBio Laboratories, Inc., Carlsbad, 

CA). Bar-coded bacterial primers with Roche 454 FLX adapters were used 

to amplify the V4 variable region of the 16S rDNA gene from template 

community DNA. These primers yielded an amplicon of approximately 240 

bp in length. The forward primer, V4F, was 5'-AYTGGGYDTAAAGNG-3'. 

Equimolar mixtures of 4 reverse primers were used: V4R, 5'-

TACCRGGGTHTCTAATCC-3’; V4R2, 5'- TACCAGAGTATCTAATTC-3'; 

V4R3,  5'- CTACDSRGGTMTCTAATC-3'; and V4R4,  5'-

TACNVGGGTATCTAATCC-3'. Forward and reverse primers targeted 



 
165 

positions ~560 and ~800 by standard Escherichia coli numbering. The 

PCR conditions were as described by Bates and Garcia-Pichel (2009) with 

50 pmol of each primer, 2.5 units ExTaq polymerase and 10 ng of 

community DNA template. After initial denaturing, 30 cycles were 

completed at 94°C for 1 min., 50°C for 1 min, and 72°C for 2 min, with a 

final extension at 72°C for 5 min. The PCR products were quantified and 

quality checked in a 1% agarose gel, then purified using the QiaQuick 

PCR purification kit (Qiagen Inc., Valencia, CA), and commercially 

pyrosequenced and parsed by sample according to the individual 

barcodes, to yield ~7,000-21,000 sequences per sample. We used mothur 

(Schloss et al, 2009) pyrosequencing analysis software to trim bad 

sequences from the sample files. The Pyrosequencing Pipeline Alignment 

and Classification tools at Michigan State University's Ribosomal 

Database Project (RDP) website, (Cole et al. 2009) were used to align 

sequences and make taxonomic assignments (RDP Naive Bayesian rDNA 

Classifier, version 2.2) based on current taxonomy in Bergey's Manual of 

Systematic Bacteriology.  

Results 

Culturing and O-CAS  

BSC biomass was transferred to plates with different combinations of 

C and N (+C+N, +C-N, -C+N, and -C-N). All 47 plates exhibited growth 

after 2-6 weeks. After growth was detected, the chrome azurol sulfonate 
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overlay (O-CAS; Pérez-Miranda et al., 2007) was poured over the surface, 

and plates were incubated until a color change was observed in the agar 

(3-14 days). A subset of plates from all C/N combinations screened 

positive for siderophore production (Table 5-1; Figures 5-1a-d). Of the 47 

plates, 34 exhibited a color change from the original blue color to either 

yellow or purple (Table 5-1; Figures 5-1a-d). The majority of O-CAS 

positive plates (30) showed a color change from blue to yellow (Figure 5-

1a, b), indicating hydroxamate-type siderophores (Pérez-Miranda et al., 

2007). The remaining 4 plates showed a color change from blue to purple 

(Figure 5-1c, d), indicating catechol-type siderophores (Pérez-Miranda et 

al., 2007). Cultures grown on–C–N, –C+N, and +C+N plates and 4 of the 

+C-N plates produced hydroxamate siderophores. The remaining four 

+C-N plates turned purple, indicating catecholate siderophores. There was 

no difference in O-CAS assay response between the methods used to 

transfer crust biomass to plates (i.e., slurries or manually-selected).  

Axenic cultures of two dominant crust cyanobacteria, Microcoleus 

vaginatus and a Nostoc punctiforme, were grown alongside the cultures 

isolated from the O-CAS plates. Siderophore production was discovered 

for both M. vaginatus and N. punctiforme grown on –C+N media. 

Siderophore production was confirmed for the positive control, Bacillus 

cereus, grown on BG-11 media. Uninoculated plates (negative control) did 

not display a color change. 
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Figure 5-1. Before and after photos of O-CAS plates. Left-hand panels are 
photographs taken immediately after the addition of CAS agar. Right-hand 
panels are photographs taken after 3-14 days of growth under CAS agar. 
Images (a) and (b) show a color change from blue to yellow, indicative of 
hydroxamate siderophores. Images (c) and (d) show a color change from 
blue to purple, indicative of catecholate siderophores (Pérez-Miranda et 
al., 2007). Images (e) and (f) show a plate that was inoculated but did not 
produce a color change. 
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Biomass from plates that exhibited a color change was re-streaked 

onto fresh agar, and individual organisms were isolated after 3-5 

successive single-colony streaks. 190 organisms from the O-CAS positive 

plates were randomly selected for growth in liquid media. Siderophore 

production was confirmed in 43 of these 190 organisms. Of the 43 

siderophore-producing cultures, 17 were selected at random for 

identification. 

Siderophore-Producer Identification 

Sequencing based on nearly complete 16S rRNA genes of the 17 

isolated siderophore-producing microbes revealed 8 distinct organisms. 

(The remaining 9 sequenced organisms were duplicates.) Sequences 

were compared to published sequences using the Ribosomal Database 

Project’s (RDP) Classifier (Wang et al., 2007) and SeqMatch. When 

possible, I made an effort to identify cultures at the species level (Table 

5-2). Failing that, I discuss them at the genus level. 

Of the 8 distinct microbes, 5 had sequence similarities less than 98% 

suggesting they are novel organisms (Table 5-2). The remaining 3 

cultures closely matched sequences of known organisms. Here I present 

the most closely matched sequence and the percentage similarity. 

Cultures 39 and 244 are Alphaproteobacteria; culture 39 is an uncultured 

member of the Methylobacteriaceae (92.2%), and culture 244 closely 

matches Methylobacterium radiotolerans (99.8%). Culture 265 is a  
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Table 5-2. Results of RDP Classifier and SeqMatch based on nearly full-
length 16S rRNA sequences showing the similarity between bacteria 
isolated in this study and previously sequenced organisms from the RDP 
database. Bold indicates organisms that are most likely novel and not 
currently in culture. 
 
Isolate Closest Sequence % Similarity 

Cyanobacteria 

203 Leptolyngbya sp. 96.5 

259 Leptolyngbya sp. 92.4 

Firmicutes 

128 Bacillus subtilis, B. vallismortis 99.3 

150 B. licheniformis, B. mojavensis, B. subtilis 99.1 

247 Paenibacillus polymyxa 90.8 

α-Proteobacteria 

39 uncultured Methylobacteriaceae 92.2 

244 Methylobacterium radiotolerans 99.8 

β-Proteobacteria 

265 Janthinobacterium sp. 95.9 
 
 
Betaproteobacterium most closely related to a Janthinobacterium sp. 

(95.9%). Cultures 128, 154, and 247 are Firmicutes (Table 5-2); cultures 

128 and 150 closely match several Bacillus spp. at >99%, and culture 247 

is most closely related to Paenibacillus polymyxa (90.8%). The six 

heterotrophs were all cultured on +C+N media. Cultures 203 and 259 are 

cyanobacteria belonging to the Leptolyngbya (96.5 and 92.4%, 

respectively; Table 5-2). Culture 203 was isolated on –C+N media, and 

culture 259 was isolated on –C–N media.  
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Pyrosequencing 

Figure 5-2a shows that the Cyanobacteria, Bacteroidetes, 

Acidobacteria, and a group of unclassified organisms make up the 

majority (~77%) of the crust microbial community, followed by the 

AlphaProteobacteria and Verrucomicrobia (~13%); the remaining microbial 

groups each comprise less than 5% of the community (Potrafka et al., 

unpublished data). The 8 siderophore producers isolated in this study, and 

the 2 previously isolated BSC cyanobacteria, are distributed between 

dominant and less-dominant microbial groups. The heterotrophic isolates 

(2 Alphaproteobacteria, 1 Betaproteobacterium, and 3 Firmicutes) are 

from groups that comprise less than 10% of the total microbial population 

of BSCs at this site.  Of the cyanobacteria found to produce siderophores, 

Microcoleus belongs in the dominant Family XIII, and the remaining 4 

belong to the less abundant Families I and IV (Figure 5-2b).  

Discussion 

Studying the factors that contribute to BSC physiological function is 

valuable because BSCs are such vital components of arid ecosystems. 

Crusts influence soil fertility by providing the primary sources of 

bioavailable carbon (C) and nitrogen (N) to their soils (Beymer & Klopatek, 

1991; Evans & Ehleringer, 1993; Evans & Lange, 2001; Belnap, 2002). 

