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ABSTRACT 

Recombinant protein expression is essential to biotechnology and 

molecular medicine, but facile methods for obtaining significant quantities 

of folded and functional protein in mammalian cell culture have been 

lacking. Here I describe a novel 37-nucleotide in vitro selected sequence 

that promotes unusually high transgene expression in a vaccinia driven 

cytoplasmic expression system. Vectors carrying this sequence in a 

monocistronic reporter plasmid produce >1,000-fold more protein than 

equivalent vectors with conventional vaccinia promoters. Initial 

mechanistic studies indicate that high protein expression results from dual 

activity that impacts both transcription and translation. I suggest that this 

motif represents a powerful new tool in vaccinia-based protein expression 

and vaccine development technology. 
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Chapter 1  

INTRODUCTION 

 

1.1 EUKARYOTIC TRANSLATION INITIATION 

Overview of Eukaryotic Translation 

The translation of mRNA transcripts into protein in eukaryotes is a 

multi-step process consisting of four main stages: (1) initiation, in which 

the ribosome, methionyl tRNA and other necessary factors assemble onto 

the mRNA start codon, (2) elongation of the peptide strand via the natural 

peptidyl transferase activity of the ribosome, (3) termination of the 

translated message and release of the protein, and (4) recycling of the 

translation machinery by disassembly of the mRNA-ribosome complex.1 

Of the four steps, most translational regulation occurs at initiation, 

underscoring the importance of understanding the factors that control 

ribosomal recruitment and translation initiation.1  

Gene regulation via translation control is advantageous because it can 

provide a faster phenotypic change than regulation at the transcription 

level because the mRNA is already made and ready to be translated.1 

Genome-wide translation regulation can be achieved by adjusting the 

availability of eukaryotic initiation factors (eIFs), poly(A) binding protein 

(PABP) or other species required for initiation.1,2 The translation of 

individual mRNAs can be controlled through interaction with microRNAs 
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(miRNAs), secondary structures in the 5’ UTR, open reading frames 

(ORF) upstream of the actual start codon and the context of the AUG start 

site (i.e. Kozak sequence).1,2 

Efforts to understand eukaryotic translation have revealed that 

translation initiation requires the coordination of many factors. The form 

and function of initiation factors continue to be discovered. Furthermore, 

recent additions to this growing body of knowledge expose a gap in our 

understanding of this complex process and all of the dynamic components 

that contribute to initiation. Here, I provide a review of canonical eukaryotic 

translation initiation and highlight some nontraditional mechanisms and 

unanswered questions. 

 

Translation Initiation 

The overall process of eukaryotic translation initiation is depicted in 

Figure 1. The current understanding of the canonical process of eukaryotic 

translation initiation begins with eukaryotic initiation factor (eIF) 2-GTP 

joining with a charged initiator tRNA (Met-tRNAi) to form the ternary 

complex (TC).3 Each round of translation initiation results in the release of 

eIF2-GDP that must be recycled to eIF2-GTP for the next round of 

initiation. eIF2 has a higher affinity for GDP than GTP so the exchange is 

assisted by eIF2B.4 The TC and the 40S ribosomal subunit (to which is 

bound eIFs 1, 1A, 3 and possibly 5) are brought together by eIF3 (a multi-
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domain protein responsible for binding several key players in translation 

initiation) to form the 43S pre-initiation complex (PIC)2,5 A capped, 

polyadenylated mRNA strand is prepared to receive the 43S PIC by the 

eIF4F complex (consisting of the ATP dependant RNA helicase eIF4A, the 

cap binding protein eIF4E and the scaffold protein eIF4G).6 eIF4E binds to 

the 5’ cap, bringing the eIF4F complex and the mRNA strand together.6 

EIF4B also binds the mRNA strand and plays a non-essential role 

assisting the RNA binding and helicase activity of eIF4A.7 The poly(A) 

binding protein (PABP) binds to the 3’ poly(A) tail of the mRNA strand and 

interacts with eIF4G as well, causing the mRNA to form a loop. This 

interaction increases the affinity of eIF4F for the cap and prevents mRNAs 

with truncated or degraded 3’ ends from being translated.8,9 The 43S 

complex loads onto the mRNA sequence near the 5’cap through 

interactions between eIF3 and eIF4G.10 The ribosome then begins to scan 

the mRNA searching nucleotide triplets for the AUG start codon with the 

help of several initiation factors.11,12 EIF4A unwinds RNA secondary 

structure13 and eIFs 1 and 1A aid scanning and correct initiation codon 

selection by blocking the A site of the ribosome until the correct codon in a 

favorable context is reached.14 Translation generally initiates at the first 

AUG codon in the 5’ region of a mRNA message with a few established 

exceptions: 1) when the first AUG is too close to the cap,15 2) when the 

AUG is in an unfavorable (non-Kozak) sequence context and is bypassed  
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Figure 1: Eukaryotic Translation Initiation.  I. eIF2B mediates the 
exchange of GDP for GTP in eIF2.4 eIF2-GTP binds Met-tRNAi

Met to form 
the ternary complex (TC).3 II. The 40S ribosomal subunit, with eIFs 1, 1A, 
3 and possibly 5 bind the TC forming the 43S complex.5 III. Meanwhile, 
eIF4F complex composed of the subunits eIF4E, eIF4A and eIF4G binds 
to the 5’ m7G cap of an mRNA message with the help of the RNA binding 
protein eIF4B.  eIF4G also interacts with Poly A Binding Protein (PABP) 
bound to the 3’ poly A tail, causing the mRNA to form a circle.6 IV. The 
43S complex loads onto the mRNA near the 5’ cap through interactions 
between eIF3 and eIF4G.6 V. The complex scans the mRNA checking 
successive nucleotide triplets against the Met-tRNAi

Met anticodon for the 
complementary AUG start codon.11, 12 Upon reaching the start codon, 
eIF2-GTP hydrolyzes to eIF2-GDP. VI. Hydrolysis of eIF2-GTP and 
binding of the 60S subunit, assisted by eIF5B-GTP, triggers the release of 
eIFs 1, 2, 3, 4B, 4F and probably 5.  eIF2-GDP is recycled to start another 
round.17, 18 VII. eIF5B-GTP hydrolyzes and is released with eIF1A.17 The 
80S complex is ready for elongation. 
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through leaky scanning, and 3) when the ribosome translates a short open 

reading frame, remains associated with the mRNA and reinitiates 

translation at a downstream AUG .11 Once an AUG pairs correctly with the 

anti-codon on the methionine tRNA the GTPase activating protein eIF5 

accelerates the hydrolysis of eIF2-GTP to eIF2-GDP.16 At this point eIFs 

1, 3, 4B, 4F, 5, and 2-GDP dissociate from the mRNA-ribosome complex 

while eIF5B-GTP binds along with the 60S ribosomal subunit.17,18 The 

binding of the larger subunit causes hydrolysis of eIF5B-GTP to eIF5B-

GDP, which then dissociates along with eIF1A.19 The ribosome is now 

positioned to receive charged tRNA and begin the process of elongation.   

