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ABSTRACT 

Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear 

and can be recorded within the ear canal. Since OAEs can reflect the functional 

status of the inner ear, OAE measurements have been widely used for hearing loss 

screening in the clinic. However, there are limitations in current clinical OAE 

measurements, such as the restricted frequency range, low efficiency and 

inaccurate calibration.  

In this dissertation project, a new method of OAE measurement which 

used a swept tone to evoke the stimulus frequency OAEs (SFOAEs) was 

developed to overcome the limitations of current methods. In addition, an in-situ 

calibration was applied to equalize the spectral level of the swept-tone stimulus at 

the tympanic membrane (TM). With this method, SFOAEs could be recorded 

with high resolution over a wide frequency range within one or two minutes. Two 

experiments were conducted to verify the accuracy of the in-situ calibration and to 

test the performance of the swept-tone SFOAEs.  

In experiment I, the calibration of the TM sound pressure was verified in 

both acoustic cavities and real ears by using a second probe microphone.  In 

addition, the benefits of the in-situ calibration were investigated by measuring 

OAEs under different calibration conditions. Results showed that the TM pressure 

could be predicted correctly, and the in-situ calibration provided the most reliable 

results in OAE measurements.  

In experiment II, a three-interval paradigm with a tracking-filter technique 

was used to record the swept-tone SFOAEs in 20 normal-hearing subjects. The 
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test-retest reliability of the swept-tone SFOAEs was examined using a repeated-

measure design under various stimulus levels and durations. The accuracy of the 

swept-tone method was evaluated by comparisons with a standard method using 

discrete pure tones. Results showed that SFOAEs could be reliably and accurately 

measured with the swept-tone method. Comparing with the pure-tone approach, 

the swept-tone method showed significantly improved efficiency.  

The swept-tone SFOAEs with in-situ calibration may be an alternative of 

current clinical OAE measurements for more detailed evaluation of inner ear 

function and accurate diagnosis.  
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Chapter 1 

1 BACKGROUND AND SIGNIFICANCE 

1.1 Project overview 

The inner ear is a sensory organ that converts sound vibrations into neural 

signals. Within the inner ear, there are two types of hair cells: the inner hair cells 

(IHCs) and outer hair cells (OHCs). While the IHCs are mainly responsible for 

encoding sensory information, the OHCs provide feedback to the vibration of the 

inner ear structures to maintain an optimal stimulation of the IHCs.  The key 

feature of OHC functions is that the mechanical feedback is compressive, with 

more energy fed back to the vibration for low levels of sound inputs.  As 

byproducts of such OHC feedback, extra energies are generated from the inner ear. 

The generated energies propagate outwards and can be recorded as so-called 

otoscoustic emissions (OAEs) by a sensitive microphone placed inside the ear 

canal. Since OAEs are closely related to normal OHC activities, the measurement 

of OAEs is widely used in the clinic as a non-evasive tool for hearing loss 

screening.  

Although OAE measurements have been used for over 30 years, the 

clinical applications of OAEs are still limited to hearing screening and no further 

information is available for hearing diagnosis. The purpose of this dissertation is 

to develop a new method to provide more detailed information about the 

functional status of the cochlea in an efficient way. The new method was to use a 

swept tone with the frequency sweeping continuously across a wide range and the 

energy equalized at the tympanic membrane (TM). This project was carried out in 
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two steps. The first step (chapter 2) was to test the performance and benefits of a 

calibration procedure to ensure the precise controlling of sound pressure at the 

TM. The second step (chapter 3) was to measure a type of OAEs using swept 

tones in human ears. The reliability of OAEs measured with the new method was 

investigated under various signal conditions, and the accuracy was cross-validated 

with the standard methods. The calibration procedure described in the first step 

was used to control the stimulus level during the OAE measurements in second 

step.  

1.2 The auditory periphery 

In order to understand the generation mechanisms and measurement 

principles of OAEs, it is necessary to briefly review the structures and functions 

of the auditory periphery.  

The structures of the auditory periphery include three parts (Figure 1): the 

outer ear, the middle ear and the inner ear. The outer ear is composed of the pinna 

and the ear canal. The middle ear contains the tympanic membrane (TM) and the 

ossicles (the malleus, incus and stapes). The inner ear consists of mainly the 

cochlea that is the most important structure of the auditory periphery. Inside the 

cochlea, there is the basilar membrane which divides the fluid-filled space 

lengthwise into different canals, and the hair cells lie on top of the basilar 

membrane. The auditory nerves connect the hair cells with the structures in the 

central auditory system.  
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Figure 1.  The main structures of the human auditory periphery (from 

sciencewithme.com).  

When a sound comes, the acoustic energy is collected by the pinna and 

guided by the ear canal to strike the TM. The vibration of the TM then sets the 

ossicles into motion which in turn moves the fluid in the cochlea. The movement 

of the cochlear fluid causes the basilar membrane to vibrate. The hair cells on the 

basilar membrane convert the vibration into neural pulses that are carried by the 

auditory nerves to the brain to be interpreted as meaningful sounds.  

1.2.1 Ear canal 

 It is crucial to understand the acoustics of the ear canal because OAEs are 

measured here. The ear canal can be considered as a tube with one end open to the 

air and the other end terminated by the TM. When the sound hits the TM, part of 

the sound energy is reflected back to the ear canal and the rest vibrates the TM 

and ossicles. The reflected sound wave can interact with the incident (original) 

wave and cause enhancements or cancellations, dependent on the phase 

relationship between the two sound waves. Such enhancements or cancellations 

form a standing wave in the ear canal, which can cause a non-uniform distribution 
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of the sound pressure along the length of the ear canal. At the entry of the ear 

canal, a pressure null is present when the incident and reflected waves are out of 

phase. Currently, most OAE equipment calibrates the stimulus level according to 

the sound pressure at the entry of the ear canal simply because it is where the 

probe microphone is located. However, such calibration can lead to inaccurate 

quantification of the stimulus level, given that the pressure at the TM can be 

significantly different (Siegel, 1994; Siegel & Hirohata, 1994). In the first 

experiment reported in Chapter 2, we attempted to address this issue by using an 

improved calibration method.   

1.2.2 Middle ear 

 The middle ear also has significant effects on the OAE measurement since 

it is the pathway of the stimulus and OAEs. One primary function of the middle 

ear is to match the acoustic impedances between the air in the outer ear and the 

fluid in the inner ear, so that the sound energy can be effectively transmitted from 

the outer ear into the inner ear. The impedance match is achieved by the 

amplification of the pressure when a sound passes through the middle ear. The 

middle-ear amplification is frequency dependent with a resonant frequency 

around 1-4 kHz and it forms the shape of the human equal loudness contour (Ross, 

1968). In this way, the middle ear can greatly affect the hearing sensitivity 

(Moore et al., 1997) and the spectral shape of OAEs (Suzuki & Takeshima, 2004). 

OAEs will be attenuated or even absent if the middle ear has problems, such as 

abnormal middle-ear pressures (Marshall et al., 1997) and middle-ear effusion 

(Nozza et al., 1997).  
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1.2.3 Basilar membrane 

 The basilar membrane (BM) of the inner ear is the place where OAEs 

originate. The BM is a spectral analyzer of incoming sounds. It goes along the 

length of the cochlea duct, and the morphological attributes differ from the base 

(close to the stapes) to the apex. The BM is narrow and stiff at the base, while it is 

wide and flexible at the apex. Therefore, each location has a characteristic 

frequency (CF), with high CFs located at the base and low CFs at the apex. When 

a sound enters the inner ear, the pressure difference within the cochlear fluid 

causes the BM to vibrate. The vibration initiates at the base and gradually builds 

up as the energy propagates towards the apex. The vibration reaches a peak at the 

place where the CF of the BM equals to the frequency of the incoming sound, and 

quickly dies out when it goes further. Such a sequence of vibration patterns of the 

BM resembles a wave moving along the cochlea and it is called the travelling 

wave. For a pure-tone stimulus, the peak of the travelling wave is located at the 

base for high-frequency input, and at the apex for low-frequency input.  

1.2.4 Hair cells 

Hair cells lie on the BM and are covered by the tectorial membrane. There 

are two types of hair cells in the cochlea: inner hair cells (IHCs) and outer hair 

cells (OHCs). There are one row of IHCs and three rows of OHCs. On top of both 

types of hair cells, there are hair-like projections called stereocilia with the tips 

embedded in the tectorial membrane. The travelling wave in response to a sound 

input causes the relative movement between the BM and tectorial membrane, 

which in turn causes the stereocilia to bend. The bending of the stereocilia opens 
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the ion channels to allow K+ rush into the hair cells along the concentration 

gradient. Such ion flow causes an electrical voltage change across the plasma 

membrane. Thus the mechanical energy in sound is transformed into the receptor 

potential of the hair cells (electrical energy), and this process is called the 

mechano-electrical transduction (MET). One essential characteristics of the MET 

process is its nonlinear transfer function, i.e., the relation between the mechanical 

deflection of the stereocilia and the corresponding receptor potential is highly 

nonlinear. The transduction is most sensitive at the resting point of the stereocilia 

and it becomes compressive or saturated when the deflection increases in either 

direction. The nonlinear characteristics of the transfer function can be described 

by sigmoid-shaped functions, such as a hyperbolic-tangent function (Weiss & 

Leong, 1985) or a Boltzman function (Patuzzi & Moleirinho, 1998).  

Although both IHCs and OHCs are involved in the MET process, their 

roles are different. The voltage change originated from the MET in IHCs leads to 

the release of the neurotransmitters, and causes the afferent auditory nerve fibers 

(ANFs) to fire. Actually, about 95% of the afferent ANFs contact with the IHCs, 

making the IHCs the main sensory cells. In contrast, the voltage change from the 

MET process in OHCs leads to the change of the cell length due to a voltage 

dependent morphological change in the plasma membrane (Brownell et al., 1985). 

In this way, OHCs can convert the voltage change (electrical energy) back to the 

BM vibration (mechanical energy) and this process is called the reversed 

transduction. The OHC mechanical response in a reversed transduction can 

generate mechanical forces to help amplify the vibration of the BM to improve 
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the sensitivity of the IHCs. During the reversed transduction, some of the energy 

added by the OHCs is transmitted back from the inner ear to the outer ear, 

recorded as otoacoustic emissions in the ear canal.  

1.3 Otoacoustic Emissions 

Otoacoustic emissions (OAEs) were discovered by Kemp (1978) and 

became well-known phenomenon of the auditory system since then. OAEs can be 

recorded by placing a sensitive microphone in the ear canal, with or without 

presenting external stimuli.  

The presence of the OAEs is strongly associated with the normal OHC 

activities (Hamernik et al., 1998; Glen K. Martin et al., 1998). If OHCs are 

damaged (such as by ototoxic drugs or by noise exposure), OAE amplitudes are 

decreased or even absent (Kossl & Vater, 2000; Subramaniam et al., 1994). Thus, 

OAEs provide a window to observe the functional status of the OHCs. Screening 

OAEs of different frequencies can help to identify the cochlear region where 

OHCs are damaged. Moreover, OAEs are relatively easy to measure, because it 

only requires an earphone to present the stimuli and a microphone to record the 

ear-canal response. In addition, measuring OAEs is an objective and yet non-

invasive method of estimating the inner-ear function. Therefore, OAEs have been 

widely used as a means of audiological assessments in the clinic. OAE screening 

is an ideal way to screen the hearing loss in newborn babies who cannot respond 

behaviorally in standard hearing tests. The measurement of OAEs is useful in 

tracking ototoxicity during medical therapies using aminoglycoside antibiotics or 

chemotherapeutic drugs (Reavis et al., 2008; Stavroulaki et al., 2002) and 
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monitoring hearing functions during neuro-otologic surgeries (Telischi et al., 

1995). OAEs are also used to assess the pathophysiological mechanisms of 

Meniere's diseases (van Huffelen et al., 1998). Combined with other hearing 

assessments, OAEs can assist clinicians in differential diagnosis to further 

pinpoint the cause of the hearing loss (Starr et al., 2001; Deltenre et al., 1999).  

1.3.1 Types of OAEs 

Depending on whether there is an evoking stimulus, all OAEs are divided 

into two distinct classes: spontaneous and evoked OAEs. Spontaneous OAEs 

(SOAEs) can be recordable in 80% of normal ears without any external stimuli 

(Penner & Zhang, 1997; Burns et al., 1992). Evoked OAEs can be further 

categorized into several different types based on the type of stimuli. If elicited by 

a transient stimulus (such as a click or a tone burst), the emissions are called 

transient evoked OAEs (TEOAEs); if two pure tones are used, the acoustic 

distortion products consisting of the combinations of the two evoking stimuli are 

recorded as distortion product OAEs (DPOAEs); if elicited by one single tone, 

they are referred to as the stimulus-frequency OAEs (SFOAEs).  

Among the different types of evoked OAEs, TEOAEs and DPOAEs are 

currently used in the clinic. For TEOAEs, the transient can stimulate the entire 

length of the BM simultaneously and the emissions are observable after the 

stimulus. High-frequency TEOAEs are emitted by OHCs at the cochlear base with 

shorter latencies, followed by low-frequency TEOAEs that are generated from 

more apical regions with longer delays.  TEOAEs are commonly used in hearing 
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screening because they are present as long as the OHCs are functioning, and they 

can be obtained efficiently.  

DPOAEs are measured using two pure tones with closely spaced 

frequencies (1 2 2 1, ; / 1.2f f f f ≈ ). In normal ears, the recorded emissions contain a 

family of distortion products (DPs) in various combinations of integer multiples 

of the primary frequencies (1 2mf nf± ). Among these components, the cubic 

difference tone ( 1 22 f f− ) is used in the clinic because it is the most prominent 

DPOAE in humans (Telischi et al., 1995; Lonsbury-Martin et al., 1990). DPOAEs 

are widely used in auditory diagnosis because they are free from contamination by 

stimulus artifacts and they are faithful indicators of the nonlinearities of cochlear 

transductions (Bian, 2004; Bian et al., 2002).  

