
Temporal Coding of Cortical Neural Signals and

Camera Motion Estimation in Target Tracking

by

Chenhui Yang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2012 by the
Graduate Supervisory Committee:

Jennie Si, Chair
Leonidas Jassemidis
Christopher Buneo
Glen Abousleman

ARIZONA STATE UNIVERSITY

May 2012

ABSTRACT

This dissertation includes two parts. First it focuses on discussing robust sig-

nal processing algorithms, which lead to consistent performance under perturbation or

uncertainty in video target tracking applications. Projective distortion plagues the qual-

ity of long sequence mosaicking which results in loosing important target information.

Some correction techniques require prior information. A new algorithm is proposed in

this dissertation to this very issue. Optimization and parameter tuning of a robust cam-

era motion estimation as well as implementation details are discussed for a real-time

application using an ordinary general-purpose computer. Performance evaluations on

real-world unmanned air vehicle (UAV) videos demonstrate the robustness of the pro-

posed algorithms. The second half of the dissertation addresses neural signal analysis

and modeling. Neural waveforms were recorded from rats’ motor cortical areas while

rats performed a learning control task. Prior to analyzing and modeling based on the

recorded neural signal, neural action potentials are processed to detect neural action

potentials which are considered the basic computation unit in the brain. Most algo-

rithms rely on simple thresholding, which can be subjective. This dissertation proposes

a new detection algorithm, which is an automatic procedure based on signal-to-noise

ratio (SNR) from the neural waveforms. For spike sorting, this dissertation proposes a

classification algorithm based on spike features in the frequency domain and adaptive

clustering method such as the self-organizing map (SOM). Another major contribution

of the dissertation is the study of functional interconnectivity of neurons in an ensem-

ble. These functional correlations among neurons reveal spatial and temporal statistical

dependencies, which consequently contributes to the understanding of a neuronal sub-

strate of meaningful behaviors. This dissertation proposes a new generalized yet simple

method to study adaptation of neural ensemble activities of a rat’s motor cortical areas

during its cognitive learning process. Results reveal interesting temporal firing patterns

underlying the behavioral learning process.

i

DEDICATION

Dedicated to my parents, Qingtian Yang and Yanping Liu; and to my wife, Xue Jiang.

ii

ACKNOWLEDGEMENTS

I especially would like to acknowledge my advisor, Dr. Jennie Si, for her con-

tinued encouragement, support and guidance throughout my PhD program. Without

her help, I could not have finished the Ph.D. studies and this dissertation.

I would like to acknowledge Dr. Glen Abousleman for giving me the oppor-

tunity to work on the exciting projects broadening my vision in image processing and

software optimization based on which part of dissertation has been developed.

I would like to acknowledge my other committee members: Dr. Leon Iasemidis

and Dr. Christopher A. Buneo.

I would like to acknowledge the fellow graduate students in my group. They

are Yuan Yuan, Hongwei Mao, and Bing Cheng.

Finally, I would like to acknowledge that this work was supported by Gen-

eral DynamicsC4 Systems and t by the NSF under grant ECCS-0702057 and ECCS-

1002391.

iii

TABLE OF CONTENTS

CHAPTER Page

1 INTRODUCTION . 1

2 CORRECTION OF PROJECTIVE DISTORTION IN LONG-IMAGE-SEQUENCE

MOSAICS WITHOUT PRIOR INFORMATION 6

2.1 Introduction . 6

2.2 Projective Distortion Correction . 7

2.2.1 Image Mosaic Based on the Projective Model 7

2.2.2 Projective Distortion Correction by Approximating

the Projective Model with a Translation Model 8

2.2.3 Projective Distortion Correction by Approximating

the Projective Model with Affine Model 9

2.3 Conclusion . 11

3 SOFTWARE-BASED ROBUST GLOBAL MOTION ESTIMATION FOR

REAL-TIME VIDEO TARGET TRACKING 13

3.1 Introduction . 13

3.2 Global (Camera) Motion Estimation 14

3.2.1 Image Registration Based on Sparse Optical Flow 14

3.2.2 Image Pyramid Representation 17

3.2.3 Robust Camera Motion Estimation Based on Least Median of

Squares (LMedS) . 18

3.2.3.1 Affine and Projective model 19

3.2.3.2 Linear Regression Based on Least Median of Squares

(LMedS) . 20

3.2.4 Parameter Selection . 21

3.3 Camera Motion Estimation with Real UAV Video 23

3.4 Conclusion . 23

iv

Chapter Page

4 A MULTI-SCALE CORRELATION OF WAVELET COEFFICIENTS AP-

PROACH TO SPIKE DETECTION . 25

4.1 Introduction . 25

4.2 Background on Wavelet Transform Based Spike Detection 30

4.3 Spike Detection Based on Multiscale Correlation of Wavelet Coefficients 34

4.3.1 Computing Normalized Correlation of Wavelet Coefficients . . . 34

4.3.2 Spike Detection using Hypothesis Testing 36

4.3.3 Detection Principle: Adaptive Thresholding 37

4.4 Detection Performance Evaluation . 42

4.4.1 Comparison of Detection Performance among Thresholding,

MCWC, and WDM using Artificial Neural Data Sets 45

4.4.2 Evaluation of Algorithm Parameter Setting using Artificial Neu-

ral Data Sets . 45

4.4.3 Evaluation using Real Neural Cortical Waveforms without Spike

Waveform Verification by Human 46

4.4.4 Evaluation using Real Neural Cortical Waveforms with Spike

Waveform Verification by Human 57

4.4.5 The Effect of Window Length and Real Time Implementation

Issue . 60

4.5 Conclusion . 63

5 ROBUST SPIKE CLASSIFICATION BASED ON FREQUENCY DOMAIN

FEATURES AND SELF-ORGANIZED MAPS 65

5.1 Introduction . 65

5.1.1 Introduction to Spike Classification 65

5.2 Classification Based on Frequency Domain Features (CFDF) 70

5.2.1 Spike Classification Based on Frequency Domain Features . . . 70

5.3 Sorting Performance Evaluation for Spike Classification using CFDF . . 73

v

Chapter Page

5.3.1 Artificial Data I . 73

5.3.2 Artificial Data II . 78

5.3.3 Real Neural Recording . 82

5.4 Conclusion . 86

6 SPIKE-TIMING-DEPENDENT PLASTICITY IN VIVO: MODIFICATION

OF FUNCTIONAL EFFICACY IN RAT’S MOTOR CORTICAL AREAS

INDUCED BY COGNITIVE LEARNING 88

6.1 Introduction . 88

6.2 Neuronal Interaction Represented in a Spike Train 90

6.3 Estimating Synaptic Efficacy using Iterative Maximum Likelihood . . . 94

6.4 Estimating Spike Firing Probability in the Generalized Network Like-

lihood Model using a Perceptron Bank 96

6.4.1 Estimating Firing Probability Given Neural Ensemble Firing

History . 98

6.4.2 Estimating Synaptic Efficacy αi,c,m 100

6.4.3 Statistically Significant Synaptic Efficacy 103

6.4.4 Significant Functional Efficacy αi,c,m and Direct Link between

a Neuron Pair . 104

6.4.5 Direct Link among Neurons Reduce False Positive Connection . 105

6.5 Estimating Neuronal Interactions from Artificially Generated Spike Trains107

6.5.1 Generating Artificial Spike Trains with Known Neuronal Inter-

action . 108

6.5.2 Estimation Performance using Artificial Neural Spike Trains . . 108

6.6 Neuronal Interactions Estimated with Real Neural Recording 111

6.6.1 Neural Data Preparation . 112

6.6.2 Plasticity in Synaptic Efficacy as Learning Processes 113

6.7 Conclusion . 114

vi

Chapter Page

REFERENCES . 117

vii

Chapter 1

INTRODUCTION

Signal detection, classification, and modeling are fundamental and important topics

in the field of signal processing. Most well known algorithms were developed based

on some statistical distributions of the signal and the noise. By doing, one obtains

assurances of some type of optimality. However, real world applications do not usually

meet those conditions, and thus, robustness of the algorithms may not be retained. In

this dissertation, robustness of an algorithm refers to consistent performance of the

signal processing algorithm under consideration under a wide range of realistic signal

perturbations or system uncertainty. This dissertation addresses robust signal detection,

classification, and modeling with applications to image target tracking and neural spike

analysis.

The first contribution of this dissertation is correction of projective distortion

in long-image-sequence mosaics without prior information. Image mosaicking is the

process of piecing together multiple video frames or still images from a moving cam-

era to form a wide-area or panoramic view of the scene being imaged. Mosaics have

widespread applications in many areas such as security surveillance, remote sensing,

geographical exploration, agricultural field surveillance, virtual reality, digital video,

and medical image analysis, among others. When mosaicking a large number of still

images or video frames, the quality of the resulting mosaic is compromised by pro-

jective distortion. That is, during the mosaicking process, the image frames that are

transformed and pasted to the mosaic become significantly scaled down and appear

out of proportion with respect to the mosaic. As more frames continue to be trans-

formed, important target information in the frames can be lost since the transformed

frames become too small, which eventually leads to the inability to continue further.

Some projective distortion correction techniques make use of prior information such

as GPS information embedded within the image, or camera internal and external pa-

1

rameters. Alternatively, this study proposes a new algorithm to reduce the projective

distortion without using any prior information whatsoever. Based on the analysis of

the projective distortion, an affine model is used to approximate the projective matrix

that describes the transformation between image frames. Using singular value decom-

position, it is possible to deduce the affine model scaling factor that is usually very

close to 1. By resetting the image scale of the affine model to 1, the transformed im-

age size remains unchanged. Even though the proposed correction introduces some

error in the image matching, this error is typically acceptable and more importantly,

the final mosaic preserves the original image size after transformation. The evaluation

of this new correction algorithm with two real-world unmanned air vehicle (UAV) se-

quences demonstrates that the proposed method is effective and suitable for real-time

implementation.

The second contribution of this dissertation is software-based robust global mo-

tion estimation for real-time video target tracking. In video tracking systems using

image subtraction for motion detection, the global motion is usually estimated to com-

pensate for the camera motion. The accuracy and robustness of the global motion

compensation critically affects the performance of the target tracking process. The

global motion between video frames can be estimated by matching the features from

the image background. However, the features from moving targets contain both cam-

era and target motion and should not be used to calculate the global motion. Sparse

optical flow is a classical image matching method. However, the image features se-

lected by optical flow may come from moving targets, with some of the image features

matched not being accurate, which leads to poor video tracking performance. Least

Median of Square (LMedS) is a popular robust linear regression model and has been

applied to real-time video tracking systems implemented in hardware to process up to

7.5 frames/second. In this study, a robust regression method is used to select features

only from the image background for robust global motion estimation, and a real-time

2

(10 frames/second) software-based video tracking system is developed for the platform

of an ordinary Windows-based general-purpose computer. The software optimization

and parameter tuning for real-time execution are discussed in detail. With real-world

Unmanned Air Vehicle (UAV) videos, the evaluations of tracking performance demon-

strate the improvements in global motion estimation in terms of accuracy and robust-

ness.

The third contribution of this dissertation is multi-scale correlation of wavelet

coefficients approach to spike detection. Extracellular chronic recordings have been

used as important evidence in neuroscientific studies to unveil the fundamental neural

network mechanisms in the brain. Spike detection is the very first step in the analysis

of the recorded neural waveforms to decipher useful information and to provide useful

signals for brain machine interface applications. The process of spike detection is to ex-

tract action potentials from the recordings which are often compounded with a myriad

of noise from different sources. This dissertation proposes a new detection algorithm,

which leverages a technique from wavelet based image edge detection. It utilizes the

correlation between wavelet coefficients at different sampling scales to create a robust

spike detector. The algorithm has one tuning parameter, which potentially reduces

subjectivity of detection results. Both artificial benchmark data sets and real neural

recordings are used to evaluate the detection performance of the proposed algorithm.

Compared with other detection algorithms, the proposed method has a comparable or

better detection performance with the potential for real-time implementation.

The fourth contribution of this dissertation is spike classification using neural

waveform frequency domain features and self-organizing map (SOM) clustering. It is

well accepted that even some of the simplest act elicit a dynamic response of a large

number of neurons. In recent years, multi-array electrode (MAE) recording systems

have made real time simultaneous recording of a large number of neurons possible.

Based on the raw neural waveforms, individual spike instances are first detected. It is

3

followed by a classification process to associate some of the detected waveforms with

a single neuron. Most of the existing spike classification techniques involve extensive

calculation plus assumptions about prior information on the signal or the noise, and

some requires tedious parameter tuning. This dissertation proposes a new spike classi-

fication algorithm based on spike waveform features in the frequency domain and the

self-organizing map (SOM). It requires less prior information and it operates with in-

tuitive parameter specifications. The proposed algorithm is evaluated on artificial and

real neural recordings. The results are comparable or better than the couple popular

published algorithms and also some commercial algorithms.

The fifth contribution of this dissertation is the study Spike-timing-dependent

plasticity (STDP) during a cognitive learning. Spike-timing-dependent plasticity (STDP)

has been implicated in neural development and learning. In vitro recordings from paired

neurons reveal that the STDP process adjusts the connection strengths based on the rel-

ative timing between the action potentials of a pair of pre- and post synaptic neurons.

However, it is often difficult to do the same experiments in vivo due to challenges asso-

ciated with intracellular recordings. This becomes even more challenging when using

live and behaving subjects. On the other hand, as a spike-time coding scheme, neuronal

interactions measured by synaptic efficacy has been studied extensively by computa-

tional neuroscientists. Several algorithms have been frequently used to estimate the in-

teraction strength between paired neurons. Cross correlation, mutual information, and

Granger causality are some examples. To simultaneously account for multiple pair-

wise interactions among an ensemble of neurons, network likelihood models have been

proposed and demonstrated as efficient tools for analyzing spatiotemporal spike firing

patterns. Accordingly, maximum likelihood methods have been developed to estimate

the model parameters. This study is to derive a principled approach to estimating the

functional synaptic interaction strength in the network likelihood model. It is based

on direct analysis of spatiotemporal spike firing patterns. The computation required to

4

estimate the model parameter is therefore straightforward with few assumptions. In ad-

dition, this new approach sheds light on the neuronal interaction patterns in rats’ motor

cortical areas in relation to the rats’ cognitive learning control behaviors. The changes

in functional synaptic efficacy were studied based on in vivo extracellularly recorded

spike trains from behaving rats.

5

Chapter 2

CORRECTION OF PROJECTIVE DISTORTION IN LONG-IMAGE-SEQUENCE

MOSAICS WITHOUT PRIOR INFORMATION

2.1 Introduction

Image mosaicking is an image processing method that registers multiple frames of a

video sequence with respect to a common reference coordinate system to compose a

panorama consisting of all frames. Generally, the image registration is described by

a projective transform. Image mosaics have wide-spread applications such as security

surveillance [1, 2] , remote sensing [3], geographical exploration [4], agricultural field

surveillance [5], virtual reality [6], digital video, and medical image analysis [7].

A main source of error when generating a mosaic is known as projective dis-

tortion. Due to the principles and assumptions of the projective model, objects that

are far away from the optical axis of the camera image plane are smaller than those

near the optical axis when they are projected onto the image plane. Consequently, this

projective distortion accumulates as the mosaicking process continues. For short im-

age sequences, the projective distortion is not readily apparent. But for long image

sequences, the projective distortion becomes much more pronounced and eventually

leads to the inability to continue. The classical method to reduce the projective distor-

tion is to rectify the image to yield a fronto-parallel view [8, 9]. These methods require

the knowledge of several camera parameters such as focal length and camera posing

(pan, tilt, and row angles), or they need to extract image features. Recently, several

methods have been investigated that use the crossed-slits projection model rather than

the projective model to reduce the distortion [10, 11]. However, with most camera

systems, correction of the projective distortion requires the synthesize of crossed-slits

projection views from regular perspective images, which may be infeasible.

6

In this paper, we propose a new projective distortion correction method that is

independent of camera parameters. Due to its simplicity, it can be used with a variety

of mosaicking algorithms without significant changes to the baseline system.

2.2 Projective Distortion Correction
2.2.1 Image Mosaic Based on the Projective Model

To create a mosaic from a sequence of frames or still images, the first step is frame

matching. In this process, the corresponding points between frames are identified. In

this paper, the image matching was implemented with the scale-invariant feature trans-

form (SIFT) method [12]. The next step is to estimate the transform matrix between

the frames. The transform matrix transforms the frames with respect to a common ref-

erence coordinate system. Both projective (Equation (2.1)) and affine models (Equa-

tion (2.2)) can be used to align the multiple frames. As shown in Equations (2.1) and

(2.2), the difference between the projective and affine models lies in the last row of the

matrix.

P =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 1

∣∣∣∣∣∣∣∣∣∣
. (2.1)

A =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

0 0 1

∣∣∣∣∣∣∣∣∣∣
. (2.2)

For image sequence, I0, I2, ..., In, ..., IN ,0≤ n≤ N, let Ti,1≤ i≤ N, be the pro-

jective/affine transform matrix between frame pairs, {Ii−1, Ii}. For image frame, In, the

corresponding transform matrix, Tn0, between I0 and In, is defined as in Equation (2.3):

Tn0 = Tn×Tn−1×·· ·T2×T1. (2.3)

7

2.2.2 Projective Distortion Correction by Approximating

the Projective Model with a Translation Model

The projective model can capture “chirping” and “keystoning” effects [13]. The “chirp-

ing” effect refers to the change of spatial frequency with respect to spatial location,

while “keystoning” refers to the effect of line convergence. The coefficients, a31 and

a32, in Equation (2.1) reflect these effects. However, since the frame rate for most

video sequences is 15-30 frames per second, the chirpping and keystoning effects of

two consecutive frames are relatively small as compared with the other coefficients.

For long image sequences, the multiplication of transforms, Ti’s, scales the

frame far away from the optical axis of the camera system to a much smaller size

with respect to its original size. Usually, for the affine transform matrix, we can ana-

lyze its transform effect on images via singular value decomposition (SVD) [14]. The

affine transform matrix can be decomposed into a rotation matrix and a scale matrix.

The rotation matrix does not change the image size, while the scale matrix directly de-

termines the transformed image size. However, there is no general way to decompose

the projective model in the same way as the affine model [14]. Figure 2.1(a) shows

that the coefficients a31 and a32 have much smaller magnitudes than a11 and a22 for

a representative UAV video sequence. Accordingly, since they are much smaller than

the other coefficients of the projective matrix, we approximate the projective model

with an affine model by letting a31 = 0 and a32 = 0 in Equation (2.1). Similarly, Fig-

ure 2.1(b) shows that the coefficients a12 and a21 are much smaller than a11 and a22.

On the other hand, a21 and a22 are shown to be close to 1. Thus, we conclude that the

relative motion between two consecutive frames is mainly pure translation for the UAV

video sequence.

Equation (2.4) shows the synthesized transform matrix (pure translation) used

to correct the projective distortion.

8

(a) The coefficients a31 and a32 represent
“chirpping” and “keystoning” effects, and are
much smaller in magnitude than a11 and a22.

(b) The coefficients a12 and a21 are much
smaller in magnitude than a11 and a22. The
relative motion between frames for this video
sequence is mainly pure translational.

Figure 2.1: Projective matrix coefficients of a UAV video sequence. Approximately
500 frames were used for analysis.

P =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 0 a13

0 1 a23

0 0 1

∣∣∣∣∣∣∣∣∣∣
. (2.4)

To illustrate the performance of the proposed method, Figure 2.2 shows the mo-

saic resulting from the UAV video sequence with and without the projective distortion

correction. Comparing Figure 2.1a and 2.1b, it is obvious that the projective distortion

is reduced dramatically by approximating the projective transform matrix with a pure

translation matrix as shown in Equation (2.4).

2.2.3 Projective Distortion Correction by Approximating

the Projective Model with Affine Model

The video analyzed in Section 2.2.2 has very little rotation. That is why a12 and a21

is much smaller in magnitude than a11 and a22. If the video exhibits rotation, we can

still correct the projective distortion with an approximated affine model and SVD. First,

we approximate the projective model with an affine model as shown in Equation (2.5).

Secondly, we apply SVD to the matrix, A, as shown in Equation (2.6).

9

(a) Mosaic without projective distortion cor-
rection. Note that subsequently processed
frames (shown at the top) become smaller as
the mosaicking process continues.

(b) Mosaic with proposed projective distortion
correction. Note that subsequently processed
frames retain the correct scale.

Figure 2.2: Mosaic constructed from UAV video sequence with and without projective
distortion correction. Number of mosaicked frames is identical in both cases.

P =

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

0 0 1

∣∣∣∣∣∣∣∣∣∣
. (2.5)

A =

∣∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣∣= R(θ)R(−θ)DR(φ). (2.6)

Here, R(θ), R(−θ), and R(φ) are rotation matrices, and θ and φ are the rotation an-

gles. D =

∣∣∣∣∣∣∣
λ1 0

0 λ2

∣∣∣∣∣∣∣ is the scale matrix, and λ1 and λ2 are scale factors. These scale

factors are responsible for the changes in image size. In order to correct the projective

distortion, we set λ1 and λ2 to 1, and therefore D becomes an identity matrix. The new

transform, Anew, defined in Equation (2.7), will replace A used in the image mosaic,

10

where I is a 2×2 identity matrix:

Anew = R(θ)R(−θ)IR(φ). (2.7)

The corrected projective matrix is calculated in Equation (2.8), where t= [a13 a23]
T ,

0T = [0 0].

Pnew =

∣∣∣∣∣∣∣
Anew t

0T 1

∣∣∣∣∣∣∣ . (2.8)

The proposed projective distortion correction algorithm thus has two steps:

First, we replace the projective transform matrix with an affine model by letting a31 =

a32 = 0 in the estimated projective transform matrix. Next, apply SVD to the approxi-

mated affine model and calculate the new transform matrix, Pnew, by replacing the scale

matrix, D, with an identity matrix as shown in Equation (2.8).

Figure 2.3 shows the mosaic created from a second UAV video sequence with

Pnew. Note that the video sequence exhibits large amounts of rotation. Comparing

Figure 2.3a and 2.3b, we note that the projective distortion has been reduced dramat-

ically. However, we also note some misalignments in the mosaic as shown by the red

and blue circles in Figure 2.4. Compared with the projective distortion, however, such

misalignments are deemed quite acceptable.

2.3 Conclusion

We have developed an algorithm for correcting the projective distortion inherent in

the mosaicking process of long video sequences. The proposed algorithm reduces the

projective distortion without requiring UAV telemetry information. The method is also

computational tractable, which makes it suitable for real-time applications.

11

(a) Mosaic without projective distortion cor-
rection. Note that subsequently processed
frames (shown at the bottom) become smaller
as the mosaicking process continues.

(b) Mosaic with proposed projective distortion
correction using Pnew in Equation 2.8. Note
that subsequently processed frames retain the
correct scale.

Figure 2.3: Mosaic constructed from UAV video sequence with and without projective
distortion correction. Number of mosaicked frames is identical in both cases and the
UAV flies counterclockwise.

(a) Segment of mosaic without projective dis-
tortion correction.

(b) Segment of mosaic with projective distor-
tion correction.

Figure 2.4: Projective distortion correction results in slight misalignment.

12

Chapter 3

SOFTWARE-BASED ROBUST GLOBAL MOTION ESTIMATION FOR

REAL-TIME VIDEO TARGET TRACKING

3.1 Introduction

Video target tracking is a process of identifying and associating moving objects across

multiple video frames. It has wide applications in many areas such as video security

surveillance[15], video compression[16], neuroscience study[17], medical diagnose[18],

traffic monitoring and control[19], and many others. Motion detection and estimation

are fundamental processes in any tracking system. The accuracy and robustness of the

motion detection stage will determine the overall tracking performance. In a real-time

tracker, the feasibility of real-time motion detection and estimation demands algorithm

simplicity. Image background subtraction between consecutive frames is a simple and

effective method of motion detection[20, 21, 22], especially for tracking systems where

a static camera is assumed. For tracking systems with moving cameras, image back-

ground subtraction is still applicable after the global (camera) motion has been compen-

sated for. The motion of the camera between frames can be described by a projective

matrix, which is estimated through image registration of image background features

between video frames.

Typical image registration methods match not only the image features of the

background, but also the features of moving targets. However, to obtain an accurate

registration, the camera motion should be estimated only with image background fea-

tures. Thus, it is necessary to discriminate between features belonging to the back-

ground from those belonging to the moving targets to obtain an accurate estimation of

camera motion. Least Median of Square (LMedS), a robust linear regression method,

has been applied to image tracking[23] to identify image features from the background.

It was also reported in a hardware implementation of a real-time (7.5 frames/second)

image tracking system[24].

13

In this paper, we propose a camera motion estimation algorithm for a real-time

(10 frames/second) software-based video tracking system on a general-purpose com-

puter. The proposed algorithm includes an image registration procedure based on op-

tical flow, and a feature selection procedure based on LMedS. Software optimization,

parameter selection, and tunning are discussed in detail. Evaluation results obtained

with real-world UAV video sequences demonstrates that the proposed method robustly

identifies the background motion.