The release of siderophores observed in this study combined with the 

mobilization of metals detected in previous work (Beraldi-Campesi et al.,  
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Figure 5-2. Pie diagrams summarizing pyrosequencing data of a 240 base 
pair fragment of the 16S rRNA gene from Green Butte crusts (reproduced 
with permission from Potrafka, unpublished data). (a) phylogenetic 
distribution of all microbes in the dark crusts from Green Butte (Potrafka, 
unpublished data). Siderophore-producers identified in this study, as well 
as the two previously isolated organisms, belong in the groups shown in 
bold: cyanobacteria, Alphaproteobacteria, Betaproteobacteria, and 
Firmicutes. (b) further delineation of the cyanobacteria (Potrafka, 
unpublished data). Cyanobacterial siderophore-producers include 
Microcoleus vaginatus in Family XIII, Nostoc punctiforme in Family I, and 
two species of Leptolygbya that belong in Family IV. These groups are 
highlighted in bold. 
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2009; Chapters 2 & 3) provide another way by which BSCs contribute to 

overall soil fertility. Together, these processes sustain arid and semiarid 

ecosystems and prevent desertification (Isichei, 1990; Belnap et al., 1994; 

Belnap, 1995; Bowker et al., 2008a), which has become a serious concern 

in many parts of the world (Sheridan, 1981; Puigdefábregas, 1998; 

Arnalds & Archer, 2000; Pimentel, 2000; Weibe, 2003). 

BSCs are also quite distinct from soil communities in temperate 

environments and in the rhizosphere. Crusts contain lower species 

richness and diversity (Nakatsua et al., 2000), they have different 

community composition (Kuske et al., 2002), and they have a higher 

abundance of novel organisms (Garcia-Pichel et al., 2003). The Colorado 

Plateau BSCs are particularly interesting because they are able to 

withstand extreme environmental conditions (Bowker et al., 2002), making 

them likely to exhibit unique survival adaptations (Gundlapally & Garcia-

Pichel, 2006). 

Given that siderophore production is a common strategy soil microbes 

use to extract metals from their environments, the primary goal of this 

study was to confirm that siderophore-producers exist in BSCs. A 

secondary goal was to identify the siderophore-producing organisms in 

order to assess their ecological significance. While many studies have 

shown that soil communities contain siderophore-producers (Powell et al., 

1980; Akers, 1983; Holmström et al., 2004; Essén et al., 2006), this is the 
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first to show that they exist specifically in BSCs and provide evidence for 

how crust microbes acquire trace metals like Fe. Understanding how 

BSCs obtain the micronutrients they need to grow and metabolize is 

important because of the key role BSCs play in arid lands.  

Crusts are complex consortia of autotrophic and heterotrophic 

organisms that all contribute to the development and maintenance of the 

crust as a whole (Garcia-Pichel & Belnap, 1996; Garcia-Pichel et al., 

2003; Gundlapally & Garcia-Pichel, 2006). The dark crusts used in the 

current study were dominated by cyanobacteria (~26% of species; Figure 

5-2a), and Microcoleus spp. are the most abundant (Bowker et al., 2002; 

Garcia-Pichel et al., 2001; Yeager et al., 2004; Gundlapally & Garcia-

Pichel, 2006). Cyanobacteria are the primary producers of bioavailable C 

and N in the soil system; their filamentous nature and excretion of 

exopolysaccharides (EPS) make them excellent crust engineers (Danin & 

Ganor, 1991; Belnap, 2001; Belnap et al., 2001; Reynolds et al., 2006; 

Garcia-Pichel & Wojciechowski, 2009; Rossi et al., 2012). The primary N2-

fixers in BSCs are the heterocystous cyanobacteria, and Nostoc spp. 

alone comprise 80-90% of the diazotrophic community (Yeager et al., 

2004; 2007). As photosynthesizers, and the most important diazotrophs in 

BSCs, cyanobacteria may require 15-75 µmol Fe per mol C (Tuit et al., 

2004; Tovar-Sanchez et al., 2006; White et al., 2006) and 3-55 µmol Mo 

per mol C (Glass et al., 2009). Producing siderophores is an obvious 



 
174 

mechanism that could help crust organisms obtain these critical 

micronutrients. It is not surprising, then, that the two previously isolated 

cyanobacteria, M. vaginatus and Nostoc punctiforme, produce 

siderophores. However, the Leptolyngbya spp. isolated in this study 

(cultures 203 and 259) are Family IV cyanobacteria and make up <1% of 

the microbial community (Figure 5-2b), indicating that non-dominant 

organisms may also play a critical role in increasing metal availability in 

BSCs.  

Although the heterotrophic bacteria are not the foremost 

photosynthesizers or N2-fixers in the dark BSCs used in this study, they 

collectively account for ~75% of the BSC community at the Green Butte 

site, and they play a significant role in crust formation and maintenance 

(Garcia-Pichel & Belnap, 1996; Garcia-Pichel et al., 2003; Gundlapally & 

Garcia-Pichel, 2006). The bacterial isolates from the current study belong 

to the less abundant Alpha- and Betaproteobacteria, and Firmicutes 

classes; these groups comprise 7.9, 0.6, and 0.1% of crust species at our 

field site, respectively. Members of these groups perform a variety of 

physiological processes (Garrity et al., 2005; Gillis & Logan, 2005; Green, 

2005; Logan & De Vos, 2009; Priest, 2009), and many bacteria identified 

in similar environments are mycelial or mucoid and thought to contribute to 

crust structure (Gundlapally & Garcia-Pichel; 2006).  
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A BLAST analysis places isolates 39 and 244 in the Rhizobiales. 

Isolate 244 is closely matched to Methylobacterium radiotolerans, and 

isolate 39 does not match closely with any published sequences, likely 

making it a novel organism in the Methylobacteriaceae (Table 5-2). I was 

able to amplify mxaF, one of the genes that codes for methanol 

dehydrogenase (McDonald & Murrell, 1997), from isolates 39 and 244, 

indicating that these organisms are capable of growth on methanol. 

Therefore, these bacteria will require iron (Fe) and calcium (Ca) for 

methanol dehydrogenase (White et al., 1993; Anthony et al., 1994). 

However, I was unable to amplify nifH, one of the genes for nitrogenase, 

from these isolates, so I conclude at this point that isolates 39 and 244 are 

incapable of N2 fixation. 

Isolate 265 belongs in the heterotrophic Oxalobacteraceae, and it is 

likely an uncultured organism belonging in the Janthinobacteria (Table 5-

2). The remaining cultures are Bacilli, two of which (128, and 150) are 

>99% similar to various species of Bacillus or Brevibacterium. Some 

Bacilli are capable of denitrification (Logan & De Vos, 2009); however, I 

was unable to amplify any of the denitrification genes (nosZ, norB, nirK, 

nirS, or narG; Philippot, 2002) from isolate 128 or 150. Therefore, I 

deduce that my isolates are not denitrifiers. This is not too surprising given 

that denitrification has been shown to be negligible in crusts (Johnson et 

al., 2007; Strauss et al., 2012). The final isolate, 247, is 90.8% similar to 
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Paenibacillus polymyxa, likely representing a novel Paenibacillus sp. I was 

able to amplify nifH from isolate 247, indicating that it has the capacity for 

N2-fixation, a trait that is common to Paenibacilli (De Vos et al., 2009; 

Priest, 2009). This organism will, therefore, require Mo for use in N2 

fixation (Burgess & Lowe, 1996)  

All of the organisms found in this study are related to previously 

identified BSC microbes (Garcia-Pichel et al., 2001; Gundlapally & Garcia-

Pichel, 2006), but, aside from the dominant crust former (Microcoleus) and 

the dominant N2 fixer (Nostoc), the isolates belong to minor groups of 

crust organisms (Figure 5-2). Even so, they require a variety of metals and 

most are known to produce siderophores in other environments (Ito & 

Neilands, 1958; Peters & Warren, 1968; Temirov et al., 2003; Silva-

Stenico et al., 2005; Dertz et al., 2006; Simionato et al., 2006; Lacava et 

al., 2008; Beneduzi et al., 2010; Raza & Shen, 2010). 

Siderophore production may be one way that crust heterotrophs 

contribute to overall BSC function; they produce siderophores that 

increase metal availability to the entire community. There are siderophore 

producers among the cyanobacteria, but making siderophores is 

energetically costly and nutrient-intensive. Many bacteria can take up 

siderophores produced by other organisms; presumably, in order to save 

themselves the metabolic cost (Crowley et al., 1991; Jurkevitch et al., 

1992; Joshi et al., 2006; Khan et al., 2006; Joshi et al., 2008). It is possible 
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that some BSC organisms utilize this strategy – either because they are 

unable to produce siderophores themselves, or in an effort to conserve 

resources. Studies of the specific microbes that make siderophores within 

intact, physiologically active crusts would determine if this is the case and 

shed more light on siderophore ecology in BSCs. 

My discussion of siderophore ecology cannot be complete without 

recognizing that the Acidobacteria and Bacteroidetes each represent 

>10% of BSC species at our field site (Figure 5-2a); however, no 

siderophore-producers were isolated from these bacterial groups in the 

present study. This could be because: (1) members of these divisions do 

not produce siderophores, (2) the cultivation methods used selected 

against members of these divisions, or (3) by chance, no members of 

these divisions were selected for 16S sequencing. There is evidence for 

siderophore production by some members of both the Acidobacteria and 

Bacteroidetes (Idris et al., 2004; Marques et al., 2010), and members of 

these groups have been identified in BSCs (Gundlapally & Garcia-Pichel, 

2006). The compounds produced by these organisms bind Fe, and so 

should have been detected by the CAS assay if they were present. The 

lack of Acidobacteria and Bacteroidetes identified in the present study is, 

therefore, most likely attributed to exclusion by culture methods or by 

chance. Siderophore-production by these bacterial groups is, no doubt, 

important for metal cycling within BSCs, and additional studies in intact 
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crusts or using media more suitable to these organisms could help 

elucidate the role played by Acidobacteria and Bacteroidetes in crust 

siderophore ecology. 