 The study of several non-canonical variations of translation 

initiation is contributing to a greater understanding of the molecular origin 

of disease and the regulation of protein expression. One such mechanism 

is ribosomal “shunting.” First described in viral mRNA transcripts, shunting 

is a process whereby the 43S complex is able to temporarily disassociate 

from the mRNA and re-associate and initiate translation at a location 

further downstream.20 There is evidence that shunting also occurs in 

uninfected eukaryotic cells and may contribute to the dysregulation of 

protein expression in Alzheimer patients.21 The shunting model offers a 

possible explanation for the cap-dependent initiation of translation at a 

start site downstream of an AUG codon in “good” context or when the 5’ 

UTR of a mRNA strand contains a stable secondary structure that is 
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bypassed in order to reach a down stream initiation site.22,23 The shunting 

activity is mediated by sequences within the 5’UTR that are 

complementary to and interact with the 18S ribosomal subunit.24,25 An 

additional explanation of these phenomena is the “tethering and 

clustering” model proposed by Mauro and colleagues.26 In this model, the 

43S complex is “tethered” through the cap binding proteins to the mRNA 

strand that is able to fold over and allow the complex to interact with 

sequences complementary to the 18S ribosome, thereby bypassing any 

intervening secondary structure or AUGs.26 

 Transcripts containing an Internal Ribosomal Entry Site (IRES) are 

able to forego scanning and cap dependant translation by recruiting the 

40S ribosomal pre-initiation complex directly to the 5’UTR.27,28 IRES 

sequences were also first discovered in viruses that lack proteins 

responsible for adding a 5’ cap to the RNA message.29 Viral IRESs 

function by folding into large tertiary structures that mimic some or all of 

the eukaryotic initiation factors and in doing so are able to recruit the 

ribosome to the initiation site (see Figure 2).28 The picornavirus family, 

including encephalomyocarditis virus (EMCV), poliovirus and foot and 

mouth disease virus, contain secondary structures that bind eIF4G directly 

and do not require the cap binding protein eIF4E.30,31 The Hepatitis C 

Virus avoids using any part of the eIF4F complex or eIF4B through 

contacts with the stem loop structures of the IRES and the 40S  
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Figure 2: Capped mRNA and viral mRNA ribosome recruitment strategies. 
Comparison of canonical eukaryotic cap-dependent translation initiation 
(a) and the internal initiation mechanism used by the picornavirus 
encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) 
(b), hepatitis C virus (HCV) IRES (c) and the cricket paralysis virus (CrPV) 
IRES (d). Reprinted (adapted in part or whole) with permission from 
Nature Reviews Microbiology (2008).27 

 

ribosome.32 The cricket paralysis virus (CrPV) IRES dispenses with the 

need for any initiation factors, including eIF2, or for the initiator tRNA by 

interacting directly with the 40S subunit and using a GCU codon to begin 

translation.28 IRESs have also been discovered in eukaryotic cells and 
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have been shown to direct expression of essential genes during 

starvation, cellular stress or conditions when regular protein production is 

shut down through the lack of initiation factors.33,34 

 

Unanswered Questions 

 Despite the advances that have been made in the understanding of 

eukaryotic translation initiation, there are still many unanswered questions. 

For instance, it has recently been discovered that the vast majority of the 

genome is transcribed but only a small percentage (<2%) is annotated as 

protein coding.35,36 Among these non-coding transcripts, researchers have 

identified a new class of RNAs termed long intergenic non-coding RNA 

(lincRNA). LincRNA are defined as transcripts greater than 200 bases that 

have no potential to be translated by the canonical translation initiation 

mechanism.37 However, the transcription of many of these sequences is 

highly regulated and there is evidence lincRNAs play important roles in 

development and cell differentiation.37 The polished rice (pri) transcript 

from Drosophila was considered to be non-coding because it contained 

only short open reading frames.38 In fact, pri mRNA codes for four very 

small peptides, between 11 to 32 amino acids, that play a pivotal role in 

the development of trichomes on Drosophila larvae.38 This discovery 

raises the possibility that other non-canonical peptides may be hidden in 

“non-coding” transcripts.  
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Alternative methods for initiation, such as IRESs, still require further 

investigation. Though the existence of IRESs in viral genomes is well 

established, the discovery and characterization of these elements in cells 

is still in the early stages. Recently, there has been a great deal of 

conflicting evidence qualifying or completely discrediting supposed cellular 

IRESs. A common assay to identify IRESs places the potential sequence 

in the intergenic region of a bicistronic plasmid. If the second gene is able 

to be expressed when the canonical translation initiation of the first gene is 

inhibited, it is assumed that the sequence mediated an internal translation 

initiation event. This assay for identifying IRES sequences was proved to 

be flawed by a series of studies showing that often the protein produced 

from the second gene may actually be attributed to cryptic promoter 

activity or poor experimental design.39–42 The validity of cellular IRESs 

needs to be solidified by requiring sequences to pass rigorous, well 

designed tests before being identified as IRESs. Such tests could include 

direct transfections of RNA containing the candidate IRES into cells. Direct 

RNA transfections bypass the nucleus and the potential splicing and 

mRNA modifications that take place there. These studies should also 

include structural analysis of the mRNA post-expression to ensure it is 

fully intact. These tests will help to rule out the possibility of transcriptional 

or nuclear processing artifacts, such as splicing, contributing to increased 

protein production.39,41 



	  

10	  

The mechanisms for regulating the translation initiation of individual 

mRNAs almost invariably inhibit initiation. These inhibitory mechanisms 

include miRNA, RNA binding proteins, RNA secondary structures in the 

5’UTR and, under most conditions, upstream Open Reading Frames.1,2,43 

The many pathways for translational suppression lead to the question: Is 

there a mechanism to enhance the translation initiation of individual 

mRNA strands, and if so could this mechanism depend on the presence of 

an mRNA sequence element? An element dependent mechanism could 

enable a cell to quickly produce a large amount of protein without having 

to repeatedly go through the energetically expensive and time-consuming 

processes of mRNA transcription and maturation. An example of a small 

sequence capable of enhancing translation when placed in the 5’UTR of a 

gene was discovered in the mouse genome.44 This sequence was shown 

to function through complementary base pairing with the 18S ribosome.45 

 

1.2 RECOMBINANT MAMMALIAN PROTEIN EXPRESSION SYSTEMS 

Proteins are macromolecular structures in living cells that have 

diverse roles from enzyme catalysts to receptors of extracellular signals, 

transducers of intracellular signals, and structural scaffolds. These diverse 

functions make proteins useful tools in molecular medicine, biotechnology, 

industry and agriculture. Although many systems have been developed for 

producing recombinant proteins, the ability to manufacture human proteins 
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with correct post-translational modifications (PTM) has remained 

challenging. In general, human proteins with correct patterns of PTMs are 

produced expensively and in low yields, which is cost prohibitive for many 

basic and applied research projects.46 Here, I briefly review the most 

commonly used expression systems and discuss their advantages and 

disadvantages. 