3.2 Global (Camera) Motion Estimation

For the system discussed herein, global (camera) motion estimation comprises two

steps: First, the registered pixels between frames are identified by an optical flow

method. Secondly, the registered pixels from the background are used to estimate the

camera motion.

3.2.1 Image Registration Based on Sparse Optical Flow

Generally speaking, optical flow methods can be classified into two categories: dense

optical flow[25] and sparse optical flow[26]. The dense optical flow method calculate

the motion of each pixel while sparse optical flow only considers the motion of selected

pixels. Dense optical flow provides comprehensive motion estimation but is computa-

tionally expensive, especially for software-based real-time tracking systems. On the

contrary, sparse optical flow is much more computationally tractable, which makes it

suitable for the real-time application considered in this paper.

Let Ii and Ii+1 be ith and (i+1)th video frames. Without loss of generality, we

assume Ii and Ii+1 are grayscale images. The gray values of the pixels at position (x,y)

are represented by Ii(x,y) and Ii+1(x,y), respectively.

The underlying assumption in the optical flow method is that the pixel values

are constant with camera motion as defined in Equation (3.1), where dx and dy are the

14

pixel displacements due to camera motion between Ii and Ii+1:

Ii(x,y) = Ii+1(x+dx,y+dy). (3.1)

The differences in pixel values between frames is measured by E(dx,dy), which

is defined in Equation (3.2), where ux and uy are the radii of the search neighborhood:

E(dx,dy) =
dx=ux

∑
dx=−ux

dy=uy

∑
dy=−uy

[Ii(x,y)− Ii+1(x+dx,y+dy)]
2 . (3.2)

For simplicity, we define d = (dx,dy). The essence of image registration is to

find a d which satisfies Equation (3.1), or equivalently, minimizes E(dx,dy). In this

paper, we use the Lucas-Kanade algorithm[27] to estimate d iteratively. Let dmin be

the optimal solution that minimizes E(dx,dy). The first derivative of E(dx,dy) at dmin

should be zero as defined in Equation (3.3):

∂E(dmin)

∂dmin
= 0. (3.3)

Substituting Equation (3.2) into Equation (3.3) yields

∂E(dmin)

∂dmin
≈−2

dx=ux

∑
dx=−ux

dy=uy

∑
dy=−uy

[Ii(x,y)− Ii+1(x+dx,y+dy)] ·

∂ Ii+1(x+dx,y+dy)
∂dx

∂ Ii+1(x+dx,y+dy)
∂dy

T

.

(3.4)

where Ii+1(x+dx,y+dy) is approximated by its first-order Taylor expansion,

Ii+1(x+dx,y+dy)≈ Ii+1(x,y)+
∂ Ii+1(x,y)

∂dx
dx +

∂ Ii+1(x,y)
∂dy

dy. (3.5)

Let

δ I , Ii(x,y)− Ii+1(x,y), Ix ,
∂ Ii+1(x,y)

∂dx
, Iy ,

∂ Ii+1(x,y)
∂dy

, ∇I = [IxIy]
T . (3.6)

15

Equation (3.4) then becomes

1
2

∂E(dmin)

∂dmin
≈

dx=ux

∑
dx=−ux

dy=uy

∑
dy=−uy

[
∇IT dmin−δ I

]
∇IT ,

=
dx=ux

∑
dx=−ux

dy=uy

∑
dy=−uy

 Ix

2 IxIy

IxIy Iy
2

dmin−

δ I · Ix

δ I · Iy

 . (3.7)

Finally, let

A ,
dx=ux

∑
dx=−ux

dy=uy

∑
dy=−uy

 Ix

2 IxIy

IxIy Iy
2

 , b ,

dx=ux

∑
dx=−ux

dy=uy

∑
dy=−uy

δ I · Ix

δ I · Iy

 . (3.8)

Combining Equations (3.3), (3.7), and (3.8), dmin can be written as

dmin = A−1b. (3.9)

In the process of deriving Equation (3.9), we assumed that the pixel displace-

ment is small enough such that the first order Taylor expansion in Equation (3.5) is

valid. This assumption indicates that the solution in Equation (3.9) may not be optimal

if the pixel displacements are not close to zero. Furthermore, the derivation of Equa-

tion (3.9) does not consider presence of image noise. Therefore, in order to find an ac-

curate motion estimation, it is necessary to iteratively estimate the motion using Equa-

tion (3.9). Let dk
min = (dk

x ,d
k
y) be the motion estimation after the kth iteration. For the

(k+1)th iteration, the pixel displacement is estimated by replacing Ii+1(x+dx,y+dy)

in (3.2) with Ii+1(x+ dk
x ,y+ dk

y). Following the same procedures as shown in (3.2) -

(3.9), we can derive the motion estimated for the (k+ 1)th iteration. Let ηk+1 be the

motion estimated in the (k+1)th iteration. The motion after k+1 iterations is defined

as

dk+1
min = dk

min +η
k+1. (3.10)

16

On the other hand, Equation (3.9) is valid only if A−1 exits. A is determined

by image features Ix and Iy defined in the neighborhood of Ii+1(x,y). Therefore, it is

necessary to select neighborhoods where Ix and Iy are not close to zero. The study

by Shi and Tomasi[28] indicated that eigenvalues of A could be used as a criterion to

determine whether A−1 can be was solved reliably. In this paper, we use a threshold to

select pixels based upon their eigenvalues. Let r (0 < r < 1) and λmax be the threshold

and the maximum eigenvalue, respectively, of the image. Any pixels whose eigenvalues

are in the range of [rλmax,λmax] are selected for further analysis.

3.2.2 Image Pyramid Representation

The pixel motion, dmin, is constrained in the range of−ux≤ dx≤ ux and−uy≤ dy≤ uy,

according to the discussion in Section 3.2.1. In order to estimate the motion correctly,

the range of ux and uy must cover the range of possible motion between frames. How-

ever, it is impossible to predict the reasonable range of motion for arbitrary image

frames. Intuitively, a larger search neighborhood is always better than a smaller neigh-

borhood in terms of covering the possible motion. However, a larger search neighbor-

hood requires more computations to estimate dmin. On the other hand, the approxi-

mation of the Taylor expansion in Equation (3.5) holds when the motions, dx and dy

(dx ∈ [−ux,ux],dy ∈ [−uy,uy]), are small enough. Therefore, it is necessary to estimate

pixel motions in a multiple-resolution fashion.

Let IL represent the Lth level resolution representation of image I defined in

Equation (3.11). The original image is represented as zeroth level, i.e., I0 = I.

IL(x,y) =
1
4

IL−1(2x,2y)+

1
8
[
IL−1(2x−1,2y)+ IL−1(2x+1,2y)+ IL−1(2x,2y−1)+ IL−1(2x,2y+1)

]
+

1
16
[
IL−1(2x−1,2y−1)+ IL−1(2x+1,2y+1)

]
+ (3.11)

1
16
[
IL−1(2x−1,2y+1)+ IL−1(2x+1,2y−1)

]
.

17

Let dL be the pixel motion at the Lth−level resolution. According to Equa-

tion (3.11), the motion at the (L−1)th−level resolution is defined as

dL−1 = 2dL. (3.12)

Multi-resolution motion estimation begins at the coarsest level. The motion at

the coarsest level is estimated according to the discussion in Section 3.2.1. This motion

is then mapped to the second coarsest level as the initial value of the iterative motion es-

timation given by Equation (3.12). With the initial value, motion of the second coarsest

level is estimated again according to discussion in Section 3.2.1. The same procedures

are applied to the next level and so on through level zero. The total motion across

multiple resolutions is defined in Equation (3.13), where Lm is the number of levels:

dmin =
Lm

∑
L=0

2LdL. (3.13)

In summary, the sparse optical flow procedure discussed in this paper estimates

the pixel displacement iteratively at multiple resolutions of the image. Additional de-

tails regarding sparse optical flow can be found in Bouguet[26].

3.2.3 Robust Camera Motion Estimation Based on Least Median of Squares

(LMedS)

Camera motion can be estimated according to the registered pixel pairs across frames.

The registered pixel pairs contain not only camera motion, but also motion from moving

targets. Given an image transform matrix, T, for a registered pixel pair, its accuracy

can be evaluated by the matching error. Let Pi = (xi,yi,1)T and Pi
′ = (x′i,y

′
i,1)

T be

the ith registered pixel pair of two frames, where 1 ≤ i ≤ N, and N is the number of

registered pairs. For an image transform matrix, T, the matching error between Pi and

Pi
′ is denoted by e(i), as defined in Equation (3.14):

18

T ,

t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3

 , e(i) = ‖TPi−P′i ‖. (3.14)

As mentioned previously, only registered pixel pairs containing camera motion

should be used to estimate the camera motion. Under this assumption, registered pixel

pairs of camera motion are defined as inliers, while registered pixel pairs of moving tar-

gets are considered outliers. Among several algorithms proposed to identify outliers to

improve estimation accuracy of camera motion, the method identifying the outliers by

a threshold[29] is suitable for real-time applications. Given a threshold, the method by

Lin[29] identified outliers in two steps. First, all registered pixels are used to estimate

the transform matrix with the matching errors of all registered pairs being calculated.

All registered pixels are classified into two categories: a pair whose error is beyond

a threshold is classified into an outliers cluster; otherwise it is classified into an inlier

cluster. Secondly, all registered pairs belonging to the inlier cluster are used to estimate

the camera motion. The threshold for classification is critical to the accuracy of the

camera motion estimation, and should be selected according to the motion properties

of the camera and of the moving targets.

Least Median of Squares (LMedS) is a robust linear regression method pro-

posed by Rousseeuw and Leroy[30]. It does not utilize a threshold to identify the

outliers. Furthermore, LMedS is more robust to outliers than linear regression. Ac-

cordingly, in the present work, we use LMedS to estimate the camera motion.

3.2.3.1 Affine and Projective model

The motion of the camera between frames can be described by a projective matrix.

For videos captured in real time, Yang et at [31] showed that the projective model

between two consecutive frames can be approximated by an affine model. Let (x,y,1)

19

and (x′,y′,1) be the matched pixels from the background motion in two consecutive

frames. Their relationship is described by an affine matrix, A, which is defined as

A ,

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 0 1

 ,

x

y

1

=

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 0 1

x′

y′

1

 . (3.15)

From (3.15), we can see that

x = a1,1x′+a1,2y′+a1,3, y = a2,1x′+a2,2y′+a2,3. (3.16)

Equation (3.16) indicates that the camera motion between frames is linear if

it is modeled by an affine matrix. Therefore, linear regression is a natural solution

to estimate the camera motion. However, registered pixel pairs of moving targets are

different from those resulting from camera motion, and therefore they do not satisfy

the linear mapping defined in Equation (3.16). Thus, registered pixel pairs of moving

targets are the outliers for estimating camera motion. The camera motion estimated by

linear regression should only use inliers, i.e., registered pixel pairs of camera motion.

3.2.3.2 Linear Regression Based on Least Median of Squares (LMedS)

The input data of linear regression based on LMedS are the registered pixel pairs iden-

tified by optical flow, and the output is the estimated affine matrix. The algorithm is

summarized as follows:

1. Randomly select a subset, S, from the input data. Let J be the number of possible

combinations of three matched pixels pairs in the subset S;

2. For the jth(1≤ j ≤ J) combination of three matched pairs, an affine matrix, A j,

is estimated accordingly;

20

3. For each affine matrix, A j(1≤ j ≤ J), the matching errors of all S matched pairs

are calculated according to Equation (3.14) by replacing T with A j. Let med j be

the median of matching errors. It is used as the evaluation quantity of background

motion estimation by A j;

4. The motion of camera, Acamera, is found by Equation (3.17):

Acamera = argmin
A j

{med j}. (3.17)

Since the median is used as the evaluation quantity of background motion, the

underlying assumption for LMedS is that the percentage of registered pixels from mov-

ing targets is less than 50%. This assumption should be considered in determing the

paramters for motion detection.

3.2.4 Parameter Selection

Three pairs of registered pixels are needed to determine an affine matrix, while four

pairs of registered pixels are needed to estimate a projective matrix. For example, sup-

pose the number of registered pixel pairs for the input LMedS is S, the numbers of all

possible combination of four and three matched pixels pairs are C(S,4) and C(S,3), re-

spectively. The ratio of these is S−3
4 . It means that the number of possible combination

for projective matrix is greater than that for affine model if S > 7. Usually, pixels cor-

responding to moving targets have large eigenvalues since target motion results in large

gradients. Thus, these pixels are highly likely to be selected for image registration.

However, the assumption for LMedS is that registered pixel pairs from moving targets

is in the minority. Therefore, it is necessary to select as many pixels corresponding to

background as possible for image registration. In the present work, the video resolution

is 320× 240 pixels. We select 400 registered pixel pairs, i.e., J = 400. Among these

registered pixel pairs, we randomly select 41 pairs used in linear regression based on

21

LMedS. For S = 41, the ratio, J−3
4 , is almost 10. It indicates that the the computa-

tional complexity for the affine matrix is only 10% of that for the projectvie matrix.

Therefore, we used the affine model as an approximation of the projective model for

real-time applications.

The optical flow algorithm was implemented with OpenCV[32]. The param-

eters were selected so that the minority of registered pixel pairs are from the moving

targets. Therefore, the threshold, r, for selecting the eigenvalue is small so that there are

many pixels selected for image registration. Due to the continuity of the eigenvalue,

once a pixel is selected, the other pixels around it will be selected as well. Conse-

quently, most of the pixels near the moving targets are selected. In order to meet the

minority assumption of LMedS, it is necessary to select pixel uniformly by specifying

minimum distances between selected pixels. Table 3.1 shows the parameter lists for

optical flow. Iteration of the motion estimation at each resolution level stops when the

maximum number of iterations is reached or η < 0.01 (Equation (3.10)).

Table 3.1: Parameter lists for optical flow.

minimum distance (pixels) between selected pixels 10 pixels

Maximum number of iterations 40

Maximum number of multi-resolution 5

η 0.01

ux 3 pixels

uy 3 pixels

Median filtering used in LMedS is a non-linear process. In this paper, we use

the numerical implementation[33] of median filtering whose algorithm complexity is

O
(

n
)

, where n is the number of matching errors.

22

3.3 Camera Motion Estimation with Real UAV Video

The video used for evaluation was captured by a moving camera mounted on a UAV.

Note that if the camera motion is estimated accurately, detection of the moving targets

based on image subtraction is also accurate. Therefore, the performance of estimating

camera motion can be evaluated by the performance of detecting moving target based

on image subtraction. In this paper, image morphological processing has been applied

to the subtracted image to remove noise[34].

We developed a real-time (10 frames/second), software-based video tracking

system that runs on an ordinary Windows-based general-purpose computer. The pro-

posed method was implemented as the motion detection stage of the video tracking

system. The host computer was equipped with an Intel Xeon Quad-core (2.83Ghz)

CPU and 4GB of RAM.

Figure 3.1 shows the motion detection results for linear regression with a thresh-

old for inliers [29] and LMedS. Figure 3.1a shows image frames containing moving

targets highlighted by red circles. Figure 3.1b and Figure 3.1c are the binary rep-

resentation of motion detections by two different algorithms, where white represents

detected moving targets, and black represents the background. Comparison between

Figure 3.1b and Figure 3.1c shows that motion detection based on LMeds has better

performance than linear regression. In case that two consecutive video frames are the

same, as shown in Figure 3.2a, no motion is detected. Figure 3.2b shows a false alarm

by linear regression. However, as shown in Figure 3.2c, there is no false alsrm using

LMeds.

3.4 Conclusion

In a video tracking system using image subtraction for motion detection, the accuracy

and robustness of camera motion compensation critically affects the target tracking

performance. The camera motion between frames should be estimated by matching

23

(a) Image frame used for mo-
tion detection. Moving targets
are highlighted by red circles.

(b) Binary representation of
motion detection by linear
regression with a threshold
for inliers (threshold= 1.4
pixel)[29].

(c) Binary representation of
motion detection by robust
linear regression based on
LMedS.

Figure 3.1: Image frame and binary representations of motion detections by linear
regression and LMedS.

(a) Image frame used for mo-
tion detection. UAV captures
two identical frames; no mo-
tion should be detected.

(b) Binary representation of
motion detection by linear
regression with a threshold
for inliers (threshold= 1.4
pixel)[29]. The detected mo-
tion is a false alarm.

(c) Binary representation of
motion detection by robust
linear regression based on
LMedS. There is no false
alarm since no moving targets
are present.

Figure 3.2: Image frame without moving targets and its binary representation of motion
detections by linear regression and LMedS.

the features from the image background and not from the moving targets. A software-

based, real-time camera motion estimation procedure based on sparse optical flow and

robust linear regression has been proposed in this paper. The tuning of parameters are

discussed in detail. Evaluation with real UAV video sequences shows that the proposed

algorithm is more accurate and robust than the linear regression method.

24

Chapter 4

A MULTI-SCALE CORRELATION OF WAVELET COEFFICIENTS APPROACH

TO SPIKE DETECTION

4.1 Introduction

Neural action potentials, also known as nerve impulses or spikes, play an important role

in understanding the central nervous system. In chronic multichannel recordings from

behaving animals, action potentials are obtained by multichannel electrodes implanted

in brain areas of interest. As such, noise from brain tissues, muscle movement, and

other biological and instrumental interferences are inevitable [35]. As the first step of

neuroscientific studies and engineering applications such as brain machine interfaces,

identifying real neural spikes from noisy recordings is essential.

Several spike detection techniques have been developed and some are used in

commercial neural recording packages. The simplest to implement, and the most in-

tuitive method is by thresholding [36]. It identifies a spike by comparing the neural

waveform with a pre-set threshold. This is obviously suitable for real-time application.

However the manual selection of the threshold by users is subjective. The study in [37]

showed high variability in manual spike detection and sorting results by different users.

Since thresholding method mainly relies on the waveform amplitude, not considering

other characteristics such as spike waveform shape, spike rising and falling slopes and

spike width, it is thus sensitive to amplitude changes caused by either spike waveforms

or noise. Consequently, false alarm rate may be high especially if the thresholding level

is set low.

In [38], a statistical spike detection method was proposed based on a non-

parametric Bayesian framework. With the prior probability provided by the user, and

the posterior probability estimated by a nonparametric quantization algorithm, the method

tests a Bayesian hypothesis based on the ratio between the probability of the recorded

waveform being a neural spike and that of being background noise, given the wave-

25

form’s shape and repetitiveness. This algorithm requires using a high threshold to

gather spikes as ground truth. But such a high threshold may leave out real neural

spikes with low magnitudes and thus results in missed detection.

The authors of [39] proposed an echo state network (ESN) and minimum av-

erage correlation energy (MACE) method for spike detection with a better detection

performance than thresholding and matched filter detection. A set of “representative”

spike signals were used for training the ESN. In order to catch all possible spike patterns

including those embedded in background noise, a highly variable set of “representative”

spikes are needed for training, which is a challenging manual task since no systematic

procedure was introduced. The same problem was encountered and discussed in [37].

In addition, results of the MACE filter were compared with the method of thresholding

for spike detection. However, neither the selection of “representative” spike signals nor

the threshold was addressed in detail in the paper.

In [40], it presents an automatic and real-time detection method based on first

extracting background noise and then performing a template match. This algorithm is

based on an assumption that the noise has a colored Gaussian distribution. The restric-

tive nature of such assumption was discussed in [39] and [41]. It was pointed out that

the high variances in neural spike appearances would sacrifice detection accuracy dur-

ing template matching. Another template matching method was proposed in [41] where

the variability of extracellular spike waveforms was modeled by a linear superposition

of a long-interspike interval (ISI) neural spike waveform and a short-ISI neural spike

waveform with different weights. Thus the spike waveform width varies. This actually

indicates that wavelet transform is a natural solution for this problem. By varying the

wavelet scales, one generates a series of wavelets ranging from long-ISI waveform to

short-ISI waveform. Therefore, different wavelet transforms have been considered in

neural spike detection applications.

26

The wavelet transform is a technique for representing a time domain signal by

a set of functions that are scaled and time-translated from a mother wavelet. Its char-

acteristics make it a natural candidate for transient signal representation and thus spike

detection applications. Several spike detection algorithms based on wavelet transforms

have been proposed.

Yang [42] proposed a spike detection algorithm based on discrete Harr trans-

form (DHT). The wavelet function was selected based on its resemblance to the neural

spike waveforms. Once the wavelet coefficients are computed by the Harr wavelet, a

threshold was applied to these DHT coefficients for spike detection. The threshold was

estimated under the assumption that noise complies with a Gaussian distribution, which

is not realistic in real neural recordings.

Kim [43] proposed a detection method using thresholding on the discrete wavelet

transform (DWT) coefficients. The DWT was performed by a bank of discrete time fil-

ters. It enhanced the detection performance by combining (multiplying) the wavelet

coefficients. However, since it was a discrete dyadic wavelet, the multiple time trans-

lations scale down exponentially and therefore, it did not fully utilize the power of

multiplying the wavelet coefficients at different levels. Sometimes, they may introduce

adverse effects of missed detection.

The algorithms in [44] and [45] were based on wavelet packet and mutual in-

formation. Detection takes place in two steps. Firstly, hard thresholding is applied

to recorded neural waveforms to select the potential neural spikes. Secondly, wavelet

packet and mutual information are used to sort those potential pool of spikes from noise.

As indicated by [46], the detection method in [44] and [45] can not be implemented in

an unsupervised fashion. Or in other words, this algorithm is a user dependent approach

to spike detection and therefore, its outcome varies according to the user’s subjective

selection of the parameters in the algorithm. In addition, estimating the mutual infor-

mation is not straightforward.
27

Oweiss et al. [47, 48] proposed the multi-resolution generalized likelihood ra-

tio test (MRGLRT) based on a Gaussian noise assumption. Two thresholds are needed

in MRGLRT. First, a threshold matrix was used to suppress the noise term from the

wavelet transform of neural waveforms. Second, another threshold was used for spike

detection with generalized likelihood ratio test. It is necessary to optimize both thresh-

old values to have an optimal detection performance under a Gaussian noise assump-

tion. Optimization introduces additional computation.

Nenadic [49] and [50] proposed the wavelet detection method (WDM) based

on continuous wavelet transform. First, by analyzing the neural recording waveform

profile at each sampling scale via wavelet coefficients, a median filter based threshold

is used to separate spikes from noise. At each scale, based on the spike waveform and

noise waveform from the first step of thresholding, the variance of the wavelet coef-

ficients corresponding to noise and the sample mean of the absolute value of wavelet

coefficients corresponding to spikes are used to form a threshold value in a Bayesian

hypothesis test to minimize a proposed detection cost. Finally, detection results at dif-

ferent scales are combined to form the final detection. Nenadic indicated in [49] that

WDM outperformed the single amplitude thresholding method (SATM), the double

amplitude thresholding method (DATM), and the power detection method (PDM). The

authors of [51] also demonstrated WDM’s robust performance when subject to a wide

range of noise as signal-to-noise ratios (SNR) reduce. Furthermore, even though not

explicitly discussed, the WDM has the potential for near real-time applications [49].

To summarize the discussions, it is noticed that simple threshold based detec-

tion methods are intuitive in principle and easy to implement. This is echoed by its

popularity including commercial realizations of the algorithms. However as pointed

out earlier, the detection results are variable and subjective to users, in addition to high

false alarm rates. Other than these direct thresholding of the recorded neural wave-

forms as a function of time, the idea of thresholding was also an important part of

28

several other approaches discussed above, such as the threshold applied to wavelet co-

efficients in [42] and [43], a higher than usual threshold to gather spikes as the ground

truth in [38], the threshold applied to the output of MACE filter in [39], the threshold

for selecting potential neural spikes in [45] and [44], two thresholds used in MRGLRT

in [47] and [48], and the threshold used for separating neural spikes from noise in [49].

It is worth pointing out that several algorithms rely on a Gaussian noise assumption to

make an optimal detection statement. On one hand, it gives users some assurance of

optimality, but unfortunately, noise profile is rarely Gaussian in recorded neural wave-

forms.

In this paper, we focus on developing a new spike detection algorithm aiming

at providing robust detection performance with high detection rate and low false alarm.

The goal is to alleviate subjectivity and variability in detection results, and make the

algorithm near real-time. In doing so, we made use of the observation that a sharp rise

of neural waveform signifying the onset of a neural spike in a 1-D neural signal is sim-

ilar in characteristic to an edge in a 2-D image. Therefore, our proposed algorithm is a

wavelet based approach, inspired by image edge detection. In [52], an edge detection

algorithm makes use of a property in wavelet transform coefficients that the wavelet

transform coefficients of image edges usually have higher magnitudes than the coeffi-

cients from noise. As shown later in this paper, the wavelet coefficient magnitudes of

neural recordings preserve similar properties with a properly selected wavelet function:

coefficients of neural spikes have higher magnitudes than those coefficients of noise.

Our proposed algorithm utilizes continuous wavelet transform as that in WDM

[49] and [50], however with different wavelet functions in the respective implementa-

tions. Another major difference between the two algorithms is that while WDM per-

forms detection at individual wavelet scales prior to fusing the results from multiple

levels for a final spike detection, our approach fuses wavelet transforms from multi-

ple scales first at each scale level and then perform a single detection by hypothesis

29

testing. By doing so, we have taken advantage of continuous wavelet transform over

discrete wavelet transforms to avoid possible adverse effects due to coarse wavelet

scale sampling, and we only introduce one free parameter, which in turn helps reduce

the subjectivity of the algorithm.