At this point, we can only speculate as to which specific siderophore 

compounds BSCs may produce. Isolates 128 and 150 closely match 

sequences of Bacillus subtilis and Bacillus licheniformis who both produce 

siderophores that have been identified and characterized (Ito & Neilands, 

1958; Peters & Warren, 1968; Temirov et al., 2003; Dertz et al., 2006). 

The siderophores they produce include the hexadentate catechol 

Bacillibactin (Dertz et al., 2006), and a variety of bidentate catecholate 

dihydroxybenzoic acids (Ito and Neilands, 1958; Peters and Warren, 1968; 

Temirov et al., 2003). Interestingly, dihydroxybenzoic acids can bind Mo in 

addition to Fe (Litos et al., 2006; Monteiro et al., 2010). Bacillibactin has 

not been shown to bind Mo, but other catecholate siderophores do 

(Bellenger et al., 2007; 2008). Thus, it is possible that Bacillibactin has 

Mo-binding capacity as well, though experiments are needed to verify this 

assumption. Mo is used in nitrate assimilation (Rubio et al., 1999; Rubio et 

al., 2002) and N2 fixation (Burgess & Lowe, 1996), processes that are both 

active in crusts. Therefore, production of these putative “molybdophores” 

by Bacillus spp. could also provide a crucial source of Mo for crusts, and 

could explain the increased Mo concentrations observed in the soil 

solution of live crusts (see Chapter 2).  
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Isolate 244 is most likely related to Methylobacterium radiotolerans, 

which has been shown to produce siderophores that have not yet been 

characterized (Lacava et al., 2008). Isolate 247 is likely a novel 

Paenibacillus sp. The siderophores produced by Paenibacillus spp. are 

also uncharacterized (Raza and Shen, 2010). What is known, is that both 

Methylobacteria and Paenibacilli produce hydroxamate siderophores 

(Silva-Stenico et al., 2005; Simionato et al., 2006; Beneduzi et al., 2008; 

Lacava et al., 2008; Beneduzi et al., 2010; Raza & Shen, 2010). Both 

hydroxamate and catecholate siderophores are capable of binding other 

metals in addition to Fe and Mo, such as manganese (Saal and 

Duckworth, 2010; Szabó and Farkas, 2011), nickel (Dimkpa et al., 2008), 

copper (McKnight & Morel, 1980; Kim et al., 2004; Bellenger et al., 2007), 

and zinc (Bellenger et al., 2007). Siderophores, therefore, may provide a 

source for many different metals. 

This is the first report of siderophore production by Nostoc punctiforme 

and Microcoleus vaginatus. Other members of the Nostoc genus were 

shown to make a siderophore, that was putatively identified as the 

hydroxamate, schizokinen, based on infrared spectra (Umamaheswari et 

al., 1997). There are currently no reports in the literature of siderophore 

production by the remaining isolates. Evidence exists for siderophore 

production by members of the same order as isolate 39, which belongs in 

the Rhizobiales and is likely a member of the Methylobacteriaceae (Silva-
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Stenico et al., 2005; Simionato et al., 2006; Lacava et al., 2008; 

Palaniappan et al., 2010). There is also evidence of siderophore 

production in the same order as isolate 265, which is a member of the 

Oxalobacteraceae and is most likely a Janthinobacterium (Rashedul et al., 

2009). However, there is no evidence for siderophore production by close 

relatives of the final cyanobacterial isolates (203 and 259). 

This work suggests that siderophore production may play a critical role 

in metal availability within BSCs. The organisms that produce 

siderophores under my experimental conditions are distributed across 

various phylogenetic groups that have assorted physiological capabilities 

and, therefore, diverse metal requirements. In addition, siderophore 

producers represent both dominant microbial groups, such as the 

cyanobacteria, and less abundant groups, like the Firmicutes (Figure 

5-2a). The fact that BSC siderophore producers span such a range in 

physiology and abundance indicates that siderophore ecology in BSCs 

may be complex. Studies of siderophore production in intact BSCs would 

illuminate the roles that individual microbial groups play, and extraction of 

metal-bound siderophores from native soils would indicate whether or not 

metals other than Fe are affected.  

It is exciting that some of the siderophore producers are novel 

organisms. Although BSC organisms may produce known siderophores, it 

is also possible that they synthesize novel compounds with unique metal-
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biding capabilities. Future work is aimed at discovering the details of the 

siderophores’ structure and function and how they fit into the overall story 

of metal acquisition in BSCs. 

Finally, because BSCs provide crucial ecosystem services to their 

environments, promoting BSC establishment and growth is vital for 

preventing the degradation of arid lands. Determining strategies to sustain 

BSCs hinges on recognizing what nutrients and conditions promote BSC 

productivity (Davidson et al., 2002). Previous work showed that BSCs are 

likely limited with respect to metals such as Fe and Mo (see 

Chapters 2 & 4). Trace nutrient addition has been proposed to increase 

BSC productivity (Bowker et al., 2005), but fertilization with siderophores 

may serve the same purpose. If metals are present in the soil, but limiting 

because of low bioavailability, siderophore additions may help to alleviate 

metal limitation by increasing metal solubility. Furthermore, addition of 

trace metals bound to BSC-accessible siderophores would likely increase 

the efficacy of fertilization treatments. Exploration of siderophore 

fertilization as a viable BSC management practice requires a full 

understanding of the siderophores produced and the metals they bind, as 

well as how these siderophores are used within the BSC community. 
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CHAPTER 6 

IDENTIFICATION OF SIDEROPHORES IN BIOLOGICAL SOIL CRUSTS 

USING ELECTROSPRAY IONIZATION MASS SPECTROMETRY 

Abstract 

Biological soil crusts are known to influence soil solution 

concentrations of bioessential elements that are required for their 

physiology, and previous work identified siderophore-producing organisms 

in biological soil crusts (BSCs). Siderophores are low-molecular weight 

organic compounds that bind a variety of elements and serve to increase 

element solubility and facilitate element uptake. Therefore, it was 

presumed that siderophore production was responsible for the soil solution 

concentration changes observed in live crusts. The purpose of the present 

study was to determine the molecular weight of siderophores produced by 

crust microbes using electrospray ionization mass spectrometry (ESI-MS). 

Four putative siderophores were identified with masses of 169, 348, 398, 

and 403 amu. These masses do not match those of any known 

siderophores produced by crust microbes. ESI-MS peak intensities of the 

unbound masses decreased with increasing iron, and intensities of the 

iron-bound masses increased with increasing iron concentration, 

suggesting that these peaks represent siderophores. Further work to 

confirm the siderophore-nature of the compounds demonstrated that 

compounds with masses of 169 and 398 amu are likely true siderophores.  
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Introduction 

Biological soil crusts (BSCs) are diverse microbial consortia that 

provide a plethora of valuable ecosystem services to arid environments. 

BSCs supply the primary sources of bioavailable carbon (Beymer & 

Klopatek, 1991; Evans & Lange, 2001; Garcia-Pichel, 2002) and nitrogen 

(Rychert & Skujins, 1974; Jeffries et al., 1992; Steppe et al., 1996; Belnap, 

2002) and solubilize other bioessential elements, such as iron and 

molybdenum (Beraldi-Campesi et al., 2009; Chapters 2 & 3). Composed 

of a mix of phototrophic and heterotrophic bacteria, archaea, fungi, algae, 

lichens, and mosses, BSCs form vertically stratified biosedimentary 

structures at the soil surface that serve to increase soil stabilization 

(Campbell, 1979; Schulten, 1985; Belnap, 1993; Garcia-Pichel & 

Wojciechowski, 2009; Rossi et al., 2012). Together, increasing the 

availability of bioessential elements and preventing erosion, the activities 

of BSCs work to sustain arid land fertility and prevent degradation (Isichei, 

1990; Belnap et al., 1994; Belnap, 1995; Bowker et al., 2008a). BSCs are 

slow-growing and extremely susceptible to disturbance; their recovery can 

take millennia (Belnap & Eldridge, 2001). Therefore, it is critical to 

understand what factors control BSC growth and development in order to 

promote arid land conservation and restoration (Belnap et al., 1994; 

Bowker et al., 2005; 2008c). 
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Crust microbes perform a variety of physiological processes that 

require trace metals for electron transfer and catalysis. For example, iron 

(Fe) and copper (Cu) are used in multiple components of microbial 

respiratory and photosynthetic electron transport (Lockau, 1981; Raven et 

al., 1999; Peschek et al., 2004; Ferguson-Miller et al., 2007; Bernroitner et 

al., 2008) and in ammonium oxidation (Murphy et al., 1974; Aparicio et al., 

1975; Lancaster et al., 1979; Guerrero et al., 1981; Rubio et al., 1999; 

Rubio et al., 2002), Fe and molybdenum (Mo) are used in biological 

nitrogen fixation (Burgess & Lowe, 1996; Howard & Rees, 1996), 

manganese (Mn) plays a key role in photosynthesis (Umena et al., 2011), 

zinc (Zn) is used in carbonic anhydrase (Smith & Ferry, 2000), and nickel 

(Ni) is needed for hydrogenase enzymes (Bothe et al., 2010). While this 

list is not exhaustive, it emphasizes the point that many trace metals are 

required for mandatory physiological processes. Therefore, obtaining 

these trace metals must be a high priority for BSCs. 