 

Bacterial Expression Systems 

Bacterial expression systems rely principally on the E. coli and 

related Bacillus species for heterologous protein expression. In these 

systems, the gene of interest is placed downstream of a regulated 

promoter on a plasmid that is transformed into the bacterial cell for high 

and controlled expression.47 

Bacterial systems have the advantage of being inexpensive to 

maintain, safe to use, easy to manipulate, and producing large quantities 

of recombinant protein.47 There are many limitations to bacterial 

expression systems as well. Disadvantages of this system include an 

inability to produce large mammalian proteins as well as PTMs such as 

glycosylation that are often essential for proper function.48 In some cases, 

high production yields can become problematic as overproduction can 

lead to cellular toxicity (an issue which can be addressed with specially 

engineered strains and growth conditions).49 Proteins produced in an E. 
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coli system are often packaged in inclusion bodies and require further 

processing for proper folding and activity.48 In addition, care must be taken 

when isolating the protein to remove any toxins produced by the bacteria. 

Thus, bacterial systems are the system of choice when manufacturing 

small (<30 kD), unmodified proteins, but are incapable of producing large 

proteins with complex PTMs.46 

 

Yeast Expression Systems 

Yeast is engineered to produce recombinant proteins by 

transformation with a plasmid containing the gene of interest. Once inside 

the cell, the plasmid can either be maintained as an episome or 

incorporated into the genome through homologous recombination, 

depending on the experimental design.50 The most common yeast species 

used for protein expression is S. cerevisiae, which has a well 

characterized eukaryotic genome.50  

Relative to E. coli systems, yeast systems produce less protein, but 

can produce large functional proteins with many common PTMs.48 Yeast 

can also be grown in defined, protein free media. This facilitates the 

purification of the recombinant protein and makes yeast culture more 

affordable than insect or mammalian cell culture.46  

Yeast systems can produce glycosylated proteins, but their pattern 

of PTMs is often different than the patterns found in proteins produced in 
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mammalian systems. For example, S. cerevisiae produces O-linked 

oligosaccharides with mannose while mammalian proteins have sialylated 

O-linked oligosaccharides. Yeasts also lack proper chaperonins that are 

required to properly fold some complex mammalian proteins.46 Though the 

glycosylation and folding abilities of yeast systems surpass those of 

bacterial systems, they are still insufficient for producing many mammalian 

proteins. 

 

Baculovirus Expression Systems 

Insect cells represent an attractive host for recombinant protein 

expression because of their capacity to produce proteins with folding and 

PTMs that are similar to proteins produced in mammalian cells.51 In the 

baculovirus system, the insect virus is engineered to contain the desired 

protein in place of a nonessential, highly expressed native gene. Insect 

cells (usually fall army worm cell lines Sf9 or Sf21) are then infected with 

the aculovirus and produce the protein.52 Recombinant baculoviruses 

were traditionally produced through homologous recombination with a 

transfer vector, which occurred at a low rate and required time-consuming 

plaque purifications. Bacmid technology streamlines this process by 

putting the baculovirus genome into a linearized bacterial artificial 

chromosome that is deficient in an essential gene. Homologous 

recombination with a transfer vector in an E. coli cell adds the recombinant  
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Figure 3: Baculovirus expression vectors over time. Various methods exist 
to generate recombinant baculoviruses expressing a foreign gene (gene 
X). Historically, recombinant baculoviruses were generated through 
homologous recombination (A). Subsequently, linearized vectors were 
developed to increase the percentage of recombinants, as an essential 
gene, orf1629, will be restored only upon recombination (B). Bacmid 
technology is based on transposition of gene X into a bacterial artificial 
chromosome containing the baculovirus genome and which is amplified 
and manipulated in E. coli (C). Bacmid technology and the repair of an 
essential gene were combined to avoid bacterial sequences in the virus 
genome and further automated (flashback/BacMagic) for high-throughput 
recombinant virus generation (D). Reprinted with permission (adapted in 
whole or part from J. Inv. Path. (2011).51 
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protein and restores the essential gene resulting in improved 

recombination frequency and removing the need for plaque purification.51  

Cultivation of insect cells also has the advantage of being more 

affordable and producing more product than mammalian cells.48 The virus 

is extremely safe to work with because it is incapable of infecting 

vertebrate cells and as such poses no danger to humans.51 However, the 

system does have drawbacks, including the technical challenges of 

building the recombinant virus. The baculovirus infection can impair 

protein processing, folding, secretion, and also results in high protease 

activity at the lytic stage of the viral life cycle.52,53 While the baculovirus 

system produces more protein than mammalian cell culture systems it still 

has relatively low yields compared to bacterial or yeast systems. There 

are also differences between the PTMs of some baculovirus produced 

proteins and their mammalian counterparts that cause the baculovirus 

proteins to be inactive.54,55 

 

Mammalian Cell Culture Expression Systems 

 Mammalian cell culture systems are necessary to produce proteins 

that require mammalian-specific PTMs in order to achieve functional 

activity.48 Mammalian cell based expression systems are either plasmid or 

virus based.  
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Plasmid based systems 

Under transient transfection conditions, plasmids containing the 

gene of interest under the control of a strong transcription promoter are 

transformed into the cells using calcium phosphate transfection, 

electroporation or lipofection methods.56 Protein is harvested from the 

cells 1-10 days post transfection.57  

Protein can also be expressed by creating a stably transfected cell 

line, although this process is considerably more difficult and can take 

several months to achieve. A typical stable transfection protocol requires 

transforming cells with both the gene of interest and a gene that confers a 

selective advantage such as antibiotic resistance. A small percentage of 

foreign DNA will enter the nucleus and integrate into the cell genome. 

Applying a selective pressure reduces the cell population so that it only 

contains members that were successfully transformed. Individual cells are 

then grown and evaluated for protein production. A colony of cells will be 

selected to found a cell line based on protein production levels and growth 

characteristics.56  

Virus based systems 

Adenoviruses can infect a diverse range of human cells and 

replicate with high efficiency, making them good candidates for expression 

of mammalian genes.58 Adenoviruses engineered for recombinant protein 

expression are replication incompetent outside of suitable complementing 
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cells to increase the safety profile. There are two methods used to 

generate recombinant adenovirus. The first requires transfecting a shuttle 

vector carrying the gene of interest into complementing cells that have 

been infected with adenovirus. Homologous recombination places the 

gene of interest into the viral genome under control of an early promoter 

and the complementing host cell enables viral replication. Successive 

screening and plaque purifications identify and purify the desired 

recombinant virus. In an alternative method for producing recombinant 

adenovirus, homologous recombination takes place inside E. coli cells 

between a shuttle vector and a vector containing the adenovirus genome. 

