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ABSTRACT

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has re-

sulted in an exponential increase on both power dissipation and heat flux (or power density) in modern

microprocessors. These microprocessors are integrated as the major components in many modern em-

bedded devices, which offer richer features and attain higher performance than ever before. Therefore,

power and thermal management have become the significant design considerations for modern embedded

devices.

Dynamic voltage/frequency scaling (DVFS) and dynamic power management (DPM) are two

well-known hardware capabilities offered by modern embedded processors. However, the power or

thermal aware performance optimization is not fully explored for the mainstream embedded processors

with discrete DVFS and DPM capabilities. Many key problems have not been answered yet. What is

the maximum performance that an embedded processor can achieve under power or thermal constraint

for a periodic application? Does there exist an efficient algorithm for the power or thermal management

problems with guaranteed quality bound? These questions are hard to be answered because the discrete

settings of DVFS and DPM enhance the complexity of many power and thermal management problems,

which are generally NP-hard. The dissertation presents a comprehensive study on these NP-hard power

and thermal management problems for embedded processors with discrete DVFS and DPM capabilities.

In the domain of power management, the dissertation addresses the power minimization prob-

lem for real-time schedules, the energy-constrained make-span minimization problem on homogeneous

and heterogeneous chip multiprocessors (CMP) architectures, and the battery aware energy management

problem with nonlinear battery discharging model. In the domain of thermal management, the work

addresses several thermal-constrained performance maximization problems for periodic embedded ap-

plications. All the addressed problems are proved to be NP-hard or strongly NP-hard in the study. Then

the work focuses on the design of the off-line optimal or polynomial time approximation algorithms as

solutions in the problem design space. Several addressed NP-hard problems are tackled by dynamic

programming with optimal solutions and pseudo-polynomial run time complexity. Because the optimal

algorithms are not efficient in worst case, the fully polynomial time approximation algorithms are pro-

vided as more efficient solutions. Some efficient heuristic algorithms are also presented as solutions to

several addressed problems.

The comprehensive study answers the key questions in order to fully explore the power and

thermal management potentials on embedded processors with discrete DVFS and DPM capabilities. The
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provided solutions enable the theoretical analysis of the maximum performance for periodic embedded

applications under power or thermal constraints.
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Chapter 1

Introduction

Increased device densities and device counts fueled by semiconductor technology scaling have led to a

sharp increase in power consumption and heat flux in modern microprocessors. Many modern embedded

devices integrate these microprocessors to offer richer features and attain higher performance than ever

before. These embedded devices are generally aimed at hand-held applications. The devices are powered

by on-board batteries and do not utilize large heat sinks or fans for cooling due to size constraints. One

of the important design metrics for these portable devices is the battery lifetime. Power consumption is

of direct consequence to a large number of portable embedded system applications that are constrained

by battery lifetime. The other important design metrics for the devices is the peak temperature limit

for the die, which is the upper limit that the processors should run below. This is because the high

die temperatures cause the low device reliability to failure. Further, high temperatures affect device

performance as the carrier mobility decreases with increasing temperature. Finally, high temperatures

result in increased leakage current which dissipates more power, and thereby potentially lead to thermal

runaway.

Consequently, the increased power consumption and heat flux in microprocessors have emerged

as principal barriers to the design of such hand-held and high performance embedded devices. Chip

designers have incorporated architectural features for addressing the challenges of system-level power

( [11, 42]) and thermal management ( [12, 75]) in modern microprocessors. These features enable the

designer to vary the power consumption profile of applications, and thereby limit the power and heat

dissipation in embedded devices. There are two primary system level design techniques that can exploit

these architectural features, dynamic voltage/frequency scaling (DVFS) and dynamic power management

(DPM) ( [68, 92]).

DVFS is a power conservation technique based on the CMOS property that a cubic power re-

duction can be achieved by a linear decrease in supply voltage with a linear slow-down in processor

frequency. It adjusts applications’ power or thermal profile by scaling supply voltage and frequency (v/f)

of the microprocessor. DPM exploits the various sleep states available on the current day microproces-

sors to reduce stand-by and leakage power consumption of applications. Therefore, the key problems in

system level power and thermal management for embedded applications involve the effective exploita-

tion of DVFS and DPM schemes in order to maximize the application performance under power/thermal

constraints.
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1.1 Preliminaries

This section presents the preliminaries on power model, thermal model and application specific models

for the design time system level power and thermal management problems.

System wide power model based on processor operating mode

In the work, we target on an embedded CMOS circuit system that consists of one/multiple processors

and a set of resources that model peripheral components (for example, memory banks, flash drives,

FPGA components, buses etc.). In the system, power consumption consists of different system resource

portions which depends on the processor operating mode. We define the power modes that processor

operates on as follows.

• Active mode, where a circuit is on and performs an operation for executing an application. In our

system, the processor/processors operate in an active v/f state for application execution and other

resource components such as memory and I/O interfaces need to be active (on) along with the

processor. The active power is the system wide power consumption when the system is in active

mode. We consider system wide power consumption for applications. The power consumption

for executing an application in this work includes three portions per component of the system:

dynamic power (PAC), static or leakage power (PSC) and an inherent power cost in keeping the

system on (Pon). These power portions will scale with technology and architectural improvements.

The total power consumption Pactive in active mode for executing an application is:

Pactive = PAC +PSC +Pon

based on the characteristics of applications. As different supply voltage and frequency is chosen

for executing the application, the total power consumption in each v/f state also varies.

• Standby mode, where a circuit is on but idle to ready to execute an operation. In our system,

the processor is not executing an application and enters a sleep (or low power) state, and the

resources is on but idle. Therefore, the standby power is the total power when the system is in

standby mode. We consider system wide power consumption when processor is in sleep state not

executing application. It includes static power (PSC) and inherent power cost in keeping processor

on Pon per component. The total power consumption in standby mode is:

Pstandby = PSC +Pon

2



where the PSC dominates the standby power in many cases.

• Shutdown mode, where a circuit is off. In our system, we assume the processor and resources are

turned off and thus reduce a large amount of leakage power. On the other hand, this mode brings a

non-negligible energy and overhead of mode transition and requires application meets their system

requirements. We omit this mode for our power management work.

In our work, we consider system wide power consumptions when processors are in active or standby

mode. In the active mode, we consider the system wide power consumption for the embedded applica-

tions when processors are executed in various v/f states. In the standby mode, we consider the embedded

processor enters a sleep mode which consumes a small amount of power.

Compact thermal model

The design time techniques require a thermal model of the processor to estimate the temperature. Thermal-

electrical phenomenon duality permits the modeling of heat transfer behaviors by compact thermal mod-

els (CTM). CTM is an alternative to detailed thermal models which is suitable for predicting package

or chip-wide temperatures during system-level thermal aware design [70]. A CTM extracts a behavioral

model from an accurate but time-consuming detailed thermal model. It aims to predict the temperatures

at only a few critical physical points in the design [48, 82, 93]. In the study on thermal management, we

utilize CTM to model the thermal behavior of the embedded processors.

The thermal behavior of the processor in our work in Chapters 5-7 is modeled by a lumped

circuit with thermal resistance and capacitance as proposed by Sabry et al. [84]. This model has been

widely adopted by current research on system-level thermal aware design [7–9,19,22,55,77,79,98,99].

The CTM can simulate both heat conduction and convection phenomena as well as capture steady state

and transient behaviors of the temperature. In Chapter 8, we consider the effect of package temperature

to the die temperature based on a lumped RC network thermal model derived from HotSpot [93]. The

CTM can capture both the steady state and transient thermal behaviors of both die and package.

Application specific power and thermal aware design

Application specific power and thermal aware designs address the problem in the context of a task set.

We consider the following practical applications in the advanced embedded systems.

• General real time task sets with independent tasks and release times, where the task set includes

periodic, preemptive and independent tasks. The relative deadline of each task is equal to its
3



period. The release time of each task is not known a prior. The tasks need to be scheduled under

EDF (or RM) with the deadline constraints.

• Digital signal processing, where a periodic admissible sequential schedule (PASS) can be con-

structed from a synchronous data flow (SDF) on uniprocessor. The PASS can be scheduled stati-

cally in compile time.

• Multimedia processing, where multimedia decoder/encoder includes well-defined loops for data

processing.

The above applications can be found on embedded devices, which lacks assemblies for cooling the

system. These systems expose an extreme need for power and thermal aware design with advanced

semiconductor technology scaling.

In the Chapter 2, we consider the general real time task sets for minimizing the power consump-

tion of the task set in the periodic schedules under EDF (or RM). In the Chapter 3, we consider the power

management problem for a set of tasks with a common deadline on homogeneous/heterogeneous CMP

architectures. In the chapters 4, 5, 6, we target the digital signal processing or multimedia processing

applications. We consider a periodic task set with well defined task execution sequence. The tasks are

independent and the order of execution is specified by the sequence. Periodic task set denotes that the

sequence of n tasks are executed in an iterative manner. Once one run of the task set is finished, the

processor continues to execute the task set for the next run. We study the power management based on

a nonlinear battery discharging model and the thermal management for tasks with deterministic or un-

certain execution times. In the Chapter 7, we consider a periodic task set with undefined task execution

order. We study the effect of task sequencing to the temperature of the processors. In the Chapter 8, we

study the thermal aware scheduling of a periodic task set with pre-defined execution order by considering

the effect of package temperature to the die temperature.

In the power and thermal aware design on processors with a sleep state, we introduce a new

task named sleep task. The sleep task indicates the scenario when processors enter sleep state. The sleep

task can have different execution times which indicates the processor sleep time. In the chapters 4, 5, 6,

7, 8, we formulate the problems with the addressed task set and the sleep tasks.

1.2 Scope of the work

The research addresses system-level design techniques for power and thermal management on embedded

processors. In recent past there has been considerable amount of research in this domain. The existing
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research of DVFS and DPM schemes can be classified into four categories. The below lists the category

explanations and discussions.

• Off-line ( [6, 20, 28, 65, 79, 100, 107, 110, 113]) versus on-line ( [12, 92, 99, 114]) techniques. This

classification is based on the provided input information in problem descriptions. Off-line algo-

rithms apply to problems that the entire sequence of inputs on the whole duration of task executions

are given in advance and require to output a solution at hand, while on-line algorithms work on

inputs piece-by-piece and do not require the entire input available from the start.

• Inter-task ( [6,20,28,100,107,110,113]) versus intra-task DVFS ( [79,92,114]). This classification

is based on DVFS scheme implementation detail. The inter-task DVFS scheme only changes v/f

state before or after execution of a task, while the intra-task DVFS scheme can vary v/f state at

any time.

• Discrete ( [6, 28, 68, 100, 113]) versus continuous DVFS ( [65, 79, 92, 107, 110, 114]) schemes.

This classification is based on processor model. Some existing work assumes processor is able

to select any v/f values in a continuous range for task execution and the solution is a continuous

DVFS scheme. Some others assume processor only has limited discrete v/f states to select and the

solution is a discrete DVFS scheme.

• Heuristic ( [6, 68, 92, 114]) versus optimal/approximation ( [20, 28, 65, 79, 110, 113]) approaches.

This classification is based on the proposed techniques for problems. Heuristic approaches are

algorithms that usually produce good solutions but there is no proof that the solutions could not

get arbitrarily bad. Optimal algorithms achieves optimal solutions. Approximation approaches

are algorithms that find approximate solutions with provable solution quality bound and provable

run time bounds. Both optimal and approximation techniques generate solutions with guaranteed

quality.