4.2 Background on Wavelet Transform Based Spike Detection

A wavelet, ψ(t) ∈ L2(R), is a function of zero average [53], i.e.,

∫ +∞

−∞

ψ(t)dt = 0, (4.1)

and finite energy defined by

∫ +∞

−∞

ψ(t)2dt = 1. (4.2)

The wavelet transform of a signal x(t) ∈ L2(R) is defined by

T x(a,b) =
∫ +∞

−∞

x(t)
1√
a

ψ(
t−b

a
)dt, (4.3)

where T x(a,b) denotes the wavelet transform of x(t), a is the scale factor and

b represents time translation. From a different perspective, the correlation coefficient

between a wavelet ψ(t) and a signal x(t) is defined by

R(τ) =
∫ +∞

−∞

ψ
∗(t + τ)x(t)dt, (4.4)

where ψ∗(t) is the complex conjugate of ψ(t).

It is well known that the correlation coefficient identifies the strength of rele-

vancy between ψ(t) and x(t). Inspecting (4.3) and (4.4), it is easy to note that a wavelet

transform also reflects on the same property between ψ(t) and the signal under consid-

eration.

30

Given the wide range of wavelet families and their unique features, it is im-

portant to select a suitable wavelet function for spike detection. It is noted in [54]

that the waveforms of extracellular neural action potentials typically appear mono-

phasic, bi-phasic and even tri-phasic. The research by [55] proves that the action

potential waveforms of single units in human peripheral nerves also consists of such

three kinds of waveforms. Since mono-phasic can be viewed as a building block of

bi/tri-phasic waveforms, and the latter can be represented approximately by a super-

position of mono-phasic waveforms, in this paper we focus on detection using an ap-

proximation of a mono-phasic wavelet function. The wavelet function“coiflets” was

selected and used for neural spike detection in [44], [45], and [43]. It is also chosen

in this paper. Figure 4.1 depicts the “bi-orthogonal 1.5” used in [49] and [50], and

the “coiflets” wavelet function used in this paper and other papers mentioned above.

We chose “coiflets” based on the following considerations. When the time support

of the wavelet function matches the duration of one phase of a neural waveform, the

corresponding wavelet transform coefficients become high. As such, the mono-phasic

wavelet function is also able to generate high wavelet transform coefficients at one

phase of the bi/tri-phasic neural spikes waveform. But the waveforms of noise usually

do not resemble the wavelet function. Therefore the coefficients from noise have small

or close to zero magnitudes. By inspecting waveforms corresponding to high wavelet

transform coefficients, we can detect neural spikes even though they may have different

phases.

Given the characteristics of the “coiflets” wavelet, and also according to (4.3)

and (4.4), the following observations are utilized in the development of the proposed

spike detection algorithm in this paper. Since real neural spike waveforms resemble that

of the chosen wavelet albeit a difference in sign, it is expected that the absolute value of

the wavelet coefficients for these waveforms are nontrivial. On the other hand, typically

background noise signals have zero mean, and thus, wavelet coefficients corresponding

31

Figure 4.1: The Wavelet functions: “bi-orthogonal 1.5” (top) used in WDM and 5th

order “coiflets” (bottom) used in this paper and in [44], [45], and [43].

to noise are expected to fluctuate around zero. With such notion in mind, the guiding

principle of spike detection is to distinguish the transform coefficients of neural spike

waveforms from background noise. Additional considerations are also given to the

development of a robust and accurate spike detection procedure in the next section.

For computing the wavelet transform using (4.3), it is customary to perform the

integration within a finite time window, instead of the entire recording time horizon.

In the present paper, we use N to denote the total number of waveform samples within

such a finite time window. The length of the window is denoted by J as illustrated in

Figure 4.2, where J is 100 ms, N is 2400 for a sampling rate of 24kHz in this study

unless otherwise stated.

There are two control parameters in the chosen wavelet transform: the time

translation factor b and the scale factor a. When applying the transform to a neural

waveform in a given observation window containing N neural waveform samples, the

time translation, b, is selected from

b ∈ B = {0,1, · · · ,N−1}. (4.5)

32

Figure 4.2: The integration window for computing wavelet coefficients and illustration
of finding spike instants: b j, j = 1,2, · · · ,s, represent the instants of neural spike peaks.

The scale factor a, on the other hand, determines the support of the wavelet

function. When applied to spike detection in neural recordings, it is chosen to represent

the width of a neural spike, which is chosen between 0.5ms and 1.5ms in this paper as

in [49] and [50], namely,

a ∈ A = {0.5,0.6, · · · ,1.5}. (4.6)

The wavelet transform discussed in the above implies that the proposed new

spike detection algorithm is based on a continuous wavelet transform. For the discrete

wavelet transform, the ith scale, αi, and the (i+1)th scale, αi+1, are related by αi+1 =

αi∗2. In this paper, the continuous wavelet transform is implemented as follows: the ith

scale, ai, and the (i+1)th scale, ai+1, are related by ai+1 = ai+0.1ms as shown in (4.6).

Both discrete and continuous wavelet transforms measure the similarity of a signal and

the wavelet function. However discrete wavelet functions dilate exponentially as a

function of the sampling scale level, much faster than their continuous counter parts.

And thus, continuous wavelet transform is used in the development of the proposed

detection algorithm in this paper.

33

4.3 Spike Detection Based on Multiscale Correlation of Wavelet Coefficients

As discussed above, this paper proposes a new spike detection algorithm based on

continuous wavelet transform. It takes a multiscale approach by first calculating the

wavelet coefficients at each scale, and correlates (by multiplication) wavelet coeffi-

cients from multiple scales, and then perform a hypothesis test for spike detection.

This approach to detection is referred to as the multiscale correlation of wavelet coeffi-

cients (MCWC) method in this paper. It is motivated by a robust image edge detection

algorithm [52] where in this case, a sharp spike is considered a 1-D edge. What follows

is a step by step development of the proposed MCWC algorithm.

4.3.1 Computing Normalized Correlation of Wavelet Coefficients

Consider a neural waveform x(t). Let J be the width of the observation window of the

waveform under consideration which is used as the integration interval in the calcula-

tion of wavelet coefficients (refer to Figure 4.2). And let N be the number of samples

in the observation window J. It is to be used in the calculation of the correlation of the

wavelet coefficients. Apply “5th order coiflets” wavelet transform to the neural wave-

form, x(t), over the window of width J that contains N samples. With parameter sets

{ai} and {b j} chosen as discussed above to reflect characteristics of neural spikes, i.e.,

{ai}= {0.5,0.6, · · · ,1.5}, and {b j}= {0,1,2, · · · ,N−1}, we obtain

T x(ai,b j) =
∫

J
x(t)

1
√

ai
ψ(

t−b j

ai
)dt. (4.7)

Let S be the number of sampling scales in a continuous wavelet transform, and

let rS(ai,b j) be the correlation of wavelet coefficients among S sampling scales.

For each {ai}= {0.5,0.6, · · · ,1.5} and {b j}= {0,1,2, · · · ,N−1}, rS(ai,b j) is

obtained from the product of the wavelet transform of x(t) across all S levels, i.e.,

34

rS(ai,b j) =
S−1

∏
k=0

T x(ai+k,b j). (4.8)

As can be seen from (4.8), rS(ai,b j) is a measure of the strength of resem-

blance between the wavelet function ψ(t) and the neural signal x(t) at each scale level

ai and location b j. It does so by first computing the wavelet coefficient T x(ai+k,b j)

at one scale, and then the strength of resemblance is enhanced by a product among

all sampling scales S. As such, rS(ai,b j) defined by (4.8) can potentially produce a

more pronounced separation of the coefficients corresponding to neural spikes from

those corresponding to noise. Or in other words, this product can potentially reinforce

the presence of neural spikes, while it is reduced if x(t) contains mostly noise. The

strengthened separation of signal and noise by a product of wavelet coefficients across

multiple levels was also reported in [56] and [57] for signal and image processing ap-

plications. Additional example of making use of multiplication of multiple wavelet

coefficients to enhance image edge detection can be found from [52]. Even though uti-

lized differently, the same principle of making use of multiple scale wavelet coefficients

was also identified and implemented by [49] for spike detection.

Once rS(ai,b j) is obtained, it should be normalized so that the correlation of co-

efficient measure is still based on the original neural signal scale level, not on different

sampling scale levels. This makes the correlation of coefficient measure comparable

with the wavelet coefficient.

Let the power normalized correlation of wavelet coefficients be denoted by

r′S(ai,b j). It is obtained based on the power of rS(ai,b j) defined in (4.9), and the power

of T x(ai,b j) defined in (4.10). The former involves all S sampling levels, while the

latter only involves a single base level measure of similarity. And therefore, the nor-

malization denoted by (4.11) is necessary.

35

PrS(ai) = ∑
j∈J

rS(ai,b j)
2, (4.9)

PT x(ai) = ∑
j∈J

T x(ai,b j)
2, (4.10)

r′S(ai,b j) = rS(ai,b j)×

√
PT x(ai)

PrS(ai)
. (4.11)

4.3.2 Spike Detection using Hypothesis Testing

With the well defined power normalized correlation of coefficients measure r′S(ai,b j)

in (4.11), neural spikes embedded in a noisy neural recording are now considered for

detection using a binary hypothesis testing. Actually this entails both the declaration of

the existence of a spike in a noisy recording and the specification of spike timing.

Let H0 be the null hypothesis that within a small window [t0, t1] belonging to J

(refer to Figure 4.2), x(t) does not contain any neural spikes, and let H1 be the alterna-

tive hypothesis that within the the small window [t0, t1], x(t) contains a spike at b j. Or

in other words:

H0: x(t) contains no spikes in the small window [t0, t1] belonging to J under

consideration (Figure 4.2) ,

H1: x(t) contains a spike at b j in the small window [t0, t1] belonging to J under

consideration (Figure 4.2) .

Specifically, H0 holds, or no spike is detected if∣∣∣∣ r′S(ai,b j)

T x(ai,b j)

∣∣∣∣≤ 1 (4.12)

and H1 holds, or a spike is detected if (4.13) is satisfied,∣∣∣∣ r′S(ai,b j)

T x(ai,b j)

∣∣∣∣> 1 (4.13)

36

Figure 4.3 illustrates the principle of spike detection proposed in this paper.

The next question is naturally where the spike instances are. In our spike de-

tection problem formulation, the spike instances are denoted by those b j’s that result

in a positive hypothesis test of H1. Refer to Figure 4.3, notice that multiple b j’s in the

vicinity of a neural spike can possibly pass H1 test while corresponding to the same

potential spike. In this paper, we choose the one and only b j that gives rise to the most

positive test result of H1.

Let H1 hold inside the small interval [t0, t1] at specific points of b j where there

can possibly be more than one b j’s. Let td be the instant of a spike within [t0, t1] (refer

to Figure 4.3). Then a spike is detected at td within [t0, t1] from the following

td = arg max
b j∈[t0,t1]

ai∈{0.5,··· ,1.5}

∣∣T x(ai,b j)
∣∣ . (4.14)

The width of the spike detected at td , τ , is estimated by

τ = argmax
ai∈{0.5,··· ,1.5}

|T x(ai, td)| . (4.15)

This effectively implies that no other spikes exist within a distance of τ from td .

4.3.3 Detection Principle: Adaptive Thresholding

We are now ready to demonstrate that the proposed MCWC detection algorithm actu-

ally is an adaptive thresholding method. The threshold level changes as the signal-to-

noise ratio or the noise covariance varies.

First, consider the case of S = 2. Re-write (4.13) into the following by assuming

that T x(ai,b j) is non-zero, which is commonly true.

37

Figure 4.3: Demonstration of MCWC detection principle: The multiplication of
multi-scale wavelet coefficients enhances the detection of a neural spike. Inequality
|r′S(ai,b j)| > |T x(ai,b j)|S=3 for t ∈ [t0, t1] indicates that hypothesis H1 passes the test
in this interval. The detection of a neural spike at time instant td is declared.

∣∣∣∣∣∣∣T x(ai,b j)T x(ai+1,b j)

√√√√√√√
∑
j∈J

T x(ai,b j)
2

∑
j∈J

T x(ai,b j)
2T x(ai+1,b j)

2

∣∣∣∣∣∣∣> |T x(ai,b j)|. (4.16)

As discussed in the previous section, once we have identified the b j’s that satisfy

criterion (4.13) or equivalently (4.16), we can then apply (4.14) and (4.15) to determine

spike time and spike width. However, to gain additional insight, further derivations are

performed below. Define T x(ai,S)|S=2 as in (4.17),

T x(ai,S)|S=2 ,

∑
j∈J

T x(ai,b j)
2T x(ai+1,b j)

2

∑
j∈J

T x(ai,b j)
2 . (4.17)

Re-arranging (4.16) by substituting the newly defined term T x(ai,S)|S=2, we

obtain the following new form of spike detection criterion,

38

T x(ai+1,b j)
2 > T x(ai,S)|S=2. (4.18)

Under a similar assumption to that in [49] at the ith scale level, {T x(ai,b j)} are

independent Gaussian random variables and comply with the following distributions,

T x(ai,b j) ∼ N(0,σ2) given H0 holds, which implies that given H0, T x(ai,b j)

complies with a Gaussian distribution with zero mean and σ2 as its variance.

T x(ai,b j) ∼ N(µ,σ2) given H1 holds, which implies that given H1, T x(ai,b j)

complies with a Gaussian distribution with µ as its mean and σ2 as its variance.

Define a weighting coefficient wi as shown below,

wi ,
T x(ai,b j)

2

∑
j∈J

T x(ai,b j)
2 =

T x(ai,b j)
2/σ2

∑
j∈J

[
T x(ai,b j)

2/σ
2] . (4.19)

Let P(H0) be the prior probability associated with hypothesis H0 and P(H1) be

that with hypothesis H1. Then for real neural recordings, it is reasonable to assume that

P(H0)� P(H1) since majority of the time course of a neural recording corresponds

with noise [49]. Given that H0 holds, then T x(ai,b j) complies with N(0,σ2). Conse-

quently the new variable T x(ai,b j)
2/σ2 complies with the chi-square distribution with

1 degree of freedom, i.e., T x(ai,b j)
2/σ2 ∼ χ2

1 (1). Therefore E
[
T x(ai,b j)

2/σ2] = 1

remains valid most of the time. It also is approximately true if H1 holds but the mean µ

in T x(ai,b j) is relatively low. Since E
[
T x(ai,b j)

2/σ2]≈ 1, then ∑ j∈J
[
T x(ai,b j)

2/σ2]≈
M, where M is the cardinalities of J. Thus the weight wi ≈ 1/M.

Since T x(ai,b j) for a given scale may be viewed as an independent Gaussian

variable with zero mean most of the time especially when it corresponds with noise,

the maximum likelihood estimate of the variance of the noise sequence {T x(ai+1,b j)}

is 1
M ∑J T x(ai+1,b j)

2. To see that, refer to (4.19) and that wi ≈ 1/M. Therefore the

threshold T x(ai,S)|S=2 defined in (4.18) can be viewed as an approximation of the

39

maximum likelihood estimation of the noise variance since P(H0)� P(H1). When

T x(ai+1,b j)
2 > T x(ai,S)|S=2, it implies that the correlation between the neural wave-

form and the wavelet is greater than the noise variance, and therefore, a neural spike is

likely to be present, and that H1 is true.

For S≥ 3, (4.13) is re-written as below

∣∣T x(ai,b j) · · ·T x(ai+S−1,b j)
∣∣√√√√ ∑ j∈J T x(ai,b j)2

∑ j∈J
[
T x(ai,b j) · · ·T x(ai+S−1,b j)

]2
>
∣∣T x(ai,b j)

∣∣
⇒[
T x(ai+1,b j) · · ·T x(ai+S−1,b j)

]2
>

∑ j∈J
[
T x(ai,b j) · · ·T x(ai+S−1,b j)

]2
∑ j∈J T x(ai,b j)2 . (4.20)

Let the right hand side of inequality (4.20) be

T x(ai,S),
∑ j∈J

[
T x(ai,b j) · · ·T x(ai+S−1,b j)

]2
∑ j∈J T x(ai,b j)2

= ∑
j∈J

[
wiT x(ai +1,b j) · · ·T x(ai+S−1,b j)

]2
. (4.21)

Then (4.20) becomes

[
T x(ai+1,b j) · · ·T x(ai+S−1,b j)

]2
> T x(ai,S). (4.22)

Similar to the analysis conducted for the case of S=2, the weight factor wi in

(4.19) appears in the newly defined threshold T x(ai,S) in (4.21), and it approaches

1/M. This indicates that T x(ai,S) can be viewed as a sample mean of [T x(ai+1,b j) · · ·

T x(ai+S−1,b j)]
2, which is a uniformly minimum-variance unbiased estimate of the ex-

pectation of
[
T x(ai+1,b j) · · ·T x(ai+S−1,b j)

]2. Again, using similar arguments as in

the case of S = 2 as well as that in [49], we have P(H0)� P(H1). Therefore, T x(ai,S)

may be viewed as average noise of
[
T x(ai+1,b j) · · ·T x(ai+S−1,b j)

]2.

Next, let T xs(ai,b j) and T xn(ai,b j) denote the wavelet coefficients correspond-

ing to neural spikes and noise, respectively. For real neural recordings of reasonable
40

quality, it is generally true that T xs(ai,b j)> T xn(ai,b j) for any one of the multiple sam-

pling scales. It is therefore easy to obtain that ∏
i+S−1
i T xs(ai,b j)/∏

i+S−1
i T xn(ai,b j)>

T xs(ai,b j)/T xn(ai,b j). It means that the product of multi-scale wavelet coefficients en-

hances the difference between spikes and noise. In turn, this shows that if inequality

(4.20) holds, then a spike is most likely to be present. Therefore it is reasonable to

declare a spike if (4.20) holds.

Note that S is the only free parameter to be determined by the user as dis-

cussed throughout this paper. Unlike simple waveform magnitude thresholding meth-

ods, which is usually set by the user via visual inspection, the parameter S can actually

be chosen in consideration of the signal-noise-ratio (SNR) or noise co-variance as well

as neural firing rates and other physical properties of neural spikes. When the SNR is

low or the noise covariance is high, it is difficult to distinguish the wavelet coefficients

between noise corrupted neural spike waveforms and noise waveforms. Therefore in-

creasing S will enhance the difference in wavelet coefficients corresponding to spike

and noise, and help differentiate spikes from noise. On the other hand, increasing S

usually reduces the overall detected spike rates. Therefore, neural spike characteris-

tics such as neuron firing rate, physical features of the rising and falling edges of a

neural spike, etc. should be taken into consideration, which can assist the process of

choosing an appropriate multiple scale sampling parameter S as will be discussed and

demonstrated later in our simulation studies.

Figure 4.4a and Figure 4.4b illustrate how the adaptive threshold values T x(ai,S)

in (4.21) vary as a function of the SNR or the noise co-variance and the scale level S.

In addition to the above discussion on the nature of adaptive thresholding for

the MCWC algorithm, note also that in case of low frequency background noise, ac-

cording to the zero average property (4.1) and the compactness of the wavelet function

“coiflets”, the low frequency noise has little contribution to the wavelet coefficients

when MCWC is used for detection. This demonstrates the robustness of the MCWC
41

algorithm to low frequency noise. However, for the strictly thresholding based detec-

tion, slowly fluctuating noise may change the magnitude of the neural waveforms and

alter the presence of a real neural spike, which may be overshadowed by noise or may

only be detected reliably if a high threshold value is placed. Therefore, for strictly

thresholding based detections, manual adjustment of threshold values is needed in or-

der to obtain robust detection results. This is in contrast to the nature of automatically

adjusting threshold values in MCWC to maintain robustness of the algorithm.

(a) Detection thresholds at two S levels when
neural signal has a low SNR or high noise co-
variance.

(b) Detection thresholds at two S levels when
neural signal has a high SNR or low noise co-
variance.

Figure 4.4: Illustration of adaptive threshold in MCWC, which varies with SNRs or
noise covariances and S values. From (a) and (b), at a given SNR, when S is high,
the threshold levels are high and vice versa. The SNR in (a) is lower than that in (b),
therefore at a given S, the threshold level is higher when SNR is higher.

4.4 Detection Performance Evaluation

In this section, we provide detailed performance evaluation on the proposed multiscale

correlation of wavelet coefficient (MCWC) algorithm. While comparisons are con-

ducted for a few algorithms including direct thresholding, our focus is on comparing

MCWC and WDM since both are wavelet based, and WDM has been shown outper-

forming several other approaches [49] and [51]. It is noted that WDM detects neural

spikes using Bayesian hypothesis test at each wavelet transform scale and then fuse all

the detection results from all scales [49] to form the final detection. On the other hand,

MCWC first correlates the wavelet transform coefficients among multiple scales and

42

then run the spike detection hypothesis on the correlated coefficients once to form the

final detection results.

Performance evaluations were carried out using 23 data sets in this study, which

include both artificially generated neural spikes and real neural spikes recorded from

rat’s motor cortex.

All 18 artificially generated neural waveforms span 50 seconds, and they are

sampled at 20KHz. Half of the 18 artificial data sets (A1-1 to A1-9) were obtained

with 1dB signal-to-noise ratio (SNR), while the other half (A2-1 to A2-9) with 10dB

SNR.

Each artificial neural data set was generated the same way as in [58]. The

simulated neural data sets were obtained by activating three types of neurons in the

program: target neuron (used as truth), correlated neuron (its waveforms are regarded

as correlated interference), and uncorrelated neuron (its waveforms are regarded as un-

correlated interference). The spike generating program was used to simulate neural

waveforms of a single channel from multiple channel recording arrays. In the simula-

tion program, the refractory period was set to 1ms.

For the 5 real neural data sets, the data length was 5 seconds for 2 data sets

(R1-1 and R2-1) and 50 seconds for the other 2 sets (R1-2 and R2-2). The real neural

data set R2-L is 10 minutes long. The real neural waveform were sampled at 24KHz.

For obtaining real neural spikes, the intended task for the rat was for him to press levers

after light and sound cues for food reward. But the data used in this study were recorded

while the rat was freely moving about in a Skinner box.

In our implementation, the SNR was calculated as follows,

SNR(dB) = 20log10
(

Asignal

Anoise

)
, (4.23)

43

where Asignal and Anoise are signal and noise root mean square (RMS) amplitudes, re-

spectively. For the artificial data set, SNR is calculated before mixing spike data with

noise. For real neural recording data, the SNR is estimated based on detected spikes

(as signal) and noise (recorded waveform minus signal). For example, the SNR of data

set R1-1 is estimated with signal and noise root mean square (RMS) amplitudes as in

(4.23): 1) Use the detected spike waveforms to estimate the signal RMS amplitude,

2) Deduct spike waveforms from the neural recording to obtain noise RMS amplitude.

The estimated SNR for data R1-1 is 4.3dB.

When applying the WDM algorithm, one is required to select a parameter L

that determines the cost ratio between the false alarms and missed detections. Once

L is selected, different thresholds used in WDM at different scales are determined,

respectively and the detection results at all scales are obtained. The final detention

result is the combination of the detection results at each scale. Therefore the selection of

L affects detection performance [49]. In all our later simulations, the WDM algorithm

was implemented using the code provided online by [59].

As will be shown in the next section when we discuss the issue of real-time

implementations, the observation window length J in (4.7) is a parameter that can

be chosen from a broad range of values, without major degradation in performance.

Therefore, we consider S, the number of down sampling scale levels, as the only tuning

parameter in the MCWC algorithm that may be optimized to gain detection perfor-

mance. In principle, the larger the S parameter, the more likely that the MCWC picks

up less neural spikes but only those with higher SNRs, and vice versa. Thus, S should

be chosen at an appropriate level to reflect the physical nature of neural firing rates and

features of neural spikes to ensure the robustness of the algorithm.

44

4.4.1 Comparison of Detection Performance among Thresholding, MCWC, and

WDM using Artificial Neural Data Sets

In this section, we compare detection performances among MCWC, WDM, and thresh-

olding provided in Plexon’s Offline Sorter. Eighteen artificial data sets, A1-1 to A1-9,

and A2-1 to A2-9 are used. The thresholding method used was the “Signal Energy” in

Offline Sorter as described below,

energy(i) =
1

W

i+W/2

∑
j=i−W/2

v2(j), (4.24)

where v(j) is the raw neural recording at time j. W is the window width used in

averaging. In this paper, W = 7 is used.

To make results comparable, we manually selected the threshold value in Of-

fline Sorter such that the total number of detected neural spikes was close to that of

the ground truth. The L and S parameters in WDM and MCWC, respectively, were

chosen similarly such that the total number of detected spikes by each algorithm was

close to the ground truth. To remove low frequency noise, the artificial data sets used in

thresholding detection were filtered with a band-pass butterworth filter, which usually

enhances its performance. The pass band is [100, 6000]Hz. However, the data used in

WDM and MCWC were not filtered. The receiver operating characteristics (ROC) as

a measure of detection performance are shown in Figure 4.5a and Figure 4.5b. Based

on the ROCs, the MCWC outperformed WDM and thresholding at the two tested SNR

levels.