Once the desired adenovirus is created, it is infected into (non-

complementing) host cells where it enters the nucleus but does not 

integrate into the genome and the cell transiently produces the 

recombinant protein.58,59  

Lentivirus is a retrovirus that integrates its genome into that of the 

host cell and is used for generating cell lines that stably produce 

recombinant proteins. Lentivirus has the additional advantage of being 

able to infect non-replicating cells. The lentivirus system is very similar to 

the adenovirus system in that virus used for protein expression is 

engineered to be replication incompetent without the help of a packaging 

system. Homologous recombination between the modified lentivirus and a 

transfer cassette containing the gene of interest takes place in a  
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Table 1: Comparison of Mammalian Protein Expression Systems 

Expression 
System 

System 
Construction 
Time 

Expression 
Time 

Advantages Disadvantages 

E. coli Days Hours Simple 
technology 
High yields 
Safe 
Fast 
Affordable 

Incapable of 
producing 
large proteins 
or PTMs 
Inclusion 
bodies, require 
purification 
and 
renaturation 

Yeast Days ≤ 1 day Simple 
technology 
High yields 
Safe 
Fast 
Affordable 
Glycosylation 

Differences in 
glycosylation 
patterns 
Mammalian 
specific PTMs 
Improper 
folding 

Baculovirus Weeks to 
months 

1-several 
days 

Good yields 
Safe 
Many 
mammalian-
like PTMs 

Advanced 
technology 
Time 
consuming 
Cannot 
produce all 
mammalian 
PTMs 

Mammalian 
cell: 
Transient 
transfection 

Weeks 1-several 
days 

Safe 
Mammalian 
PTMs 

Low yields 
Expensive 

Mammalian 
cell: Stable 
transfection 

Months 1-several 
days 

Safe 
Mammalian 
PTMs 

Low yields 
Time 
consuming 
Expensive 

Mammalian 
cell: Viral 
systems 
(Adenovirus 
and 
Lentivirus) 

Weeks to 
months 

1-several 
days 

Mammalian 
PTMs 
Better yields 
than plasmid 
based 
systems 

Safety 
Time 
consuming 
Relatively low 
yields 
Expensive 
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packaging cell containing vectors that provide the viral proteins necessary 

for replication.60 Recombinant lentivirus conveniently integrates the gene 

of interest along with a promoter sequence into the host genome, 

generating a stably transfected cell line. 

The vaccinia virus system, which is also used to express 

recombinant proteins, is described elsewhere in this manuscript. 

While viral systems are efficient and generally produce more 

protein than their plasmid based counterparts, they have the disadvantage 

of being potentially hazardous to the humans who work with them. Care 

must also be taken to prevent contamination of the final protein product 

with virus as well.46 In addition, generating a new recombinant virus for 

every protein is time consuming and expensive. 

 Thus, although recombinant proteins from mammalian cell culture 

systems are correctly folded and modified, their production requires an 

expensive investment of time and money for a relatively low yield, which 

discourages their use unless necessary for function. 

 

1.3 VACCINIA VIRUS REVIEW 

Basic Vaccinia Biology 

Vaccinia viruses (VVs) belong to the family Poxviridae and genus 

Orthopoxvirus.61 This genus also contains variola virus, the causative 

agent of smallpox. VVs are DNA viruses with large, double stranded linear 
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genomes ranging in size between 178-192 kb, depending on the strain.62 

Such a large genome is required because VVs carry all the genes 

necessary for DNA transcription and viral replication to occur in the 

cytoplasm.61 Each viral particle also comes packaged with all the enzymes 

necessary for the transcription and maturation of viral RNA.63  

Virus can enter the body through a break in the skin and manifests 

as a localized lesion.61 Upon viral entry into a cell, early promoters direct 

the expression of proteins that block the body’s extracellular and 

intracellular antiviral defenses.64 Proteins for DNA replication and 

transcription are also made early in the viral life cycle.64 Genes that are 

expressed at an intermediate time point in the viral life cycle produce 

transcription factors for late genes expressed at the end of the viral life 

cycle prior to cell lysis. Late genes include proteins necessary for virion 

assembly.64 VVs are also capable of infecting a wide range of cultured 

mammalian cells. In cultured cells, DNA replication has been observed as 

early as 1-2 hours post infection, with new virus produced in 8 hours.64 

 There are four VV virion types that play different roles in the spread 

of infection. Intracellular mature viruses (IMV) are released after lysis and 

are responsible for host-to-host transmission. Intracellular enveloped virus 

(IEV) fuses with the cell membrane to form cell-associated enveloped 

virus (CEV), which mediate the spread of infection to neighboring cells.  
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The virus is spread to distant cells in the same host or cell culture by 

extracellular envelope virus (EEV).64  

 

History of the VV Smallpox Vaccine 

Vaccine technology was pioneered by Edward Jenner over 200 

years ago when he began exposing people to a milder member of the 

poxvirus family to prevent infection with the more virulent and potentially 

lethal smallpox.65 Because of the high conservation between all members 

of the orthopoxvirus genus, exposure to a VV also serves to vaccinate 

against variola virus.65 Jenner originally used cowpox virus as a vaccine, 

but over years of use, experimentation and poor record keeping a related 

but genetically distinct virus emerged and consequently the exact origin of 

VV is unknown.61 The effectiveness of the vaccine, coupled with the fact 

that humans are the only known reservoir and do not carry an 

asymptomatic form of smallpox, encouraged the worldwide campaign to 

eradicate this disease.61 Global elimination of smallpox was achieved in 

1980 through widespread vaccination, strict surveillance, and quarantine 

programs.61 Interest in VVs remains high due to their potential use as 

vaccines for other diseases, their utilization in mammalian expression 

systems, and due to the fear of accidental or malicious reintroduction of 

smallpox.66 
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Potential for Recombinant VV Vacines 

Given the success of vaccinia in ridding the world of smallpox, 

researchers are developing the technology to use VV as a vehicle to 

introduce antigens of other diseases to the immune system.65 The large 

genome and high productivity of VVs make them an ideal recombinant 

system for incorporating and expressing foreign proteins (Figure 4).57 VV 

vectors have been reported to incorporate at least 25 kb of foreign DNA.67 

However, there are still concerns about the safety of VV. There are rare 

cases of severe and even lethal reactions to the vaccine, mostly among 

immunocompromised recipients.65 In an effort to attenuate VV, viral strains 

that are incapable of replicating in human cells have been developed.68 

These include the modified vaccinia virus Ankara (MVA) strain, which can 

infect but not replicate in human cells. MVA is also made less virulent by 

the loss of genes involved in evading the host immune system.62 

Unfortunately, these attenuated strains tend to make less effective 

vaccines that cannot generate an immune response strong enough for 

vaccination.65 Strategies to create vaccines that are both safe and 

effective include co-expressing immune modulators with attenuated 

vaccines and deletion of virulent genes from more dangerous viruses.69,70 
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Figure 4: Formation of a recombinant vaccinia virus by homologous 
recombination. Reprinted with permission from Science (1991).63 

 