One might imagine that microbes living in intimate association with soil 

would be practically bathing in trace metals, however, this is not 

necessarily the case. Although trace metals may exist in high abundance 

either within mineral matrices or adsorbed to mineral surfaces and soil 

organics, the bioavailability of these trace elements is not guaranteed. The 

solubility of trace metals is pH and redox-dependent, and so certain 

conditions may render trace metals inaccessible to soil microbes. For 
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instance, under oxidizing conditions, Fe exists in the +3 oxidation state, 

which is less soluble than the +2 oxidation state (Brady & Weil, 2002). 

Exacerbating the low solubility of Fe3+ in most surface environments, is the 

decreased solubility of Fe with increasing pH. Therefore, at physiological 

pH values under oxidizing conditions, Fe becomes virtually unavailable to 

microbes, and the same is true of many other trace metals such as Mn 

and Cu (Brady & Weil, 2002). But, trace elements are essential 

components of many biological processes, and so soil microbes much 

have strategies to access them. 

One such mechanism by which soil organisms obtain much needed 

trace metals is the production of metal chelators. The most common of 

these are the siderophores, which are low molecular weight organic 

compounds that bind Fe with high affinity (Neilands, 1981). Some 

siderophores are also capable of binding other trace elements such as Mn 

(Saal & Duckworth, 2010; Szabó & Farkas, 2011), Cu (McKnight & Morel, 

1980; Kim et al., 2004; Bellenger et al., 2007), and Mo (Litos et al., 2006; 

Bellenger et al., 2007; Monteiro et al., 2010). When released from 

microbial cells, siderophores serve to increase metal solubility (Kalinowski 

et al., 2000; Kraemer, 2004; Liermann et al., 2000; 2005) and facilitate 

metal uptake (Neilands, 1973; Bellenger et al., 2008). The presence of 

siderophores in soils has been known for many years (Powell et al., 1980; 

Akers, 1983; Holmström et al., 2004; Essén et al., 2006), however, 
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siderophore production has never been explicitly studied in biological soil 

crusts. My previous work identified 10 siderophore-producing microbes in 

BSCs that belong to a range of bacterial lineages, perform multiple 

physiological processes, and play different ecological roles in crusts (see 

Chapter 5). The purpose of the current study was to investigate the 

siderophore compounds themselves; to attempt to determine their 

molecular weights. 

To do this I utilized electrospray ionization mass spectrometry (ESI-

MS), a technique that has proven effective for the identification and 

characterization of siderophores (Gledhill, 2001; Martinez et al., 2001; 

McCormack et al., 2003; Ross et al., 2003; Essen et al., 2006). ESI-MS is 

a soft ionization approach that allows the monitoring of intact molecules 

that become ionized through the loss or gain of one or more hydrogen 

ions. One benefit of soft ionization, is that it allowed me to observe 

siderophores in both their unbound and Fe-bound states. Another 

advantage of ESI-MS is that peak intensity is directly related to 

concentration and so I can infer relative abundances of ions in solution 

based on their relative peak intensities. Together, these qualities of ESI-

MS allowed me to investigate the nature of the siderophores produced in 

BSCs. 
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Methods 

Experiment 1 - Identification of Putative Siderophore Peaks 

An axenic culture of Nostoc punctiforme isolated from the crusts was 

grown in 2.5 L of modified BG-11 media (Allen & Stanier, 1968) in the 

absence of trace metals. The following components were used to make 

the media (per liter): 7.5 g MgSO3•7H2O, 3.6 g CaCl2•2H2O, 0.715 g 

H3BO3, 1 g Na2CO3, 1.53 g K2HPO4, and 0.03 g citric acid. The culture 

was incubated at 25°C and an irradiance (measured as photosynthetically 

active radiation) of 132 ± 3 µE m-2 s-1 for 6 weeks. This temperature is 

similar to temperatures recorded at the field site and the irradiance is 

sufficient for crusts to photosynthesize (Garcia-Pichel & Belnap, 1996). 

The media contained no fixed N so the Nostoc was actively fixing N2 as 

well. The presence of siderophores in the culture media was monitored 

weekly using the liquid chrome azurol S (CAS) assay, which contained 

(per liter): 60 mg chrome azurol S, 1.6 mg FeCl3, 3.6 mg HCl, and 73 mg 

hexadecyltrimethylammonium bromide (Schwyn & Neilands, 1987). Once 

a week, 1 mL of culture media was filtered through a 0.45 µm polysulfone 

membrane filter (Supor®, PES, Pall Corporation, Port Washington, NY) 

and mixed with 1 mL of CAS solution. The absorbance (A) of the mixture 

was measured at 630 nm on a Shimadzu UVmini-1240 

spectrophotometer. The CAS dye changes color and absorbance in the 

presence of siderophores that bind Fe. The absorbance in the Nostoc 



 
199 

culture media was compared to the absorbance of a reference (Aref) 

prepared by mixing 1 mL of uninnoculated media with 1 mL CAS solution. 

Lower absorbance observed in the inoculated media mixtures (A/Aref < 1) 

indicated the presence of siderophores.  

Once siderophores were detected, the culture media was centrifuged 

for 10 min at 4000 rpm, to separate cells from the media, and then filtered 

through a WhatmanTM GF/F filter (55 mm diameter, nominal pore size 

0.7 µm). Column chromatography was applied to separate the media into 

fractions and the CAS assay was used to determine which fractions 

contained siderophores. Cell-free culture supernatant was stirred for 3 h 

with Amberlite XAD-2 resin (100 mL; Supelco, SIGMA-ALDRICH, St. 

Louis, MO). Resin was prepared by rinsing 3 times with 250 mL methanol 

(Macron Chemicals, UntimAR®) and 5 times with deionized water (DI; 18.2 

MΩ·cm; NANOpure® DIamondTM UV, Barnstead International, Dubuque, 

IA). After 3 h, the majority of the fluid was removed, leaving enough liquid 

to form a slurry and allow the resin to be loaded onto the column (GE 

Healthcare, C26/70). The column itself was previously acid-washed with 

10% hydrochloric acid (HCl; EMD; ACS grade) and then rinsed with 3 

volumes of 18.2 MΩ·cm water. After the resin was poured into the column, 

the remaining supernatant was collected in acid-washed (20% HCl) 

polypropylene tubes. The column was eluted with 200 mL each of 100% 

18 MΩ·cm carbon-free water (NANOpure® DIamondTM UV, Barnstead 
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International, Dubuque, IA), 50/50 18 MΩ·cm water/HPLC grade methanol 

(Macron Chemicals, UntimAR®), and 100% HPLC grade methanol. Eluant 

fractions of 10 mL were collected sequentially in acid-washed (20% HCl) 

polypropylene tubes. Following collection, 50 µL of each fraction were 

transferred to a plastic 96-well plate, and 50 µL CAS solution was added. 

Negative controls were prepared from 50 µL of each eluant before it 

passed through the resin, and positive controls were prepared from 50 µL 

of 200 µM desferrioxamine B (DFAM). The 96-well plate was 

photographed immediately following CAS solution addition, after 1 h, and 

again after 24 h. Fractions that changed color from blue to yellow, orange, 

or purple were saved for further siderophore analysis. 

Twenty eluted fractions changed color in the presence of the CAS dye 

(Figure 6-1). These fractions were pooled in groups of 5 and prepared for 

electrospray ionization mass spectrometry (ESI-MS). For each pooled 

sample, 3 subsamples of 0.5 mL were mixed with 0.5 mL of each of the 

following: water (–Fe), 90 µM Fe (low Fe), and 180 µM Fe (high Fe). Final 

Fe concentrations in the low and high Fe additions were 45 and 90 µM, 

respectively.  