4.4.2 Evaluation of Algorithm Parameter Setting using Artificial Neural Data Sets

In this section, we compare MCWC and WDM detection performances using artificial

neural data sets from A1-1 to A2-9. Our goal is to examine the robustness and impact

of the L and S parameters used in the WDM and MCWC, respectively. As before, we

used the observation window J = 100ms for both MCWC and WDM. Figure 4.6a and

45

(a) Detection performance with data sets A1-1
to A1-9 (SNR=1dB).

(b) Detection performance with data sets A2-1
to A2-9 (SNR=10dB).

Figure 4.5: ROC performance for MCWC, WDM and Plexon thresholding: MCWC
has a better performance than WDM and Plexon thresholding in low and high SNR
scenarios.

Figure 4.6b are ROC performances for MCWC and WDM at different SNRs and dif-

ferent parameter value settings. These figures show that MCWC generally outperforms

WDM. As noted from the ROCs generated for WDM and MCWC, the scale levels L

and S do affect the detection results in a manner noted in the discussions in earlier sec-

tions of this paper. Specifically, As discussed in [49], increasing L implies an increase

of the cost of false alarms. Since the detection principle of WDM is based on setting

a proper threshold to minimize the total detection cost, with an increase in the cost of

false alarms, the false alarm rate should decrease. As for MCWC, when S increases, the

adaptive threshold used in MCWC increases so that the detected neural spikes may be

considered present in neural recording with high SNRs, consequently the false alarm

rate decreases.

4.4.3 Evaluation using Real Neural Cortical Waveforms without Spike Waveform

Verification by Human

In this test and what follows next (section 4.4.4), we used real microarray recordings

from rat’s motor cortex digitized at 24kHz using TDT RX5 Pentusa Base Station (TDT,

Inc). The data acquisition procedure was similar to [60]. Four sets of neural recordings

(R1-1, R1-2, R2-1, and R2-2) from 2 rats were examined. In this section, we compare

46

(a) Detection performance with data sets A1-1
to A1-9 (SNR=1dB).

(b) Detection performance with data sets A2-1
to A2-9 (SNR=10dB).

Figure 4.6: Detection results for MCWC and WDM as a function of S and L. MCWC
has a slightly better detection performance over the entire ranges of S and L for the
artificial data sets.

detection performance for thresholding, WDM and MCWC. The scale parameter a for

WDM and MCWC was set between 0.5 and 1.5 ms.

The major difference between this section and section 4.4 is that we did not

provide “ground truth” when evaluating algorithm performances in this section while

we did manual inspection on some real neural waveforms and used those as ground

truth to conduct performance comparisons.

Without “ground truth” provided, the ROC curve as performance measure no

longer is valid. Therefore we have developed other means of spike detection perfor-

mance evaluation. Specifically, we examined the shape features of the spike wave-

forms, the spike duration, and the rising/falling rate of spike charge/discharge, as dis-

cussed in [61] and [62], and used them as alternative measures of detection perfor-

mances. Spike sorting was also performed after detection using respective algorithms.

As such, it allowed us to analyze neural waveform characteristics by grouping them

together according to waveform similarity.

4.3.1 Selection of Detection Parameters

47

For comparing detection performances by WDM and MCWC, we need to properly

choose the parameters L and S, respectively for each of the algorithms. To provide a

ground of comparison with reasonable values of L and S, we created Tables 4.1 and 4.2

using the real data set R1-1. Data set R1-1 was also manually inspected for spikes and

it was determined that the neural firing rate was about 40 Hz for the recorded neuron.

The tables summarize detected spike firing rates as a function of different parameter

levels by using each of the detection algorithms. A small segment of the waveforms

from data set R1-1 is shown in Figure 4.7.

Figure 4.7: A small segment of waveforms from data set R1-1.

The same procedure was performed on R2-1 for selecting parameters L and S

before analyzing respective performances of each algorithm using data set R2-1.

Table 4.1: Detected spike firing rates with different L values for WDM.

L -0.2 -0.1 0 0.1 0.2 0.3 0.4
Firing rate (Hz) 240 160 115 82 68 52 37

48

Table 4.2: Detected spike firing rates with different S values for MCWC.

S 2 3 4 5 6 7 8 9 10

Firing rate (Hz) 157 110 81 63 54 45 40 34 30

By inspecting Table 4.1 and Table 4.2, S=8 and L=0.4 were chosen for MCWC

and WDM, respectively in our later comparison of results. At those parameter settings,

both detection algorithms resulted in neural firing rates at around 40Hz. When thresh-

olding method was used in comparison, we selected the threshold value such that spike

firing rate is about 40 Hz as well. By doing so, we have made all algorithm comparable.

4.3.2 Detection Results using R1-1 and R2-1

To make the detection algorithms comparable for the next results using recorded neural

waveforms, it is also necessary to align the detected spike waveforms with a common

reference point. As in [63], in the following results, each detected spike waveform by

thresholding, WDM, and MCWC was aligned by maximizing the correlations between

detected spike waveforms. Once the alignment point is determined for each detected

spike waveform, a segment of 3ms spike waveform with 1.5ms to the left and 1.5ms to

the right from the alignment point is extracted and used in the following analysis.

Figure 4.8a and Figure 4.8b depict detected spikes using MCWC and WDM,

respectively using R1-1. With the help of K-Means clustering, the MCWC detection

results are classified into 2 clusters. The firing rate of cluster 1 is 34.6Hz, and 4.8Hz for

cluster 2. By visual inspection of the waveforms and the duration about 2ms of those

detected potential spikes in cluster 2, cluster 2 is classified into noise. The same anal-

ysis with K-Means clustering applied to WDM detections: the resulted WDM cluster

1 fired at 33.4Hz, while cluster 2 fired at 4Hz, which is classified into noise as well.

49

As can be seen from Figure 4.8a and Figure 4.8b, MCWC has a comparable detection

performance with WDM for data set R1-1.

Detections by “signal energy” in Offline sorter with K-Means clustering are

shown in Figure 4.9. By visual inspection, only the waveforms in cluster 1 and part

of clusters 2 and 3 appear neural spike like but with a low rate. This indicates that

thresholding method does not detect as many real spikes as WDM and MCWC did

given a total number of detections, which in this case is a firing rate of 40Hz. Also

from its detection principle, thresholding only used waveform amplitude, not other

features as did in MCWC or WDM. Therefore it may be more sensitive to noise with

a more pronounced noise cluster than MCWC or WDM. Therefore, from here on, we

will focus on comparisons between WDM and MCWC.

(a) Spikes detected by MCWC from data set
R1-1. The firing rates of cluster 1 and 2 are
34.6Hz and 4.8Hz, respectively.

(b) Spikes detected by WDM from data set R1-
1. The firing rates of cluster 1 and 2 are 33.4Hz
and 4Hz, respectively.

Figure 4.8: Detection results for MCWC and WDM with data set R1-1. The detection
results by MCWC and WDM are similar.

For the data set R2-1, we selected parameters for MCWC and WDM the same

way as when we analysed data set R1-1. With the same detection performance measure,

we find that both MCWC and WDM resulted in 3 clusters: 2 neural spike clusters

and 1 noise cluster. The noise cluster rates are 3Hz and 7Hz for MCWC and WDM,

respectively. Again, the results by MCWC and WDM are comparable for data set R2-1.

50

(a) Waveforms of detected spikes from R1-
1 using Plexon thresholding with peak align-
ment.

(b) Plexon thresholding detected spike wave-
forms from R1-1: cluster 1 with firing rate
6.8Hz.

(c) Plexon thresholding detected spike wave-
forms from R1-1: cluster 2 with firing rate
21Hz.

(d) Plexon thresholding detected spike wave-
forms from R1-1: cluster 3 with firing rate
13.4Hz.

Figure 4.9: Plexon thresholding detected spikes from R1-1. By visual inspection, the
detected waveforms in cluster 1 and part of clusters 2 and 3 are neural spikes with high
confidence while most waveforms in clusters 2 and 3 are possible false alarms with
high rate.

Next, based on the two separated clusters as shown in Figure 4.8a and Fig-

ure 4.8b for data set R1-1, we computed the average spike waveform for each cluster,

and they were used in our analysis for inspecting the detected spike characteristics.

With the chosen parameter values of S = 8 and L = 0.4 for MCWC and WDM,

respectively, and with the waveform alignment performed as discussed above, we are

now in a position to evaluate spike detection performances of the algorithms using

R1-1. Since detection rate and false alarm rates are no longer valid measures without

ground truth, we examined the detected spikes by their physiological characteristics.

51

In this case, they include the duration of a neural spike (typically around 1ms) and

the change rate of cortical neural action potentials during charging and discharging.

According to [61], an action potential can be characterized by a very abrupt onset and

a rapid change in membrane potential, and the change rate of cortical neural action

potential is usually at 10mv/ms. It also indicated [62] that the spike waveform can be

fitted by a straight line after the onset initiation. Based on these principles, we tried to

qualitatively evaluate the characteristics of the detected spikes.

(a) The average waveform of MCWC detected
spikes and its spike onset slopes with data set
R1-1.

(b) The average waveform of WDM detected
spikes and its spike onset slopes with data set
R1-1.

Figure 4.10: The average waveforms of cluster 1 in MCWC and WDM are analyzed
for their respective spike onset properties: the onset of a neural spike is a rapid change
in membrane potential [61], and the rapid change portion of the spike waveform can be
modeled by a straight line after the onset initiation [62]. The detection results of cluster
1 in MCWC and WDM are neural spikes with high confidence.

Figure 4.10a shows the averaged waveforms for the two spike clusters detected

by MCWC for R1-1. We computed and illustrated the two straight lines to fit the main

portion of the spike charging/discharging waveforms. From these figures, it is apparent

that the spikes detected by MCWC have met all major characteristics of a neural spike

- the spike duration is about 1ms, rapid change rate at the onset of a spike, and good

straight line fits during charging/discharging of an action potential. Similar results were

obtained and illustrated in Figure 4.10b for the WDM algorithm. These results show

that MCWC has provided comparable detection results as WDM. By visual inspection,

the detected neural spike cluster 2 in Figure 4.10a and Figure 4.10b do not preserve the
52

neural characteristics of a spike: 1ms duration and rapid slopes. Therefore the detected

cluster 2 by MCWC and WDM was classified as noise.

Next we look into another measure to evaluate variations in the detected spike

waveforms to obtain a quantitative evaluation and comparison. The average wave-

form of cluster 1 in Figure 4.10a and Figure 4.10b were used to form the neural spike

template waveforms. The distance between the template waveform and each detected

waveform is defined as

d =
1
K

K

∑
i=1
|s(i)− t(i)| , (4.25)

where d denotes the distance between the detected waveform and the template, K is the

sample length of the template, s(i) and t(i) are the ith element of the detected waveform

and the template, respectively, and |·| denotes 1-norm.

(a) Averaged spike waveform and an individ-
ual spike waveform that has the largest distance
measured by d in (4.25). Detection was per-
formed by MCWC using data set R1-1.

(b) Averaged spike waveform and an individ-
ual spike waveform that has the largest distance
measured by d in (4.25). Detection was per-
formed by WDM using data set R1-1.

Figure 4.11: Comparison between averaged spike waveforms and an individual spike
waveform which is the farthest from the average with the distance measured by (4.25).
The spike waveform that is the farthest from the average using MCWC (in part (a))
appears more spike like than that detected by WDM (in part (b)).

For data set R1-1, the distances for individual spike waveforms were computed,

and the waveforms with the largest distances are displayed in Figure 4.11a for MCWC

and Figure 4.11b for WDM. Based on the distance measure (4.25), statistics of the
53

computed waveform to template distances were generated for both MCWC and WDM.

Table 4.3a and Table 4.3b are the measured means and standard deviations (std) of the

computed distances for the first cluster from MCWC and WDM, respectively. These re-

sults show that the mean and the standard deviation of the distance measure are slightly

smaller for MCWC than the WDM.

neural spike cluster 1 noise
rate (Hz) 34.6 4.8
mean of histogram distance (µV) 19.9 N.A.
std of histogram distance (µV) 11.4 N.A.

(a) MCWC detection with data set R1-1.

neural spike cluster 1 noise
rate (Hz) 33.4 4
mean of histogram distance (µV) 22 N.A.
std of histogram distance (µV) 12 N.A.

(b) WDM detection with data set R1-1.

neural spike cluster 1 neural spike cluster 2 noise
rate (Hz) 12.4 25.6 3
mean of histogram distance (µV) 9.4108 8.0419 N.A.
std of histogram distance (µV) 3.2693 3.0673 N.A.

(c) MCWC detection with data set R2-1.

neural spike cluster 1 neural spike cluster 2 noise
rate (Hz) 8.6 25.2 7
mean of histogram distance (µV) 9.3171 7.7697 N.A.
std of histogram distance (µV) 3.4044 2.8188 N.A.

(d) WDM detection with data set R2-1.

Table 4.3: Statistics of the distance measurements using (4.25).

For data set R2-1, we analyzed MCWC and WDM detection results the same

way as we analyzed data set R1-1. For each detected neural spike cluster, the average

waveforms of WDM and MCWC detections preserve the neural spike characteristics.

The statistics from the distances calculated from (4.25) for MCWC and WDM detection

results are shown in Table 4.3c and Table 4.3d. Although for data set R2-1, the mean

and the std for MCWC are a little higher than those of WDM. Note however that the

54

WDM has put more waveforms into the “noise” category and has a little lower detection

rate than the MCWC. As a result, this may have improved the mean and std measures

for WDM. With both test results using R1-1 and R2-1, since there is no significant

difference measured by the mean and std, we consider the two algorithms performed

similarly on these two data sets.

4.3.3 Detection Performance with Neural Data Sets R1-2 and R2-2

To evaluate the robustness of the detection algorithms, we used R1-2 and R2-2 (50

seconds of neural recordings each) to examine detection performances by MCWC and

WDM.

Figure 4.12a illustrates the MCWC detection results using detected spike clus-

ters with alignment for R1-2. As shown in the figure, cluster 2 does not preserve the

neural spike characteristics and therefore it is classified into noise. As shown, spike

sorting in this case is quite straightforward. Figure 4.12b shows the detection result

by WDM without alignment when plotting each and individual spike waveform. Actu-

ally, in our experiment, when alignment was performed by using the same correlation

approach as did in previous tests for R1-1 and R2-1, the spike waveforms detected by

WDM did not appear aligned due to significant noise present in the real neural record-

ings. In order to provide a fair comparison between WDM and MCWC, we used our

subjective judgment to manually classify and align the WDM detection results. By

visually inspecting the resulted spikes by WDM algorithm, we noticed time shifted

groups of spike waveforms in Figure 4.12b. With the help of K-means, we clustered

the detected spike waveforms by WDM using the natural time shift as cluster differen-

tiators. Figure 4.13a, Figure 4.13b, Figure 4.13c and Figure 4.13d are detection results

shown by manually aligned spike waveform clusters by WDM. By a visual inspection,

the detected waveforms in Figure 4.13a, Figure 4.13c and Figure 4.13d preserve the

neural spike characteristics, while waveforms in Figure 4.13b appear to be noise. Com-
55

pared to Figure 4.12a, it takes more effort to sort spikes in Figure 4.12b to obtain the

results shown in Figure 4.13.

(a) MCWC detection results using data set R1-
2 with peak alignment (Cluster 1 Rate: 35Hz,
Cluster 2 Rate: 7.6Hz. S=5.). Detection results
are consistent with that of R1-1.

(b) WDM detection results using data set R1-2
without peak alignment, which was attempted
but encountered difficulty due to significant
noise presence. Manual inspection and clas-
sification is thus applied to the detection in this
case.

Figure 4.12: Waveforms of detected spikes using data set R1-2. MCWC has resulted
in consistent detection outcomes for data sets R1-1 and R1-2.

The MCWC and WDM detection results using real neural recordings of data

set R2-2 are shown in Figure 4.14 and Figure 4.15. Unlike data set R1-2, there are 2

clusters of neural spikes in R2-2. The detected waveforms in cluster 2 by MCWC (Fig-

ure 4.14c) appear to be noise or these waveforms cannot be reasonably aligned. Like

the detection results by WDM using data set R1-2, the WDM detected waveforms from

R2-2 still exhibit difficulty as shown in Figure 4.15a when alignment was performed

using the principle of maximizing correlation between waveforms. By applying the

same manual alignment method as for R1-2, the WDM sorted out 4 separate clusters,

one of which is considered noise. This result still is similar to that obtained from data

set R1-2.

Through the analysis of detection results in this section using sorting and man-

ual inspection, it shows that MCWC has demonstrated a comparable or better detection

performance than WDM.

56

(a) Cluster 1 of WDM detected spikes using
R1-2 (Rate: 21.2Hz).

(b) Cluster 2 of WDM detected spikes using
R1-2 (Rate: 5.7Hz).

(c) Cluster 3 of WDM detected spikes using
R1-2 (Rate: 8.4Hz).

(d) Cluster 4 of WDM detected spikes using
R1-2 (Rate: 4.7Hz).

Figure 4.13: Manually peak aligned WDM detected spikes using data set R1-2.

4.4.4 Evaluation using Real Neural Cortical Waveforms with Spike Waveform

Verification by Human

In this section we provide detection performance comparison for MCWC and WDM

using ROC performance curves. To do so, we manually examined two data sets to

provide the ground truth for 1) data set R1-1 that was used in section 4.3 earlier and 2)

a 10 minute long neural waveform recorded from rat 2 (R2-L).

To provide ground truth for R1-1, we manually inspected the neural waveforms

and extracted those identified spikes. The firing rate is about 40Hz. Figure 4.16a, Fig-

ure 4.16b and Figure 4.16c illustrate 3 sets of hand selected spike examples. Using

these manually generated spike truth, we were able to conduct a detection performance

57

(a) Waveforms of detected spikes with R2-2 us-
ing MCWC with peak alignment.

(b) MCWC detected spike waveforms of clus-
ter 1 with R2-2 (Rate: 13Hz).

(c) MCWC detected spike waveforms of clus-
ter 2 with R2-2 (Rate: 5.6Hz).

(d) MCWC detected spike waveforms of clus-
ter 3 with R2-2 (Rate: 26Hz).

Figure 4.14: MCWC detected spikes using R2-2.

comparison using ROC performance curves, the results of which are shown in Fig-

ure 4.16d. As shown in the figure, MCWC generally outperforms WDM in terms of

ROC.

In addition, we performed another test using a 10 minute long neural recording

from rat 2 (R2-L). The data set was obtained under the same condition as that used

previously, specifically R2-1 and R2-2. Both algorithms were applied to this 10 minute

long recording. Detection results are verified manually using the process similar to

that used in obtaining Figure 4.16. Varying different detection parameters, we have the

results shown in Figure 4.17. As shown in [49], the recommended range for L in WDM

is [−0.2,0.2] with L = 0 as the default selection. Also as noted in [49], higher L means

lower false alarm rate for WDM, which is verified by Figure 4.17 as well. Figure 4.17
58

(a) Waveforms of WDM detected spikes using
R2-2 without peak alignment.

(b) WDM detected spike cluster 1 after manual
peak alignment using R2-2 (Rate: 18.2Hz).

(c) WDM detected spike cluster 2 after manual
peak alignment using R2-2 (Rate: 11.3Hz).

(d) WDM detected spike cluster 3 after manual
peak alignment using R2-2 (Rate: 4.8Hz).

(e) WDM detected spike cluster 4 after manual
peak alignment using R2-2 (Rate: 7.8Hz).

Figure 4.15: WDM detection results using R2-2 with peak manual alignment per-
formed to overcome noise.

59

(a) Examples of the 1st set of hand selected
spike Waveforms from R1-1 using manual
alignment.

(b) Examples of the 2nd set of hand selected
spike Waveforms from R1-1 using manual
alignment.

(c) Examples of the 3rd set of hand selected
spike Waveforms from R1-1 using manual
alignment.

(d) Comparison of ROC performance curves
for MCWC and WDM based on manually pro-
vided ground truth of spikes for data set R1-1.

Figure 4.16: Spike detection for R1-1 with manual verification. In order to show the
spike waveform clearly, three clusters were identified and plotted. The ROCs for WDM
and MCWC are verified by the same manual spike detection.

also shows that for a given false alarm rate, MCWC’s detection rate is generally higher

than that of the WDM, and for a given detection rate, MCWC generates less false

alarms than WDM.

4.4.5 The Effect of Window Length and Real Time Implementation Issue

The results demonstrated above were obtained by implementing the MCWC algorithm

using Visual C++ (Microsoft Corporation) and Intel Integrated Performance Primitives

(Intel Corporation). The computer platform is equipped with an Intel Pentium4 2.8GHz

Hyper-Thread CPU with 1G memory. To assess real-time implementation potential of

60

Figure 4.17: Comparison of ROC performance curves for a 10 minute long neural
recording from the rat 2 (R2-L) using manually provided ground truth of spikes under
different parameter settings for MCWC and WDM.

the proposed MCWC algorithm, we took record of computational time of the MCWC

detection algorithm, and the results are summarized and reported here.

The proposed MCWC detection algorithm entails the following steps: wavelet

transform, wavelet coefficient correlation (multiplication), and comparison. For wavelet

coefficient correlation (multiplication) and comparison, the complexity is O(n), where

n is the number of data samples. For wavelet transform, using n samples for both

the wavelet function and the neural waveform, the complexity is O(n2) or O(nlogn) if

optimization is performed in implementation. However, due to the compactness of a

wavelet function, its effective length is much less than n. Therefore the wavelet trans-

form complexity reduces to approximately O(n). It is also possible to implement the

wavelet transform (integration) using hardware. For software implementation in this

paper, we take advantage of Intel Single Instruction Multiple Data (SIMD) technology

to accelerate the transform.

61

In our implementation, the Application Programming Interface (API) functions,

namely QueryPerformanceFrequency and QueryPerformanceCounter, were used to re-

trieve the frequency and the value of the high-resolution performance counter of the

computer platform respectively (Microsoft Developer Network, Microsoft Corpora-

tion) in order to measure the elapsed time for detection. In consideration of real-time

application, if the window length is chosen at J = 100ms in computing wavelet coeffi-

cients, then the waveform data from the window of 100ms will be stored in computer

memory before computation. During real-time application, it can process one block of

data with the length J at a time.

Table 4.4 shows the computation time of MCWC implemented at different win-

dow length J. The multiple-scale parameter S was set to a large value, 10, to make the

time estimate more conservative, since from our previous simulation results, S < 10

was usually used which requires less computation time than using S = 10. With multi-

ple thread programming technique on the multiple-core CPU architecture, we used two

program threads in our implementation. One thread is to collect the neural data while

the other one to run detection on the collected data. The window length was chosen

at J = 100ms. While the data collecting thread collects data for current 100ms period,

the detection thread runs the detection algorithm on the data recorded in the previous

100ms period. The time needed for running detection on 100ms data is much less than

100ms as shown in the Table 4.4. This implies that within the time frame of the current

100ms data collection, the detection procedure has completed detection on the previous

block of the 100ms data. Since the computation time is much below the 100ms time

window, any latency and jitter in the processor that may hinder the computation is not

of concern.

Additionally, in the current study, we measure the computation time with the

notion that the data of length J = 100ms have been collected. In our recording, the

waveform sampling rate is 24kHz, and each data point is saved with 16 bits. For 100ms

62

data, the resulted data size is 4.8KB. This is not a problem for any current computer

system that is able to collect data at the rate of 48KB/sec. For example, many camera

systems running in the Windows platform can show 640x480 (pixel) images at a frame

rate of 60 frame/second. If each pixel is 2 Bytes, the data rate is 640× 480× 2×

60=36MB/sec.

Under these considerations, we refer to MCWC as a “real-time” detection algo-

rithm. As shown throughout this study that, a window length J of 100ms is a reasonable

choice.

Table 4.4: Computation time of MCWC software implementation for different window
length J

window length J (ms) 50 100 250 500 1000 5000

Computation time (ms) 1.1 1.2 2.3 3.8 6.5 33.5

4.5 Conclusion

This paper introduces a new spike detection algorithm, MCWC, which makes use of

correlation and comparison among continuous wavelet transform coefficients at mul-

tiple scales. The method avoids using hard thresholding as was used in many popular

algorithms which usually results in high false alarm rates. But MCWC requires the

selection of parameter S which is the number of sampling scales used in computing

the multiple level wavelet coefficients. Similarly the WDM requires parameter L to be

selected a priori. Note that the two parameters differ in nature and have different im-

plications in implementations. We provided guiding principles on how to select S and

also illustrated using artificial and real data on the effect of different S parameter and its

impact on the detection performance. Our simulation results using real data sets show

that MCWC is comparable to WDM in terms of identifying waveforms that preserve

good physiological features of a neural spike. However, we clearly demonstrated that

as a result of the design principle of MCWC, it is more robust than WDM in the sense
63

that it produces less false alarms as shown using the artificial data set as well as real

neural recordings verified by manual inspection. In addition, the detected spike wave-

forms by MCWC are more consistent than those by WDM for real data set. Finally, we

demonstrate the potential of the MCWC algorithm for real-time applications in brain

machine interface or general neuronscientific studies.