In contrast to the existing approaches to system-level power and thermal management, our

problem instance is characterized by the consideration of a realistic processor model that supports only

discrete v/f states (as opposed to the idealistic scenario with continuous speed settings). This considera-

tion is driven by the observations that most main stream processors only support a few discrete v/f states,

and the Advanced Configuration and Power Interface (ACPI) standard also specifies only discrete v/f

states [3]. Note that our discrete v/f state consideration differs from the existing approaches [79, 99] in

that the available v/f states are the inputs to our problem. Further, similar to [7–9,107] we consider that
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each task operates at a single v/f state. This is due to the consideration that inter-task v/f scheduling has

less overhead than intra-task techniques, and is easier (more practical) to implement [97]. Moreover, our

research focuses on off-line optimal/approximation approaches for several addressed power and thermal

management problems. The proposed approaches are able to generate DVFS and DPM schemes with

provably solution quality bounds in provable run time bounds.

Th scope of our work is mainly on off-line optimal/approximation algorithms for inter-task

power and thermal management based on processors with discrete DVFS and DPM states. We

have addressed related problems for periodic applications on embedded platforms.

1.3 Addressed problems and contributions

In the following paragraphs we highlight our research and contributions till date.

Power management of real-time schedules

Problem description

The work addresses the system-level low power design for a set of periodic tasks to be executed under

earliest deadline first (EDF) or rate monotonic (RM) scheduling scheme on an embedded processor that

only supports discrete DVFS. Each task is specified by its period and known execution times and power

consumption at the various v/f states of the target processor. The objective is to assign a v/f state for

execution of each task such that the total power consumption of the application is minimized subject to

the processor utilization bounds of EDF and RM scheduling schemes.

Contributions

The contributions of this work are listed below.

• We prove that the specified problems are NP hard.

• We present fully polynomial time approximation schemes (FPTAS) for the problems. The FPTAS

generates solutions that are guaranteed to be within a designer specified approximation bound (e.g.

within 1% of the optimal power consumption) in polynomial time. To the best of our knowledge,

the proposed FPTAS generates solutions with the lowest run time comparing the existing FPTAS

techniques for the addressed problems.

• We present experimental results that evaluate the proposed techniques with both real and syn-

thetic applications, and the comparisons with optimal and existing [60] approaches. Results show

6



that our techniques can match optimal solutions when QB is set at 1%, out perform existing ap-

proaches [100] even when QB is set at 10%, generate solutions that are quite close to optimal

(< 5%) even when QB is set at higher values (25%), and execute in a fraction of a second (with

QB > 5%) for large 100 node task sets.

Power management on homogeneous/heterogeneous CMP architectures

Problem description

The work addresses the energy constrained scheduling problem on homogeneous/heterogeneous CMP

architectures that support core-level DVFS. The work jointly addresses two key problems for energy

efficient application development on CMP architectures: 1) the mapping of tasks to processing elements

(PE) and 2) selection of discrete v/f state for execution of each task. The objective of the techniques is to

maximize the performance of an application subject to an energy budget. The problem is formulated as

a makespan minimization problem for a set of independent tasks to be executed on CMP under energy

budget constraints.

Contributions

The contributions of this work are listed below.

• We prove that the energy-efficient mapping and scheduling (EMMS) problem as described is

strongly NP-hard.

• We propose polynomial time techniques for homogeneous and heterogeneous CMP architectures

that can be shown to generate solutions whose performance (latency or makespan) is no more than

twice (2-approximation) of the optimal. To the best of our knowledge the proposed techniques

offer the tightest quality bounds for the EMMS problem.

• We evaluate proposed techniques with practical and synthetic applications on various CMP archi-

tectures. Results demonstrate that for practical instances of the problem the performance of our

solutions is on an average no greater than 1.43 of the optimal.

Near optimal battery-aware energy management

Problem description

This work addresses the battery aware energy management problem with discrete DVFS and DPM tech-

niques for a sequence of tasks with a common deadline. We consider the nonlinear battery discharging
7



model proposed in [78] and address the problem of maximizing the battery lifetime while meeting a

deadline constraint.

Contributions

The contributions of this work are listed below.

• We consider the nonlinear discharging process of the battery and present an optimal algorithm

based on dynamic programming. It achieves the minimum charge loss with job deadline constraint.

This has not been done in any previous work.

• We also propose a fully polynomial approximation algorithm. The designer gives a specific quality

bound δ (0 < δ < 1). This algorithm guarantees to achieve the minimum charge loss no more

than (1+ 2δ ) times the optimal, when the deadline is relaxed by a factor (1+ δ + δ
2n+1 ) and the

battery capacity is relaxed by a factor (1+δ ). The complexity of the approximation algorithm is

polynomial in problem size. This is the first known approximation algorithm for the battery-aware

energy management problem based on a nonlinear battery discharging model.

• Our experimental results show that the approximation algorithms widely outperform an existing

technique. Further, for a number of realistic and synthetic benchmarks, the qualities of the solu-

tions produced by our approximation techniques are much better than the required quality bounds

imposed by the designer.

Thermal aware scheduling for periodic applications

Problem description

The work addresses the thermal management problem for a sequence of periodic tasks executing on

a processor subject to a peak temperature constraint. The execution time and power consumption at

the various v/f states of the target processor are specified as part of the problem. The heat transfer

characteristics of the processor is specified by a network of the thermal resistors and capacitors. The

problem is specified as a latency minimization problem for the sequence of periodic tasks subject to a

peak temperature constraint.

Contributions

The contributions of this work are listed below.

• We prove that the problem as described is NP-hard.
8
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Figure 1.1: Thermal constraint violation due to optimal energy schedule

• We present a pseudo-polynomial time optimal algorithm based on dynamic programming.

• We propose a fully polynomial time approximation schemes (FPTAS) for the problem. The FPTAS

can be utilized to generate solutions that are guaranteed to be within a designer specified approx-

imation bound (for example within 1% of the optimal power consumption) in polynomial time.

To the best of our knowledge, this is the first work that present both optimal and approximation

algorithm for thermal aware scheduling problem.

• We evaluate our techniques by experimentation with multimedia and synthetic benchmarks mapped

on a 70nm CMOS technology processor [79]. We demonstrated that energy optimal schedule can

result in peak temperature violation, thereby justifying our approach for seeking a thermal aware

schedule (see Figure 1.1). Further, our approach is able to match optimal solutions when QB is

set at 5%, can generate solutions that are quite close to optimal (< 5%) even when QB is set at

higher values (50%), and executes in few seconds (with QB > 25%) for large task sets with 120

nodes (while the optimal solution takes several hundred seconds). We also analyzed the effect of

different thermal parameters (such as the initial temperature, the final temperature and the thermal

resistance) on the performance of the schedule.

Thermal aware scheduling for applications with uncertain execution times

Problem description

The work addresses the stochastic version of thermal management problem on an embedded processor.

The tasks in the sequence are specified with uncertain run times instead of deterministic run time on a v/f
9



state. The problem is formulated as an expected latency minimization problem for a sequence of tasks

executing on an embedded processor subject to statistical thermal constraints. The statistical information

of required processor cycle numbers for each task are specified as part of the problem. The statistical

thermal constraint is described as the probability that the peak temperature constraint Tm will not be

violated during the execution of tasks is not less than a specified value β ( 1
2 < β ≤ 1). The outcome is

an off-line v/f schedule for the tasks that satisfy all the design requirements.

Contributions

The contributions of this work are listed below.

• We prove that the system-level thermal design problem for applications with uncertain cycle time

is at least NP-hard.

• We present an optimal algorithm SO′ for the case β = 1. β = 1 specifies that peak temperature

limit is never violated for the task sequence even though they demonstrate variable cycle demands.

• We propose an exact optimal algorithm SO for the problem when 1
2 < β ≤ 1. The computational

complexity of SO is exponential in the number of tasks in the application.

• We propose a fully polynomial approximation algorithm called SA for the problem. In the case of

SA the designer specifies two quality bounds namely ε (to denote that the expected latency should

be within (1+ε) of the optimal) and peak temperature relaxation bound µ (0 < µ < 1) (to denote

that peak temperature constraint can be relaxed to (1+ µ)Tm). The SA can generate solutions in

polynomial time that are guaranteed to be within (1+ ε) of the optimal when peak temperature

Tm is relaxed to (1+µ)Tm
1. To the best of our knowledge, this is the first work that addresses the

stochastic version of the system-level thermal-aware design problem.

• We demonstrate experimental results to show that existing approaches to system-level thermal

aware design cause peak temperature violations when the clock cycle demand of the tasks is vari-

able. We also evaluated the effectiveness of our techniques with realistic and synthetic bench-

marks.

1When the ambient temperature is Tamb, the peak temperature limit Tm is actually relaxed to (Tm −Tamb)µ +Tm and is clearly
less than (1+µ)Tm. For example, when Tm is set as 100◦C, Tamb is 35◦C and µ is 0.02, peak temperature is relaxed to 101.5◦C.
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Thermal aware task sequencing on embedded processors

Problem description

The work addresses the thermal aware design problem to maximize the throughput for a set of periodic

tasks subject to a peak temperature Tm constraint. In particular we study the thermal aware task sequenc-

ing (or ordering) problem on embedded processors with or without DVFS capabilities. The problem

(denoted as TS ) is motivated by two primary observations (i) task execution order or sequence has a

significant impact on thermal profile and consequently the performance of an application, and (ii) arbi-

trarily long periodic execution of the task set requires the determination of an initial temperature setting

T ∗
o that enables feasible (Tm is not violated) schedules in all iterations. T ∗

o which needs to be determined

as part of the problem solution is the optimal initial temperature (at the start of each iteration) of the

sequence in steady state that results in highest throughput.

We address the thermal aware task sequencing problem and several subproblems in the work.

The addressed problems are shown in Figure 1.2.

T s :
Thermal

aware task
sequencing

problem

T s1 : T s on
processors

without
DVFS

T s1.1 : T s1 for
task sets with

identical power

T s1.2 : T s1 for
task sets that all

tasks raise
temperature

Figure 1.2: The vision of the addressed problems

In Figure 1.2, TS is the general instance of the thermal aware task sequencing problem. TS 1 is

TS on processors without DVFS capability, which is a subproblem of TS . TS 1 includes subproblems

TS 1.1 and TS 1.2. TS 1.1 is TS 1 for task sets with identical power and TS 1.2 is TS 1 for task sets that all

tasks raise temperatures. TS 1.1 and TS 1.2 intersect on TS 1 for task sets that all tasks raise temperatures

by identical power.

Contributions

The contributions of this work are listed below.

• We derive the optimal initial temperature setting T ∗
o (Section 7.3) that can lead to optimum solu-

tions and feasible executions over multiple iterations. To the best our knowledge, this is the first
11



work that finds such an optimal initial temperature setting for the addressed problem.

• For all problems in Figure 1.2, our specific contributions are listed in Table 1.1. We present an

Table 1.1: Our solutions and contributions

Prob. Solution Contributions
TS 1.1 SEQ f Optimal algorithm in polynomial time
TS 1.2 SEQ f Optimal algorithm in polynomial time
TS 1 SEQs Heuristic algorithm in polynomial time

Average 27.0% improve against JMs [40]
TS SEQd Heuristic algorithm in polynomial time

Average 9.5% improve against JMd [40]

optimal algorithm SEQ f for TS 1.1 and TS 1.2. We derive a sequencing property for task sets

executing on processors without DVFS capability and utilize it to develop a novel algorithm SEQs

for TS 1. Finally, we derive a DVFS property for the general instance of TS and present a novel

algorithm SEQd for the same.

Thermal aware scheduling by considering the impact of package temperature

Problem description

The work addresses system-level thermal aware design problem as the performance optimization of a

task set executing on an embedded processor subject to a peak temperature limit. In particular, we

consider a temperature-dependent leakage power model with discrete voltage/frequency settings and a

sophisticated thermal model derived from HotSpot for an embedded processor with die and package.

The heat transfer characteristics of the processor is specified by a compact thermal model (CTM) which

captures the inter-dependence of the die temperature with leakage power consumption and package tem-

perature. The execution time and dynamic power consumption at the various v/f states of the target

processor for each task are specified as part of the problem.