Samples were analyzed in positive ion mode on a triple quadropole 

electrospray ionization mass spectrometer (Finnigan™ TSQ® Quantum 

Discovery MAX™). Triplicate 25 µL injections of each sample were 

collected from vials with an autosampler (Finnigan™ Surveyor) and  
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Figure 6-1. Photograph of the 96-well plate showing positive CAS assay 
results for the XAD column eluant fractions. Fractions that changed color 
from blue to purple or yellow were pooled and analyzed by HPLC-ESI-MS. 
The wells outlined in solid boxes turned a light green to yellow color, and 
the wells outlined in dashed boxes turned a dark blue to purple color. 
 
passed through a C-18 high performance liquid chromatography (HPLC) 

column (Thermo Scientific®, Aquasil) and then into the ESI source. The 

mobile phase was 50/50  (vol/vol) 18.2 MΩ·cm water/HPLC grade 

methanol with 0.05% formic acid added as an ionization aid. The flow rate 

was 0.2 mL/min, the spray voltage was 4000 volts, and the capillary 

temperature was 300°C. The scanned mass range was 30-1500. Mass 

spectra were collected for 10 min with Xcalibur software (v2.0, Thermo 

Scientific®) to ensure that all material was eluted from the column before 

injecting the next sample. Water blanks were run every 5 samples. 
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Analysis of the total ion chromatograms revealed a well-defined peak 

over the 1.75-2.15 min retention time range in all samples (Figure 6-2). 

Therefore, mass spectra for blanks and samples were only integrated over 

this time range. Average blank and sample peak intensities were 

calculated from the triplicate injections for each mass. The average blank 

peak intensity was subtracted from the average sample peak intensity, 

and error was propagated according to Bevington & Robinson (2002). All 

negative values that resulted from the blank subtraction were set to zero.  

 
Figure 6-2. Representative Total Ion Chromatogram (TIC) of one of the 
CAS-positive XAD fractions from the 2.5 L culture of Nostoc punctiforme. 
The peak appeared between 1.75 and 2.15 min retention time; therefore, 
all ESI-MS spectra of culture media at various Fe concentrations and of 
soil solutions from crust experiments were integrated over this time period. 
 

Data were grouped so that peak intensities for –Fe, low Fe, and high 

Fe solutions for each pooled sample formed an array, and a Linest 

function (Microsoft Excel) was used to determine which masses showed 

increasing and decreasing intensities with Fe concentration. For each 

mass-to-charge ratio, the mass-to-charge ratio for the matching doubly-
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charged ion was calcualted, as well as the singly- and doubly-charged Fe-

bound ions. These calculations generated peak groups with four ions in 

each group. Peak groups for which the unbound peak intensities 

decreased with increasing Fe concentration and the Fe-bound peak 

intensities increased with increasing Fe concentration were identified as 

putative siderophores. Linear regression analyses were performed in 

Excel for all peaks in each group that met the above criteria. Those groups 

that had 3 or more peaks that changed significantly with Fe concentration 

were selected for further analysis (Table 6-1), and peak intensities of 

those peaks were analyzed in the remaining experiments.  

An aqueous solution of 200 µM desferrioxamine B (DFAM) with and 

without added Fe, was analyzed with ESI-MS, as described above, to 

determine what ions are observed in the mass spectrum of a typical 

siderophore in both the bound and unbound forms (Figure 6-3).  

Experiment 2 - Confirmation of Siderophore Peaks 

The same culture of Nostoc punctiforme was grown under 3 Fe 

concentrations (no added Fe, 5 µM Fe, and 10 µM Fe). Triplicate bottles 

of each Fe condition were prepared with 1 L volumes of BG-11 media with 

the following concentrations: 7.5 g MgSO3•7H2O, 3.6 g CaCl2•2H2O, 0.715 

g H3BO3, 1 g Na2CO3, 1.53 g K2HPO4, 0.03 g citric acid, 0.453 g 

MnCl2•4H2O, 0.055 g ZnSO4•7H2O, 0.098 g Na2MoO4•2H2O, 0.02 g 

CuSO4•5H2O, 0.01 g NiCl2•6H2O, 0.01 g CoCl2•6H2O, and 0.009 g 
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Table 6-1. Formulas and masses of the known siderophore desferrioxamine (DFAM) and 4 putative siderophores 
(PS1-4). Actual mass (M) is the mass of the uncharged, unbound compound. The ions observed in the ESI-MS spectra 
are displayed as functions of the actual mass. All masses are in atomic mass units (amu). 
 

 Actual Mass Ions Observed in ESI-MS Spectra 

 Uncharged 
Unbound 

Singly-charged 
Unbound ion 

Doubly-charged 
Unbound ion 

Singly-charged 
Fe-bound ion 

Doubly-charged 
Fe-bound ion 

 M M+1 
1 

M+1 
2 

M+53+1 
1 

M+53+1 
2 

DFAM 561 562 281 615 308 
PS1 169 170 85 223 112 
PS2 348 349 175 402 201 
PS4 398 399 200 452 226 
PS3 403 404 202 457 229 
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Figure 6-3. Mass spectra for desferrioxamine B (DFAM). Panel (a) shows 
mass-to-charge ratios from 175 to 340 amu, with DFAM peaks at 281 and 
308, corresponding to the doubly-charged, unbound and doubly-charged, 
Fe-bound ions, respectively. Panel (b) shows mass-to-charge ratios from 
555 to 620 amu and highlights peaks at 562 and 615 amu corresponding 
to the singly-charged, unbound DFAM and singly charged, Fe-bound 
DFAM, respectively. Formulas for calculating the mass to charge ratios of 
the four ions for putative siderophores were based on the ions observed in 
this spectrum. 
 
Na3VO4. After mixing, the media was sterilized by autoclaving. Bottle caps 

were fitted with a long tygon tube that reached to the bottom of the bottle 

that allowed aeration and media sample collection, and 2 short tygon 

tubes were placed at the top for aeration and sampling. Tubes and caps 
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were sterilized by microwaving in 3 inches of water 4 times at 3, 2, 3, and 

2 minute intervals (Felisa Wolfe-Simon, personal communication). Filters 

(0.8/0.2 µm, Pall Corporation, Acrodisc®, Supor®) were placed on the 2 

short tubes to prevent contamination, and caps were placed on the 1 L 

bottles. All glass- and plasticware was soaked in clean 20% HCl for 48 h. 

Bottles were inoculated with ~20-25 mL Nostoc punctiforme culture and 

transferred to the incubator at 25°C and 132 ± 3 µE m-2 s-1.  

At the end of the experiment, 1 mL of culture media was collected for 

HPLC-ESI-MS analysis. Media was removed from each bottle using a 

sterile syringe and filtered through a 0.45 µm filter into 2 mL acid-washed 

(20% HCl) polypropylene tubes. Methanol (1 mL Macron Chemicals, 

UltimAR®) was added to each tube. Tubes were shaken to mix, wrapped 

with parafilm to minimize evaporative loss, and stored at -20 ºC for 1 to 3 

weeks. Samples were analyzed with HPLC-ESI-MS as above. Putative 

siderophore peaks were identified in the previous experiment, so I focued 

on analyzing the intensities of those peaks in the mass spectra from 

Experiment 2. 

Additionally, at the end of the experiment, three 100 mL volumes of 

culture media were vacuum filtered onto preweighed GF/F filters. Filters 

were allowed to dry and then reweighed to determine the dry weight 

biomass per 100 mL culture. Peak intensities were divided by the average 

dry weight biomass in order to normalize peak intensity to culture density. 
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Experiment 3 - Siderophore Production in Intact Crusts 

Soil solutions from the +H2O treatment described in Chapter 3 were 

used for ESI-MS analysis in the current study. Briefly, dark crust samples 

were collected at the Green Butte site (Strauss et al., 2012) north of Moab, 

UT (N 38°42′56.2″, W 109°41′32.7″) in May, 2009. Dark crusts were 

visually selected because they are dominated by a diverse cyanobacterial 

assemblage and have minimal lichen and moss cover (Garcia-Pichel & 

Belnap, 1996; Garcia-Pichel et al., 2001). Soils were collected by inserting 

the lid of a Petri dish (50 mm x 13 mm) into the soil and using a plastic 

spatula to remove the lid and soil within. Inversion of the soil allowed the 

bottom of the dish to be inserted, and crusts were then transported and 

stored in their original orientation (Garcia-Pichel et al., 2003). Soils were 

stored at 20ºC until October, 2009. Crusts may be stored for up to 24 

months without significant changes to microbial community composition 

(Campbell et al., 2009). Killed control were prepared by autoclaving 

crusted soil. 

Six crusts and 6 killed controls were placed into incubation dishes 

constructed by stacking the bases of two Petri dishes (50 mm x 13 mm) 

and sealing the seam between the dishes with black electrical tape. Small 

holes were melted into the base of the top dish to allow water to move into 

the bottom dish. One small hole was melted into the side of the bottom 

dish to serve as a sampling port for water collection. WhatmanTM GF/F 
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filters (55 mm diameter, nominal pore size 0.7 µm) were placed over the 

perforated surface in the top dish, and the soils were transferred into the 

top dish in their original orientation.  