VV Expression Systems 

In order to produce proteins with proper folding and post 

translational modifications that are suitable for human therapeutics, a 

mammalian cell based system is required.71 VV is particularly well suited 

for heterologous protein expression because transcription occurs in the 

cytoplasm, thereby eliminating the possibility of interference from nuclear 

splicing or mRNA transport. VV also has a wide host range and can infect 

most cultured mammalian cells.71 The vTF7-3 strain has been modified to 

contain the bacteriophage T7 RNA polymerase specifically for 

recombinant protein expression.72 The gene of interest, along with a T7 

promoter, can be incorporated into the viral genome through homologous 

recombination or engineered onto a plasmid and transfected into cells that 
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are subsequently infected with the virus.72–74 VV expression systems can 

produce more protein than standard stable transfections of mammalian 

cells and have the potential to be used in large-scale bioreactors.75 

Bleckwenn et al reported a yield of ~12 µg EGFP/million infected cells in a 

vaccinia bioreactor system.75 Because it is a safety concern to work with 

VV, most vaccinia strains require Biosafety Level 2 (BSL2) procedures 

and vaccination is recommended for personnel at risk for exposure.71 The 

potential for infection can be lessened or removed by using attenuated 

strains such as MVA, which can be used under BSL1 conditions.68,73 
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Chapter 2 

CHARACTERIZIATION OF A SEQUENCE THAT FUNCTIONS AS A 

TRANSLATION ENHANCER AND VV PROMOTER 

 

2.1 CONTRIBUTIONS 

 The following chapter describes the discovery and characterization 

of a sequence element that works as both a VV promoter and a translation 

enhancer. The project was conceived by Professor John Chaput. The 

reported experiments were performed by Julia Flores, Brian Wellensiek 

and Brett Stephens under the guidance of John Chaput. Brian Wellensiek 

performed the mRNA display selection and Brett Stephens did the initial 

characterization and preliminary end mapping deletion analysis of the Best 

sequence. Julia Flores finished the end mapping deletion analysis and ran 

the western blots, realtime PCR, DNA analysis, RACE, and time course 

experiments with assistance from Brian Wellensiek. John Chaput wrote 

the manuscript with comments from Julia Flores and Brian Wellensiek. 

 



	  

26	  

2.2 INTRODUCTION 

Vaccinia virus (VV), a member of the poxvirus family, received 

worldwide attention when it was used to eradicate variola virus, the 

causative agent of smallpox.65 Since then, poxviruses have been 

engineered for other biomedical and biotechnology purposes, which 

includes their use as a vehicle for protein expression in mammalian cell 

culture and as a vector for therapeutic vaccines directed against infectious 

agents and cancer.63 The interest in poxvirus technology is due to a 

number of unique properties that are not found in other DNA viruses. 

Principal among these is the ability for poxviruses to replicate in the 

cytoplasm of their host cell, which avoids many of the complications 

associated with RNA splicing and export.76 Poxviruses can infect a wide 

range of host cells and produce gene products with mammalian patterns 

of post-translational modifications (PTMs).73 Non-mammalian systems can 

produce proteins with alternative modifications, which is problematic if 

these proteins are to be used as therapeutics, as targets in drug-based 

screens or as antigens for antibody production.77,78 

It is known that recombinant vaccinia viruses are capable of 

producing milligram quantities of protein in mammalian cells.73 However, 

these viruses require special expertise to construct and are therefore not 

suitable as a general platform for routine expression needs. Whether 

similar expression levels can be achieved in a transient transfect-infect 



	  

27	  

assay is an interesting question with significant practical implications in 

many areas of basic and applied research.46  

We postulated that it might be possible to improve protein 

expression levels in mammalian cells if TEEs could be identified that 

effectively engaged the translation machinery. From a screen of ~250 in 

vitro selected sequences, we identified a short (37-nt) motif that is capable 

of achieving unusually strong transgene expression in a wide range of VV 

infected mammalian cells. Relative to the recombinant T7 vaccinia 

expression system, our system can produce >100-fold more protein after 

6-12 hours of transient expression and >10,000-fold more protein when 

compared to other expression systems.72 

 

2.3 MATERIALS AND METHODS 

Cell Culture 

All cells used in this study were obtained from the American Type 

Culture Collection (ATCC). HeLa and HEK293 cells were maintained in 

DMEM (Invitrogen), while BHK cells were maintained in MEM (Invitrogen). 

All media was supplemented with 5% fetal bovine serum (FBS, HyClone) 

and 5 mg/ml gentamicin (Invitrogen). Cells were kept at 37°C in a 

humidified atmosphere containing 5% CO2. 
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VV Strains 

The Copenhagen and vTF7-3 viral strains used in this study were 

obtained from ATCC. The modified vaccinia virus Ankara (MVA) was from 

Sanofi Pasteur. The Copenhagen strain (VC2) is a wild type vaccinia 

virus,65 MVA is an attenuated vaccinia virus strain that is non-pathogenic 

in humans62 and vTF7-3 is a recombinant vaccinia virus strain that has 

been engineered to express T7 RNA polymerase.72 Viral stocks were 

stored in MEM with 2% FBS. 

 

Transfection/Infection 

Cells were seeded at a density of 15,000 cells per well in white 96-

well plates 18 hours prior to transfection (Figure 5). Plasmid transfections 

were carried out using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocol. In brief, complexes containing 200 ng of plasmid 

and 0.5 µl of Lipofectamine 2000 were formed in Opti-MEM (Invitrogen). 

During complex formation, DMEM was discarded from the 96-well plate, 

and 50 µl of fresh Opti-MEM were added to the cells. Complexes (50 µl) 

were then carefully overlaid onto the cells (total volume 100 µl). 

Immediately following DNA transfections, cells were infected with VC-2,  
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Figure 5: VV Transfect/Infect system. The luciferase gene was placed 
under the control of VV promoter SLP and transfected into cells that were 
infected with VV. Figure courtesy of Brian Wellensiek. 
 

MVA, or vTF7-3 at a multiplicity of infection (m.o.i.) of 5 plaque forming 

units (PFU)/cell for six hour assays or 30 PFU/cell for 24 hour assays. For 

protein isolation, HeLa cells were plated at a density of 200,000 cells per 

well in a 24 well plate and 800 ng of plasmid were combined with 2 µl of 

Lipofectamine 2000 to form the transfection complexes. Media was 

removed from the wells and 400 µl of Opti-MEM media were added to the 

cells, which were then overlaid with 100 µl of transfection complexes. 
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Luciferase Activity Assay 

Cells were lysed in the 96-well plate by discarding the growth-

transfection media and adding passive lysis buffer (Promega). Luciferase 

activity was measured using the Promega Luciferase Assay System 

according to the manufacturer’s protocol with a Glomax microplate 

luminometer (Promega). 

 

RNA Characterization 

RNA was isolated from transfected HeLa cells 6 hours post 

infection with VC2. Lysate from 2 wells of a 96 well plate were pooled and 

RNA isolation was performed using the PerfectPure RNA cultured cell kit 

(5 Prime) according to manufacturer’s protocol. Isolated RNA was reverse 

transcribed with an oligo (dT) primer and Superscript II (Invitrogen). 