Contributions

The contributions of this work are listed below.

• We prove that the system-level thermal aware design problem as described is NP-hard.

• We present a pseudo-polynomial time optimal algorithm as solution. We also present a polynomial

time algorithm based on a fully polynomial approximation scheme (FPTAS) as a more efficient

solution. The solution techniques are based on the solutions to a subproblem with power budget

constraint.
12



• We explore the optimal substructure of the subproblem and present a dynamic programming based

optimal algorithm for the addressed subproblem. This algorithm is proved to be optimal and the

solution time is pseudo-polynomial.

• We present a bi-criteria FPTAS for the subproblem. The bi-criteria FPTAS can generate solutions

that are guaranteed to be within a designer specified approximation bound with relaxation of the

power budget constraint (for example within 1% of the optimal latency with relaxation of 2% of

the power budget) in polynomial time. We prove the approximation bound and fully polynomial

time computational complexity.

To the best of our knowledge, this work is the first one to present both optimal and FPTAS based al-

gorithms for the thermal aware design problem on processors with discrete v/f states based on a CTM

that captures both the impact of temperature dependent leakage power and package temperature on the

die temperature. We present experimental results that evaluate the proposed techniques for the thermal-

aware scheduling problems with both real and synthetic applications. We show with a counter example

that ignoring the impact of package temperature on die temperature cannot guarantee thermal constraints,

thereby substantiating our contribution. We evaluate the actual quality of the results produced by our

FPTAS based techniques for different quality bounds by comparisons with the optimal approach. The

proposed FPTAS generates solutions quite close to the optimal even when the quality bound is set to a

big value (say 50%) in a few seconds for a large task set with up to 50 tasks. In particular the FPTAS

solutions are within 3% of the optimal even when the quality bound is set at 50%.

1.4 Outline

The rest of the dissertation is outlined as follows.

Chapter 2 addresses the power management problem of real-time schedules on embedded pro-

cessors and presents optimal and approximation algorithms as solutions.

Chapter 3 addresses the power management problem on CMP architectures and presents ap-

proximation algorithms for the problem on both homogeneous and heterogeneous CMPs.

Chapter 4 addresses the battery aware energy management problem based on a nonlinear battery

discharging model and provides optimal and approximation algorithms as solutions.

Chapter 5 defines the thermal management problem for a sequence of tasks and proposes both

optimal and approximation algorithms as solutions.

13



Chapter 6 introduces uncertainty of task execution times to the thermal management problem

for a sequence of tasks, and then present optimal algorithm and a fully polynomial approximation as

solutions.

Chapter 7 addresses the task sequencing and scheduling problem under a peak temperature

constraint for processors with or without DVFS capabilities. We provide optimal and efficient heuristic

algorithms for several subproblems and problem as solutions.

Chapter 8 demonstrates the effect of package temperature to die temperature and addresses

the thermal management problem for a periodic task sequence based on a sophisticate thermal model

including die and package. We provide the optimal and an FPTAS based technique as solutions.

Chapter 9 concludes the work and presents future potential research directions.
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Chapter 2

Power management of real-time schedules

The chapter presents the work on power management of real-time schedules on embedded processors.

This problem is described as a power consumption minimization problem for a set of periodic tasks

executing on uni-processor with real-time schedules. The work is organized as follows: Section 2.1

defines the problem, Section 2.2 discusses the previous work, Section 2.3 presents the fully polynomial

time approximation scheme for the problem, Section 2.4 discusses the experimental results, and finally

Section 2.5 concludes the work.

2.1 Problem definition

Problem description

The power management of real-time schedules on uni-processor is described as follows:

Given

• n independent periodic tasks X {x1, . . . ,xn} specified in the ascending order of their period di,

• a target embedded processor architecture with multiple active voltage and corresponding frequency

states1 V {v1, . . . ,vm},

• for each task xi ∈ X and each active state v j ∈ V , pi j and ti j that denote the power consumption

and execution time of the task, respectively,

The objective is to minimize the power consumption when the tasks are executed by Earliest

deadline first (EDF) or rate monotonic (RM) scheduling schemes subject to:

• each task is executed at a unique voltage state of the processor,

• every task is finished before its next request, and

• the utilization bound of valid EDF (or RM) scheduling is satisfied.

EDF and RM are two main real time scheduling algorithms for periodic task sets on uni-

processor architectures [52]. EDF is a dynamic priority scheme that assigns the highest priority to the

task with the earliest deadline. RM is a static priority scheme that assigns the highest priority to the task

1We assume without loss of generality that at a particular voltage the processor operates at a unique frequency. The proposed
techniques can also address the more general case of multiple operating frequencies at a particular processor voltage.
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with shortest period. Consequently, for large independent task sets EDF has a higher utilization bound

of 1 as opposed to RM whose utilization bound is given by 0.69 (ln2) [52]. If the utilization of system

when applying power management is no more than the utilization bound for EDF (or RM), the task set

is feasible to schedule and all the deadlines of task instances can be met by EDF (or RM). As described

in the problem, each task has an associated period di, which represents the minimum inter release time

of consecutive instances of the task. And it must finish its execution by the end of its period. In other

words the relative deadline of each task is equal to its period. The release time of each task is not known

a prior. To satisfy the deadline constraint for each task, the sufficient condition for EDF (or RM) is

adopted as a constraint of the problem when applying power management. Examples of the systems

include video-on-demand systems and digital signal processing [60].

Then, we formulate the problem as specified above and prove that the problem is NP hard.

In the following discussion we address the problem in the context of EDF scheduling and then present

modifications for RM scheduling. The switching overhead between frequency states or tasks is assumed

to be negligible. We denote the two problems as LP-EDF and LP-RM.

Problem formulation

LP-EDF and LP-RM problems can be proved to be NP-hard. We consider scheduling the tasks over the

hyper-period D which is the least common multiple of d1,d2, . . . ,dn. For a task xi there are D
di

instances

to be executed in D. Let ei j be the total energy consumption of the task instances when it is executed

at voltage v j, thus ei j = pi j × ti j × D
di

. Let ai j denote a 0/1 variable that is ’1’ if task xi is assigned to

execute at voltage/frequency state v j (otherwise ai j = 0). The power consumption of the set of tasks is

given by:

P =
∑n

i=1 ∑m
j=1 ai j · ei j

D

The numerator represents the total energy consumption (E) due to the execution of the tasks

at their assigned voltage/frequency states in the hyper-period D. The voltage/frequency assignment

problem for low power EDF (LP-EDF) or RM (LP-RM) schedules can be stated as:

minE =
n

∑
i=1

m

∑
j=1

ai j · ei j

s.t.
n

∑
i=1

m

∑
j=1

ai j
ti j

di
≤UEDF/RM (2.1a)

m

∑
j=1

ai j = 1,∀i ∈ {1,2, ...,n} (2.1b)
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In the formulation Equation 2.1a denotes that the sufficient condition on the utilization bound

of the EDF or RM schedule is satisfied.

Theorem 2.1.1. The LP-EDF and LP-RM problems as stated above are NP-hard.

Proof. The problems can be shown to be NP-hard by a reduction from the multiple-choice knapsack

problem (MCKP) [43] [60]. The energy minimization objective is replaced by the goal of maximizing

energy savings. Let Emax be the maximum energy consumption of any task, that is Emax =max(ei j),∀xi ∈

X ,v j ∈ V . The energy savings due to a task xi operating at voltage/frequency state v j is given by the

difference between the Emax and ei j. Finding an optimal solution to the ILP formulation with the energy

savings maximization objective is equivalent to solving MCKP, which is NP-hard [43].

There are known FPTAS for solving the MCKP problem. Chandra et al. [16] present the first

FPTAS for MCKP problem. Lawler et al. [49] and Kellerer et al. [43] proposed similar FPTAS with

running time much better than that of the scheme in [16]. However, as is often the case, equivalence

of finding optimal solutions to these two problems does not imply that an approximation algorithm for

MCKP can be directly used with the same approximation guarantee for LP-EDF and LP-RM. In fact,

one can easily prove that FPTAS solutions to MCKP in some cases translate into poor solutions to LP-

EDF and LP-RM. Thus even though there exist polynomial-time approximation schemes for MCKP,

finding good approximation algorithms for LP-EDF and LP-RM are open problems. We first give an

exact pseudo-polynomial time algorithm for LP-EDF and LP-RM based on dynamic programming, and

then use it to construct a FPTAS.

2.2 Related work

Jha et al. [42] and Benini et al. [11] give a survey of the existing DVFS and DPM techniques, respectively.

There exists a significant body of research on efficient algorithms for DVFS in hard real-time systems.

These can be classified on the basis of the following categories: i) offline [6, 20, 37, 39, 41, 60, 62, 71,

86, 87, 100, 104, 106, 107, 113] versus online [44, 46, 63, 114, 115] schemes for voltage/frequency state

assignment, ii) inter-task DVFS [6,20,37,41,44,46,60,62,63,71,86,100,104,106,107,113,115] versus

intra-task [39,87,114] approaches, and iii) continuous voltage/frequency scaling [6,37,44,86,107] versus

discrete active states [20, 39, 41, 46, 60, 62, 63, 71, 87, 100, 104, 113–115].

Yao et al. [107] proposed an optimal offline low power scheduling algorithm that assumed a pro-

cessor with continuous voltage/ frequency scaling. However, realistic embedded processors only offer

discrete voltage/frequency states. Ishihara et al. [39] proposed an optimal low power offline scheduling

17



algorithm where every task is executed with at most two discrete voltage states. Although intra-task

DVFS approach can possibly result in greater power consumption savings than inter-task DVFS tech-

nique, it is not easy to implement in the operating system and requires a higher overhead. These draw-

backs have also been specifically recognized by others [97], and are substantiated by the much larger

body of work on inter-task optimizations versus intra-task approaches. Due to the above mentioned ob-

servations in the following discussions we primarily focus on online and offline low power scheduling

algorithms for inter-task DVFS with discrete active states.

Pillai et al. [71] and Jejurikar et al. presented [41] offline and online heuristic schemes for

integration of DVFS with real time schedulers. The technique presented by Jejurikar et al. also consid-

ered the leakage power consumption of the peripheral components that are present in the system. Yan

et al. [104] in addition to the traditional DVFS also considered adaptive body biasing (ABB) to mini-

mize the leakage power consumption of an embedded processor. Mochocki et al. presented heuristic

algorithms for offline [62] and online [63] DVFS that considered switching overheads between voltage

states. Xie et al. [100] presented an exponential time exact algorithm based on branch and bound, and a

linear time heuristic for DVFS that considered switching overheads and power consumption of periph-

eral components. Mejia-Alvarez et al. [60] and Yang et al. [106] proposed a greedy heuristics based

on modelling the low power scheduling problem as a variations of the standard knapsack problem. All

the above mentioned approaches either propose heuristic algorithms or exponential run time exact ap-

proaches for DVFS. In contrast we propose polynomial time algorithms for offline DVFS that generate

solutions for EDF and RM schedulers which are guaranteed to be within a designer specified bound from

the optimal. Chen et al. [20] and Zhong et al. [113] presented fully polynomial time and pseudo poly-

nomial time approximation algorithms for the low power DVFS problem, respectively. Our approach is

a fully polynomial time approximation scheme which has a lower complexity than either of these two

approaches.

2.3 Algorithms

We first present the exact algorithm for the problems, then derive fully polynomial time approximation

schemes (FPTAS) as sou. Given an NP-hard minimization problem Π with an objective function fΠ,

an algorithm A is an approximation scheme for Π if given an instance I of the problem, and an error

parameter ε it outputs a solution s such that fΠ(I,s)≤ (1+ε) ·OPT where OPT is the optimal solution.

A is a FPTAS if its running time is bounded by a polynomial in the size of the instance I and 1/ε .

