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ABSTRACT  

   

Differences between males and females can evolve through a variety of 

mechanisms, including sexual and ecological selection.  Because coloration is 

evolutionarily labile, sexually dichromatic species are good models for 

understanding the evolution of sex differences.  While many jumping spiders 

exhibit diverse and brilliant coloration, they have been notably absent from such 

studies.  In the genus Habronattus, females are drab and cryptic while males are 

brilliantly colored, displaying some of these colors to females during elaborate 

courtship dances. Here I test multiple hypotheses for the control and function of 

male color.   

 In the field, I found that Habronattus males indiscriminately court any 

female they encounter (including other species), so I first examined the role that 

colors play in species recognition.  I manipulated male colors in H. pyrrithrix and 

found that while they are not required for species recognition, the presence of red 

facial coloration improves courtship success, but only if males are courting in the 

sun.  Because light environment affects transmission of color signals, the multi-

colored displays of males may facilitate communication in variable and 

unpredictable environments.  Because these colors can be costly to produce and 

maintain, they also have the potential to signal reliable information about male 

quality to potential female mates. I found that both red facial and green leg 

coloration is condition dependent in H. pyrrithrix and thus has the potential to 

signal quality.  Yet, surprisingly, this variation in male color does not appear to be 

important to females.   
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 Males of many Habronattus species also exhibit conspicuous markings on 

the dorsal surface of their abdomens that are not present in females and are 

oriented away from females during courtship.  In the field, I found that these 

markings are paired with increased leg-waving behavior in a way that resembles 

the pattern and behavior of wasps; this may provide protection by exploiting the 

aversions of predators.  My data also suggest that different activity levels between 

the sexes have placed different selection pressures on their dorsal color patterns.  

Overall, these findings challenge some of the traditional ways that we think about 

color signaling and provide novel insights into the evolution of animal coloration.      
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PREFACE  

Sexual dimorphism in animals can evolve for a variety of reasons, which can be 

broadly divided into either sexual selection (Andersson 1994) or ecological 

selection (Slatkin 1984).  Sexual selection drives the evolution of traits via male-

male combat over access to females, such as the antlers of deer or the horns of 

rhinoceros beetles (reviewed in Emlen 2008), or via female choice for 

exaggerated male ornaments such as the large elaborate trains of peacocks (Petrie 

& Williams 1993) or the complex mating calls of túngara frogs (Ryan & Rand 

1990).  In contrast, ecological selection promotes sex differences in traits due to 

life-history factors other than mating; in mosquitoes and many species of moths, 

males have reduced or modified mouthparts compared to females, which have 

likely been shaped by sex differences in diet (reviewed in Shine 1989).  

 Color has been studied extensively as a trait that can be shaped differently 

in males and females as a result of both ecological and sexual selection pressures.  

Particularly in invertebrates, sex differences in color (i.e., sexual dichromatism) 

are often so drastic that the males and females were originally described as 

different species (e.g., Pilgrim & Pitts 2006; Zhang & Weirauch 2011).  Recent 

advances in spectrophotometry have improved our ability to objectively quantify 

and analyze differences in such colors (e.g., birds: Andersson & Prager 2006; 

Montgomerie 2006), allowing us to tackle important questions about their 

functions and evolution (e.g., Hill & McGraw 2006b, a).  Animal color patterns 

are often evolutionarily labile (e.g., Prum 1997; Hofmann et al. 2006), making 
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color an ideal system in which to examine the selection pressures that drive sexual 

dichromatism.     

 Jumping spiders (family Salticidae) are an excellent group for such work 

because they are understudied, yet exhibit extreme color diversity between the 

sexes and across the family (Figure 1).  Historically, there has been much interest 

in salticid color patterns (e.g.,Peckham & Peckham 1889, 1890; Crane 1949), yet 

only very recently have scientists begun to use modern spectrophotometric and 

statistical techniques to test hypotheses about the functions of salticid color 

variability.  Habronattus is a particularly good study genus for this work because 

it is extremely diverse (Maddison & Hedin 2003); across the genus, males are 

highly ornamented, with a striking diversity of brilliant colors that they display to 

drab and cryptic females (Richman 1973; Richman 1982; Maddison & Hedin 

2003).  In addition to the brilliant colors used in courtship displays, males of 

many Habronattus also exhibit striking patterns of contrasting black and white 

chevrons on the dorsal surface of their bodies that are not present in females (e.g., 

Griswold 1987) and are oriented away from females during courtship (LAT, pers. 

obs.).  Thus, within the same species, we can examine both the extent to which 

sexual selection shapes male display colors and the extent to which ecological 

selection shapes sexual dimorphism in dorsal colors.  Of the more than 5000 

species of jumping spiders described to date (Platnick 2011), only two other 

species have been the focus of coloration studies using modern 

spectrophotometric techniques: Cosmophasis umbratica (Lim & Li 2006b, a, 

2007; Lim et al. 2007; Lim et al. 2008) and Phintella vittata (Li et al. 2008a; Li et 
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al. 2008b).  This previous work has focused entirely on sexual signaling functions 

of color rather than other potential ecological functions, and did not employ direct 

manipulations of color patterns in experiments, which are key for identifying 

causal relationships between specific ornaments and the benefits they convey.         

 The goal of this dissertation was to use a combination of field studies and 

laboratory experiments to address the following overarching question:  Why has 

evolution shaped males to be more brilliant and conspicuously colored than 

females in Habronattus jumping spiders?  Throughout, I consider multiple 

hypotheses that pertain to the costs, benefits, control, and functions of 

conspicuous male coloration including sexual selection hypotheses (e.g., species 

recognition, quality signaling) and ecological selection hypotheses (e.g., 

differential habitat use, different strategies of avoiding predation).  Chapters 1 and 

2 involve field studies on four sympatric species of Habronattus (H. clypeatus, H. 

hallani, H. hirsutus, and H. pyrrithrix), while the remaining chapters focus 

particularly on color and communication in H. pyrrithrix.  I take a holistic 

approach throughout, weighing support for relevant alternative hypotheses 

simultaneously.      

 

Dissertation outline 

In Appendix A (Taylor & McGraw 2007), I briefly review the state of the field 

and highlight exciting advances made in the field of jumping spider coloration 

during the first year of my dissertation work.  I review some of the reasons that 



  xvii 

salticids provide a promising system in which to examine color and 

communication.  

 In Chapter 1, I examine interactions between conspecifics and 

heterospecifics in four sympatric species of Habronattus (H. clypeatus, H. 

hallani, H. hirsutus, and H. pyrrithrix) in the field.  First, by quantifying the 

interaction rates between male and female conspecifics, I lay the groundwork for 

studies of color and mate choice, which require and understanding of where, 

when, and how often conspecifics interact and court.  In addition, I quantify the 

rates of heterospecific interaction and misdirected courtship to understand how 

these interactions might shape colorful signaling strategies.  Together, these data 

elucidate the ecological context in which these spiders interact, allowing us to 

generate informed hypotheses about the different roles that color signals might 

play (e.g., species recognition, quality signaling).   

 In Chapter 2, I examine sex differences in dorsal color pattern in the same 

four species of Habronattus.  In three of these species, males are more 

conspicuously patterned than females, with contrasting black and white stripes 

and chevrons on their dorsal carapace and abdomen.  In this chapter, I use field 

behavioral data to test hypotheses for how ecological selection pressures 

(differences in habitat use and differences in movement rates) might result in 

different selection pressures on the color patterns of males and females (e.g., 

Slatkin 1984).  Furthermore, I consider how male color pattern and behavior may 

interact to deceive potential predators through perceptual exploitation (e.g., 

Schaefer & Ruxton 2009; Ruxton & Schaefer 2011).   
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 In Appendix B, I examine the condition dependence of male coloration in 

one particular species of jumping spider, Habronattus pyrrithrix, to weigh support 

for the many potential functional hypotheses for coloration.  Generally, 

hypotheses about sexual signaling can be divided into content-based hypotheses 

(e.g., species recognition, quality signaling) or efficacy-based hypotheses (e.g., 

attention altering, sensory exploitation) (Guilford & Dawkins 1991).  While these 

hypotheses are not mutually exclusive, each generates specific and testable 

predictions and only content-based, indicator models explicitly predict that colors 

should be condition-dependent (Hebets & Papaj 2005).  Furthermore, content-

based color signals are generally predicted to be more condition-dependent than 

colors that have evolved through ecological selection (Cotton et al. 2004).  Thus, 

the goal of this study was to use both correlational and manipulative approaches 

to understand the condition dependence of male coloration to begin to tease apart 

potential signaling (or non-signaling) functions of color.  

 In Chapter 3, I examine ontogenetic color changes in H. pyrrithrix.  In 

many animals, color patterns are not static throughout life, but change drastically 

during development, maturity, and senescence.  In this chapter, I use scanning 

electron microscopy (SEM) to examine the scale and cuticle morphology of 

elaborately colored body regions in males.  I then examine how the colors of these 

regions as well as dorsal color patterns change during development leading to 

sexual maturity and how male condition-dependent colors change as males age 

beyond sexual maturity.  I present these results in the context of potential costs, 

constraints, and benefits of the production and maintenance of elaborate colors. 
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 In Chapter 4, I test the hypothesis that a male’s condition-dependent 

display colors (i.e., red faces and green legs) are required for or improve 

successful species recognition and/or mating.  Furthermore, because the 

effectiveness of color signals depends on the lighting conditions in which they are 

sent (e.g., Endler 1993), I test the hypothesis that ambient light environment 

affects the role that male colors play in courtship.  In a series of color-

manipulation experiments under different lighting conditions, I assess the effect 

of the presence (vs. absence) of male color on his courtship success.  

  In Chapter 5, in light of consistent findings that a male’s red facial 

coloration is condition-dependent in the field and dependent on juvenile diet in 

the lab, I test the hypothesis that natural variation in a male’s red color signals 

aspects of male quality.  Using both a correlational mate choice study and a color 

manipulation experiment, I examine how subtle, natural variation in male color 

affects courtship success.     

 While the study of animal colors is an active area of behavioral ecology, 

most work focuses on a few large, colorful, and traditionally well-studied taxa 

(e.g., birds: Hill & McGraw 2006b; Hill & McGraw 2006a; butterflies: Ingram & 

Parker 2008; fish: Amundsen 2003).  Throughout this dissertation, I show that 

Habronattus jumping spiders have a unique biology that challenges some of the 

ways that we typically think about the costs, benefits, and functions of 

communicating with color, providing novel and exciting insights for the field of 

animal coloration.  
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Figure 1.  Diversity of color patterns in jumping spiders. (a) male Evarcha 

culicivora, Kenya, (b) female Myrmarachne sp.,  Costa Rica, (c) female Phiale 

mimica, Costa Rica, (d) female and male Paraphidippus sp., Costa Rica, (e) male 

Habronattus icenoglei,  USA, (f) red-faced morph of male Habronattus hirsutus, 

USA, (g) male Hypaeus benignus, Costa Rica, (h) unidentified male salticid, 

Costa Rica, (i) female Phiale guttata, Costa Rica 
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Chapter 1 

MISDIRECTED COURTSHIP IN A NATURAL COMMUNITY OF 

COLORFUL HABRONATTUS JUMPING SPIDERS  

 

Abstract 

Dramatic and costly male courtship display is common in many animals.  In some 

cases, males engage in courtship indiscriminately, spending significant time and 

energy courting heterospecifics with whom they have no chance of mating or 

producing viable offspring.  Due to high costs and no clear benefits, we might 

expect mechanisms to evolve to reduce such misdirected courtship (or 

‘reproductive interference’).  In Habronattus jumping spiders, males frequently 

court heterospecifics with whom they do not mate or hybridize; females are larger 

and are voracious predators, posing a severe risk to males who court 

indiscriminately.  In this study, we examine how misdirected courtship plays out 

in a natural community of four sympatric species of Habronattus (H. clypeatus, 

H. hallani, H. hirsutus, and H. pyrrithrix).  Using direct observations of spiders in 

the field, we weigh support for two potential hypotheses to explain how these 

species co-exist and how they reduce the costs associated with misdirected 

courtship.  Our first hypothesis is that heterospecific interaction rates are 

effectively reduced by differential use of the microhabitat (i.e., substrate, light 

environment) by the four different species.  Our second hypothesis is that these 

species are not segregated in the microhabitat, but rather, they interact frequently 

and must rely solely on communication with every individual that they encounter 
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to identify appropriate mates and to mitigate the costs associated with misdirected 

courtship.  Our data show that, while the four species of Habronattus do show 

some differences in microhabitat use, all four species still overlap substantially.  

As a result, for three of the four species, individuals were just as likely to 

encounter a heterospecific as they were to encounter a conspecific.  Males courted 

females at every opportunity, regardless of the species of the female.  In some 

cases, this heterospecific courtship led to aggression and predation by the female.  

These results suggest that, while differences in microhabitat use might reduce 

misdirected courtship to some extent, co-existence of these four species is 

possible due to complex communication between both conspecifics and 

heterospecifics.  To our knowledge, this is the first study to examine misdirected 

courtship in a system where such behavior presents the severe risk of predation 

from the female being courted.  To date, studies of misdirected courtship and its 

consequences in the field are limited and may broaden our understanding of how 

biodiversity is maintained within a community.         

 

Introduction 

 In many animals, dramatic and costly courtship displays have evolved to 

facilitate successful mating, often by providing information about a potential 

mate’s location, sex, species, or quality as a mate (reviewed in Andersson 1994).  

Yet, courtship often incurs costs, such as increased energy expenditure (e.g., 

crickets: Hoback & Wagner 1997; frogs: Wells & Taigen 1989), decreased 

longevity (e.g., mosquitoes: Cordts & Partridge 1996; fruit flies: South et al. 
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2009), and increased predation risk (e.g., flashing fireflies: Woods et al. 2007).  

We would thus expect that selection should favor individuals that reduce their 

courtship efforts in situations where these costs outweigh potential reproductive 

benefits.  Yet, many animals in a variety of taxa invest time and energy courting 

heterospecifics with which they never mate or are unable to produce viable 

offspring (e.g., ground-hoppers, moths, flies, ticks, lizards, fish , reviewed in 

Groening & Hochkirch 2008) or even attempt mating with inanimate objects (e.g., 

buprestid beetles frequently attempting to copulate with beer bottles: Gwynne & 

Rentz 1983).  In addition to simply wasting energy that could be invested in other 

activities, such misdirected courtship (or ‘reproductive interference’) can also 

reduce or prevent viable mating opportunities for both sexes (e.g., Andrews et al. 

1982).  For example, in reptile ticks, males attempt to mate with and guard 

heterospecifics, physically blocking the female genitalia and preventing 

conspecific matings (Andrews et al. 1982).  Given such costs, we might expect 

selection to favor mechanisms that prevent or reduce misdirected courtship.  

However, this topic has been given little attention in the ecological literature and 

is strongly biased towards laboratory rather than field studies where the ecological 

relevance is sometimes unclear (see Groening & Hochkirch 2008).  

 Jumping spiders (family Salticidae) are an excellent group in which to 

examine mechanisms that reduce heterospecific courtship because, for male 

jumping spiders, the consequences of courting a female of the wrong species are 

particularly severe.  Females of most species are generalist predators and thus 

courting males, even of the same species, can become either a potential mate or a 
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potential prey item (e.g., Jackson & Pollard 1997).  As such, even conspecific 

courtship is risky; if heterospecific courtship never results in offspring, we might 

expect strong selection on males to avoid it.  Despite approximately 44 studies of 

misdirected courtship in animals, to our knowledge, none of these have 

considered the potential cost of predation from the female that is being courted; 

this cost is unique to voracious and cannibalistic predators such as spiders (see 

Groening & Hochkirch 2008 for a review of misdirected courtship). 

 Across the jumping spider genus Habronattus, adult males are not very 

discriminating in courtship; in the lab, they will readily court dead conspecific 

female specimens as well as live heterospecific females (LAT, pers. obs.).  Here 

we examine how this phenomenon plays out under natural conditions where 

multiple Habronattus co-occur.  Specifically, our study examined this 

phenomenon in a riparian area in which four sympatric species of Habronattus 

exist in high abundance and overlap in the timing of sexual maturity and mating.  

These species are all from different species groups (Maddison & Hedin 2003) and 

do not hybridize (LAT, pers. obs.), yet males from all four species have been 

observed to readily court females of any of the other species in the lab, even 

though both conspecific and heterospecific adult females are voracious and 

cannibalistic predators (see Chapter 2, Table 3).  In addition to the risks of 

predation from females, courtship for Habronattus males is likely to be 

energetically costly; males engage in dramatic dances consisting of coordinated 

combinations of color, motion, and seismic cues (e.g., Richman 1973; Cutler 

1988; Maddison & Stratton 1988; Elias et al. 2003; Maddison & Hedin 2003; 
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Elias et al. 2006b) and will court continuously for hours in the lab, even if females 

are unreceptive or aggressive (LAT, pers. obs).  In addition to the energetic 

expense of dancing, the conspicuously colored ornaments that males display to 

females (Taylor et al. 2011, Appendix B) may increase predation risk by visual 

predators.   

 In this study, we aim to address the following question: under natural 

conditions, how do males avoid the high costs associated with misdirected 

heterospecific courtship?  Here we weigh support for two potential hypotheses 

using direct observations of spiders in the field.  Our first hypothesis is that 

heterospecific interaction rates are effectively reduced by differential use of the 

microhabitat (e.g., substrate, light environment) by the four species. Reproductive 

interference in Tetrix ground-hoppers may be reduced in this way; despite 

significant overlap, subtle differences in microhabitat preferences and dispersion 

patterns appear to reduce heterospecific interactions (Groening et al. 2007).  In 

Habronattus, males typically spend more time actively moving through the 

habitat (presumably seeking out females), while females spend more time at rest 

(see Chapter 2).  While little is known about jumping spider movement patterns, 

there is evidence from one other species that males move more than females, 

while females show higher site fidelity and feed more (e.g., P. clarus (Hoefler & 

Jakob 2006)).  These data, combined with field observations, suggest that females 

seek out particular microhabitats (for feeding, nesting, etc.) and that males 

actively seek out females and court them whenever and wherever they encounter 

them (LAT, pers. obs.).  Thus, if the Habronattus species in our study are 



  6 

utilizing the habitat differently, we would expect it to be females that are 

partitioned in space and we would expect males to preferentially search for 

females in areas where they would be most likely to find conspecifics.  In each of 

the four species in our study, males have very different colorful display 

ornaments, ranging in color from solid black, to black and white striped, to bright 

red, to iridescent green and pink (see Figure 2, see also Griswold 1987).  Because 

the transmission of colored visual signals is strongly affected by both the visual 

background and the light environment where courtship takes place (e.g., Endler 

1991, 1992, 1993; Endler & Thery 1996), it is reasonable to expect differences in 

substrate preferences of females from these differently colored species.  If the 

four species are indeed partitioned in space with little overlap, this may explain 

why males have adopted the strategy of indiscriminately courting every female 

they encounter; such a strategy may be beneficial if heterospecific interactions are 

relatively rare compared with conspecific interactions.     

 An alternative is that habitat differentiation does little to reduce 

heterospecific interaction rates between species and, as a result, heterospecific 

interactions are just as common as conspecific interactions.  Rather than being 

partitioned in the habitat, high interaction rates mean that males and females of 

the different species rely solely on communication with one another to identify 

appropriate mates.  If these four species are not partitioned in the available 

habitat, and if heterospecific interaction rates are high, this may help to explain 

why Habronattus males have evolved such a rich diversity in display traits, as 
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these may be necessary to communicate species identity to females from a safe 

distance.   

 In this study, we use focal behavioral observations on free-ranging spiders 

to weigh support for these two hypotheses.  While we present them as discrete 

alternatives, both generating clear and testable predictions, we anticipate that 

subtleties in the data will allow us to weigh the relative support for each, 

ultimately allowing us to place each species pair along a hypothetical continuum 

ranging from complete isolation from one another (i.e., heterospecifics do not 

interact in the field) to complete overlap (i.e., heterospecific interaction rates are 

just as common as conspecific interaction rates).  A better understanding of how 

these species overlap and interact under natural conditions will help us understand 

how similar species can co-exist, allowing for the maintenance of biodiversity 

within a habitat. 

 

Methods 

 

Study species   

 The genus Habronattus is the most diverse jumping spider genus, with 

approximately 100 species (Maddison & Hedin 2003).  Males are highly 

ornamented with a striking diversity of brilliantly colored faces and legs that they 

display to drab, cryptic females during elaborate and often multimodal courtship 

dances (e.g., Richman 1973; Richman 1982; Maddison & Stratton 1988; Elias et 

al. 2003; Maddison & Hedin 2003; Elias et al. 2006b).  Evidence from 
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geographically isolated sky island populations of Habronattus pugilis suggests 

that sexual selection is responsible for driving such striking male diversification 

(Maddison & McMahon 2000; Masta & Maddison 2002).  Our study focused on 

four sympatric Habronattus species, described in more detail below. Geographic 

variation in coloration is common within the genus (see Griswold 1987) and thus 

some subtleties of color pattern described here might be typical of this population 

in Phoenix, Arizona, USA. 

 

Habronattus clypeatus (Banks).  Adult male H. clypeatus have white faces with 

contrasting dark vertical bands beneath their anterior median eyes and the 

undersides of their first pair of legs used in display are gray and covered with 

white spatulate scales (Figure 2a).  Females are a drab gray and brown with white 

faces (Figure 2b).  H. clypeatus is found in northern Mexico and the southwestern 

USA and as far north as Wyoming, USA (Griswold 1987).     

 

Habronattus hallani (Richman).  In adult male H. hallani, the faces and first two 

pairs of legs are adorned with iridescent scales that change in hue from green to 

pink, depending on viewing angle (Figure 2c).  Females are a drab gray and 

brown with white faces and characteristic dark, curved bands below their anterior 

median eyes (Figure 2d).  H. hallani is distributed through the southwest USA to 

northern Mexico.   
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Habronattus hirsutus (Peckham and Peckham).  Adult male H. hirsutus have dark 

gray/black front legs, the underside of which exhibit a narrow greenish band, and 

are further adorned with dense hairs (Figure 2e).  Most adult males in our focal 

population have completely black faces (Figure 2e), yet occasionally we have 

observed males with bright red facial patches (LAT, pers. obs.).  This degree of 

variation in facial coloration is typical on a geographic scale but is not well 

understood (see Griswold 1987).  More than 95% of males in our focal population 

were of the black-faced form, including all of those that were the subjects of focal 

observations.  Females are a drab gray and brown with white faces that have 

subtle dark markings just below and just above the anterior median eyes (Figure 

2f).  H. hirsutus is broadly distributed across western North America, from 

southern Canada to Mexico (Griswold 1987).        

 

Habronattus pyrrithrix (Chamberlin).  Adult male H. pyrrithrix have bright red 

faces and green front legs (Figure 2g), both of which are condition-dependent 

(Taylor et al. 2011, Appendix B). Male red facial coloration is important for 

courtship success in certain light environments (Chapter 4).  Females are drab 

gray and brown with white faces (Figure 2h).  H. pyrrithrix is distributed from the 

southwest USA to Sinaloa, Mexico (Griswold 1987).   

  

Study site 

 All behavioral observations were made at the Rio Salado Habitat 

Restoration Area in Phoenix, Arizona, (Maricopa County, 33.42
◦
N, 112.07

◦
W), 
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USA.  The goal of this organization is to reestablish native wetland and riparian 

habitats that were historically associated with the Salt River (Rio Salado), which 

used to flow year-round (City of Phoenix 2011).   Habronattus were generally 

concentrated in the leaf litter and vegetation within the gallery forests dominated 

by cottonwood (Populus fremontii) and desert willow (Chilopsis linearis). 

 

Data collection 

 Behavioral observations were carried out between 900 and 1500 hrs. from 

March to November in 2009 and 2010.  We located Habronattus by visually 

scanning the leaf litter and vegetation in the field.  When we located a spider, we 

conducted a 15-minute behavioral observation in which we followed that spider 

from approximately 1m away and recorded behavior using voice recorders.  Our 

sample sizes vary due to differences in abundance among species (H. clypeatus: 

n= 12 (5 females, 7 males),  H. hallani: n=14 (8 females, 6 males), H. pyrrithrix: 

n=34 (20 females, 14 males), H. hirsutus: n=27 (10 females, 17 males)).   

 We quantified the amount of time spent in the sun versus the shade as well 

as the amount of time spent on different substrate types (cottonwood leaf litter, 

desert willow leaf litter, cottonwood vegetation, desert willow vegetation, grass, 

or dirt/rock).  We recorded all interactions between the focal spider and either 

conspecific or heterospecific Habronattus.  We defined an ‘interaction’ as any 

case in which both spiders responded to the presence of the other by orienting 

their anterior median eyes at the other individual (e.g., Jackson 1982).  We 

recorded all instances of courtship, aggression (attacks), predation/cannibalism, 
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and copulation.  Because we frequently saw other individuals in the vicinity that 

did not interact with the focal spider, but that still provided valuable information 

about the local abundance and activity of the community, we recorded the number 

of other non-interacting Habronattus that we saw within 0.5m of the focal spider 

during the observation. Because our attention was focused on the behavior of the 

focal individual, our estimates of other Habronattus in the vicinity are likely to be 

more conservative than the actual abundance of spiders inhabiting the area.  If 

spiders were found feeding, or captured prey during the focal observation, we 

recorded the identity of the prey item (identified to family, where possible).   

 After all data were collected, we temporarily captured each individual in a 

clear plastic vial.  We confirmed the maturity of females by examining their 

epigynum; mature females can be distinguished from immatures by the presence 

of a sclerotized epigynum (Foelix 1996).  To ensure that no individual was 

observed more than once, we marked spiders after observations with a small black 

dot (~1mm in diameter) on the underside of their abdomen using non-toxic liquid 

eyeliner (Urban Decay Cosmetics, Costa Mesa, CA, USA), which produced a 

permanent mark.  

 

Data analysis 

 To determine if females of the four species utilized the available 

microhabitat differently, we compared substrate and light environment use among 

females of the four species using nonparametric Kruskal-Wallis tests with Steel-

Dwass pairwise comparisons with an alpha level of 0.05.  For substrate, we first 
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compared each species’ use of the three broad categories of microhabitat (leaf 

litter, vegetation, dirt/rock) and then we repeated the analysis on a finer scale that 

considered more subtle differences in microhabitat (cottonwood leaf litter, willow 

leaf litter, cottonwood vegetation, willow vegetation, grass, dirt/rock).  We then 

compared the amount of time that females of each species spent in the sun (vs. the 

shade).    

 To examine if males were focusing their mate search in microhabitats 

where they would be most likely to encounter conspecific females, we then went 

on to determine if there was a correlation across species between female 

microhabitat use (i.e., substrate, light environment) and male microhabitat use 

using non-parametric Spearman rank correlations.  Because there was a clear 

difference in broad patterns of habitat use, with H. hirsutus spending the majority 

of time in the vegetation and the other three species spending the majority of time 

in the leaf litter (see Results), we ran an additional analysis on just the litter-

dwelling species to determine if males of these three species were preferentially 

searching for females in microhabitats where they would be most likely to find 

conspecifics.   