The 12 soils were wetted with 15 mL DI water and transferred to an 

incubator maintained at 25°C and 110 µE m-2 s-1. Soil solution was 

collected on Days 1, 3, and 5 by applying gentle vacuum suction through 

the sampling port with a 60 mL syringe. On Day 5, soils were removed 

from the incubator and allowed to dry for 5 days. On Day 10, soils were 

rewetted with 15 mL DI water, and soil solution was collected on Days 10, 

12, and 14. Soil solution (1 mL) was filtered through 0.45 µm polysulfone 

membrane filters (Supor®, PES, Pall Corporation, Port Washington, NY) 

into acid washed polypropylene tubes. Methanol (1 mL) was added to 

each tube, solutions were mixed, tubes were wrapped in parafilm to avoid 

evaporative sample loss, and solutions were stored at -20°C. Solutions 

were analyzed by HPLC-ESI-MS according to the methods described 

above, with specific attention payed to the intensities of the putative 

siderophore peaks identified in Experiment 1.  

Linear regression analyses of putative siderophore peak intensities 

against time (day) were run in SigmaPlot v11.0 (Systat Software Inc., 

Chicago, IL). Peak intensities in crusted samples were compared to peak 

intensities in killed controls using a Mann-Whitney Rank Sum test in 

SigmaPlot. P-values < 0.10 were considered statistically significant. 
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Results 

Identification of Putative Siderophore Peaks 

Twenty XAD column fractions tested positive for siderophores 

(Figure 6-1). When pooled XAD column eluant fractions were analyzed 

with HPLC-ESI-MS a well-defined peak was observed over the period of 

1.75-2.15 min (Figure 6-2). All samples and blanks were integrated over 

this time period. 

The DFAM siderophore reference spectrum revealed 4 dominant 

peaks (Figure 6-3). Peaks are characterized by mass and charge. For 

example, a peak with a mass of 100 atomic mass units (amu) and a single 

charge would appear at a mass-to-charge ratio (m/z) of 100 amu. If that 

same peak was doubly-charged it would appear at a m/z of 100/2 or 

mass-to-charge = 50 amu. The peaks in the DFAM reference spectrum 

included a singly-charged unbound ion [(M+1)/1], a doubly-charged 

unbound ion [(M+1)/2], the singly-charged, Fe-bound ion [(M+53+1)/1], 

and the doubly-charged Fe-bound ion [(M+53+1)/2] (Figure 6-3a-b, Table 

6-1). For DFAM, with a molecular mass of 561 amu, the ESI-MS peaks 

correspond to mass-to-charge ratios of 562, 281, 615, and 308 amu, 

respectively. My studies looked for compounds that bound Fe in a similar 

manner as DFAM. The peaks representing these compounds, therefore, 

displayed identical mass-to-charge and iron-binding relationships to one 

another as the DFAM peaks.  
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Four peak groups from Nostoc punctiforme culture media met the 

criteria for putative siderophores. In these groups, the cumulative intensity 

of the peaks corresponding to the singly- and doubly-charged unbound 

ions decreased with increasing Fe concentration, while the cumulative 

intensity of the peaks corresponding to the Fe-bound ions increased with 

increasing Fe concentrations (Figure 6-4a-d). The actual masses of the 

putative siderophores are 169, 348, 398, and 403. The mass-to-charge 

ratios of the unbound and Fe-bound peaks are summarized in Table 6-1. 

Confirmation of Siderophore Peaks 

Biomass normalized cumulative intensities of several putative 

siderophore peaks from the batch culture studies of Nostoc puntiforme 

grown under variable Fe concentrations (Experiment 2) changed 

significantly with changing Fe concentration (Figure 6-5a-d, Table 6-2). 

This cumulative intensity assumes the presence of the siderophore in any 

form (bound or unbound, singly- or doubly-charged) and is sufficient to 

establish it’s presence. I am essentially estimating the total amount of 

siderophore present as a function of the iron concentration of the Nostoc 

culture media. For the compound with mass 169 amu, peak intensities 

were lower under 10 µM Fe than 5 µM Fe. However, concentrations were 

also lower under 0 µM Fe than 5 µM Fe. Peak intensities increased 

significantly with Fe concentration for the compound with a mass of 348 

amu (p = 0.10), and peak intensities decreased significantly with Fe  
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Figure 6-4. Cumulative peak intensity vs. iron treatment for four different 
peaks that correspond to putative siderophores; a) Mass, M = 168 amu, b) 
M = 348 amu, c) M = 398 amu, and d) M = 403 amu. Putative 
siderophores were identified as peaks for which the intensities of the 
unbound peaks decreased significantly with increasing Fe concentration 
and the intensities of the matching Fe-bound peaks increased significantly 
with increasing Fe concentration. Peak intensities of singly- and doubly-
charged ions were summed for unbound ions (grey bars) and bound ions 
(white bars). The mass of the uncharged, unbound compound is shown on 
each panel, and the masses of the ions in each group are displayed in 
Table 6-1. The intensities of bars that represent the unbound peaks (grey) 
are highest for the 0 µM Fe treatment and decrease to below detection in 
the 90 µM Fe treatment. The bars that represent the Fe-bound peaks 
(white) have lower intensities for the 0 µM Fe treatment and are highest in 
the 90 µM Fe treatment. Peak intensities are generally intermediate under 
the 45 µM Fe treatment. 
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Figure 6-5. Cumulative peaks intensity normalized to biomass for the four 
putative siderophores under each Fe treatment in Experiment 2; a) Mass, 
M = 168 amu, b) M = 348 amu, c) M = 398 amu, and d) M = 403 amu. 
Peak intensity was highest under 5 µM Fe for the compound with mass 
169 amu. Peak intensity increased significantly with increasing Fe 
concentration for the compound with mass of 348 amu (p = 0.10). Peak 
intensity decreased significantly with increasing Fe for the compound with 
mass of 398 amu (p = 0.09). Peak intensity did not change significantly 
with Fe concentration for the compound of mass 403 amu. Based on 
these results, compounds with masses 169 and 398 are most likely to be 
true siderophores. 
 
concentration for the compound with a mass of 398 amu (p = 0.09; Table 

6-2). Peak intensities did not change significantly with Fe concentration for 

the compound with a mass of 403 amu (Table 6-2). 
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Table 6-2. Results of linear regression of cumulative biomass-normalized 
peak intensity and Fe concentration in Experiment 2. 
 

Compound 
Mass (M) R2 p-value 

Direction of change 
with increasing iron 

169 <0.01 0.52 No change 

    
348 0.98 0.10 Increase 

    
398 0.98 0.09 Decrease 

    
403 0.47 0.52 No change 

 

Siderophore Production in Intact Crusts 

Putative siderophore peaks were identified in the soil solutions of 

crusted samples; however, peak intensities did not change significantly 

with time in crusted samples, nor were there any significant differences 

between peak intensities in crusted samples and killed controls. 

Discussion 

Putative siderophore were identified as those for which the unbound 

masses decreased and the Fe-bound masses increased with increasing 

Fe concentration. This can be seen very clearly in Figure 6-4 where the 

cumulative peak intensities of the unbound masses (grey bars) are highest 

under 0 µM Fe conditions and disappear under 90 µM Fe conditions. In 

contrast, the peak intensities of the Fe-bound peaks (white bars) are 

lowest under the 0 µM Fe, and increase under 45 and 90 µM Fe. The 

increase in peak intensity of Fe-bound peaks with increasing Fe 

concentration was significant at better than the 90% confidence level for 
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the majority of individual peaks (singly- and doubly-charged, Fe-bound 

peaks) before peak intensities were added (data not shown). This pattern 

is typical for hydroxamate siderophores, such as desferrioxamine B 

(DFAM) shown in Figure 6-6a (Kiss & Farkas, 1998);  DFAM loses 3 

hydrogen atoms (mass = 1) when bound to Fe (mass = 56) (Jessica 

Martin, personal communication). Therefore, the net mass gain is 53 (i.e., 

56-3), which allowed me to easily calculate the mass-to-charge ratios of 

the singly- and doubly-charged Fe-bound compounds associated with any 

given mass. If the peak intensities of the Fe-bound masses increased 

when Fe concentration increased, I could infer that those peaks 

represented a putative siderophore. 

 
Figure 6-6. Structures of known siderophores;  (a) is the hydroxamate 
siderophore desferrioxamine B (Kiss & Farkas, 1998), (b) is the 
catecholate siderophore Bacillibactin (Dertz et al., 2006). 
 

Not only did my peaks show the correct behavior with increasing Fe 

concentration, as described above, but they were also within the right size 

range for siderophores. Siderophores are low-molecular weight organic  

(a) (b) 
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compounds that generally do not exceed 500-1000 amu (Neilands 1981); 

my compounds range in mass from 169-403 amu. Therefore, I conclude 

that compounds with masses 169, 348, 398, and 403 (Table 6-1, Figure 

6-4), are excellent siderophore candidates. 