FPTAS is the best one can hope for a problem that is NP-hard [96].
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Optimal algorithms

The exact algorithms are based on a dynamic programming algorithm for the knapsack problem [96] that

runs in pseudo-polynomial time. Given Emax as defined above, nEmax is an upper bound on the energy

consumption of any solution. Let Si,E denote an assignment of the i tasks x1, . . . ,xi to voltages such that

their energy consumption is at most E and the total processor utilization due to these i tasks is minimized.

Let U(i,E) be this minimum processor utilization. If Si,E does not exist, define U(i,E) = ∞. U(1,E) is

known for E ∈ [1, . . . ,nEmax]. The recurrence relation for the dynamic programming algorithm is given

by:

U(i,E) = min
j∈[1,m]

(U(i−1,E − ei j)+
ti j

di
).

From this recurrence we can find U(n,E) for all E ∈ [1,nEmax]. The optimum solution is then Sn,E∗ ,

where

E∗ = {minE|U(n,E)≤UEDF/RM}.

The recurrence leads to an algorithm that loops over tasks i ≤ n, energy values e ≤ nEmax and m volt-

age states to construct a two-dimensional table indexed by tasks and energy values, so that entry (i,e)

contains U(i,e). The table is constructed in order, so that before considering (i,e), the first i− 1 rows

are filled in. For each (i,e), we compute U(i,E) by looping over different voltages, as indicated in the

recurrence above.

The computational complexity of the algorithm is O(n2mEmax), because there are n(nEmax)

entries in the table, and determining each requires m steps.

(1+ ε)-FPTAS

The exact algorithms described above are not polynomial because their running time includes a factor

Emax, which could be exponential in the number of tasks and voltage states. We next describe algorithms

parameterized by δ . The approximation guarantee for these algorithms is (1+2δ ). However, these are

still FPTAS as we can get a (1+ ε) approximation by invoking the algorithms with parameter δ = ε/2.

To get polynomial algorithms with approximation guarantee (1+ 2δ ), we first show that if the optimal

energy consumption E∗ was given as part of the input, we could adapt the knapsack polynomial-time

approximation scheme [96] and get a (1+2δ )-approximate solutions to our problems. In fact, we show

the following:
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Lemma 2.3.1. Let Eub ≤ αE∗ for some α ≥ 1. If probe(Eub) succeeds (where probe is the function

defined in lower half of Figure 2.1), then the solution found by the call to the dynamic programming

procedure consumes at most (1+αδ )E∗ energy.

Proof. Given δ and the upper bound Eub, probe first scales the energy consumption values: let K =

δEub/n and replace ei j by e′i j = ⌈ei j/K⌉ for every i and j. The next step is to invoke the exact dynamic

programming algorithm described in the previous section using the modified energy consumption values

e′i j. U ′(n,E ′) is identical to U(n,E) except that it operates on scaled values. The program returns an

optimal solution A to the scaled instance of the problem. Let A∗ denote the optimal solution to the

original instance. Let E ′(A) denote the cost of A in terms of the modified energy consumption values e′i j.

To simplify the notation, we use i j ∈ A to denote that in the solution A, task xi is assigned voltage v j,

thus contributing ei j to the energy consumption (or e′i j in the scaled instance). We have

E(A)≤ KE ′(A) = ∑
i j∈A

Ke′i j ≤ ∑
i j∈A∗

Ke′i j

≤ ∑
i j∈A∗

(ei j +K)≤ E∗+nK = E∗+δEub

≤ E∗(1+αδ ).

The first step is true because of rounding after scaling. The second step expands the energy consumption

of A term by term. The third step is true because A is the optimal solution for the scaled instance, and

so in terms of e′ it is cheaper than A∗. The fourth step follows because by the definition of e′i j, we have

ei j ≤ Ke′i j ≤ ei j +K. The remaining steps follow from the definitions of K and α .

We use the function probe as a building block for our algorithms. The full algorithms are

shown in Figure 2.1. It consists of a binary search on the sequence (1,2,22, . . . ,2i, . . . ,2N), where N =

⌈lgnEmax⌉.

Lemma 2.3.2. If probe(E) returns failure, then E∗ > E.

Proof. Suppose E ≥E∗. Then by the definition of scaling, the optimal solution A∗ to the original instance

has scaled energy consumption at most

E ′(A∗)≤
⌈

E∗

K

⌉
+n ≤

⌈
E
K

⌉
+n.

Since probe(E) invokes the dynamic program with the upper bound ⌈E
K ⌉+ n, there exists a feasible

solution and probe(E) will succeed.
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LP-EDF/LP-RM FPTAS(δ ):

1 Initial: N = ⌈lgnEmax⌉, l = 1, r = N;
2 while (l < r){
3 h = ⌊ l+r

2 ⌋.
4 if (probe(2h) = success) then r = h;
5 else l = h;
6 }
7 h = r;
8 return 2h;

probe(E):

11 K = δE
n ;

12 e′i j =
⌈ ei j

K

⌉
, E ′ = ⌈E

K ⌉+n;
13 if (U ′(n,E ′)≤UEDF/RM)) {return success;}
14 else {return f ailure;} endif;

Figure 2.1: LP-EDF and LP-RM:FPTAS

Theorem 2.3.1. The approximation ratio of LP-EDF/LP-RM FPTAS is (1+2δ ).

Proof. Let 2h be the value returned by the binary search. Let E(A) be the energy consumption of the

solution found by probe(2h). We have the following two cases:

Case I: 2h ≤ E∗. Then by Lemma 2.3.1, E(A)≤ (1+δ )E∗.

Case II: 2h > E∗. As 2h is the smallest value for which the probe succeeds we have 2h < 2E∗. Now

Lemma 2.3.1 implies E(A)≤ (1+2δ )E∗.

Lemma 2.3.3. The running time of LP-EDF/LP-RM FPTAS is bounded by O( n2m
δ lg lg(nEmax)).

Proof. The binary search is applied to the N-element sequence (1,2, . . . ,2i, . . . ,2N), where N = ⌈lg(nEmax)⌉.

Therefore, probe is invoked at most O(lg(N)) = O(lg lg(nEmax)) times. Each call to probe requires

O( n2m
δ ) time. Thus the overall running time of the algorithm is O( n2m

δ lg lg(nEmax)). While this expres-

sion contains the term Emax, the double logarithm ensures that the running time is not only polynomial

in the size of the input, but also that the extra term lg lg(nEmax) is only logarithmic in the input size.

Theorem 2.3.2. LP-EDF/LP-RM FPTAS are fully polynomial approximation schemes for LP-EDF and

LP-RM problems, respectively.

Proof. From Theorem 2.3.1 and Lemma 2.3.3, the proof follows.
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Figure 2.2: LP-EDF FPTAS: Multimedia benchmarks

2.4 Experimental results

We present and analyze the results of experimentation that was performed to evaluate our techniques.

We evaluated both LP-EDF and LP-RM FPTAS for multimedia benchmark applications and synthetic

task sets. In both the experiments we compared our techniques against a non-DVFS approach, optimal

designs, and SGA and EGA algorithms proposed by Mejia-Alvarez et al. [60]. The non-DVFS approach

executes the tasks at their highest voltage/ frequency state. The optimal designs were obtained by utiliz-

ing the exact algorithm discussed in Section 2.3. The Intel StrongARM 1100 processor was considered

as the target embedded processor for the two experiments. The optimization techniques were coded in

C++ and the experimentations were performed on a Pentium M/1.6GHz/512MB WindowsXP PC.

Results for multimedia benchmarks

We considered four applications drawn from the multimedia domain namely JPEG decoding, MPEG2

decoding, MP3 encoding and software defined radio (SDR). The JPEG decoding algorithm was modeled

by four tasks consisting of: variable length decoding, huffman decoding, inverse-zigzag and quantiza-

tion, and IDCT. An MPEG2 stream consists of I, P and B pictures. Decoding an I picture consists of

the following tasks: preprocessing, variable length decoding, inverse zigzag and de-quantization, and

IDCT. P and B picture decoding consist of preprocessing and motion compensation. The MP3 encod-

ing algorithm was modeled by three tasks consisting of pulse code modulation, filtering, and huffman

encoding. Finally, the SDR application was obtained from Niyogi et al. [67] and consisted of low pass
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Figure 2.3: LP-RM FPTAS: Multimedia benchmarks
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Figure 2.4: LP-EDF FPTAS: execution time

filter, demodulator and equalizer.

The Intel StrongARM 1100 processor was run at the following specifications: 1.5 V - 206 MHz,

1.4 V - 192 MHz, 1.2 V - 162 MHz and 1.1 V - 133 MHz. We obtained execution times (CPU run time)

and average power consumption estimates of the tasks in the multimedia applications by utilizing the

JouleTrack simulator [90] for the StrongArm processor. We considered the design of application sets

with the period constraints for all tasks in a particular application specified as follows: JPEG = 1ms,

MPEG2 = 900µs, MP3 = 45ms, and SDR = 8ms. For the integrated JPEG, MPEG2 and MP3 design the

periods were specified as 1.5ms, 1.5ms and 12ms, respectively. We implemented the designs with both
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Figure 2.5: LP-RM FPTAS: execution time

LP-EDF FPTAS and LP-RM FPTAS and with quality bounds of 1% (ε = 0.01), 5% (ε = 0.05), 10%

(ε = 0.10), 15% (ε = 0.15) and 25% (ε = 0.25). The results are plotted in Figure 2.2 and 2.3 for EDF

and RM schedulers, respectively. The plots depict the normalized energy reduction due to a particular

approach in comparison to no DVFS technique.

Evaluation of LP-EDF FPTAS Both SGA and EGA give inferior results in comparison to the optimal in

all cases. In fact on an average the SGA and EGA are over 1.25 (max = 1.72) and 1.24 (max = 1.72)

times the optimal, respectively. In contrast LP-EDF FPTAS with a bound of 1 % is able to match the

optimal solution in all cases. Even with a quality bound of 25 % LP-EDF FPTAS is able to out perform

SGA and EGA in 3 out of the 5 cases, and is on an average within 1.09 (max = 1.11) of the optimal.

Evaluation of LP-RM FPTAS As the RM scheduler is constrained by much lower utilization bound, the

energy consumption is higher in comparison to the EDF scheduler. Similar to the EDF scheduler, both

SGA and EGA give inferior results in comparison to the optimal in all cases. On an average the SGA

and EGA are 1.06 (max = 1.13) and 1.06 (max = 1.12) times the optimal, respectively. Again, LP-RM

FPTAS with a quality bound of 1 % is able to match the optimal solution in all cases. LP-RM FPTAS

with a quality bound of 25 % out performs SGA and EGA in all cases, and is on an average within 1.01

(max = 1.02) of the optimal.

Summary We can conclude that for realistic applications both LP-EDF and LP-RM FPTAS are able to

match the optimal with a quality bound of 1 %, out perform SGA and EGA in most instances with a

quality bound of 25 % and also generate high quality solutions with a quality bound of 25 %.
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Figure 2.6: LP-EDF FPTAS: actual design quality
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Figure 2.7: LP-RM FPTAS: actual design quality

Results for synthetic task sets

We evaluated the proposed techniques by experimenting with large synthetic task sets with up to 100

nodes. The number of tasks in each set were varied from 10 to 100 in steps of 10 with 10 task sets at

each value. Each task was assumed to run on the StrongArm processor with 5 voltages (0.90V, 1.00V,

1.20V, 1.30V, 1.50V). The workload of the tasks was varied uniform randomly from 102 to 108 clock

cycles. In the case of EDF scheduler, for each task set, 10% of the tasks were set to be high utilization

tasks at lowest operating frequency. As the RM schedule has lower utilization than EDF scheduler, only
25
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Figure 2.8: Execution time versus design quality

5% of total tasks were assigned as high utilization. The utilization of tasks with high utilization was

varied uniform randomly from 1
N to 1.5

N where N is the number of jobs in the task set. The utilization of

low utilization tasks was varied uniform randomly from 0.0001 to 1
N . We generated designs by executing

the optimal algorithm, SGA, EGA and both FPTAS-EDF and FPTAS-RM. We set the quality bounds of

our algorithm at 1%, 5%, 10%, 15% and 25%. We recorded the execution times of the various techniques

and also compared the actual quality of results with the solution of 1% FPTAS of the respective scheduler.