1.3.2 Generation mechanisms 

Even though OAEs are closely related to OHC functions, how they are 

generated differs depending on the stimulus and the signal level. Currently, there 

are two distinct generation mechanisms for evoked OAEs: linear coherent 

reflection and nonlinear distortion (Shera & Guinan, 1999). Linear coherent 

reflection views the OAEs being the energy reflected from impedance 

irregularities (or discontinuities) distributed randomly on the BM (Zweig & Shera, 

1995). Several factors could be responsible for the impedance irregularities: the 

spacing of irregular or extra OHCs (Lonsbury-Martin et al., 1988), variations in 

the gains resulted from the OHC activities (Strube, 1989) and the change of the 

efferent innervations. The waves reflected by the irregularities at the peak region 

of the travelling wave have a coherent phase and the summed energy propagates 
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as a backward travelling wave. The OAEs generated by the linear reflection are 

characterized by steep phase gradients (Schairer et al., 2006). In contrast, the 

nonlinear distortion regards the OAEs as the energy originated from the nonlinear 

interactions of the travelling waves on the BM and it is highly dependent on the 

nonlinearities of the OHC activities. The nonlinear distortion is characterized by 

shallower phase gradients.  

Different evoked emissions may involve different generation mechanisms. 

TEOAEs are wideband signals and they are thought to originate from linear 

reflections off preexisting impedance irregularities (Zweig & Shera, 1995). 

However, there are arguments that TEOAEs may involve nonlinear interactions 

among different frequency components of the emissions (Withnell & Yates, 1998). 

DPOAEs are generally considered as a mixture of two distinct components 

(Parazzini, Wilson, et al., 2006; Shaffer et al., 2003; Kalluri & Shera, 2001; Shera 

& Guinan, 1999). One component is the distortion from the overlapped region of 

the two stimulus-tone travelling waves and the other is from the reflection at the 

CF place ( 1 22 f f− for the cubic difference tone). SFOAEs are considered to be 

generated from linear reflection at low to moderate stimulus levels, and nonlinear 

distortions may also be involved at high stimulus levels (Schairer et al., 2006; 

Goodman et al., 2003; Zweig & Shera, 1995).  

1.3.3 Limitations of TEOAEs and DPOAEs 

Although TEOAEs and DPOAEs are measured in the clinic for nearly 30 

years, there are still limitations that impede their further applications in audiology. 

One limitation of TEOAEs is that there is a lack of high-frequency OAEs 
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particularly above 4 kHz. This is because the first 2-3 ms of the temporal 

waveform of the acoustic response, which contains the short-latency high-

frequency OAEs, is greatly contaminated by the stimulus artifacts and therefore 

removed from the analysis in TEOAE systems (Kemp et al., 1990). However, 

studies showed that there are compelling reasons to measure high-frequency 

emissions. In most cases, cochlear damage, such as ototoxicity (Schweitzer et al., 

1984; Brummett, 1980), noise induced hearing loss (Kuronen et al., 2003) and 

other cochlear insults (Ohlemiller & Siegel, 1992), appear first at high frequencies 

and then proceed to low frequencies. Therefore, monitoring of high-frequency 

OAEs is useful for early detections of cochlear damage. Another limitation of 

TEOAEs is that nonlinear interactions between different frequency components in 

their generation mechanism may deteriorate the spectrum (Plinkert et al., 1999; 

Wagner & Plinkert, 1999).   

One limitation of DPOAEs is their complicated generation mechanisms. 

They are considered as a mixture of two components from two distinct regions (as 

mentioned previously), making it difficult to attribute the abnormality of 

DPOAEs to the dysfunctionality of one specific generation region (Dhar et al., 

2002; Heitmann et al., 1996). Another limitation is that it tests only one frequency 

at a time, making it less efficient than TEOAEs. Meenderink and van der Heijden 

(2011) proposed to replace one of pure-tone stimuli with six to ten tones to evoke 

DPOAEs. However, the choice of the stimulus frequencies is restricted by the 

requirement of ensuring no DPs to be generated at the same frequency and 

presenting multiple stimuli to a single earphone increases the chance of 
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overloading the transducer to produce distortion artifacts. Long et al (2008) used a 

continuous frequency-sweeping paradigm to evoke DPOAEs. This is an 

interesting approach since it can improve the efficiency of DPOAE measurement.  

1.3.4 Advantages of SFOAEs 

SFOAEs are evoked by one single tone and the emissions are generated at 

the same frequency as the stimulus. Unlike TEOAEs and DPOAEs involving 

complicated generation mechanisms from multiple regions, SFOAEs are thought 

to be generated by a simple linear reflection mechanism from a small cochlear 

portion located at the peak region of the traveling wave of the stimulus (Zweig & 

Shera, 1995). Thus, SFOAEs are considered to be very frequency-specific 

(Schairer et al., 2006; Goodman et al., 2003) and the abnormity of SFOAEs can 

map out the specific region of the damaged OHCs. The spectral distribution of 

SFOAEs across a wide frequency range could be a graphical representation of 

surviving OHCs which was coined by Kemp (1986) as the cochleogram. SFOAEs 

are vulnerable to cochlear damage induced by noise overexposure (Bentsen et al., 

2011), and the group delay calculated from the phase spectrum can reflect 

functional status of OHCs (Shera & Guinan, 2003). Therefore, SFOAEs have 

advantages over other types of OAEs and show great potential to be developed as 

a clinical tool to be applied in the clinic.  

However, SFOAEs are currently restricted to laboratory research only. 

One factor to prevent SFOAEs from clinical usage is that the emissions share the 

same frequency as their eliciting stimulus, making the extraction more difficult 

than other types of OAEs. Another reason is the low efficiency of the 
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measurement since SFOAEs are measured frequency-by-frequency using pure 

tones. As a result, only a narrow frequency range can be measured within the 

limited measurement time. It would be helpful if the frequency of the stimulus 

changes continuously with time, so that a wide range of frequencies can be tested 

within one single measurement.  

1.4 Statement of purpose 

The purpose of this dissertation is to develop a new method of OAE 

measurement to overcome the frequency limit of TEOAEs and to improve the 

efficiency of DPOAEs. The proposed method uses swept-tones whose frequency 

changes continuously with time to evoke SFOAEs that are more advantageous 

than other types of OAEs. By measuring SFOAEs evoked by swept tones, the 

method has the following advantages: 1) it is precise in specifying the location of 

the cochlear damage; 2) it is capable of measuring OAEs of any given frequency 

range; 3) the frequency resolution is very high since the swept-tone stimulus has a 

continuously frequency and a long duration; 4) it is highly efficient since it can 

test SFOAEs over a wide range of frequencies within one single measurement. 

Meanwhile, an in-situ calibration is also implemented to precisely control the 

level of the swept-tone stimulus at the TM position to resolve the standing wave 

issue that causes inaccurate stimulus calibration.  

The hypotheses of this research are: 1) the in-situ calibration can precisely 

control the swept tone level at the TM and in turn improve the reliability of OAE 

measurements; 2) SFOAEs can be reliably measured with swept tones and the 

results are consistent with the SFOAEs measured with traditional methods using 
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pure tones. Two experiments are designed to test the two hypotheses, respectively. 

In the first experiment, the sound pressure at the TM was predicted by a multiple-

cavity method and the predicted results were validated by measuring the actual 

sound pressure at the TM position using a second probe microphone. Then the 

predicted TM pressure was used in the in-situ calibration to equalize the acoustic 

energy across frequencies to evoke SOAEs, and the effects of the calibration on 

the OAE measurements were investigated. In the second experiment, the 

techniques of extracting swept-tone SFOAEs were implemented in human ears. 

The reliability of the swept-tone SFOAEs was investigated using a repeated 

measure design and the accuracy was examined by comparing the swept-tone 

SFOAEs with those obtained by a conventional pure tone methods. 
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Chapter 2 

2 EXPERIMENT I 

The calibration of the stimulus level refers to the adjustment of sound 

energy that enters the middle-ear to be at the desired level. When the stimulus is a 

wide-band signal, the calibration ensures that a desired spectrum is achieved. The 

calibration of the stimulus level in OAE measurements is important because it 

significantly affects the OAE amplitude and an inaccurate calibration can lead to 

an unreliable result. The calibration in the real ear prior to each OAE 

measurement is necessary, because the sound energy can vary depending on the 

insertion depth of the probe, the seal of the ear tip, and the shape of the individual 

ear canal. More importantly, for certain frequencies the sound pressure measured 

at the entry of the ear canal can be drastically different from the pressure at the 

TM. This is due to the presence of a standing wave inside the ear canal which is 

formed by the enhancement and cancellation between the incident sound wave 

from the ear phone and the reflected wave from the TM. A typical consequence of 

the standing wave is that sound pressure measured at the ear canal entry shows a 

deep notch at a certain frequency, but the sound level at the TM can reach a 

maximal value. The standing wave problem occurs to the frequency that is 

determined by the distance between the earphone probe and the TM.  Therefore, 

the reading from the probe microphone at the canal entry cannot reflect the actual 

sound pressure at the TM, at least around the frequency of the standing wave. 

For OAE measurement, a commonly accepted reference of the sound 

energy entering the middle ear is the TM pressure which is measured with a 
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microphone placed within a few millimeters from the TM (Siegel, 1994; Siegel & 

Hirohata, 1994). However, inserting a microphone so close to the TM could cause 

discomfort and introduce potential threat of damaging the TM. As a result, 

measuring the TM pressure directly is rarely used in practice. The most common 

method is to calibrate the stimulus level according to the sound pressure measured 

from the probe microphone placed at the entry of the ear canal (called probe 

pressure). In such a calibration (namely the probe calibration), the driving voltage 

to the earphone is adjusted until the measured probe pressure achieves the desired 

spectrum. However, the probe calibration is largely affected by the standing 

waves in the ear canal. A notch is present at a certain frequency for the probe 

pressure but not for the TM pressure. If the probe pressure is equated across 

frequencies, the energy around the notch frequency would be over compensated. 

The over compensation can be as much as 15 to 20 dB around the notch 

frequency (Siegel & Hirohata, 1994). Whitehead et al (1995) used a “no 

calibration” strategy, in which the driving voltage to the earphone is held constant 

across frequency. However, the actual spectral shape at the TM is highly 

dependent on the frequency response of the earphone and the acoustic 

characteristics of the ear canal.  

One solution for the calibration problem is to model the ear canal as a 

uniform tube (Dirks & Kincaid, 1987). While such modeling was successful in 

estimating the TM pressure below 6 kHz in some ear canals, several factors, such 

as the curvature of the ear canal and the inclination of the TM, led to increased 

estimation error of high frequencies. Other investigators tried to estimate the TM 
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pressure by measuring sound pressure at the TM position in the ear-canal 

simulators of different lengths (Gilman & Dirks, 1986). They estimated the 

distance between the probe and the TM by finding the spectral notch in the real-

ear probe pressure, and then placed the probe at the same position in the simulator. 

The corresponding pressure measured at the TM position in the simulator was 

used as the reference of the actual TM pressure. This may be a feasible calibration 

method in practice. However, there is no guarantee that the acoustic 

characteristics of the simulator are exactly the same as the real ear, given that 

large individual differences exist in the ear-canal acoustics.  

Recently, a calibration method based on estimating the incident pressure 

(also called forward pressure) has been developed and is under intense 

investigation (Burke et al., 2010; Rogers et al., 2010; Lewis et al., 2009; Withnell 

et al., 2009; Scheperle et al., 2008; Neely & Gorga, 1998). This method tries to 

separate the sound pressure at the entry of the ear canal into two components: the 

incident and reflected pressures. It then adjusts the stimulus level according to one 

individual component, the incident pressure, so that the standing-wave problem 

caused by the interactions of the two components is avoided. However, the 

separated pressure components cannot be validated since the incident or reflected 

pressure alone cannot be actually measured anywhere in the ear canal.  

The effects of various calibration methods on the OAE measurements 

have been investigated in many studies (Burke et al., 2010; Rogers et al., 2010; 

Scheperle et al., 2008; Whitehead, Stagner, et al., 1995; Siegel & Hirohata, 1994). 

However, while some studies reported significant differences in OAE amplitudes 
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between different calibrations (Scheperle et al., 2008; Siegel & Hirohata, 1994), 

little or no calibration effects were found in other studies (Burke et al., 2010; 

Whitehead, Stagner, et al., 1995). One possible reason for such conflicting results 

may be that the differences in the stimulus level between different calibration 

methods may be present within a narrow frequency range, which may not be 

covered by the sparse pure-tone frequencies measured by these studies. One 

solution is to measure continuous-frequency OAEs so that any effects of the 

calibration on the OAE amplitude can be observed in any frequency range.  

In this experiment, an in-situ calibration was used to estimate and adjust 

the sound pressure at the TM to a target level. The in-situ calibration is extended 

from the incident-pressure method to attempt to predict the TM pressure. The in-

situ calibration can automatically adjust the driving voltage (as a function of 

frequency) according to the predicted TM pressure until it reaches a desired 

spectrum level. The predicted TM pressure was validated in a cylindrical acoustic 

cavity and real ear canals by the actual measurement from a second probe 

microphone. Furthermore, the benefits of the in-situ calibration in OAE 

measurement were investigated by measuring the swept-tone SFOAEs (described 

in the next chapter) with three different calibration methods that adjust the 

stimulus level according to different sound pressures.  
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2.1 Methods 

2.1.1 Materials and subjects 

A) Materials 

Two plastic tubes with a uniform diameter were used for different 

purposes: a calculation tube and an evaluation tube. The calculation tube was 

mainly used for estimating the acoustic properties of the earphone source, namely 

the source pressure and source impedance. These parameters were used to predict 

sound pressure at the TM. The inner diameter of the tube was 7 mm, which was 

similar to the diameter of the human ear canal. The total length of the calculation 

tube was about 80 mm, with one end open to be connected to the eartip and the 

other end terminated by a piston. The piston could be moved to various positions 

to set the tube at different effective lengths. The evaluation tube of 50 mm in 

length was mainly used to validate the estimated impedance and predicted TM 

pressure. For the evaluation tube, one end was open (to be connected with the 

eartip) and the other end was closed by a flat plastic plate.  