 To compare the mean number of conspecific interactions during focal 

observations with the number of heterospecific interactions for each species, we 

used non-parametric Wilcoxon signed rank tests.  Because our study focused on 

the ecological importance of misdirected courtship, we conducted a second 

analysis, where we excluded interactions with juveniles and examined interactions 

between sexually mature adults.       
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 We used non-parametric statistics because out data did not meet relevant 

assumptions.  All statistical analyses were performed using SAS 9.2 and JMP 

9.0.2 (SAS Institute, Cary, NC, USA).   

 

Results  

 

Use of substrate and light environment 

  Female H. clypeatus, H. hallani, and H. pyrrithrix all spent the majority 

of their time on the ground in the leaf litter (67%, 86%, and 80% of their time, 

respectively).  In contrast, female H. hirsutus spent the majority of their time 

above the ground in the vegetation (72%).  While there were significant 

differences among species in the females’ use of the leaf litter and vegetation (leaf 

litter: X
2
=15.29, P=0.0016, vegetation: X

2
=16.85, P=0.0008; dirt/rock: X

2
=2.69, 

P=0.441), there was still substantial overlap; females of all four species were 

found, at least occasionally, in both the leaf litter and the vegetation (Figure 3a).  

When we examined female substrate use on a finer scale, we again found 

significant differences between the species in their use of the substrate but, again, 

there was substantial overlap in substrate use among species (cottonwood leaf 

litter: X
2
=14.86, P=0.0019, willow leaf litter: X

2
=6.45, P=0.084, cottonwood 

vegetation: X
2
=14.44, P=0.0024, willow vegetation: X

2
=6.70, P=0.082; grass: 

X
2
=4.66, P=0.198, dirt/rock: X

2
=2.69, P=0.441, Figure 3b).  Females of the four 

species differed in the amount of time spent in the sunlight, with H. hallani 
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spending the least time in the sunlight and H. hirsutus and H. pyrrithrix spending 

the most (X
2
=10.802, P=0.013; Figure 4). 

 When all four species were analyzed together, there were significant 

positive correlations between female substrate preference and the preference of 

conspecific males in some, but not all, substrate types (Table 1).  Similarly, when 

the analysis was restricted to the three predominantly litter-dwelling species (H. 

clypeatus, H. hallani, and H. pyrrithrix), there were significant positive 

correlations between female preference and those of conspecific males in some, 

but not all, substrate types (Table 2).  Female preferences for sunlight were not 

correlated with the preferences of conspecific males, either when all four species 

were analyzed together (Table 1) or when the analysis was restricted to the 

predominantly litter-dwelling species (Table 2). 

 

Behavioral interactions 

 Densities of Habronattus were high; in 57 of 87 (66%) observations we 

spotted at least one other Habronattus within a 0.5m radius of the focal individual 

and in 33 (38%) observations, the focal spider interacted with at least one other 

Habronattus.  We observed a total of 44 interactions between focal spiders and 

other Habronattus, 37 (84%) of which occurred between sexually mature adults; 

the nature of these interactions are summarized in Figure 5.  Twenty-nine (78%) 

of these involved interactions between conspecifics and 8 (22%) involved 

interactions between heterospecifics.  Twenty-two (50%) of all interactions 

occurred between sexually mature males and females (15 of which were between 
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conspecifics and 7 between heterospecifics).  In 100% of these 22 interactions, 

regardless of whether or not they were conspecifics or heterospecifics, males 

engaged in courtship.  During courtship interactions, males were attacked in four 

cases; 3 of these occurred during conspecific courtship (between male and female 

H. pyrrithrix) and one during heterospecific courtship (between a male H. 

clypeatus and a female H. pyrrithrix).  In one of the cases of conspecific 

aggression, the male was attacked several times by the female, but he continued to 

court and eventually copulated with her; copulation occurred in the leaf litter in 

full sunlight.  In the heterospecific case the male was attacked several times and 

was eventually eaten by the female.  One instance of aggression was observed 

between adult females, when an H. clypeatus attacked (but did not kill) a female 

H. pyrrithrix.  No aggression was observed between males.          

 For H. clypeatus, H. hallani, and H. pyrrithrix, there were no significant 

differences between conspecific and heterospecific interaction rates (i.e., an 

individual was just as likely to interact with a heterospecific as they were with a 

conspecific, although H. pyrrithrix tended to have more conspecific than 

heterospecific interactions; H. clypeatus: S=-2.00, P>0.999; H. hallani: S=0.00, 

P>0.999; H. pyrrithrix: S=-19.5, P=0.057; Figure 6).  For H. hirsutus, individuals 

had significantly more interactions with conspecifics than heterospecifics (S=-

28.5, P=0.008; Figure 6).  When we limited our analysis to interactions between 

sexually mature adults (excluding interaction with juveniles), there were again no 

significant differences between conspecific and heterospecific interaction rates in 

H. clypeatus, H. hallani, or H. pyrrithrix, although H. pyrrithrix tended to have 
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more conspecific than heterospecific interactions (H. clypeatus: S=0.00, P=1.00; 

H. hallani: S=1.50, P=0.50; H. pyrrithrix: S=15.5, P=0.086).  Again, in H. 

hirsutus, individuals had more interactions with conspecifics than heterospecifics 

(S=15, P=0.047).   

 To compare these interaction rates with other ecologically relevant events, 

in only 2 of 87 focal observations (0.02%) did we see the focal individual capture 

prey.  In both cases, the focal spider was an adult female H. hallani attacking and 

eating a juvenile H. hirsutus (~3mm in size).   

 

Discussion 

In this study, we examined two hypotheses to explain how four sympatric 

Habronattus jumping spider species might avoid the high costs associated with 

heterospecific courtship in the field.  Our results suggest that, while the four 

species utilize the habitat and light environment differently, there is still 

substantial overlap between all four species.  This overlap leads to high 

interaction rates among species and high rates of heterospecific courtship, 

suggesting that aspects of communication likely play a role in mitigating the costs 

of these interactions.    

 In other species where reproductive interference is costly, habitat 

partitioning has been suggested as a mechanism that allows species to co-exist 

(e.g., Groening et al. 2007).  In this study we show that females of four different 

species of Habronattus do indeed utilize the available microhabitats and light 

environments differently, which may reduce heterospecific interactions to some 
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extent.  Specifically, female H. hirsutus spend most of their time above the 

ground in the vegetation, while the other three species are predominantly ground-

dwelling.  Among the ground dwellers, all three species spent most of their time 

in cottonwood leaf litter, substantially overlapping in their habitat use.  The four 

species also showed different light environment use, with H. hallani females 

spending the least time in the sun and H. hirsutus and H. pyrrithrix spending the 

most.   

 Because females generally spend most of their time at rest, while males 

spend most of their time actively searching for females (see Chapter 2), we went 

on to test if males searched for females in microhabitats where they would be 

most likely to find conspecifics, rather than heterospecifics.  Our results indicate 

that there were significant positive correlations between female substrate use and 

the substrate use of conspecific males in some, but not all, substrate types 

suggesting that, in some cases, males may be searching for females on substrates 

where they are most likely to find conspecifics.  However, there was no 

correlation between the light environment preferences of males and females 

across species suggesting that males are likely not biasing their mate search 

towards light environments where they are most likely to find conspecifics.   

 An alternative explanation for how Habronattus might mitigate the high 

costs of heterospecific courtship is that, rather than being segregated from one 

another in the environment, they simply rely on communication with every 

individual that they encounter.  While we found some evidence of microhabitat 

partitioning, we also found very high rates of interaction among all four species, 
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suggesting that communication is likely important in reducing the costs of 

misdirected courtship.  To put these interaction rates in perspective, over the 

course of 87 focal observations (15 minutes each), we observed only two focal 

spiders capturing prey, but we observed 44 focal spiders interacting with other 

individuals.  Of those interactions, 22 involved courtship.  For each spider, this is 

approximately 2 interactions per hour (or 1 courtship interaction per hour), 

compared with only 0.092 prey items captured per hour. Interactions with other 

individuals are clearly common and ecologically relevant events for these spiders.  

Interestingly, for three out of the four species (H. clypeatus, H. hallani, and H. 

pyrrithrix), individuals were just as likely to interact with a heterospecific as they 

were with a conspecific.  Not surprisingly, H. hirsutus was the only species where 

conspecific interactions were significantly more likely than heterospecific 

interactions; this is likely because H. hirsutus spends most of its time in the 

vegetation, away from the other three species.  While misdirected heterospecific 

courtship was the focus of this study, the high rates of conspecific courtship were 

also notable, suggesting that females likely have the opportunity to be choosy and 

males likely have the opportunity to mate multiple times.  Clearly, frequent 

communication both within and between species is an important aspect of 

Habronattus ecology in this community.   

 For male animals that provide no resources to their mate (e.g., food, 

parental care), selection may favor those that mate multiply and indiscriminately 

(Arnqvist & Rowe 2005).  However, for male Habronattus, indiscriminate 

courtship comes with a risk that is not faced by males in many other taxa: female 
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aggression and predation.  In Habronattus, intraguild predation is most commonly 

a result of adult females feeding on either males or juveniles (see Chapter 2).  In 

this study, every interaction involving a sexually mature adult male and female 

resulted in courtship by the male, regardless of whether they were of the same or 

different species.  Our data show that female aggression can occur during both 

conspecific and heterospecific courtship in the field.  In conspecific courtship, it is 

possible that this risk is outweighed by the possibility of successful copulation; 

the one focal male in our study that copulated was first attacked several times by 

the same female.  However, in the case of heterospecific courtship, males are 

unlikely to gain any benefit from courting a heterospecific, but they pay the same 

cost; one male in our study was attacked several times by a heterospecific female 

who eventually captured and ate him.  There is growing evidence in spiders that 

courtship displays incur both energetic and viability costs for males (Mappes et al. 

1996; Kotiaho 2000; Hoefler 2008; Cady et al. 2011), as well as increased risk of 

predation (Hoefler et al. 2008).  However, we argue that what makes spiders a 

particularly intriguing system to examine misdirected courtship is the risk of 

predation from females, a novel cost that, to our knowledge, has never been 

examined in this context (see review in Groening & Hochkirch 2008).   

 It may be that the colorful, species-specific ornaments and multimodal 

courtship displays of male Habronattus help to reduce the risks associated with 

misdirected courtship.  If these ornaments and behaviors allow a male to identify 

himself from a distance, indiscriminate courtship may give him the opportunity to 

safely assess a female’s receptivity or aggression.  Work done with two other 
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jumping spider species (Cosmophasis umbratica and Phintella vittata) has shown 

that blocking UV light affects mate choice decisions, suggesting that UV 

coloration plays an important role in sex and/or species recognition in these 

species (Lim et al. 2007; Lim et al. 2008; Li et al. 2008b). In Habronattus 

however, the role of color as a species recognition signal has received only 

limited support thus far.  In H. pyrrithrix, the presence of a male’s bright red face 

and green leg coloration are not required for successful copulation, although the 

presence of red facial coloration improves male courtship success in certain 

contexts (Chapter 4).  If a male is courting in the sun, the presence of red facial 

coloration improves his success, but his coloration has no effect if he is courting 

in the shade (Chapter 4).  Although not a required species recognition signal, 

elaborate male colors may help females assess a male’s species identity under 

certain environmental conditions.  More work is clearly needed on other 

Habronattus species to examine the roles that male ornaments play in recognition 

by females.   

 In the present study, females of the four species of Habronattus utilized 

the available substrate and light environment differently, and thus it is plausible 

that male species-specific colors have been selected not only to reduce the costs 

of misdirected courtship by signaling species identity, but also to maximize signal 

transmission when communicating with conspecific females in different light 

environments (e.g., Endler & Thery 1996).  Male coloration is geographically 

variable in many species (see Griswold 1987) suggesting that color patterns may 

be locally adapted to specific attributes of their environment.  While this 
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hypothesis should be examined on a larger phylogenetic scale, results from the 

present study provide some intriguing patterns to be investigated further.  First, 

female H. hallani spent the least time in the sun (see Figure 4); males of this 

species have iridescent markings (see Figure 2c) that might allow them to 

maximize signal transmission in the shade, where other colors are less effective 

(e.g., red, see Chapter 4).  In contrast, female H. pyrrithrix spent the most time in 

the sun.  As described above, the bright red face of H. pyrrithrix only improves 

male courtship success in the sun (but not in the shade), presumably due to the 

fact that sunlight is richer in red light while forest and woodland shade is 

relatively low in red light (Endler 1993).  The fact that H. hirsutus also spends 

most of their time in the sun may not appear to fit this pattern, yet some males in 

this population do indeed exhibit red coloration on their faces (see Study Species 

section of Methods) and across their geographic range, red facial coloration in H. 

hirsutus is relatively common (Griswold 1987).  Clearly, these qualitative 

relationships are preliminary and speculative, but warrant further study within a 

larger phylogenetically-controlled framework.        

 Learning may be an additional way for males to avoid the high costs of 

misdirected courtship.  In some animals, males are able to learn to avoid 

heterospecific courtship, reducing the associated costs (e.g., Dukas 2004; 

Magurran & Ramnarine 2004).  Jumping spiders exhibit extensive behavioral 

plasticity (e.g., Nelson & Jackson 2011a, b), a remarkable capacity for learning 

(reviewed in Jakob et al. 2011), and males are known to adjust their courtship 

repertoires depending on context (e.g., Jackson 1977; Jackson & Macnab 1991; 
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Jackson 1992; Jackson & Willey 1995; Cross et al. 2008).  Because females often 

show aggression towards heterospecific males (LAT, pers. obs.), this presents an 

opportunity for males to modify their behavior through experience.  In a situation 

where heterospecific females are abundant, males may learn through frequent 

attacks that caution is warranted.  Alternatively, in an area with few 

heterospecifics and predominantly conspecifics, experience may cause males to 

adopt bolder, less discriminating courtship strategy.  Using a mathematical model, 

Dukas et al. (2006) showed that learning is an improvement over indiscriminate 

courtship when female encounter rates are high and courtship durations are long.  

Both of these conditions apply to the Habronattus courtship examined here 

suggesting that this may be a promising group to examine the roles of learning in 

courtship, particularly in the context of species recognition and avoiding 

misdirected, heterospecific courtship.   

 Females may also incur costs associated with courtship; in some species of 

jumping spiders, evidence suggests that females actually face a higher predation 

risk than the males who are courting them (Su & Li 2006).  In water striders, 

males of some species court and attempt matings with females indiscriminately 

(Arnqvist 1997).  Females often struggle to deter or dislodge males that are 

attempting to copulate with them, but such struggling results in a 200% increase 

in energy expenditure (Watson et al. 1998).  Female Habronattus also likely pay a 

similar cost for misdirected courtship.  In this study, courting males who were 

rejected in the field often pursued females, even when they attacked males or tried 

to hop away.  Given the high heterospecific interaction rates observed in our 
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study, constantly hopping away from courting heterospecific males is likely to 

incur energetic costs for females.  While females are often bigger than males and 

can readily attack them, we provide observational data in the field showing that 

initial attacks are not always successful and that males may dodge attacks while 

continuing to court.  All of these observations suggest that misdirected courtship 

likely incurs costs for female Habronattus, as well as males.   

 The costs of misdirected courtship and heterospecific mating attempts are 

often density dependent and may affect interacting species in different ways 

depending on their relative abundance (e.g., Hochkirch et al. 2007).  Interestingly, 

in the community of Habronattus examined in our study, H. hallani is the least 

abundant species of the four (LAT, unpublished data) and is also generally found 

in low abundance in other areas of its range (LAT, pers. obs.).  As such, we might 

expect H. hallani females to incur higher relative costs due to misdirected 

courtship than the other species and thus females might benefit from additional 

mechanisms of signaling species identity to males.  Interestingly, of the three 

species, H. hallani is the only species where females exhibit striking facial 

patterns (see Figure 2d).  Future studies should examine the roles of female face 

markings within a larger phylogenetic framework to test the idea that they are 

more likely to evolve in situations where the costs of misdirected courtship are 

highest.  

 Given all of the costs associated with high rates of misdirected courtship, 

we might expect that for this system to evolve there must be substantial benefits 

to indiscriminate male courtship, at least under some circumstances.  For 
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example, this behavior may be particularly beneficial in habitats where there is 

little overlap among species and where most interactions occur between 

conspecifics or when closely related heterospecifics can hybridize to produce 

viable offspring.  As landscapes are modified through increasing urbanization, we 

may see different combinations of species coming into contact at higher rates than 

they did historically.   

 Alternatively, it may be that this is an ideal strategy when conspecific 

interaction rates are particularly low and every possible courtship opportunity is 

extremely valuable.  For example, in redback spiders, males experience 

exceptionally high mortality during mate searching; field data suggests that more 

than 80% of males die before finding a mate and that, on average, an individual 

male has less than one mating opportunity within his lifetime (Andrade 2003).  

These odds have likely driven the seemingly maladaptive behavior in which a 

male twists his abdomen into the female’s jaws where she feeds on it during 

copulation (Andrade 1996, 2003).  While the Habronattus males in our study 

population had many opportunities to court females, there are likely situations 

where populations are less dense and courtship opportunities are less frequent.  

Given the similarity in appearance of the females of the four species studied here, 

males that are selective enough to avoid heterospecific females might risk 

avoiding the occasional conspecifics as well.              

 A recent review of the literature on misdirected courtship found a strong 

bias towards laboratory studies (n=27) compared with field experiments (n=8) 

and field observations (n=9) (Groening & Hochkirch 2008).  Groening and 
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Hochkirch (2008) stress the limitations of laboratory experiments where limited 

space may inflate heterospecific interaction rates and they argue that more field 

studies are needed to understand the relevance and significant of such interactions 

in nature.  Here we show that heterospecific courtship occurs at high rates among 

four species of sympatric Habronattus jumping spiders in the field and that these 

interactions can lead to female aggression and even predation.  This high cost of 

misdirected courtship may help explain the evolution of colorful and complex 

communication of Habronattus jumping spiders.     
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Figure 2.  Adult sexual dimorphism in face and leg coloration in four sympatric 

species of Habronattus.  H. clypeatus male (a) and female (b), H. hallani male (c) 

and female (d), H. hirsutus male (e) and female (f), and H. pyrrithrix male (g) and 

female (h).  While females all look similar to one another, they can be identified 

based on subtle differences in dorsal and facial markings.   
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Figure 3.  Comparison of the amount of time females of each species spent on 

different substrates during behavioral observations in the field (mean  SEM).  

Comparison of use of three broad categories of substrate (a), and comparison of 

finer categories of substrate use (b).  In (a), different letters indicate significant 

differences between species in their use of the leaf litter and vegetation.   
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Figure 4.  Comparison of the amount of time females of each species spent in the 

sun during behavioral observations in the field (mean  SEM).  Different letters 

indicate significant differences between species.   
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Figure 5. Summary of interactions between sexually mature adults in four species 

of sympatric Habronattus.  The width of arrows represents the relative frequency 

of interactions per observation (with wider arrows indicating more frequent 

interactions).  Curved arrows indicate interactions between individuals of the 

same species and sex. H. clypeatus male (a) and female (b), H. hallani male (c) 

and female (d), H. hirsutus male (e) and female (f), and H. pyrrithrix male (g) and 

female (h).   
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Figure 6.  Comparison of the number of conspecific and heterospecific 

interactions during behavioral observations in the field (mean  SEM).  Asterisks 

(*) indicate significant differences between conspecific and heterospecific 

interaction rates within a species.     
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Table 1.  Spearman rank correlations between female habitat preference and the 

preference of conspecific males in four species of sympatric Habronattus (H. 

clypeatus, H. hallani, H. hirsutus, and H. pyrrithrix).   

 

Microhabitat Rho (ρ) P 

      

Light environment     

Sunlight (vs. shade) 0.400 0.600 

      

Broad substrate category 

 

  

Leaf litter 1.000 <0.001 

Vegetation 1.000 <0.001 

Dirt/rock 0.770 0.225 

      

Finer scale substrate categories   

Cottonwood* leaf litter 1.000 <0.001 

Willow† leaf litter 0.632 0.368 

Cottonwood* vegetation 0.316 0.684 

Willow† vegetation 0.800 0.200 

Grass -0.544 0.456 

      

* Populus fremontii 

† Chilopsis linearis 
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Table 2. Spearman rank correlations between female habitat preference and the 

preference of conspecific males in three litter-dwelling species of Habronattus 

(H. clypeatus, H. hallani, and H. pyrrithrix).  Note that the primarily vegetation-

dwelling H. hirsutus is excluded from this analysis.   

 

Microhabitat Rho (ρ) P 

      

Light environment     

Sunlight (vs. shade) 0.500 0.667 

      

Broad substrate category     

Leaf litter 1.000 <0.001 

Vegetation 1.000 <0.001 

Dirt/rock 0.867 0.333 

      

Finer scale substrate categories     

Cottonwood* leaf litter 1.000 <0.001 

Willow† leaf litter 1.000 <0.001 

Cottonwood* vegetation -0.867 0.333 

Willow† vegetation 1.000 <0.001 

Grass -0.500 0.667 

      

* Populus fremontii 

† Chilopsis linearis 
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Chapter 2 

SEX-DIFFERENCES IN DECEPTION: CAN ACTIVITY PATTERNS OR 

MICROHABITAT USE EXPLAIN SEXUALLY DIMORPHIC DORSAL 

COLOR PATTERNS IN HABRONATTUS JUMPING SPIDERS?  

 

Abstract 

In many animals, color pattern and behavior interact to deceive predators, 

resulting in morphological and behavioral camouflage or mimicry that ranges 

from nearly perfect to only subtle resemblance in color and behavior.  Such 

strategies for avoiding predation often differ between males and females as a 

result of ecological selection pressures that differ between the sexes.  While sex 

differences in mimicry are common in jumping spiders (Salticidae), to our 

knowledge, no one has examined the selective forces shaping these differences.  

Here we examine dorsal color pattern in a community of three sympatric species 

of male Habronattus jumping spiders (H. clypeatus, H. hallani, H. pyrrithrix); 

males of these species have bold and conspicuous patterns reminiscent of the 

coloration of wasps and bees, while females are dull and cryptic.  We show that, 

compared with females, males of these conspicuously-patterned species exhibited 

increased leg-waving behavior that occurs outside of the context of courtship; 

such leg-waving behavior is common in jumping spiders that mimic 

hymenopterans because a mimic’s waving legs resemble antennae of ants, wasps, 

and bees.  In a fourth species (H. hirsutus) found in the same habitat, males do not 

have conspicuous dorsal patterning, and these males did not exhibit increased leg-
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waving behavior compared to females.  These results are consistent with the idea 

that male color and behavior have co-evolved to deceive predators in three species 

of Habronattus.  The second goal of our study was to test two hypotheses that 

could explain sex differences in coloration.  We posited that higher activity and 

movement rates of males (who must wander to find females) and/or different use 

of the microhabitat (e.g., substrate, light environment) by the sexes could explain 

sexual dichromatism. Our results support the activity hypothesis; males and 

females generally did not differ in their use of the available microhabitat or light 

environment, but males of all three conspicuously colored species spent more 

time actively moving than females, who spent most of their time at rest.  To our 

knowledge, this is the first study to suggest that conspicuous male dorsal 

coloration in Habronattus has a deceptive function.   

 

Introduction 

In many animals, color patterns and behavior interact to facilitate evasion or 

deception of potential predators; as such, selection by predators is thought to act 

on particular combinations of these traits (e.g., butterflies: Robbins 1981; snakes: 

Brodie 1989; grasshoppers: Forsman & Appelqvist 1998; hoverflies: Golding et 

al. 2005; moths: Rota & Wagner 2006).  Metalmark moths and tephritid flies 

appear to mimic jumping spiders (family Salticidae); eyespots and leg-like 

markings on their wings paired with stereotyped postures and movements not 

only reduce predation, but also elicit displays from would-be salticid predators 

who mistake them for other salticids (Greene et al. 1987; Mather & Roitberg 
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1987; Rota & Wagner 2006).  A variety of invertebrates are known to mimic ants; 

such mimics often use combinations of ant-like morphology as well as ant-like 

behaviors including erratic running and waving of their front legs in a way that 

mimics the waving of an ant’s antennae (reviewed in: McIver & Stonedahl 1993; 

Cushing 1997).  Hoverflies (Syrphidae) appear to mimic wasps and bees, and 

some species also appear to mimic the flight patterns of their models (Golding et 

al. 2005).  Such examples range from precise, near-perfect Batesian mimicry 

(e.g., Myrmarachne jumping spiders that closely mimic ants (Nelson et al. 

2005b)) to general or imperfect resemblance in color and behavior (e.g., Syrphus 

hoverflies that only subtly resemble wasps (Golding et al. 2005)).   

 Such defensive strategies often evolve differently between the sexes.  

While many of the best-studied examples of sexual dimorphism are traits shaped 

by sexual selection via mate choice or competition over mates (Andersson 1994), 

sexual dimorphism can also be shaped by ecological selection, where males and 

females experience different selection pressure as a result of sex-specific 

differences in diet, habitat use, activity levels, thermoregulatory requirements, or 

the different suites of predators to which they are exposed (Slatkin 1984).  There 

are several examples of deceptive coloration (e.g., mimicry) evolving differently 

between the sexes (reviewed in Ruxton et al. 2004).  For example, in butterfly 

mimicry complexes, it is often females that are mimics, while males are not; it has 

been suggested that slower-flying females need added protection from predators 

or that mimicry in males is less likely to evolve because a male’s species-specific 

color patterns are crucial for mate recognition (reviewed in Ruxton et al. 2004).  
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 Jumping spiders (family Salticidae) are an excellent group in which to 

examine questions about predator deception, as well as the selective pressures that 

shape sexual dimorphism in deceptive strategies.  Across the family of more than 

5000 described species (Platnick 2011), there are numerous species in which 

dorsal coloration differs dramatically between the sexes (e.g., Maddison 1995), 

yet in many cases the sexually dimorphic body regions are not overtly displayed 

in courtship (LAT, pers. obs.).  In some of the most striking examples, one or both 

sexes appear to mimic brilliant and colorful hymenopterans, most notably wasps 

and bees (including the so-called ‘velvet ants’ in the family Mutillidae).  For 

example, in Phiale formosa, males and females both appear to be mimics, but 

clearly mimic different species; males have a striking black and white color 

pattern while females are black and yellow (LAT, pers. obs.).  In the genus 

Phidippus, velvet ant mimicry appears to be widespread and varies among 

species; in some species both sexes appear to be mimics, while in other species 

only adult males appear to be mimics (Edwards 1984, 2004).  Apparent 

hymenopteran mimicry in salticids ranges from near-perfect resemblance to the 

model’s color pattern (e.g., Phiale mimica mimicking the velvet ant Dasymutilla 

cressonii, LAT pers. obs., see Figure 1c in Preface) to only subtle resemblance or 

imperfect mimicry (e.g., female Phiale formosa which appears to be a general 

wasp mimic, LAT pers. comm.).  At both of these extremes, color pattern is 

usually paired with behavioral mimicry, in which the spiders frequently wave 

their first pair of legs, presumably to resemble the antennal movement 

characteristic of hymenopterans (LAT, pers. obs., see also Cushing 1997).  
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Despite this diversity of sexual dichromatism across the family, to our knowledge, 

no study in any jumping spider species has addressed the question of why males 

and females often differ so drastically in dorsal coloration that is not used in 

courtship display.    