When the peak intensities for all 4 peaks of each group are summed, 

they do not equal the same total intensity under each Fe treatment 

(Table 6-3). The 0 µM Fe, 45 µM Fe, and 90 µM Fe solutions were 

partitioned from the same pooled sample, so one might anticipate they 

should have the same concentrations of each compound. Since ESI-MS 

peak intensity is correlated with concentration, one might expect the sum 

of all peaks that represent a single compound to equal the same total 

intensity in each Fe condition. However, this is not always the case; for 

example, one can see that the sum of peak intensities for mass 169 under 

–Fe is 175,223 (Table 6-3). However, the sum of all peak intensities under 

low and high Fe is 800,000-900,000. This does not necessarily mean 

these peaks do not represent a siderophore, as peak intensities are not  

 
Table 6-3. Sum of all peak intensities for a given putative siderophore 
mass. 

 

 Total Peak Intensity (mV) 
Mass  –Fe low Fe high Fe 

169 175,223 823,986 901,318 
348 55,482 36,894 53,336 
398 377,611 973,962 417,389 
403 60,029 1,815,349 3,751,841 
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entirely quantitative. It is possible that I am not including some peaks in 

the spectrum, such as sodium-adducts or other metal complexes. If the 

putative siderophore is bound to a metal other than Fe in the native 

sample we would not detect it at M+53+1; upon addition of Fe, the 

siderophore might preferentially bind iron and we would see a 

disproportionate increase in the Fe-bound peak. It is also possible that the 

iron added to the sample during analysis altered the response factor for 

the siderophore peaks or caused ion suppression or enhancement. But, 

the fact that peaks representing unbound and Fe-bound compounds 

change intensities appropriately with increasing Fe concentrations is 

enough at this stage to call these compounds putative siderophores. 

Siderophore-producers are known to exist in biological soil crusts 

(BSCs; see Chapter 5), however, the majority of the siderophores 

produced by organisms in crusts are as yet, uncharacterized. The 

exceptions are the catecholates produced by Bacillus spp. that include 

hexadentate Bacillibactin (Figure 6-6b; Dertz et al., 2006) and an 

assortment of bidentate dihydroxybenzoic acids (Ito and Neilands, 1958; 

Peters and Warren, 1968; Temirov et al., 2003). Bacillus spp. have been 

found in BSCs (see Chapter 5; Gundlapally & Garcia-Pichel, 2006), but, 

unfortunately, catecholates do not behave as predictably as hydroxamate 

sideropheres in the ESI-MS, nor do they follow the simple Mass+53 rule, 

that hydroxamate siderophores bound to Fe exhibit (Jessica Martin, 
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personal communication). However, the masses of Bacillibactin 

(~850 amu) and the other catechols produced by Bacillus spp. (~210 amu) 

are not close to the putative siderophore masses I observed, and so I can 

safely rule them out. Nostoc spp. comprise 80-90% of the nitrogen fixing 

community in the crusts used in the current study (Yeager et al., 2004; 

2007), and members of the Nostoc genus have been shown to make a 

hydroxamate siderophore that was preliminarily identified as schizokinen 

(Umamaheswari et al., 1997). However, schizokinen has a mass of 

~420 amu. Therefore, I conclude that my putative siderophores are not a 

known compound produced by either Bacillus or Nostoc spp., and are, 

therefore, likely to be novel compounds. 

The ESI results of culture media from Nostoc punctiforme grown under 

variable Fe concentrations (Experiment 2) demonstrated that compounds 

with masses 169 and 398 amu are most likely true siderophores. 

Siderophores are typically produced under Fe-limitation, so the less 

bioavailable Fe that exists, the higher siderophore production should be. 

This was the case for the compound with mass of 398 amu for which the 

cumulative intensity of siderophore peaks decreased significantly with 

increasing Fe concentration (p = 0.09; Figure 6-5, Table 6-2). Therefore, I 

conclude that the compound with a mass of 398 amu is an 

uncharacterized siderophore. 
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For the compound with a mass of 169 amu, peak intensities decreased 

from 5 µM Fe to 10 µM Fe as expected, but peak intensities were lower 

under 0 µM Fe than 5 µM Fe, contrary to my expectations. Visual 

observations of the 0 µM Fe cultures in Experiment 2 showed very low cell 

density, and in fact, neither chlorophyll nor optical density was 

measureable in aliquots from the 0 µM Fe cultures. In addition, Nostoc 

biomass, which is normally a deep green color, was yellow to brown in the 

0 µM Fe bottles, indicating severe chlorosis, a loss of photosynthetic 

pigment that can occur under Fe-limitation (Rueter et al., 1990; Wilhelm & 

Trick, 1995). Lack of biomass and discoloration suggest that the bacteria 

were so Fe-starved they were struggling to survive, and therefore would 

have had few resources to dedicate to siderophore production. This was 

likely exacerbated by the fact that no bioavailable nitrogen source was 

added to the culture media (since Nostoc is a known nitrogen fixer). 

Therefore, Fe-limitation would have resulted in co-limitation with respect to 

nitrogen (Vitousek & Howarth, 1991; Berman-Frank et al., 2001; Mills et 

al., 2004; Zerkle et al., 2006), making it even more difficult for the 

cyanobacteria to fabricate siderophores. Biomass content in 5 µM Fe and 

10 µM Fe bottles increased slightly with Fe concentration and 

discoloration of the biomass was less apparent with increasing Fe 

concentrations (data not shown), although chlorophyll and optical density 

were similarly unmeasureable in these bottles. Therefore, I conclude that 
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the compound with a mass of 169 amu is a siderophore, and I infer that 

the 0 µM Fe condition was so iron-limited as to cause cell death, 5 µM Fe 

was low enough to induce Fe-limitation and siderophore production, but 

high enough to permit culture survival, and that finally, under 10 µM Fe, 

there was enough Fe to inhibit siderophore production. In addition, it is 

important to note that soil crust isolates do not grow particularly well in 

liquid media because they are accustomed to growing on a solid 

substrate. Thus, it is possible that a different experimental design would 

better facilitate their growth at low Fe concentrations.  

I did not see any evidence for siderophore production in the soil 

solutions of intact crusts. One explanation is that Fe was not limiting in the 

particular crusts we used, and so siderophores were not produced. 

Bacterial Fe requirements are typically in the micromolar range (Lankford, 

1973), and average Fe concentrations in the soil solution of crusts ranged 

from below detection to 34 µM (see Chapter 3). Therefore, it is probable 

that some crusts experienced Fe-limitation, while others did not. It is also 

possible that we did not detect siderophores because they were simply 

below detection in the soil solutions. (Typical detection limits for DFAM 

were around 2 µM.) This could be because collection techniques diluted 

siderophores, or because there was not enough biomass in the crust to 

produce siderophores in sufficient quantities. Different collection methods, 

coupled with pre-concentration techniques, might maintain siderophores at 
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detectable concentrations and allow further investigation of siderophore 

production in actively metabolizing soil crusts. Another potential 

explanation for the lack of siderophore detection in crust extracts is the 

storage time of soil solutions between collection and ESI-MS analysis. 

Although every effort was made to preserve soil solution organic matter by 

adding methanol and storing solutions at -20ºC, siderophores may have 

degraded during storage. Finally, it is possible that our experiments were 

too short to detect siderophore production given the limitations of our 

collection techniques. 

Summary and Implications 

Overall, I know that siderophore-producers exist in BSCs (see Chapter 

5), and of the four putative siderophores I identified with ESI-MS, two 

compounds are true, novel siderophores. The ability to utilize siderophore-

bound metals requires that an organism possess receptors to recognize 

the siderophore. Siderophore recognition imparts an ecological advantage 

on organisms because it provides them with a source of a potentially 

limiting micronutrient. Many organisms are able to recognize and utilize 

siderophores produced by other species, thus decreasing the competitive 

advantage of the siderophore producer. Therefore, the likely evolutionary 

drive is to produce novel compounds for which one’s competitors do not 

have receptors. The fact that the siderophores produced by crust  
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microbes are novel, speaks to the ecologically competitive nature of crusts 

that must survive in extreme environments.  

Future directions for this work could include the identification of 

additional siderophores produced by other crust organisms and 

elucidation of siderophore structures. Once siderophores are purified, it 

would also be possible to investigate the unique metal-binding capabilities 

of each compound. It would be interesting to measure siderophore 

production by isolated crust microbes grown on a solid substrate, such as 

sterile quartz sand, in order to more effectively simulate the natural 

conditions of BSCs. And, finally, additional studies of field crusts would 

provide information about siderophore production in situ. Any future work 

with intact crusts should use pre-concentration techniques prior to analysis 

and perform ESI-MS analyses within hours to days of soil solution 

collection.  
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CHAPTER 7 

CONCLUSIONS, IMPLICATIONS, AND FUTURE WORK 

Prior to my work, very little was known about the geochemical effects 

of biological soils crusts (BSCs) on the soil solid-phase. Several studies 

investigated the correlation between crust cover and element distributions 

(Rogers, 1972; Bowker et al., 2005; Beraldi-Campesi et al., 2009), and a 

couple looked at the influence of element addition on crust physiology 

(Bowker et al., 2008b; Hartley & Schlesinger, 2002). But in general, there 

has been very little work explicitly linking the geochemical environment  to 

the physiology or ecology of biological soil crusts. My work is the first to 

monitor the real-time effects of crusts on soil element mobility, and to 

demonstrate the mechanisms by which crusts actively alter soil solution 

element concentrations. My results provide the first evidence for 

siderophore production in crusts, and therefore, are also the first report of 

the ecological roles of siderophore producers and the types of 

siderophores found in BSCs.  