 

Figure 2. The materials used in this experiment: a calculation tube and an 

evaluation tube. 
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B) Subjects 

To validate the predicted TM pressure in real human ears and to examine 

the effects of different calibrations on OAE measurement, five subjects (2 males, 

3 females) with ages ranging from 21 to 30 years old (mean age=25) were 

recruited in this experiment.  The subjects had normal hearing with thresholds of 

20 dB HL or less for frequencies from 250 Hz to 8k Hz. An otoscopic 

examination was performed prior to the test to ensure a clean ear canal and a 

normal functioning middle ear. The subjects were seated in a sound-proofed booth 

comfortably and the experimental procedures were clearly explained to them. The 

subjects were told to be as quiet as possible during the test. The recruiting 

protocols were approved by the Institutional Review Board of Arizona State 

University (ASU). 

2.1.2 Equipment 

The diagram of the sound delivering and recording system was shown in 

Figure 3. A custom program developed in Labview (National Instruments, Austin, 

TX) was used to generate the stimulus from a personal computer. The generated 

digital signal was converted to analog voltage by a 24-bit signal acquisition and 

generation card (PXI-4461, National Instruments). The voltage from the PXI-

4461 card was then used to drive an ER-2A earphone probe (Etymotic Research, 

Elk Grove Village, IL) to present the acoustic stimulus. The earphone was seated 

together with a low-noise ER-10B+ microphone (probe microphone) inside an 

appropriately selected rubber eartip (ER-10D, Etymotic Research), which was 

inserted into the open end of the tube or the ear canals. The sound pressure near 
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the earphone probe (probe pressure) was recorded by the probe microphone and 

then digitized by the PXI-4461 card at a sample rate of 80k sample/s.  

 

Figure 3. The diagram of the sound delivering and recording system.  

2.1.3 Stimulus 

A swept tone constructed in the frequency domain with a desired flat 

spectrum was used as the stimulus in this experiment (Appendix A). The swept 

tone was a frequency modulation tone whose frequency increased linearly with 

time. There were three signal parameters to control the swept tone stimulus: the 

frequency range (from 1f  to 2f ), the duration (T ) and the amplitude. A swept 

tone with a flat amplitude spectrum was initially generated. However, the 

recorded tube or ear canal frequency response was not flat due to the resonance 

and the standing wave in the cavities. The amplitude of the swept-tone was 

defined as the spectral level of the measured pressured at 1 kHz. For signal 

calibrations, the spectral levels of the swept tone for all frequencies were adjusted 

based on the inverse of the tube or canal frequency response to equalize the 

energy with respect to 1 kHz.  The frequency response used in the calibration 

could be either the probe pressure or the predicted TM pressure, thus resulting in 

two type of calibration: probe and in-situ calibrations. In this experiment, the 
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signal parameters were: 1 0.5f =  kHz, 2 10f = kHz, 1T = s, amplitude = 50 dB 

SPL.  

2.1.4 Procedures 

A) Source calibration 

The source parameters of the ER-2A earphone included the source 

pressure sP   and source impedance sZ . The source pressure refers to the output 

pressure from the earphone without acoustic loads, and the source impedance is 

the obstruction of the earphone structures to the output pressure. The source 

calibration method used in this experiment was similar to Allen’s multiple-cavity 

approach (1986), in which sP  and sZ were solved by a transmission line model. 

The technical details of the multiple-cavity approach can be found in Appendix B 

and the procedures are described as followed.  

The eartip with the earphone and probe microphone was tightly connected 

to the open end of the calculation tube and the piston was then set to five different 

positions. This resulted in 5 different tube lengths that ranged from 10 to 60 mm 

with roughly 10 mm apart. At each piston position, a swept-tone stimulus with a 

flat spectrum of 50 dB SPL was presented and the pressure response was recorded. 

The theoretical acoustic impedance of each tube length was calculated based on 

equation (8) in Appendix B. Then the sound pressure responses and the tube 

impedance functions of all the five piston positions were used to solve for sP  and 

sZ  in the frequency domain (see Appendix B).  
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To examine whether the choice of piston positions affected the solution, 

two sets of 5 piston positions were used to result in two sets of solutions of sP  

and sZ  for a comparison.  

B) Prediction of TM pressure 

After sP  and sZ  were obtained in the source calibration, the eartip was 

moved to the evaluation tube or an ear canal to estimate the impedance and the 

TM pressure. Then the same swept tone stimulus was presented and the probe 

pressure at the eartip (LP ) was recorded. The impedance of the evaluation tube or 

the ear canal could be obtained in the frequency domain by: 

 s L
L

s L

Z P
Z

P P
=

−
 (1) 

With the impedance of the evaluation tube or the ear canal known, the 

incident pressure (P+ ) and reflected pressure (P− ) at the entry of the ear canal 

could be obtained by (Rogers et al., 2010; Withnell et al., 2009; Scheperle et al., 

2008):    
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P P

Z− = −  (3) 

where 0Z cρ= ( ρ : air density; c: sound speed). Assuming that the absorption of 

the sound energy was negligible when the sound travelled from one end of the ear 

canal to the other end, the two components at the TM position [the incident 

pressure ( 'P+ ) and reflected pressure ('P− )] had the same amplitude as the two 
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components at the entry of the ear canal [P+  and P− ] respectively but with 

different phases. Therefore, the 'P+  and 'P−  could be obtained by shifting the phase 

of P+  and P−  (Appendix C). Finally, the predicted TM pressure (T̂MP ) could be 

obtained by the sum of the two components at the TM position: 

 ' '
T̂MP P P+ −= +  (4) 

C) Verification of predicted TM pressure 

It was essential to ensure that the predicted TM pressure (T̂MP ) matched 

the actual TM pressure before it could be used for the calibration. The verification 

was conducted first in the evaluation tube then in the ear canals of the five human 

subjects (Figure 4). To verify the predicted TM sound pressure, a second probe 

microphone (Philips SHM3300) was routed down the tube or canal with a soft 

probe tube (ER7-14) so that the sound pressure at the closed end of the tube or at 

the TM could be recorded. The inner diameter of the probe tube was 1 mm and 

the length was 70 mm.  

The insertion depth of the probe tube was determined by estimating the 

effective tube length or the ear canal depth from measuring the spectrum of the 

probe pressure. The entrance of the tube or ear canal was sealed with the eartip 

and the probe tube was adjusted to ensure the tip was with 1~2 mm from the 

closed end or the TM.  The predicted TM pressure T̂MP  and the actual TM 

pressure measured by the second probe microphone (TMP ) were compared.   



  25 

 

Figure 4. The verification of the predicted TM pressure in the tube and in the ear 

canal.  

In order to compare ̂TMP  and TMP , the frequency responses of the two 

probe microphones were measured separately and the difference was used to 

correct the outputs from them (see Appendix D for details).  

D) Effects of calibrations on OAE measurements 

The calibration for OAE measurements refers to the process of adjusting 

the swept tone amplitude until the recorded sound pressure reaches a target which 

is a flat amplitude spectrum set at a desired level, i.e., 50 dB SPL. In this 

experiment, the stimulus was a swept tone with the duration of 1s and the 

frequency range from 0.5 to 10 kHz. The adjustment was done programmatically 

with a feedback loop. The acceptable range of the variation was set to less than 1 

dB across frequency.  

Depending on which signal was used for the adjustment, there were three 

different calibration conditions: no calibration, probe calibration and in-situ 

calibration. The duration of the swept tone stimulus was 1s, and the frequency 

range was from 0.5 to 10 kHz. For the “no calibration” condition, the amplitude 

(constant across frequency) of the swept tone was adjusted until the measured 
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probe pressure at 1 kHz reached 50 dB SPL. For the “probe calibration” condition, 

the swept tone was adjusted until the probe pressure matched a flat target of 50 

dB SPL across frequency. For the “in-situ calibration” condition, adjustment was 

made to the swept tone until the predicted TM pressure reached a flat target of 50 

dB SPL. For each subject, the swept-tone SFOAEs (described in the next chapter) 

were measured under the three calibrations successively. The SFOAE amplitudes 

were compared among the different calibration conditions.  

2.2 Results 

2.2.1 Source calibration 

In order to predict the TM pressure, the acoustic properties ( sP  and sZ ) of 

the earphone were determined by the source calibration.  During the source 

calibration, the piston of the calculation tube was set to five different positions 

and the corresponding probe pressures were measured to solve for sP  and sZ . To 

examine whether the choice of piston positions had effects on the solution, two 

sets of piston positions were used, resulting in two solutions of sP  and sZ  (Figure 

5). The effective tube lengths of the first set of piston positions were 52.1, 43.2, 

39.2, 16.6 and 8.9 mm, while the lengths of the second set were 60.2, 47.5, 35.3, 

22.7 and 12.0 mm. It was observed that the two solutions of sP  and sZ were in 

good agreement, indicated by the overlapped amplitude and phase spectra across 

the entire frequency range (0.5-10 kHz). The maximal deviation of sP  amplitude 

was 0.51 dB, and it was 0.72 dB for sZ .  The phase had a maximal difference of 

0.06 rad for sP  and 0.14 rad for sZ .  The difference seemed to be larger at higher 
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frequencies. The comparison of the two solutions suggested that the selection of 

tube lengths did not affect the estimate of the source parameterssP  and . 

 

Figure 5. The amplitude and phase of the source parameters solved by two 

different sets of tube lengths.   

2.2.2 Prediction in tube 

Once source parameters (  and ) were reliably obtained, they were 

then used to estimate the impedance of the evaluation tube or the real ear. The 

measurement in the evaluation tube provided a means to evaluate the impedance 

estimation, because the impedance of a tube can be calculated from theory 
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(Appendix B). The amplitude ( tubeZ ) and phase ( tubeZ∠ ) of the estimated and 

theoretical impedance of the evaluation tube with an effective length of 33.6 mm 

are shown in Figure 6. It was observed that the theoretical tubeZ  showed deep 

notches at the frequency of0 2.53f = kHz and its 3rd harmonics ( 03 f ). Meanwhile, 

a peak could be found at the frequency of 02 f .  For the phase tubeZ∠ , it changed 

from / 2π−  to / 2π  at the notch frequencies, and from / 2π to / 2π−  at the peak 

frequencies. It was also observed that the estimated impedance from the 

measurement matched the theoretical impedance well for both the amplitude and 

the phase. The only noticeable difference was that the notch of the calculated 

amplitude was not as deep, and the calculated phase changes at the notch (or peak) 

frequency were not as abrupt. Nevertheless, the theoretical and estimated 

impedances were in good agreement.  
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Figure 6. The amplitudes and phases of the estimated and theoretical impedances 

of the evaluation tube. 

 Based on the estimated impedance, the pressure at the closed end of the 

evaluation tube, equivalent to the TM position in the ear canal (Figure 4), could 

be predicted as ̂TMP . Meanwhile, the actual pressure at the closed end ( TMP ) was 

measured by a second microphone with a probe tube. The predicted ̂TMP and the 

actual TMP  are compared along with the probe pressure at the entrance ( LP ) were 

compared in Figure 7. It could be observed that the probe pressure LP  had notches 

at about 2.53 kHz ( 0f ) and its third harmonic ( 03 f ). The notches could be as deep 

as 50 dB. Between the two notches, a pressure peak was observed at the 
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frequency around 02 f . These notches and peaks corresponded to the 

measurement of tubeZ  in the same tube (Figure 6). In contrast, the deep notches 

were not present in both the predicted and actual sound pressures at the closed end 

of the tube ( TMP  and T̂MP ). In other words, the sound pressures of the two ends of 

the tube differed substantially around the notch frequency and LP  could 

underestimate the actual TMP  by as much as 50 dB in the tube. However, all of 

these measurements showed a peak at about 02 f .  

More importantly, the results showed that the predicted pressure ̂TMP  and 

the actual pressure TMP  were in good agreement across the entire frequency range 

(0.5-10 kHz). The maximal prediction error, defined as ˆ
TM TMP P− , was less than 

1.2 dB across frequencies. The prediction seemed to be best around the peak 

frequency, indicated by the overlapped lines. The prediction error seemed to 

slightly increase around the notch frequency and higher frequencies above 8 kHz. 

In general, the results indicated that the prediction was very successful in the tube.  
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Figure 7. The probe pressure at one end, the predicted and measured pressure at 

the other end of the evaluation tube.  

2.2.3 Prediction in real ear 

The same approach was applied to the real ears of 5 human subjects to 

measure the ear-canal impedance and to predict the sound pressure at the TM. 

One example of the ear-canal impedance earZ  is shown in Figure 8 (subject # 1). 

It was observed that the ear-canal impedance earZ  resembled to that of the 

evaluation tube (Figure 6). The amplitude of the impedance earZ  had its first 

notch at about 3.3 kHz (0f ). A second notch of earZ  was present at 9.18 kHz, 

which was close to the third harmonic of 0f . A peak was found between the two 
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notches at the frequency around 02 f . Note that the notches were not as deep as 

the impedance of the evaluation tube. The phase earZ∠  showed more fluctuations 

and more gradual transitions at the notch or peak frequencies, compared with the 

tube impedance. The ear-canal impedance in the other 4 subjects showed similar 

patterns. Of course, the notch (or peak) frequencies differed among subjects, 

depending mainly on the length of the ear canal and the insertion depth of the 

eartip. The notch (or peak) shifted to higher frequency if the ear canal was shorter 

with a deeper insertion.  

 

Figure 8. The amplitude and phase of the ear-canal impedance (subject # 1). 

 The estimated ear-canal impedance was then used to predict the TM 

pressure in all the 5 subjects and the predictions were validated by a second 
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microphone with a probe tube inserted approaching the TM. An example of the 

predicted TM pressure (̂TMP ), the actual TM pressure (TMP ) measured by the 

second microphone and the probe pressure measured at the entry of the ear canal 

( LP ) is shown in Figure 9 (subject # 1). Generally, the observations in the ear 

canal were similar to those in the evaluation tube (Figure 7). The LP  and TMP  (or 

T̂MP ) showed the greatest difference (up to 15 dB) around 0f = 3.3 kHz and its 

third harmonic. Compared with the tube, the notches of LP  in the ear canal were 

not as deep. Around the frequency of 02 f , all measurements showed a peak. The 

prediction of the TM pressure was also successful in the ear canal, as indicated by 

the overall match between the T̂MP  and the TMP . The mean prediction error 

averaged across frequencies was 0.8 dB and the standard deviation was 0.5 dB. 