 In this study, we attempt to understand the selective forces shaping 

sexually dimorphic dorsal coloration in a community of three species of jumping 

spiders in the genus Habronattus.  Most of the behavioral work on Habronattus 

has focused on their complex ornamentation and exuberant courtship displays 

(e.g., Maddison & Stratton 1988; Richman & Cutler 1998; Elias et al. 2003; 

Hebets & Maddison 2005; Elias et al. 2006b; Elias et al. 2006a) and the role of 

sexual selection in driving diversification of these traits (Maddison & McMahon 

2000; Masta & Maddison 2002).  However, in many species of Habronattus, 

males also have conspicuous dorsal color patterns consisting of bold black and 

white stripes or chevrons (see Griswold 1987) that are visible from above and 

behind the spider, but which are not overtly displayed to females during 

courtship; in fact, these patterns are actually oriented away from the female 

during the entire courtship display (LAT pers., obs., Figure 8).  In contrast, 

females of most species lack these conspicuous markings and are instead drab and 

cryptically colored (Griswold 1987, see Figure 7).  The striking male dorsal 

patterns are reminiscent of the bold stripes on the dorsal surfaces of common 

hymenopterans that are frequently seen in the leaf litter in the same habitat as 

these spiders and can inflict a painful sting (e.g., velvet ants (Mutillidae), ground-

nesting bees (e.g., Lasioglossum sp.); LAT, pers. obs.).  Anecdotal observations 
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of male behavior in the field suggested that these conspicuously patterned male 

Habronattus also frequently wave their front legs when moving through their 

habitat (outside of the context of courtship) in a way that appears to enhance their 

resemblance to hymenopterans (LAT, pers. obs., see online supplementary video: 

http://vimeo.com/31919620).  Such leg-waving behavior (or false antennation) 

that occurs outside of the context of courtship is very common among other 

salticids that mimic hymenopterans (reviewed in Cushing 1997).  These 

preliminary observations led us to the hypothesis that these conspicuous male 

color patterns combined with characteristic leg-waving behavior are functioning 

as deceptive signals, either to directly (but imperfectly) mimic hymenopterans 

(Sherratt 2002) or to exploit the perceptions of predators that have evolved to 

avoid such color patterns and behaviors (Ruxton & Schaefer 2011).  Because 

these two hypotheses are difficult to disentangle (see discussion in Schaefer & 

Ruxton 2009; Ruxton & Schaefer 2011), we lump them together here as a single 

hypothesis which we refer to as the ‘deception hypothesis’.  

 The present study has two main goals.  First, we test initial predictions of 

the deception hypothesis described above that will allow us to qualitatively weigh 

support against other alternative explanations for conspicuous male dorsal 

coloration in Habronattus (e.g., that it functions as disruptive coloration (e.g., 

Cott 1940; Stevens & Merilaita 2009) or motion dazzle coloration (e.g., Stevens 

et al. 2008; Scott-Samuel et al. 2011).  We focus our study on three sympatric 

species found within a single habitat in Phoenix, AZ, USA (H. clypeatus, H. 

hallani, and H. pyrrithrix).  Because we are focusing on a small community of 

http://vimeo.com/31919620
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species, this is not intended to be a phylogenetic comparative study, but rather a 

behavioral study that is replicated across three sympatric species to increase the 

robustness and generality of our conclusions.  The deception hypothesis posits 

that conspicuous male color and leg-waving behavior function together to deceive 

potential predators.  As such, it predicts that these conspicuously colored males 

should also exhibit correspondingly higher leg-waving rates in a non-sexual 

context compared with drab and cryptic females.  Interestingly, there is a fourth 

species of Habronattus in this habitat (H. hirsutus) in which males do not have 

conspicuous coloration (both males and females are solid in color, although males 

are often darker than females, Griswold 1987, LAT pers. obs.). This species is the 

most distantly related of the group (Maddison & Hedin 2003) and thus we use 

them as a comparison for the other three.  Because male H. hirsutus lacks 

conspicuous markings, we predict to find comparatively less non-sexual leg-

waving among males compared with females.  To provide a context for 

understanding the selection pressures driving such color patterns, we report all 

predation events observed on all four species of Habronattus.  

 The second goal of this study was to address the question of why such 

conspicuous colors in H. clypeatus, H. hallani, and H. pyrrithrix are male-

specific.  Here we test two potential hypotheses.  In the ‘activity hypothesis’, we 

posit that males and females are exposed to different selection pressures due to 

differences in their activity patterns (i.e., movement rates).  Recent work with 

insect prey and fish predators has shown that movement and color pattern interact 

synergistically such that cryptic coloration is only beneficial to prey if they are 
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motionless; if the prey become active, the benefits of crypsis go away (Ioannou & 

Krause 2009).  This suggests that for an animal that is necessarily active, crypsis 

may not be effective and other coloration strategies may be more adaptive.  In a 

phylogenetically-controlled study of butterflies, Merilaita and Tullberg (2005) 

found that aposematic and mimicry coloration were more likely to evolve in 

butterflies that are active during the day, whereas nocturnal species that rest 

during the day were more likely to be cryptic.  This suggests that high rates of 

activity and movement may constrain the evolution of crypsis (Merilaita & 

Tullberg 2005).  We know of only one other study that has examined movement 

patterns by tracking free-ranging jumping spiders; this study found that in 

Phidippus clarus, males spent more time moving than females and females spent 

more time feeding (Hoefler & Jakob 2006).  In preliminary observations of 

Habronattus jumping spiders in our focal population, males appear to wander in 

search of mates and to initiate courtship whenever they find them.  Such 

differences in behavior between the sexes may explain why females have evolved 

crypsis, while males have evolved deceptive coloration.   

 In the ‘different microhabitat hypothesis’, we posit that males and females 

face different selection pressures due to differences in aspects of their preferred 

microhabitats (e.g., the substrate and/or light environments in which they spend 

most of their time).  Sex-specific differences in habitat use have been argued to be 

a driving force in the evolution of sex differences in coloration in other animals 

(e.g., grasshoppers: Calver & Bradley 1991; Ahnesjo & Forsman 2006; isopods: 

Merilaita & Jormalainen 1997).  In the buprestid beetle Chrysobothris humulis 
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males, but not females, mimic distasteful chrysomelid beetles; Hespenheide 

(1975) suggests that this may be a result of the fact that males spend their time in 

different habitats (i.e., legume twigs) where there are a greater number of their 

chrysomelid models and where they are exposed to higher predation compared 

with females, which exhibit metallic green coloration.  It could be that male and 

female Habronattus have employed completely different coloration strategies due 

to differences in the background colors and light levels of their preferred 

microhabitat habitat types (e.g., leaf litter, vegetation, rocks, and dirt) or due to 

differences in the suites of potential predators or models in those different 

microhabitats.  

 Similarly, we posit that males and females may face different selection 

pressures because males are exposed to a wider variety of habitat types while 

searching for mates while females can wait for suitors to approach them and can 

therefore remain in a more homogeneous habitat.  Empirical work with birds and 

artificial prey has shown that in heterogeneous habitats, survival is maximized if 

prey exhibit a compromise in crypsis using a color pattern that is intermediate in 

its match between the different microhabitats, rather than a close match to either 

one (Merilaita et al. 2001).  Using an evolutionary simulation, Merilaita and 

Tullberg (2005) found that if animals had to move through multiple habitats of 

different background colors, then alternatives to crypsis (i.e., aposematic 

coloration) were more likely to evolve, suggesting that habitat heterogeneity may 

constrain the evolution of crypsis.  In the jumping spider Phidippus clarus, 

females showed higher site fidelity than males (Hoefler & Jakob 2006) and thus it 
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seems plausible that females might experience less habitat heterogeneity.  If 

Habronattus females simply have to wait for males to find them, they may be able 

to remain in a single microhabitat type where they are well-suited for cryptic 

coloration.  In contrast, if males need to seek out females, this may require them 

to travel greater distances through a larger number of habitat types, reducing the 

effectiveness of crypsis and making deceptive coloration a more beneficial 

strategy.   

 The ‘activity hypothesis’ and the ‘different microhabitat hypothesis’ are 

not mutually exclusive, yet each generates specific and testable predictions.  Here 

we weigh support for each using direct behavioral observations of free-ranging 

individuals in the field.  To our knowledge, only one study has examined salticid 

movement patterns using focal observations on free-ranging spiders (Hoefler & 

Jakob 2006) and no study has attempted to address hypotheses to explain sex-

differences in salticid dorsal coloration that is not involved in courtship. 

 

Methods 

 

Study species 

 The genus Habronattus includes approximately 100 species, primarily in 

North America, with a diversity of elaborate visual ornaments and dramatic 

multimodal courtship displays (Griswold 1987; Maddison & Hedin 2003).  In 

addition to the colorful ornaments that males display to females, males and 

females of many species are also strikingly sexually dimorphic in dorsal 
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coloration (Griswold 1987).  The four species examined in this study are all from 

different species groups (Maddison & Hedin 2003) and do not hybridize in the 

field or lab (LAT, pers. obs.). 

 Habronattus clypeatus (Banks), H. hallani (Richman), and H. pyrrithrix 

(Chamberlin) all exhibit similar patterns of sexual dimorphism in dorsal color 

pattern; males of all three species have striking and contrasting patterns of black 

and white stripes and/or chevrons, while females are brown and cryptic (Figure 

7a-f).  In H. hirsutus (Peckham and Peckham), males and females are both solid 

in color, although males are darker than females (Figure 7g,h).  Geographic 

variation in coloration is common within the genus Habronattus (see Griswold 

1987) and thus it should be noted that some subtleties of color pattern, as well as 

behavior, described here might be typical of this Phoenix, AZ population, and 

may vary across the species range.  These four species are all relatively common 

in riparian areas and gardens around Phoenix.      

 

Study site 

 All observations of spider behavior were made at the Rio Salado Habitat 

Restoration Area in Phoenix (33.42
◦
N, 112.07

◦
W).  The mission of this restoration 

area is to reestablish native wetland and riparian habitats that were historically 

associated with the Salt River (Rio Salado), which used to flow year-round (City 

of City of Phoenix), and thus it is an ideal natural habitat to study the natural 

history and behavior of Habronattus.  These spiders are commonly found on the 

ground wandering through the leaf litter, above ground in the vegetation of 
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cottonwood trees (Populus fremontii) and desert willows (Chilopsis linearis), and 

occasionally in grass and on the dirt, rock, and gravel substrates (LAT, pers. obs.). 

 

Data collection 

 Behavioral observations were conducted between 900 and 1500 hrs. from 

March to November in 2009 and 2010.  We located spiders in the field by visually 

scanning the leaf litter and vegetation.  When a spider was located, we conducted 

a two-part behavioral observation in which we followed the spider and recorded 

its behavior using voice recorders.  Sample sizes vary among species due to 

differences in abundance (H. clypeatus: n= 12 (5 females, 7 males), H. hallani: 

n=14 (8 females, 6 males), H. pyrrithrix: n=34 (20 females, 14 males), H. 

hirsutus: n=27 (10 females, 17 males).  During the first 15 minutes of the 

observation, we quantified the amount of time spent moving (i.e., walking, 

jumping) and stationary (i.e., not moving).  While stationary, we quantified the 

amount of time spent in the sun versus the shade.  In both the sun and shade, we 

further quantified the amount of time spent on different substrate types 

(cottonwood leaf litter, desert willow leaf litter, cottonwood vegetation, desert 

willow vegetation, grass, or rock/dirt.  Finally, by marking the starting and ending 

location of the focal spider, we measured the total distance moved during the 15-

minute observation period.  While this ‘distance’ metric does not account for 

additional movement that did not occur in a straight line, that data is captured in 

the measurement of the amount of time the spider spent moving (see above). 
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 If, after the 15-minute behavioral observation ended, the focal individual 

was not presently interacting with or oriented towards another individual, we 

conducted an additional 5-minute observation in which we quantified their leg-

waving behavior.  Outside of the context of courtship, individuals often raise and 

lower their front legs either simultaneously or in an alternating fashion (see online 

supplementary video: http://vimeo.com/31919620).  For each focal spider, we 

randomly selected either the left or right leg (to avoid the difficulty of observing 

both moving legs at the same time) and counted the number of times that that leg 

was raised during the five minute period.   

 After all data were collected, we temporarily captured each individual in a 

clear plastic vial.  For putative adult females, we confirmed maturity by 

examining their epigynum; mature females can be distinguished from immatures 

by the presence of a sclerotized epigynum (Foelix 1996).  To ensure that we were 

not repeatedly observing the same individuals, we captured each spider after data 

were recorded and marked them with a small black dot of paint (~1mm in 

diameter) on the underside of their abdomen using non-toxic black liquid eyeliner 

(Urban Decay Cosmetics, Costa Mesa, CA, USA).  If, after collecting data for a 

given individual, we discovered that the individual had already been marked, we 

excluded the data from our analyses.   

 To better understand the suite of potential predators that may be shaping 

male and female color patterns, we recorded all predation events on Habronattus 

that we observed in the field throughout the study (n=13), both within and outside 

of the context of our focal behavioral observations.  Because we frequently saw 

http://vimeo.com/31919620
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several mud dauber wasps (family Sphecidae) in the area that we suspected were 

feeding on Habronattus, we also examined the contents of 23 abandoned mud 

dauber nests found on the underside of a cement bridge within the area where we 

carried out our spider behavioral observations.  All of the nests that we examined 

with emergence holes were empty, and thus here we include data only on the 

nests that we found that were sealed and did not have emergence holes.  Wasp 

nests were likely inhabited by Sceliphron sp. or Chalybion sp., both of which we 

have observed at this field site (LAT, pers. obs.). Both species specialize on 

spiders; Sceliphron build mud nests in which they provision their young, while 

Chalybion use the old nests of Sceliphron (see Landes et al. 1987; Elgar & Jebb 

1999; Blackledge & Pickett 2000; Camillo 2002), making it difficult to determine 

which species is the owner of the provisions in a particular nest cell. 

 

Statistical analyses 

 All predictions above involve comparing behaviors between the sexes of 

the three species that exhibit conspicuous male coloration (H. clypeatus, H. 

hallani, and H. pyrrithrix).  For comparison with a species that does not exhibit 

conspicuous coloration, we also examined sex differences in behavior of the most 

distantly-related species, H. hirsutus.  We used 2-tailed t-tests (if data met the 

relevant assumptions) or Wilcoxon rank sum tests (if assumptions of parametric 

tests were violated) for all comparisons. 

 To test initial predictions of the ‘deception hypothesis’, we compared leg-

waving rates (number of leg-waves in five minutes) that occurred outside of the 
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context of courtship between males and females.  We then went on to further 

examine the hypotheses for why the sexes differ in their coloration strategies in H. 

clypeatus, H. hallani, and H. pyrrithrix.  To test the predictions of the ‘activity 

hypothesis’, we compared the time spent moving (vs. time spent at rest) during 

behavioral observations between the sexes.  To test the predictions of the 

‘different microhabitat hypothesis’, we compared the time spent in each broad 

habitat category (leaf litter, vegetation, rock/dirt) between the sexes, and then we 

went on to compare time spent in finer scale microhabitat categories (cottonwood 

leaf litter, willow leaf litter, cottonwood vegetation, willow vegetation, grass, and 

rock/dirt).  We then compared the time spent in different light environments (sun 

vs. shade) between the sexes.  To understand if males and females differ in habitat 

heterogeneity, we compared the total distance traveled as well as the number of 

different microhabitat types individuals of each sex traveled through during the 

observation period.  Finally, we calculated the proportion of time that each 

individual spent in their preferred habitat type and compared this between the 

sexes.    

 In this study, we were interested in broad-scale sex differences that could 

be replicated across sympatric species with conspicuous male color patterns (e.g., 

H. clypeatus, H. hallani, H. pyrrithrix).  In testing our hypotheses, we place 

emphasis on patterns that held up across species rather than emphasizing the 

importance of any one significant result for any one species; for this reason, we 

did not employ Bonferroni corrections (see Cohen et al. 2008). 
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Results   

 

Deception hypothesis   

 In the three species with conspicuous male dorsal patterns, males waved 

their legs more than females (H. clypeatus: t3=4.017, P=0.028; H. hallani: 

X
2
=6.74, P=0.009; H. pyrrithrix: X

2
=7.19, P=0.007; Figure 9).  In H. hirsutus, 

males and females did not differ in leg-waving rates (X
2
=0.514, P=0.474; Figure 

9). 

 

Activity hypothesis 

 In H. clypeatus, H. hallani, and H. pyrrithrix, males spent more time 

moving than females, while females spent more time at rest (H. clypeatus: 

t10=2.763, P=0.020; H. hallani: X
2
=4.33, P=0.037; H. pyrrithrix: X

2
=16.194, 

P<0.0001; Figure 10).  For comparison, in H. hirsutus, males and females did not 

differ in movement rates (t25=1.34, P=0.194; Figure 10).   

 

Different microhabitat hypothesis 

 In H. clypeatus, H. hallani, and H. pyrrithrix, males and females did not 

differ in the time they spent resting within the three major habitat types (H. 

clypeatus: leaf litter: X
2
=0.347, P=0.556; vegetation: X

2
=0.347, P=0.556; 

rock/dirt: X
2
=3.05, P=0.081; H. hallani: leaf litter: X

2
<0.001, P>0.999; 

vegetation: X
2
<0.001, P>0.999; H. pyrrithrix: leaf litter: X

2
=0.020, P=0.887; 

vegetation: X
2
=0.324, P=0.569; rock/dirt: X

2
=0.587, P=0.444; Figure 11).   When 
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the different habitat types were divided into finer categories (cottonwood litter, 

willow litter, cottonwood vegetation, willow vegetation, grass, and dirt/rock), 

there was still no difference between the sexes on any habitat type for H. 

clypeatus, H. hallani, or H. pyrrithrix (see supplementary material in Appendix 

C).  With the exception of H. hallani (where males spent more time in the sun 

than females; X
2
=4.67, P=0.031), the sexes did not differ significantly in the 

amount of time spent in the sun vs. the shade (H. clypeatus: X
2
=1.00, P=0.317; H. 

pyrrithrix: X
2
=0.067, P=0.795, Figure 12) 

 For comparison, in H. hirsutus, there were no significant sex differences in 

the time spent resting on different substrate classes, although there was a tendency 

for females to spend more time on rocks and dirt than males (leaf litter: X
2
=1.66, 

P=0.198; vegetation: X
2
=1.66, P=0.198; rock/dirt: X

2
=3.53, P=0.060).  When the 

microhabitat types were divided into finer categories as above, there were still no 

significant sex differences (see supplementary material in Appendix C).  There 

was a trend towards females spending more time in the sun than males, but this 

difference was not statistically significant (X
2
=3.39, P=0.066; Figure 12).      

 In H. hallani, males traveled greater distances than females (X
2
=6.75, 

P=0.009; Figure 13), and there was a non-significant trend in the same direction 

for H. pyrrithrix (X
2
=3.30, P=0.069; Figure 13).  However, in H. clypeatus, there 

was no sex difference in the total distance traveled over the course of behavioral 

observations (H. clypeatus: t8=0.896, P=0.396; Figure 13).  Despite some 

evidence that males travel further than females, there were no sex differences in 

the number of microhabitat types they moved through during behavioral 
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observations (H. clypeatus: t10=-0.97, P=0.356; H. hallani: X
2
=0.108, P=0.742; 

H. pyrrithrix: X
2
=0.991, P=0.320; Figure 14).  Furthermore, males and females 

did not differ in the amount of time they spent in their preferred habitat type 

compared with others (H. clypeatus: t10=-0.65, P=0.530; H. hallani: X
2
<0.0001, 

P>0.999; H. pyrrithrix: X
2
=0.613, P=0.434; Figure 15).   

 Similarly, in H. hirsutus, males and females did not differ in total 

movement distance (X
2
=1.67, P=0.196; Figure 13), number of microhabitats 

utilized (X
2
=2.38, P=0.123; Figure 14), or in the amount of time spent in their 

preferred habitat type compared with other habitats (X
2
=1.94, P=0.164; Figure 

15).   

 

Predation on Habronattus 

 We directly observed thirteen predation events on Habronattus over the 

course of the study (see Table 3).  77% of these involved predation by 

conspecifics (n=6) or heterospecific Habronattus (n=4); the other three were by 

an ant, a wolf spider, and a different salticid species (Table 3).  Of the 

Habronattus events, the predators were always the same size or larger than the 

prey.  In 80% of cases, the predators were adult females, while the remaining 20% 

were juveniles (Table 3).     

 Examining the remains of old mud dauber wasp nests (n=23) indicated 

that salticids, and in particular Habronattus, make up a significant part of their 

diet (see Table 4).  Of the 23 nests that we examined, 14 still had remaining spider 

provisions; the other 9 had dead wasps (adults, larvae, or pupae) that appeared to 
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have eaten all of their provisions but for some reason not survived to emergence.  

Of the nests that still had spider provisions remaining, the total number of spiders 

per cell ranged from 4 to 51, with a total of 211 spiders, 31 of which were 

salticids.  Three of the fourteen nests contained at least one salticid.  Interestingly, 

for the nests that contained any salticids at all, 75% of the spiders that were in 

those nests were salticids.  Of those salticids, 89% (n=26) were H. hirsutus while 

the rest were immature Phidippus sp.  All H. hirsutus specimens found in nests 

were mature adults (n=12) or large juveniles (≥ 4mm, n=14) (Table 4).   

 

Discussion 

From direct observations of free-ranging spiders in the field, we show that bold 

and conspicuous sexually dimorphic dorsal coloration in males of three species of 

Habronattus (H. clypeatus, H. hallani, and H. pyrrithrix) is associated with 

increased male leg-waving behavior similar to the false antennation behavior 

exhibited by other spiders that mimic hymenopterans (e.g., McIver & Stonedahl 

1993; Cushing 1997).  Females of all three species are cryptic in coloration and 

do not engage in this putative false antennation behavior.  Also consistent with the 

deception hypothesis is the finding that, in the one species in our study in which 

males do not have conspicuous markings (H. hirsutus), males correspondingly do 

not show the increased leg-waving behaviors seen in the other three species.  

When examining two hypotheses for why males and females from three species 

differ in their dorsal coloration strategies, we found support for the activity 

hypothesis, which posits that higher movement rates of males may have 
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constrained the evolution of cryptic coloration, resulting in different coloration 

strategies between the sexes.  Because sexes did not different in microhabitat use, 

our data failed to support the different habitat hypothesis for sex differences in 

coloration (discussed in more detail below).       

  

Evidence for deceptive coloration and its alternatives in Habronattus males 

 While our observations and field data are suggestive of dorsal color and 

behavior working together to deceive predators, it is important to weigh support 

against alternative explanations that are commonly proposed for bold and 

conspicuous colors, such as disruptive coloration (e.g., Cott 1940; Stevens & 

Merilaita 2009) or motion dazzle markings (Stevens 2007; Stevens et al. 2008; 

Scott-Samuel et al. 2011).  Disruptive coloration is a form of camouflage that 

employs markings that break up an animal’s outline or create the appearance of 

false edges and boundaries, hindering the detection or recognition of an animal’s 

true shape (e.g., Cott 1940; Stevens & Merilaita 2009).  As such, disruptive 

pattern elements are expected to be biased towards borders and edges (Merilaita 

1998); empirical work has shown that such markings are indeed more effective at 

deterring predation when they occur along body outlines (Cuthill et al. 2005; 

Schaefer & Stobbe 2006).  In the conspicuously-colored Habronattus males in our 

study, the contrasting patterns are located in the center of the abdomen (see Figure 

1).  In contrast with disruptive coloration, which interrupts edges, in all three 

species, the abdomen is bordered with a conspicuous white margin, which clearly 

highlights the outline of the body, rather than disrupting it (see Figure 1a, c, e).  
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Furthermore, the frequent leg-waving of males attracts attention and clearly 

identifies the head of the spider, which appears to amplify the body shape rather 

than obscure it (LAT, pers. obs.), suggesting that this coloration is not functioning 

as disruptive coloration.   

 Another potential explanation for conspicuous markings that has received 

recent attention is the idea that they interact with movement creating a ‘motion 

dazzle’ effect, making it difficult for predators to estimate their speed and 

trajectory at high speeds (Stevens 2007; Stevens et al. 2008; Scott-Samuel et al. 

2011).  Empirical support comes from human subjects and computer animations; 

at high speeds, dazzle coloration affects the perceived speed of objects moving in 

a straight line (Scott-Samuel et al. 2011) and makes the capture of moving prey 

more difficult (Stevens et al. 2008).  This, too, seems improbable for Habronattus 

males, whose movement patterns are relatively slow compared with the 

animations used in dazzle studies (15-20cm/s: Stevens et al. 2008; 357 cm/s: 

Scott-Samuel et al. 2011).  Furthermore, movement patterns of Habronattus 

males are jerky, and involve frequent stopping and zig-zagging through their 

habitat as they search for females (LAT, pers. obs.), making this an unlikely 

system for dazzle coloration to be effective.   

 The present study provides the first step towards understanding if and how 

male dorsal patterns in Habronattus deceive predators.  Further experiments with 

color-manipulated spiders and ecologically relevant suites of predators are clearly 

needed.  Our study examines color patterns in their natural context with an 

emphasis on natural history; it has recently been argued that this emphasis is 
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missing from many studies on protective coloration (Stevens 2007).  Furthermore, 

our results identify two groups of organisms that likely to be important predators 

in this system (mud dauber wasps that specialize on spiders and other 

Habronattus), setting the stage for work that examines how predator perception 

and cognition influence the evolution of prey color patterns and behaviors (e.g., 

Chittka & Osorio 2007; Stevens 2007).  Because mud dauber wasps hunt 

exclusively for spiders (e.g.,  Landes et al. 1987; Elgar & Jebb 1999; Blackledge 

& Pickett 2000; Camillo 2002), the deceptive strategy of male Habronattus may 

simply allow them to escape a mud dauber’s search image.      

 Interestingly, in the single species in our study in which males do not 

exhibit conspicuous coloration (H. hirsutus), males correspondingly lack the 

increased leg-waving behavior relative to females.  While this is consistent with 

the idea that male color pattern and leg-waving function together in Habronattus, 

a comparative study that examines a larger number of species both with and 

without conspicuous coloration is clearly needed.  The genus Habronattus is both 

diverse and speciose (Griswold 1987), and the availability of a molecular 

phylogeny (Maddison & Hedin 2003) makes it an ideal group for testing 

hypotheses about the coevolution of dorsal color pattern and leg-waving behavior 

within a phylogenetic framework.  Such phylogenetic studies may also help 

explain why males of different species, such as H. hirsutus, have not adopted 

conspicuous color patterns like those found in H. clypeatus, H. hallani, and H. 

pyrrithrix males.  Data from this study indicate that H. hirsutus spends 80% of 

their time above ground in the vegetation compared with the other three species 
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which all spend more than 74% of their time in the leaf litter on the ground (see 

Figure 11).  Furthermore, H. hirsutus was the only species of Habronattus that we 

found in mud dauber nests (see Table 4).  Such differences in natural history 

should be explored further as potential explanations for the selection pressures 

that have differently shaped male color patterns.    