Realtime PCR (iQTM SYBR® Green Supermix, Bio-Rad) was used to 

determine the mRNA levels of luciferase as well as the housekeeping 

gene hypoxanthine-guanine phospho-ribosyltransferase (HPRT). Using 

the ΔΔCt method, the amount of luciferase mRNA was normalized to 

HPRT mRNA levels. Luminescence values were adjusted according to 

normalized luciferase mRNA levels. 
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End Mapping Deletion Analysis 

Deletion analysis of HGL-Best was performed by Klenow extension 

of a short DNA primer annealed to the synthetic DNA templates containing 

BamHI and NcoI restriction sites. The double-stranded DNA was 

restriction digested and ligated into a monocistronic firefly luciferase 

reporter plasmid (F-luc-mono) carrying a vaccinia virus synthetic later 

promoter upstream of the insert (Wellensiek et al., manuscript in 

preparation). Reporter plasmids containing truncated variants of the Best 

sequence were assayed for activity in the vaccinia virus transfect-infect 

assay as described above. 

 

Western Blot 

Western blot analysis was performed using F-luc-mono engineered 

with six different leader sequences in the 5’ UTR (Best-core, SLP, SLP-

Best-core, I1L, I1L-Best-core, and a random filler sequence). A second set 

of plasmids were generated by replacing the luciferase gene with the gene 

for HIV-1 Gag. In all cases, proteins were expressed in a standard 

transfect-infect assay in HeLa cells for 6 hours and lysed with 35 µl of 

Passive Lysis Buffer (Promega). Cellular debris was removed by 

centrifugation at 10,000 rcf for 10 min and the supernatant containing the 

protein of interest was removed and stored at -80°C. For protein analysis, 

the supernant was diluted with NuPage 4x LDS sample buffer (Invitrogen) 
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and proteins were denatured by heating at 95°C for 10 min before being 

run on a NuPage 4-12% Bis-Tris gel (Invitrogen) at 200V for 30 min. 

Proteins were transferred to a nitrocellulose membrane using the iBlot Gel 

Transfer system (Invitrogen) using the manufacturers instructions. After 

blocking for one hour at room temperature in TBS-Tween (20 mM Tris, 

125 mM NaCl, pH 7.5, and 0.05% Tween) with 3% milk the membrane 

was cut along the 50 kDa band of a pre-stained protein ladder so that the 

protein of interest, either luciferase (66 kDa) or HIV-1 Gag (55 kDa), and 

the loading control, GAPDH (37 kDa) could be detected separately. The 

membrane pieces were incubated with the appropriate primary antibodies 

in TBS-Tween with 3% milk overnight at 4°C. The Firefly Luciferase and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibodies were 

obtained from Abcam while the HIV-1 Gag antibody was obtained from 

Professor Dr. Hohne at the Charite Institute for Biochemie in Berlin, 

Germany. Goat-anti-mouse or goat-anti-rabbit HRP conjugated secondary 

antibodies (Bethyl Laboratories) were then incubated with the membranes 

for one hour at room temperature. Membranes were visualized with 

SuperSignal West Pico or Dura Chemiluminescent Substrate (Pierce 

Biotechnology).   
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RACE 

RNA was isolated using the PerfectPure RNA cultured cell kit (5 

Prime) according to manufacturer’s protocol. Rapid amplification of cDNA 

ends (RACE) was performed with the 5’ RLM-RACE kit (Invitrogen) using 

total RNA following the small reaction protocol provided by the 

manufacturer with primers specific to the luciferase gene. RACE 

sequences were ligated into pJET 1.2 (Fermentas), cloned, and 

sequenced at the ASU DNA Sequencing Facility.  

 

DNA Isolation and Real Time PCR 

Cellular and plasmid DNA was isolated from transfected HeLa cells 

six hours post infection with VC2 using the Trizol Reagent (Invitrogen) 

according to the manufacturer’s protocol. Following isolation, DNA was 

ethanol precipitated and re-suspended in water. Quantitative realtime PCR 

(iQTM SYBR® Green Supermix, Bio-Rad) was used to determine the levels 

of plasmid DNA as well as the housekeeping gene Ribonuclease P 

(RNase P).79 Using the ΔΔCt method, the amount of plasmid DNA was 

normalized to RNase P DNA levels. 

 

Cell Free System 

Cell-free characterization was performed using a Human In vitro 

Protein Expression Kit (Pierce). Luciferase expression was achieved 
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following manufacturer’s protocols using 300 ng of linear template for a 

two-hour transcription at 32°C followed by a 90 min translation at 30°C. 

 

Primers 

Real Time PCR Primers 

Luciferase: 

 RTluc.F: 5’ GCTGGGCGTTAATCAGAGAG 

 RTluc.R: 5’ GTGTTCGTCTTCGTCCCAGT 

HPRT: 

 RThprt.F: 5’TGCTGAGGATTTGGAAAGGGTG 

 RThprt.R: 5’ CCTTGAGCACACAGAGGGCTAC 

RNase P: 

hRNaseP.F: 5’CCCCGTTCTCTGGGAACTC 

hRNaseP.R: 5’TGTATGAGACCACTCTTTCCCATA 

RACE Primers 

Luc30.R (Outer primer): 5’GTACGTGATGTTCACCTCGATATGTGCATC 

Dlpseq.R (Inner primer): 5’AGGAACCAGGGCGTATCTCT 

 

2.4 RESULTS 

We have previously used messenger RNA display to isolate RNA 

sequences from the human genome that function with TEE activity 

(Wellensiek et al., manuscript in preparation). After 6 rounds of in vitro 
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selection and amplification, an initial set of 1000 human genomic elements 

were cloned and sequenced. Of these, 227 mapped with perfect identity 

(length and sequence) to the human reference genome. Initial 

experimental characterization revealed that many of these sequences 

could enhance protein translation levels in a human cell-free expression 

system. This observation suggested that it might be possible to increase 

protein production levels in a mammalian cell culture using our selected 

TEEs to promote ribosomal initiation at the translation start site.  

To investigate this possibility, our set of 227 in vitro selected 

sequences were inserted into a firefly luciferase reporter plasmid (F-luc-

mono) containing a vaccinia-specific promoter (Fig 1a). Transfected HeLa 

cells were infected with VV (Copenhagen strain, 5 moi) and luciferase 

activity was measured in 96-well format after 6-hours of cell-based 

expression (Figure 5). Vectors carrying either a no-insert control or one of 

ten randomly chosen sequences from the starting library provided a basal 

level of translation enhancement and no infection controls were used to 

demonstrate that luciferase activity was the result of cytoplasmic 

translation and not a product of nuclear expression. Consistent with earlier 

in vitro assays, plasmids carrying the selected TEEs provided luciferase 

values that were up to 100-fold stronger than the basal translation level 

observed for the set of eleven control vectors (Figure 6). However, one 

sequence, HGL-Best, routinely yielded luciferase values that were as 
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much as 5,000-fold higher than the basal level, indicating that this 

sequence exhibited remarkable translation enhancement activity in a 

vaccinia driven cytoplasmic expression system (Figure 6b).  