The maximal prediction error was 2.5 dB, which was slightly larger compared 

with the prediction in the tube.  
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Figure 9. The probe pressure, predicted and measured TM pressure in the real ear 

measurement (subject # 1).  

The prediction errors ( ˆ
TM TMP P− ) were calculated for all frequencies from 

0.5 to 10 kHz in all the 5 subjects. The occurrences (or frequency counts) of 

various differences were expressed by a histogram for each subject (Figure 10). 

The range of the prediction error was from -2 to 3 dB among all the subjects, with 

an average ranging from 0.3 to 0.8 dB. These findings indicated that the actual 

sound pressure at the TM generally agreed with the predicted TM pressure in all 

the subjects. In other words, the sound pressure at the TM could be reliably 

estimated from the sound pressure at the entry of the ear canal based on the source 

calibrations in multiple cavities.  
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Figure 10. The histograms of the amplitude difference between the predicted and 

measured TM pressure (prediction error) of all subjects (n=5).  

2.2.4 Effects of calibration methods on OAE measurements 

There were 3 signal calibration approaches for OAE measurements: 

namely no calibration or compensation based on ear-canal sound pressure, 

calibration or equalization of sound energy at the ear-canal entrance, and at the 

TM. Effects of the three types of calibration strategies were evaluated by 

measuring swept-tone evoked SFOAEs (Figure 11). Panel (A) showed the probe 

pressure (LP ) and the corresponding predicted TM pressure (T̂MP ) in the no 
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calibration condition without compensation. Similar to previous observations, the 

LP  had a deep notch at around 3.5 kHz due to the standing wave in the ear canal, 

while the T̂MP  was relatively flat. Both LP  and T̂MP  had a peak around 8.5 kHz.  

As observed in panels (B)-(D), the swept-tone SFOAEs amplitude-

frequency functions demonstrated two features: the global shape (baseline 

amplitude) and the fine structures (ripples). Since the fine-structures were 

generally similar across conditions, the effects of the calibrations were 

demonstrated by the changes in the global shape of OAE amplitudes. For the no 

calibration condition, the OAEs around 8.5 kHz showed an elevation of about 7 

dB compared with other methods [noted by rectangle (1)], since the sound 

pressure entering the middle ear was nearly 10 dB higher than the rest of the 

spectrum. For the probe calibration condition, large compensations (up to 12 dB) 

were added around the notch frequency to equalize the sound energy at the entry 

of the ear canal. As a consequence, the sound energy entering the middle ear 

would be much higher than expected, and the OAE amplitudes around the notch 

frequency were elevated by as much as 6 dB [indicated by rectangle (2)]. In 

contrast, the OAE amplitude with the in-situ calibration did not show these 

undesired elevations since the stimulus level was equalized at the TM [panel (D)].  

The effects of calibrations methods on OAE amplitude were similar in the 

other 4 subjects except that the frequencies of the notch and peak differed from 

subject to subject, depending on the effective length of the ear canal. The 

averaged elevation of the OAE amplitude across subject was 5.2 dB around the 

peak frequency for the no calibration condition, and it was 4.3 dB around the 
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notch frequency for the probe calibration condition. These observations suggested 

that the SFOAEs measured under the in-situ calibration condition did not suffer 

from the problem of inaccurate spectral amplitudes of the stimulus.  
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Figure 11. The effects of three different calibrations (no calibration, probe 

calibration and in-situ calibration) on the amplitude of swept-tone SFOAEs 

(subject # 2).   
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2.3 Discussion 

2.3.1  Standing waves and ear-canal acoustics 

In this study, it was found that there were notches and peaks in the sound 

pressure measured at the entry of the ear canal or the tube (Figure 7 and 9), 

although the voltage presented to the earphone was constant. These variations in 

the probe pressure can be attributed to the standing wave, a well-known 

phenomenon in the ear canal (Whitehead, Stagner, et al., 1995; Siegel, 1994; 

Gilman & Dirks, 1985). The standing wave is formed by the interactions of the 

incident and the reflected sound pressure waves. The interactions are dependent 

on the phase relation between the two components. Since the reflected sound 

wave travelled a distance of twice the length of the ear canal (L) to mix with the 

incident pressure at the entry of the ear canal, the two components will be 180oout 

of phase and cancel each other if distance traveled equals 1/ 2  of the wavelength 

of the signal (2 / 2L λ= ), i.e., L = 1/ 4 λ. Similarly, the cancellation will happen 

when L  equals / 4n λ⋅  (n=3, 5, L ). This can explain the presence of the notch in 

the probe pressure at the quarter-wavelength frequency and its odd-order 

harmonics. However, if the L  is / 2n
 
( 1,2,3 )n = L  of the wavelength, the 

reflection wave is in-phase with the incident pressure and the two components can 

interact constructively, resulting a pressure peak at the half-wavelength frequency. 

However, such a cancellation and enhancement do not occur at the closed-end of 

the evaluation tube or at the TM where the two components are always in phase. 

Therefore, the reflection wave can account for the large sound pressure difference 
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between the entry of the ear canal and the TM, especially at the quarter-

wavelength frequency.  

The standing wave problem exists in both the evaluation tube and the ear 

canals, and some of the observations are similar, because of their similarity in 

physical shapes. However, there are also differences between the results of the 

tube and the ear canal. The pressure notches can be as deep as 50 dB in the tube, 

and only 15 dB in the ear canals. This is probably because the sound wave can be 

completely reflected by the solid wall at the end of the tube, while only partial 

sound energy is reflected back at the TM, resulting in a partial cancellation in the 

real ear. Other factors, such as a slight curvature and differences in cross-sectional 

area, may also contribute to the differences in the observations between the tube 

and the ear canal. Furthermore, individual differences in the acoustic 

characteristics of the ear canal may exist between male and female, children and 

adults, and even different subjects within each group (Kruger & Ruben, 1987). 

Therefore, the acoustic characteristics of the ear canal must be measured for each 

individual prior to OAE measurements for more accurate signal calibration 

(Dalmont, 2001; Stevens et al., 1987).  

2.3.2 Source calibrations 

The source calibration is a fundamental step when predicting the TM 

pressure. The accuracy of the source calibration can be affected by many factors, 

such as the number of the tube lengths selected (the number of piston positions in 

this study), the diameter of the calculation tube and the frequency response of the 

earphone (Allen, 1986). Theoretically, two tube lengths should be sufficient since 
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only two unknown variables need to be solved (sP  and sZ ). However, the 

solutions may be inaccurate around the notch frequencies where the sound 

pressure measurement is not accurate, and increasing the number of 

measurements with different tube lengths can overcome this problem. Studies 

(Neely & Gorga, 1998; Keefe et al., 1992) recommend that 4 to 6 tube lengths are 

enough. Since the results from 5 and 6 tubes are similar with limited improvement, 

5 different tube lengths were used in the present study. Regarding to the tube 

diameter, we used the same calculation tube with a diameter close to the averaged 

adult ear-canal since the participants were all adults. For measurement in children, 

different diameters of calculation tubes should be chosen. The frequency response 

of the earphone can influence the source calibration because the pressure 

measurement may be inaccurate if the output pressure from the ER-2A earphone 

is not large enough at high frequencies. This may explain the source parameters 

were not as accurate at high frequencies above 8 kHz (Figure 5). Scheperle et al 

(2008) found that the temperature is also a factor and they suggested that the 

calibration tube should be heated to body temperature.  

When the results of the source calibration were used to estimate the 

impedance of the evaluation tube, the estimated impedance matched the 

theoretical impedance well (Figure 6). Since the accuracy of the impedance 

estimation is highly dependent on the reliability of the source parameters, the well 

matched impedances indicate that the source parameters obtained from the source 

calibrations are reliable and accurate.  
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2.3.3 Prediction of TM pressure 

A key observation of this study is that the sound pressure at the end of the 

tube or the TM can be accurately predicted from the measurement at the entrance 

(Figure 7 and 9). Over the frequency range of 0.5-10 kHz, the maximal prediction 

error was 1.2 dB in the evaluation tube and less than 3 dB in the ear canals of all 

the 5 participants. The prediction was best around the peak frequency, and the 

prediction error seemed to increase at the notch frequencies and high frequencies 

above 8 kHz. Since the predicted TM pressure is calculated from LP , sP  and sZ , 

it is affected by the accuracy of the measurement of LP . At the notch frequency, 

the amplitude of LP  is low and vulnerable to background noises, leading to larger 

prediction errors. For similar reasons, the limited output of sound pressure from 

the earphone may be responsible for the increased prediction error at high 

frequencies.  

The advantage of predicting the TM pressure is that it does not require a 

direct measurement near the eardrum. Although direct measurement is an ideal 

way to obtain the actual pressure at the TM (Siegel, 1994; Siegel & Hirohata, 

1994), deep insertion of a probe microphone could lead to discomfort of the 

subjects, especially for young children who may not be able to tolerate the 

approach. Another advantage is that the predicted TM sound pressure can be 

verified by a second microphone. This is different from other similar methods 

where the forward (incident) sound pressure is predicted (Lewis et al., 2009; 

McCreery et al., 2009; Scheperle et al., 2008; Johnson et al., 2007; Neely & 

Gorga, 1998). Although the forward pressure is also not affected by the standing 
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wave, it cannot be actually measured anywhere in the ear canal and therefore its 

reliability cannot be validated. Predicting the sound pressure at the TM in the 

present study permits the assessment of its validity.  

One disadvantage of the TM pressure prediction, as well as all other 

methods based on the multiple-cavity calibration, is that it requires additional time 

(about 5 min) to recalculate the parameters of the earphone source before each 

ear-canal measurement to produce the best prediction. An alternative solution is 

that a single source calibration is used for measurements of all subjects. Neely and 

Gorga (1998) tested the alternative solution to measure the behavior thresholds 

and found that the threshold changes were less than 1 dB. Their results suggested 

that even with single source calibration, the prediction method retains high 

performance.  

2.3.4 Effects of calibrations on OAE measurement 

In this study, it is observed that different calibrations can impose different 

effects on the swept-tone SFOAE amplitudes (Figure 11). The effects are 

summarized as the following: 1) in the no calibration condition, the peak of the 

stimulus amplitude at the half-wavelength frequency caused significant elevation 

of the OAE amplitude; 2) in the probe calibration condition, the stimulus level 

was over-compensated around the notch frequency and it caused considerable 

elevation of the OAE amplitude; 3) in the in-situ calibration, the OAE amplitude 

is more consistent across frequencies, and no undesired elevations of OAE 

amplitude were found. A straightforward explanation is that the OAE amplitude 

should be elevated accordingly if the TM pressure (or sound energy entering the 
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middle ear) is higher than what it should be. The most appropriate approach is the 

in-situ calibration which equalizes the sound pressure at the TM and brings the 

sound pressure to the desired level so that unexpected elevations of the OAE 

amplitudes can be avoided.  

Since the stimulus is equalized across frequency at the TM, the OAE 

spectrum with the in-situ calibration is more reliable for possible use for 

comparing the OHC functions of different frequency regions. It is observed from 

Figure 11 (D) that the global shape of the OAE amplitude shows apparent 

reductions at about 2 kHz and 6 kHz. One possible explanation is that the OHCs 

may be less active, or have some slight damage, at the cochlear region of 2 kHz 

and 6 kHz for this subject. Similarly, the relatively large amplitude of OAEs at 1 

and 4 kHz may be explained by the more active OHC functions at these frequency 

regions. However, other factors, such as the transfer function of the middle ear 

(Puria, 2003; Paul Avan et al., 2000; Osterhammel et al., 1993), should be taken 

into account before this method can be used for clinical diagnosis of the OHCs 

functions. Therefore, the normative spectral shape of the SFOAEs should be 

established with a population study from normal human beings. 

The effects of different calibrations on the measurement of OAEs (mainly 

the DPOAEs) were also investigated by others. Siegel and Hirohata (1994) 

calibrated the stimulus level according to the probe pressure and measured 

eardrum pressure, respectively. They found that the difference between the 

measured DPOAE amplitudes of the two calibrations could be as large as 20 dB. 

Scheperle et al (2008) manipulated the probe-insertion depth during DPOAE 
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measurement and found that the results from the calibration according to the 

sound pressure at the entry of the ear canal demonstrated the greatest variability. 

Burke et al (2010) calibrated the stimulus level according to the probe pressure 

and forward pressure respectively. Surprisingly, no effects of the calibrations on 

the DPOAE amplitude were found. One reason for their negative finding may be 

that the frequencies they measured are too sparse (they measured DPOAEs at only 

five frequencies: 2, 3, 4, 6 and 8 kHz). The notch of the probe pressure may not 

be present at or close to these frequencies, and therefore the over-compensation 

problem was not maximally observed. In contrast, using the swept tone SFOAEs 

provides a chance to closely monitor the change of OAE levels with a high 

frequency-resolution.  

2.3.5 Clinical implications 

 This study showed that the common calibration method that equalizes the 

sound pressure at the entry of the ear canal can cause over compensations of the 

stimulus level because of the existence of the standing waves. Moreover, moving 

the probe microphone close to the TM is not feasible for routine use, predicting 

the sound pressure at the TM or the in-situ calibration becomes an attractive 

technique to precisely control the sound energy entering the middle ear. The 

precise prediction of the TM pressure depends on reliable source calibrations 

prior to ear-canal measurements. Among other calibration methods, the in-situ 

calibration based on the predicted TM pressure yields OAEs measurements that 

are the least susceptible to adverse effects of inaccuracy in signal calibration. 
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Therefore, it is recommended by this study that the in-situ calibration method 

should be further studied and be used in clinical OAE measurements.  
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Chapter 3 

3 EXPERIMENT II 

Otoacoustic emissions (OAEs) are soft sounds that are generated from the 

inner ear and the normal activities of the cochlear outer hair cells (OHCs). 