 We tested two hypotheses to explain why male and female H. clypeatus, 

H. hallani, and H. pyrrithrix differ in dorsal color pattern.  We failed to uncover 

support for the different habitat hypothesis.  In none of these species did males 

and females differ in the time spent in different microhabitats, and with the 

exception of H. hallani none differed in the amount of time that the sexes spent in 

the sun vs. the shade.  While there was some evidence that males traveled greater 

distances than females during observations, this did not lead to males traversing a 

larger number of habitat types during observations.  Furthermore, there were no 

differences in the proportion of time spent in an individual’s preferred habitat type 

relative to other habitat types.  Instead, the activity hypothesis to explain male 

color pattern differences was supported in all three conspicuously colored species; 

males indeed spent more time actively moving than females.  Interestingly, and as 

expected, this relationship did not hold up for H. hirsutus.     

 

A novel twist on the activity hypothesis 

 In this study, we show that, in three species of Habronattus, females spend 

relatively small amounts of time moving compared to males, and thus, cryptic 

coloration may be an ideal strategy.  In contrast, males must move, presumably in 
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search of females, and thus they need to find an alternative strategy for protection.  

Our study lends support to the idea that males have solved this problem by pairing 

conspicuous patterns of bold stripes and chevrons with leg-waving behavior to 

deceive predators.   The rationale behind the activity hypothesis is not new; both 

theoretical and empirical work support the idea that movement can limit the 

effectiveness and ultimately constrain the evolution of cryptic coloration, leading 

to alternative solutions for protection in other animals (e.g., Merilaita & Tullberg 

2005; Ioannou & Krause 2009).  Our evidence in support of the activity 

hypothesis comes from observations on males outside of the context of courtship, 

as leg-waving behavior was only quantified when males were not interacting with 

other spiders (see Methods).  Yet observations of male courtship behavior suggest 

that the same color patterns that presumably protect males when wandering in 

search of females might also be strategically designed to function while males are 

actively courting.  Leg-waving is a standard feature of jumping spider 

communication and courtship (Jackson 1982), and this waving and extension of 

the first pair of legs occurs throughout the entire courtship display in Habronattus 

(see Figure 8).  Males must use extreme caution when displaying for females who 

are also generalist predators and often attack conspecifics (e.g., see Table 1, see 

also Jackson & Pollard 1997).  Given this risk, it is not surprising that courting 

male Habronattus are extremely focused on courtship and often appear oblivious 

to external stimuli or threats when courting (LAT, pers. obs.).  Here we propose 

the ‘focused courtship’ hypothesis as an extension of the activity hypothesis.  

Because males must already extend and wave their first pair of legs to 
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communicate with females during courtship, adding conspicuous patterning to 

their backs creates the combination of conspicuous stripes and leg-waving that is 

characteristic of hymenopteran mimics.  It has been suggested that in ant mimics, 

behavioral mimicry (i.e., false antennation) evolved before morphological 

mimicry (reviewed in Cushing 1997).  In Habronattus, as well as other salticids, 

this transition to behavioral mimicry might be a relatively simple step as it 

involves taking a behavior that is already part of courtship (leg-waving) and 

extending it to the mate search context as well.  In courting male Habronattus 

jumping spiders, actively and clearly identifying  their location to females from a 

safe distance is a necessity; this goal likely conflicts with any attempt to avoid 

detection by potential predators (which include the very females whose attention 

they are trying to capture).  As such, selection on Habronattus should drive 

protective strategies that continue  work after detection and that do not require the 

male to risk taking his focus off of a potentially cannibalistic female; this may 

explain why mimicry is so widespread across the salticidae (e.g., Cushing 1997).    

 In conclusion, here we provide evidence that, in three sympatric species of 

Habronattus, male color and pattern work together, presumably, to deceive 

predators.  We then provide support suggesting that this coloration likely differs 

between males and females as a result of differences in activity patterns (i.e., 

movement rates) between the sexes, and speculate that, perhaps, it is also a result 

of the unique need for males to remain focused on the potentially cannibalistic 

females that they court. Despite the extensive literature on the function and 

evolution of protective coloration (e.g., see reviews in Ruxton, 2004 
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#543}(Stevens 2007; Stevens & Merilaita 2009; Ruxton & Schaefer 2011), to our 

knowledge, no study has examined sex differences in non-display coloration in 

the Salticidae.  This is surprising, given the degree to which non-display dorsal 

color patterns differ between the sexes across the family, often being more 

conspicuous in males (e.g., see Maddison 1995).  Recent work on tropical 

caterpillars with large vertebrate-like eyespots and face-like markings suggest that 

mimicry complexes may play out in unexpected ways, depending on natural 

history (Janzen et al. 2010).  Unlike most models of Batesian mimicry (e.g., see 

review in Ruxton et al. 2004), in these tropical caterpillars, avoidance by 

predators is a function of innate, rather than learned avoidance of eye-like and 

face-like patterns (Janzen et al. 2010).  As such, there is no strong selection on 

mimics to perfectly resemble any specific species of model and due to the 

extremely high cost of ignoring the danger of recognizing eyes or faces on a real 

predator, harmless mimics may largely outnumber their models(Janzen et al. 

2010).  This system may be an example of where imperfect mimicry and 

perceptual exploitation are difficult to tease apart (e.g., Schaefer & Ruxton 2009; 

Ruxton & Schaefer 2011).  The Habronattus system examined in the present 

study seems to resemble such a system; male leg-waving and striped patterns do 

not cause males to perfectly resemble a particular wasp or bee, but rather likely 

play on a potential predator’s innate aversions to such cues (Kauppinen & Mappes 

2003).  Additionally, in our study populations, Habronattus males are abundant, 

perhaps even more so than their presumed models (LAT, pers. obs.), yet the high 

risk to predators of mistakenly attacking a hymenopteran may be enough to 
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provide true benefits.  In the case of avoiding attack from spider-hunting mud 

dauber wasps, looking like anything other than a spider might be enough to deter 

an attack.  Such systems which challenge current thinking about Batesian mimicry 

are exciting and may provide new insights into the function and evolution of 

diversity in animal color patterns. 
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Figure 7.  Sexual dimorphism in dorsal color pattern in four sympatric species of 

Habronattus.  H. clypeatus male (a) and female (b), H. hallani male (c) and 

female (d), H. pyrrithrix male (e) and female (f), H. hirsutus male (g) and adult 

female (h).  Note that males of H. clypeatus (a), H. hallani (c), and H. pyrrithrix 

(e) exhibit conspicuous dorsal markings, while males of H. hirsutus (g) do not.  

While females all look similar to one another, they can be identified based on 

subtle differences in dorsal and facial markings.   
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Figure 8.  Courtship display in Habronattus pyrrithrix.  In the first stage of 

display, the male approaches the female and displays his ornamented red face and 

the green undersides of his front legs (a, b, c).  In stage 2 of display, he 

approaches and stops directly in front of the female and initiates an additional 

seismic component to his display (d).  Note that the male’s conspicuous dorsal 

pattern is oriented away from the female throughout the entire display.   
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Figure 9.  Comparison of leg-waving frequency between the sexes during 

behavioral observations in the field (mean  SEM).  Asterisks (*) indicate 

significant sex differences within a species. 

 

 

 

Figure 10.  Comparison of time spent moving between the sexes during 

behavioral observations in the field (mean  SEM).  Asterisks (*) indicate 

significant sex differences within a species.     
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Figure 11.  Comparison of mean proportions of time spent in different 

microhabitat types.  Note that there are no significant sex differences for any 

species.  For clarity, we include three broad habitat types in this analysis (leaf 

litter, vegetation, rock/dirt).  However, in a second analysis, we broke up the 

microhabitats further by plant species (cottonwood leaf litter, desert willow leaf 

litter, cottonwood vegetation, desert willow vegetation, grass, and rock/dirt) and 

found that there were still no differences between the sexes (see Results).  
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Figure 12.  Comparison of % time spent in the sun between the sexes during 

behavioral observations in the field (mean  SEM).  Asterisks (*) indicate 

significant sex differences within a species. 

 

 

Figure 13.  Comparison of the total distance traveled over the course of 15-

minute behavioral observations (mean  SEM).  Asterisks (*) indicate significant 

sex differences within a species.     
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Figure 14.  Comparison of the number of different habitat types individuals 

traveled through during the course of 15-minute behavioral observations (mean  

SEM).    Note that there are no significant sex differences for any species.  

Available habitat types included: cottonwood leaf litter, desert willow leaf litter, 

cottonwood vegetation, desert willow vegetation, grass, and rock/dirt.   

 

 

Figure 15.  Comparison of the proportion of time individuals spent in their 

preferred habitat type (mean  SEM).  Note that there are no significant sex 

differences for any species.   
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Figure 16.  Contents of three cells of a mud-dauber wasp nest (Sphecidae) found 

in the vicinity of the Rio Salado Habitat Restoration Area, Phoenix, AZ, USA, 

indicating that at least for some individual wasps, Habronattus makes up a 

significant portion of their prey.     
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Table 3.  List of predation events on Habronattus observed at the Rio Salado 

Habitat Restoration Area in Phoenix, AZ, USA. 

 

Prey 

species 
Prey sex 

Size 

class 

(mm) 

Predator  Predator sex 

Size 

class 

(mm) 

            

H. 

clypeatus 

adult 

male 5 
H. clypeatus 

adult female 
6 

H. 

clypeatus 
adult male 

5 
H. pyrrithrix 

adult female 
6 

H. 

clypeatus 

adult 

male 5 
H. pyrrithrix 

adult female 
6 

H. hirsutus 

adult 

female 6 H. hallani adult female 6 

H. hirsutus juvenile* 3 H. hallani adult female 6 

H. hirsutus juvenile* 3 H. hirsutus juvenile* 3 

H. hirsutus juvenile* 4 H. hirsutus adult female 6 

H. hirsutus juvenile* 4 H. hirsutus juvenile* 4 

H. hirsutus juvenile* 4 H. hirsutus adult female 6 

H. 

pyrrithrix 

adult 

female 2 Formicidae (ant) unknown 3 

H. 

pyrrithrix 

adult 

female 6 

Lycosidae (wolf 

spider) adult female 10 

H. 

pyrrithrix 

adult 

male 5 
H. pyrrithrix 

adult female 6 

H. 

pyrrithrix 

adult 

male 5 

Phidippus sp. 

(Salticidae) 
juvenile* 

7 

            

* In H. hirsutus and Phidippus sp., sex-specific color patterns do not appear until 

maturity; thus, the sex of juveniles is unknown 
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Table 4. Habronattus specimens found in mud dauber wasp nests (family 

Sphecidae) near the Rio Salado Habitat Restoration Area, Phoenix, AZ 

 

Prey species Sex 
Size class 

(mm) 
Quantity 

        

H. hirsutus adult female 6 10 

H. hirsutus adult male 6 2 

H. hirsutus subadult male† 5 2 

H. hirsutus juvenile* 4 12 

        

† For all Habronattus, subadult males (just prior to sexual maturity), exhibit 

enlarged pedipalps, allowing us to identify them as males before their final 

molt into adult coloration 

* In H. hirsutus, sex-specific color patterns do not appear until maturity; 

thus, the sex of most juveniles is unknown 
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Chapter 3 

ONTOGENETIC COLOR CHANGE IN SEXUALLY DICHROMATIC 

HABRONATTUS PYRRITHRIX JUMPING SPIDERS 

 

Abstract 

Animals use colors for a variety of purposes, from acquiring mates to avoiding 

predators.  In many animals, these color patterns are not static throughout life, but 

change drastically during development, maturity, and senescence.  During 

development, selection pressures can shift as animals change in size, vulnerability 

to predation, habitat use, or reproductive status.  Even after maturity, maintaining 

coloration can be costly, as the pigments and structures that produce colors may 

degrade over the course of the mating season and throughout an animal’s life.  

While recent work has focused on the signaling value of salticid colors, we know 

very little about how these colors change as spiders develop and age; such 

information can provide a context for understanding the functions of, and the 

constraints on, colorful signals.  Focusing on the sexually dichromatic jumping 

spider, Habronattus pyrrithrix, our goals were to (1) examine the microscopic 

morphology of the elaborately colored body regions that males display to females 

during courtship (i.e., males’ red faces, green legs, and white pedipalps), (2) 

examine how the colors of these regions as well as dorsal color patterns change 

during development leading up to sexual maturity, and (3) examine how male 

condition-dependent red facial and green leg coloration changes as males age 

beyond sexual maturity.  Although the bright white pedipalps and the green leg 
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coloration of males appeared only at sexual maturity (after their final molt), males 

and females began to differentiate in red facial coloration and dorsal patterning as 

young juveniles (ca. 2.5 mm, or ca. 45% of their total mature adult body size), 

with males developing the red facial coloration and conspicuous black and white 

dorsal patterning typical of sexually mature adult males.  Even after sexual 

maturity, color was not static; a male’s green leg coloration (but not his red facial 

coloration) faded with age.  Our results are discussed in the context of potential 

costs, constraints, and benefits of the production and maintenance of different 

types of color in salticids.   

 

Introduction 

Animal colors and patterns can serve a variety of functions.  They are often 

displayed in courtship to aid in species recognition or to convey information about 

the quality of an individual as a mate (see reviews in Andersson 1994; Hill & 

McGraw 2006a).  They are also frequently used to help animals avoid predators 

by aiding in aposematism or mimicry (see reviews in Cott 1940; Ruxton et al. 

2004).  In many animals, these color patterns are not static throughout life, but 

change drastically during development, maturity, and senescence, as well as 

seasonally (Booth 1990).  When color patterns differ between the sexes, 

examination of ontogenetic color change is particularly interesting because the 

timing and extent of color differentiation between the sexes can give us a more 

holistic understanding of the costs and benefits of different color patterns and 

their functions and constraints across contexts throughout an animal’s life. 
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 In many animals, individuals undergo dramatic and seemingly strategic 

color changes as they mature; such color changes likely reflect different selection 

pressures as individuals change in size, vulnerability to predation, habitat use, or 

reproductive status (Booth 1990).  In animals where bright male colors have 

evolved via sexual selection, sex-specific color patterns often appear suddenly 

upon sexual maturity, presumably because they are costly and unnecessary for 

juveniles, who do not engage in courtship or male-male agonistic interactions 

(Andersson 1994).  When sexually selected colors appear before sexual maturity, 

they are particularly interesting because they may hint at previously overlooked 

functional roles (e.g., Kilner 2006; Kapun et al. 2011).  When the sexes differ in 

color pattern due to different ecological selection pressures (e.g., Slatkin 1984), 

the timing of color pattern divergence can help us understand shifting selection 

pressures.  For example in Eremias lugubris lizards, adults and older juveniles are 

tan and cryptic, whereas young juveniles have highly conspicuous markings, 

mimicking noxious oogpister beetles (Huey & Pianka 1977); in this system, subtle 

and changing functional roles of color would be missed by limiting study to adult 

stages. 

 In addition to the apparently strategic color changes that occur with 

development, mature organisms can also change color more subtly as they age, 

particularly if pigments or structures that produce colors break down over time 

(Booth 1990).  There is growing evidence that animal colors, including those that 

involve pigments or structures contained within dead tissue (e.g., feathers, scales), 

can fade with age as a product of abrasion, soiling, or photobleaching (Ornborg et 
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al. 2002; McGraw & Hill 2004; Delhey et al. 2006; Kemp 2006).  If maintenance 

of coloration is costly, such age-based fading can have important consequences 

for signaling with the ability to maintain bright colors (i.e., the ability to resist 

tissue/pigment damage) acting as an indicator of quality (e.g., Delhey et al. 2006).  

Alternatively, color fading may provide direct information about an individual’s 

age (Manning 1985).  Such information could help individuals identify older, 

more viable mates (reviewed in Kokko & Lindstrom 1996).  Alternatively, if 

older individuals are more likely to carry disease or parasite infection (e.g., 

Tarling & Cuzin-Roudy 2008), or if they are more likely to accumulate 

deleterious mutations in their germ-line (Beck & Promislow 2007), age-based 

color variation might enable individuals to identify and select younger mates.  A 

deeper understanding of how, and ultimately, why colors change with age will 

enable us to generate informed predictions about their potential signal content.  

  Jumping spiders are an understudied, yet excellent group in which to 

examine ontogenetic color change from development through senescence.  Adult 

males are often more colorful than females, and in many cases they display these 

colors to females during courtship or to other males during competitive 

interactions (e.g., Peckham & Peckham 1889, 1890; Lim & Li 2004; Girard et al. 

2011).  In addition, sexual dichromatism in dorsal color that is not displayed 

during courtship may reflect different predator-avoidance strategies of males and 

females (see Chapter 2).  To date, only three jumping spider species have had any 

aspects of their colors quantified using modern color measurement techniques 

(i.e., spectrophotometry) (Cosmophasis umbratica (Lim & Li 2006a), Phintella 



  73 

vittata (Li et al. 2008a), and Habronattus pyrrithrix (Taylor et al. 2011, Appendix 

B)), and in only one study were juvenile colors measured (Lim & Li 2006a).  To 

our knowledge, no study has documented age-based changes in salticid colors as 

they develop from spiderlings through sexual maturity.  Because species 

descriptions and dichotomous keys typically include details on only adults, with 

anatomy of mature genitalia required for proper identification (e.g., Ubick et al. 

2005), the salticid literature is lacking even in qualitative descriptions of juvenile 

color patterns.   

 The jumping spider genus Habronattus is one of the most highly 

ornamented groups with approximately 100 species; males are typically 

elaborately and conspicuously colored, whereas females are drab and cryptic 

(Griswold 1987; Maddison & Hedin 2003).  Furthermore, patterns of juvenile 

coloration also vary across the genus (LAT, pers. obs.).  For example, in H. 

hirsutus, juveniles of both sexes are indistinguishable from one another and 

resemble cryptic adult females until sexual maturity (LAT, pers. obs.).  In H. 

hallani, juveniles of both sexes are indistinguishable from one another but have 

striking dorsal color patterns unlike either adult males or females (LAT, pers. 

obs.).  In H. pyrrithrix, juvenile males and females exhibit color patterns similar 

to those of sexually mature adults; males have red faces and striped dorsal 

patterns, whereas females are drab and cryptic throughout their life (LAT, pers. 

obs).  This diversity in ontogenetic color change suggests that the costs, benefits, 

and functions of juvenile colors might be just as interesting and diverse as those 

of adults.  Additionally, there is evidence that, after reaching maturity, adult male 
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ornamental colors in H. pyrrithrix continue to undergo additional age-related 

changes, which could have important implications for sexual signaling (Taylor et 

al. 2011, Appendix B).   

 Focusing on Habronattus pyrrithrix, our goals were to (1) examine the 

microscopic morphology of the elaborately colored body regions that males 

display to females during courtship (i.e., males’ red faces, green legs, and white 

pedipalps), (2) examine how the colors of these regions as well as dorsal color 

patterns change during development leading up to sexual maturity, and (3) 

examine how male condition-dependent red facial and green leg coloration 

changes as males age beyond sexual maturity.  The red facial coloration and white 

pedipalp coloration of H. pyrrithrix are contained within modified setae, or scales 

(e.g., Hill 1979), while the green leg coloration is present on the surface of the 

cuticle of the leg (e.g., Parker & Hegedus 2003; Ingram et al. 2011), which is 

further adorned with white scales (LAT, pers. obs.).  Recent work on H. pyrrithrix 

suggests that adult male facial and leg colors that are displayed to females during 

courtship are condition-dependent (Taylor et al. 2011, Appendix B), and that the 

presence of red coloration improves courtship success in certain contexts (see 

Chapter 5), yet we know nothing about the role of red facial coloration in juvenile 

males.  Conspicuous dorsal coloration in sexually mature adult males (compared 

with drab and cryptic coloration of females) appears to be associated with the 

higher movement rates of males while searching for females (Chapter 2), yet we 

know nothing about the potential factors that might shape color differences in 

sexually inactive juveniles.  Even after maturity, male ornamental colors do not 
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appear to be static (Taylor et al. 2011, Appendix B).  Throughout the mating 

season, the scales that produce the colors may undergo natural wear and 

degradation, which may result in predictable, post-maturity, age-related 

deterioration of color (e.g., Kemp 2006; Kemp & Macedonia 2006); this may 

allow such colors to be used by females to assess a male’s age during courtship 

(e.g., Manning 1985).   

 To our knowledge, this will be the first study to quantify ontogenetic color 

changes throughout development in any of the more than 5000 species (Platnick 

2011) of jumping spider.  Standard portable spectrophotometers used in animal 

coloration studies (reviewed in Andersson & Prager 2006) typically have a 

minimum reading area of 1 mm (e.g., Lim & Li 2006a; Moreno et al. 2006; 

Galvan & Moller 2009); thus, precise quantification of color can only be done on 

relatively large body regions (>1 mm).  Thus, using standard equipment makes 

the study of minute patches of color on small species of spiders challenging and 

makes the detailed study of color on particular body regions of juvenile salticids 

(e.g., faces, legs, pedipalps) impossible.  Here we use a custom-designed 

microspectrophotometer (See Methods, see also Taylor et al. 2011, Appendix B) 

allowing us to carefully measure minute patches of color on juveniles and 

compare colors with those same precise areas on adult spiders.    

 

Methods 

 

Study species 
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 Habronattus pyrrithrix Chamberlin 1924 is found throughout southern 

California and Arizona, USA south to Sinaloa, Mexico (Griswold 1987).  In 

Phoenix, Arizona, they are quite common and found at high densities in riparian 

areas, grassy backyards, and agricultural fields (LAT, pers. obs.).  Geographic 

variation in coloration is common within the genus Habronattus (see Griswold 

1987) and thus some subtleties of color pattern described in the present study may 

be typical of this Phoenix, AZ population, and may vary across the species range.  

Additional details on the biology and courtship display behavior of H. pyrrithrix 

are provided in Chapters 4 and 5.  

 

Scale morphology of adult male ornaments 

 Using sexually mature adult specimens, we imaged the color patches on 

the males’ red face, green front legs, and white pedipalps that they display to 

females using a Leica-Cambridge Stereoscan 360 field emission scanning electron 

microscope (SEM) (Leica Microsystems, Wetzlar, Germany) at an acceleration 

voltage of 2kV.  Prior to imaging, we allowed frozen specimens to air-dry 

overnight and then mounted the carapace, legs, and pedipalps onto standard SEM 

stubs using conductive graphite paint.  

 

Color study 1: Ontogenetic color changes in juveniles 

 To examine how male and female coloration changes during juvenile 

development in the field, we collected spiders (n=135) from a range of 

developmental stages (i.e., size classes) between May and October 2008 from a 
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single, dense population within an agricultural area in Queen Creek, Arizona, 

USA (Maricopa County, 33.224744 N, 111.592825 W).  This population was 

chosen because, in contrast with other sites where multiple species are abundant 

and interact (see Chapter 1), the only species of Habronattus that we have ever 

seen at this site in five years is H. pyrrithrix.  This allowed us to be confident that 

all spiderlings and juveniles included in the present study were H. pyrrithrix.  

Specifically, we collected spiderlings (before they are able to be sexed, ca. 1.5-2.0 

mm in length, n=15), small juveniles, (ca. 2.5 mm, n=15 males, n=15 females), 

large juveniles (ca. 3 mm, n=15 males, n=15 females), subadults (ca. 4-6 mm, 

n=15 males, n=15 females) and sexually mature adults (ca. 5-7 mm, n=15 males, 

n=15 females).  Immediately after collection, we froze spiders (-80° C) for later 

color analysis.  

 

Color study 2: Post-maturity age-related changes in condition-dependent male 

ornaments 

 To examine how adult male color changes with age post-maturity, we 

collected 12 gravid adult females in July and August 2008 from the same 

population described above and brought them back to the lab and allowed them to 

lay eggs.  Spiderlings were housed together until they were large enough to be 

sexed (ca. 2.5mm in length), at which point the first three males from each 

female’s egg sac were removed, housed separately in clear plastic containers 

(6x6x13cm), and fed a constant diet of small crickets (Acheta domesticus).  

Spiders (n=36; three from each of 12 egg sacs) were checked daily to determine if 
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they had molted; within each clutch, as males reached their final molt to maturity, 

they were randomly assigned to one of three different age groups (0, 60, and 120 

days post-maturity).  These age ranges were chosen because they likely represent 

the difference in ages of males in the field during the most active part of the 

mating season at this site (approximately May-August; LAT, pers. obs.).  When 

males reached the appropriate randomly assigned age (0, 60, or 120 days post-

maturity), we euthanized them and placed them in the freezer (-80° C) for color 

analysis. 

 

Color measurement and analysis 

 Body colors were quantified following methods described in Taylor et al. 

(2011, Appendix B).  Briefly, we used a reflectance spectrophotometer 

(USB2000, Ocean Optics, Dunedin, FL, USA) coupled to a modified Leica 

DMLB2 fluorescence light microscope with a 40x quartz objective lens (Leica 

Microsystems, Wetzlar, Germany) and illuminated with a full-spectrum Leica 75 

W xenon arc lamp (Leica Microsystems, Wetzlar, Germany).  This setup allowed 

us to quantify the minute color patches of all size classes of these spiders that are 

too small to measure accurately with standard spectrophotometry equipment.  

Unfortunately, the optics of the microscope cut out a portion of the UV spectrum, 

so this instrument only provides spectral data from 375-700nm.  In some jumping 

spider species, UV reflectance appears to be important in communication (Lim et 

al. 2007; Li et al. 2008b; Lim et al. 2008), and thus we must use caution when 

excluding UV wavelengths from our analyses.  However, we confirmed in a 
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previous study that, though reflectance does extend into the UV for the green legs 

and white pedipalps, there are no UV peaks in either region, so the benefit of 

using an instrument that allows precise and repeatable measures on minute color 

patches of these tiny spiders far outweighs the disadvantage of excluding UV 

(Taylor et al. 2011, Appendix B).  

 For Study 1, where we were interested in color changes of the faces, front 

legs, and pedipalps of males and females that occurred during juvenile 

development through maturity, we took the average of two reflectance measures 

from each of these three body regions.  From these spectral data, we calculated 

the single color variable that captured the most sex- and age-related variation.  

Specifically, because face color among the different sex/age classes varied from 

white to red, the metric that captured most of this variation was ‘red chroma’ (i.e., 

the proportion of total reflectance in the red region of the spectrum, between 600 

and 700 nm).  Similarly, because the front legs varied from white to green, the 

metric that captured most of this variation was ‘green chroma’ (the proportion of 

total reflectance between 450 and 550 nm).  Finally, because the pedipalps varied 

in coloration from gray to bright white, brightness (total reflectance over the 

entire spectrum) was the metric that captured most of this variation.  For a 

detailed discussion of the rationale behind selecting relevant color variables, 

including those used here, see Montgomerie (2006).  In addition, we qualitatively 

characterized the dorsal color pattern of individuals as either (1) tan and cryptic in 

coloration, similar to the dorsal coloration of adult females, or (2) consisting of 

black and white stripes and chevrons, characteristic of adult males (see Chapter 
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2); all individuals examined fit clearly into one of these two categories.  Because 

these categorizations were based on pattern rather than reflectance properties of 

the colors, we did not quantify dorsal coloration spectrophotometrically.     