64

Chapter 5

ROBUST SPIKE CLASSIFICATION BASED ON FREQUENCY DOMAIN

FEATURES AND SELF-ORGANIZED MAPS

5.1 Introduction

Neural spike sorting refers to the process of neural spike detection and classification.

Neural spike detection is to extract neural waveforms containing neural spikes from

noisy recordings. Neural spike classification is necessary after spike detection since

current extracellular multi-channel simultaneous recordings may pick up neural wave-

forms from more than one neuron on a single channel. Classification is then the process

to categorize the detected neural spikes with similar features into one cluster within

which each spike is considered to be from an isolated neuron. Spike sorting is thus the

very first step in neuroscience for spike train based studies such as spike rate and spike

time based neural coding [64], brain-machine-interface applications [37], and neural

correlation and synchrony studies [65]. The accuracies of spike sorting and the robust-

ness of spike sorting algorithms have significant impact on the performance of spike

train based analyses.

5.1.1 Introduction to Spike Classification

Spike sorting has attracted many research interests over the past two decades. Various

algorithms have been proposed [66]. Usually, neural spikes are clustered into disjoint

spike groups according to spike waveform features such as waveform shape, ratio be-

tween spike peak and duration, and statistical characteristics of the waveform. Each of

the clusters is considered a representation of neural spikes from one isolated neuron.

Ideas used in spike sorting are diverse. In the following, we review a couple represen-

tative approaches to spike classification.

Pouzat et al.[67] proposed a spike sorting method based on the analysis of noise

signature. In the development of the classification algorithm, noise is considered a mul-

tivariate Gaussian process. This method first extracted noise by subtracting the detected

65

spikes from the recorded neural waveforms. Then, analyzing the noise profile by com-

puting its second-order statistics, the authors modeled neural spikes by a general data

(spike) generation model. Each unit of the generation model represents one neuron.

The number of unit (neuron) was estimated by maximizing Bayesian information cri-

terion (BIC). Given the number of units (neurons), unit waveforms and firing rate, the

data generation model was estimated by expectation-maximization of the posteriori

probability of observed neural recordings. Once the general spike model is established,

spikes are classified by minimizing the square difference between the spike and the

model output.

The authors in [68] proposed a real-time spike classification method using tem-

plates generated from a “learning set” of neural spike waveforms. The candidate spikes

were detected by manual thresholding method. The candidate spike waveforms of the

learning set were selected by maximizing their discriminations among all unclassified

waveforms in terms of variance and distance. Then K-means with different numbers of

clusters was applied to all potential spike waveforms. The final chosen number of clus-

ters was determined by finding two consecutive cluster numbers, K and K+1, such that

the ratio in partition errors between the Kth and the (K +1)th clusters was less than 10.

Once the number of clusters was estimated, the mean of each cluster was used as the

spike template. In real-time spike sorting application, the Euclidean distance between

the detected waveform and template was used for as a sorting criterion.

Independent component analysis (ICA) has been applied to spike sorting in

[69]. A limitation of the ICA based spike classification method is that the number of

recording channels needs to be greater than the number of neurons, which is not quite

the case in extracellular cortical recording practices. Takahashi et al. then proposed

a new method integrating ICA with K-means to overcome such limitation [70] and

[71]. Before using ICA, K-Means was employed to sort out the detected spikes into

many clusters. Usually, the cluster number is twice as many as the possible number

66

of neurons. This fix seems to be able to address the first limitation. But however,

another limitation is that the algorithm requires statistical independence among the

source (unmixed) signals. That implies that the single unit activities are independent.

This is a rather un-realistic condition as shown in [72] where it shows that neuronal

correlations clearly exist.

One common concern for spike sorting algorithms is that they usually require

manual manipulation or parameter tuning. For multiple electrode arrays, such manual

manipulation has to be applied to each channel [73]. The parameters set by different

users may result in significant variations in the final clustering result [37].

To address these concerns, Letelier and Weber [74] classified neural spikes mak-

ing use of discrete wavelet (Daubechies-8) coefficients. First, the mean and the standard

deviation (SD) of the wavelet coefficients at each wavelet scale and time translation of

all detected spikes were calculated. The wavelet coefficient with the largest mean and

SD at some specific scales and time translations were visually selected to discriminate

different spikes. Second, for all selected coefficients, all possible combinations of 2-

D projections of the coefficients were plotted. With visual inspection, the projections

showing clear clustering boundaries were used to classify the spikes. However, the

neural spikes classified with respect to wavelet time translations may correspond to the

same spike cluster but with a time delay between them. Therefore this spike classifica-

tion requires an accurate neural waveform alignment procedure so that the spikes are

aligned with respect to a common reference. Also the number of all possible combina-

tions of 2-D projections of coefficients may be too high to make the algorithm practical

since it involves manually visual inspections by the user.

Hulata et al. [44] and [75] proposed a spike detection and sorting algorithm

based on a wavelet package. The optimal basis which concentrates most energy of

the neural signals was selected by maximizing the information entropy. The spikes

were sorted by local discriminant basis based on mutual entropy. As indicated in [76],
67

such approach is a supervised classification. Also the author in [77] showed that the

estimation of mutual information used in spike sorting was not an easy task.

Various neural network methods have been applied to spike sorting. For ex-

ample, Vogelstein et al. [78] uses support vector machines (SVM) for spike detection

and classification. However, it is necessary to train the SVM with manually detected

and classified spikes in advance. The accuracy of manual detected and classified spikes

may play an important role in the sorting performance based on SVM. The author in

[79] compared three classification methods: template matching, principle component

analysis (PCA) and artificial neural networks (ANN). The conclusion was that ANN

was the best classifier of all three methods though the ANN performance relied on a

large training data set.

Frequency domain features of neural spike waveforms along with PCA method

has been reported in [80] for spike sorting. The amplitude component (not phase

component) of detected spikes were analyzed by PCA and sorted by Fuzzy C-Means

(FCM). Evaluation with the artificial spikes showed that the proposed method improves

classification performance if the detected spikes were mis-aligned. However the peri-

odic nature of the discrete Fourier transform with a period π in the magnitude and

phase component had complicated their classification procedure. i.e., the spike wave-

forms with phase difference at π share the same frequency magnitude components but

with different waveforms in time domain.

By analyzing the physical features of a neural spike waveform, the authors in

[81] discovered that the differences in spike waveforms resulted in high frequency com-

ponents while low frequency components were results of noise. Based on the assump-

tions in the spike geometry model [82], the author used the first derivatives, acting as a

frequency shaping filter, as the feature to enhance spike sorting. Spike clustering was

implemented using evolving mean shift clustering algorithm. Sometimes post-merging

process was necessary since evolving mean shift clustering might result in too many
68

clusters [83]. The authors demonstrated their spike sorting results by using an artificial

data set.

WaveClus is a software package proposed by Quiroga et al. [76]. It is an un-

supervised spike detection and classification method without any explicit assumption

on the spike distribution. It describes spike features by wavelet transform coefficients

and classifies these features by super paramagnetic clustering (SPC) [84]. One of the

free parameters in the algorithm was the annealing temperature, which was used to

determine the number of clusters. The SPC clustering resembled a spin glass model

in physics, which changed its state in different ways at different temperatures. At low

temperature, all spins changed their states simultaneously and are classified into one

cluster. On the contrary, at high temperature all spins change states indecently and are

classified into different clusters. At the proper medium temperature, only some of the

spins change their states simultaneously and are classified into one cluster. WaveClus

automatically selects the proper temperature in the SPC classification algorithm [76].

The Offline Sorter (Plexon Inc., Dallas, TX) is a popular commercial spike sort-

ing package that has been widely used in the neuroscience community. It detects neural

spikes with a manual threshold. After that, the user can choose one of the three types of

spike classification algorithms: manual, semi-automatic and automatic methods [85].

Since manual and semi-automatic methods rely on a user’s experience for parameter

selection, the results are therefore subjective. But Offline Sorter also offers other au-

tomatic sorting algorithms including valley seeking and T-Distribution EM. Results in

[86] demonstrated that the T-distribution EM outperformed the valley seeking.

It is understandable that a good spike sorting algorithm should be accurate with

low false identification, robust to signal-to-noise ratio, and as less dependent on user

subjective choice as possible. With the advances in brain machine interface (BMI), real

time spike sorting also becomes a desired feature. Given the limitations of most of the

69

spike sorting algorithms, manual spike sorting still is very common [66]. This paper is

among the many that attempts to develop a useful automatic spike sorting algorithm.

5.2 Classification Based on Frequency Domain Features (CFDF)

Figure 5.1 is a schematic of the proposed spike detection and classification algorithm.

The system includes two important components: spike detection and spike classifica-

tion. Once spikes are detected, a Fourier transform is performed on the spike wave-

forms, the frequency domain features of which are used for classification. First, the

magnitude components are analyzed and placed into clusters. Second, the clusters

obtained from the first step will be examined further by making use of the phase com-

ponents.

Spike

detection

Spike classification

Classification

based on

magnitude

components of

FFT transform

Final

classifications

Pre-Cluster i

Pre-Cluster 1

Pre-Cluster n

…

Classification based on

phase components of

FFT

…

Classification based on

phase components of

FFT

Classification based on

phase components of

FFT

Figure 5.1: Schematic of the proposed spike detection and classification system named
CFDF. Classification uses frequency domain features: it first clusters spikes based on
the magnitude component. Then each cluster will be further classified based on the
phase component to form the final spike classification.

5.2.1 Spike Classification Based on Frequency Domain Features

Once neural spikes are detected using MCWC, the segment of waveform containing a

spike is extracted for further analysis. Aligning detected spikes according to a common

reference is an important step before spike classification especially when the shape of a

spike waveform is used as one of the spike sorting features. For example, a spike peak

or valley or zero crossing of the waveform are usually used as alignment references.

Various noise during recording, however, can interfere and result in mis-alignment,
70

which consequently degrades spike sorting performance. Our method examines the

mis-alignment by employing phase component of frequency domain features of the

spike waveforms. How the method works is introduced below.

Frequency Domain Features

A mis-aligned spike waveform introduces a time delay in the detected spike in

relation to others. Notice that a time delay results in a phase shift in the frequency

domain, but does not alter the frequency domain magnitude components of the spike

waveform. Taking advantage of this property, the proposed spike classification includes

two steps. First, spikes are classified according to frequency domain magnitude com-

ponents. The magnitude components of a waveform correspond with spike waveform

features such as spike duration and spike amplitude in the time domain. Therefore,

this step results in clusters, each of which shares similar waveform features except

spike mis-alignment in the time domain and possibly other subtle waveform differ-

ences. The second step makes use of the phase components in the frequency domain

of the spike waveforms in each cluster for further spike classification. Mis-alignment

of spike waveforms will be reflected in the phase components. As shown next, sub-

tle waveform differences also result in phase deviations across all frequencies. This

properties is helpful to classify the waveforms with subtle differences.

Enhancing Spike Features by FFT

Let x(n) (n ∈ [0,N−1]) be a spike waveform, and X(k) is its fast Fourier trans-

form (FFT). Then,

X(k) =
N−1

∑
n=0

x(n)e−
i2πkn

N (5.1)

71

As an example, let x′(n) represent a spike waveform deviating from x(n) by

∆(m) only at n = m as defined in(5.2).

x′(n) =

 x(n) n 6= m

x(m)+∆(m) n = m
(5.2)

Let X ′(k) be the FFT of x′(n), we will observe the following relationship be-

tween X(k) and X ′(k).

X ′(k) =
N−1

∑
n=0

x′(n)e−
i2πkn

N

=
m−1

∑
n=0

x(n)e−
i2πkn

N +[x(m)+∆(m)]e−
i2πkm

N +
N−1

∑
n=m+1

x(n)e−
i2πkn

N

= X(k)+∆(m)−
i2πkm

N . (5.3)

According to (5.3), for each digital frequency k, there are always phase changes

defined by ∆(m)−
i2πkm

N which results from waveform change at n = m. The term ∆(m)

acts as a short impulse in the time domain. It affects X(k) in all k’s. Taking this into

account during implementation of the phase values, unwrapped phase components are

considered so that the estimated phase components are continuous functions of time.

Phase unwrapping is helpful to accumulate any phase changes due to continuity and

smoothness constraints. Such property is helpful to capture subtle changes represented

by frequency phase components.

After these two steps, waveforms in each cluster share similar waveform fea-

tures with little or no time delay and little subtle waveform differences. A clustering

algorithm such as the Self-Organized Map (SOM) can then be used for classification of

waveforms into isolated neurons. Note that, if a detection algorithm has high detection

accuracy and low false alarm rate, then any other clustering algorithms will result in

very similar classification of neurons. Throughout this paper, we refer the proposed

method as classification with frequency domain features (CFDF).
72

5.3 Sorting Performance Evaluation for Spike Classification using CFDF

In this section, we will be using two artificial data sets to bench mark the proposed spike

classification algorithm CFDF. And then we will illustrate how the CFDF procedure can

be used to classify real neural spike waveforms effectively.

5.3.1 Artificial Data I

Each artificial neural data set was generated the same way as in [87]. The simulated

neural data sets were obtained by activating three types of neurons in the program: tar-

get neuron (used as truth), correlated neuron (its waveforms are regarded as correlated

interference), and uncorrelated neuron (its waveforms are regarded as uncorrelated in-

terference). The spike generating program was used to simulate neural waveforms of a

single channel from multiple channel recording arrays. In the simulation program, the

refractory period was set to 1ms.

In this study, two different artificial spikes were generated. Figure 5.2 shows

their averaged waveforms based on the ground truth of spike waveforms.

10 20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Sampling Points

A
m

pl
itu

de

 Average waveform of spike 1
Average waveform of spike 2

Figure 5.2: The average waveforms of artificial spikes generated according to the
ground truth. There are two different spikes used for evaluating spike classification
algorithms.

Offline Sorter Sorting Performance
73

When Plexon Offline Sorter was applied, spike detection was done by thresh-

olding on the “Energy of Signal”. Spikes were classified by automatic T-Distribution

E-M algorithm.

For thresholding detection, lower threshold guarantees most of spikes are de-

tected while noise may also be detected as false positives. Usually, spike detection

is supposed to sort out all these noise in order to reduce the false alarm, i.e., noise is

classified into one “noise” cluster. For the artificial data set I, there are 112 spikes fired

by two different neurons. The threshold was selected so that 206 potential spikes were

detected. Offline Sorter classified three clusters by T-Distribution E-M algorithm.

Table 5.1 shows Offline Sorter performance for artificial data I. With the true

spike timing provided by the artificial data I, the corresponding Offline Sorter correct

detection rate is 53.57% and false alarm rate is 70.87%, respectively. The false alarms

is not classified into one cluster as expected. Instead they distribute in each cluster.

Table 5.1: Offline Sorter performance for artificial data I.

Cluster No. Number of correct detection Number of false alarm
Cluster 1 7 10
Cluster 2 35 83
Cluster 3 18 53

Total 60 146

WaveClus Sorting Performance

WaveClus also uses thresholding for spike detection. Unlike Offline Sorter, WaveClus

uses both low and high thresholds. Any waveforms within these thresholds are detected

as spikes. The thresholds are defined in (5.4) and (5.5). The constant k in (5.5) defines

the threshold. The pair, (k1,k2),k1 < k2, defines low and high thresholds. For example,

k1 = 4 and k2 = 20 defines low and high thresholds as 4σn and 20σn, respectively.

74

σn = median
{
|x|

0.6745

}
. (5.4)

T hr = kσn. (5.5)

where median is the median filter, T hr is the detection threshold.

Table 5.2 shows WaveClus detection performance in terms of correct detec-

tion and false positive rate by varying both low and high thresholds. Comparing the

detection performance by MCWC later, WaveClus has a lower detection performance

than MCWC. In order to compare different spike classifications fairly, we use the same

detection result by MCWC as the input to both WaveClus and CFDF classifications.

Table 5.2: WaveClus detection performance with artificial data set I.

Low threshold (k1) High threshold (k2) Correct detection/False positive
k1 = 2 k2 = 25 49.11%/68.39%
k1 = 2 k2 = 20 49.11%/68.39%
k1 = 3 k2 = 20 17.86%/57.45%
k1 = 1 k2 = 20 76.79%/82.41%
k1 = 1 k2 = 10 76.79%/82.41%
k1 = 1 k2 = 3 74.11%/78.61%

Figure 5.3 shows the automatic classification result by WaveClus using MCWC

detection as the input. The automatic classification only shows one cluster while the

ground truth actually has two clusters. Manually varying the classification parameter,

WaveClus is able to classify two clusters as shown in Figure 5.4.

CFDF Classification Performance

For the artificial data I, the correct detection rate and false alarm rate for MCWC

were 95.54% and 10.83%, respectively. On the contrary, WaveClus only detects 8

spikes with the defalut settings for k1 = 4,k2 = 25.
75

5 10 15 20 25 30 35 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sampling Points

A
m

pl
itu

de

Figure 5.3: The unsupervised clustering results by WaveClus. Only one cluster was
classified while the truth was two neuron clusters.

5 10 15 20 25 30 35 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sampling Points

A
m

pl
itu

de

(a) The first cluster identified by WaveClus with
manually selected parameters.

5 10 15 20 25 30 35 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sampling Points

A
m

pl
itu

de

(b) The second cluster identified by WaveClus
with manually selected parameters.

Figure 5.4: WaveClus classification parameters were manually tuned to obtain a result
of two clusters.

Figure 5.5 shows CFDF classification results. Clustering based on magnitude

components in Figure 5.5a shows only one cluster. Classification based on phase fea-

tures was applied to the clustering results by magnitude components, which resulted in

two clusters as shown in Figure 5.5b shows two clusters. Figure 5.5c and Figure 5.5d

illustrated final classification results that are consisitent with the ground turth.

76

(a) SOM clustering result based on the magni-
tude componets of FFT. Only one cluster was
identified.

(b) Further classification based on phase fea-
tures. This result was obtained by applying
the SOM phase classification to the cluster-
ing result in (a).

5 10 15 20 25 30 35 40

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sampling Points

A
m

pl
itu

de

(c) The first cluster of artificial data set I by CFDF.

5 10 15 20 25 30 35 40

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sampling Points

A
m

pl
itu

de

(d) The second cluster of artificial data set I by
CFDF.

Figure 5.5: The propose spike sorting structure in Figure 5.1 applied to artificial data
set I.

77

5.3.2 Artificial Data II

The artificial data set II was provided in the WaveClus package [76]. We chose the

three most difficult subsets from the package for sorting performance comparison. The

truth to the data set includes three clusters in each of the three artificial data sets.

Offline Sorter Sorting Performance

As indicated in Offline Sorter manual [85], T-Distribution E-M algorithm has a

setting for its parameter, Degree Of Freedom (DOF). The theoretically calculated DOF

usually results in a poor classification. It is necessary to adjust DOF manually. Offline

Sorter introduces a parameter, D.O.F Mult., used to adjust the theoretical DOF by mul-

tiplying theoretically calculated DOF with D.O.F Mult.. T-Distribution E-M algorithm

usually classifies larger number of cluster with smaller DOF and less number of clusters

with larger DOF. Plexon Offline Sorter also provides several statistical measurements

used to evaluate spike sorting quality. The sorting quality is helpful to select the best

DOF setting. Five types of measurements were used: J3, Pseudo-F, Davies-Bouldin

validity metric, Dunn cluster validity metrics and p-value.

The selection criteria of the proper D.O.F Mult. is based on the following con-

siderations: 1) The D.O.F Mult. is selected in a way such that at least three clusters are

classified, since the ground truth is three. 2) if multiple D.O.F Mult.s result in at least

three clusters, we will select the cluster number and D.O.F Mult. in terms of statistical

measurements. In this paper, we used two different ranges and range resolutions for

D.O.F Mult.. One range was [10,100] with a resolution of 10. The second range was

[1,10] with a resolution of 1. The reason we used the second range was that the cluster

number by T-Distribution E-M algorithm usually varies less in the range [10,100] than

the range [1,10]. So we used a finer resolution for the range [1,10].

78

Table 5.3: Plexon Offline sorting results
for artificial data set II-1.

D.O.F Mult. Numbrt of Cluster D.O.F Mult. Numbrt of Cluster
1 8 2 6
3 4 4 4
5 4 6 3
7 3 8 3
9 2
10 2 20 2
30 2 40 2
50 2 60 2
70 2 80 2
90 1 100 1

Table 5.4: Plexon Offline Sorter performance evaluation
for artificial data set II-1.

Best classification measured by D.O.F Mult. Numbrt of Cluster
J3 2 6
Pseudo-F 6 3
Davies-Bouldin validity metric 8 3
Dunn cluster validity 6 3
p-value 1 8

Table 5.3 shows how the number of clusters varies with D.O.F Mult.s. The

data set used in this table was artificial data set II-1 (noise level 0.1). When the range

of D.O.F Mult.s was [10,100], the number of clusters was two or one. However, the

number of clusters was no less than three for the range [1,10]. Table 5.4 shows the best

classification and the corresponding cluster number in terms of statistical measurement.

Since there is no universally acceptable sorting evaluation method, we selected the

number of clusters which appeared more times than others. According to this criterion,

the best cluster number in Table 5.4 is 3.

Similarly, we analyzed artificial data set II-2 (noise level 0.15) and II-3 (noise

level 0.2) in the same way as for artificial data set II-1 (noise level 0.15). Table 5.5,

79

Table 5.5: Plexon Offline Sorter sorting results
for artificial data set II-2.

D.O.F Mult. Numbrt of Cluster D.O.F Mult. Numbrt of Cluster
1 7 2 5
3 3 4 3
5 3 6 3
7 3 8 3
9 3
10 3 20 3
30 2 40 2
50 2 60 2
70 2 80 2
90 3 100 3

Table 5.6: Plexon Offline Sorter performance evaluation
for artificial data set II-2.

Best classification measured by D.O.F Mult. Numbrt of Cluster
J3 1 7
Pseudo-F 3 3
Davies-Bouldin validity metric 3 3
Dunn cluster validity 3 3
p-value 1 7

Table 5.6, Table 5.7 and Table 5.8 show the corresponding Offline Sorter classification

results. The best number of clusters was selected as 3 for both data sets. To compare

sorting performance, we need to provide a fair comparing ground. In this case, we let

all algorithms result in 3 clusters since that is the number in the truth. For example,

for data set II-2, referring to Table 5.6 and Table 5.8, the Offline Sorter indicates that

3 is the most likely number of neuron clusters. We therefore compared the correct

classification rates in each cluster with the truth in each cluster to come up with the

final performance comparison Table 5.9.

WaveClus and CFDF Sorting Performance

80

Table 5.7: Plexon Offline Sorter sorting results
for artificial data set II-3.

D.O.F Mult. Numbrt of Cluster D.O.F Mult. Numbrt of Cluster
1 7 2 6
3 3 4 3
5 3 6 3
7 3 8 3
9 3
10 3 20 3
30 2 40 2
50 2 60 2
70 2 80 2
90 2 100 2

Table 5.8: Plexon Offline Sorter performance evaluation
for artificial data set II-3.

Best classification measured by D.O.F Mult. Numbrt of Cluster
J3 1 7
Pseudo-F 3 3
Davies-Bouldin validity metric 8 3
Dunn cluster validity 8 3
p-value 1 7

The WaveClus package provides some artificial data sets for evaluation purpose.

In order to compare different algorithms fairly, WaveClus and the proposed CFDF

method used the same detected spikes which was provided with WaveClus package.

Figure 5.6 and Figure 5.7 show that the SOM classification results for the artificial data

set II. The proposed CFDF method classified the spikes into four clusters. In Table 5.9,

the correct classification rates for the artificial data set II are listed referenced by ground

truth. The comparison shows that the proposed CFDF method has a better classification

performance than WaveClus. For the third data set, the classification presented in [81]

was 92%, higher than the proposed CFDF method by 9%. However, the algorithm in

[81] sometimes needs “post-merging” since such clustering might result in too many

81

(a) (b)

(c)

Figure 5.6: The SOM classification of artificial data set II-1. (a)The SOM classification
of frequency amplitudes. Visual classification shows two clusters. Each of them will
be further classified with phase information respectively as shown in (b) and (c). (b)
The SOM classification of frequency phase of one cluster, which shows two clusters.
(c) The SOM classification of frequency phase of the second cluster, which shows two
clusters.

clusters [83]. Since no details were available on how to select the classificaton param-

eters and merge different clusters in [81], we just focused on comparing our proposed

CFDF method with WaveClus.

5.3.3 Real Neural Recording

We used real microarray recordings from rat’s motor cortical digitized at 24kHz using

TDT RX5 Pentusa Base Station (TDT, Inc). Four sets of neural recordings (RM-1,
82

(a) (b)

(c)

Figure 5.7: Classification results by CFDF for artificial data set II-3.(a)The SOM clas-
sification of frequency amplitudes. Visual classification shows two clusters. Each of
them will be further classified with phase information respectively as shown in (b) and
(c). (b) The SOM classification of frequency phase of one cluster, which shows two
clusters. (c) The SOM classification of frequency phase of the second cluster, which
shows two clusters.