Figures 2.4 and 2.5 depict the execution time of the various approaches, and Figures 2.6 and 2.7 present

the comparison of design quality with 1% FPTAS solution.

Evaluation of LP-EDF FPTAS The run time and memory usage of the optimal technique increases ex-

ponentially, and we were unable to obtain the results in a reasonable amount of time for task sets greater

than 70 nodes. Both SGA and EGA are quite efficient and can generate results for large task sets (100

nodes) in less than a second2. The execution time of LP-EDF FPTAS is comparable to SGA and EGA

for a quality bound greater than 5%. The LP-EDF FPTAS with a quality bound of 1% takes just over a

second for 90 and 100 node task sets. The design quality of SGA and EGA was on an average inferior

to LP-EDF FPTAS with a quality bound of 25%. For quality bounds of less than or equal to 15% the

LP-EDF FPTAS was much superior to both SGA and EGA techniques.

Evaluation of LP-RM FPTAS The run time of the optimal technique for LP-RM rises much fast than

LP-EDF. Both SGA and EGA are very efficient, and are comparable to run time of LP-RM FPTAS with

a quality bound of 25%. LP-RM FPTAS with a quality bound of 1% requires just over a second for

2We do not plot the execution times for SGA and EGA for less than 60 nodes as they are close to zero.
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large 80 to 100 node task sets. The run times of LP-RM FPTAS for all other quality bounds was under a

second for large task sets. The design quality of SGA and EGA was comparable to LP-RM FPTAS with

a quality bound of 25%. The LP-RM FPTAS was much superior to both SGA and EGA techniques for

quality bounds of less than or equal to 15%.

Summary Although SGA and EGA are efficient techniques, the average quality of their solutions is

consistently poorer than LP-EDF and LP-RM FPTAS for quality bounds less than or equal to 15%.

Execution time versus quality bounds

Figure 2.8 plots the average execution time of the LP-EDF and LP-RM FPTAS for synthetic task sets

versus the approximation ratio or quality bound3. We can observe that at a quality bound of 10% the

execution time of the approaches is less than 0.001 times the run time of the optimal. Thus, at 10 %

quality bound the two approaches offer an excellent trade-off between design quality and solution time.

2.5 Conclusion

We addressed the minimum power consumption assignment of voltage/frequency states for a set of

periodic tasks to be executed on an embedded processor by EDF and RM schedulers. We showed that

the problem is NP-hard and presented FPTAS as solutions. Experimental results with both multimedia

applications and synthetic benchmarks demonstrate that our approaches with a quality bound of 1% are

able to get very close to the optimal, and produce high quality solution even when an approximation

bound of 25% is considered.

3The plots of the two approaches are overlapping. Consequently, the plots appear as only a single curve.
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Chapter 3

Power management on homogeneous/heterogeneous CMP architectures

The chapter first addresses an power management problem on multiprocessors in terms of throughput

maximization problem with energy budget constraints on CMP. Then approximated algorithms are pro-

vided as solutions. The work is organized as follows: Section 3.1 defines the problem, Section 3.2

discusses the previous work, Section 3.3 presents the approximation schemes for the problem on ho-

mogeneous and heterogeneous architectures, Section 3.4 discusses the experimental results, and finally

Section 3.5 concludes the work.

3.1 Problem definition

Consider a CMP composed of m processing elements (PEs) denoted by the set Φ = {pe1, . . . , pei,

. . . , pem}. Each PE consists of a DVFS equipped processor, a local memory and a globally coherent

DMA engine. An interconnect bus is provided for the communication between the PEs. On each pei,

there is an available active voltage/frequency (v/f) state set Ψi = {s1, . . . ,sk, . . . ,sli}(|Ψi| = li). We as-

sume the local memory is large enough to hold all the tasks.

The energy-efficient multiprocessor mapping and scheduling (EMMS) problem is described as:

Given a target multiprocessor chip CMP, n independent non-preemptable tasks Γ = {τ1,

. . . ,τ j, . . . ,τn} to be executed on the CMP, the objective is to maximize the chip-level throughput such

that each task is scheduled at a unique v/f state on one of the PEs, and the total energy consumption is

no more than an energy budget C.

We assume for each task τ j, ci jk and ti jk are given as the energy consumption and the worst

case execution time (WCET) of the task on pei ∈ Φ at v/f state sk ∈ Ψi, respectively. And all the tasks

arrive the CMP at time zero. The objective to maximize the chip-level throughput can be transformed

to minimize the overall completion time (makespan) of the task set. In this work, we focus on off-line

provable approximation techniques for the EMMS problem. The Integer Linear Programming (ILP)

formulation of the EMMS problem, named P1, is as follows:

min T

s.t.∑m
i=1 ∑n

j=1 ∑li
k=1 ci jkxi jk ≤C (3.1a)

∑n
j=1 ∑li

k=1 ti jkxi jk ≤ T,∀pei ∈ Φ; (3.1b)

∑m
i=1 ∑li

k=1 xi jk = 1,∀τ j ∈ Γ; (3.1c)

xi jk = {0,1},∀pei ∈ Φ,∀τ j ∈ Γ,∀sk ∈ Ψi. (3.1d)
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Here xi jk is 1 if and only if τ j is executed at v/f state sk of the pei, otherwise 0. Constraint (3.1a)

specifies that the total energy consumption is no more than C. Constraint (3.1b) describes that the overall

throughput is limited by the completion time of tasks on each PE. Constraint (3.1c) ensures that each

task is executed on one voltage of some PE.

Theorem 3.1.1. The EMMS problem is strongly NP-hard.

Proof. We prove the strongly NP-hardness by showing that a well-known strongly NP-hard problem, the

minimum makespan scheduling (MMS) problem [27], is a special case of the EMMS problem. When

the processing time of each task is fixed and there is no energy budget constraint, the EMMS problem

becomes a MMS problem with an arbitrary m.

Hochbaum et al. [27] discusses several research results on approximation algorithms for the

MMS problem. However, those results are for the classical MMS problems without consideration of

energy budget or v/f states. In this work, we focus on approximation techniques for the EMMS problem.

Standing on the shoulders of giants, we extend some useful ideas for the MMS problems to address the

EMMS problem. In the following section, we present a 2-approximation algorithm for scheduling on

homogeneous CMP by extending the LP rounding method for the MMS problem with identical machines

[27]. Then, we propose a 2-approximation algorithm for scheduling on heterogeneous CMP based on the

solution for the MMS problem with unrelated machines (the generalized assignment problem) [27, 88].

In contrast to the original algorithms [27, 88] for the MMS problems, both of our algorithms can deal

with simultaneous v/f state assignment and task to PE mapping. In this work, the WCET of tasks is

assumed to be integral as the cycle numbers in cores, and the switching overhead between v/f states is

negligible.

3.2 Related work

The existing techniques for energy-efficient scheduling on CMPs can be classified into several categories

based on different metrics: i) the laptop problem [14, 20, 28, 38, 72] versus the server problem [6, 51, 95]

ii) continuous [14, 20, 72] versus discrete v/f states [28, 38, 51, 95] iii) heuristic [6, 38, 51, 95] versus

approximation [14, 20, 28, 72] techniques.

Bunde et al. [14] classified the energy efficient scheduling problems into the laptop problem and

the server problem. The former fixed the energy consumption to maximize schedule performance, while

the latter fixed the schedule performance to minimize energy consumption. Jha et al. [42] introduced

different variations of the both problems with more considerations such as the task models [20, 72],
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the communication links [5, 95] and the synthesis costs [28]. Our work belongs to the laptop problem,

which asks ”given an energy budget, what is the best schedule to maximize performance”. We focus on

independent non-preemptable task set and assume all the tasks arrive at the same time instance.

We focus on the approximation techniques for the problem that can generate solutions with

guaranteed quality bounds. The existing heuristic techniques [6, 38, 51, 95] cannot satisfy this property.

Pruhs et al. [72] proposed a polynomial time approximation scheme based on load balancing for the

energy-efficient scheduling problem. Bunde [14] extended the work by Pruhs et al. and gave an exact

algorithm for multiprocessor makespan minimization of equal-workload jobs. Chen et al. [20] sum-

marized their approximation techniques on several variants of the energy-efficient scheduling problem.

However, all of these techniques assumed that v/f could be scaled continuously. As we know, most

commercial processors only support discrete v/f states and the optimal v/f as generated by the previous

techniques may not be available. In the discrete v/f domain, Andrei et al. [5] presented a MILP formula-

tion with multiple considerations for the energy-efficient scheduling problem. Hsu et al. [28] considered

an independent task set with EDF/RM schedule and provided an (m+2)-approximation algorithm to min-

imize the allocation cost within an energy budget. In contrast, we propose 2-approximation polynomial

time techniques for the EMMS problem on homogeneous and heterogeneous CMPs. To the best of our

knowledge, our techniques offer the tightest quality bounds for the EMMS problem.

3.3 Algorithms

In this section, we propose polynomial time approximation algorithms for the EMMS problem. Initially,

we utilize a binary search to achieve a tight lower bound of the optimal EMMS. Then the schedul-

ing algorithms for the homogeneous CMP and heterogeneous CMP are proposed based on a fractional

schedule result. Both of the scheduling techniques are justified to be 2-approximation algorithms of the

optimal EMMS.

Finding a tight lower bound of the optimal

In general, the LP relaxation of an ILP problem is an effective way to obtain the lower bound of the

optimal. However, sometimes the LP relaxation result is not a tight lower bound. Consider the LP

relaxation of P1 by replacing xi jk ∈ {0,1} with xi jk ≥ 0, denoted as P1LP. Suppose that we have two

identical PEs, one single task, and each PE is only equipped with one v/f level. Assume the WCET of

this task is t on the PE. The optimal makespan of P1, denoted as T⋆, would be t. However, the naive

LP relaxation gives a solution where the task is split into equal halves on the two PEs. The optimal

makespan of the LP relaxation is 1
2 t. The bound on T⋆ is not tight because the WCET of the single job
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P1LP-OPT:

l = TLB,r = TUB
while (l < r)
{ h = ⌊ l+r

2 ⌋.
if (probe(h) = success) then r = h;
else l = h;}

return T ⋆
P1LP = r and S;

probe(T ):

Let Td = T, solve P2LP by the simplex method;
if (Cs ≤C)) return success and the solution S;
else return f ailure;

Figure 3.1: An optimal algorithm for P1LP

is larger than the lower bound. To avoid this case and achieve a tighter lower bound of T⋆, we include a

property of the optimal solution of the ILP as an extra constraint. Thus, this constraint would not affect

T⋆.

if ti jk > T,xi jk = 0; (3.2)

Since the if-then constraint is not easy to be linearized because of the unknown T, we introduce

another problem, P2, which includes this constraint. P2 is described as ”given a deadline Td for the task

set, what is the best schedule with minimum energy consumption”. The ILP formulation is as follows:

min Cs = ∑m
i=1 ∑n

j=1 ∑li
k=1 ci jkxi jk

s.t. Constraint (3.1b)(3.1c)(3.1d)(3.2) and replace T by Td in (3.1b)(3.2).

In P2, the if-then constraint can be transformed to a preprocessing step by setting values of some xi jk,

since Td is given.

Let the T ⋆
P1LP be the optimal makespan of the P1LP problem with Constraint (3.2). Based on

the linear relaxation of P2, named as P2LP, T ⋆
P1LP is found by the P1LP-OPT algorithm in Figure 3.1.