To determine whether the high activity of HGL-Best was due to 

greater RNA expression or increased translation enhancement, 

quantitative real-time PCR was used to measure mRNA levels in cells 

expressing the HGL-Best containing vector. This analysis revealed that 

high luciferase activity was principally due to increased levels of 

expression; however, increased translation levels were also detected by 

normalizing luciferase activity values for cellular mRNA. When compared 

to the next highest activity sequences, HGL-Best produces ~10-fold  

 

Figure 6: Functional analysis of HGL-Best. (a) Schematic view of the 
luciferase reporter plasmid used to evaluate in vitro selected TEEs. (b-d) 
Firefly luciferase gene expression and translation of Best relative to four 
randomly chosen sequences from the original naïve pool (labeled round 
0), and the nine most active sequences discovered after six rounds of in 
vitro selection and amplification (labeled round 6) in vaccinia infected 
HeLa cells. Realtime quantitative PCR measurements coupled with 
chemiluminescence measurement indicate that Best functions as both a 
vaccinia promoter and translation enhancing element. This dual activity 
leads to a significant increase in luciferase production in vaccinia infected 
cells. 
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more RNA and ~5-fold more protein than all other plasmids tested (Figure 

6c,d). We confirmed by quantitative real-time PCR that plasmid copy 

number was not altered in cells transfected with the HGL-Best plasmid 

(Figure 7b), indicating that HGL-Best impacts gene expression at the 

levels of transcription and translation, but not replication. This unusual 

feature is not without precedent, and at least one other RNA element is 

known to function in this capacity albeit less efficiently.80  

We determined the minimal region required to achieve strong gene 

expression using end-mapping deletion analysis. Variants of HGL-Best 

were generated by primer extension using templates that contained 

incremental deletions from the 5' and 3' ends of the full-length 90-nt parent 

sequence. We compared luciferase activity values for each deletion 

construct to the parent sequence, which defined a core functional region 

of 37-nts spanning a boundary from residues 6-42 (Figure 7a). The core 

region is ~2-fold more active than the full-length sequence and substantial 

drops in activity were observed with additional deletions that extend into 

either end of this region. Because of its small size and high functional 

activity, we focused the remainder of our study on this 37-nt region of 

HGL-Best, which greatly simplified the engineering of recombinant 

expression vectors. 

Given the unusual ability for HGL-Best to enhance expression and 

translation, we decided to determine which nucleotides within the core  
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Figure 7: End Mapping Deletion Analysis. (a) Monocistronic constructs of 
the full-length HGL-Best (Best 1-90) and variations of this sequence were 
analyzed in a vaccinia transfect-infect luciferase reporter assay to identify 
the core functional domain of HGL-Best. Subscript labels indicate the 
nucleotide fragment analyzed for each HGL-Best construct. Translation 
activity is represented as a percentage relative to the full length HGL-Best 
sequence. The normalized percent error is shown in parenthesis. (b) Real 
time PCR analysis of plasmid DNA isolated from cells transfected with a 
HGL-Best or empty vector. Values were normalized to genomic DNA. (c) 
Luciferase RNA and protein levels produced by HGL-Best vectors with 
and without the SLP promoter. 
 

region were responsible for these two activities. Rapid amplification of 

cDNA ends (RACE) was performed on the 5' end of luciferase mRNA 

isolated from HeLa cells transfected with the HGL-Best plasmid and 
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infected with VV. DNA sequencing of the 5' RACE product revealed the 

presence of 11-nts from the 3' end of the HGL-Best core preceded by a 

short polyA tail (Data not shown). The short polyA tail is a post-

transcriptional modification that occurs as a result of VV expression. This 

result indicates that the first 26-nts of HGL-Best function as a VV 

promoter, while the last 11-nts function as a TEE. This prediction is 

supported by our deletion analysis study, which showed that removing 5-

nts from the 3' end of the core HGL-Best sequence reduced luciferase 

activity ~50%, while a further deletion of 10 or more nts abolished activity 

altogether. 

To confirm VV promoter activity of HGL-Best, we constructed a 

modified luciferase plasmid (F-luc-mono-Best) that removed the VV 

synthetic late promoter (SLP) from the vector. We then compared 

luciferase activities of HGL-Best to two well-established VV promoters, 

SLP and I1L. Comparisons were made for HGL-Best, SLP and I1L alone, 

and for HGL-Best in tandem with SLP and I1L in VV infected HeLa cells. 

After 6 hours of cytoplasmic expression, Western blot analysis indicated 

that vectors carrying HGL-Best, either alone or in tandem with SLP and 

I1L, produced substantial amounts of luciferase when compared to 

traditional SLP and I1L promoters (Figure 8). Prolonged exposure times 

with a more sensitive chemiluminescent substrate made it possible to 

visualize protein from the SLP construct, which appeared as a faint band  
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Figure 8: Comparative western blot analysis. The ability of the HGL-Best 
core region to enhance protein expression when placed in the 5’UTR of 
luciferase or the HIV gag protein was compared to the protein expression 
levels of vaccinia promoters SLP and I1L both alone and in combination 
with Best. HeLa cells were transfected with reporter plasmids and 
subsequently infected with vaccinia virus. Protein for western blots was 
harvested 6 hours post infection. Controls include protein from cells 
transfected with plasmid but not infected with virus and protein from 
untreated cells. 
 

relative to the HGL-Best generated product. This result is consist with our 

original screen, which indicated that HGL-Best produced ~5,000-fold more 

protein than an SLP containing vector lacking a human TEE. We verified 

that HGL-Best could promote high expression of biologically relevant 

proteins by replacing the luciferase gene in the F-luc-mono-Best vector 

with HIV Gag. Western blot analysis closely mirrored the luciferase 

expression profile, indicating that HGL-Best was likely capable of broad 

antigen tolerance (Figure 8).  
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 Recognizing the potential for HGL-Best as a general tool for 

mammalian protein expression, we compared luciferase expression 

profiles for HGL-Best to current state-of-the-art technology for vaccinia-

based expression. In this regard, the vaccinia T7-EMCV expression 

system is recognized as the most efficient protein production system for 

VV-based expression in mammalian cell culture.63 We therefore designed 

a control vector that contained an internal ribosomal entry site (IRES) from 

the encephalomyocarditis virus (EMCV) in place of HGL-Best. Two 

version of this vector were constructed; one that contained an SLP 

promoter for expression with the VV strains VC2 and MVA, and a second 

that contained the T7 promoter for expression in a recombinant VV 

expression system (vTF7-3) engineered to co-express T7 RNA 

polymerase. To facilitate a direct comparison of HGL-Best and EMCV in 

the recombinant T7 expression system, a modified version of F-luc-mono-

Best was constructed that contained the T7 promoter upstream of HGL-

Best.  