Therefore, they are widely used as a clinical tool to assess the inner ear function 

in the clinic. Currently, two types of OAEs are measured for hearing screen and 

diagnosis: transient evoked otoacoustic emissions (TEOAEs) and distortion 

product otoacoustic emissions (DPOAEs). TEOAEs are evoked by clicks and 

present in almost all ears with normal hearing, as long as the outer and middle 

ears are normal (Probst et al., 1991). Clicks are short duration and yet broadband 

stimuli that can stimulate the entire basilar membrane simultaneously. Thus 

TEOAE test can measure a wide range of frequencies quickly, making it an ideal 

screen tool. DPOAEs are induced by two pure tones and extra sound energies are 

present at frequencies other than the frequencies of the two tone stimuli. DPOAEs 

can be extracted by performing a simple spectral analysis of the ear-canal acoustic 

signal. DPOAEs are good indicators of the cochlear nonlinearities due to OHC 

transductions (Bian & Scherrer, 2007; Bian, 2004; Bian et al., 2002). They are 

useful in detecting and monitoring hearing functions within a specific cochlear 

region (Davis et al., 2004; Seixas et al., 2004; Attias et al., 2001; Telischi et al., 

1995). The input-output functions of DPOAEs have been recently used to assess 

cochlear gain control (Chen & Bian, 2011).  

However, both TEOAEs and DPOAEs have limitations that restrict their 

clinical applications to mostly hearing screening, instead of comprehensive 
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assessment of the inner ear function and differential diagnosis of auditory 

disorders. Although TEOAEs are generally believed to be generated from linear 

reflections of the traveling waves by the OHCs at the CF place of each frequency 

component (Shera & Guinan, 1999). However, there are uncertainties of the 

emissions generated at each frequency component. Time-frequency analysis of 

TEOAE temporal waveform showed that an individual frequency component 

could occur at multiple latencies, suggesting that multiple reflections may exist to 

complicate the interpretation of the TEOAE results (Goodman et al., 2009; 

Hatzopoulos et al., 2000). Distributions of acoustic energy at a particular time 

moment can spread to a range of frequencies, especially at high frequencies 

(Tognola et al., 1997). Avan et al (1993) found that the cochlear damages of high 

frequencies (6-8 kHz) could lead to the reduction of TEOAE amplitude at low 

frequencies (1 kHz), suggesting that the TEOAE component at an individual 

frequency may consist of energy from multiple cochlear regions. Moreover, the 

stimulus artifacts which occur at the beginning of the recording, thus the first 2-3 

ms of the recorded sound waveform is removed from analysis and therefore the 

high-frequency OAEs (above 4 kHz) with short latencies are absent in TEOAEs 

(Kemp et al., 1990). DPOAEs are not affected by stimulus artifacts and they can 

be measured from high frequencies. However, their generation mechanisms are 

complicated. They are considered to be a mixture of two components generated 

from two distinct cochlear locations via different mechanisms: a nonlinear 

distortion component from the overlapped region of the two travelling waves and 

a linear reflection component from the CF place of the DP frequency (Shera & 
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Guinan, 1999). The complicated generation mechanisms make it difficult to 

interpret DPOAE results or to relate DPOAE abnormities to a specific location of 

cochlear damages. Other investigators (Long et al., 2008; Kalluri & Shera, 2001) 

managed to unmix the two components, however, it involves another level of data 

analysis and thus another source of variability. In addition, the exact location of 

the distortion component still remains unclear because the overlapped region 

includes an extended area basal to the 2f  place (G. K. Martin et al., 2010; Wilson 

& Lutman, 2006). Furthermore, DPOAEs are measured frequency by frequency, 

making it less efficient compared with TEOAEs. Due to the above limitations, 

TEOAEs and DPOAEs are mainly used to determine whether the cochlea is 

normal or impaired, and detailed information about cochlear functions is often 

missing.  

To further characterize the cochlear OHC functions with more accurate 

frequency specificity, a third type of OAEs, the stimulus frequency otoacoustic 

emissions (SFOAEs), show some unique strengths that could be useful to 

overcome the limitations of TEOAEs and DPOAEs. SFOAEs are emissions 

evoked theoretically by one single tone. Although they were discovered along 

with other types of OAEs in 1978, SFOAEs are currently not used in clinical 

practices. One reason for the lack of clinical use is that the SFOAEs have the 

same frequency as the evoking stimulus, making it complicated to separate them 

from the stimulus. However, SFOAEs have several distinct advantages that weigh 

over the limitations of other OAE measurements. First, SFOAEs are considered to 

be generated from the reflection within a localized region of the peak of the 
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traveling wave of the stimulus (Cheatham et al., 2011; Talmadge et al., 2000; 

Kemp & Chum, 1980). Such generation mechanism is simpler than TEOAEs or 

DPOAEs that involve multiple generation regions. Therefore, SFOAEs could be 

sensitive to small damages of the generating OHCs and the abnormality in 

SFOAEs could map out specific regions of dysfunctional OHCs. Second, the 

amplitude of SFOAEs is dependent on the amplitude of the forward travelling 

wave, which is in turn determined by the nonlinearities of the normal OHCs. 

Therefore, the measurement of SFOAEs can reflect various aspects of the OHC 

nonlinearities, such as the compressive growth (Schairer et al., 2003) and the two-

tone suppression (Kemp & Chum, 1980). Third, studies (Siegel et al., 2005; Shera 

et al., 2002) showed that the phase-frequency function of SFOAEs could be used 

to estimate the group delay of the basilar membrane (BM) and the change of the 

BM group delay could be an indicator of various cochlear damages. Fourth, the 

reflected and forward travelling waves can interact with each other in the pathway, 

causing frequency-dependent cancellations or enhancements (Goodman et al., 

2003; Zweig & Shera, 1995). Such cancellation or enhancement gives rise to the 

well-known phenomenon of SFOAE amplitude: fine structures (quasi-periodic 

amplitude fluctuations across frequencies). Fine structures are great indicators of 

normal OHC activities (Rao & Long, 2011; Wagner, Plinkert, et al., 2008; 

Talmadge et al., 1998) and they are correlated with the microstructures of the 

hearing threshold (Lutman & Deeks, 1999).  

Two special techniques are used to extract the SFOAEs since the ear-canal 

signal contains two components (the stimulus and the SFOAEs) which have the 
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same frequency. One approach, the compression method, makes use of the 

compressive growth of SFOAE amplitude and removes the stimulus component 

by scaling down the ear-canal response to a higher level of stimulus to obtain a 

nonlinear residue as the SOFAE component (Kemp, 2002; Kemp et al., 1990). 

Another approach, the suppression method, tries to measure the ear-canal signal 

with and without a suppressor tone in addition to a probe tone. Because the 

SFOAEs can be suppressed by the second tone, the difference between the ear-

canal signals under the two conditions is recorded as the SFOAEs (Kalluri & 

Shera, 2007a; Kemp & Chum, 1980). Regardless of the different methods, the 

extracted SFOAEs are nearly equivalent (Kalluri & Shera, 2007a; Schairer & 

Keefe, 2005), which provides strong support for possible clinical applications of 

SFOAEs.  

A common feature of current SFOAE extraction methods is that they all 

use pure tones as stimuli. Since SFOAEs evoked by pure tones need to be 

measured frequency-by-frequency, very limited number of frequencies can be 

measured and the SFOAEs are usually measured within a relatively narrow 

frequency range. A solution is to use a frequency-sweeping signal as the stimulus 

so that multiple frequencies of SFOAEs can be measured within one single test. 

There are two types of frequency-sweeping signals commonly used: chirps and 

swept tones. Chirps are short duration swept-frequency sinusoids commonly used 

in radar (Roos et al., 2009; Levy & Azhari, 2007). Chirps have freely selectable 

frequency range, and they can stimulate selected range of cochlear partitions to 

evoke emissions. However, the emissions evoked by chirps are similar to 
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TEOAEs evoked by clicks (Fobel & Dau, 2004; Keefe, 1998; Neumann et al., 

1994). This is because the chirp is a type of transient signal in which multiple 

frequencies occur within a rather short period of time. Emissions of different 

frequencies are not well separated in time and multiple reflections can occur to 

complicate the chirp-evoked OAEs. Swept tones are frequency-sweeping signals 

originally designed for the measurement of the transfer function of the audio 

system, and the use of swept tones shows significantly higher immunity against 

system distortion (Müller, 2001). Swept tones also have customizable frequency 

range, allowing for the functional evaluation of a selected cochlear region. Longer 

durations in swept tones can ensure that there is enough dwell time for each 

frequency, so that OAEs are measured in a similar way as pure-tone test. As 

expected, a high resolution OAE gram (OAE amplitude as function of frequency) 

with the spectrum free from the contaminations of multiple reflections could be 

obtained. However, using swept tones to evoke emissions has not been reported.  

In this study, attempts have been made to measure SFOAEs evoked by 

swept tones. An approach for extracting swept-tone SFOAEs was developed, and 

the effects of different signal conditions on the amplitude and phase of swept-tone 

SFOAEs were explored. The test-retest reliability of the swept-tone SFOAEs was 

investigated by a repeated-measure design, and the accuracy was examined by 

comparing the results with a standard approach using pure tones. The in-situ 

calibration described in experiment I was used to calibrate the level of the swept-

tone stimulus.  
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3.1 Method 

3.1.1 Subjects 

Twenty subjects (5 males and 15 females) with ages ranging from 23 to 33 

years old (mean age=25.9) participated in this experiment. The subjects had 

normal hearing with thresholds of 20 dB HL or less for frequencies from 250 to 

8000 Hz in behavioral tests. No history of outer or middle ear surgery was 

reported from the subjects. An otoscopic examination was performed prior to the 

test and excessive earwax was removed to ensure a clean ear canal. Before the test, 

both of the ears of each subject were briefly screened using the swept-tone 

SFOAE program and only the ear with larger overall amplitude of OAEs was 

measured. The subjects were instructed to be as quiet as possible during the test. 

The subjects were seated in a sound-proofed booth comfortably during the test. 

Quiet reading and sleep was allowed during the test because no attention or 

behavioral response was required for the OAE measurements. The recruiting 

protocols were approved by the Institutional Review Board of ASU.   

3.1.2 Equipment 

A custom program was developed in Labview (National Instruments, 

Austin, TX) to generate the stimuli from the computer. The generated signals 

were delivered to two ER-2A earphone probes (Etymotic Research, Elk Grove 

Village, IL) through two channels on the PXI-4461 card (National Instruments). 

The earphones were seated together with the ER-10B+ probe microphone 

(Etymotic Research) in the eartip whose size was selected according to the ear-

canal size of each subject. The eartip was inserted into the ear canals to deliver the 
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acoustic stimuli and the sound pressure near the earphone was recorded by the 

probe microphone. The recorded response was then digitized by the PXI-4461 

card at a sample rate of 80k sample/s.  

3.1.3 Stimuli 

A) Stimulus presentation 

A three-interval paradigm (Keefe, 1998) was used to measure the SFOAEs 

(Figure 12). Two ER-2A earphones (earphone A and B) were used to deliver two 

stimulus tones: the probe tone 1s  and the suppressor tone 2s . The 1s  and 2s  could 

be either the swept tones or pure tones. A ramping and fading of 0.02 ms were 

applied to the begging and end of 1s  and 2s  to avoid switching noises in the 

response. There were three intervals for presenting the stimuli in a particular 

manipulated order. In the 1st interval, earphone A played 1s  and earphone B 

played no sound. In the 2nd interval, earphone A played no sound and earphone B 

played 2s . In the 3rd interval, earphone A played 1s  while earphone B played 2s  

simultaneously. The time waveforms of the acoustic responses of the three 

intervals were 1p , 2p  and 12p , respectively. Then the SFOAEs evoked by the 

swept tones could be extracted by the residual of the three responses: 

 1 2 12p p p p= + −  (5) 
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Figure 12. The three-interval paradigm to measure swept-tone SFOAEs. 

This is because the stimuli (1s  and 2s ) were cancelled by the subtraction 

in equation (5). In contrast, the OAEs in the third interval (evoked by either 1s  or 

2s ) were smaller compared with the first two intervals, due to the two-tone 

suppression in the cochlea (Kemp & Chum, 1980). Therefore, the residual would 

contain a nonlinear portion of the SFOAEs evoked by both 1s  or 2s . The SFOAEs 

in this study referred to the SFOAEs evoked by 1s .  

B) Swept-tone stimuli 

To record swept-tone SFOAEs, 1s  and 2s  were both swept tones with 

linearly sweeping frequencies (Fig. 12). The frequency of 1s  increased linearly 

from 0.5 to 10 kHz within a duration of T  which was changed from 0.25 to 2 s in 

the experiment. The 2s was a similar swept tone whose frequency was always 200 

Hz higher than 1s  (Figure 13) and the duration was the same as 1s . The amplitude 

of 2s  was kept constant at 80 dB SPL. The level of 1s  ( L) was lower than 2s  and 

it was increased from 45 to 60 dB SPL.  
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Figure 13. The frequencies of the swept-tone stimuli used to evoke SFOAEs.  

3.1.4 Procedures 

The source calibrations were performed on both earphones in multiple 

cavities to solve for the source parameters, following the procedures described in 

experiment I. Then the source parameters were used for the in-situ calibration of 

the level of the swept-tone or pure-tone stimulus.  

Each subject participated in three successive sections in the experiment 

(Figure 14): two repeated sections of swept-tone SFOAEs (trial 1 and 2) and one 

section of pure-tone SFOAEs. The repeated measures of the swept-tone SFOAEs 

were to examine the test-retest reliability. The pure-tone SFOAEs served as a 

standard method to evaluate the consistency (or the accuracy) of the swept-tone 

SFOAEs. It took about 25 minutes for one trial of swept-tone SFOAE 

measurements, and 30 min for the pure-tone SFOAE measurement. 
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Figure 14. The three sections of successive measurements for the entire 

experiment.  

In the first and third section, two swept tones (Figure 13) were used to 

evoke swept-tone SFOAEs. The level of swept tone 1s  ( L) and the signal duration 

(T ) were systemically varied to explore the effects of the signal conditions on the 

swept-tone SFOAEs. The Lwas increased from 45 to 60 dB SPL in a 5-dB step. 

The in-situ calibration was used to precisely control the L  at the TM position. For 

each L , the swept tone was presented in four different durations: 

0.25,  0.5,  1,  2T = s. The acoustic response of each condition was averaged 30 

times for each signal condition.  