In P1LP-OPT, the TLB is set as min{ti jk} and the TUB is set as n ·max{ti jk}, ∀pei ∈ Φ,τ j ∈ Γ,∀sk ∈ Ψi.

Then, we have the following lemma. The proof is omitted here since it is similar to that for the MMS

problem [88].

Lemma 3.3.1. The binary search based on P2LP in the P1LP-OPT algorithm finds the optimal solution

T ⋆
P1LP of P1LP.
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The P1LP-OPT returns an optimal fractional schedule S. For each xi jk > 0 in S, ti jk ≤ T ⋆
P1LP,

because of Constraint (3.2). In the following subsections, we present the scheduling techniques based

on S for the homogeneous CMP and the heterogeneous CMP.

Scheduling on Homogeneous CMP

Homogeneous (or symmetric) CMP consists of m identical PEs. The scheduling problem on homoge-

neous CMP is easier than that on heterogeneous one, because the active v/f state space is independent

of the PEs in the CMP. In other words, a task requires the same amount of WCET and consumes the

same energy on a particular active state among all the PEs. Based on this property, we propose a simple

2-approximation technique in Figure 3.2.

Observe that the linear relaxation of P2 after the preprocessing step for Constraint (3.2) includes

at most m+n constraints in addition to the non-negativity conditions. Therefore, each basic solution has

at most m+n basic variables which may take positive values while the other non-basic variables take the

value zero. The simplex method searches among the basic solutions and generates an optimal solution

of this form [69]. Thus, if n > m, there are at most m tasks that get split. Based on the property, we have

Theorem 3.3.1. The makespan of the schedule from the Psym algorithm is at most twice of the optimal.

Proof. In Step 1, the Psym algorithm computes a fractional assignment from P1LP-OPT. After Step 2,

the sk with the smallest ci jk for each τ j is selected, when the ti jk is associated with a positive xi jk. The

energy budget constraint is satisfied. At Step 3, we consider the two cases here.

• Case n ≤ m: It is clear the n tasks can be assigned to disjoint m PEs. Thus, the overall makespan

is determined by the WCET of single task on each PE. Because the schedule S satisfies Constraint

(3.2), the makespan is ≤ T ⋆. Because T ⋆ is the optimal, the result from Psym is the optimal.

• Case n > m: After Part (a) in Step 3 of the Psym, because of constraint (3.1b), the maximum

completion time of this part is no more than T ⋆
P1LP . Thus, it is no more than T ⋆. Starting from

this time point on each PE, the task-PE mapping with the fractional xi jk is determined by Part (b).

Since at most m tasks get split in S, the task number in Part (b) is no more than m. Thus, similar

to the case n ≤ m, the maximum completion time of Part (b) is no more than T⋆. Therefore, the

overall makespan is no more than twice T⋆.

Thus, it is proved.
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Psym:

Step 1: Achieve the fractional schedule S from P1LP-OPT;
Step 2: For each τ j, select the sk with the associated smallest

ci jk with positive xi jk in S;
Step 3: If n ≤ m, schedule the tasks to disjoint PEs; else:

(a) schedule the tasks with the integral xi jk from S;
(b) schedule the remaining tasks with the determined sk

to arbitrary disjoint PEs.

Figure 3.2: A 2-approximation for EMMS problem with homogeneous CMP

Pasym:

Step 1: Achieve S from P1LP-OPT;
Step 2: Construct a bipartite graph G = (U,V,E);
Step 3: Find a minimum cost matching A that exactly matches

all the task nodes in G;
Step 4: For each edge in A, assign the task to the corresponding

PE and the active voltage state via the associated xi jk.

Figure 3.3: A 2-approximation for EMMS problem with heterogeneous CMP

Scheduling on Heterogeneous CMP

Another kind of practical CMP architecture consists of a diversity of PEs, called heterogeneous (or asym-

metric) CMP. Heterogeneous PEs imply different active v/f states with varying power/WCET character-

istics. In this subsection, we propose a 2-approximation scheduling algorithm based on the algorithm

for the generalized assignment problem (GAP) [88]. We construct a bipartite graph based on the sched-

ule S generated from P1LP-OPT, achieve a minimum cost matching on the graph and then schedule the

tasks according to the matching. The algorithm Pasym is described in Figure 3.3. Our technique differs

from [88] in that our algorithm addresses the scheduling problem with one more dimension namely the

active v/f state assignment.

In Step 2 of Pasym we construct a bipartite graph G with two disjoint node sets (U ,V ) and one

edge set (E). One side of the graph, U , consists of all the task nodes U = {u j|τ j ∈ Γ}. The other

side of the graph, V , consists of all the PE nodes with ∑n
j=1 ∑li

k=1 xi jk > 0. For each pei in V , there are

qi = ⌈∑n
j=1 ∑li

k=1 xi jk⌉ nodes in V (qi ̸= 0).

Edges of the G are constructed based on the positive {xi jk} from the fractional schedule S. In

this section, we only consider the items associated with xi jk > 0 in S. Let vih denote the hth(h = 1,2, ...qi)
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node associated with pei in V . Let e = (u j,vih) be an undirected edge connecting node u j and vih. For

each pei ∈ M, construct a list including all the ti jk with positive xi jk, ∀τ j ∈ Γ,sk ∈ Ψi. Sort this list in

the non-increasing order of ti jk, and name the sorted list as Li(t) = {ti jk}. Construct an associated list

Li(x) = {xi jk} according to the order of Li(t). Recall that there are qi nodes for the pei in V . If qi = 1,

construct an edge e = (u j,vi1) for every xi jk > 0 and assign x′(e) = xi jk, t(e) = ti jk,c(e) = ci jk. If qi > 1,

for vi1 (h = 1) find the smallest splitting index r in Li(x) such that ∑r
1 xi jk ≥ 1. Construct r − 1 edges

e = (u j,vi1) for the first r−1 xi jk in Li(x). Assign x′(e) = xi jk as the case of qi = 1. Add an edge for the

rth xi jk as e = (u j,vi1) and assign x′(e) = 1−∑r−1
1 xi jk. Delete the first r−1 xi jk from Li(x) and replace

the rth xi jk as ∑r
1 xi jk − 1. The assignment rules of t(e) and c(e) are always the same as those of qi = 1

case. Similarly, for each h = 2,3, ...,qi, construct the edges and x′(e) such that the following properties

hold true:

i. ∀vih ∈V,∑e∈Eih
x′(e) = 1, where Eih denotes all the edges e incident to vih, ∀h = 1,2, ...,qi −1.

ii. ∀i ∈ M,∑n
j=1 ∑li

k=1 xi jk = ∑e∈Ei x′(e), where Ei includes all the edges incident to any node of pei in

V .

iii. ∀i ∈ M,min(te∈Eih(e))≥ max(te∈Eih+1(e)).

Properties i. and ii. follow from the computation of x′(e). Property iii. follows from edge

construction based on Li(x) in non-increasing order of ti jk.

We present an example to show the construction. Suppose that m = 2,n = 3. pe1 only has

one voltage, and pe2 has two voltage states. After the LP relaxation of P1 problem, the schedule S is a

3×3 matrix as follows. The values inside the square embraces [ ] are the related ti jk.


x111 =

1
3 [6] x211 = 0 x212 =

2
3 [6]

x121 = 0 x221 =
1
2 [5] x222 =

1
2 [4]

x131 = 0 x231 = 1[1] x232 = 0


The constructed bipartite graph is shown in Figure 3.4. On pe1, because h1 = ⌈x111 + x121 +

x131⌉ = 1, x′(u1,v11) = x111. On pe2, because ∑n
j=1 ∑li

k=1 x2 jk = 2 2
3 , h2 = 3. According to the non-

increasing order of ti jk, L2(t) = {6,5,4,1}. Therefore, L2(x) = {x212,x221,x222,x231}. The first splitting

item is x221 in L2(x) as x212 + x221 > 1. We add edge (u1,v21) with x′(e) = x212. Then, for x221, we

add an edge (u2,v21) and assign x′(e) = 1− x212 = 1
3 . We delete x212 from L2(x) and replace x221 as

x212 + x221 − 1 = 1
6 . Thus, L2(x) = { 1

6 ,x222,x231}. For v22, because 1
6 + x222 + x231 > 1, we add edges

(u2,v22) and (u2,v22) with x′(e) = 1
6 and x′(e) = x222 = 1

2 respectively. We construct one portion of
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x’=1/2

u1

v11 v21 v22 v23

u3u2

x’=1/3 x’=2/3

x’=1/6

Figure 3.4: The constructed bipartite graph G(U,V,E)

x231 as edge (u3,v22) with x′(e) = 1
3 and another portion as edge (u3,v23) with x′(e) = 2

3 . The resulting

bipartite graph embeds the mentioned properties.

Observe that a minimum cost matching on the graph G is actually a feasible solution of the

scheduling if the total energy cost is no more than C. In Figure 3.3, Step 3 of the Pasym algorithm computes

the minimum cost matching in the bipartite graph G. Based on the properties of G, a maximum flow

matching in G is a schedule for the EMMS problem. For example in Figure 3.4, the corresponding

(x111,x221,x231) of the matching {(u1,v11),(u2,v21),(u3,v22)} is a schedule for the EMMS problem.

To satisfy the energy budget constraint, we should find the minimum cost matching (MCM) on G, where

the cost on any edge stands for the energy cost c(e). R. Ahuja et al. [4] have shown that any basic feasible

solution of the LP relaxation of the MCM problem is integral.

Lemma 3.3.2. The minimum cost matching exists in G(U,V,E) and the energy consumption of the

matching is at most C.

Proof. Because the fractional vector x′(e) is a feasible solution of the LP relaxation of the MCM prob-

lem, and the minimum cost is no more than C, it is an upper bound of the optimal LP relaxation problem.

According to [4], the basic feasible solution of the LP relaxation would be integral. Thus, the minimum

cost matching exists and the total energy consumption is at most C.

Theorem 3.3.2. The makespan of the schedule generated from the Pasym algorithm is at most as twice as

the optimal.

Proof. The proof is similar to that in [88]. In the minimum cost matching A, there is at most one task

scheduled on each node of the pei in V . Therefore, the makespan of the matching T (A)≤∑qi
h=1 max(te∈Eih(e)).

For the first node vi1(h = 1), max(te∈Ei1(e))≤ T ⋆, because t(e) = ti jk in G and Constraint (3.2) is satis-

fied. For the remaining nodes of pei,
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∑qi
h=2 max(te∈Eih(e))≤ ∑qi−1

h=1 min(te∈Eih(e))

≤ ∑qi−1
h=1 ∑e∈Eih

t(e)x′(e)≤ ∑qi
h=1 ∑e∈Eih

t(e)x′(e)

= ∑n
j=1 ∑li

k=1 ti jkxi jk ≤ T ⋆

The first inequality follows from Property iii. of the graph G. The second inequality follows

from the definition of min(te∈Eih(e)) and Property i. of the graph G. The fourth equality follows from

the construction of x′(e) and t(e). The last inequality follows from the Constraint (3.1b) of the P2LP.

Thus, Pasym is a 2-approximation algorithm.

Complexity Analysis

Since P1LP-OPT performs Step 1 in both Psym and Pasym algorithms, the computational complexity of

P1LP-OPT influences the complexity of the proposed techniques. Simplex method is a well-known

polynomial time algorithm to solve linear programming problems. Let Co denote the computational

complexity of the simplex method, which is polynomial. The computation complexity of the P1LP-OPT

is O(log(TUB
TLB

)Co), because of the binary search.

Let l = max∀i∈M{li}. In the Psym algorithm, Step 1 dominates the overall complexity. Step 2

and Step 3 only take at most O(nml). Thus, it is a polynomial time algorithm. In the Pasym algorithm,

Step 1 is polynomial as discussed above. In Step 2, because the schedule S consists of at most n+m

positive xi jk, the the sorting algorithm for the list Li(t) takes at most O((n+m) log(n+m)) time by

merge sorting for each PE. Step 3 is of polynomial complexity as it utilizes the simplex algorithm on

the MMS problem. Step 4 is at most O(nml). Thus, the computational complexity of Pasym algorithm is

polynomial.