83

Table 5.9: Correct classification rate for the artificial data set II.

Data set Offline sorter WaveClus CFDF
II-1 (noise level 0.1) ≤68.6% 99.71% 99.65%
II-2 (noise level 0.15) ≤59.47% 83.12% 95%
II-3 (noise level 0.2) ≤50.0% 46.17% 83%

RM-2, RS-1, and RS-2) from 2 rats were examined. Neural waveforms were recorded

while the rats freely moved about inside a Skinner box.

Figure 5.8 shows the detected waveforms of RS-1.

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

Figure 5.8: Detected spike waveforms from RS-1.

Figure 5.9 shows the waveforms of two clusters classified by the amplitude

feature of RS-1.

After the first step of clustering based on the amplitude components, we pro-

ceeded to the second step: classifying each cluster from the first step using phase fea-

tures. Finally, we classified the RS-1 into four clusters as shown in Figure 5.10. We

applied the same classification procedure to RM-1 and find similar outcome.

In order to compare the method CFDF proposed in this paper with other meth-

ods fairly, we used the same detected waveforms as used in CFDF for WaveClus classi-

84

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(a)

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(b)

Figure 5.9: (a)The first cluster identified by the first SOM using magnitude components
for data set RS-1. (b) The second cluster identified by the same SOM in (a).

5 10 15 20 25 30 35 40

−1.5

−1

−0.5

0

0.5

1

x 10
−4

Sampling Points

A
m

pl
itu

de

(a) The first cluster of data RS-1

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(b) The second cluster of data RS-1

5 10 15 20 25 30 35 40

−1.5

−1

−0.5

0

0.5

1

x 10
−4

Sampling Points

A
m

pl
itu

de

(c) The third cluster of data RS-1

5 10 15 20 25 30 35 40

−2

−1

0

1

x 10
−4

Sampling Points

A
m

pl
itu

de

(d) The fourth cluster of data RS-1

Figure 5.10: The four clusters identified by frequency domain features using the pro-
posed algorithm in Figure 5.1. For the first cluster in (a), the waveform amplitudes
around sample 0 to 15 are pretty close to those around over-shoot area (from sample
30 to sample 40). For the second cluster in (b), the waveform amplitudes around the
on-set (from sample 0 to sample 15) are lower than those around over-shoot area (from
sample 30 to sample 40).

85

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(a) The first cluster identified by WaveClus for
data RS-1

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(b) The second cluster identified by WaveClus
for data RS-1

Figure 5.11: The WaveClus parameter setting scenario 1 : the unsupervised clustering
result (Temperature is selected automatically). Only two clusters are classified.

fication. Figure 5.11 and Figure 5.12 show that WaveClus classification results of RS-1

varied with the parameters, which require careful selection. None of WaveClus classi-

fication results shows clearly as what the CFDF method did. It is noted that Waveclus

can’t classify the waveforms in Figure 5.11a in the same way as CFDF did as shown in

Figure 5.10a and Figure 5.10b. Similar observations apply to the data RM-1 for CFDF

and WaveClus.

5.4 Conclusion

This paper proposes a spike classification algorithm, namely the CFDF. The algorithm

relies on both magnitude and phase features of the potential spike waveforms in the

frequency domain. Classification based on magnitude features alone results in a rough

distributions of clusters. Further classification based on phase features can capture fine

and subtle differences within each cluster generated from the previous step. The perfor-

mance comparison shows that the CFDF algorithm is more robust than the sophisticated

Super Paramagnetic Clustering (SPC), and it is comparable to popular spike sorter such

as Offline Sorter. Even though it requires supervision when deciding on the final clus-

ter numbers, using the SOM clustering algorithm makes the process straightforward

since the U-matrix intuitively and clearly shows different clusters. Existing automatic

86

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(a) The first cluster of data RS-1

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(b) The second cluster of data RS-1

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(c) The third cluster of data RS-1

5 10 15 20 25 30 35 40

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Sampling Points

A
m

pl
itu

de

(d) The fourth cluster of data RS-1

Figure 5.12: The WaveClus parameter setting scenario 2 : Manual classifying four
clusters of RS-1.

methods can also be applied to determine the number of clusters [88] in this this regard.

Therefore the proposed method is suitable for neuroscience applications.

87

Chapter 6

SPIKE-TIMING-DEPENDENT PLASTICITY IN VIVO: MODIFICATION OF

FUNCTIONAL EFFICACY IN RAT’S MOTOR CORTICAL AREAS INDUCED BY

COGNITIVE LEARNING

6.1 Introduction

Spike-timing-dependent plasticity (STDP) refers to the biological process that mod-

ifies neural synaptic efficacy based on relative spike timings of a pair of pre- and

post-synaptic neurons. It provides a potential hypothesis on the biological basis and

functional mechanism for explaining cognitive learning and memory in the brain [89].

Central to STDP is the idea that any significant and consistent synaptic connections

among neurons are expected to result in significant neural spiking dependency. Func-

tional neural interactions discussed in this paper refers to the strength conjoining a pair

of neurons in a network likelihood model which takes into account inputs from a neural

ensemble toward the firing probability of a target neuron. Under this consideration, this

paper aims at studying functional STDP via neuronal interactions embedded in a spik-

ing neuron model, or specifically the network likelihood model where the functional

interactions between neurons are estimated from extracelluarly recorded spike trains.

This paper is built on the network likelihood model proposed in [90], and the

focus is to develop means to estimate neuronal interaction parameters embedded in

the model. The proposed estimation algorithm is based on direct observations of the

spatiotemporal firing patterns and as a result, it is much simplified from the (iterative)

maximum likelihood methods [90] and requires few assumptions. This paper also at-

tempts to identify neuronal firing patterns in a rat’s motor cortical neural ensemble as

the rat learned to perform a directional control task. Such spatiotemporal patterns are

examined via the functional interconnection strengths embedded in the network likeli-

hood model.

88

The cellular basis of neuronal interactions or specifically STDP is an intense

area of investigation in neuroscience. It involves the examination of the synaptic ef-

ficacy between a pre- and a post-synaptic neuron [91]. From a computation perspec-

tive, the simple correlation measures of neural activities reveal dependencies of spike

timings between two spike trains. There have been several popular and different ap-

proaches to computing temporal dependencies among neurons. The correlation coeffi-

cient is probably the most common [92]. The strength of such correlation coefficients

reveals coincidences of spike timings in a neural ensemble. Furthermore, statistics

based on inter-spike intervals (ISI) from spike timings of multiple neurons are also

important descriptions of neuronal interactions. Examined in a frequency domain us-

ing Fourier transform, ISIs correspond to phase lags in the frequency domain. Thus, a

phase lag index (PLI) was proposed to quantify synchronization and functional connec-

tivity among multiple channel EEGs and MEGs in [93]. Using probability and infor-

mation theory, neuronal interactions can be measured by mutual information of spike

timings in a neural ensemble [94]. More generally, Granger causality [95], a powerful

method revealing the causal relationship between two time series, has been applied to

estimating neuronal interactions [96]. However, all these measures discussed above are

only good mathematical indicators of pair-wise interactions between two neurons. As

discussed in [90], the pair-wise measurement is incapable of taking into account the

dependencies on other neurons in the ensemble.

A class of maximum likelihood methods was first proposed in [97] for the si-

multaneous analysis of multiple pair-wise interactions of neurons in an ensemble. In

[90], the authors proposed a discrete-time version of one of those maximum likelihood

methods. In the meantime, the authors created a new approach to computing the start-

ing values and the stopping criterion in the iterative maximum likelihood method. In

this study, we aim at using the same discrete-time network likelihood model as in [90]

89

to study neuronal interactions based on spike trains of a neural ensemble to go beyond

pair-wise neural interactions.

Specifically in this paper, we introduce a new and easy to implement compu-

tational approach to estimate the interconnection strength parameters in the network

likelihood model. Actually, our results can be extended to spiking neuron models

more general than the network likelihood model. As will be shown, the method relies

on identifying repeated firing patterns in a statistically significant sense and therefore,

leads to accurate parameter estimation as long as a sufficiently long recording is avail-

able. We will derive a clear bound on the data length for accurate parameter estima-

tion. This new method is easy to implement, and it accounts for simultaneous firing of

multiple neurons within a history window. This consideration is more consistent with

neurophysiology since restricting multiple neurons from spiking in a history window,

which spans at least 10 to 100 msec, is not always realistic. Therefore, the assumption

of only one spike fires in a history window as needed in [90] can be removed in this

study. In addition, this new method of parameter estimation provides us an opportunity

to study functional neural plasticity in an ensemble to relate the mechanics of brain

activity to measurable learning control behavior of rats.

6.2 Neuronal Interaction Represented in a Spike Train

Here in this study, we broadly refer to spiking neuron models as the general class of

models aiming at increasing the level of realism in a neural simulation of spiking neu-

rons. In the following, we introduce some model constructs that are closely related to

the network likelihood mode that is considered in our study. Generally speaking, these

spiking neuron models consider firing an action potential when the neuron’s membrane

potential reaches a specific value. When a neuron fires, its action potential travels to

other neurons and via synaptic connections between neurons in the ensemble, in turn, it

increases or decreases other neurons’ potentials. The Hodgkin-Huxley model is widely

regarded as one of the most important, neurophysiological description on how neural

90

action potentials are initiated and propagated. It is a set of nonlinear ordinary differen-

tial equations that approximates the electrical characteristics of excitable neuron cells.

Several simplified neuronal models have also been developed, which also facilitate

mathematical insight into dynamics of realistic action potential generation.

The spike response model (SRM) [98] is reduced from the Hodgkin-Huxley

equations. As a result, it is a single-variable threshold model. The model is approx-

imated by a response kernel expansion in terms of a single variable, the membrane

voltage. It was shown a good approximation to the Hudgkin-Huxley model [98]. In the

SRM, the post-synaptic membrane potential of a neuron, denoted by u(t), is described

by (6.1), where t is time, t̂ is the time of the last neuronal spiking time, η represents

the action potential depolarization and hyperpolarization, w j represents the jth synaptic

efficacy, t f
j denotes the arrival time of the f th spike at synapse j, and finally, ε is the

time course of post synaptic action potentials. In SRM, a neuron fires an action poten-

tial or spike when u(t) crosses a threshold from below. Equation (6.1) indicates that the

neuronal membrane potential u(t) depends on the firing history of a neural ensemble.

It is also noted that higher membrane potential leads to higher probability of firing an

action potential [99].

u(t) = η(t− t̂)+∑
j
∑

f
w jε(t− t̂, t− t f

j). (6.1)

The firing rate model in [100] describes the interdependence between the mean

firing rate hi of neuron i (post-synaptic neuron) upon its input ai as shown in (6.2),

where ai is the sum of all incoming activities hc (c being the pre-synaptic neuron), g is

called the gain function of a neuron.

hi = g(ai) . (6.2)

91

Now let Γi be the collection of neurons with pre-synaptic inputs to neuron i, and

the pre-synaptic input ai is defined as the sum of pre-synaptic neural activities in (6.3),

where Ji,c is synaptic efficacy between pre-synaptic neuron c and post-synaptic neuron

i.

ai = ∑
c∈Γi

Ji,chc. (6.3)

The rate model of neural activity is thus described in (6.4),

hi = g

(
∑

c∈Γi

Ji,chc

)
. (6.4)

Introducing time into (6.4), the rate model relating neural mean firing rate to

neural ensemble activity is thus described by (6.5),

hi(t +1) = g

(
∑

c∈Γi

Ji,chc(t)

)
. (6.5)

Note that the recurrent nature of (6.5) actually has resulted in that the target

neuron’s firing rate is affected by neural activity history of a neural ensemble. The Ji,c

in (6.5) may be viewed as a functional synaptic efficacy between two extracellularly

recorded neurons. The w j in the SRM model of (6.1) however, directly reflects the

physiological coupling strength or synaptic efficacy of two neurons. Since a neuron’s

firing rate and a neuron’s firing probability both reflect a computed property indicat-

ing the likelihood or frequency of a neuron firing a spike, we therefore consider the

firing rate model in (6.5) actually relates a neuron’s spike firing probability with neural

activity history of an ensemble.

In this study, based on the network likelihood model [90], we also consider the

firing probability of a target neuron as a function of neural activity history of a neural

92

ensemble via functional synaptic efficacy. To proceed, let Ht be the neural activity

history of an ensemble of C neurons,

Ht =
{

I1,1(t), · · · , I1,M(t), I2,1(t), · · · , I2,M(t), · · · , Ic,m(t), · · · , IC,1(t), · · · , IC,M(t)
}
.

(6.6)

where at time t, Ic,m(t) represents the number of spikes generated by neuron c at the

mth time bin during the time window [t−mW, t− (m− 1)W). Here, we let W and M

be the bin width and the number of bins in an observation window, respectively. In

this paper, W = 1 msec is used as the default value in all results reported unless stated

otherwise. Therefore, Ht defined in (6.6) denotes a collection of Ic,m(t)’s in the interval

[t−MW, t). For t1 6= t2, we define two identical histories Ht1 = Ht2 if and only if

Ic,m(t1) = Ic,m(t2),1≤ c≤C,1≤ m≤M. (6.7)

In the network likelihood model [90], for a given firing history Ht as defined

in (6.6), the firing probability density of neuron i at time [t, t +∆t), denoted by λi(t +

∆t|α i,Ht), is formulated in (6.8),

λi(t +∆t|α i,Ht) = exp

[
αi,0 +

C

∑
c=1

M

∑
m=1

αi,c,mIc,m(t)

]
. (6.8)

where αi,0 is neuron i’s spontaneous firing probability density that is not related to the

firing history of other neurons, αi,c,m is the functional neural interaction strength or

functional synaptic efficacy from neuron c to i in observation window m, and

α i =
[
αi,0 · · ·αi,c,m · · ·αi,C,M

]
. (6.9)

Therefore according to (6.8), given α i, identical Ht’s defined in (6.7) lead to the

same λi(t +∆t|α i,Ht). Let neuron i’s firing probability in time interval [t, t +∆t) be
93

denoted by Pt . It can thus be determined by (6.10), where ∆t is the time resolution used

in calculating Pt . As discussed earlier, ∆t = 1 msec is used in this paper.

Pt = λi(t +∆t|α i,Ht)∆t. (6.10)

In this study, we can actually generalize our results from the network likelihood

model in [90] to one with a more general gain function g as shown in (6.11),

λi(t +∆t|α i,Ht) = g

[
αi,0 +

C

∑
c=1

M

∑
m=1

αi,c,mIc,m(t)

]
. (6.11)

Specifically as will be shown below, the gain function g can be more general

than an exponential as used in [90], or a sigmoid used in [100]. In this paper, we only

require the gain function g to be monotonically increasing. Therefore this general-

ization may include the actual action potential initiation and firing characteristics as a

special case.

From equation (6.11), the neuronal firing probability during [t, t +∆t) is a func-

tion of the spontaneous firing rate αi,0, the functional synaptic interaction strength,

αi,c,m, between a pair of neurons in the ensemble, and the firing history of the ensemble.

The parameter αi,c,m thus places a weight on the spike timing dependency. Once these

functional synaptic efficacies are examined while rats learned to perform a behavioral

control task, they may provide a functional specification of the spike-timing-dependent

plasticity (STDP) based on in vivo single unit recordings.

6.3 Estimating Synaptic Efficacy using Iterative Maximum Likelihood

A recursive maximum likelihood estimation of neural interaction strength, or func-

tional synaptic efficacy αi,c,m in (6.8), was proposed in [90]. Using artificial neural

spike trains, it was proved that this method was able to preserve direct functional

connectivity of a neural ensemble. Under an assumption that only one spike fired

94

in a history window, the maximum likelihood estimation of α i in equation (6.9) is

determined iteratively from the following procedures (6.12), (6.13) and (6.14), where

j = (c−1)M+m, Ni(t) is the number of spikes fired by neuron i up to time t, Ni,k:k+1 =

Ni((k+1)∆t)−Ni(k∆t), k = 0,1, · · · ,K, K = dT/∆te, T is the length of the spike train,

∆t is time resolution, and n is the iteration numbers.

γi, j = exp(αi, j) = exp(αi,c,m). (6.12)

βi, j =
∑

K−1
k=0 I j,kNi,k:k+1

∑
K−1
k=0 Ii, j

[
∑

D
l=0 Il,k

]
Ni,k:k+1

. (6.13)

γ
(n+1)
i, j = γ

(n)
i, j

 ∑
K−1
k=0 I j,kNi,k:k+1

∑
K−1
k=0 Ii, j

[
∏

D
l=0

(
γ
(n)
i, j

)Ii, j
]

∆t

βi, j

. (6.14)

It is noted that, the iterative maximum likelihood method described by equa-

tions (6.12), (6.13) and (6.14) make use of model (6.8) where the gain function is

exponential. It may not be easy to derive at a similar procedure as in (6.12), (6.13) and

(6.14) if the gain function becomes more general than an exponential.

In the following, we will develop a new procedure to estimate the synaptic

efficacy parameter α i for a generalized network likelihood model in (6.11), by which

we mean the gain function g in (6.11) can be more general than exponential as used in

(6.8) as long as it is monotonically increasing. We will make use of the new procedure

to analyze synaptic plasticity represented in the model parameters α i in conjunction

with a rat’s behavioral learning process.

95

6.4 Estimating Spike Firing Probability in the Generalized Network Likelihood

Model using a Perceptron Bank

We now develop a new approach to the problem of estimating neuronal interactions

based on the generalized network likelihood model in equation (6.11). Given that ∆t is

small, actually 1 msec in our analysis of the experimental data, firing an action potential

within this small window [t, t +∆t) for neuron i can be viewed as a Bernoulli trial. As

such, consider r, which is a random number from a uniform distribution in [0,1], the

spike generation with a firing probability Pt can be modeled by (6.15) as discussed in

[101].

 neuron i fires if Pt = λi(t|α i,Ht)∆t > r,

neuron i remains silent if Pt = λi(t|α i,Ht)∆t ≤ r.
(6.15)

Next consider a perceptron network defined in (6.16) where y is the output of

the perceptron network while xv (1≤ v≤V) is the input, wv (1≤ v≤V) is the weight,

b is the bias [102].

y =

1 if ∑

V
v=1 wvxv +b > 0,

0 if ∑
V
v=1 wvxv +b < 0.

(6.16)

Center to the idea of approximating the neural firing probability in (6.11) is

to use a set of such perceptron networks described in (6.16), or a perceptron bank, to

re-produce the random experiment defined in (6.15). Namely, the perceptron training

aims at obtaining parameters wv, xv and b in a perceptron bank to correspond with

αi,c,m, Ic,m(t) and αi,0. By doing so, a bank of deterministic perceptron networks each

of which described by (6.16) can be used to approximate a random spiking process.

96

The key implementation steps can then be developed as follows. Given a neural

spike train, the spike histories are classified into S clusters for identical Ht’s defined in

(6.7), i.e., the histories in the sth(1 < s < S) cluster, denoted by Hs, are identical. Its

cardinality is denoted by N(s) as in (6.17).

N(s) = card{Hs | number of identical Ht’s in the sth cluster}. (6.17)

Note that the trivial cluster of Ht without any spikes is not considered one of

the S firing patterns. Given α i, as indicated in (6.11), the spiking history Ht affects the

spike firing probability Pt , and that Pt1 = Pt2 if Ht1 = Ht2 (t1 6= t2). Let Ps be the neural

firing probability given Ht ∈ Hs. Each firing history in Hs and its associated spiking

state (fire or not) inside time window [t, t +∆t) can be used as input and desired output,

respectively to train one local perceptron. For multiple training data sets from multiple

time segments, multiple perceptrons consisting of a perceptron bank can be trained in

the same way and then used to estimate the strength of neural interactions.

Let Hs
t (l) (1 ≤ l ≤ N(s)) denote the lth element in Hs, i.e., Hs

t (l) ∈ Hs. Let

wv,l (1 ≤ l ≤ N(s),1 ≤ v = (c− 1)M +m ≤ V = CM) be the weight wv learned in

the lth local perceptron network corresponding to Hs
t (l). Let yl(t + 1) be neuron i’s

firing state at time interval [t, t +∆t) given Hs
t (l). The error between the perceptron

network output and the desired output defined by e = yl(t +1)− y can be used to train

the network. The training procedure is summarized below in the table of Algorithm 1.

Given a training data set Hs
t (l) and its corresponding desired output yl(t +1) =

1, the output of the network with updated weights wv,l = Ic,m(t) is 1 according to (6.18)

since only nontrivial cluster of Ht are considered.

y =
V

∑
v=1

wv,lIv(t) =
V

∑
v=1

Iv(t)2 > 0. (6.18)

97

Algorithm 1 Local perceptron network training

initialize wv,l = 0,v = (c−1)M+m, 1≤ c≤C,1≤ m≤M;
calculate training error e;
if e = 0 then

no change to wv,l;
else

while e 6= 0 do
update wv,l = Ic,m(t), v = (c−1)M+m,1≤ c≤C,1≤ m≤M;
calculate training error e with updated weights;

end while
end if

On the other hand, wv,l = 0 if yl(t +1) = 0. As such, depending on the value of

the desired output of being 1 or 0, the weight of the perceptron network will be either

zero or equal to Ic,m(t) in the next iteration consequently.

6.4.1 Estimating Firing Probability Given Neural Ensemble Firing History

Figure 6.1 and Figure 6.2 provide a summary for training the single perceptron network

and the perceptron bank, respectively as discussed previously.

1x mx Mx vx (1) 1C Mx (1)C M mx CMx(1) 1c Mx cMxvx 0/1

desired output

1w mw Mw vw (1) 1C Mw (1)C M mw CMw(1) 1c Mw cMwvw

(1)v c M m

1,1I 1,mI 1,MI ,1cI ,c mI ,c MI ,1CI ,C mI ,C MI

neuron 1's activity neuron 's activityc neuron 's activityC

tH 0/1

neuron 's spiking

state in [,)

i

t t t

Figure 6.1: Illustration of a single perceptron network training. The neural ensemble
activity Ic,m(t) is used as the perceptron network’s input denoted by xv where v = (c−
1)M+m. The respective weight wv is trained with respect to the desired output which
is neuron i’s firing state at [t, t +∆t).

In this study, the probability of firing a spike in [t, t +∆t) given a spike his-

tory Hs
t ∈ Hs is considered a Bernoulli trial with probably Ps. According to (6.15), a

spike train can be generated and simulated by a Binomial process with its Bernoulli
98

firng state

0/1 1,lw, ()C M lI t1,1()lI t ,v lw ,CM lw

0/1 1,1w, 1()C MI t, 1()c mI t1,1 1()I t ,1vw ,1CMw

Ps

() ,1 ()s s
tH l H l N s

, ()()c m N sI t

(1)s
tH

(())s
tH N s

Figure 6.2: Illustration of perceptron bank training. Each firing history Hs
t (l) ∈ Hs

corresponds to the weights of one local perceptron network. After training, the weight
wv,l corresponding to αi,c,m is equal to one or zero depending on neuron i firing or not at
[t, t +∆t). The mean of {wv,l} over the perceptron bank is neuron i’s firing probability
given Hs denoted by Ps as shown in (6.19), where s is the cluster index.

parameter p = Ps given Hs. If we allow N(s) in (6.7) to be sufficiently large, the Bino-

mial distribution can be approximated by a Gaussian distribution. This condition can

be relatively easily satisfied since it corresponds to increasing the length of the neural

recording. For a Gaussian distribution, its mean also is the maximum likelihood esti-

mate of Ps, the estimation confidence interval is determined by its standard deviation.

In order to estimate the probably Ps from the perceptron bank, we take into ac-

count the fact that after training, the weight vector in a perceptron network corresponds

to the firing history Hs
t . Also, the total number of N(s) identical firing histories in Hs

is the total number of perceptron networks in the sth perceptron bank. Therefore, the

perceptron bank can be viewed as an outcome map of the stochastic event of neuron

ith firing profile as a function of the firing history from a neuron ensemble. The neuron

ith firing probability can then be estimated as the fraction of the total number of firing

events n(s) over the total number of perceptron networks N(s), i.e.,

Ps =
n(s)
N(s)

. (6.19)

99

The estimation of the neuronal firing probability according to (6.19) is a result

of the law of the large numbers. It is easy to prove theoretically that our estimation

method in (6.19) asymptotically approaches the true value of α i. For other methods,

such as the iterative maxim likelihood (ML) method [90] and maximum a posteriori

(MAP) [103], it is not obvious or intuitive to draw the same conclusion. Note that, the

estimation algorithm based on generalized linear model (GLM) [104] as well as the

maximum likelihood method [90] make use of the exponential transfer function as the

link function. The estimation method may need to be modified if other link functions

are to be used in the respective models. However, in our proposed perceptron bank

approach, the gain function in (6.11) can be more general and it does not need to be

known, so long as it is a monotonically increasing, which includes the exponential link

function. This is because as long as the gain function is monotonically increasing,

neuron ith firing probability according to (6.11) is proportional to the synaptic efficacy

to neuron i. Therefore, the statistical significance of neuron ith spike firing probability

is proportional to the statistical significance of the synaptic efficacy to neuron i. Thus.

the proposed method can be considered a generalized method for estimating neural

synaptic efficacy. Note that in the next subsection, we will clearly define statistical

significance of a synaptic efficacy.