 For Study 2, where we were interested in more subtle, age-based fading of 

display colors in adult males, we limited our analysis to the coloration of the red 

face and green legs, because previous studies showed that these two color patches 

were condition-dependent in the field, presenting the possibility that such 

condition-dependence could be explained in part by the fading of colors as males 

age (Taylor et al. 2011, Appendix B).  We took the average of two reflectance 

measures from each individual’s face and front legs and used these spectral data 

to calculate three color variables that were found to be condition dependent (and 

thus, potentially driven by age) in a previous study: (1) the hue of the red face (the 

wavelength corresponding to the inflection point of the red curve), (2) the red 

chroma of the face (the proportion of total reflectance between 600 and 700 nm), 

and (3) the brightness (mean reflectance) of the green front legs, following the 

methods described in Taylor et al (2011, Appendix B).  We also determined the 

relative size of the male’s red facial patch, which was also previously found to be 

condition dependent (see Methods in Taylor et al. 2011, Appendix B).  Three 

males died over the course of the study for unknown reasons and were thus 

excluded from our analyses. 

 

Statistical analysis 
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 For Study 1, we used analyses of variance (ANOVA) to examine effects 

of developmental stage (i.e., size class), sex, and their interaction on face color 

(red chroma), front leg color (green chroma), and pedipalp color (mean 

brightness).  Data did not meet normality and equal-variance assumptions and 

thus were rank transformed (Conover & Iman 1981).  For Study 2, we used 

ANOVA to examine the effects of age on the hue, red chroma, and size of a 

male’s red face and on the brightness of his green legs.  Because we used three 

males from each clutch (one assigned to each age category), we included the 

clutch (i.e., mother’s identity) as a random factor in the model.  Following 

ANOVA, we compared the colors among age classes using Tukey-Kramer 

pairwise comparisons with an alpha level of 0.05.  All data from Study 2 met the 

assumptions of parametric statistics.  All statistical analyses were conducted using 

SAS 9.2 (SAS Institute, Cary, NC, USA). 

 

Results 

Scanning electron microscopy revealed varied scale structure on the three 

different body regions of males (Figure 17).  Examination of the red scales on the 

face revealed ridged protrusions covering the surface of each scale (Figure 17a,b).  

The green legs were ornamented with long spatulate scales, the flattened ends of 

which were covered with fine ridges (Figure 17c,d).  The white scales on the 

pedipalps were similar in size and shape to the red facial scales, but were 

relatively smooth in comparison (Figure 17e,f). 
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 In Study 1, we found a significant age x sex interaction on all three color 

metrics examined (Table 5) indicating that colors developed differently between 

the sexes.  Although spiderlings of both sexes had sparse red scales around their 

anterior median eyes (Figure 18a), development of red coloration on the face was 

apparent in small juvenile males and it increased into adulthood, whereas small 

juvenile females developed white facial scales (Figure 19a, Figure 18).  Similarly, 

the conspicuous dorsal color pattern of males was also fully developed in small 

juveniles (ca. 2.5mm), whereas all spiderlings and juvenile females had a cryptic, 

tan dorsal color pattern similar to adult females (Figure 20).  In contrast, the green 

coloration of the legs and the bright white pedipalp coloration typical of adult 

males showed a sudden onset at sexual maturity (Figure 19b,c). 

 In Study 2, the green leg coloration of adult males was brighter (lighter) 

with increasing age (F2,21=4.17, P=0.029; Figure 21d), but we found no effect of 

age on any aspect of red facial coloration (hue: F2,21=0.37, P=0.694; red chroma: 

F2,21=0.53, P=0.595; size of red facial patch: F2,21=1.97, P=0.165; Figure 21a,b,c).   

 

Discussion 

Here we document unique scale morphology associated with the three colored 

body regions in male Habronattus pyrrithrix that are prominently displayed to 

females during courtship.  Then, using field-collected spiders, we show how the 

colors of these three regions (i.e., red face, green front legs, and bright white 

pedipalps) develop as individuals grow from spiderlings through sexual maturity.  

Finally, given that two of these body regions (i.e., red faces and green front legs) 
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are condition-dependent (Taylor et al. 2011, Appendix B), we examined the 

possibility of age-related fading of these traits in adult males and show that green 

leg coloration, but not red facial coloration, fades (i.e., becomes lighter) with age.     

  

Ontogenetic color change in juveniles 

 In examining color development, we found that both the bright white 

pedipalps and the green leg coloration of males appeared only at sexual maturity.  

This is typical of many ornaments used in mating or aggressive competitions over 

mates; because such colors typically incur costs, it is not surprising that these 

ornaments are not expressed in juvenile stages (Andersson 1994).  In contrast, 

males and females began to differentiate in red facial coloration and dorsal 

patterning as young juveniles (ca. 2.5 mm).  During these stages, young males 

began to develop red facial scales and conspicuous black and white dorsal 

patterning typical of sexually mature adult males.  The red coloration of adult 

males is prominently displayed in courtship and has been shown to improve 

courtship success in certain contexts (Chapter 4), yet it is unclear whether this 

coloration might have any functional role for juvenile males who do not engage in 

courtship.  Red coloration has been shown to have important effects on receivers 

in a variety of taxa (reviewed in Pryke 2009); it could be that juvenile males use 

their red face for signaling in non-sexual contexts, either with conspecifics, 

potential predators, or prey.   

 Regarding conspicuous dorsal patterning in adult males, this appears to be 

linked to higher movement rates associated with mate-searching, compared with 
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cryptic females who spend more time at rest; the pairing of conspicuous body 

patterns with false antennation (i.e., leg waving behavior) presumably helps adult 

males avoid predators as they move through the leaf litter searching for and 

courting females (Chapter 2).  Again, it is unclear what benefits, if any, this dorsal 

coloration might provide to young juvenile males.  It is possible that even as 

juveniles, males and females might face different ecological selection pressures 

(e.g., different dispersal or movement rates) that may drive such sex-differences 

in juvenile dorsal patterning (Booth 1990); in future work, such ideas should be 

examined in more detail.  Finally, it is possible that juvenile sexual dichromatism 

does not have a functional role (e.g., Johnston 1967); it may simply indicate 

relaxed selection pressure for crypsis, compared with other species in which 

males are cryptically colored until maturity.  It is interesting, however, that this 

species is an exception to the general pattern of salticid color development, where 

juveniles of both sexes typically resemble females in color pattern until reaching 

maturity (LAT, pers. obs.).  To date, studies of any aspect of the biology of 

juvenile jumping spiders are rare (e.g., Bartos 2008; Nelson et al. 2005a), yet they 

have revealed interesting aspects of life history that would have been missed by 

simply focusing on adults, as most studies do.  H. pyrrithrix is a particularly good 

system to examine sex differences in juveniles because, unlike most salticid 

species, color patterns allow small juveniles to be accurately sexed before 

reaching maturity.    

 

Post-maturity age-based color fading  
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 In addition to age-related changes that occur during development prior to 

sexual maturity, our study also uncovered post-maturity, age-based color change.  

Previous studies have suggested that structural coloration in jumping spiders may 

be linked to male age (Lim & Li 2007; Taylor et al. 2011, Appendix B), yet both 

of these studies used comparisons of two groups of spiders, one that had been 

collected from the field and measured immediately and a second that was field-

collected and measured after a certain period of time in the lab.  While differences 

in the two groups may likely be due to age, we cannot rule out confounding effect 

of diets and captivity; in both cases, the first group experienced a field-based 

diet/environment for its entire life while the second group was collected from the 

field and then switched to a lab-based diet/environment prior to color 

measurement.  Here we remove these confounding effects of diet and captivity to 

show that, even when spiders are raised entirely in the lab, the green leg 

coloration of adult males fades (i.e., increases in mean brightness) with age.  This 

is also consistent with correlational findings from a previous study (Taylor et al. 

2011, Appendix B); this same aspect of male leg color (brightness) is condition-

dependent in the field, suggesting that younger males in better condition have 

darker legs, while older males in poorer condition have lighter legs.   

 Interestingly, this pattern of age-based fading did not hold for the males’ 

red facial coloration, which is also condition-dependent (Taylor et al. 2011, 

Appendix B, see also Chapter 6).  Previous studies have linked red facial 

coloration to a male’s juvenile diet (Taylor et al. 2011, Appendix B).  

Collectively, these studies support the idea that the two different colors (red faces 
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and green legs) have the potential to signal different aspects of male quality 

(reviewed in Hebets & Papaj 2005).  A male’s red facial coloration potentially 

signals a male’s nutritional status and foraging ability (but not his age), while 

green leg coloration may signal age while containing no information about his 

diet or foraging ability.  An interesting next step will be to examine how the 

mechanisms of coloration (e.g., specific pigments, structures, etc.) for these 

jumping spiders might facilitate or constrain the information content of a specific 

color (e.g., McGraw et al. 2002).  Work with butterflies suggests that structural 

colors are more likely to fade with age than pigmentary colors (Kemp 2006).  A 

better understanding of the detailed mechanisms of color production in H. 

pyrrithrix, including the specific pigments and structure types, will allow us to 

test the generality of these ideas. 

 Our examination of the morphology of the males’ green legs offer 

preliminary insight into the mechanisms of age-based fading observed in our 

study.   The green leg coloration is produced in the cuticle, while additional white 

light is reflected off of the long, fragile spatulate scales (LAT, pers. obs., see 

Figure 17c,d).  Fading of leg color could thus be a result of the breakdown of 

structures in the green cuticle, or alternatively, could be a result of damage to 

white spatulate scales, causing them to reflect more light.  Males use these front 

legs in prey capture (LAT, pers. obs.), and thus damage to their scales over time 

may be difficult to avoid.  Closer examination of the morphological changes that 

occur with age may help to elucidate the mechanisms behind age-based fading in 

H. pyrrithrix leg color. 
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 Here we show that, in addition to sexually dichromatic male display colors 

that show a sudden onset at maturity (e.g., brilliant green legs, bright white 

pedipalps), males also have bright sexually dimorphic colors that begin to develop 

when males are still small juveniles (e.g., red faces and conspicuous black and 

white dorsal patterning).  Furthermore, these colors are not all static at maturity; 

in particular, the green front legs of males are subject to age-based fading.  To our 

knowledge, this is the first study to quantify age-based changes in juvenile 

coloration of any species of jumping spider, an important first step towards 

understanding the costs, benefits, and potential functions of juvenile coloration.  

Work on salticid coloration has only begun recently, and has provided some 

interesting and promising systems to examine general questions about color 

communication and evolution (Lim et al. 2007; Li et al. 2008a; Lim et al. 2008; 

Taylor et al. 2011, Appendix B).  Examination of ontogenetic changes in spider 

coloration, particularly in groups such as Habronattus, may help us elucidate 

some of the more subtle costs and benefits of color expression and change 

throughout an animal’s life.       
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Figure 17.  Morphology of the colored body regions of adult male Habronattus 

pyrrithrix.  Red scales on the face showing ridged protrusions (a, b), white 

spatulate scales ornamenting the green front legs (c, d), and flat white pedipalps 

scales (e, f).     
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Figure 18.  Ontogenetic changes in coloration in males and females as spiders 

develop from spiderlings through sexual maturity.  (a) spiderling stage (where 

sexes are indistinguishable), (b) small juvenile male, (c) small juvenile female, (d) 

large juvenile male, (e) large juvenile female, (f) subadult male, (g) subadult 

female, (h) sexually mature adult male, (i) sexually mature adult female.  Scale 

bars represent 0.5 mm.   



  90 

 

 

Figure 19.  Ontogenetic changes in coloration in males and females as spiders 

develop from spiderlings through sexual maturity (mean ± SEM).  (a) facial 

coloration, (b) front leg coloration, and (c) pedipalp coloration.    
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Figure 20.  Sexual dichromatism in dorsal coloration in juvenile and adult male 

and female H. pyrrithrix. (a) juvenile male, (b) juvenile female, (c) adult male, (d) 

adult female.   
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Figure 21.  Effect of adult age (post-maturity) on condition-dependent male 

display colors (mean ± SEM).  Aspects of red facial coloration (a, b, c) did not 

change with age, yet the brightness (lightness) of male green leg coloration 

increased as males aged (d).  Different letters indicate significant differences at 

P<0.05.   
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Table 5.  Results of ANOVA examining the effect of sex, age (i.e., size class), 

and their interaction on color metrics associated with the face, legs, and pedipalps 

during development in H. pyrrithrix jumping spiders.     

 

Red chroma of face Df F P 

sex 1,140 304.960 <0.001 

age 4,140 6.300 <0.001 

sex x age 4,140 20.270 <0.001 

Green chroma of legs Df F P 

sex 1,140 0.280 0.596 

age 4,140 9.370 <0.001 

sex x age 4,140 5.100 <0.001 

Brightness of pedipalps Df F P 

sex 1,140 1.430 0.234 

age 4,140 41.540 <0.001 

sex x age 4,140 3.330 0.012 
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Chapter 4 

MALE ORNAMENTAL COLORATION IMPROVES COURTSHIP SUCCESS 

IN A JUMPING SPIDER, BUT ONLY IN THE SUN 

 

Abstract   

In many animals, males display colorful ornaments to females during elaborate 

courtship dances, and the effectiveness of these color signals depends on the 

ambient lighting environment.  While a variety of hypotheses exist to explain both 

the presence of and variation in such traits, many of these propose that they 

function as signals and that their presence is either required for or improves 

successful sex/species recognition and mating.  In Habronattus pyrrithrix jumping 

spiders (family Salticidae), males are adorned with conspicuous, condition-

dependent red facial coloration and green leg coloration, which they actively 

display to drab gray and brown females during complex courtship.  These spiders 

also live in heterogeneous lighting environments (e.g. leaf litter, grass), so we 

designed two experiments to test if brilliant colors affect mating success under 

varying light conditions.  In Experiment 1, we paired individual males with virgin 

females under full-spectrum lighting in the laboratory and found that blocking 

either the red facial coloration or green leg coloration, or both, had no effect on 

any measure of mating success (likelihood of copulation, latency to copulation, 

copulation duration) or female behavior (aggression or cannibalism) when 

compared to sham-treated control males.  In Experiment 2, we gave virgin 

females the choice between two simultaneously courting males, one with his 
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facial coloration blocked and the other that received a sham treatment, and ran 

trials outdoors in both the sun and shade.  We found that blocking red facial 

coloration reduced a male’s ability to approach a female, but only when he was 

courting in the sun.  These results suggest that ornamental coloration is not 

required for successful mating in H. pyrrithrix, but that red coloration improves 

mating success in certain environmental contexts.  We discuss implications of 

these findings for the evolution of elaborate, multimodal courtship displays by 

animals that interact in complex, variable environments. 

 

Introduction  

Selection for effective communication between potential mates has resulted in 

elaborate and complex ornaments and behaviors in a variety of taxa.  Many 

hypotheses have been proposed and tested to explain the functions of traits that 

are involved in courtship (reviewed in Andersson 1994).  Some of these 

hypotheses make predictions about how receivers will respond to the presence (or 

absence) of certain display traits.  For example, hypotheses positing that such 

traits function in species recognition (e.g., lizards: Losos 1985; fish: Couldridge & 

Alexander 2002), sex/mate recognition (e.g., damselflies: Sherratt & Forbes 2001; 

spiders: Elias et al. 2005; Lim et al. 2007), or attracting receiver attention (e.g., 

spiders: Clark & Morjan 2001; lizards: Ord & Stamps 2008) all predict that the 

presence of the signal will either ensure or improve the chances of successful 

mating.  Other functional hypotheses make predictions about how receivers 

respond to natural, more subtle variation in trait expression.  Such hypotheses 
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posit that such signal variation encodes aspects of individual identity (e.g., birds: 

Dale et al. 2001; wasps: Tibbetts 2002), age (e.g., crickets: Simmons & Zuk 1992; 

butterflies: Kemp 2006), health (e.g., birds: McGraw & Ardia 2003; fish: Pike et 

al. 2007), foraging ability (e.g., Karino et al. 2005), or nutritional condition (e.g., 

birds: McGraw et al. 2002; Velando et al. 2006).  These two broad categories of 

hypotheses are not mutually exclusive – for example, it is plausible that the 

presence/absence of a trait might provide important information for species 

recognition from a distance, while subtle variation in that trait might provide 

additional information about individual quality as courtship progresses.      

 While no single experiment can disentangle all of these hypotheses 

simultaneously, a good starting point is to remove the trait of interest completely 

and assess behavioral effects on the putative receiver.  This approach allows us to 

test the explicit predictions of hypotheses about species recognition, sex 

recognition, and attention-altering described above.  In addition, such experiments 

can help us to establish the social or sexual context in which the putative signal 

likely functions.  For example, early experiments that involved blacking out the 

red epaulets of red-winged blackbirds (Agelaius phoeniceus) established their role 

as an important signal for settling territorial disputes (Peek 1972; Smith 1972).  

These initial studies provided the foundation for the numerous studies that have 

followed to probe more deeply into the complex roles that natural variation in 

these color patches plays in different situations (review and meta-analysis in 

Yasukawa et al. 2010).   
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 In many animals, courtship occurs in complex, variable, and unpredictable 

environments, yet the successful transmission of courtship signals depends much 

on the environmental conditions in which they are sent.  For example, the 

transmission of seismic signals depends on the vibratory properties of the 

substrate on which they are produced (e.g., spiders: Elias et al. 2004; Hebets et al. 

2008; Gordon & Uetz 2011), and the transmission of vocalizations depends on the 

acoustic properties of the surrounding habitat (e.g., birds: Brown & Handford 

2000; frogs: Castellano et al. 2003).  The distances between signaler and receiver 

can also affect the efficacy of different types signals (e.g., Clark & Biesiadecki 

2002).  Given this effect of the environment on signal transmission, we might 

expect that the role and importance of certain traits within a display repertoire will 

change depending on environmental conditions (e.g., Gordon & Uetz 2011; 

Wilgers & Hebets 2011). 

 Brilliant colors, because of their production and maintenance costs (e.g., 

McGraw 2006; Kemp & Rutowski 2007) and their widespread use in animal 

courtship displays, are good examples of signals that can play important roles in 

mating (reviewed in Andersson 1994; Hill 2006).  Because of the importance of 

available light in the transmission and perception of color signals (Endler 1991, 

1992; Endler & Thery 1996), they are also good examples of traits whose efficacy 

might vary considerably depending on subtle differences in the ambient 

environment (e.g., fish: Wong et al. 2007; Heuschele et al. 2009; butterflies: 

Obara et al. 2008).  With the use of modern spectrophotometry, colors (as well as 

the light environment in which they are transmitted) can be easily quantified and 
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manipulated to tease apart their effects on receivers in both the field and lab 

(Endler 1990; Andersson & Prager 2006). 

 Jumping spiders (family Salticidae) are excellent models for 

understanding the functions of colorful displays.  Their charismatic and colorful 

courtship has intrigued biologists for years (e.g., Peckham & Peckham 1889, 

1890), yet surprisingly little empirical work has been aimed at understanding how 

male color may influence mating success.  Many of the more than 5000 species of 

jumping spiders (Platnick 2011) are sexually dichromatic and engage in dramatic 

and colorful courtship displays for potential female mates (e.g., Maddison 1995; 

Oxford & Gillespie 1998), and certain aspects of these displays, such as male 

dancing, have been shown to increase female receptivity (e.g., Jackson 1981).  

Jumping spiders have excellent vision (Land 1969; Devoe 1975; Yamashita & 

Tateda 1976; Williams & McIntyre 1980; Blest et al. 1981; Peaslee & Wilson 

1989; Harland & Jackson 2000), and behavioral experiments indicate that they 

can discriminate between different colors (blue, green, yellow, and red: Nakamura 

& Yamashita 2000; red vs. blue: Jakob et al. 2007; red vs. yellow: VanderSal & 

Hebets 2007).  Work done with Cosmophasis umbratica and Phintella vittata 

(jumping spiders from Asia) has shown that blocking UV light affects mate 

choice decisions, suggesting that UV coloration is playing an important role in 

courtship signaling in these species (Lim et al. 2007; Lim et al. 2008; Li et al. 

2008b).  To our knowledge, only one study, conducted more than 60 years ago, 

has used direct manipulations of male salticid color patterns (Crane 1949).  Crane 

(1949) painted various male body regions on five tropical salticid species; the 
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study was descriptive in nature and results indicated that if male color patterns 

were altered, females would often still mate with them (Crane 1949).  To our 

knowledge, the present study will be the first to systematically manipulate male 

color patterns using current color measurement technology and compare mating 

success with control males using modern statistical approaches. 

 Males in the genus Habronattus are among the most highly ornamented of 

jumping spiders, with a striking diversity of colorful and sexually dimorphic 

display traits (Richman 1973; Richman 1982; Griswold 1987; Maddison 1995; 

Richman & Cutler 1998; Maddison & Hedin 2003).  Throughout the genus, male 

displays consist of various combinations of brilliant colors (e.g., Taylor et al. 

2011, Appendix B), motion (e.g., Elias et al. 2006b), and seismic components 

(e.g., Maddison & Stratton 1988; Elias et al. 2003).  Evidence from 

geographically isolated sky island populations of Habronattus suggests that 

sexual selection is responsible for driving this striking male diversification 

(Maddison & McMahon 2000; Masta & Maddison 2002), making this an ideal 

group to examine the functions of color in mating.   

 Here, we designed two experiments to test if brilliant colors of male 

jumping spiders play a role in mating and whether or not their effectiveness 

depends upon ambient lighting conditions.  First, in Experiment 1, we wanted to 

determine if the presence of condition-dependent display colors are either 

required for species recognition or improve mating success in Habronattus 

pyrrithrix, a sexually dimorphic jumping spider in which males display bright red 

faces and green legs to dull, drab females during courtship (Figure 22).  We 
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paired individual males with virgin females in the laboratory in a 2x2 factorial 

design to examine the effect of blocking either the red facial coloration or green 

leg coloration, or both, on multiple metrics of mating success and female behavior 

when compared to sham-treated control males.   

 After finding that neither of these colors were required for or improved 

successful mating under laboratory conditions (see Results below), we went on to 

conduct Experiment 2 to examine the sexual significance of red facial coloration 

more closely under natural lighting conditions, which might give females greater 

opportunity to fully assess male colors and therefore be more choosy.  

Specifically, we presented virgin females with two simultaneously courting 

males, one of which had his red facial coloration concealed and the other which 

was given a sham treatment.  We ran all trials outdoors under natural light, and 

each trial was repeated in both the direct sunlight and the shade.  In field 

observations of two natural populations of H. pyrrithrix in Phoenix, AZ 

(Maricopa County), USA, densities and interaction rates are high and we have 

frequently observed multiple males simultaneously courting females in both the 

sun and shade (LAT, pers. obs.).  Thus, this design allowed us to extend our study 

across a range of biologically relevant courtship scenarios. 

 

Methods 

 

Study species 
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 Habronattus pyrrithrix Chamberlin 1924 is a sexually dichromatic 

jumping spider in which males display colorful ornaments to females during 

elaborate courtship displays.  In particular, males display condition-dependent red 

facial patches and green front legs to inconspicuously colored gray and brown 

females (Taylor et al. 2011, Appendix B, Figure 22).  The red coloration is 

contained within body scales on the face (e.g., Hill 1979), while the green 

coloration is present on the surface of the leg cuticle, which is then further 

adorned with white scales (LAT, pers. obs.).  The distribution of H. pyrrithrix 

extends from southern California and Arizona south to Sinaloa, Mexico (Griswold 

1987).  In Phoenix, Arizona, they are common and often found in high densities 

in leaf litter in natural riparian areas (e.g., cottonwood (Populus fremontii), desert 

willow (Chilopsis linearis)) as well as grassy backyards and agricultural areas 

(LAT, pers. obs.).  These complex leaf litter and grassy microhabitats create 

patchy areas of sun and shade in which spiders interact (LAT, pers. obs.).   

 Like other species of Habronattus, males engage in complex courtship 

displays for females (e.g., Richman 1973; Richman 1982; Griswold 1987; 

Maddison 1995; Richman & Cutler 1998; Maddison & Hedin 2003), which 

consist of both visual and seismic components (LAT, pers. obs.). The red faces 

and green legs of males are oriented towards females during courtship and are 

generally concealed when the male is viewed from above or from the side (LAT, 

pers. obs.).  Male courtship typically begins when a male locates a female from 

several centimeters away and begins to wave his front legs and expose his red 

face, gradually approaching in a zigzag fashion (stage 1 courtship, Figure 22a).  If 
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the female remains stationary and does not chase the male or retreat, the male will 

proceed to stage 2 of courtship, in which he approaches to within a few 

millimeters of the female’s face and immediately stops and extends his first pair 

of legs straight up, nearly perpendicular to the plane of his body (Figure 22b) and 

initiates the seismic component of his display (LAT, pers. obs.; D.O. Elias, pers. 

comm.).  Both of these stages can last from several minutes to hours, depending 

on the reaction of the female (LAT, pers. obs.).  Stage 3 of courtship consists of 

the male gently tapping the female’s carapace with his front legs; if she does not 

jump away, he typically mounts and copulates with her (LAT, pers. obs.).  

Because females are often larger than males and are voracious generalist 

predators, courting males are frequently cannibalized prior to copulation in both 

the field and the lab (LAT, pers. obs.).  Males occasionally display by waving 

their legs in the direction of other males, but these displays are rare and typically 

last for only a few seconds compared to the displays performed for females that 

can last for hours (LAT, pers. obs.).     

 

Experiment 1: Color manipulation and mating success 

 The goal of Experiment 1 was to determine if the presence of male facial 

and leg coloration is required for successful mating, and how these colors 

influence various metrics of mating success.  We conducted a color manipulation 

experiment in which we blocked male colors (described in more detail below) and 

assessed the effects on a male’s ability to successfully copulate with a female and 

also to avoid cannibalism.  We focused specifically on the red face and green legs 
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of males, because they have been found to be condition-dependent and are clearly 

displayed to females during courtship (Taylor et al. 2011, Appendix B). 

 While standard mate-choice studies in many animals, including some 

jumping spiders, typically involve pairing a single female with multiple males that 

are physically isolated and therefore unable to interact with one another (e.g., 

Cross et al. 2007; Lim et al. 2008; Li et al. 2008b), this type of design does not 

work with Habronattus.  To our knowledge, there is no known behavior other 

than copulation (e.g., see Masta & Maddison 2002) or a female’s willingness to 

allow a male to approach and make contact with her (LAT, pers. obs.) that clearly 

indicates receptivity in any Habronattus species.  For this reason, mating success 

studies with Habronattus typically involve paring a single female with a single 

male and measuring ‘mating success’ directly in terms of whether or not 

copulation occurs (e.g., Masta & Maddison 2002; Hebets & Maddison 2005; Elias 

et al. 2005; Elias et al. 2006a) .  Thus, this was our approach for Experiment 1.   