3.4 Experimental results

We evaluated the proposed techniques with extensive experiments that are presented in this section. In

the case of homogeneous and heterogeneous CMPs, we analyzed the achieved approximation ratio with

the effects of two factors : the CMP architecture and the task patterns. We compared the makespan

generated from Psym, Pasym, the ILP solver from [1] and the tight lower bound of P1 (P1LP-OPT). In

some cases, the ILP solver took an unbounded large amount of time to achieve an optimal. We set

a timeout of 10000 seconds, after which the ILP solver returned the best suboptimal solution. In all

the plots, the makespan values were normalized with respect to the P1LP-OPT (the tight lower bound
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of the EMMS problem), which can directly reflect the actual approximation ratio1. The runtimes of the

proposed techniques was also studied in comparison to the ILP solver with 8 hours timeout configuration.

Experimental Setup

We obtained the PE models from two commercial DVFS-equipped processors: IBM PowerPC [33] and

Intel PXA270 [35]. We chose 6 v/f states for PowerPC ranging from 1V/1.0GHz to 1.25V/2.0GHz and

7 v/f states for PXA270 ranging from 0.85V/13MHz to 1.55V/624MHz. For homogeneous CMPs, the

PowerPC was set as the PE unit to compose the multiple PE system. For heterogeneous CMPs, four

combinations of the PowerPC and the PXA-270 were chosen as the target CMPs. We designed 4 task

sets with different workload distributions: equal, uniform, Gaussian and Poisson. Each task set included

30 task nodes. The cycle number of the tasks were in the range of [106,1010]. For the energy budget, a

metric named energy budget ratio r(r ∈ [0,1]) from [28] was introduced. With various r values, we set

C = ∑ j(r ·(maxi,k{ci jk}−mini,k{ci jk})+mini,k{ci jk}), where pei ∈ Φ,τ j ∈ Γ,sk ∈ Ψi. The optimization

techniques were coded in C++ and the experimentations were performed on a Pentium 4/2.4GHz/1GB

WindowsXP PC.

Effect of CMP architecture and task patterns

We evaluated the proposed techniques by experimenting with the 4 task patterns. For the homogeneous

CMP case, the number of PEs were varied from 4 to 16. For the heterogeneous CMP case, we designed

four kinds of CMP with combinations of multiple PowerPC and PXA270. For the both cases, we com-

pared the makespan generated from Psym, Pasym and the ILP solver which are plotted in Figures 3.5 and

3.6. All the makespan values are normalized to the tight lower bound of P1 generated from P1LP-OPT.

Therefore, the actual approximation ratio is no more than the normalized makespan. Each CMP was

plotted as a separate category. In each category, the results from 4 task sets were depicted from left to

right in the order of equal, uniform, Gaussian and Poisson. The energy budget ratio was set as 0.5.

Homogeneous CMP The four target CMPs were designed as CMPs with 4, 8, 12, and 16 PowerPC PEs.

As observed in Figure 3.5, the normalized makespan generated from Psym is no more than 1.36 with all

the task sets. With the 16 PEs, the results are better than ILP solver for the task sets with equal/Gaussian

workload. In all cases, the average approximation ratio to the P1LP-OPT is 1.13, while the average ratio

to the ILP is 1.06. With each task pattern, the average approximation ratio to the P1LP-OPT is below

1.15.

1The actual approximation ratio is no more than the normalized makespan w.r.t the P1LP-OPT. Even if there is an integrality
gap between the LP relaxation and ILP problem, the normalized makespan is still meaningful. This is because the P1LP-OPT is a
tight lower bound of the ILP problem.
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Figure 3.5: Evaluation on Homogeneous CMP architecture
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Figure 3.6: Evaluation on Heterogeneous CMP architecture

Heterogeneous CMP We designed 4 types of heterogenous CMPs with PowerPC and PXA270. We

denote the PowerPC as H and the PXA270 as L. The 4 heterogeneous CMPs are plotted in the following

order 1H3L, 1H8L, 1H16L, 2H16L. As shown in Figure 3.6, the normalized makespan generated from

Pasym (the upper bound of the actual approximation ratio) is within the theoretical bound of 2. In general,

the normalized makespan for heterogeneous CMP is larger than that for the homogeneous CMP with

all the task patterns. For the normalized makespan generated from the Pasym, the maximum ratio with

comparison to the ILP is 1.64. In all the cases, the average normalized makespan of the Pasym is 1.43,

while that of the ILP is 1.24.

Summary The actual approximation ratios of the schedules generated by Psym and Pasym are within the

theoretical bound. The task patterns have less effect on solution quality for the homogeneous CMP than

that for the heterogeneous CMP.
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Figure 3.7: Runtime versus task number

Runtime

To evaluate the computational complexity of our techniques, we utilize synthetic task sets with up to

50 nodes to do experiment on the run time evaluation of the technique. These tasks have uniformly

distributed execution time. The CMP with 4 PowerPC PEs was targeted for the homogeneous case and

the 1H3L CMP was targeted for the heterogeneous case. The energy budget ratio was set as 0.5. We

compared the average runtime of Psym, Pasym with the ILP solver (8 hours timeout setting) in Figure 3.7.

The number of tasks in the task sets was varied from 10 to 50 nodes in steps of 10. Note that the y axis

is in logarithmic scale in Figure 3.7. With up to 50 nodes, the Psym and Pasym algorithms were completed

within half a minute. The figure shows that the runtime of our techniques is linearly increasing with

the increase of task numbers. As predicted, the Psym is slightly faster than the Pasym algorithm because

of the simplicity of the former. In comparison, the runtime of the ILP solver is exponentially large in

some cases. Even with 10 nodes, the average runtime of the ILP solver is around 10 times of the Psym

and Pasym. With 50 nodes, the average runtime is beyond 8 hours and is actually more than 1000 times

of that with our techniques. Therefore, the results demonstrate that the proposed techniques are efficient

and applicable in practice.

3.5 Conclusion

In this work, we addressed the energy-efficient scheduling problem on CMP architectures with core-level

DVFS. We proved that the EMMS problem is strongly NP-hard. We then proposed 2-approximation

polynomial time techniques for both homogeneous and heterogeneous CMP. Our extensive experimen-

tation with multiple workloads and CMP architectures demonstrate that our techniques can efficiently
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generate solutions whose makespan is much lower than the factor of 2 in comparison to the optimal that

is guaranteed by the approximation bound.
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Chapter 4

Near Optimal Battery-Aware Energy Management

This chapter addresses the battery-aware energy management problem for a sequence of tasks with a

deadline constraint. The objective is to maximize the battery lifetime while meeting a deadline con-

straint. We consider the nonlinear battery model proposed in [78] and propose optimal and approxima-

tion algorithms for the solution.

The work is organized as follows: Section 4.1 defines the problem, Section 4.2 presents the

optimal and approximation algorithms as solutions, Section 4.3 discusses the experimental results and

finally Section 4.4 concludes the work.

4.1 Problem Definition

Preliminaries

System model

Without loss of generality, we consider a battery-powered processor equipped with a set of discrete

voltage/frequency (v/f) states and an idle state. A sequence of jobs is to be executed on the processor.

The jobs have a deadline constraint. The duration and power consumption of each application in each

v/f state are specified as inputs. In the battery-powered system, when the processor executes each job

in a v/f state, the battery is discharged by a load current, which is proportional to the cube of supply

voltage of the processor. When the processor stays idle, the system is shut down and thus no load current

discharges the battery.

Battery model

Rakhmatov et al. [78] proposed a high-level model of the battery discharge process based on the electro-

chemical reaction of battery. A charged battery consists of symmetric positive and negative electrodes

connected by an electrolyte with electroactive species. When a load is attached to the battery, the elec-

trochemical reaction causes electroactive specie surface in the electrolyte to have a nonzero gradient.

The apparent charge loss of the battery at time t, denoted by σ(t), is the sum of two terms a(t) (actual

charge) and u(t) (recoverable charge). a(t) is the amount of actual charge consumed by the external

system. Once a(t) is consumed, it is lost permanently. u(t) denotes the amount of charge that cannot be

used at time t, because the gradient of electroactive specie surface makes some species unavailable at that

moment. However, u(t) can be recovered after enough idle time because the electrolyte diffusion causes

the surface to eventually become flat. When the apparent charge loss σ(t) exceeds the battery capacity,
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the electroactive specie surface drops below a threshold and the battery reaction cannot be sustained. A

real battery dies at this time t, which is the lifetime of the battery.

Based on the one-dimensional electrolyte diffusion behavior, the derived battery model in [78]

takes load current profiles I(τ) as inputs and can predict the lifetime of battery, denoted as L, based

on I(τ). The prediction error of the battery model has been validated to be within 5% on a physical

lithium-ion battery [78]. The lifetime prediction is based on the following equation, for a given battery

with capacity α and technical parameter β .

α =
∫ L

0
I(τ)dτ +

∫ L

0
I(τ)(2

∞

∑
c=1

e−β 2c2(L−τ)

β 2c2 )dτ

Therefore, different load profiles can lead to various lifetimes of battery. In order to maximize battery

lifetime, Rakhmatov et al. [78] also defined the cost function σ(t), given by

σ(t) = a(t)+u(t) =
n

∑
k=1

Ikdk +
n

∑
k=1

IkF(β , to
k , t

f
k , t) (4.1)

where the two terms after the last equality sign are a(t) and u(t), respectively. The sequence {I1, I2, ..., In}

gives discrete load current values for a profile ending at time t, with dk the duration of the load Ik. Further,

to
k is the start time of load Ik and t f

k the end time. The function F in the definition of u(t) is given by

F(β , to
k , t

f
k , t) = 2

∞

∑
c=1

e−β 2c2(t−t f
k )− e−β 2c2(t−to

k )

β 2m2

From the above, a(t) is linear in the load current value and durations, while u(t) is not and is

affected by start time, end time and final time of the profile. The battery lifetime maximization problem

reduces to finding a load profile I(τ) from time 0 to time t such that σ(t) given by the battery model is

minimized.

Problem description

The battery-aware energy management problem for a battery po- wered embedded system, denoted as

B, is described as follows.

Given

• an embedded processor equipped with a set of active voltage/frequency(v/f) states {s1,s2, ...sl}

with sk = ⟨vk, fk⟩;
• a sequence of n independent jobs J = {J1,J2, ...Jn}, job Ji requiring power ρ j at s j and execution

time di j at s j;
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• a deadline D for the job sequence;

• battery parameters α and β ;

the objective is to obtain a v/f schedule A and idle time selection for recovery such that the apparent

battery charge loss σ(D) at time D is minimized and the deadline is met. We assume that the v/f state

cannot be changed during the execution of a job.