 An initial comparison was performed in HeLa cells for vectors 

carrying HGL-Best alone and in tandem with SLP and T7 to T7 EMCV and 

SLP EMCV. Expression profiles were monitored by time course analysis 

for cells infected with VC2, vTF7-3, and MVA (Figure 9). Relative to 

EMCV, the HGL-Best containing vectors each exhibit a rapid burst in 

protein production that saturates at 6 hours post-infection for VC2 and 12  
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Figure 9: VV time course in HeLa cells. HeLa cells were transfected with 
plasmid and infected with one of three VV strains (VC2, vTF7-3 or MVA) 
and we obtained a time course of their expression profiles. Luciferase 
levels were read at 3 hour intervals for the first 12 hours and at 6 hour 
intervals until 24 hours. Relative Light Units are reported. 
 

hours post-infection for vTF7-3 and MVA. Of the various HGL-Best 

vectors, the T7 modified version consistently produced ≥10-fold more 

luciferase after 24 hours of expression than HGL-Best either alone or in 

tandem with SLP. In comparison to EMCV, the HGL-Best vectors produce 

100-1,000 fold more protein after 6-12 hours of expression. Only after 24 

hours of expression is EMCV equivalent to HGL-Best alone and with SLP, 

which is still less efficient than the T7 HGL-Best vector.  

 

2.5 DISCUSSION 

The increasing need for recombinant mammalian proteins in 

medicine, agriculture and industry drives a continuous search for ways to 

improve the yield, quality and safety of recombinant expression systems. 
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Small, unmodified proteins can be produced quickly and cheaply using 

bacterial or yeast based systems but these organisms are incapable of 

generating mammalian PTMs that are sometimes crucial for activity.46 The 

baculovirus insect cell system is capable of producing many but not all 

mammalian PTMs and has the additional drawback of being a technically 

difficult system to develop.51 Only in mammalian cells can the complete 

set of correct PTMs be manufactured.48 However, these systems are 

notorious for producing low yields and being expensive to maintain. 

Transient transfection of DNA into mammalian cells is quick and simple 

but produces the lowest yields. While stably transfected cells can have 

higher yields, generating a stably transfected cell line is a complicated 

process that can take over a year.56 Very high protein levels have been 

reported from infecting cells with recombinant viruses engineered to 

produce the desired protein but once again, creating the recombinant virus 

can be a complex, time consuming process.  

A simpler variation of a virus based mammalian expression system 

involves transfecting cells with a plasmid and then infecting them with a 

VV that drives the transcription and translation of the protein in the 

cytoplasm. To use this system, all that is required is the creation of a 

plasmid with the gene of interest under the control of the appropriate 

promoter. Here, we describe the identification and characterization of 

sequence HGL-Best, which can improve protein yields from the VV 
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transfect/infect system by 10-fold when placed in the 5’ UTR of a gene. 

We determined that HGL-Best achieved this increase in protein production 

by acting both as a VV promoter (transcribing 10-fold more protein than 

standard promoters) and translation enhancer (producing 5-fold more 

protein than other plasmids tested when normalized to RNA levels). The 

promoter activity of HGL-Best was confirmed by its ability to perform 

equally well without a VV promoter.  

Translation enhancing elements often contain a shorter core 

sequence responsible for activity. We found through end mapping deletion 

analysis that the 90 nt HGL-Best has a core region only 37 nt long. RACE 

experiments revealed that the last 11 bases of the sequence are present 

on the 5’ end of the mRNA and suggests they are involved in translation 

enhancement, implying that the first 26 bases are responsible for promoter 

activity. The small size of the HGL-Best sequence is another advantage. 

Unlike EMCV and other IRES sequences used to promote translation 

initiation, which can be hundreds of bases long, HGL-Best is less than 50 

bases and can be easily inserted into plasmids. 

We considered the possibility that the high activity of HGL-Best is a 

phenomenon unique to luciferase, but western blot analysis of HIV Gag 

protein showed that the sequence could generate increased amounts of 

this protein as well. We isolated protein produced by plasmids containing 

the luciferase or HIV Gag gene under the control of HGL-Best or VV 
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promoters alone and in tandem with HGL-Best and found that only in the 

presence of HGL-Best were high levels of product detected. This 

demonstrates that the activity of HGL-Best is not protein specific and 

could be used to produce many different proteins, including those with 

complex PTMs. It has previously been shown that recombinant proteins 

produced in the VV system receive the appropriate mammalian PTMs, 

including glycosylation, phosphorylation, myristalation, folding and 

proteolytic cleavage.63 

In direct comparisons, HGL-Best is shown to outperform known VV 

promoters in all tested VV strains (VC2, MVA and vTF7-3) by producing 

higher titers of protein at earlier time points. A time course of HGL-Best 

protein levels revealed the expression profile and optimum expression 

time of the sequence. High levels of protein can be seen as early as 6 

hours post infection with the HGL-Best sequence alone whereas it takes 

24 hours for the standard system plasmid (T7/SLP-EMCV) to produce 

similar levels. Combining our sequence with the T7 promoter creates the 

most effective protein expression vector. T7 Best vector was ~50,000-fold 

more efficient with VC2 and ~1,000 fold more efficient with vTF-3 and 

MVA than the conventional plasmid at 6 hours. At 24 hours the T7-Best 

plasmid was 10-fold higher than the standard in all viruses. Including the 

T7 promoter has the additional advantage of creating a more versatile 

plasmid that could be used in cell free or bacterial expression systems as 
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well. It is unclear why the addition of the T7 promoter amplifies the activity 

of HGL-Best when coupled with viruses such as VC2 and MVA that do not 

express the T7 polymerase. RACE data of mRNA isolated from VC2 and 

vTF7-3 infected cells that were transfected with the T7-Best plasmid show 

the identical sequence in the 5’ UTR as seen with Best alone. This 

indicates that the enhancement happens at transcription, though previous 

studies have shown that the T7 promoter is not a significant VV promoter 

and the T7 sequence does not change the site of transcription initiation.72 

These results lead us to speculate that the T7 promoter works 

synergistically with the HGL-Best mechanism of action to increase mRNA 

production. 
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Chapter 3 

CONCLUSIONS 

 

Developing cost effective technologies that can be used to 

generate large quantities of human proteins in their native biological form 

could revolutionize biomedical research.46 Major advantages of our 

technology over existing mammalian expression systems are: (i) a method 

for rapidly producing large quantities of biologically relevant protein in a 

timeframe that can effectively compete with existing E. coli expression 

systems; (ii) a readily available source of viral vectors that are easy to 

engineer and can be used immediately without further processing; (iii) a 

straightforward system that bypasses the need for stably transfected cell 

lines; and (iv) an expression system based on commercially available 

reagents that is compatible with a wide range of cell lines and vaccinia 

viruses, including the modified vaccinia Ankara (MVA) strain, which is non-

pathogenic in humans and approved for use under standard biosafety 

level 1 conditions.73 We suggest that this technology could accelerate 

protein production in mammalian cells for routine laboratory analysis. 

In addition to improving protein yields from VV expression systems, 

HGL-Best also has the potential to advance VV based vaccine 

development. Due to thorough characterization and its success in 

eradicating smallpox, VV is an attractive candidate for the development of 
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recombinant, live vaccines.63 Attenuated strains that are safer than the 

wild type VV have been developed for this purpose but unfortunately, 

these strains tend to make less effective vaccines.65 Incorporating HGL-

Best into these genetically modified strains could boost antigen expression 

levels and help to generate the immune response necessary for a 

successful vaccination. 
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