 We reared all spiders in the lab for Experiment 1, which allowed us to 

create a design that reduced variation associated with genetics as much as possible 

(described in more detail below).  Additionally, rearing all spiders in the lab 

allowed us to minimize variation associated with factors such as diet, mating 

history, and other experience, which is not possible with field-collected 

individuals.  In July and August 2008, we collected 18 gravid females from 

Queen Creek, Arizona (Maricopa County), USA and brought them back to the lab 

and allowed them to lay eggs.  Throughout the study, we housed all spiders 

individually in clear plastic boxes (10.16 x 10.16 x 12.86 cm) at approximately 
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28°C.  Light was provided from full-spectrum lights (30W compact full-spectrum 

light bulbs, Mercola, Hoffman Estates, IL, USA) on a 14:10 light-dark cycle, and 

each cage was fitted with a mesh top to allow adequate light to reach the inside of 

the cage.  Irradiance data from our artificial lighting is provided as supplementary 

material in Appendix D.  Each cage was also provided with an artificial green 

plant (approx. 10 cm long, Ashland fern collection, Michael’s Stores, Irving, TX, 

USA) affixed to the side of the cage to provide enrichment (e.g., Carducci & 

Jakob 2000).  Upon hatching and emerging from the egg sac (as soon as spiders 

were large enough to determine their sex, ca. 2.5mm) we removed either four 

male or four female spiders from each clutch (one clutch per female) and raised 

them to maturity in individual cages (as described above) on a constant diet of 

small crickets (Acheta domesticus) amounting to approximately their own body 

weight three times per week.  We chose this diet because pilot studies suggested 

that this diet results in spiders with body condition indices comparable to those 

collected from the field (LAT, unpublished data).  Opaque barriers separated the 

spider cages during rearing so that they could not see and interact with one 

another.   

 Upon maturity, each group of four brothers was randomly assigned to an 

unrelated group of four sisters, to which they were paired in the mating success 

experiment.  Because the mothers of these spiders may have mated either singly 

or multiply in the field, individuals in each clutch may be either full or half 

siblings.  Within each group of four brothers, we assigned individuals randomly to 

one of four treatments in a 2x2 factorial design: (1) red facial color manipulated 
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(see below for more details on color manipulations), (2) green leg color 

manipulated, (3) both colors manipulated, or (4) neither color manipulated (sham 

control).  Individual males were then randomly assigned to a female (unrelated) 

from their paired clutch, resulting in 36 male-female pairs.   

 We began trials when females were between 10 and 40 days post-maturity.  

All trials were started between 0800 and 1100 hrs.  Immediately before a trial 

began, we weighed spiders to the nearest 0.0001 g with an electronic balance 

(Mettler-Toledo, Columbus, OH, USA) and photographed each spider next to a 

size standard using a Nikon Coolpix 4500 digital camera (Nikon Inc., Melville, 

NY, USA).  From these photographs, we measured carapace width (just behind 

the posterior lateral eyes) using Photoshop software (Adobe Systems Inc., San 

Jose, CA, USA).  Because these spiders’ carapace width is fixed at maturity, 

while the abdomen stretches with feeding, we used the residuals of a regression of 

mass on carapace width as an estimate of body condition that is uncorrelated with 

body size, and is a common method of estimating body condition in spiders (e.g., 

Jakob et al. 1996; Taylor et al. 2011, Appendix B).   

 For each female, we introduced the assigned male partner into the plastic 

cage in which the female had been raised and videotaped all interactions for the 

first hour under the laboratory conditions described above.  After the one-hour 

videotaped period, we continued to house the spiders together for an additional 48 

hours.  After the 48-hour period ended, we removed the male from the female’s 

cage.  Females were then fed in excess (approximately three times their body 

weight in food was provided daily) for two weeks to allow them the opportunity 
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to lay eggs.  To confirm that eggs were fertile, all were allowed to hatch and we 

recorded whether or not spiderlings emerged. 

 From the videotapes, we used the freeware program Cowlog (Hänninen & 

Pastell 2009) to record each male’s courtship effort (amount of time spent actively 

courting) and latency to begin courting.  We also measured female aggression 

(number of attacks by females) and whether or not cannibalism or copulation 

occurred.  In instances where copulation did occur in the first hour (11 out of 36), 

we recorded copulation latency and duration.  For the subsequent 48 hours, we 

checked the pair of spiders every 24 hours and recorded additional instances of 

cannibalism.   

 

Experiment 2: Simultaneous choice in sunlight and shade 

 Because our results from Experiment 1 suggested that color was not a 

requirement for successful mating and did not affect any aspect of mating success 

in the laboratory (see Results), the goal of Experiment 2 was to determine if color 

would affect a male’s mating success in contexts that more closely resembled 

natural conditions and might be more conducive to color signaling.  Specifically, 

each female was paired with two males simultaneously and trials were run 

outdoors and repeated in both the sun and the shade.  Because this experiment 

involved pairing each female with two males simultaneously, we could not 

manipulate both facial and leg coloration using the same 2x2 factorial design that 

we used in Experiment 1 (as this would necessitate pairing a single female with 

four simultaneously courting males from different treatments).  For this reason, in 
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Experiment 2 we focused on manipulation of the red facial coloration only.  We 

chose to focus on the red coloration rather than the green because red coloration 

(but not green) is dependent on juvenile diet (Taylor et al. 2011, Appendix B), 

and thus we presently have greater evidence that it might contain useful 

information relevant to mate choice.  Furthermore, various degrees of sexually 

dichromatic red male facial coloration are found commonly and sporadically 

throughout Habronattus, some of which exhibit striking and unexplained 

geographic variation (e.g., H. hirsutus, H. americanus (see Griswold 1987)).  

Thus, experimental studies of red color might provide insights into the function of 

this particular trait that is relevant to many other species in the genus. 

 As discussed above, the lack of obvious female receptivity displays in 

Habronattus prevented us from being able to run a typical simultaneous choice 

test in which females are allowed to view two physically isolated males and 

choose between them.  To interpret female ‘choice’ in H. pyrrithrix, males must 

be allowed to approach and make contact with females (LAT, pers. obs.) and the 

only way to do this was to place all three spiders (one female, two males) into an 

experimental chamber and allow them to interact freely.  Consequently, our 

experimental design, and in fact, any possible design that could be used with this 

species, would not prevent males from seeing and interacting with one another.  

Thus, our data from this experiment do not allow us to completely disentangle 

male-male competition from female choice per se.  However, when two males are 

courting the same female, males typically direct their displays at the female 

simultaneously, rather than at the competing male, and thus we expect that any 
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major effect of color manipulation that we see in our experiments will be a result 

of female behavior rather than male-male competition (LAT, pers. obs).  Despite 

these expectations, we also quantified male aggression (described in more detail 

below) as a means of examining possible effects of color on the other male in the 

trial (see Results). 

 In contrast with Experiment 1, in which we were able to carefully control 

the relatedness, rearing environment, and experience of all subjects, our approach 

in Experiment 2 was to perform the experiments under conditions that more 

closely resembled those in nature.  For this reason, we used field-collected rather 

than lab-reared spiders from the same Queen Creek population described above.  

Twenty-four male and 12 female spiders were collected in July and August 2009.  

Because female mating history affects mate choice in some jumping spiders (e.g., 

Jackson 1981), females were collected as penultimates (i.e., the developmental 

stage just prior to sexual maturity) and kept in the laboratory on a diet of Acheta 

domesticus as described above until reaching maturity.  This ensured that all 

females in the experiment were virgins, and is common practice in jumping spider 

mate choice experiments (e.g., Clark & Biesiadecki 2002; Elias et al. 2005; Elias 

et al. 2006a; Lim et al. 2008).  Males will actively court females regardless of 

their mating history (LAT, pers. obs.) and thus we collected males as adults and 

housed them in the laboratory until experimentation (days in captivity =33±5.24 

(mean±SE)).  In this experiment, spiders were housed indoors (using the same 

cages described above) on a natural light/dark cycle at approximately 30°C.  

Natural light was provided from five large windows.  Opaque dividers separated 
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the spiders so that they could not see and interact with each other prior to 

experiments.   

 We grouped males by collection date, paired them by body size (carapace 

width), and then randomly assigned each pair of males to a female.  Within each 

male pair, individuals were randomly assigned to one of two treatment groups.  

Males either had their red facial coloration blocked or underwent a sham 

treatment in which their red facial coloration was left intact (see below for color 

manipulation details, including sham treatment).   

 When females were between 10 and 28 days post-maturity, we moved 

their cages outdoors to allow them to acclimate overnight before beginning their 

outdoor trial the next morning.  All trials were run between 0700 and 1100 hrs., 

when the mean temperature was from 31-42C.  Our field observations indicate 

that these spiders are typically active and courting throughout the day during this 

time of year, despite the intense heat (LAT, unpublished data).  Outdoor cages 

were surrounded by cottonwood (Populus fremontii) leaf litter to simulate the 

natural background color of the habitat of these spiders in the field.  The location 

of the trials was in an area that received direct sunlight that could be manipulated 

with shade cloth (color: hunter, Springs Creative Products Group LLC, Rock Hill, 

SC, USA) hanging above.  Immediately before the trial began, we took 

photographs of each spider to measure the carapace width following the methods 

described above.  We did not have access to an electronic balance at this site, so 

we estimated mass from photographs by measuring the total area of the carapace 

and abdomen.  Pilot data showed that body area measured this way is highly 



  110 

correlated with body mass in H. pyrrithrix (linear regression, F1,43=62.03, 

R
2
=0.591, P<0.0001, LAT unpublished data).  This body mass estimate was then 

used to calculate residual body condition index as described above.       

 At the start of the trial, the two males were placed in random order into the 

female’s cage in immediate succession and all interactions were videotaped for 

the duration of the trial.  Each trial consisted of two hour-long periods, one in the 

sun and the other in the shade.  These periods occurred in succession but in 

random order.  The ‘sunny’ period of each trial was conducted with 

approximately 75% of the cage receiving direct sunlight, while 25% was shaded 

from above with shade cloth (to provide a retreat from the intense Arizona 

sunlight).  The ‘shady’ period of the trial was conducted in the same location, but 

with the shade cloth adjusted so that the cage was entirely in the shade.  Irradiance 

data from our ‘sun’ and ‘shade’ treatments are provided as supplementary 

material in Appendix D. 

 From the videotapes, we again used Cowlog (e.g., Hänninen & Pastell 

2009) to quantify the amount of time that each male spent courting and his latency 

to begin courting.  Because we were concerned about keeping the spiders in 

plastic cages for more than two hours outdoors in the summer heat of Arizona 

(average daily high temperature during experiment = 41 C), and because having 

two simultaneously courting males appeared to distract the female and extend 

copulation latency (LAT, pers. obs.), we anticipated (and found) low levels of 

copulation success during the outdoor trials.  Our data from Experiment 1 

indicated that mean distance between a male and a female over the course of the 
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trial was an excellent predictor of successful copulation (i.e., males that got 

closer, and remained closer, to females were more likely to copulate, resulting in 

fertile eggs; χ
2
=19.08, p<0.0001); thus we used this metric as a proxy for 

courtship success in Experiment 2.  Distances between each male and the female 

were measured at five-minute intervals and used to calculate a mean for each 

male over the entire trial.  Finally, we recorded the number of attacks by females 

on each male, the number of male attacks directed towards one another, and all 

instances of cannibalism.   

 

Color manipulation methods  

 We manipulated the red faces of males by covering the entire red area 

with black liquid eyeliner (Color: ‘Perversion’, Urban Decay Cosmetics, Costa 

Mesa, CA) (Figure 23a,b), which closely matches the reflectance properties of the 

underlying black cuticle (Figure 24).  On control males, we applied the same 

amount of eyeliner to an equivalent area on the top of their carapace just behind 

their anterior median eyes, an area that is not clearly visible to females.  For males 

receiving the leg color manipulation, we covered their green legs with light tan 

makeup powder (bareMinerals foundation, color: ‘Light’, Bare Escentuals, San 

Francisco, CA, USA) (Figure 23c), which closely matches the reflectance 

properties of their other, non-ornamented legs (Figure 24).  For control males, we 

applied the same amount of powder to the same area on the second pair of legs 

(which are not ornamented and are not displayed to females during courtship).  To 

manipulate their colors, we anesthetized all males with carbon dioxide for 
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approximately five minutes, on the day before their trial began.  After waking up 

from anesthesia, males were offered a cricket to confirm that they had recovered 

fully and were capable of capturing prey.  We compared levels of courtship 

activity (% time spent courting) and latency to begin courting between treatment 

groups to confirm that the color manipulation did not affect courtship activity or 

motivation.        

 

Statistical analyses  

 In Experiment 1, to confirm that our color manipulations did not have 

adverse effects on male behavior, we used analyses of variance (ANOVA) to 

determine if blocking either the red facial or green leg coloration influenced male 

courtship activity (amount of time spent courting over the course of the trial) or 

latency for males to begin courting.  We used binary logistic regression to 

determine if facial or leg color manipulation, male body size, or male body 

condition predicted whether or not a male would mate successfully (leading to 

fertile eggs). In cases where copulation occurred in the first hour, we used 

analyses of covariance (ANCOVA), with male body size and condition as 

covariates, to determine if color manipulations affected male copulation latency 

or duration.  Finally, we used ANCOVA (again with male body size and 

condition as covariates) to determine if color manipulation had any effect on the 

number of aggressive attacks that males received from females and binary logistic 

regression to determine if facial or leg coloration, male body size, or condition 

predicted whether or not a male would be cannibalized by females.  
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 In Experiment 2, to again confirm that our color manipulations had no 

adverse effects on male behavior, we used ANOVA to determine if the average 

courtship intensity (i.e., time spent courting) and latency to begin courting 

differed between males with their facial color manipulated and control (sham-

treated) males.  Because each trial was repeated in both the sun and shade, we 

used repeated-measures ANCOVA (with male body size and condition as 

covariates) to determine if color manipulation affected the ability of males to 

approach females in the two different light environments.  Because two males 

were paired simultaneously with each female, we included female ID as a random 

factor in the model.  In cases where females cannibalized males (n=2 trials, both 

during the first phase of the trial), we removed the trial from analyses.  Because 

we found a significant interaction between light environment and color treatment 

(F1,7=7.30, P=0.031, see Table 6), we went on to conduct two separate 

ANCOVAs (one for each light environment) to more closely examine the effects 

of male color manipulation, body size, and body condition on a male’s ability to 

approach the female in each.  Finally, we used repeated-measures ANCOVA 

(again, with male body size and condition as covariates and female ID as a 

random factor) to determine if color manipulation affected the level of aggression 

(# of attacks) from the female or the partner male.   

 With the exception of the female and male aggression data (# of attacks), 

to which we applied a square-root transformation to improve normality, all data 

met the assumptions of parametric statistics.  All statistical analyses were 

conducted using SAS 9.2 (SAS Institute, Cary, NC, USA). 
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Results 

 

Experiment 1: Color manipulation and mating success 

 Neither face nor leg color manipulation had any effect on male courtship 

activity (F2,33=0.08, P=0.926) or latency to begin courting (F2,33=0.21, P=0.812).   

 Copulation that resulted in fertile eggs (i.e., hatched spiderlings) occurred 

in 19 of 36 trials (~53%).  Blocking either the red facial coloration or green leg 

coloration had no effect on this measure of male mating success (face: χ
2
=0.073, 

P=0.787; legs: χ
2
=2.63, P=0.105, Figure 25a); however, mating success was 

affected by male size and condition, with larger males in better condition being 

more likely to copulate (size: χ
2
=5.85, P=0.016, condition: χ

2
=5.58, P=0.018, 

Figure 26).  Among the 11 males that copulated in the first phase of the 

experiment, there was no relationship between color manipulation and a male’s 

latency to copulate (F4,6=0.77, P=0.580) or copulation duration (F4,6=1.04, 

P=0.459).   

 Color manipulation had no effect on the number of aggressive attacks by 

females (F4,31=0.70, P=0.597).  Females cannibalized males in 12 out of 36 trials 

(~33%), but the probability of cannibalism was not affected by our color 

manipulation (χ
2
=3.42, P=0.489, Figure 25b).   

 

Experiment 2: Simultaneous choice tests in the sun and shade 
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 Male color manipulation had no effect on courtship activity (i.e., time 

spent courting, F1,38=0.49, P=0.486) or latency (F1,38=1.58, P=0.217).  

 There was a significant interaction between male color manipulation and 

light environment on the approach distance of males to females (Table 6).  When 

trials were run in the sunlight, sham-treated males, with their red facial coloration 

intact, were able to get closer to females than males with their red facial 

coloration blocked, while neither male size nor condition had any effect on the 

distance that males were able to get to females (Figure 27a,b, Table 7).  In 

contrast, when trials were run in the shade, there was no effect of color 

manipulation on the distance that males were able to get to females (Figure 27c, 

Table 7).  Rather, male size (but not condition) was important, with larger males 

able to get closer to females than smaller males (Figure 27d, Table 7).  

   Neither color manipulation nor light environment affected levels of 

aggression that males received from females (light: F1,7=0.38, P=0.556; color 

manipulation: F1,7=2.47, P=0.160) or from their partner male (light: F1,7=0.05, 

P=0.832; color manipulation: F1,7=1.66, P=0.238).  Full ANCOVA tables are 

provided as supplementary material in Appendix D. 

 

Discussion 

Despite being condition-dependent in field and laboratory experiments and thus 

likely candidates for honest mating signals, we found that red facial and green leg 

coloration of male Habronattus pyrrithrix was not required for successful mating.  

In Experiment 1, blocking either or both of these colors on males in a 2x2 
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factorial design laboratory experiment had no effect on any metric of mating 

success.  In Experiment 2, we examined the effect of red facial coloration more 

closely under ecologically relevant conditions, and found that males with their red 

facial coloration intact were better able to approach females than males with their 

red facial coloration blocked, but only when trials were run in the sunlight.  This 

finding suggests that color may play different roles in courtship depending on 

subtle environmental conditions. 

 

Experiment 1   

 The results of Experiment 1 allow us to rule out the hypothesis that male 

red and/or green coloration is a required species or sex recognition signal in H. 

pyrrithrix, as these colors were neither necessary nor sufficient for successful 

mating.  Just over half of the males in the experiment mated successfully (leading 

to the production of viable spiderlings), yet this was unaffected by blocking either 

the red or green coloration (or both).  Furthermore, we found no evidence that 

these colors affected any metric of mating success (time to copulation or 

copulation duration) or female behavior (aggression or cannibalism).  These 

results were surprising, especially given the effort with which males display these 

colors to females (LAT, pers. obs.).  Overall, our data from Experiment 1 suggest 

that, even if the colors are used as important signals in some contexts, they are 

clearly not consistently important in all contexts in which spiders might engage in 

courtship.   
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 In the field, H. pyrrithrix males are found courting in a variety of habitats, 

from open areas in full sunlight, to patchy areas of mottled sunlight beneath tree 

cover to completely shaded areas beneath the leaf litter (LAT, unpublished data).  

In Experiment 1, we used full-spectrum light bulbs in an attempt to create an 

environment with irradiance profiles as close to natural light as possible, while 

maintaining controlled laboratory conditions (see Methods).  However, a 

comparison of irradiance data from this artificial lighting with data from natural 

Arizona sunlight suggests that these two light environments differ in both the 

overall intensity of light as well as the shape of the irradiance spectra (see 

supplementary material in Appendix D).  Males that mated successfully in 

Experiment 1 were larger and in better condition than those that were 

unsuccessful, suggesting that under artificial lighting conditions, females may 

base their mating decisions on size and condition over male facial and leg 

coloration.      

 

Experiment 2   

 Our results from Experiment 2 suggest that red facial coloration may play 

different roles in courtship depending on the natural light environment in which 

males are displaying.  Because ambient light environment affects the transmission 

of color signals (e.g., Endler 1992, 1993), it is not surprising that the role of a trait 

such as red coloration might vary in different lighting environments, and 

particularly in sunny compared with shady areas.  Typically, both forest shade 

(where available light is mostly reflected from vegetation) and woodland shade 
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(where most light comes from the sky, but is outside the path of direct sunlight) 

are rich in greenish and bluish light, respectively, and relatively low in red light 

(Endler 1993).  In contrast, sunlit areas (including both large and small forest gaps 

as well as open sky) contain higher proportions of red light (Endler 1993).  

Similarly, irradiance data from our experimental setup were consistent with 

Endler’s (1993) characterization of different light environments; specifically, full 

sunlight had relatively more red light (600-700nm) than did our “shade” treatment 

(see supplementary material in Appendix D).  Given the lower proportion of red 

light that occurs in the shade compared with the sun, it might be expected that the 

color red would be a more effective signal in sun, which is what we found.   

Indeed, our estimates of radiance (or ambient light that is reflected from a 

particular surface in a given light environment (e.g., see Macedonia 2001; 

Macedonia et al. 2003)) indicate that more red light would radiate from the red 

faces of males when viewed in sunlight compared with either shade or artificial 

light (see Supplementary Material in Appendix D).   

 H. pyrrithrix is abundant in the natural outdoor area in which this study 

was conducted and thus the variation in lighting environment examined in this 

study represents relevant ecological conditions.  Recent work has demonstrated 

that spectral sensitivities, particularly in the longer wavelengths, vary widely 

among salticids (I-Min Tso, personal communication) making it difficult to 

interpret our results in the context of an appropriate salticid visual system.  An 

interesting next step would be to explore the specific spectral sensitivities of 

Habronattus so that we can better understand how the red facial patch would 
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appear to females under different light environments and backgrounds (e.g., 

Endler 1991).   

 

Implications for multimodal communication in Habronattus 

In some animals, males are able to adjust the timing, location, lighting, or 

visual background of their display to maximize its conspicuousness for potential 

mates (e.g., guppies: Endler 1991; forest birds: Endler & Thery 1996; manakins 

that create a display court: Uy & Endler 2004; bustards that display in the sun: 

Olea et al. 2010).  In H. pyrrithrix, males are unlikely to have this opportunity in 

the field; they appear to wander in search of females and to court them whenever 

and wherever they encounter them (LAT, pers. obs.).  Courtship has been 

observed in a variety of substrate types (e.g. grass, leaf litter, rock) and in a 

variety of lighting conditions, ranging from full sunlight to full shade (LAT, pers. 

obs.).  Female H. pyrrithrix are voracious generalist predators and have been 

observed cannibalizing males in both the field and lab (LAT, pers. obs.) and thus 

a male’s need to begin courtship immediately when he locates a female might 

reduce his ability to be choosy about his exact location or his position relative to 

the available light.   

 Jumping spiders in the genus Habronattus are among the most highly 

ornamented of all jumping spiders, with highly complex courtship displays 

incorporating color, motion, and seismic components (see Maddison & Stratton 

1988; Elias et al. 2003; Elias et al. 2005; Elias et al. 2006b; Taylor et al. 2011, 

Appendix B).  A major theme in behavioral ecology that has received much recent 
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attention is the question of why animals use multiple signals when one signal 

might suffice and reduce costs (reviewed in Candolin 2003; Hebets & Papaj 

2005).  A potential hypothesis is that, for animals that court in complex or 

unpredictable habitats, environmental variability creates situations in which no 

single signal component of a display is sufficiently efficacious under all possible 

conditions and thus, by signaling with multimodal displays, different signaling 

components (often in different modalities) can act as backups in different 

environments (Johnstone 1996; reviewed in Candolin 2003; Hebets & Papaj 

2005).  Because male H. pyrrithrix live in a variety of habitats and have limited 

control over where and when they display, selection might favor the use of 

backup signals.   

 Our study suggests that the light environment in which courtship occurs 

affects the way that females respond to visual displays during courtship.  While 

our study focused on the colors involved in the visual display, H. pyrrithrix males 

also produce seismic signals as part of their display (LAT, pers. obs.; D.O. Elias, 

pers. comm.).  Seismic signals in other arthropods, including spiders, are often 

linked to body size, suggesting that such signals can convey important 

information to females (e.g., De Luca & Morris 1998; Gibson & Uetz 2008; 

Rundus et al. 2011).  Interestingly, when in the sunlight, red coloration allowed 

males to get closer to females, while body size had no effect (see Figure 27a,b).  

In contrast, in the shade, bigger males were able to get closer to females, 

regardless of their color treatment (see Figure 27c,d).  If the general link between 

body size and seismic signaling holds for H. pyrrithrix, it is plausible that females 
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rely more on seismic cues in the shade and rely more on color cues in the 

sunlight, which would lend support to the hypothesis that these colors and seismic 

cues serve as ‘backups’ for each other to increase transmission in variable 

environments (Johnstone 1996).  An alternative but similar explanation is that 

male body size itself is simply a ‘backup’ visual cue that females pay attention to 

when the light environment is less conducive to color signaling (Johnstone 1996).  

Recent studies with wolf spiders whose courtship also involves both visual and 

seismic components support the ‘backup’ hypothesis and provide evidence that 

courting males modify their display depending on the transmission properties of 

the environment (e.g., Gordon & Uetz 2011; Wilgers & Hebets 2011).  While it 

was not the focus of the present study, post-hoc tests suggest that male H. 

pyrrithrix in this study did not modify aspects of their displays (i.e., latency to 

begin visual displays, duration of visual display) in the two different light 

environments (LAT, unpublished data).  Similarly, in a related species of 

Habronattus (H. dossenus) that also has a complex display, males did not modify 

their displays on different substrates despite a clear difference in the attenuation 

of their seismic signals on these different substrates (Elias et al. 2004).  

Additional mate-choice studies that manipulate the transmission properties of 

both the visual environment (e.g., light levels) and the seismic environment (e.g., 

different substrates) simultaneously will help elucidate the functions and 

interaction of different display components. 

In the field, H. pyrrithrix often occur at high densities in sympatry with 

other abundant species of Habronattus (e.g., H. hirsutus, H. hallani, and H. 
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clypeatus; LAT, pers. obs.)  While females of these species are all relatively 

cryptic in coloration (i.e., gray and brown), the males exhibit striking and 

conspicuous species-specific display coloration (Griswold 1987).  Interspecific 

interaction rates in the field are high (LAT, unpublished data), suggesting that 

there may be a benefit to females for reliably assessing the species of a courting 

male from a distance.  Moreover, H. pyrrithrix males frequently court 

heterospecific females both in the field and lab (LAT, unpublished data).  Thus it 

might be beneficial to a male to signal his species identity early in courtship (and 

from a safe distance, see Figure 22a), to prevent wasting significant amounts of 

time and unnecessarily placing himself dangerously close to a potentially 

cannibalistic heterospecific female.  Such observations of their natural history 

suggest that male coloration might be a crucial species recognition signal, yet our 

results surprisingly demonstrate that a male’s red facial and green leg colors are 

not required to achieve copulation.  However, our results do suggest that red 

facial coloration can improve courtship success under certain lighting conditions 

and thus are consistent with the idea that male color may improve species 

recognition by females (e.g., Lim et al. 2007; Lim et al. 2008).   