In the second section, the same three-interval paradigm was used to evoke 

pure-tone SFOAEs (Figure 12). Due to the time constraint, the probe tone 1s  was 

within a narrow frequency range from 1 to 2 kHz with 50 evenly distributed 

frequencies. The suppressor tone 2s  was 200 Hz higher than 1s . The level of the 

1s  was set to 50 and 60 dB SPL successively, while the level of the 2s  was 

maintained at 80 dB SPL. The in-situ calibration was also used to set the level of 

the pure-tone stimulus. The duration of the both the 1s  and 2s  were 0.5 s. The 

response was averaged 10 times for each signal condition. 
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3.1.5 Data analysis 

To further extract the swept-tone SFOAEs from noises, a tracking filter 

(Appendix E) was applied to the temporal waveform of the residual calculated 

from Equation (4). The tracking filter was a time-varying narrow band-pass filter 

which only passed the swept-tone SFOAEs evoked by 1s  and attenuated all other 

irrelevant signals including the swept-tone SFOAEs evoked by 2s . Then a fast 

Fourier transform (FFT) was applied to the filtered output to yield a spectral 

complex which was further analyzed to obtain the amplitude and phase spectra of 

the SFOAEs. A correction for the delay of the recording system was applied to 

the phase of the spectral complex. The noise floor of the SFOAEs was obtained 

by applying the same tracking filter to the residual with the center frequency set to 

a frequency 200 Hz lower than the 1s  where there were no OAEs.  

To analyze the test-retest reliability of the swept-tone SFOAEs, the 

amplitude and phase differences between results of the two repeated measures 

were calculated for each of the 4 4× signal conditions in each subject. Then the 

differences were averaged across frequency, and a two-way ANOVA was 

performed to test whether there were significant effects of the stimulus level and 

duration. The absolute amplitude difference and correlation coefficients were also 

calculated to further examine the similarity of the amplitudes of the two repeated 

measures.  

To extract the pure-tone SFOAEs, an FFT was applied to the residual of 

each pure-tone measurement.  The amplitude of the FFT output at the probe 

frequency was taken as the amplitude of the SFOAE. The phase of the pure-tone 
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SFOAE was obtained by subtracting the phase of probe-tone stimulus from the 

phase of the FFT output. The spectral contents of the FFT output within 100Hz on 

both sides of the probe frequency were averaged to provide an estimate of the 

noise floor.  

To analyze the consistency of the results between the two methods, the 

amplitude and phase of the swept-tone SFOAEs were sampled at the discrete 

probe frequencies used for the pure-tone SFOAEs. Then the amplitude and phase 

differences between the two methods were calculated at each frequency. The 

differences averaged across frequency in all subjects were analyzed by a t-test. 

The absolute amplitude difference and correlation coefficients were also 

calculated to further examine consistency between the two methods.  

Specific features of the swept-tone SFOAEs were also analyzed in this 

study. The details of the analyzing methods were described in corresponding 

sections in the results.  

3.2 Results 

3.2.1 Overview 

A) Validation of swept-tone SFOAEs 

In order to verify the effectiveness of the three-interval paradigm in 

extracting the swept-tone SFOAEs, the same measurement was carried out in a 

tube (without OAEs) and an ear canal (with OAEs). The signal conditions were: 

the 1s stimulus was 60 dB SPL and the frequency changed linearly from 0.5 to 10 

kHz within 1 s. The 2s  stimulus was 80 dB SPL and its frequency was kept 200 

Hz higher than the 1s . A tracking filter technique was used to extract the swept-
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tone SFOAEs from the residuals calculated from equation (5). The temporal 

waveform, amplitude and unwrapped phase spectra of the responses in the tube 

and in the ear canal were compared in Figure 15. For the response in the tube, the 

spectral amplitude never exceeded -15 dB SPL and the phase randomly fluctuated 

around 0 across frequencies, indicating that the residual in the tube contained 

mainly noises and no OAEs or stimulus-related residuals were found. In contrast, 

the response in the ear canal was very different. The spectral amplitude of the 

response could reach 20 dB SPL and apparent amplitude fluctuations (fine 

structures) were observed. In addition, deep phase gradient was also observed 

when the frequency increased. Since the fine structures and deep phase gradient 

are unique features of SFOAEs (Goodman et al., 2003; Zweig & Shera, 1995), it 

was proven that the three-interval paradigm could successfully obtain swept-tone 

SFOAEs in healthy human ears.  
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Figure 15. Temporal waveform, amplitude and phase spectra of the responses in 

the tube and in the ear (subject # 1).  
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constant with reductions presented at different frequencies regions. The fine 

structures were manifested by peaks and notches with regular frequency spacing, 

which seemed to be narrower for lower frequencies and wider for higher 

frequencies. The patterns of the global shape and fine structures were highly 

individual-dependent. Meanwhile, the phase of the swept-tone SFOAEs showed 

rapid reduction as the frequency increased. At low frequencies where the fine 

structures were denser, the phase dropped more rapidly.  The amount of the phase 

reduction seemed to be proportional to the number of fine structures. There were 

some phase discontinuities at the frequencies where the amplitude showed deep 

notches.  

3.2.2 Effects of signal conditions 

In this experiment, swept-tone SFOAEs were measured in 20 normal-

hearing subjects under 4 conditions of the level L  and 4 conditions of the duration 

T . General features of the amplitude and phase (described above) were observed 

in all subjects under various signal conditions. In the following section, examples 

of the level and duration effects on these features were demonstrated, and then the 

results of all subjects were statically analyzed.   

A) Level effects 

An example of the amplitude and unwrapped phase of the swept-tone 

SFOAEs for four different stimulus levels were shown in Figure 16 (T  = 2 s).  

For the amplitude, the global amplitude showed elevations as the stimulus level 

increased but the global shapes were similar. The fine structures of the amplitude 

became less pronounced and the frequency spacing seemed to be wider at higher 
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stimulus levels. Another observation was the apparent reduction of the slope of 

the phase-frequency function. If the total phase reduction was noted as θ  within 

the frequency range from 0.5 to 10 kHz, it was noted that the θ  reduced from 280 

rad at 45 dB SPL to only 200 rad at 60 dB SPL. The level effects on the amplitude 

and phase of the swept-tone SFOAEs were similar for other signal durations.  

 

Figure 16. The amplitude and phase spectra of the swept-tone SFOAEs measured 

at four different stimulus levels (subject # 1).  
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B) Duration effects 

An example of the amplitude and phase spectra of the swept-tone SFOAEs 

measured at 4 different stimulus durations was shown in Figure 17 ( 50L = dB 

SPL). It was found that both the amplitude and phase spectra were very similar 

regardless of the nearly 10 fold of change in the duration (or sweeping speed). For 

the amplitude spectrum, both the global shape and the fine structures were not 

altered by the 4 different signal durations. There were some amplitude deviations 

at some frequency regions where the OAEs were smaller, but the changes were 

relatively random. For the phase spectrum, the curves corresponded to the four 

durations almost overlapped with each other. The deviation of the phase function 

of 2T =  was due to random phase jumps at notch frequencies.  The duration also 

had no evident effects on the swept-tone SFOAEs measured under other stimulus 

levels. 
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Figure 17. The amplitude and phase spectra of the swept-tone SFOAEs measured 

with four different durations (subject # 2).  
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(DVs: A  and θ ), respectively. The p-values for L  were less than 0.001 for both 

DVs, indicating that L had significant effects on both DVs. However, no 

significant effects of T  on either DV were found (p=0.30 for A , p=0.23 for θ ).  

There were no significant interactions between the two IVs. These effects of the 

IVs could also be observed from Figure 18: as the L  increased from 45 to 60 dB 

SPL, the averaged amplitude A  increased from 5 to 10 dB SPL and the total 

phase reduction θ  decreased from 220 to 150 rad; while for each L , the duration 

T  did not seem to have significant effects on either A  or θ  because the error bars 

were overlapped.  

 

 

Figure 18. The mean and standard deviation of the amplitude and total phase 

reduction averaged across frequency (n=20).   
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30 min interval. An example of the comparison was shown in Figure 19 (signal 

conditions: 50,60L = dB SPL; 2T = s). It could be observed that the spectra of 

the amplitude and phase could be largely reproduced in the repeated measures, 

and the reproducibility was better at higher stimulus levels.  For the amplitude 

spectrum [panel (A) and (B)], the two amplitude-frequency functions were very 

similar. The correlation coefficient (r ) of the two functions was 0.79 for L=50 dB 

SPL and 0.90 for L=60 dB SPL. For the phase spectrum [(C) and (D)], the two 

phase-frequency functions from the two repeated measured greatly overlapped, 

except that the phase discontinuities were larger at the lower stimulus level. The 

difference between the SFOAE amplitudes of the two repeated measures was 

calculated at each frequency, and a histogram was constructed based on the 

difference [(E) and (F)]. The histograms were centered at 0 for both stimulus 

levels. The standard deviation was 3.6 dB for 50L =  dB SPL and 2.5 dB for 

60L = dB SPL, indicating that the averaged differences were essentially zero.  
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Figure 19. The amplitude and phase spectra of the swept-tone SFOAEs of two 

repeated measures (subject # 4).  
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different signal conditions were shown in Figure 20 (A)-(B). It was observed that 

the amplitude difference A∆  fluctuated around 0 and it never exceeded 1 dB. The 

phase difference θ∆  varied randomly within -5  to 5 rad under different signal 

conditions. Then a two-way ANOVA (IVs: L  and T ) was performed on A∆  and 

θ∆ , respectively. No significant effects of the IVs were found, indicating that the 

mean of A∆  and θ∆  did not significantly different from 0 under different signal 

conditions.  

To further examine the similarity of the results of the two repeated 

measures, the absolute values of the amplitude difference averaged across 

frequency ( A∆ ) and the correlation coefficients of the two amplitude-frequency 

functions (r ) were shown in Figure 20 (C)-(D). It was observed in panel (C) the 

A∆  decrease from 2.5 to 2 dB as the stimulus level L  increased from 45 to 60 

dB SPL. For each L , the A∆  of different durations were very similar. The 

correlation coefficients r  in panel (D) increased within a range from 0.7 to 0.9 as 

either the L  or the T  increased. These findings indicated that the SFOAEs results 

were replicable and the increase either the stimulus level or the duration could 

reduce the between-trial deviation.  
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Figure 20. The amplitude difference (A∆ ), phase difference (θ∆ ), absolute 

amplitude difference ( A∆ ) and the correlation of the amplitude-frequency 

functions (r ) between the two repeated measures (n=20). 
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was shown in Figure 21. For the amplitude spectra (panels A and B), the two 

amplitude spectra seemed to match better for large amplitude of SFOAEs and 

more variable when the SFOAE amplitude was close to noise floor. For the phase 

spectra (panels C and D), the curves from the two methods overlapped with each 

other for most of the measured frequencies. The histograms in panel (E) and (F) 

showed that the differences in SFOAE amplitude between the two methods were 

centered at 0 dB with a standard deviation of about 1.5 dB. These observations 

suggested that the SFOAEs from the two methods showed great consistency 

under different stimulus levels. 
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Figure 21. The amplitude spectra, phase spectra and the histograms of the 

amplitude difference of the swept-tone and pure-tone SFOAEs under different 

stimulus levels (subject # 1).  
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Figure 22 (A)-(B) under two different stimulus levels (L). In panel (A), the 

averaged amplitude difference was less than 0.5 dB for both stimulus levels. A t-

test was performed on A∆  and no significant L  effects were found (p=0.47). A 

similar analysis was performed on the phase difference θ∆  and the results 

showed that the phase difference was not significantly different from 0 for both 

stimulus levels. The findings indicated that the measurements with two different 

methods were identical across ears.  

To further examine the similarity of the results, the absolute difference 

averaged across frequency (A∆ ) and correlation coefficient (r ) of the amplitudes 

of pure-tone and swept-tone SFOAEs were compared in Figure 22 (C)-(D). It was 

observed that the A∆  across subjects had a mean of about 2 dB and a standard 

deviation of about 0.5 dB. The mean of the averaged r  was around 0.9, and slight 

larger deviation was found for L =  60 dB SPL. No difference was found for A∆  

and r  between the 2 stimulus levels.  
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Figure 22. The amplitude difference (A∆ ), phase difference (θ∆ ), absolute 

amplitude difference (| |A∆ ) and correlation coefficient (r ) between the swept-

tone and pure-tone SFOAEs (n=20).  
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the features of the SFOAEs may provide new information for the understanding 

of cochlear mechanics.  

A typical fine structure was bound by two neighboring notches (Figure 23) 

and the peak of the fine structure was obtained by finding the local maximum. 

The width of a particular fine structure (f∆ ) was determined by the frequency 

difference between the two neighboring notches ( 2 1n nf f f∆ = − ), and the center 

frequency ( cf ) was calculated by the mean 1 2( ) / 2c n nf f f= + . The peaks might 

not be always at the center of the fine structures. An eligible fine structure was 

qualified when the peak was 3 dB larger than either notch, and was confirmed by 

visual inspections.  

 

Figure 23. A typical fine structure of the swept-tone SFOAEs.  
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f∆ ) as a function of the center frequency cf  from 20 subjects were plotted 

together in Figure 24 for 4 different stimulus levels. A common trend observed 

across level was that thef∆  expanded as the cf  increased. The f∆  was around 0.2 

kHz when the center frequency was 1 kHz, and increased up to 1.2 kHz at10 kHz. 

For each stimulus level, the scatter plot of the width-frequency function was fit 

with a straight line, and the growing trend was shown in the last panel. The slopes 

of the regression lines increased from 0.055 to 0.062 when the stimulus level was 

from 45 to 60 dB SPL. A two-way ANOVA with cf  and L  as IVs was performed 

on the f∆ . Significant effects of both IVs and interactions between them were 

found ( 0.001p < ).   
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Figure 24. The width of the fine structure (f∆ ) as a function of frequency (cf ) 

under different stimulus levels (n=20).  
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notches and it was about 50 Hz for the peaks. A one-way ANOVA was performed 

(DV: the frequency shift; IV: the stimulus level) for the notches and peaks 

respectively. P-values less than 0.001 (for both the notches and peaks) indicated 

that the observed frequency shifts were statistically significant ( 0.001p < ).    

 

Figure 25. The frequency shifts of the notches and peaks as functions of stimulus 

level (n=20).  
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hour or even longer to obtain enough number of frequencies within one or two 

frequency octaves (Cheatham et al., 2011; Kalluri & Shera, 2007a; Schairer & 

Keefe, 2005; Schairer et al., 2003). Although using clicks to measure TEOAEs 

has the similar efficiency, the OAE frequency range is restricted to below 4 kHz 

and the frequency resolution is also poorer than the swept-tone SFOAEs (Kemp, 

1986).  