The goal of my initial experiments was to determine whether or not 

BSCs actively influence soil solution element concentrations, and if 

changes in soil solution concentrations could provide insight into active 

biological processes (see Chapters 2 & 3). Using simulated rainfall 

experiments and N2 fixation as a measure of metabolism, I was able to 

assess changes in soil solution concentrations of living crusts under 
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different metabolic conditions. Several of my experimental studies showed 

that multiple bioessential elements have lower soil solution concentrations 

in crusted soils versus killed controls, which reflects overall uptake of 

elements by crusts that are released into the soil solution when the 

microbes are killed. The analysis of concentration changes in the soil 

solution of live crusts revealed that some elements showed evidence of 

microbial uptake, while others showed evidence of microbial solubilization. 

In particular, I observed microbial uptake of nickel and zinc (Chapter 3), 

microbial solubilization of molybdenum (Chapter 2) and copper (Chapter 

3), and both uptake and solubilization of potassium and manganese 

(Chapter 3). My results prove that BSCs actively influence soil solution 

concentrations of bioessential elements and support the original findings 

of Beraldi-Campesi et al. (2009) who postulated that microbial 

solubilization would leave elements susceptible to leaching down the soil 

profile, which over time, would result in element depletions in the soil 

solid-phase. 

Next, I wanted to know if crusts were limited with respect to 

molybdenum (Mo), which is required in large quantities for nitrogen (N2) 

fixation. I found that Mo addition significantly increased N2 fixation rates; a 

clear indication that N2 fixation in crusts is limited by Mo (see Chapter 4). 

This is interesting because Mo was solubilized in some crusts (Chapter 2). 

Together, the evidence for Mo solubilization coupled with Mo limitation of 
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crust N2 fixation, exhibit the link between element need for microbial 

physiology, and microbial element acquisition strategies. Molybdenum is 

required by crusts in high amounts, and yet the availability of Mo limits N2 

fixation. Therefore, crusts must actively solubilize solid-phase Mo to meet 

the demands of N2 fixation. 

Given that crusts actively alter soil solution element concentrations, 

and that they do so to combat metal limitation for critical physiological 

processes, such as N2 fixation, I was interested in the strategies crusts 

use to obtain bioessential elements, like Mo. I hypothesized that crusts 

produce siderophores to both increase the solubility of elements and to 

facilitate element uptake. Siderophores are low molecular weight organic 

molecules that bind iron and other elements with high affinity. Siderophore 

production is a common strategy used by soil microbes to obtain 

bioessential elements, however, it had never been investigated in BSCs. I 

confirmed that multiple organisms produce siderophores in crusts, thus 

proving for the first time that siderophore production is one mechanism by 

which crusts obtain bioessential elements (see Chapter 5). I also found 

that siderophore producers belong not only to dominant microbial groups, 

such as the cyanobacteria and Alphaproteobacteria,but also to less 

dominant groups like the Betaproteobacteria and Firmicutes. 

Cyanobacteria are the primary N2 fixing organisms in crusts, and they are 

also the major crust builders, so it is expected that cyanobacteria would 
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produce siderophores. Butsiderophore production by the less dominant 

crust members suggests that the heterotrophic bacteria may play a critical 

role in element cycling within crusts. Half of the siderophore producers I 

isolated did not closely match any published sequences, indicating that 

they are likely novel organisms and that the siderophores they produce 

may be unique as well. The organic chemistry that isolated siderophores 

coupled with the molecular techniques that identified the siderophore 

producing microbes revealed that organisms previously thought to be 

minor players in crust ecology, may play important roles by increasing 

metal availability. The ecological structure of siderophore producing 

microbes in the crust system may not have been discovered by biological 

studies alone. 

Finally, I began work to characterize the siderophore compounds 

themselves. I focused my efforts on the isolate that was most closely 

related to Nostoc punctiforme, because it is among the dominant N2 fixing 

organisms in the crust, and although siderophore production has been 

suggested for Nostoc spp., it has not been confirmed. Using mass 

spectrometry techniques, I identified four putative siderophores, and 

determined that two of these compounds are likely to be true siderophores 

with molecular weights of 169 and 398 amu, respecitively (see Chapter 6). 

These molecular weights do not match the molecular weight of  
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schizokinen, the siderophore supposedly produced by Nostoc spp., 

therefore I conclude these are novel compounds.  

Together the results of my work demonstrate that crust microbes 

directly influence soil element mobility through the production of 

siderophores. I observed soil solution concentration changes that were 

consistent with microbial uptake and microbial solubilization. I found that 

50% of the siderophore producers I isolated are novel organisms, and 

evidence suggests that the siderophore compounds they produce are 

unique as well.  

Trace metal evidence for ancient crust communities is likely to be 

better preserved in the rock record than organic molecules. Beraldi-

Campesi et al. (2009) suggested that soils depleted in manganese (Mn), 

copper (Cu), and zinc (Zn) may represent biosignatures of ancient BSC 

communities. They proposed that microbial solubilization left these 

elements vulnerable to leaching losses. My work supports their 

suggestion, as I observed real-time increases in Mn, Cu, and Zn soil 

solution concentrations that are evidence of microbial solubilization. 

Combined with morphological evidence for crusts, element depletions may 

represent geochemical signatures of biological activity that could be used 

to effectively study the existence of crusts on ancient Earth, as well as on 

an older, wetter Mars. That crusts produce siderophores may provide yet 

another tool for studying ancient crusts, as the presence of organic ligands 
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leaves a characteristic weathering pattern in minerals (Neaman et al., 

2005a, b). More work is required to determine whether certain element 

depletions are universal among crusts, and to see how element depletions 

depend on rock-type. However, my results confirm that geochemical 

biosignatures will be valuable tools for the study of ancient crusts. 

Crusts are critical members of arid ecosystems, and increasing crust 

cover can go a long way to preserving the fertility of arid lands. Bowker et 

al. (2005) proposed that crust fertilization may enhance crust growth and 

development, and the results of my work provides insight for crust 

conservation and management personnel as to which elements may be 

effective fertilizers. Microbial uptake and solubilization are both evidence 

that a given metal is required by BSCs. If crusts need a very small 

proportion of the available soil solution element pool, I would not have 

been able to see biologically-mediated concentrations changes. Because I 

observed significant concentration changes for some elements, I infer that 

a large proportion of the available soil solution element pool of these 

elements is needed by crusts. If crusts require a large proportion of the 

available element pool, that element may become limiting, especially since 

there is little input of fresh material, except that brought in by dust 

(Reynolds et al., 2001; 2006). Therefore, those elements that showed 

concentration changes consistent with uptake or solubilization are likely to 

be or to become limiting to crusts, and are good candidates for crust 
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fertilization. Before application of a fertilizer is considered for a given 

location, experiments would need to be conducted to determine which 

elements show signs of uptake or solubilization at that particular site. 

Once the potentially limiting elements are identified, experiments would be 

needed to verify that addition of an element enhances the rate of a 

particular physiological process relevant to BSC growth. For example, 

does Mn addition increase rates of photosynthesis? It would also be 

necessary to optimize the amount of element added, as many elements 

may serve as fertilizers up to a certain concentration, at which point they 

become toxic. Finally, other factors such as light and water availability 

must be considered as contributors to crust growth. 

There are several sets of experiments that could provide additional 

information about siderophore production in BSCs. First, it would be 

worthwhile to conduct experiments such as those described in Chapter 6, 

for additional organisms. After the molecular weights of the siderophores 

are determined and compared to the weights of known compounds, 

further structural characterization would be needed for the novel 

compounds. This work would involve nuclear magnetic resonance (NMR) 

studies and collision experiments using electrospray ionization mass 

spectrometry (ESI-MS). Once compounds are purified, it would be 

interesting to determine which metals each compound is capable of 

binding. Since many of the siderophores produced in BSCs are likely 
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novel, they may have unique metal-binding abilities that are tailored to the 

specific metal needs of crust microbes. Lastly, studies of siderophore 

production in live, intact crusts would shed light on which organisms 

produce siderophore in situ, and provide a more detailed understanding of 

metal cycling in complex BSC communities. 

Overall, my research was the first to show evidence that BSCs actively 

influence soil element mobility and that the effects of BSCs on elements is 

directly linked to their physiological requirements. My results are 

applicable to the understanding of crust biosignatures that could be used 

to study the existence and evolution of ancient crust communities, as well 

as to the development of crust conservation and management techniques 

that could be used to prevent arid land degradation and enhance arid land 

fertility. My work also provides insight into the types of studies that could 

enhance our understanding of element cycling within BSCs, which will 

further our ability to comprehend the past and future roles of crusts in arid 

ecosystems. 
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