 The color red is a common component of male display both within the 

genus Habronattus (Griswold 1987) and across the Salticidae more generally 

(e.g., face of Lyssomanes viridis (Jackson & Macnab 1991), face of Evarcha 

culicivora (Wesołowska & Jackson 2003), face and legs of Saitis barbipes (Hill 

2009)).  Our results indicate that, in certain light environments (e.g., sunlight), red 

facial coloration in H. pyrrithrix enables males to get closer to females during 
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courtship; approaching females is necessary to achieve successful copulation 

(LAT, pers. obs.).  The color red has been shown to have interesting and unique 

effects on receivers in a variety of species; many animals show innate avoidance 

of red foods over other colors in prey choice (e.g., Mastrota & Mench 1995; 

Gamberale-Stille & Tullberg 2001; Skelhorn 2011) and red has been argued to be 

a general signal of intimidation across the animal kingdom (see Pryke 2009).  

During jumping spider courtship, males must approach voracious and potentially 

cannibalistic females, a process during which they must strike a balance between 

stimuli that attract or provoke females and stimuli that inhibit predation (see 

discussion in Jackson & Pollard 1997; Nelson & Jackson 2007).  The unique 

psychological effects attributed to the color red might make it particularly well-

suited to helping courting male spiders achieve this balance, and this might 

explain its prevalence in male jumping spider displays. 

 

Implications for animal behavior studies 

Taken together, the results of these experiments suggest that caution should be 

taken when interpreting the results of behavioral experiments conducted under 

artificial lighting conditions, or even under a small subset of possible natural 

lighting conditions.  Due to logistical constraints, many behavioral experiments 

must be done indoors and/or under controlled or simplified conditions; however 

such conditions can adversely affect both the physiology and behavior of many 

animals (reviewed in Calisi & Bentley 2009).  Even when experiments are done 

outdoors, they are often done under only one lighting regime, yet in our study the 
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inclusion of both light environments is what uncovered the interesting 

relationships between color, body size, and courtship success in different lighting 

regimes.   

This study suggests a functional role for the presence of red coloration in the 

courtship signaling of Habronattus pyrrithrix and suggests that this role may vary 

depending on the environmental context.  Recent work on multimodal 

communication has been taxonomically biased towards vertebrates (Coleman 

2009), yet insights into the complex courtship behavior of spiders, in which males 

must balance the risks of courting females that are also voracious predators, might 

reveal interesting and unexpected patterns.   
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Figure 22.  Male courtship in H. pyrrithrix.  (a) stage 1:  male (right) is 

approaching and displaying his red face and green legs to a potential female mate 

(left), (b) stage 2: the male (right) has successfully approached and stopped 

directly in front of the female (left) and is now performing a display consisting of 

both visual and seismic components.   
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Figure 23.  Manipulation of coloration in H. pyrrithrix.  (a) pre-manipulated 

natural appearance (i.e., red facial coloration intact), (b) red facial coloration 

concealed with black liquid eyeliner, (c) male with one leg that has green 

coloration intact (left) and the other (right) concealed with foundation powder.  

Scale bars represent 0.5 mm. 
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Figure 24.  Representative reflectance spectra for the natural and color-

manipulated regions of male H. pyrrithrix that were the foci of this study.   
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Figure 25.  Effect of male color manipulation on copulation success (a) and 

sexual cannibalism (b) under laboratory conditions in Experiment 1.   
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Figure 26.  Comparison of male body size (a) and body condition (b) between 

successful and unsuccessful males in Experiment 1 (mean ± SEM).  Successful 

males achieved copulation, which resulted in fertile eggs.  Asterisks (*) indicate 

significant differences between groups. 
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Figure 27.  Effect of color manipulation and body size on the ability of males to 

approach females when courting in the sun (a,b) and shade (c,d) in Experiment 2.  

The presence of an asterisk (*) indicates a significant difference between 

treatment groups, and the presence of a regression line indicates a significant 

relationship between male size and distance from the female.   
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Table 6. Results of repeated measures ANCOVA for Experiment 2 examining the 

effect of color manipulation, body size, body condition, and light environment on 

the mean distance that males were able to get to females over the course of the 

trial.   

within subjects effects df F P 

light 1,7 2.030 0.197 

light*treatment 1,7 7.300 0.031 

light*size 1,7 2.150 0.186 

light*body condition 1,7 0.070 0.801 

light*female ID 9,7 5.070 0.022 

between subjects effects df F P 

treatment 1,7 4.640 0.068 

size 1,7 3.780 0.093 

body condition 1,7 0.570 0.476 

female ID 9,7 3.460 0.058 

 

 

Table 7. Results of ANCOVA for Experiment 2 examining the effect of color 

manipulation, body size, and body condition on the mean distance that males were 

able to get to females over the course of the trial.  Because there was a significant 

interaction between light environment and color manipulation (Table 6), analyses 

were run separately for the sun and the shade.  

SUN df F P 

treatment 1,7 8.11 0.025 

body size 1,7 1.77 0.225 

body condition 1,7 0.63 0.453 

female ID 9,7 1.54 0.291 

SHADE df F P 

treatment 1,7 0.90 0.374 

body size 1,7 5.70 0.048 

body condition 1,7 0.38 0.557 

female ID 9,7 5.94 0.014 
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Chapter 5 

NATURAL VARIATION IN CONDITION-DEPENDENT DISPLAY 

COLORATION DOES NOT PREDICT MALE COURTSHIP SUCCESS IN A 

JUMPING SPIDER 

 

Abstract 

In many animals, males display elaborate, costly, and condition-dependent 

colorful ornaments to choosy females.  Indicator models of sexual selection 

predict that females should choose mates based on natural variation in such traits.  

In Habronattus pyrrithrix jumping spiders (family Salticidae), males have 

conspicuous, condition-dependent red facial coloration and green leg coloration 

that they actively display to drab gray and brown females during a complex 

courtship display.  In a correlational study using field-collected spiders, we paired 

individual males with virgin females under full-spectrum lighting in the 

laboratory and found that condition-dependent natural variation in male coloration 

did not predict mating success (likelihood of copulation) or levels of female 

aggression.  Rather, mating success was best predicted by male body condition.  

We then went on to conduct an outdoor experiment under natural sunlight where 

we gave both virgin and mated females the choice between two simultaneously 

courting males, one with his facial coloration experimentally reduced and the 

other that received a sham treatment.  Again, we found no relationship between 

male coloration and courtship success.  Our previous studies have shown that the 

presence (vs. absence) of male red facial coloration improves male courtship 
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success, but here we found no evidence that natural variation in this trait has any 

effect on success.  We discuss these findings in the context of complex, 

multimodal signaling in Habronattus.  Finally, we argue that, while many studies 

report negative results for condition-dependent quality-signaling alongside 

positive ones, few discuss the implications of the negative results.  We argue that, 

as empirical data continue to accumulate, we should move towards asking why 

some condition-dependent traits are consistently important to females while other 

equally condition-dependent traits are either ignored by females, or only matter in 

certain contexts.   

 

Introduction 

In many animals, males engage in costly behaviors or display elaborate ornaments 

to females during courtship interactions (reviewed in Andersson 1994).  Indicator 

models of sexual selection posit that these elaborate traits, due to the costs 

associated with their production and maintenance, can honestly signal the 

individual quality of the bearer (Andersson 1982).  Empirical work supporting 

this idea has grown over the years and there are now countless examples showing 

that natural variation in costly courtship signals that females find attractive is 

correlated with different aspects of male quality, such as nutritional condition 

(e.g., calling in field crickets: Scheuber et al. 2003), health status (e.g., scent 

marks in house mice: Zala et al. 2004), ectoparasite load (e.g., bowerbird bowers: 

Doucet & Montgomerie 2003), physical strength (e.g., dancing ability in humans: 

Hugill et al. 2009), foraging ability (e.g., nuptial gifts in scorpionflies: Missoweit 
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et al. 2007), parental ability (e.g., courtship rate in damselfish: Knapp & Kovach 

1991), and cognitive ability (e.g., song complexity in house finches: Boogert et al. 

2008).  

 Because of the costs associated with producing and maintaining colorful 

ornaments, studies of animal coloration have been at the forefront of work on 

honest signaling (see reviews in Andersson 1994; Hill & McGraw 2006b, a).  For 

example, many animals use carotenoid pigments to produce elaborate red, orange, 

and yellow colors that are used by females in mate choice; variation in these 

colors can signal various types of information relevant to females (e.g., Hill & 

Montgomerie 1994; Candolin 2000; McGraw & Hill 2000; Mateos-Gonzalez et 

al. 2011).  In addition to pigmentary colors, there is also growing evidence that 

females prefer elaborate structural colors that are linked to attributes of male 

quality (e.g., McGraw et al. 2002; Doucet & Montgomerie 2003; Siefferman & 

Hill 2003; Kemp & Rutowski 2007).  

 Jumping spiders (Salticidae) are an excellent group to examine if variation 

in condition-dependent coloration affects mating success.  Jumping spiders have 

excellent vision (e.g., Land 1969; Williams & McIntyre 1980; Blest et al. 1981; 

Harland & Jackson 2000) including the ability to distinguish between different 

colors in various contexts (e.g., Nakamura & Yamashita 2000; Jakob et al. 2007; 

VanderSal & Hebets 2007).  In many of the more than 5000 species of jumping 

spiders (Platnick 2011), males display brightly colored ornaments to dull and 

inconspicuous females during complex courtship (e.g., Maddison 1995; Oxford & 

Gillespie 1998) and evidence suggests that some of these traits have been driven 
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by sexual selection (Masta & Maddison 2002).  Surprisingly little work has been 

aimed at understanding how condition-dependent variation in male color might 

affect male mating success.  Recent studies have revealed that several aspects of 

coloration that are displayed to females during courtship contain reliable 

information about male diet and age (Lim & Li 2007; Taylor et al. 2011, 

Appendix B, Chapter 4).  Work done with two UV-reflecting species 

(Cosmophasis umbratica and Phintella vittata) has shown that blocking UV light 

affects mate choice decisions, suggesting that UV coloration plays an important 

role in courtship signaling (Lim et al. 2007; Lim et al. 2008; Li et al. 2008b).  In 

Habronattus pyrrithrix, directly blocking male red facial coloration using makeup 

reduces courtship success of males displaying in bright sunlight (Chapter 4). 

Thus, we have evidence in H. pyrrithrix that male colors are condition-dependent 

and evidence that the presence of male colors improves courtship and mating 

success in some contexts, but we do not yet know whether females specifically 

pay attention to natural, condition-dependent variation in male coloration as 

indicator models predict.   

 The goal of the present study was to test the hypothesis that natural 

variation in male display coloration in Habronattus pyrrithrix mediates mate 

choice.  Per the indicator model, we predict that condition-dependent attributes of 

male coloration (i.e., larger, redder facial patches and darker green legs) (Taylor 

et al. 2011, Appendix B) should be preferred by females.  We first test this idea 

correlationally by pairing field-collected males and virgin females in a mating-

success study in the laboratory to determine if these aspects of coloration predict 
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the likelihood that a male will successfully copulate.  Because male red facial 

coloration is sensitive to juvenile diet, with males reared on high-quality diets 

maturing with larger, redder facial patches (Taylor et al. 2011, Appendix B), this 

color patch seems like the most likely candidate to signal a male’s nutritional 

status or foraging ability; thus, in a second study, we focused solely on this red 

coloration.  Outdoors, under natural sunlight, we gave both virgin and mated 

females the choice between two simultaneously courting males, one with his 

facial coloration experimentally reduced and the other that received a sham 

treatment (while his natural red facial coloration remained intact), and we 

measured courtship success of both males.  Because female spiders of different 

mating status (i.e., virgin vs. mated) are expected to exhibit different levels of 

choosiness (e.g., Jackson 1981), using only virgin females is common practice in 

jumping spider mate choice experiments (e.g., Clark & Biesiadecki 2002; Elias et 

al. 2005; Elias et al. 2006a; Lim et al. 2008, see Chapter 4).  However, male H. 

pyrrithrix interact with both virgin and mated females in the field (LAT, pers. 

obs.), and thus inclusion of both classes of females increases the likelihood that 

our experiment will capture ecologically relevant levels of choosiness.  To our 

knowledge, this is the first study to directly manipulate jumping spider color 

patterns within natural levels of variation to test the hypothesis that condition-

dependent colors function as quality-indicating sexual signals.   

 

Methods 
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Study species 

Habronattus pyrrithrix Chamberlin 1924 is found throughout southern 

California and Arizona, USA south to Sinaloa, Mexico (Griswold 1987).  In 

Phoenix, Arizona they are quite common and found at high densities in riparian 

areas, grassy backyards, and agricultural areas (LAT, pers. obs.).  Similar to other 

species of Habronattus, males engage in complex courtship display repertoires 

consisting of both visual and seismic components (LAT, pers. obs.).  Male H. 

pyrrithrix orient their red faces and green legs towards females during display, yet 

these colors are generally not visible from above (LAT, pers. obs.).  Courtship 

typically begins when a male orients towards a female from several centimeters 

away and waves his front legs while approaching in a zigzag fashion (stage 1 of 

courtship, Figure 28a).  If the female does not retreat or attack the male, he will 

continue to approach until he is within a few millimeters of the female’s face 

where he abruptly stops, extends his first pair of legs straight up, and begins the 

seismic component of the display (stage 2 of courtship, Figure 28b; LAT, pers. 

obs.; D.O. Elias, pers. comm.).  Both of these stages are highly variable in length 

and appear to depend both on the female’s response (e.g., remaining stationary, 

attacking the male, or hopping away) as well as the male’s persistence (LAT, 

pers. obs.).  In stage 3 of courtship, the male extends his front legs and gently taps 

the female’s carapace; if she does not retreat or attack, he typically proceeds to 

mount and copulate with her (LAT, pers. obs., Figure 28d).  Agonistic display 

between males is uncommon in Habronattus (Richman 1982; Cutler 1988); in H. 

pyrrithrix males will occasionally wave their legs in the direction of other males, 
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but these displays are rare and short in duration, lasting only a few seconds, 

compared with displays for females that can continue for hours (LAT, pers. obs.).   

  

Correlational mate choice study 

The goal of our correlational mating success study was to determine if 

naturally-occurring variation in male display coloration explains variation in male 

mating success.  Many mate choice studies in jumping spiders involve exposing a 

single female to multiple potential male mates that are physically isolated from 

one another and from the female and then assessing female choice based on 

differential receptivity behaviors exhibited by the female (e.g., Cross et al. 2007; 

Lim et al. 2008; Li et al. 2008b).  However, to our knowledge, there is no known 

behavior other than copulation or a female’s willingness to let a male approach 

and make contact with her that reliably signals receptivity in Habronattus (LAT, 

pers. obs., see also Masta & Maddison 2002).  For this reason, most mate choice 

studies with Habronattus involve presenting a single male to a single female and 

assessing mating success by directly observing whether or not copulation occurs 

(e.g., Masta & Maddison 2002; Hebets & Maddison 2005; Elias et al. 2005; Elias 

et al. 2006a); thus we used this approach for the correlational mating-success 

study.   

In June 2007, we collected 21 mature adult males and 21 penultimate 

females (in their final instar, just prior to sexual maturity) from Queen Creek, 

Arizona, USA (Maricopa County, 33.224744 N, 111.592825 W).  We housed 

spiders individually in clear plastic cages (10.16 x 10.16 x 12.86cm).  Light was 
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provided from full-spectrum light bulbs on a 14:10 light-dark cycle (Mercola, 

Hoffman Estates, IL, USA) and temperature was maintained at approximately 

28⁰C.  We fitted each cage with a mesh top to allow full-spectrum ambient light 

to reach the inside, and we glued an artificial green plant (Ashland fern collection, 

Michael’s Stores, Irving, TX, USA) to the side of the cage for enrichment 

(Carducci & Jakob 2000).  Irradiance data for our artificial lighting is provided as 

supplementary material in Appendix E.  Spiders were fed crickets (Acheta 

domesticus) that were approximately their own body weight three times per week, 

as this feeding regime resulted in spiders with body condition indices were 

comparable to those observed in the field (LAT, unpub. data).   

 When females molted to sexual maturity in the lab, we randomly paired 

each with a male.  Trials began between 0800 and 1100 hrs. when females were 

between 13 and 29 days post-maturity.  Just before each trial began, we weighed 

spiders to the nearest 0.0001 g with a digital scale and photographed them next to 

a size standard.  From digital photographs, we measured each spider’s carapace 

width using Photoshop software (Adobe Systems Inc., San Jose, CA, USA).  

Because the carapace width of H. pyrrithrix is fixed at maturity, while the 

abdomen stretches with feeding, we used the residuals of a regression of body 

mass on carapace width as an estimate of body condition that is uncorrelated with 

body size and is a common metric of estimating condition in spiders (e.g., Jakob 

et al. 1996; Taylor et al. 2011, Appendix B). 

 At the start of each trial, the randomly paired male was introduced into the 

female’s cage and we videotaped all interactions for the first hour.  After the 
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hour-long videotaped trial, males and females were housed together for an 

additional 48 hours to give them additional opportunities to court and mate.  We 

then removed the male and fed the female in excess (approximately three times 

her own body weight in crickets daily) for two weeks to allow her to lay eggs if 

she had mated.  We confirmed the fertility of all eggs by monitoring them and 

allowing them to hatch.  From the videos, we recorded the levels of female 

aggression directed towards males (i.e., number of attacks).  We quantified 

mating success by recording whether or not females laid fertile eggs (leading to 

hatching spiderlings).    

 At the conclusion of each mating trial, spiders were euthanized and placed 

in the freezer until color analysis.  Colors were quantified following methods 

described in Taylor et al. (2011, Appendix B).  Briefly, we used a reflectance 

spectrophotometer (USB2000, Ocean Optics, Dunedin, FL, USA) coupled to a 

modified Leica DMLB2 fluorescence light microscope fitted with a 40x quartz 

objective lens (Leica Microsystems, Wetzlar, Germany) and illuminated with a 

full-spectrum Leica 75 W xenon arc lamp (Leica Microsystems, Wetzlar, 

Germany).  Reflectance measures were taken in a dark room and were measured 

relative to a Spectralon diffuse reflectance white standard (Labsphere Inc., North 

Sutton, NH, USA).  This setup allowed us to quantify the minute color patches on 

the male’s red faces and green front legs (ca. 0.4 and 0.5 mm
 
in width, 

respectively) that are too small to measure accurately with standard 

spectrophotometry equipment.  Unfortunately, the optics of the microscope cuts 

out a portion of the UV spectrum and so this instrument only provides spectral 
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data from 375-700nm.  In some jumping spider species, UV reflectance appears to 

be important in communication (Lim et al. 2007; Li et al. 2008b; Lim et al. 2008), 

and thus we must use caution when excluding UV reflectance from our analysis.  

However, in a previous study, we confirmed that, while reflectance does extend 

into the UV for the green legs, there are no UV peaks and so the benefit of using 

an instrument that allows precise and repeatable measures on minute color 

patches that dominantly reflect long-wave light far outweighs the disadvantage of 

excluding UV (Taylor et al. 2011, Appendix B). 

 We took the average of two reflectance measures from each male’s red 

facial patch and from each of the male’s green front legs.  From these spectral 

data, we calculated (1) the hue of the red face (the wavelength corresponding to 

the inflection point of the red curve), (2) the red chroma of the face (the 

proportion of total reflectance between 600 and 700nm), and (3) the brightness 

(mean reflectance) of the green front legs, as these were the color metrics found to 

be condition-dependent in a previous study (Taylor et al. 2011, Appendix B).  

Additionally, because male faces are relatively large surfaces that are only 

partially ornamented with red scales, we also measured the size of this red patch.  

We photographed the face of each male through a Leica MZ 125 stereo 

microscope at 50x magnification using a Spot Insight 11.2 digital camera 

(Diagnostic Instruments, Sterling Heights, MI, USA; image resolution 1,600 x 

1,200 pixels) and Image-Pro Express software (Media Cybernetics, Silver Spring, 

MD, USA).  All photos were taken using the same light and camera settings.  We 

used Photoshop software (Adobe Systems Inc., San Jose, CA, USA) to calculate 
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the total area of red scale coverage.  Because larger males had larger patch sizes, 

we calculated a ‘relative patch size index’ using the residuals of a regression of 

patch area on carapace width (Taylor et al. 2011, Appendix B).        

 

Color manipulation experiment 

Because the results of our correlational study in the laboratory suggested 

that natural variation in male coloration does not play a major role in determining 

mating success (see Results), we went on to explore this idea further using a color 

manipulation experiment under circumstances in which we might expect color 

signaling to be most prominent.  Specifically, we presented both virgin and mated 

females with two simultaneously courting males (one of which had his facial 

coloration experimentally reduced) and we ran all trials outdoors under natural 

sunlight.  Because a male’s red facial coloration has been found to be consistently 

condition dependent in field-collected individuals (see results of correlational 

study, see also Taylor et al. 2011, Appendix B), to reflect the quality of an 

individual’s juvenile diet (Taylor et al. 2011, Appendix B), and, at least in some 

contexts, to act as a signal in courtship interactions (see Chapter 4), we currently 

have the most evidence that red color, as opposed to other ornaments, contains 

reliable information relevant to mate choice.  Thus we focused on this color 

ornament for the present experiment.   

 As described above, in order to interpret female choice in a simultaneous 

mate choice experiment with H. pyrrithrix, males must be allowed to approach 

and make contact with females, and thus cannot be physically isolated from them.  
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Thus, the best methodology for simultaneous choice tests in this species is to 

place two males and one female into an experimental chamber where all three can 

interact freely (see Chapter 4).  Consequently, our experimental design does not 

prevent males from seeing and interacting with one another and as such, we 

cannot completely disentangle male-male competition from female choice per se.  

However, when two males are courting the same female, they typically direct 

their displays at the female simultaneously, rather than towards one another 

(LAT, pers. obs.); thus we expect that any major effect of color manipulation that 

we see in our experiments will be a result of responses by the female, rather than 

from interactions between males (LAT, pers. obs). 

  In March 2011, we collected 42 mature adult male spiders and 21 female 

spiders from the same population described above.  Of the females, 10 were 

mature upon collection and appeared to be gravid, while 11 were in their final 

(penultimate) instar just prior to sexual maturity, ensuring that they were virgins.  

We housed these spiders in the lab (as described above) for one month before the 

trials began, which allowed putatively gravid females to lay eggs (to confirm that 

they had indeed already mated) and allowed penultimate females to reach 

maturity.  Because our previous studies suggested that both male size and body 

condition consistently predicted mating success (see Results; see also Chapter 4) 

we wanted to eliminate variation associated with size and condition as much as 

possible to attempt to identify effects of male color per se.  The month-long 

period of housing males in the laboratory on a constant diet (see above) allowed 

us to reduce variation associated with body condition as much as possible.  To 
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further reduce variation associated with body size, we paired males by body size 

so that each pair differed in carapace width by only 0.0087±0.023mm (mean±SE). 

 Within each male pair, one male was randomly assigned to the color-

manipulation group while the other male was assigned to the sham-treated control 

group.  Males in the color-manipulated group had their red facial coloration 

experimentally reduced so that it closely matched the mean reflectance curve of 

the 10 least colorful males from this same population in a previous study (Taylor 

et al. 2011, Appendix B, see Figure 29a,c).  To reduce male coloration, we 

applied a mixture of water and black liquid eyeliner (Color: ‘Perversion’, Urban 

Decay Cosmetics, Costa Mesa, CA) (Figure 29c).  This color-manipulation 

method reduced the red chroma of the male’s face (see Figure 29a).  We also 

applied additional eyeliner along the edges of the facial patch to reduce the size of 

the red area to approximate the mean of the 10 smallest patch sizes from a 

previous study (Taylor et al. 2011, Appendix B).  On control males, we applied 

the same amount of eyeliner and water to an equivalent area on the top of their 

carapace just behind their anterior median eyes, while their red facial coloration 

was left intact (Figure 29b).  On the day before mating trials, we anesthetized 

males with carbon dioxide for approximately five minutes while we performed 

color manipulations.  After waking up from anesthesia, males were offered a 

cricket to confirm that they had recovered fully and were capable of capturing 

prey.  To confirm that our color manipulation did not affect courtship activity or 

motivation, we recorded the latency for males to begin courting and the overall 

courtship effort of each male during trials.        
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 Before a trial began, we moved the female’s cage outdoors to allow her to 

acclimate for one hour.  All trials were run in full sunlight between 0900 and 1500 

hrs., when the mean temperature was 26-32 C.  These outdoor trials were run in 

a riparian habitat on the campus of Arizona State University where H. pyrrithrix 

is found in high abundance (LAT, pers. obs.), thus providing natural light and 

natural vegetation to serve as background colors.  Irradiance data collected in this 

outdoor area is provided as supplementary material in Appendix E.  At the start of 

the first phase of the trial, the two males were weighed (to determine current body 

condition, as described above) and placed in the female’s cage in immediate 

succession, in random order.  All interactions were videotaped for 40 minutes.   

 From the videos, we used the freeware program Cowlog (Hänninen & 

Pastell 2009) to quantify the latency for each male to begin courting and the 

overall time spent courting.  Results from previous studies indicated that the 

distance that males were able to get to females was an excellent predictor of 

mating success (i.e., males that were able to get closer to females were more 

likely to proceed through all stages of courtship and eventually copulate, leading 

to fertile eggs, see Chapter 4).   Because having two simultaneously courting 

males seemed to distract the female and extend the latency to copulation (LAT, 

pers., obs.), we found low levels of copulation, comparable to previous studies 

(see Chapter 4).  Thus we used the mean distance that males were able to get to 

females over the course of the trial as an estimate of courtship success.  We also 

recorded the number of attacks by females on each male and all instances of 

copulation.   
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Statistical analyses 

 

Correlational mating success study 

  First, to corroborate previous findings on the condition-dependence of 

male colors, we used linear regression to examine the relationships between a 

male’s body condition at collection and color variables that were found to be 

condition dependent in previous experiments (specifically, the hue, red chroma, 

and size of the red facial patch and brightness of the green legs, Taylor et al. 

2011, Appendix B).  We then used logistic regression to examine if these color 

variables predicted successful copulation, and we used linear regression to 

determine if they predicted levels of female aggression.  We also used logistic 

regression and linear regression, respectively, to determine if either male size or 

male body condition predicted copulation success and levels of female 

aggression.  

  

Color manipulation experiment 

  First, to confirm that our experimental manipulations did not have adverse 

effects on male behavior, we used analysis of variance (ANOVA) to determine if 

the treatment groups (color manipulated vs. sham control) differed in the latency 

for males to begin courting or in their total courtship effort (amount of time spent 

courting over the course of the trial).  We used logistic regression to confirm that 

the approach-distance of males to females predicted a male’s likelihood to reach 
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stage 2 of courtship, which is required for achieving successful copulation (see 

Figure 28). 

 To test the focal hypothesis of our study, we used mixed-model nested 

ANOVAs to determine if male color treatment, female mating status (virgin or 

mated), or their interaction affected courtship success (the distance that males 

were able to get to females) or levels of female aggression.  Because each pair of 

males was tested simultaneously with a single female, female ID was included as 

a random factor, nested within female mating status.  Because both male size and 

body condition have been found in previous experiments to affect courtship and 

mating success in H. pyrrithrix (see Results for correlational study; see also 

Chapter 4), we also ran mixed-model nested analysis of covariance (ANCOVA)  

as above, but with the addition of male size and condition as covariates. 