6.4.2 Estimating Synaptic Efficacy αi,c,m

Once neural firing probability Ps is estimated from (6.19), then a set of linear equations

can be formed according to (6.20) by integrating (6.11) and (6.10) with (6.19).

g−1(
Ps

∆t
) =

[
αi,0 +

C

∑
c=1

M

∑
m=1

αi,c,mIc,m(t)

]
. (6.20)

Define IH, α i, and P in (6.21) , (6.9) and (6.23), respectively.

100

IH =

1 · · · 1 · · · 1
...

...
...

I1
c,m · · · Is

c,m · · · IS
c,m

...
...

...

I1
C,M · · · Is

C,M · · · IS
C,M

(6.21)

P =

[
g−1(

P1

∆t
) · · ·g−1(

Ps

∆t
) · · ·g−1(

PS

∆t
),

]T

(6.22)

then (6.20) becomes

α iIH = P. (6.23)

Neural synaptic efficacy in (6.9) can be solved as least squares solution to (6.23)

or specifically,

α i = IH
+P, (6.24)

where IH
+ is the pseudo-inverse of IH. This least-squares solution is clearly simpler

and more intuitive than the computations presented in (6.13) and (6.14) which require

the assumption that only one spike fires in a history window as indicated in [90].

The estimated Ps in (6.19) asymptotically approaches the true spike firing prob-

ability modeled in (6.11) as N(s) increases. To achieve a desired approximation accu-

racy, we would like to quantitatively determine the minimum N(s) value. As discussed

previously, given a spike firing history Hs
t , we consider the spiking outcome, bn, in

[t, t +∆t) a Bernoulli trial, where 1≤ n≤ N(s). Therefore bn = 1 corresponds with the

firing of a spike while bn = 0 corresponds with no spike firing status. The probability

of spike firing can then be modeled as a Binomial process,

As N(s) increases, or practically for N(s) > 5, if condition (6.25) holds as

shown in [105],
101

∣∣∣∣∣ 1√
N(s)

(√
1−Ps

Ps −
√

Ps

1−Ps

)∣∣∣∣∣< 0.3, (6.25)

the Binomial variable B can be approximated by a Gaussian process, where the param-

eters of the Gaussian process is determined by (6.26) and (6.27) below.

B =
1

N(s)

N(s)

∑
n=1

bn ∼ N(µ,σ2), (6.26)

 µ = λi(t +∆t|α i,Ht)∆t

σ2 = N(s)µ(1−µ)
(6.27)

Table 6.1: Adequate N(s) for Gaussian Approximation in (6.25)

Mean firing rate (Hz) Ps (msec) N(s)

5 0.005 2189

50 0.05 189

100 0.1 79

Table 6.1 shows the adequate N(s)s for different mean firing rates. To quantita-

tively determine an appropriate N(s) for estimating a neuron’s firing probability given

an ensemble firing history, we make use of measure D, which is the deviation of the

estimation from the truth.

D(L) =
∣∣∣∣g−1(µ +Lσ)−g−1(µ)

g−1(µ)

∣∣∣∣ . (6.28)

For a given set of Gaussian parameters µ and σ in (6.27), L is an integer sig-

nifying the number of standard deviation away from the mean, g is an exponential

function.

102

Table 6.2 illustrates different D values as a function of N(s) and L. When µ =

0.05, which corresponds to a neuron’s mean firing rate of 50 Hz, and N(s) = 3000, from

(6.28) we obtain that D(−3) = 9.11% and D(3) = 7.15%. Making use the Gaussian

approximation discussed above, the probability that D is beyond 9.11% is less than

0.27%, i.e., Prob(D > 9.11%) = Prob(|Ps−P| > 9.11%) < 0.27%. Therefore in this

study, the ensemble history with N(s) > 3000 is selected when estimating a neuron’s

firing probability Ps.

Table 6.2: Relationship between N(s) and Ps estimation accuracy

N(s) L D(−L) D(L) probability

1000 2 10.77% 8.13% 4.55%

1000 3 17.81% 11.55% 0.27%

2000 2 7.24% 5.94% 4.55%

2000 3 11.55% 8.56% 0.27%

3000 2 5.79% 4.93% 4.55%

3000 3 9.11% 7.15% 0.27%

6.4.3 Statistically Significant Synaptic Efficacy

In neuroscience, excitatory post-synaptic potential (EPSP) refers to the post-synaptic

neural membrane potential depolarization due to positive ion flows from pre-synaptic

neurons. The membrane potential depolarization is excitatory since it increases spik-

ing firing probability of the post-synaptic neuron. On the contrary, inhibitory post-

synaptic potential (IPSP) caused by negative ions flow from pre-synaptic neurons de-

creases post-synaptic neuron firing probability. Motivated by the concept of EPSP and

IPSP, we consider the functional synaptic efficacy in (6.11) excitatory or inhibitory if it

increases or decreases a target neuron’s firing probability. In another word, a functional

synaptic efficacy is excitatory or inhibitory if it is statistically significantly higher or

lower than a baseline synaptic efficacy corresponding to the mean firing rate. To obtain

the baseline value of a synaptic efficacy, we consider a randomly shuffled spike train to
103

abolish any inherent neuronal interactions. The estimated interactions from a shuffled

spike train can thus be used as the baseline reference corresponding to insignificant in-

teraction. Once randomly shuffled, a neuron’s firing probability in [t, t +∆t) becomes

independent of the spiking history due to shuffling, but only dependent on the neuron’s

mean firing rate. The significance of a synaptic efficacy embedded in a spike train

should thus be determined by comparing the estimated functional efficacy with that

embedded in the shuffled spike train, which corresponds with the mean firing rate.

In this study, an excitatory or inhibitory interaction is claimed if its synaptic ef-

ficacy value is significantly (p = 0.1%) greater or less than that estimated from the cor-

responding shuffled spike train. Similarly, an insignificant interaction is defined when

it is not significantly (p = 0.1%) different from that estimated from the corresponding

shuffled spike train.

6.4.4 Significant Functional Efficacy αi,c,m and Direct Link between a Neuron Pair

The functional efficacy αi,c,m in (6.11) signifies neuron c’s direct influence on neuron

i’s firing probability. Consider neuron i’s conditional firing probability λc→i taking into

account only neuron c’s input to target neuron i, i.e.,

λc→i(t +∆t|α i,Ht) = g

[
αi,0 +

M

∑
m=1

αi,c,mIc,m(t)

]
. (6.29)

Comparing (6.11) and (6.29), it is not difficult to notice that λc→i is a special

case of λi if only neuron c fires in Ht as shown in (6.30).

λc→i = g

[
αi,0 +

C

∑
c=1

M

∑
m=1

αi,c,mIc,m(t)

]
Ic′,m(t) = 0,

1≤ c′ 6= c≤C.
(6.30)

Under this condition, no other neurons c′ 6= c contributes to the input of tar-

get neuron i to influence neuron i’s firing probability. Thus αi,c,m measures the direct
104

2

1 3

(a)

2

1 3

(b)

Figure 6.3: (a) Interactions among neurons 1, 2, and 3: true direct causal connections
from 1 to 2, and from 2 to 3, but no direct link between 1 and 3. The indirect causal
influence from 1 to 3 is only via 2. (b) Granger causality is unable to differentiate the
nature of direct or indirect causal influence [106]. Similarly, cross correlation, mutual
information also are unable to differentiate direct from indirect link such as that from 1
to 3 shown in dashed line.

influence from neuron c to i. It is also noticed that the functional efficacy αi,c,m 6= 0

actually reflects direct interactions between neurons i and c, and that there is no direct

link between i and c if αi,c,m = 0. This property specially associated with model (6.11)

is preferred since other correlation based interaction measures such as correlation coef-

ficient, Granger causality, and other similar methods cannot distinguish if two neurons

are functionally directly linked or not.

6.4.5 Direct Link among Neurons Reduce False Positive Connection

To see how αi,c,m 6= 0 in (6.11) directly links neurons i and c, consider the example in

Figure 6.3a where neuron 3 is directly linked to neuron 2, but not neuron 1. According

to (6.11), neuron 3’s firing probability density given firing history Ht and neuronal

interaction vector α i in (6.11), denoted by λi(t +∆t|α i,Ht), can be modeled by (6.11)

and re-written in (6.31) below,

λ3(t +∆t|α3,Ht) = g

[
α3,0 +

3

∑
c=1

M

∑
m=1

α3,c,mIc,m(t)

]
. (6.31)

According to Figure 6.3a, neuron 2 may fire spontaneously or due to input from

neuron 1. Other than its own spontaneous activities, neuron 3’s firing probability di-

105

rectly depends on input from neuron 2. Such network connectivity is expected to be

represented in equation (6.11) where ideally α2,1,m and α3,2,m should be significantly

different from zero, while α3,1,m should be zero in (6.31). To compute α3,1,m and α3,2,m

using the currently proposed estimation method, we consider the following two scenar-

ios. First, if neuron 1 does not fire, then neuron 1 has no direct impact on the firing

probability of neuron 3 according to (6.11). Second, if neuron 1 fires, by the follow-

ing derivations, we will show that neuron 3’s firing probability will also only depend

on neuron 2’s firing activities. To start, let λ̂3(t +∆t|α3,Ht) be the true estimate of

neuron 3’s firing probability based on (6.11) given the neural network connectivity in

Figure 6.3a,

λ̂3(t +∆t|α3,Ht) = g

[
α3,0 +

M

∑
m=1

α3,2,mI2,m(t)+
M

∑
m=1

α3,3,mI3,m(t)

]
. (6.32)

To see that (6.32) actually is the result of our proposed parameter estimation

algorithm, we proceed as follows. Equate (6.31) and (6.32), we find that

g

[
α3,0 +

3

∑
c=1

M

∑
m=1

α3,c,mIc,m(t)

]
= g

[
α3,0 +

M

∑
m=1

α3,2,mI2,m(t)+
M

∑
m=1

α3,3,mI3,m(t)

]
[

α3,0 +
3

∑
c=1

M

∑
m=1

α3,c,mIc,m(t)

]
=

[
α3,0 +

M

∑
m=1

α3,2,mI2,m(t)+
M

∑
m=1

α3,3,mI3,m(t)

]
3

∑
c=1

M

∑
m=1

α3,c,mIc,m(t) =
M

∑
m=1

α3,2,mI2,m(t)+
M

∑
m=1

α3,3,mI3,m(t)

M

∑
m=1

α3,1,mI1,m(t) = 0. (6.33)

Under the second case scenario, it is apparent that there exists at least one m

value such that I1,m(t) 6= 0. Therefore, for (6.33) to hold it has to be true that α3,1,m is

0.

106

We have thus verified that using the currently proposed estimation algorithm,

the synaptic efficacy parameters in (6.11) actually preserve the direct functional neural

connectivity in the network.

From another perspective, the direct functional interaction between two neurons

may be viewed as a first order Markov process where the current state only depends

on the immediate past state. Therefore, referring to Figure 6.3b, the direct functional

dependency of neuron 3 on neurons 1 and 2 is represented by an insignificant interaction

(α3,1,m = 0) between neurons 3 and 1 but a significant interaction (α3,2,m 6= 0) between

neurons 3 and 2. Actually our derivations shown in (6.33) illustrated this point.

In deriving (6.33), we assume that neuron 3’s conditional probability density

given neural ensemble activities can be estimated accurately. With the law of large

numbers, the conditional probability can be estimated by relative frequency which ap-

proaches the truth asymptotically. Practically, this estimation based on the law of large

numbers approximates the truth with some errors. To avoid false positive from estima-

tion, the significance of a direct link is determined by comparing it with the mean firing

rate in section 6.4.3. The theoretical analysis on reducing a false positive connection is

discussed in the current section. The artificial neural spikes with known direct links are

used to evaluate the estimation performance in the next section.

6.5 Estimating Neuronal Interactions from Artificially Generated Spike Trains

To illustrate how model (6.11) can be used to predict a neuron’s conditional firing prob-

ability and how the proposed algorithm can effectively provide an accurate estimate of

the interaction parameters αi,c,m’s, we first make use of artificial neural spike trains

where the artificially created neural networks have known interconnection topology

and interaction strength. After that, we will use model (6.11) and the associated param-

eter estimation algorithm proposed in this paper to analyze cortical recordings from

rat’s motor cortical areas in relation to the rat’s cognitive learning control behavior.

107

6.5.1 Generating Artificial Spike Trains with Known Neuronal Interaction

The artificial neural data sets with known neuronal interactions were generated the

same way as in [90, 101]. Three artificial neural networks with different topologies

are shown in Figure 6.4. By using the same neural network configurations, it is con-

venient to compare parameter estimation performances and modeling results between

the proposed method in this study and the maximum likelihood (ML) method used in

[90]. In Figure 6.4a, each neuron provides an excitatory input to the next neuron in its

clockwise direction and an inhibitory input to the next neuron in its counterclockwise

direction. It was noted that neurons 1 and 3 interacted indirectly via neuron 2. The

second artificial neural network is made up of 8 neurons (Figure 6.4b), all neurons are

interconnected with each other. One neuron excites the next neuron in its clockwise

direction and receives inhibitory input from other neurons. To avoid laying out 8 in-

terconnected neurons, only one neuron’s inter-connectivity is illustrated in Figure 6.4a.

The third network with 20 neurons is shown in Figure 6.4c. Interconnectivity among

neurons are as illustrated in the figure. For all three networks, additional details on data

generation and model parameter assignments can be found in [90]. The excitatory and

inhibitory interactions used in the three different topologies (Figure 6.4a, 6.4b, 6.4c)

are defined in (6.34) and (6.35), respectively.

α
+(t) = 2sin(2π0.06−1t)exp(−0.04t−1). (6.34)

α
−(t) =−3sin(2π0.12−1t)exp(−0.04t−1). (6.35)

6.5.2 Estimation Performance using Artificial Neural Spike Trains

Artificial neural spike trains were generated according to (6.15), (6.34), and (6.35). For

the network with 8 and 20 neurons, the spontaneous firing rates αi,0 was set to 5 Hz,

108

1 2

3

4

6 5

8

7

21

34

Excitation

Inhibition

21

34

1817

1920

65

78

1413

1516

109

1112

(a) An artificial neu-
ral network with 4
neurons.

1 2

3

4

6 5

8

7

21

34

Excitation

Inhibition

21

34

1817

1920

65

78

1413

1516

109

1112

(b) An artificial neural network
with 8 neurons.

21

34

1817

1920

65

78

1413

1516

109

1112

(c) An artificial neural network with 20 neurons.

Figure 6.4: The topology of artificial neural networks with different numbers of neu-
rons.

which is equivalent to 0.005 spikes / msec. The window length parameter M = 12 was

chosen the same way as in [90]. The bin size W of 1 msec was used instead of 10 msec

used in [90]. Actually the functional interaction estimated from using large bin sizes

can be viewed as integration of the same parameter with small time bins. As a result,

the large bin size would have a smooth impact on estimation errors. A small bin size

would magnify estimation errors. In this study, a small bin size of 1 msec was used to

evaluate the estimation performance of the proposed method. Within each bin, there

is at most 1 spike in each bin. The equivalent neural data recording length of each

spike train in the 8 and 20 neuron networks was 30 hours. For the 4 neuron network,
109

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

mth bin

g(
α i,0

+
α i,c

,m
)

Estimatied interaction 8→ 1
 True interaction 8→ 1
Estimatied interaction 2→ 1
 True interaction 2→ 1

(a) Estimation results for 8 neuron artificial
network.

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

mth bin

g(
α i,0

+
α i,c

,m
)

 Estimatied interaction 4→ 1

 True interaction 4→ 1

Estimatied interaction 2→ 1

 True interaction 2→ 1

Estimatied interactions other neurons → 1

(b) Estimation results for 20 neuron artificial
network.

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

mth bin

g(
α i,0

+
α i,c

,m
)

Estimatied interaction 17→ 1
Estimatied interaction 18→ 1
 True interactions 17 and 18→ 1

(c) Selected view for Figure 6.5b, 20 neuron
network: α17,1,m and α18,1,m to illustrate de-
tails.

0 2 4 6 8 10
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

mth bin

g(
α i,0

+
α i,c

,m
)

Excitatory interactions

 Estimation (α
i,0

=0.02)

Truth (α
i,0

=0.02)

Estimation (α
i,0

=0.05)

Truth (α
i,0

=0.05)

Estimation (α
i,0

=0.08)

Truth (α
i,0

=0.08)

(d) Estimated excitatory interactions for 4 neu-
ron artificial network at different spontaneous
firing rate αi,0.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

mth bin

g(
α i,0

+
α i,c

,m
)

Zero interactions

Estimation (α

i,0
=0.02)

Truth (α
i,0

=0.02)

Estimation (α
i,0

=0.05)

Truth (α
i,0

=0.05)

Estimation (α
i,0

=0.08)

Truth (α
i,0

=0.08)

(e) Estimated insignificant interactions for 4
neuron artificial network at different sponta-
neous firing rate αi,0.

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

mth bin

g(
α i,0

+
α i,c

,m
)

Inhibitory interactions

 Estimation (α
i,0

=0.02)

Truth (α
i,0

=0.02)

Estimation (α
i,0

=0.05)

Truth (α
i,0

=0.05)

Estimation (α
i,0

=0.08)

Truth (α
i,0

=0.08)

(f) Estimated inhibitory interactions for 4 neu-
ron artificial network at different spontaneous
firing rate αi,0.

Figure 6.5: Estimation performance with artificial neural networks in Figure 6.4. The
vertical axis is the contribution of αi,0 and αi,c,m to neural firing probability density.
The g(αi,0 +αi,c,m) was computed with the gain function g set to be exponential. Note
however, that other monotonically increasing gain functions can also be used without
changing the outcome illustrated in the figure.

110

three different spontaneous firing rates, 20 Hz, 50 Hz and 80 Hz, were used since the

firing rate from our real neural recordings was in the same range. The corresponding

spontaneous firing rate for the 4 neuron network was 0.02 spikes / msec, 0.05 spikes

/ msec and 0.08 spikes/ msec , respectively. The time resolution ∆t = 1 msec was

used for all three artificial neural networks. Insignificant interactions were expected to

correspond with spontaneous firing rate as discussion in section 6.4.3.

Due to symmetry of the three neural network configurations as shown in Fig-

ure 6.4, the neural interaction efficacies from an input neuron to target neuron 1 were

estimated using the proposed algorithm to illustrate results from each of the three net-

works in this study. Specifically in Figure 6.4b, neuron 1 is connected to all other 7

neurons, neuron 8 provides excitatory input to neuron 1 while neuron 2 provides in-

hibitory input to neuron 1. Figure 6.5a shows that the estimated neuronal interactions

from neuron 8 and 2 to neuron 1 are close matches to the real parameters. In the 20-

neuron network shown in Figure 6.4c, only neuron 2 and neuron 4 provide inputs to

neuron 1, while all other neurons do not have any direct impact on neuron 1. This net-

work topology is again well preserved by the estimation algorithm with results shown

in Figure 6.5b. Insignificant interactions were clearly obtained which correspond with

the lack of direct links from neurons 17 and 18 to neuron 1 as shown in Figure 6.5c.

For the 4-neuron network, the excitatory, insignificant and inhibitory interactions with

3 different αi,0’s were accurately estimated as shown in Figure 6.5d, 6.5e and 6.5f,

respectively.

6.6 Neuronal Interactions Estimated with Real Neural Recording

As shown in the previous section that the proposed estimation method of the synaptic

efficacies in the neuron firing probability model (6.11) is a simple to implement com-

putational approach and it also preserves network connectivity. In this section, we will

show that the proposed method of estimating neuronal interaction strength can also

be used to analyze cortical neural activities in relation to cognitive control behaviors.

111

Specifically, rat’s motor cortical neural recordings were analyzed and associated with

the rat’s behavioral parameters in a learning decision and control task.

6.6.1 Neural Data Preparation

The behavioral experiment involves a rat working inside a Skinner box to perform a

decision and control task. The rat self-paces a trial by pressing a center paddle to signal

the start of a trial. Immediately after the center paddle press, one of the four LEDs

(two on each side) above the control levers was lit. The rat would learn to decide which

one of the two control paddles to press in order the move the LED light toward the

center location. A correct press would move the light toward the center for one step.

Once the light reaches the center location and remains there for 2 seconds, the trial was

considered a success and the rat was given a sugar pellet reward.

Four rats named A, B, O, and W were recorded and their data used in this study.

Each rat started neural recording while being naive to the task. As trial and error learn-

ing progressed, task performance accuracy for rats B, O, and W improved up to 96%

in a varying length of time, but generally no more than 40 days. However, rat A was

only able to learn left side trials but never performed right side trials sufficiently accu-

rately. The neural recordings from the four rats were spike detected and sorted using

algorithms developed in [107] and [108]. The stored waveforms were sorted offline

into single unit action potentials using a multi-scale correlation of wavelet coefficients

(MCWC) spike detection algorithm [107] followed by a template matching sorting pro-

cedure. MCWC is a high performance detection algorithm and was tested by several

artificial benchmark data sets and real data with at least comparable performance to

popular commercial and academic algorithms. Events in the behavioral task such as

cue on, paddle release, paddle press and food reward were registered simultaneously

and time stamped by the TDT system (Alachua, FL). Spike data were extracted be-

tween the time of cue on and 2 seconds after that, which typically corresponded to the

time just before directional control paddle pressing. During this 2 second time period,

112

rats observed a cue and planed for actions. Neural spike train data were divided into

two pools: a naive set and a proficient set according to the rat’s behavioral performance

accuracy, respectively. Behavioral performance accuracy beyond 80% is considered

proficient, otherwise naive.

As discussed in the SRM model (6.1), a neuron’s membrane potential depends

on the most recent neural activities of a neural ensemble. The inter-spike interval (ISI)

is a good reflection of the length of the neural ensemble history that should be taken into

account for computing the neuron’s cumulative membrane potential leading to firing a

spike. The ISI value, the reciprocal of which leads to the mean firing rate of a neuron

should be a good candidate for estimating the ensemble history length. In this study,

without loss of generality and also comparable to the literature, we chose M = 10 bins

as the ensemble history length to be used in (6.11), where each bin was 1 msec long.

6.6.2 Plasticity in Synaptic Efficacy as Learning Processes

We are now in a position to estimate the synaptic efficacies, αi,c,m, in (6.11) and try to

reveal the pattern of changes in these synaptic efficacies as a rat’s behavioral learning

performance progresses to perform the designed directional control task.

First, Figure 6.6 is used to illustrate significant neural synaptic efficacies esti-

mated based on real spike trains and used to illustrate notations used in the subsequent

figures. In this study, the term “negative plasticity” is named for events such that the

neural synaptic efficacies changed from excitatory to inhibitory or insignificant. On

the contrary, “positive plasticity” is named for events such that an inhibitory synaptic

efficacy became excitatory or insignificant.

Figure 6.7 is a summary of significant (p = 0.1%) neural synaptic efficacies for

rats A, B, O, and W. A tally of each of the two types of positive or negative plasticities

is shown in Figure 6.8. It clearly reveals that negative plasticity was dominant for rats

B, O, and W when rats learned the tasks. The same pattern was observed for rat A’s

113

target 1

target 2

target 3

target 4

,1, ()i m t ,2, ()i m t ,3, ()i m t
,4, ()i m t

Figure 6.6: Illustration of estimated neuronal interactions in an ensemble of four neu-
rons. Each of the four target neurons received triggers imposed upon temporally via
multiple time bins and spatially from multiple neurons. The blue, green, and red colors
represented significant (p = 0.1%) inhibitory, insignificant and excitatory interactions,
respectively.

left side trials. The only exception is that positive plasticity was dominant for rat A

on the right side trials. It is interesting that rat A never learned to perform right side

trials correctly. These results suggest that functional synaptic plasticity may be able to

provide a neural substrate to the rat’s behavioral learning process.

Based on the notion of neural synaptic efficacy, αi,c,m in (6.11) signifies the de-

pendency of spike timings between neurons. The adaptation of neural efficacy during

behavioral learning suggests that the dependency of relative spike timing has changed

as learning progresses. Such changes in functional synaptic efficacy as a result com-

puted from in vivo neuronal recording indicates that relative spike timing adapted by

adjusting neuronal interaction strength during the behavioral learning process. The pro-

cess may be viewed as functional spike time dependent plasticity (STDP), a potential

hypothesis for explaining brain adaptation during behavioral learning.

6.7 Conclusion

This study centers on analyzing functional neuronal interactions or functional synaptic

efficacies as a means of revealing how neurons interact in an ensemble that underlies

a behavioral learning process. Toward this end, the paper made the following sig-

nificant contributions. The first of which is the development of a generalized spike

firing probability based modeling technique. The associated model parameter estima-

tion algorithm is new, which is based on analyzing spiking patterns and therefore is
114

Rat A Rat B

Rat O Rat W

Figure 6.7: The significant neuronal interactions estimated with real neural recording
data by the proposed method. Only correct trials were used in this figure. For each
rat, the first two rows were the estimated interaction of naive state and proficient state
for left trial, respectively. The bottom two rows were the estimated interaction of naive
state and proficient state for right trial, respectively.

straightforward. The proposed estimation algorithm does not restrict the applicability

of the proposed model and estimation algorithm for low or high spiking rates in princi-

ple as demonstrated in the examples. Due to the simple computational structure of the

proposed algorithm, it can be used for analyzing long term recordings of over a month

as in our case. Here in this study, we propose for the first time the idea of functional

spike-timing-dependent plasticity (STDP), which links behavioral learning with func-

tional synaptic efficacy between neurons. Specifically, our results show that as learning

progresses when rats performed the learning control task, the functionally excitatory

synaptic connections become more inhibitory.