The three-interval  paradigm developed by Keefe (1998) was used to 

generate the swept-tone SFOAEs in this study. The paradigm makes use of the 

two-tone suppression phenomenon in cochlear mechanics to obtain a nonlinear 

portion of the SFOAEs from a subtraction between the last interval with two-tone 

stimuli and the first two intervals containing only one of the stimulus signals. 

Compared with the suppression method used by other investigators (Kalluri & 

Shera, 2007a; Kemp & Chum, 1980), the three-interval paradigm is more 

beneficial in measuring swept-tone SFOAEs because it has advantage in 

eliminating the impact of the stimulus artifacts. Note that when two tones are 

presented simultaneously, they can produce mutual suppression on the SFOAEs 

of each stimulus. Thus, the residual contains the nonlinear portion of both the 1s - 

and 2s -evoked SFOAEs. The frequency-time functions of the two OAE 

components are two parallel lines, similar to their evoking stimuli in Figure 13. A 

conventional bandpass filter cannot separate the two emissions because they are 

largely overlapped in frequency over the entire recording time. Therefore, a 

tracking filter (Raja Kumar & Pal, 1990) whose center frequency adaptively 

follows the instantaneous frequency the SFOAE evoked by the 1s  can effectively 
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remove the background noise and the SFOAE induce by the 2s . Since the level of 

the suppressor 2s  was as high as 80 dB SPL and system distortions may be 

involved at such a high level, the SFOAEs evoked by 2s  were not analyzed in this 

study.  

 TEOAE frequencies are not strictly controlled by the stimulus.  The 

recording window is extended up to 20 ms after the stimulus, thus any vibrational 

energy including multiple reflections simultaneous excitations from multiple 

locations is collected (Kemp, 1978). Swept tone SFOAEs only contain the energy 

generated by the cochlea immediately following the stimulus frequency, thus free 

from multiple reflections and contribution from places other than the CF location. 

Thus, swept tone SFOAEs may be more indicative of the cochlear functions 

across the whole cochlea than the TEOAEs. 

3.3.2 Features of SFOAEs 

A) Global shape 

The spectral pattern of the SFOAE amplitudes is unique to each subject.  

The uniqueness is demonstrated in two aspects: global shape and fine structures. 

The global shape refers to the change of the baseline amplitude across frequency. 

Although the stimulus level has been equalized at the TM, the global shape of the 

SFOAEs is not flat with broad peaks and valleys presented at various frequency 

regions (Figure 16, Figure 17). Studies showed that the non-flat global shape of 

the SFOAE amplitude could be due to the transfer function of the middle ear 

(Paul Avan et al., 2000; Osterhammel et al., 1993) and the functional status of the 

OHCs (Walsh & McGee, 1990). The global shape of the SFOAE amplitude of the 
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normal hearing subject shows peaks around 1 and 4 kHz (Figure 16 and 17). Such 

peaks can be observed in the middle-ear transfer function from other studies (Gan 

et al., 2007; Aibara et al., 2001). In addition to the contribution of the middle ear 

transfer function, the reduction of SFOAE amplitude in relatively broad frequency 

regions may be attributable to altered or even damaged OHC functions. Therefore, 

if the global SFOAE amplitude pattern can be normalized by the middle ear 

transfer characteristics, it could be useful for early identification of cochlear 

lesions.   

B) Fine structures 

One remarkable feature of the amplitude spectrum of the swept-tone 

SFOAE is the presence of the fine structures (or ripples), defined by repeatedly 

appearing peaks and notches across frequencies (Figure 16, Figure 17).  The high 

frequency-resolution of the swept-tone SFOAE spectrum makes the analysis of 

fine structures more accurate and reliable. Fine structures of SFOAEs were 

observed in many other studies (Shera & Guinan, 2003; Talmadge et al., 2000; 

Zweig & Shera, 1995). These authors attribute the fine structures in OAEs to the 

existence of multiple reflections of traveling waves in the cochlea. SFOAEs are 

thought to be originated from coherent reflections within the peak of the travelling 

wave and the interference between the forward and reflected travelling waves 

could enhance or cancel the emissions depending on their phase relation (Schairer 

et al., 2006; Zweig & Shera, 1995). The coherent reflection is a linear scattering 

of the forward travelling wave due to the impedance irregularities within a 

localized region of the peak of the traveling wave (Shera & Guinan, 1999) and it 
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is the dominant source of SFOAE generation at low stimulus levels (Goodman et 

al., 2003; Zweig & Shera, 1995). Therefore, the fine structures become less 

pronounced as the stimulus level increases (Figure 16). It was also observed that 

the fine structures are narrow at low frequencies and wider at high frequencies 

(Figure 24). It has been reported that the ratio of the fine-structure width over the 

center frequency was roughly a constant ranging from 5% to 15% across 

frequency (Talmadge et al., 1998; Zweig & Shera, 1995). Such a constant ratio is 

also called the spectral regularity (Zweig & Shera, 1995). In the present study, the 

ratio, which is also the slope of the straight line in Figure 24, was about 6% which 

is consistent with other studies.  

Studies showed that the fine structures of SFOAEs are correlated with the  

microstructures of the hearing threshold (Heitmann et al., 1996), and the presence 

of the fine structures is closely related to the normal activities of the OHCs (Henin 

et al., 2011; Rao & Long, 2011). Therefore, fine structures could be used as 

indicators of the normal OHC activities (Wagner, Plinkert, et al., 2008).  

C) Phase-frequency functions 

While the amplitude spectrum demonstrated considerate variation with the 

presence of fine structures, the phase-frequency function of the swept-tone 

SFOAEs shows a relatively simple pattern (Figure 16, Figure 17). The SFOAE 

phase showed a consistent decrease with increasing frequency. The slope of the 

phase-frequency curve is steeper for low frequencies, and shallower at high 

frequencies. These results are consistent with the findings of other studies 

(Bentsen et al., 2011; Shera & Guinan, 2003; Shera et al., 2002). The slopes of 
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phase-frequency function represent the group delays of the OAEs which can be 

interpreted as the round-trip travel time of the SFOAEs. Therefore, the group 

delay is longer for low frequencies and shorter for high frequencies. An 

explanation is that high-frequency SFOAEs are generated at the base of the 

basilar membrane and it takes shorter time for them to travel back to the ear canal; 

while low-frequency SFOAEs are generated at the apical sites and longer time is 

needed for them to travel back.  

3.3.3 Effects of the stimulus level 

As the stimulus level increased, the fine structures demonstrated a series 

of changes, such as the increase in the frequency spacing between neighboring 

notches (Figure 24) and the downward shift of the notch (or peak) frequencies 

(Figure 25). The increased of the width may be explained by the involvement of 

larger region of cochlear irregularities during the reflection at the peak of the 

travelling wave (Zweig & Shera, 1995). The downward shift of the notch (peak) 

frequency may be a result of the disappearance of fine structures in the low 

frequencies at high stimulus levels. Since the fine structures are narrower at low 

frequencies, some of the fine structures are most likely to disappear as they 

expand at high stimulus levels. As a result, the remaining fine structures show a 

shift towards low frequency.  

A noteworthy finding of this study is that the phase-frequency function is 

level-dependent. As the stimulus level increases, the phase-frequency curves 

become progressively shallower (Figure 16). Such a level dependency agrees with 

the results of other studies (Choi et al., 2008; Shera & Guinan, 2003). When the 
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phase-frequency function is expressed as group delays, shallower phase functions 

can be translated into shorter group delays at higher levels. The reduction in the 

group delays may be explained by the shift of the travelling wave peak towards 

the base at high stimulus levels (Recio et al., 1998; Ruggero et al., 1997). The 

flattening of the phase function also correlates with the widening of the fine 

structures.  

3.3.4 Effects of the sweeping speed 

Since the frequency was swept across the same range (from 0.5 to 10 kHz), 

different durations correspond to different sweeping speeds. In our study, no 

significant effects of the sweeping speed are found on either the amplitude or the 

phase spectrum of the swept-tone SFOAEs (Figure 17). A possible explanation is 

that the SFOAEs at different frequencies are generated independently, production 

of SFOAE at one frequency does not temporally influence the SFOAEs 

generation of the next frequency. The results show that the swept tone SFOAEs 

are similar to pure tone evoked SFOAEs, thus for the fastest frequency sweeping 

speed (100 kHz/0.25s), the cochlea can still follow the frequency change in the 

stimulus and respond in a similar way as pure tones. Similarly, Kalluri and Shera 

(2007b) varied the duration of the click stimulus and found no significant change 

of the CEOAE amplitude. Further assumptions can be made based on the 

insignificant effects of the sweeping speed: 1) since pure tones can be considered 

as swept tones with a sweeping speed of zero, it could be assumed that SFOAEs 

evoked by pure tones and swept tones would be comparable or equivalent. This 

assumption was confirmed by the findings of this study; 3) since clicks can be 
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considered as swept tones with an infinite sweeping speed, the results of this 

study could possibly be consistent with TEOAEs measured under the same signal 

conditions. However, differences may be expected because the TEOAEs are 

largely produced after the cessation of the click thus containing various “free 

energy” from multiple reflections and simultaneous contribution from multiple 

locations. Whether the swept-tone SFOAEs are equivalent to TEOAEs needs to 

be tested in future research. 

3.3.5 Test-retest reliability 

Measuring the test-retest reliability of the swept-tone SFOAEs is a crucial 

step before the clinical applications, so that any changes in the results can be 

considered as evidence of cochlear functional change instead of measurement 

errors. There are many studies investigating the reliability of DPOAEs (Valero & 

Ratnam, 2011; Wagner, Heppelmann, et al., 2008; Parazzini, Galloni, et al., 2006; 

Parazzini, Wilson, et al., 2006; Zhao & Stephens, 1999) and TEOAEs (Keppler et 

al., 2010; Marshall & Heller, 1996; Franklin et al., 1992), but the reliability of 

SFOAEs are rarely explored. In this study, the reliability of the swept-tone 

SFOAEs was accessed under various signal conditions in different subjects. The 

results show that the amplitude and phase differences between the two repeated 

measures are not significantly different from 0 across all signal conditions and 

subjects (Figure 20). The mean absolute amplitude difference is less than 2.5 dB 

and the mean correlation coefficient was larger than 0.7 which is similar to the 

findings in the repeated measurements of DPOAEs (Sockalingam et al., 2007; 

Zhao & Stephens, 1999). Results from the present study show overall good test-
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retest reliability over the entire frequency range (0.5-10 kHz), especially at high 

stimulus levels. Such level benefit can be explained by the higher signal to noise 

ratio at higher stimulus levels so that the SFOAEs are less likely to be affected by 

noises. Similar level effects were also found in other studies (Parazzini, Galloni, 

et al., 2006; Franklin et al., 1992). In Figure 20(D), the correlation coefficients 

between measurements are significantly lower for swept tones of shorter duration, 

especially for T = 0.25 and 0.5 s. This may be because the total time available for 

averaging was shorter for SFOAEs evoked by shorter swept tones during the 

experiment.  

3.3.6 Consistency with pure-tone SFOAEs 

It is also important to verify that the results of the swept tone SFOAEs are 

accurate. One way to verify the accuracy is to compare the results with the well-

accepted method. In this study, the results of swept-tone SFOAEs are compared 

with the standard method using pure tones under the same signal condition. The 

comparison in this study reveals good agreement between the results of the two 

methods (Figure 21). The averaged differences (in both amplitude and phase) of 

the two methods are not significantly different from 0 across all the participants 

and signal levels (Figure 22). The absolute amplitude different is less than 2.5 dB 

with a correlation coefficient as high as 0.9. As discussed previously, the 

sweeping speed has no significant effects on the measurement of swept-tone 

SFOAEs and pure tones can be considered as swept tones with infinitely long 

durations. This result suggests that the SFOAEs obtained by pure tones are 

equivalent to SFOAEs measured by swept tones, especially with long durations. 
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Similarly, Long et al (2008) used continuously sweeping primaries (similar to 

swept tones) to measure DPOAEs and found that the results were nearly the same 

as the DPOAEs evoked by pure tones. They made their comparison over the 

frequency range of 0.5-2.5 kHz. The present study extended the comparison range 

up to 10 kHz. Kalluri and Shera (2001) compared the unmixed reflection 

component of DPOAE with the corresponding SFOAE and found that they were 

almost equivalent in both baseline amplitude and fines structures. Later (Kalluri & 

Shera, 2007b), they found that TEOAEs and SFOAEs were nearly identical at low 

and moderate stimulus intensities. These evidences suggest that, not only 

SFOAEs evoked by different types of evoking tones are identical, but also 

different types of OAEs may be comparable since they all originate from the 

OHC activities.  

3.3.7 Clinical implications 

Based on the results observed in this study, the swept-tone SFOAE 

method is a practical alternative to overcome the limitations of current OAE 

measurements. The use of swept tones allows OAEs to be efficiently measured in 

a wide frequency band and with a high frequency resolution. The measure of 

SFOAEs could help to provide a more precise mapping between the obtained 

OAE results and the functional status of cochlear OHCs, or so-called cochleogram. 

The good test-retest reliability ensures that the SFOAEs can be reproduced over 

time, so that any changes may be attributed to alterations of cochlear functions. 

The comparison with pure-tone SFOAEs indicates that the results of the swept-

tone SFOAEs are accurate and consistent with standard methods. Therefore, the 
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swept-tone SFOAE method is recommended to supplement or even to replace the 

current methods for routine OAE testing in the clinic.   
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Chapter 4 

4 SUMMARY AND FUTURE RESEARCH 

4.1 Summary 

The purpose of this dissertation is to address two major concerns of 

current OAE measurements in the clinic: the inaccuracy in the signal calibration, 

and the limited bandwidth and efficiency of currently OAE methods. The 

approach was to use a swept tone stimuli to predict the sound pressure at the TM 

and to record SFOAEs efficiently.  