 In light of the finding that males were more successful when courting 

virgin rather than mated females (see Results), we went on to examine whether 

this pattern might be related to male courtship effort.  We used mixed-model 

nested ANOVAs to determine if female status predicted a male’s latency to begin 

courting or his total courtship effort.  Again, because each pair of males was 

tested simultaneously with a single female, female ID was included as a random 

factor, nested within female mating status.    

 In light of the surprising finding that females were more aggressive 

towards larger males in better condition (see Results), we went on to examine the 

idea that female aggression is an inherent risk associated with proceeding through 

courtship.  Specifically, we used ANOVA to determine if males that were 
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successful at proceeding to stage 2 of courtship received more aggression from 

females during the courtship process than males who did not progress 

successfully to stage 2.  Because pairs of males were paired with a single female, 

we included female ID as a random factor in the model.  

 All data met assumptions of parametric statistics with the exception of the 

female aggression data (for both the correlational study and the color 

manipulation experiment); these data were thus rank transformed prior to analyses 

(Iman & Conover 1979).   

 

Results 

 

Correlational mating success study 

 As in our previous study, males in better condition had larger, redder 

facial patches (hue: R
2
=0.196, F1,19=4.63, P=0.045; red chroma: R

2
=0.253, 

F1,19=6.43, P=0.020; relative patch size: R
2
=0.343, F1,19=9.93, P=0.0053).  

However, in contrast to previous studies, the brightness of the male’s legs was not 

related to his condition (R
2
=0.050, F1,19=1.01, P=0.328) 

 Eleven out of 21 males (52.4%) copulated during trials, leading to fertile 

eggs.  Aspects of condition-dependent male red facial coloration did not 

significantly predict successful copulation (hue: χ
2
=0.731, P=0.393; red chroma: 

χ
2
=0.639, P=0.434; relative patch size: χ

2
=0.021, P=0.886; Figure 30) or affect 

rates of female aggression (hue: R
2
=0.012, F1,19=0.23, P=0.635; red chroma: 

R
2
=0.016, F1,19=0.30, P=0.589; relative patch size: R

2
=0.036, F1,19=0.71, 



  149 

P=0.409).  Similarly, aspects of male green leg coloration also did not predict 

successful copulation (χ
2
=2.741, P=0.098) or affect levels of female aggression 

(leg brightness: R
2
=0.021, F1,19=0.41, P=0.529).   

 Males in better condition were significantly more likely to copulate 

(χ
2
=4.15, P=0.041; Figure 30), but male size had no effect on this measure of 

success (χ
2
=0.078, P=0.779).  Neither male condition nor size affected female 

aggression (condition: R
2
=0.016, F1,19=0.31, P=0.582; size: R

2
=0.052, F1,19=1.03, 

P=0.322) 

 

Color manipulation experiment 

 Our experimental color manipulations had no adverse effects on male 

behavior, as there were no differences between the treatment groups in the latency 

for males to begin courtship (F1,40=1.99, P=0.166) or the total time that males 

spent courting (F1,40=0.07, P=0.799).  As in previous studies, the distance that 

males were able to get to females was a strong predictor of a male’s ability to 

proceed to stage 2 of courtship (χ
2
=12.55, P=0.0004).   

 Males were more successful in courting virgin compared with mated 

females, but a male’s color treatment had no effect on his success (Figure 31, 

Table 8).  Neither female mating status nor male color treatment affected levels of 

female aggression (Table 8).  When male size and condition were included as 

covariates, these factors had no effect on male courtship success (Table 9).  

Surprisingly, though, females were more aggressive towards males in better 

condition, and also tended to be more aggressive towards larger males (Table 9).   
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 Males began courting virgin females more quickly than mated females 

(F1,21=30.96, P<0.0001) and devoted more total time to courting virgins compared 

with mated females (F1,21=4.57, P=0.044).  Males that were successful in 

proceeding to stage 2 of courtship (n=16 out of 42) tended to receive higher levels 

of aggression from females than did males that did not proceed to stage 2 

(F1,20=4.12, P=0.056).     

 

Discussion 

In both a correlational study and a color manipulation experiment with 

Habronattus pyrrithrix, male color variables that are consistently condition-

dependent across studies had no effect on female mate choice.  First, using field-

collected spiders, we paired individual males with virgin females under full-

spectrum lighting in the laboratory and found that natural variation in male red 

facial and green leg coloration did not predict mating success (likelihood of 

copulation) or levels of female aggression.  Rather, mating success was best 

predicted by male body condition.  We then went on to conduct an outdoor 

experiment under natural sunlight, where we gave both virgin and mated females 

the choice between two simultaneously courting males, one with his facial 

coloration experimentally reduced and the other that received a sham treatment.  

Again, we found no relationship between male coloration and courtship success.  

Previous studies have shown that the presence (vs. absence) of male red facial 

coloration improves male courtship success (Chapter 4), but here we found no 

evidence that natural variation in this trait has any effect on success.  
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Patterns of condition dependence 

 Consistent with previous studies on the condition dependence of 

coloration in H. pyrrithrix (Taylor et al. 2011, Appendix B), field-collected males 

in better condition had larger and redder patches of color on their faces.  Previous 

studies have also shown that the brightness of a male’s green front legs correlates 

with condition in the field, yet that pattern did not hold up in the present 

correlational study.  Unlike red face coloration, which is dependent on juvenile 

diet (Taylor et al. 2011, Appendix B), the brightness of a male’s green legs is 

dependent on male age (Chapter 3).  Because the present correlational study was 

conducted earlier in the season (early June) compared with the previous study that 

established the condition dependence of leg coloration in July and August, it may 

be that the population earlier in the season included mostly recently matured (i.e., 

young adult) males.  Later in the season, as more males mature, we would expect 

a larger variation in age among mature males.  Our color data are consistent with 

this idea; the mean leg brightness observed in this study (mean =21.0% 

reflectance) was on the darker end of the range found by Taylor et al. (range of 

male leg brightness = 11.79-48.89% reflectance, Taylor et al. 2011, Appendix B), 

suggesting that these males were relatively young.  Unlike the green leg 

coloration, once a male’s red facial coloration is produced at maturity, it does not 

change with age (Chapter 3).  Juvenile diet seems to be responsible for variation 

in red facial coloration (Taylor et al. 2011, Appendix B), which may explain why 

this pattern has been more consistent among field studies.  In some systems, the 
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condition dependence of particular display traits varies with environmental 

heterogeneity; such traits may only provide useful information under relatively 

poor conditions when not all individuals can afford to invest in them (Vergara et 

al. 2012).  The fact that the red coloration examined here has been found to be 

consistently condition dependent in this population suggests that it might be a 

particularly good candidate for a reliable signal of quality in this species (e.g., 

Andersson 1982). 

 

Predictors of mating success 

 Contrary to our hypothesis, our correlational study revealed that natural 

variation in male red facial and green leg coloration did not predict mating 

success.  When we went on to manipulate red facial coloration in our 

simultaneous choice test, again, male coloration had no effect on courtship 

success; males whose red facial coloration was experimentally reduced were just 

as successful at approaching females as sham-treated control males.  As in 

previous studies with H. pyrrithrix (Chapter 4), males in our correlational study 

that were in better condition were more likely to copulate; this pattern of 

condition improving success holds up for other groups of ground-dwelling spiders 

(e.g., Gibson & Uetz 2008).  In the color manipulation experiment, we 

deliberately reduced variation in male body size (by ensuring that paired males 

were very similar in size) and condition (by keeping males on a constant diet in 

captivity for one month), yet we still saw no effect of color on courtship success. 
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 There are several possible explanations for our findings that male 

ornamental coloration was less important for male mating success than other 

morphological traits.  First, males in the genus Habronattus engage in extremely 

elaborate and complex courtship displays consisting of  various combinations of 

brilliant colors (e.g., Taylor et al. 2011, Appendix B), motion (e.g., Elias et al. 

2006b), and seismic components (e.g., Maddison & Stratton 1988; Elias et al. 

2003).  One hypothesis to explain the evolution of complex signals is that each 

signal component contains different information, or that they contain similar 

information but act to back each other up when other signal components are more 

difficult to transmit (reviewed in Hebets & Papaj 2005).  If this is the case, it may 

be that the suite of information presented is very complex, and thus the effect of 

any one component of the display (such as facial color) on a female’s overall mate 

choice may be subtle.  Examining these traits in isolation might make subtle 

effects difficult to detect.   

 A second explanation is that variation among females in their preferences 

for different display traits obscures overall, general preference patterns for any 

one trait, such as red facial color.  Studies of the complex displays of bowerbirds 

suggest that there are age-specific differences in the male traits that females use in 

mate assessment (Coleman et al. 2004).  Similarly, in buntings, there is extreme 

temporal variation in female mate choice, with females preferring different traits 

from year to year, presumably depending on their specific needs in a changing 

environment (Chaine & Lyon 2008).  In both cases, it has been argued that such 

variation in female preferences may have driven male signal complexity 
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(Coleman et al. 2004; Chaine & Lyon 2008).  If similar female preference 

variation is responsible for the complex displays in Habronattus, significant 

preferences for any one trait such as red facial coloration, again, may be difficult 

to detect in a single year or study.  Because previous work has shown that female 

choosiness and female preferences change with mating status in other jumping 

spiders (Jackson 1981; Cross et al. 2007), in our experiment, we included both 

virgin and mated females.  While we found no evidence of an interaction between 

female mating status and her preferences for male red facial color, there are other 

factors that might create variation in female preferences that should be explored in 

this system.  In wolf spiders, female preferences are shaped by their experience 

with males before they mature (Hebets 2003).  Given the evidence for flexibility 

in courtship strategies of many species of jumping spiders (e.g., Jackson 1977; 

Jackson & Macnab 1991; Jackson 1992; Jackson & Willey 1995; Cross et al. 

2008) and their ability to modify many aspects of their behavior through 

experience and learning (reviewed in Jakob et al. 2011), it would interesting to 

examine how female experience might create variation in male color preferences 

in H. pyrrithrix.  

 In this study, male H. pyrrithrix courted every female to some extent in 

every trial.  Even in the field, H. pyrrithrix males typically court every female that 

they encounter, including heterospecifics (see Chapter 1).  In our color 

manipulation experiment, we monitored male courtship effort to confirm that our 

treatments were not affecting a male’s motivation to court and, interestingly, we 

found that while male color treatment did not affect his courtship effort, males 
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began courting virgin females more quickly than mated females and also invested 

more time overall to active courtship with virgins.  There is growing evidence that 

males of some species of jumping spiders show preferences for some females 

over others (Cross et al. 2007; Hoefler 2007).  In Phidippus clarus, mature males 

cohabit with and guard immature females before they mature; these males show a 

preference for larger females that mature sooner (Hoefler 2007).  In Evarcha 

culicivora, both males and females actively engage in courtship, and males prefer 

larger females as mates (Cross et al. 2007).  In the present study, because males 

were introduced into the cages of females, it is possible that cues from female silk 

provided information to males about female mating status (e.g., Hoefler 2007).  

Because mated female jumping spiders have been shown to be choosier than 

virgin females (Jackson 1981) and because males of some species deposit mating 

plugs over the copulatory organs of females after mating (Jackson 1980), 

choosing to prioritize time courting virgin, rather than mated, females may be 

advantageous.  Even when males court indiscriminately, future work should 

examine subtle choices that males may make about where to focus their courtship 

effort.   

 An interesting and unexpected finding uncovered in this experiment was 

that females actually exhibit higher, rather than lower, levels of aggression 

towards males that are in better condition, and that larger males also tended to 

receive higher levels of aggression from females.  Multiple studies have now 

shown that female H. pyrrithrix prefer to mate with bigger males in better 

condition (correlational study, see also Chapter 4).  Why then should these 
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presumably ‘preferable’ males elicit higher levels of aggression from females?  

Perhaps female aggression is simply a part of the courtship process that males 

must endure to progress through courtship.  We show here that, regardless of 

color treatment, males that are able to successfully proceed to stage 2 of courtship 

(where they are within millimeters of the female’s face, see Figure 28b) receive 

higher levels of aggression than females that are not able to make it to this stage.  

If these attacks are attempts at cannibalism by females, this suggests that 

progressing through courtship might be inherently risky for males.  It may be that 

when two males are courting simultaneously, larger males are more willing to 

incur such risks as they may be harder for females to cannibalize.  Or perhaps 

these non-fatal attacks directed towards females are not missed cannibalism 

attempts, but are rather an additional way that females assess a male’s quality. 

 In summary, our data indicate that, while there is indeed variation in 

courtship and mating success among male H. pyrrithrix (i.e., not all males 

copulate, and there is variation in how effective males are at approaching females 

and proceeding through the stages of courtship), this variation was not predicted 

by aspects of condition-dependent red facial coloration.  Throughout the honest 

signaling literature are numerous examples of studies in which suites of 

condition-dependent color variables are tested as quality-indicators (e.g., see 

reviews in Hill 2006; Senar 2006; Santos et al. 2011).  While many of these 

studies report negative results alongside positive ones (e.g., see meta-analysis data 

in Santos et al. 2011), most discussions in the literature focus only on the specific 

results that support their hypotheses, glazing over the importance of the tests that 
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do not.  As a result, numerous cases of traits that are strongly condition dependent 

but do not affect female choice are reported, but go comparatively unnoticed in 

the literature.  If hypotheses and predictions are indeed generated a priori, then 

non-significant results that do not support hypotheses should be just as important 

to our overall understanding of the importance of quality signaling as the 

significant results that do support them.  Multiple meta-analyses have revealed 

that the ways in which results on a particular topic are reported (i.e., publication 

biases) change as paradigms in behavioral ecology shift (Alatalo et al. 1997; 

Simmons et al. 1999; Poulin 2000).  We argue that, as the evidence for condition-

dependent quality signaling continues to accumulate, we should move towards 

understanding why some condition-dependent traits matter to females while 

others are ignored by females or only matter in certain contexts.  This approach 

may help us better understand the complex factors that shape the brilliant and 

often costly ornaments that males display. 
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Figure 28.  Stages of male courtship in Habronattus pyrrithrix.  (a) stage 1: the 

male waves his legs as he approaches the female in a zigzag fashion, (b) stage 2: 

the male (right) has successfully approached and stopped directly in front of the 

female (left) and is now performing a display that consists of both visual and 

seismic components, (c) stage 3: the male gently taps the female’s carapace with 

his front legs, (d) the male proceeds to mount and copulate. 
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Figure 29.  Experimental color manipulation used to reduce the size and color of 

a male’s red facial patch.  (a) spectral properties of sham-treated control males 

and color-manipulated males, compared with the population mean and the 10 

drabbest males from a previous study (Taylor et al. 2011, Appendix B), (b) the 

intact red facial coloration of a sham-treated control male, and (c) experimental 

manipulation (reduction) of a male’s red facial coloration.   
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Figure 30.  Comparisons of color variables (a, b, c) and body condition (d) 

between males that copulated successfully and those that did not copulate during 

the correlational mating success study.  The presence of an asterisk (*) indicates a 

significant difference between groups.   

 

 

Figure 31.  Courtship success (mean distance that males were able to get to 

females) during the color manipulation experiment.  Males were more successful 

courting virgin compared with mated females (a). Experimental reduction of red 

facial coloration had no effect on male courtship success (b).  The presence of an 

asterisk (*) indicates a significant difference between groups.   
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Table 8.  Results of mixed model nested ANOVA and ANCOVA for color 

manipulation experiment examining the effect of male color manipulation and 

female mating status on the mean distance that males were able to get to females 

over the course of the trial.   

 

ANOVA df F P 

Treatment 1,19 1.33 0.263 

female mating status 1,19 5.55 0.029 

treatment x female mating status 1,19 1.89 0.185 

female ID (nested within female mating 

status) 
19,19 0.43 0.962 

ANCOVA df F P 

Treatment 1,17 0.91 0.353 

female mating status 1,17 1.00 0.331 

treatment x female mating status 1,17 0.99 0.177 

female ID (nested within female mating 

status) 
19,17 0.39 0.973 

male body condition 1,17 2.08 0.167 

male body size 1,17 0.20 0.660 
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Table 9. Results of mixed model nested ANOVA and ANCOVA for color 

manipulation experiment examining the effect of male color manipulation and 

female mating status on levels of female aggression (i.e., number of attacks) 

directed towards courting males.   

 

ANOVA df F P 

Treatment 1,19 0.13 0.719 

female mating status 1,19 0.01 0.941 

treatment x female mating status 1,19 0.43 0.521 

female ID (nested within female mating status) 19,19 0.86 0.628 

ANCOVA df F P 

Treatment 1,17 0.27 0.616 

female mating status 1,17 1.25 0.279 

treatment x female mating status 1,17 0.09 0.763 

female ID (nested within female mating status) 19,17 1.36 0.265 

male body condition 1,17 6.40 0.022 

male body size 1,17 3.48 0.080 
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Chapter 6 

CONCLUDING REMARKS 

 

In this dissertation, I addressed the question of why male jumping spiders in the 

genus Habronattus have evolved such striking and conspicuous colors compared 

to drab and cryptic females.  I used a variety of approaches, ranging from field 

studies where I tracked spiders and documented natural behavior in the field to 

carefully controlled experiments on diet, coloration, and mate choice in the 

laboratory.  Guided by the relevant natural history gleaned from field 

observations, I tested multiple hypotheses for the current function of ornate 

coloration, including those encompassed by both sexual selection (e.g., species 

recognition, quality signaling) and ecological selection (e.g., differential habitat 

use, different strategies of avoiding predation).  While this work yielded some 

results consistent with patterns found in other colorful taxa, I also found several 

surprising results that challenge traditional views of color signaling; it is these 

unexpected results that offer the most novel insights into where we should direct 

future research efforts on elaborate coloration in spiders and other animals. 

 

Sexual selection  

 A particularly surprising finding was the high rate of misdirected, 

heterospecific courtship documented under natural conditions in the field 

(Chapter 1).  When examining a local community of four sympatric Habronattus 

species (none of which are closely related enough to hybridize), males courted 
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females indiscriminately at every opportunity, regardless of the species of the 

female.  While misdirected courtship has been documented in other taxa, it has 

been given little attention in the ecological literature and field studies of 

misdirected courtship are particularly rare (see Groening & Hochkirch 2008).  

Male courtship in Habronattus is likely to be costly; males engage in dances that 

combine color, motion, and seismic cues (Richman 1973; Maddison & Hedin 

2003; Elias et al. 2005).  Male courtship is also likely to be risky, as cannibalism 

by adult females made up a large proportion of the predation events that I 

observed in the field (Chapter 2).  While the four species that I examined had 

slightly different habitat preferences, there was substantial overlap and high 

interaction rates in the field; in three of the four species, individuals were just as 

likely to encounter a heterospecific as they were to encounter a conspecific 

(Chapter 1).  These findings suggest that interspecific communication is likely to 

be extremely important, particularly in areas where multiple Habronattus species 

co-exist.   

 Theoretical work, dominated by consideration of signaling in better-

studied taxa such as birds, predicts that species recognition signals should not 

evolve to be particularly costly, conspicuous, or elaborate, as they only need to 

allow prospective mates to be differentiated from a limited number of other 

possible species (reviewed in Dale 2006).  Yet male Habronattus might challenge 

this rule, given that the recognition costs subsume both survival and reproduction; 

the need to identify themselves clearly to females from a safe distance and to 
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reduce their risk of cannibalism might shift the costs and benefits in favor of 

extremely conspicuous, elaborate species recognition signals.   

 Given the degree of misdirected courtship documented here, we might 

expect that females would pay close attention to male characteristics, such as 

color, that could be used to accurately identify his species.  Interestingly, though, 

in H. pyrrithrix, females did not use species-specific male display color as a 

requirement for successful mating (Chapter 4).  In an experiment under artificial 

full-spectrum lighting, males that had their species-specific red faces and/or green 

leg coloration blocked were just as likely to mate as sham-treated control males 

with their colors intact.  Only when females were presented with simultaneously 

courting males in full sunlight did we find that the presence of red facial 

coloration improved male courtship success; when these same males were 

allowed to court in the shade, color treatment was unimportant and male size 

became the best predictor of success (Chapter 4).  These findings suggest that 

females might hone in on different male qualities depending on the environmental 

conditions where courtship takes place.  The transmission of color signals 

depends on the light environment in which they are sent; here I show that red 

facial coloration is more effective as a courtship signal under lighting conditions 

that contain more red light (i.e., sunlight compared with shade) (e.g., Endler 

1993).  Habronattus males have extremely colorful, multicomponent displays and 

it may be that this complexity allows them to communicate effectively in variable 

and unpredictable light environments.   While this idea of ‘backup signals’ has 

been suggested to explain display complexity in other taxa (reviewed in Johnstone 
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1996; Hebets & Papaj 2005), it is surprising that in H. pyrrithrix such drastic 

color manipulations only affect male courtship in a limited context (i.e., sunlight).       

 In addition to species recognition signals, I also considered the hypothesis 

that male colors act as condition-dependent quality signals.  Across three 

correlational studies and two diet-manipulation experiments, I found consistent 

patterns of condition dependence for male red facial and green leg coloration.  

Males in better condition had redder faces and darker green legs (Taylor et al. 

2011, Appendix B, Chapter 5); follow-up experiments revealed that that red 

coloration is dependent on the quality of juvenile diet (Taylor et al. 2011, 

Appendix B) whereas green leg coloration is linked to a male’s age (Chapter 3).  

These patterns of condition-dependence clearly fit a dominant hypothesis in the 

literature to explain display complexity: different colors can encode and reveal 

different information to potential female mates (reviewed in Hebets & Papaj 

2005).  Surprisingly, though, using both correlational and experimental 

approaches, I found no evidence that natural variation in these male colors affects 

any aspect of a male’s courtship success and that condition was a better predictor 

of success than color (Chapter 5).   

 Throughout the honest signaling literature are studies in which suites of 

condition-dependent variables (e.g., multiple aspects of color) are considered as 

potential quality-indicating signals (e.g., see reviews in Hill 2006; Senar 2006; 

Santos et al. 2011).  Within individual studies, negative results are often reported 

alongside positive ones (e.g., see meta-analysis in Santos et al. 2011), yet 

discussions within these studies are often centered solely on the positive results; 
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implications of negative results are rarely discussed and go comparatively 

unnoticed in the literature (pers. obs.).  Rather than simply cataloguing and 

emphasizing the results that fit our predictions, we should move towards 

addressing the question of why some condition-dependent traits are consistently 

important to females, while other equally condition-dependent traits are either 

ignored by females or are only used in certain contexts.  This emphasis may help 

us better understand phenomena that often puzzle behavioral ecologists, such as 

yearly fluctuations in mate preferences (e.g., Chaine & Lyon 2008; Lehtonen et 

al. 2010) or patterns of geographic variation in male ornamentation and female 

preference (e.g., Hill 1994; Hebets & Maddison 2005).  Jumping spiders, as well 

as other taxa that frequently contradict our expectations, may yield new insights 

for the field. 

    

Ecological selection 

 In addition to sexual selection, differences between the sexes can also be 

shaped by selection pressures that are unrelated to mating (e.g., differences in 

habitat, diet, etc., reviewed in Slatkin 1984).  There are numerous examples 

across the Salticidae in which males exhibit more conspicuous dorsal patterning 

compared with drab and cryptic females (e.g., see images in Maddison 1995), yet 

to my knowledge no study has examined potential selection pressures that drive 

these patterns of sex differences in non-display colors.  Here I tested the 

hypothesis that conspicuous male body patterns in three species of Habronattus 

are paired with increased leg-waving behavior, a combination that is reminiscent 
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of the body patterns and antennation of wasps and bees.  As such, this 

resemblance may provide protection for males by exploiting the aversions of their 

predators (e.g., see recent discussion in Schaefer & Ruxton 2009; Ruxton & 

Schaefer 2011).  Furthermore, I provide data in these three species suggesting that 

sex differences in coloration strategies may be shaped by differences in activity 

patterns between males and females.  Specifically, I propose that the high 

movement rates of males associated with mate-searching may reduce the 

effectiveness of crypsis (e.g., Merilaita & Tullberg 2005) and select for alternative 

strategies of protective coloration.  Rather than fitting within the traditional 

paradigms of Batesian mimicry (reviewed in Ruxton et al. 2004), the coloration 

and behavioral strategy employed by male Habronattus appears to be more 

consistent with a recently proposed mimicry paradigm employed by tropical 

caterpillars that display prominent vertebrate-like eyespots (Janzen et al. 2010).  

In this case, the benefits of imperfect mimicry are sustained by strong, innate 

(rather than learned) aversions to eye-like patterns and, as such, there is no 

particular predator species or assemblage of species actively driving close 

resemblance between mimic and model (see Janzen et al. 2010).   

 Here again, salticids might be well-suited to provide novel insights for the 

field of animal coloration.  In addition to the need to accommodate higher 

movement rates associated with mate searching, male salticids also face two 

additional, unique challenges that mimicry and/or perceptual exploitation might 

help them solve.  First, males must balance the need to attract female attention 

from a safe distance using elaborate and complex displays (often involving leg-
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waving), while also avoiding predation by the females that they are courting.  

Because their courtship makes males so conspicuous, any effective anti-predator 

strategy must be one that continues to work after the male has already been 

detected.  Second, males must be extremely focused on any female that they are 

courting, and must be prepared to retreat should that female attack.  This need to 

focus their attention entirely on the female in front of them makes them 

particularly vulnerable from behind; color patterns that work synergistically with 

their already-waving legs might offer the ideal protection.  These unique natural 

history attributes of salticids may explain why mimicry is extremely widespread 

across the family (e.g., Cushing 1997).   

 

Salticids as models for future work 

 There are more than 5000 species of jumping spider (Platnick 2011) 

exhibiting a myriad of color patterns (see Figure 1, Preface), yet until recently 

salticids were notably absent from the field of animal coloration.  To my 

knowledge, in only three species have colors even been quantified 

spectrophotometrically (e.g., Lim & Li 2006a; Li et al. 2008a; Taylor et al. 2011, 

Appendix B).  Within the salticids, there is also a rich diversity in natural history, 

suggesting that the selection pressures shaping color patterns are likely to be 

incredibly variable.  Elaborate and colorful displays are common and occur in the 

context of both courtship and male-male interactions (e.g., Peckham & Peckham 

1889, 1890). There are species with feeding specializations on vertebrate blood 

(Jackson et al. 2005), plants (Meehan et al. 2009), ants (Li et al. 1996), and even 
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other salticids (Harland & Jackson 2001).  Various forms of mimicry have been 

described in salticids, ranging from aggressive mimicry (Jackson & Wilcox 1993) 

to Batesian mimicry of ants (Nelson & Jackson 2009), wasps (Edwards 1984), 

and even pseudoscorpions (Platnick 1984).  Given this diversity in natural history, 

this understudied group is likely to provide a wealth of insight into the 

innumerable ways in which colors can evolve and continue to challenge our 

current thinking on the rules that apply to color evolution in other animals. 
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