115

42%

58%

Rat A

55%

45%

26%

74%

Rat B

22%

78%

36%

64%

Rat O

36%

64%

28%

72%

Rat W

20%

80%

positive plasticity negative plasticity

Right trial

Left trial

Figure 6.8: For rat B, O, W and A’s left trial, negative plasticity was the majority.
However, as an exception that rat A never learned right trial, positive plasticity was
majority for A’s right trials.

116

REFERENCES

[1] T. Riley, M. Bernhardt, C. Cowell, D. Hickman, and M. Smith, “Implement-

ing advanced image processing technology in sensor systems for security and

surveillance,” vol. 6741, p. 67410W, SPIE, 2007.

[2] M. Heikkilä and M. Pietikäinen, “An image mosaicing module for wide-area

surveillance,” in VSSN ’05: Proceedings of the third ACM international work-

shop on Video surveillance & sensor networks, (New York, NY, USA), pp. 11–

18, ACM, 2005.

[3] R. Bindschadler, P. Vornberger, A. Fleming, A. Fox, J. Mullins, D. Binnie,

S. J. Paulsen, B. Granneman, and D. Gorodetzky, “The landsat image mosaic of

antarctica,” Remote Sensing of Environment, vol. 112, no. 12, pp. 4214 – 4226,

2008.

[4] A. Rango, A. Laliberte, J. E. Herrick, C. Winters, K. Havstad, C. Steele, and

D. Browning, “Unmanned aerial vehicle-based remote sensing for rangeland as-

sessment, monitoring, and management,” Journal of Applied Remote Sensing,

vol. 3, p. 033542, 2009.

[5] S. R. Herwitz, L. F. Johnson, S. E. Dunagan, R. G. Higgins, D. V. Sullivan,

J. Zheng, B. M. Lobitz, J. G. Leung, B. A. Gallmeyer, M. Aoyagi, R. E. Slye, and

J. A. Brass, “Imaging from an unmanned aerial vehicle: agricultural surveillance

and decision support,” Computers and Electronics in Agriculture, vol. 44, no. 1,

pp. 49 – 61, 2004.

[6] R. Szeliski and R. Szeliski, “Image mosaicing for tele-reality applications,”

pp. 44–53, 1994.

117

[7] K. Loewke, D. Camarillo, K. Salisbury, and S. Thrun, “Deformable image mo-

saicing for optical biopsy,” Computer Vision, IEEE International Conference on,

vol. 0, pp. 1–8, 2007.

[8] N. Gracias, S. van der Zwaan, A. Bernardino, R. Bernardino, and J. Santos-

Victor, “Mosaic based navigation for autonomous underwater vehicles,” Journal

of Oceanic Engineering, 2003.

[9] S. Lu, B. M. Chen, and C. C. Ko, “Perspective rectification of document images

using fuzzy set and morphological operations,” Image and Vision Computing,

vol. 23, pp. 541–553, 2005.

[10] A. Rav-Acha, G. Engel, and S. Peleg, “Minimal aspect distortion (mad) mo-

saicing of long scenes,” Int. J. Comput. Vision, vol. 78, no. 2-3, pp. 187–206,

2008.

[11] A. Roman, G. Garg, and M. Levoy, “Interactive design of multi-perspective im-

ages for visualizing urban landscapes,” in VIS ’04: Proceedings of the confer-

ence on Visualization ’04, (Washington, DC, USA), pp. 537–544, IEEE Com-

puter Society, 2004.

[12] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[13] S. Mann and R. W. Picard, “Video orbits of the projective group: A simple

approach to featureless estimation of parameters,” IEEE TRANSACTIONS ON

IMAGE PROCESSING, vol. 6, pp. 1281–1295, 1997.

118

[14] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second ed., 2004.

[15] T. Ko, “A survey on behavior analysis in video surveillance for homeland se-

curity applications,” in Applied Imagery Pattern Recognition Workshop, 2008.

AIPR ’08. 37th IEEE, pp. 1 –8, oct. 2008.

[16] J. L. Crowley and K. Schwerdt, “Robust tracking and compression for video

communication,” in Proceedings of the International Workshop on Recognition,

Analysis, and Tracking of Faces and Gestures in Real-Time Systems, RATFG-

RTS ’99, (Washington, DC, USA), pp. 2–, IEEE Computer Society, 1999.

[17] I. D. Peikon, N. A. Fitzsimmons, M. A. Lebedev, and M. A. Nicolelis, “Three-

dimensional, automated, real-time video system for tracking limb motion in

brain-machine interface studies,” Journal of Neuroscience Methods, vol. 180,

no. 2, pp. 224 – 233, 2009.

[18] Q. Xu, R. J. Hamilton, R. A. Schowengerdt, B. Alexander, and S. B. Jiang,

“Lung tumor tracking in fluoroscopic video based on optical flow,” Medical

Physics, vol. 35, no. 12, pp. 5351–5359, 2008.

[19] B. Gloyer, H. Aghajan, K.-Y. Siu, and T. Kailath, “Vehicle detection and tracking

for freeway traffic monitoring,” in Signals, Systems and Computers, 1994. 1994

Conference Record of the Twenty-Eighth Asilomar Conference on, vol. 2, pp. 970

–974 vol.2, oct-2 nov 1994.

[20] A. Mittal and N. Paragios, “Motion-based background subtraction using adaptive

kernel density estimation,” in Computer Vision and Pattern Recognition, 2004.

119

CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,

vol. 2, pp. II–302 – II–309 Vol.2, june-2 july 2004.

[21] A. M. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric model for

background subtraction,” in Proceedings of the 6th European Conference on

Computer Vision-Part II, ECCV ’00, (London, UK), pp. 751–767, Springer-

Verlag, 2000.

[22] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, “Compar-

ative study of background subtraction algorithms,” Journal of Electronic Imag-

ing, vol. 19, no. 3, p. 033003, 2010.

[23] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A robust technique for

matching two uncalibrated images through the recovery of the unknown epipolar

geometry,” Artificial Intelligence, vol. 78, no. 1-2, pp. 87 – 119, 1995. Special

Volume on Computer Vision.

[24] S. Araki, T. Matsuoka, H. Takemura, and N. Yokoya, “Real-time tracking of mul-

tiple moving objects in moving camera image sequences using robust statistics,”

in Pattern Recognition, 1998. Proceedings. Fourteenth International Conference

on, vol. 2, pp. 1433 –1435 vol.2, Aug. 1998.

[25] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow

estimation based on a theory for warping.,” in ECCV (4)’04, pp. 25–36, 2004.

[26] J.-Y. Bouguet, “Pyramidal implementation of the lucas kanade feature tracker

description of the algorithm,” 2000.

120

[27] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,”

Int. J. Comput. Vision, vol. 56, pp. 221–255, February 2004.

[28] J. Shi and C. Tomasi, “Good features to track,” in 1994 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’94), pp. 593 – 600, 1994.

[29] H. Lin, J. Si, and G. P. Abousleman, “Fast and robust image mosaicking for

monocular video,” vol. 5809, pp. 443–452, SPIE, 2005.

[30] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection. New

York, NY, USA: John Wiley & Sons, Inc., 1987.

[31] C. Yang, H. Mao, G. Abousleman, and J. Si, “Correction of projective dis-

tortion in long-image-sequence mosaics without prior information,” vol. 7668,

p. 76680Q, SPIE, 2010.

[32] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the

OpenCV Library. Cambridge, MA: O’Reilly, 2008.

[33] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical

recipes in C: the art of scientific computing. New York, NY, USA: Cambridge

University Press, 1988.

[34] H. Mao, C. Yang, G. P. Abousleman, and J. Si, “Automated multiple target de-

tection and tracking in uav videos,” vol. 7668, p. 76680J, SPIE, 2010.

[35] P. G. Musial, S. N. Baker, G. L. Gerstein, E. A. King, and J. G. Keating, “Signal-

to-noise ratio improvement in multiple electrode recording,” Journal of Neuro-

science Methods, vol. 115, no. 1, pp. 29 – 43, 2002.

121

[36] A. K. Kreiter, A. M. Aertsen, and G. L. Gerstein, “A low-cost single-board solu-

tion for real-time, unsupervised waveform classification of multineuron record-

ings,” Journal of Neuroscience Methods, vol. 30, no. 1, pp. 59 – 69, 1989.

[37] F. Wood, M. Black, C. Vargas-Irwin, M. Fellows, and J. Donoghue, “On the vari-

ability of manual spike sorting,” Biomedical Engineering, IEEE Transactions on,

vol. 51, pp. 912–918, June 2004.

[38] M. J. Song and H. Wang, “A spike sorting framework using nonparametric detec-

tion and incremental clustering,” Neurocomputing, vol. 69, no. 10-12, pp. 1380

– 1384, 2006. Computational Neuroscience: Trends in Research 2006.

[39] N. Dedual, M. Ozturk, J. Sanchez, and J. Principe, “An associative memory

readout in esn for neural action potential detection,” in Neural Networks, 2007.

IJCNN 2007. International Joint Conference on, pp. 2295 –2299, aug. 2007.

[40] P. H. Thakur, H. Lu, S. S. Hsiao, and K. O. Johnson, “Automated optimal de-

tection and classification of neural action potentials in extra-cellular recordings,”

Journal of Neuroscience Methods, vol. 162, no. 1-2, pp. 364 – 376, 2007.

[41] M. S. Fee, P. P. Mitra, and D. Kleinfeld, “Variability of extracellular spike wave-

forms of cortical neurons,” Journal of Neurophysiology, vol. 76, no. 6, pp. 3823–

3833, 1996.

[42] X. Yang and S. Shamma, “A totally automated system for the detection and

classification of neural spikes,” Biomedical Engineering, IEEE Transactions on,

vol. 35, no. 10, pp. 806–816, 1988.

122

[43] K. H. Kim and S. J. Kim, “A wavelet-based method for action potential detec-

tion from extracellular neural signal recording with low signal-to-noise ratio,”

Biomedical Engineering, IEEE Transactions on, vol. 50, pp. 999 –1011, aug.

2003.

[44] E. Hulata, R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob, “Detection

and sorting of neural spikes using wavelet packets,” Phys. Rev. Lett., vol. 85,

pp. 4637–4640, Nov 2000.

[45] E. Hulata, R. Segev, and E. Ben-Jacob, “A method for spike sorting and detec-

tion based on wavelet packets and shannon’s mutual information,” Journal of

Neuroscience Methods, vol. 117, no. 1, pp. 1 – 12, 2002.

[46] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike detection

and sorting with wavelets and superparamagnetic clustering,” Neural Computa-

tion, vol. 16, no. 8, pp. 1661–1687, 2004.

[47] K. Oweiss and D. Anderson, “A multiresolution generalized maximum likeli-

hood approach for the detection of unknown transient multichannel signals in

colored noise with unknown covariance,” Acoustics, Speech, and Signal Pro-

cessing, 2002. Proceedings. (ICASSP ’02). IEEE International Conference on,

vol. 3, pp. III–2993–III–2996 vol.3, 2002.

[48] K. Oweiss and D. Anderson, “A unified framework for advancing array signal

processing technology of multichannel microprobe neural recording devices,”

in Microtechnologies in Medicine Biology 2nd Annual International IEEE-EMB

Special Topic Conference on, pp. 245 –250, 2002.

[49] Z. Nenadic and J. Burdick, “Spike detection using the continuous wavelet trans-
123

form,” Biomedical Engineering, IEEE Transactions on, vol. 52, pp. 74 –87, jan.

2005.

[50] R. Benitez and Z. Nenadic, “Robust unsupervised detection of action poten-

tials with probabilistic models,” Biomedical Engineering, IEEE Transactions on,

vol. 55, pp. 1344 –1354, april 2008.

[51] S. Santaniello, G. Fiengo, L. Glielmo, and G. Catapano, “A biophysically in-

spired microelectrode recording-based model for the subthalamic nucleus activ-

ity in parkinson’s disease,” Biomedical Signal Processing and Control, vol. 3,

no. 3, pp. 203 – 211, 2008.

[52] Y. Xu, J. Weaver, D. Healy, and J. Lu, “Wavelet transform domain filters: a spa-

tially selective noise filtration technique,” Image Processing, IEEE Transactions

on, vol. 3, no. 6, pp. 747–758, 1994.

[53] S. Mallat, A wavelet tour of signal processing. San Diego: Academic Press,

1989.

[54] D. Humphrey and E. Schmidt, Extracellular Single-Unit Recording Methods.

New York: Humana Press, 1991.

[55] G. Wu, R. G. Hallin, and R. Ekedahl, “Multiple action potential waveforms of

single units in man as signs of variability in conductivity of their myelinated

fibres,” Brain Research, vol. 742, no. 1-2, pp. 225 – 238, 1996.

[56] B. Sadler and A. Swami, “Analysis of multiscale products for step detection and

estimation,” Information Theory, IEEE Transactions on, vol. 45, pp. 1043 –1051,

apr 1999.

124

[57] P. Bao and L. Zhang, “Noise reduction for magnetic resonance images via adap-

tive multiscale products thresholding,” Medical Imaging, IEEE Transactions on,

vol. 22, pp. 1089 –1099, sept. 2003.

[58] L. Smith, “Noisy spike generator, matlab software.” Retrieved August 24, 2008,

from University of Stirling, Department of Computing Science and Mathematics

Web site: http://www.cs.stir.ac.uk/˜lss/noisyspikes/, 2006.

[59] Z. Nenadic, “Spike detection with the continuous wavelet transform, matlab soft-

ware.” University of California, Irvine , Center for BioMedical Signal Processing

and Computation. Web site: http://cbmspc.eng.uci.edu, 2005.

[60] B. Olson, J. Si, J. Hu, and J. He, “Closed-loop cortical control of direction us-

ing support vector machines,” Neural Systems and Rehabilitation Engineering,

IEEE Transactions on, vol. 13, no. 1, pp. 72 –80, 2005.

[61] B. Naundorf, F. Wolf, and M. Volgushev, “Unique features of action potential

initiation in cortical neurons,” Nature, vol. 440, no. 7087, pp. 1060–1063, 2006.

[62] M. Volgushev, A. Malyshev, P. Balaban, M. Chistiakova, S. Volgushev, and

F. Wolf, “Onset dynamics of action potentials in rat neocortical neurons and

identified snail neurons: Quantification of the difference,” PLoS ONE, vol. 3,

no. 4, p. e1962, 2008.

[63] Z. Nenadic and J. Burdick, “A control algorithm for autonomous optimization

of extracellular recordings,” Biomedical Engineering, IEEE Transactions on,

vol. 53, pp. 941 –955, May 2006.

125

[64] S. Prescott and T. Sejnowski, “Spike-rate coding and spike-time coding are af-

fected oppositely by different adaptation mechanisms,” The Journal of Neuro-

science, vol. 28, no. 50, pp. 13649–13661, 2008.

[65] E. Brown, R. Kass, and P. Mitra, “Multiple neural spike train data analysis: state-

of-the-art and future challenges,” Nat Neurosci, vol. 7, pp. 456–461, May 2004.

10.1038/nn1228.

[66] M. Lewicki, “A review of methods for spike sorting: the detection and classi-

fication of neural action potentials,” NETWORK-COMPUTATION IN NEURAL

SYSTEMS, vol. 9, pp. R53–R78, November 1998.

[67] C. Pouzat, O. Mazor, and G. Laurent, “Using noise signature to optimize spike-

sorting and to assess neuronal classification quality,” Journal of Neuroscience

Methods, vol. 122, no. 1, pp. 43–57, 2002.

[68] M. Salganicoff, M. Sarna, L. Sax, and G. Gerstein, “Unsupervised waveform

classification for multi-neuron recordings: a real-time, software-based system.

i. algorithms and implementation,” Journal of Neuroscience Methods, vol. 25,

no. 3, pp. 181–187, 1988.

[69] S. Takahashi, Y. Sakurai, M. Tsukada, and Y. Anzai, “Classification of neuronal

activities from tetrode recordings using independent component analysis,” Neu-

rocomputing, vol. 49, no. 1–4, pp. 289–298, 2002.

[70] S. Takahashi, Y. Anzai, and Y. Sakurai, “Automatic sorting for multi-neuronal

activity recorded with tetrodes in the presence of overlapping spikes,” Journal of

Neurophysiology, vol. 89, no. 4, pp. 2245–2258, 2003.

126

[71] S. Takahashi, Y. Anzai, and Y. Sakurai, “A new approach to spike sorting for

multi-neuronal activities recorded with a tetrodehow ica can be practical,” Neu-

roscience Research, vol. 46, no. 3, pp. 265–272, 2003.

[72] E. Salinas and T. Sejnowski, “Correlated neuronal activity and the flow of neural

information.,” Nature Reviews Neuroscience, vol. 2, no. 8, pp. 539–550, 2001.

[73] A. Kreiter, A. Aertsen, and G. Gerstein, “A low-cost single-board solution

for real-time, unsupervised waveform classification of multineuron recordings,”

Journal of Neuroscience Methods, vol. 30, no. 1, pp. 59–69, 1989.

[74] J. Letelier and P. Weber, “Spike sorting based on discrete wavelet transform

coefficients,” Journal of Neuroscience Methods, vol. 101, no. 2, pp. 93–106,

2000.

[75] E. Hulata, R. Segev, and E. Ben-Jacob, “A method for spike sorting and detec-

tion based on wavelet packets and shannon’s mutual information,” Journal of

Neuroscience Methods, vol. 117, no. 1, pp. 1–12, 2002.

[76] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike detection

and sorting with wavelets and superparamagnetic clustering.,” Neural Computa-

tion, vol. 16, no. 8, pp. 1661–1687, 2004.

[77] R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, “Performance

of different synchronization measures in real data: A case study on electroen-

cephalographic signals,” Phys. Rev. E, vol. 65, p. 041903, March 2002.

[78] R. Vogelstein, K. Murari, P. Thakur, C. Diehl, S. Chakrabartty, and G. Cauwen-

berghs, “Spike sorting with support vector machines,” in Engineering in

127

Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International

Conference of the IEEE, vol. 1, pp. 546–549, September 2004.

[79] J. Stitt, R. Gaumond, J. Frazier, and F. Hanson, “A comparison of neural spike

classification techniques [caterpillar taste organs application],” in Engineering

in Medicine and Biology Society, 1997. Proceedings of the 19th Annual Interna-

tional Conference of the IEEE, vol. 3, pp. 1092–1094 vol.3, October 1997.

[80] H. Jung, J. Choi, and T. Kim, “Solving alignment problems in neural spike sort-

ing using frequency domain pca,” Neurocomputing, vol. 69, no. 79, pp. 975 –

978, 2006. ¡ce:title¿New Issues in Neurocomputing: 13th European Symposium

on Artificial Neural Networks¡/ce:title¿ ¡xocs:full-name¿13th European Sympo-

sium on Artificial Neural Networks 2005¡/xocs:full-name¿.

[81] Z. Yang, Q. Zhao, and W. Liu, “Improving spike separation using waveform

derivatives,” Journal of Neural Engineering, vol. 6, no. 4, p. 046006, 2009.

[82] G. Holt and C. Koch, “Electrical interactions via the extracellular potential near

cell bodies,” Journal of Computational Neuroscience, vol. 6, pp. 169–184, 1999.

10.1023/A:1008832702585.

[83] Z. Yang, Q. Zhao, and W. Liu, “Energy based evolving mean shift algorithm

for neural spike classification,” in Engineering in Medicine and Biology Society,

2009. EMBC 2009. Annual International Conference of the IEEE, pp. 966–969,

September 2009.

[84] M. Blatt, S. Wiseman, and E. Domany, “Superparamagnetic clustering of data,”

Phys. Rev. Lett., vol. 76, pp. 3251–3254, April 1996.

128

[85] P. Inc., Plexon Offline Sorter v2.8 manual, 2006.

[86] J. Kretzberg, T. Coors, and J. Furche, “Comparison of valley seeking and

t-distributed em algorithm for spike sorting,” BMC Neuroscience, vol. 10,

no. Suppl 1, p. P47, 2009.

[87] L. Smith and N. Mtetwa, “Manual for the noisy spike generator matlab software,

at http://www.cs.stir.ac.uk/65lss/noisyspikes,” 2006.

[88] D. Brugger, M. Bogdan, and W. Rosenstiel, “Automatic cluster detection in ko-

honen’s som,” Neural Networks, IEEE Transactions on, vol. 19, pp. 442–459,

March 2008.

[89] G. qiang Bi and M. ming Poo, “Synaptic modification by correlated activity:

Hebb’s postulate revisited,” Annual Review of Neuroscience, vol. 24, no. 1,

pp. 139–166, 2001.

[90] M. Okatan, M. A. Wilson, and E. N. Brown, “Analyzing functional connectivity

using a network likelihood model of ensemble neural spiking activity,” Neural

Computation, vol. 17, no. 9, pp. 1927–1961, 2005.

[91] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synap-

tic efficacy by coincidence of postsynaptic aps and epsps,” Science, vol. 275,

no. 5297, pp. 213–215, 1997.

[92] E. Salinas and T. J. Sejnowski, “Correlated neuronal activity and the flow of

neural information,” Nature Reviews Neuroscience, vol. 2, pp. 539–550, 2001.

129

[93] C. J. N. G. D. A. Stam, “Phase lag index: Assessment of functional connectivity

from multi channel eeg and meg with diminished bias from common sources,”

Human Brain Mapping, vol. 28, pp. 1178–1193, 2007.

[94] K. Narayanan, D. Weber, J. He, A. Prasad, and L. Iasemidis, “Analysis of neu-

ronal interactions during adaptation and learning in motor control of primates,”

in Engineering in Medicine and Biology, 2002. 24th Annual Conference and the

Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Con-

ference, 2002. Proceedings of the Second Joint, vol. 3, pp. 2552–2553 vol.3,

2002.

[95] C. W. J. Granger, “Investigating causal relations by econometric models and

cross-spectral methods,” Econometrica, vol. 37, pp. 424–438, Aug 1969. Ar-

ticleType: research-article / Full publication date: Aug., 1969 / Copyright

Â c©1969 The Econometric Society.

[96] M. Krumin and S. Shoham, “Multivariate autoregressive modeling and granger

causality analysis of multiple spike trains,” Intell. Neuroscience, vol. 2010,

pp. 10:6–10:6, January 2010.

[97] L. P. S. A. F. K. E. S. Chornoboy, “Maximum likelihood identification of neural

point process systems,” Biological Cybernetics, vol. 59, no. 4, pp. 265–275,

1988.

[98] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Popu-

lations, Plasticity. Berlin, Germany: Cambridge University Press, 2002.

[99] M. Gilson, A. Burkitt, and L. J. V. Hemmen, “Stdp in recurrent neuronal net-

works,” Frontiers in Computational Neuroscience, vol. 4, no. 23, 2010.
130

[100] W. Gerstner, “Time structure of the activity in neural network models,” Phys.

Rev. E, vol. 51, pp. 738–758, Jan 1995.

[101] E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L. M. Frank, “The time-

rescaling theorem and its application to neural spike train data analysis,” Neural

Comput., vol. 14, no. 2, pp. 325–346, 2002.

[102] S. Haykin, Neural Networks: A Comprehensive Foundation. NY: Prentice Hall,

second ed., 1998.

[103] I. Stevenson, J. Rebesco, N. Hatsopoulos, Z. Haga, L. Miller, and K. Kord-

ing, “Bayesian inference of functional connectivity and network structure from

spikes,” Neural Systems and Rehabilitation Engineering, IEEE Transactions on,

vol. 17, pp. 203–213, june 2009.

[104] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, “A

point process framework for relating neural spiking activity to spiking history,

neural ensemble, and extrinsic covariate effects,” Journal of Neurophysiology,

vol. 93, no. 2, pp. 1074–1089, 2005.

[105] G. E. P. Box, W. G. Hunter, J. S. Hunter, and W. G. Hunter, Statistics for Ex-

perimenters: An Introduction to Design, Data Analysis, and Model Building.

Hoboken, NJ: John Wiley & Sons, 1978.

[106] M. Ding, Y. Chen, and S. L. Bressler, “Granger Causality: Basic Theory and

Application to Neuroscience,” Aug 2006.

[107] C. Yang, O. Byron, and J. Si, “A multiscale correlation of wavelet coefficients

approach to spike detection,” Neural Computation, vol. 23, pp. 215–250, Octo-

131

ber 2010. doi: 10.1162/NECO a 00063.

[108] C. Yang, Y. Yuan, and J. Si, “High performance spike detection and sorting using

neural waveform phase information and som clustering,” in Neural Networks

(IJCNN), The 2010 International Joint Conference on, pp. 1 –7, July 2010.

132