In experiment I, an in-situ calibration was used to accurately control the 

stimulus levels that enter the middle ear. The experiment used a transmission line 

model to predict the eardrum pressure, so that the direct measurement of the TM 

pressure was not necessary. Then the benefits of the in-situ calibration on OAE 

measurements were explored. The results showed that the prediction of the TM 

pressure was successful in both the tube and in five human subjects. Compared 

with no calibration and probe calibration, the in-situ calibration was not affected 

by the standing-wave problem and it could obtain the most reliable results in OAE 

measurements. The clinical implication is that the in-situ calibration should be 

recommended during the OAE measurement to improve the reliability of the 

results.   

In experiment II, the swept-tone SFOAE method was developed to solve 

the second problem. The experiment employed a three-interval paradigm and an 

adaptive filter to extract the swept-tone SFOAEs and the performance were tested 

under different signal conditions. The results showed that wideband SFOAEs 
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could be obtained with high frequency resolution within a short period of time. 

The swept-tone SFOAEs showed excellent test-retest reliability in repeated 

measurements with a 30 min interval. The results obtained with the swept tone 

approach were nearly equivalent with the standard method using pure tones under 

various signal conditions. The swept-tone method also allowed for more precise 

analysis of the features of SFOAEs, such as the fine structures and growth 

functions. The clinical implication is that the swept-tone SFOAEs may be an 

excellent alternative to current methods to provide reliable and detailed 

measurement of cochlear function over an extended frequency range.  

4.2 Future research 

One limitation of this study is that there were no hearing-impaired (HI) 

subjects recruited in the experiments. Since whether the normal-hearing (NH) 

group and HI group can be correctly identified is the main task of OAE screening, 

the future research can be extended to include the NI group. If two groups can be 

identified successfully, future research will explore whether swept tone SFOAE 

technique can precisely identify the frequency region of the hearing loss or even 

the degree of the hearing impairment.  

SFOAE is defined as the OAEs evoke by a single tone. However, in 

practice, an additional suppressor tone has to be used to extract the emissions. 

With the techniques of the swept tone and the tracking filter, it is possible to 

obtain the SFOAEs without the second tone. This idea will be tried out in 

extended studies after this dissertation project.  
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APPENDIX A 

CONSTRUCTION OF SWEPT TONES 
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The swept tone was constructed in the frequency domain and the 

construction steps included (Müller, 2001): (1) prepare the required amplitude 

spectrum (amplitude as a function of frequency); (2) prepare a phase spectrum 

according to the “frequency-time function” of the swept tone; (3) transfer the 

prepared amplitude and phase spectra by an inverse fast Fourier transform (FFT) 

to get the time waveform of the swept tone. For the first step, the amplitude 

spectrum can be prepared by constructing arbitrary amplitude-frequency functions. 

For the second step, the phase spectrum can be obtained by using the concept of 

“group delay”, defined as “exactly at which time momentary (τ) a certain 

frequency (f) occurs”. If the frequency is swept linearly from f1 to f2 when the 

time changes from 0 to T (in second), the τ-f relation is shown in Figure 26. 

 

Figure 26. The relation between the frequency (f) and group delay (τ) in a linear 

swept tone. 

The mathematical relation of Figure 26 could be expressed as 

1 2 1( ) / ( )T f f f fτ = − − . On the other hand, group delay is generally defined as 

the rate of change of the total phase shift with respect to frequency:
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. Therefore, the phase function can be obtained by taking the 

integral and finally we obtained: 

 
2

1

2 1

( )
( )

T f f
f

f f

π
ϕ

−
= −

−
 (6) 

With the prepared amplitude and phase spectra, the temporal waveform of 

the swept tone could be obtained by taking the inverse FFT. The resulted swept 

tone sweeps the frequency linearly from f1 to f2 within the duration of T. The 

advantage of the swept tone is that the amplitude of each individual frequency can 

be precisely controlled at the desired level. To avoid the switching noises caused 

by non-zero start and end of the stimulus, a half-cosine window with a time length 

of 20 ms was applied to the very beginning and end of the swept tone.  

  

/ (2 )d dfτ ϕ π= −
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APPENDIX B 

SOURCE CALIBRATION 
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A multiple-cavity method (Allen, 1986) was used for the source 

calibration in this study. In Allen’s method, when the earphone was connected to 

an acoustic load (such as a tube or the ear canal), a Thevenin-equivalent circuit of 

the sound delivery system was shown in Figure 27 (sP : source pressure; sZ : 

source impedance; LZ : load impedance; LP : pressure measured at the load). 

According to Ohm’s law, the pressures and impedances were related by the 

following equation:   

 s L

s L L

P P

Z Z Z
=

+
  (7) 

i.e., 

  L s L s L LZ P P Z P Z− =  (8) 

 

Figure 27. The Thevenin-equivalent circuit of the sound delivery system. 

For a uniform tube with a length of L, the theoretical acoustic impedance 

( LZ ) can be calculated as (Keefe et al., 1992):  

 cot(2 / )LZ j c fL cρ π= −  (9) 

where 1j = − , ρ is the air density, c is the sound speed in the air, f is frequency 

and L is the length of the tube. It could be observed in equation (9) that L is the 

only variable to determine LZ  (other parameters, such as ρ and c, are constants). 
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The tube length L could be either measured directly (from the earphone to the 

other closed end of the tube when the earphone was connected to the tube), or 

estimated from the probe pressure LP . In the amplitude spectrum of LP , a notch 

would be present at a certain frequency (0f , dependent on L) because of the 

standing wave inside the tube. If the 0f  was measured in the spectrum of PL, the 

tube length L could be calculated as: 0/ 4L c f= .  

In order to solve the two unknown variables sP  and sZ  in equation (8), 

the impedance LZ  in Figure 27 could be replaced by 5 uniform tubes with known 

impedances iZ ( 1, 2,3, 4,5i = ) successively and the probe pressure iP  in response 

to the same wide-band swept-tone stimulus were measured.  The results of each 

uniform tube could derivate an equation (8), and all the five equations together 

could be used to solve for the two unknown variables ( sP and sZ ) via a least mean 

squares method (Generally, two equations were enough to solve for two variables; 

using five equations in this study was to improve the accuracy of the solution): 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

s s

s s

s s

s s

s s

Z P PZ PZ

Z P P Z P Z

Z P P Z P Z

Z P P Z P Z

Z P P Z P Z

− =
 − =

− =
 − =
 − =

 (10) 

Where the pressureiP  ( 1, 2,3, 4,5i = ) was measured, and the impedance 

iZ could be determined by equation (9). iP  and iZ  were both expressed as 

complex numbers as functions of frequency (expressed in the frequency domain). 
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Equation (10) was solved frequency by frequency. Consequently, the solutions of 

sP  and sZ were also complex numbers as functions of frequency.  

Instead of using five independent brass tubes in Allen and others’ studies 

(Burke et al., 2010; Lewis et al., 2009; Scheperle et al., 2008), a plastic uniform 

tube with a moving end was used in this study (Figure 28).  The moving end was 

achieved by using a piston that could move freely inside the tube. The advantage 

of the moving-end tube is that different tube lengths (L) could be obtained by 

moving the piston to different positions, without the requirement of moving the 

earphone to different tubes (which could introduce possible errors).      

 

Figure 28. A plastic tube with a movable piston inside was used to calculate the 

source parameters.  
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APPENDIX C 

OBTAINING THE EARDRUM PRESSURE 
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The two components (incident pressure P+  and reflected pressure P− ) at 

the entry of the ear canal could be rewritten as the polar form: 

 ( ) ( )P A f fθ± ± ±= ∠  (11) 

Where ( )A f±  and ( )fθ± were the amplitudes and phase (as functions of 

frequency) of P+  and P− , respectively. The incident pressure P+  travelled forward 

along the ear canal and was measured as 'P+  when it reached the eardrum (Figure 

29). It could be assumed that P+  and 'P+  had the same amplitude (assuming no 

energy absorption by the wall of the ear canal). However, their phase were 

different since 'P+  travelled a distance of L (the length of the ear canal) to arrive at 

the eardrum. The phase difference [( )fθ∆ ] between P+  and 'P+   was frequency 

dependent and related to the length of the ear canal L by ( ) 2 /f fL cθ π∆ = (c : 

sound speed). The length of the ear canal L could be calculated from the 

frequency of the first notch of the probe pressureLP ( 0f )  by 0/ 4L c f= . Finally, 

the phase of 'P+  could be obtained by adding the phase shift ( )fθ∆  to the phase 

of P+ . Similarly, the reflected pressure at the eardrum ( 'P− ) could be obtained by 

subtracting the same phase shift ( )fθ∆  from P− . The corresponding equation 

was: 

 ' ( ) [ ( ) ( )]P A f f fθ θ± ± ±= ∠ ±∆  (12) 
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Since the eardrum pressure was the sum of the incident and reflected 

pressures at the eardrum position, the predicted eardrum pressure (̂EP ) could be 

obtained by:  

 ' '
ÊP P P+ −= +  (13) 

 

Figure 29. The original and reflected pressures at the entry of the ear canal and at 

the eardrum position. 
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APPENDIX D 

CALIBRATION OF THE MICROPHONES 
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There were two microphones used in Experiment 1: the probe microphone and the 

eardrum microphone. The probe microphone was used to predict the eardrum pressure, 

while the eardrum microphone was used to measure the actual eardrum pressure. The 

predicted and measure the pressures would be compared to verify the reliability of the 

prediction.  

The eardrum microphone must be calibrated in reference to the probe microphone 

before the two pressures could be compared. The main idea of the calibration was to let 

the two microphone measure the same pressure and the differences in their results were 

recorded (Figure 30). The same ER-7 tube used in the ear canal verification was attached 

to the eardrum microphone. The free end of the tube was placed close to the opening of 

the probe microphone so that the two microphones were measuring the same pressure. 

Then a swept tone stimulus (f1=500 Hz, f2=10 kHz, T=1 s and driving voltage=1 volt) 

was played by the earphone probe.  

 

Figure 30. The diagram to calibrate the eardrum microphone with respect to the probe 

microphone.  

If the response of the probe microphone was 1P  and it was 2P for the eardrum 

microphone ( 1P  and 2P were expressed in the frequency domain), the ratio of the two 

responses was: 

 1

2

P
R

P
=  (14) 
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If the reading of the eardrum microphone in response to any other pressure was P , then 

the calibrated result ( 'P ) that was comparable to the probe microphone was: 

 1

2

'
P

P RP P
P

= =  (15) 
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APPENDIX E 

THE TRACKING FILTER 
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There were two parts of swept-tone SFOAEs in the residual of the three-interval 

paradigm: one evoked by 1s  ( 1s -OAE) and the other evoked by 2s  ( 2s -OAE). The 

frequencies of the two OAEs were different and they changed over time in the same way 

as their evoking swept-tone stimulus [Figure 31(A)]. In this study, only the OAE by 1s  

was analyzed, using a tracking-filter technique.  

A tracking filter is narrow band-pass filter whose center frequency can change 

with time. The frequency of 1s -OAE, which could be estimated from the stimulus of 1s , 

was used as the center frequency of the tracking filter so that it could let go only the 1s -

OAE and attenuate all other noises. To achieve this, the pole of the tracking filter (1p ) 

was placed at the frequency of 1s -OAE [Figure 31(A)]. Meanwhile, a zero (1z ) was 

placed at the frequency of 2s -OAE so that this part of OAE was eliminated and would 

not cause interference to the analysis of 1s -OAE. The pole and zero on the z-plane were 

shown in Figure 31(B). Consequently, the transfer function of the tracking filter is: 

 
1

1
1

1

1
( )

1

z z
H z G

p z

−

−

−
=

−
 (16) 

 1 1exp( )pp r jω=  (17) 

 1 2exp( )zz r jω=  (18) 

where 1ω  is the angular frequency of 1s -OAE, 2ω  is the angular frequency of 2s -OAE, 

pr  is the radius of the pole 1p , zr  is the radius of the zero 1z  and G  is the gain. In this 

study, zr was chosen to be 1 so that the tracking filter could eliminate the 2s -OAE to the 
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largest extent. The pole radius pr  was close to 1, dependent on the bandwidth (f∆ ) of the 

tracking filter by: 

 1p
s

f
r

f
π

∆
= −  (19) 

Where sf  is the sampling frequency. The gain G  was determined by the following 

equation to ensure unity gain at the 1s -OAE frequency:  
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 (20) 

Re

Im

rp

rz

ω1
ω2

 

Figure 31. The zeros and poles of the tracking filter.  

The tracking filter was then applied to the temporal waveform of the residual 

[ ( )x n , 0,1, 2, 1n N= −L ] by the following difference equation:  

 [ ]1 1( ) ( 1) ( ) ( 1)y n p y n G x n z x n= − + − −  (21) 

where y(n) is the filtered output which contains mainly the swept-tone SFOAE evoked by 

1s .  



  119 

 In this study, the bandwidth of the tracking filter f∆  was chosen to the square root 

of the sweeping rate of the swept tone stimulus 1s : 

 2 1( ) /f f f T∆ = −  (22) 

Where 1f  is the starting frequency, 2f  is the ending frequency and T  is the duration. 

Moreover, the filtered output ( )y n  could be fed back to the same tracking filter several 

times in order to improve the selectivity of the tracking filter. Such operation was 

equivalent to increasing the order of the tracking filter and therefore could improve the 

performance.  

In this study, the tracking filter technique was used to extract the swept-tone 

SFOAEs from the residuals. One way to demonstrate the effectiveness of the tracking 

filter was to analyze the spectrogram (a representation of energy distribution as a function 

of time and frequency) before and after the tracking filtering (Figure 32).  As shown in 

panel (A), the spectrogram of the residual before the filtering showed two parallel lines, 

representing potential SFOAEs evoked by 1s  and 2s , respectively. Random noises were 

also distributed everywhere in the spectrogram. If such a residual was taken an FFT 

without any pre-processing, the amplitude spectrum [panel (C)] was rather noisy and no 

swept-tone SFOAEs could be clearly observed. In contrast, the spectrogram in panel (B) 

showed that only the 1s -evoked SFOAEs were left after the filtering and all other 

irrelevant noises were greatly attenuated. The corresponding amplitude spectrum [panel 

(D)] showed clear swept-tone SFOAEs.  
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Figure 32. The spectrograms and amplitude spectra of the swept-tone SFOAEs before 

and after the tracking filtering.  

 