Problem formulation

We formulate the idle time selection for recovery by introducing a recovery job Js. Js specifies that the

processor stays in idle state and thus recovers (some) recoverable charge. Js can be executed for various

times. The upper bound on the execution time of Js, as analyzed in [80], is − log(1.5ε)
β 2 , where ε is the

recoverable ratio, empirically 0 < ε ≤ 0.4. Beyond this upper bound, the battery cannot recover any

more even if the processor stays idle. Since we can only change the v/f state between job executions, we

insert a Js with variable idle time between each pair of jobs. Therefore, the new job sequence becomes

J ′ = {Js,J1,Js,J2,Js, ...,Jn,Js}= {J′1,J
′
2, ...,J

′
2n+1}

We discretize the interval [0,− log(1.5ε)
β 2 ] into l′ steps 1. Let xi j be a binary variable indicating that J′i

chooses the jth choice for execution. For each job with even index i (an active job), xi j = 1 means the

active job J i+1
2

in J is executed in state s j. For each job with odd index i (a recovery job) Js, xi j = 1

denotes that the processor stays idle with the jth execution time in l′ choices. We combine the choices

for both active and recovery jobs into V |V = r|. When i is even (active job), r = l, which is the number

of processor v/f states; when i is odd (recovery job), r = l′, which is the number of idle time choices for

Js. Denote the duration of J′i with jth choice by di j. Now the problem can be formulated as

minσ(D) = (∑2n+1
i=1 ∑r

j=1 ai jxi j)+u(D)

s.t.∑2n+1
i=1 ∑r

j=1 di jxi j ≤ D (4.2a)

∑r
j=1 xi j = 1, ∀J′i ∈ J ′ (4.2b)

σ(t)< α , ∀t ∈ [0,D);σ(D)≤ α (4.2c)

xi j = {0,1}

ai j is the actual charge when J′i is executed at s j. For a recovery job, this is zero because system is shut

down when idle. For an active job, it is proportional to the duration of the job at s j times the cube of

v j. Constraint 4.2a makes sure all the jobs meet the deadline. Constraint 4.2b describes that one and

1The recovery interval can be discretized into steps with unequal lengths. For example, the first step with recovery time 0
means no idle time for recovery. The second step with recovery time 3 means that system sleeps and then wakes up, and the total
time cost is 3. Thus the designer is able to specify the discretized steps based on system requirements.
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only one choice is selected for execution of each job. Constraints 4.2c guarantees that no job will fail

because the apparent charge loss never exceeds battery capacity. The two constraints can be combined in

the single constraint σ(t)≤ α,∀t ∈ [0,D] by designer’s specification. The problem formulation aims at

task sets with determined execution order and a common deadline. We assume the load currents of each

job in each v/f states can be profiled statically. We also assume the load current in idle state is a constant

(zero or non-zero).

Problem B can be proved to be NP-hard by reduction from Multiple Choice Knapsack Problem

(MCKP) [78]. There are known dynamic programming techniques and fully polynomial approximation

schemes (FPTAS) for solving MCKP [96]. However, as is often the case, a reduction from MCKP to a

special case of B does not imply that the techniques can be directly applied to B. We first present an op-

timal algorithm executed in pseudo-polynomial time as a solution. Next, we propose a fully polynomial

approximation algorithm for the problem.

4.2 Algorithms

Optimal algorithm

The optimal algorithm for the B problem is a dynamic programming method that runs in pseudo-

polynomial time. Dynamic programming is a method for a problem with optimal substructures. The

optimal substructure generally exhibits the property that the optimal solution for a subproblem domi-

nates other solutions and leads to the final optimal solution [66].

The proposed dynamic programming algorithm is based on that for the knapsack problem.

However, there exist two critical differences. First, the battery model in the B involves a nonlinear

factor (the recoverable charge) so that the problem formulation cannot be linearized as the knapsack

problem. Next, the objective function (the apparent charge loss σ(t)) of B is a sum of a linear term

(the actual charge a(t)) and a nonlinear term (the recoverable charge u(t)). This implies that a dynamic

programming method based on two-dimensional table (job id and apparent charge loss σ ) does not have

optimal substructure. This is because an exact σ value could be any combination of a and u. Therefore,

we propose a dynamic programming with a three-dimensional table (job id, deadline and actual charge)

to solve the problem.

Consider a battery-aware energy management subproblem B(i,d,a) for the first i jobs in J ′

with exact execution time d and actual charge a. Let S(i,d,a) be the schedule for J′1,J
′
2, ...,J

′
i such that the

overall execution time is no more than d, the actual charge is no more than a and the recoverable charge

at time d is minimized. Let u(i,d,a) be the minimum recoverable charge at time d. Here, i is in the
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range of {1,2, ...,N}. D and α are the respective upper bounds on d and a. If S(i,d,a) does not exist, let

u(i,d,a) be ∞. Initially, u(1,d,a) is 0 for all possible d and a, because the battery is fully charged at the

beginning. Thus, the recursive relationship for the dynamic programming is presented as

u(i,d,a) = min j∈V{u(i−1,d −di j,a−ai j)+∆ui j|a+u < α} (4.3)

∆ui j is determined by the battery model for a given status of the battery and current choice for J′i . It can

be derived from [78,80]. To accurately calculate u(t) when task J′i is executed in s j, we use the schedule

associated with u(i−1,d −di j,a−ai j) and s j by Equation 4.1. After the recursive step, we do a linear

search for minimum a+u when we find all u(N,D,a) for all possible a ∈ [1,α ]. The optimum solution

is then S∗, where

σ∗(D) = {min(a+u(N,D,a))|a+u(N,D,a)≤ α} (4.4)

The dynamic programming algorithm based on the recursive relation is illustrated in Figure 4.1

and BO(N,D,α) is invoked for the optimal solution. The main idea of the algorithm is to construct

a three-dimensional table u(i,d,a). In each cell the minimum u(i,d,a) is filled by the solution of the

subproblem B(i,d,a). Each u(i,d,a) is associated with a solution schedule Sh for the subproblem.

Once the table is completed according to (4.3), linear search is used to find the minimum σ(D) according

to (4.4). In Figure 4.1, Line 1 describes the initialization of the table. Lines 2–14 illustrate the filling in

of the table, following Equation (4.3). In Line 9, uh is the accurate recoverable charge at time d based on

the schedule Sh for the subproblem B(i−1,d−di j,a−ai j) and s j for current job J′i from battery model.

Lines 15–17 find the minimum σ(D) and the associated schedule S∗ when it exists.

Let us analyze the complexity of the algorithm called by BO(N,D,α). Line 1 takes at most

O(nDα). Lines 2–14 constitute a loop with O(nDα) iterations, each calculating Equation (4.3). Since

each calculation enumerates r choices for task J′i and for each choice a trace back to J′1 is used to find

the schedule Sh, the complexity of Equation (4.3) is O(nr). Therefore, the complexity for Lines 2–14 is

O(n2rDα). Lines 15–17 take O(α) or O(n). Thus, the overall computational complexity of the optimal

algorithm is O(n2rDα), which is pseudo-polynomial.

Approximation algorithm

In our definition, B is a tricriteria problem with the objective to minimize σ(D) and two constraints (bat-

tery capacity α and deadline D). Consequently, tricriteria approximation algorithms [47] will be consid-

ered for the problem. Let A be a tricriteria approximation algorithm with quality bounds (c1,c2,c3) for

the problem, where c1,c2,c3 are constants. If there exists a feasible solution for the problem, A must
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BO(n,dub,aub)/*BOm(n,dub,aub,δ ,Ka)*/:

1 set u(1,d,a) = 0 and the others to be ∞;
2 for a = 1 : aub
3 for i = 1 : n
4 for d = 1 : dub
5 umin = ∞;
6 for j = 1 : r
7 find the cell (i−1,d −di j,a−ai j);

/* find the cell (i−1,d −d′
i j,a−a′i j) */;

8 trace back to J′1 and get the schedule Sh for previous jobs;
9 calculate uh on schedule Sh for {J′1, ...J

′
i−1} and s j for J′i ;

10 if (uh +a < α) and (uh < umin),
/* if (uh +Kaa < (1+δ )α) and (uh < umin), */;

11 umin = uh and record the index j as jh; end if;
12 end for;
13 fill in umin as u(i,d,a) and record the choice jh;
14 end for; end for; end for;
15 find the smallest σ = a+u(n,dub,a), ∀a = 1 : aub;

/* find the smallest σ = Kaa+u(n,dub,a), ∀a = 1 : aub; */
16 if σ ≤ α , trace back and return schedule S∗;

/* if σ ≤ (1+δ )α , trace back and return schedule SA; */
17 else return null;

Figure 4.1: Optimal algorithm for the B problem (Comments are the modification for BOm procedure
invoked by the approximation algorithm)

find a schedule with the final apparent charge loss σ no more than c1σ∗(D), modified deadline c2D and

relaxed battery capacity c3α . If there is no solution for the problem, A should report this or provide a

feasible schedule with modified deadline c2D and relaxed battery capacity c3α . If the complexity of A is

fully polynomial in problem size, we call it a fully polynomial (c1,c2,c3) approximation algorithm. We

next describe a tricriteria approximation algorithm with a designer-specified parameter δ (0< δ < 1) and

prove the proposed algorithm is a fully polynomial (1+2δ ,1+δ + δ
N ,1+δ ) approximation algorithm.

The algorithm is described in Figure 4.2. The main idea of the algorithm is similar to the FPTAS

for the knapsack problem [96]. The main algorithm in Figure 4.2 does a binary search for the smallest

a value on which a test procedure succeeds. Thus, the schedule SA generated from the smallest a is a

provably approximate solution. The procedure test invokes a modified dynamic programming procedure

BOm for the scaled and rounded problem. BOm is similar to the optimal algorithm BO of Figure 4.1. The

only difference is that BOm works for the scaled problem with relaxed battery capacity. Note that only

the delay d and actual charge a are scaled and rounded, while the recoverable charge u remains non-

scaled and is calculated from non-scaled data. Next, we show BA(α,D,δ ) is a tricriteria approximation

algorithm with quality bounds (1+2δ ,1+δ + δ
N ,1+δ ). Then, we argue the computational complexity
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BA(α ,D,δ ):

1 g = ⌈lgα⌉,
2 l = 1, r = g;
3 binary search for the smallest 2b s.t. test(2b,δ ) returns success;

(if 2b > α , use test(α,δ ) to do binary search;)
4 S A = test(2b,δ );
5 return S A;

test(a,δ ):

6 Ka =
δa
N ,a′i j = ⌈ ai j

Ka
⌉,a′ub = ⌈ a

Ka
⌉+N = ⌈N

δ ⌉+N;

7 Kd = δD
N ,d′

i j = ⌈ di j
Kd
⌉,d′

ub = ⌈ D
Kd
⌉+N = ⌈N

δ ⌉+N;
8 S A = BOm(N,d′

ub,a
′
ub,δ ,Ka);

9 if (S A! = null) return S A and success;
10 else return f ailure; endif;

Figure 4.2: Tricriteria approximation algorithm for BA problem

of the algorithm is fully polynomial.

Let S∗ be the optimal schedule and aS∗ the actual charge loss based on S∗. Let uS∗(t) and σS∗(t)

be the recoverable and apparent charge loss at time t. Thus, we have σS∗(t) = aS∗ + uS∗(t). Note that,

when t ≤ D, S∗ in the equation is an initial part of the schedule. The optimal charge loss at time D is

σS∗(D). Then, we find two properties for test procedure.

Lemma 4.2.1. Suppose aS∗ ≤ ah ≤ γaS∗ for some γ ≥ 1. If test(ah,δ ) returns success and SA, let t f be

the latency of the N jobs based on SA. The charge loss generated by SA at t f , denoted by σSA(t f ), is no

more than (1+ γδ )σS∗(D).

Proof. We derive the following equations.

σSA(t f ) = aSA +uSA(t f )≤ Kaa′SA +uSA(t f )

= ∑
SA

Kaa′i j +uSA(t f )≤ ∑
S∗

Kaa′i j +uS∗(D)

≤ ∑
S∗
(Ka +ai j)+uS∗(D)≤ KaN +aS∗ +uS∗(D)

= δah +σS∗(D)≤ (1+ γδ )σS∗(D) (4.5a)

Step 1–3 follow from definitions of σ and a′i j. The fourth step is true because SA is optimal for the scaled

problem. The fifth step follows because ai j ≤ Kaa′i j ≤ Ka +ai j. Steps 6–7 follow from the definitions of

aS∗ , σS∗(D) and Ka (note that Ka =
δah
N here). The last step follows from the assumption.
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Similarly, we have the following lemma.

Lemma 4.2.2. If test(a,δ ) returns failure, the actual charge loss aS∗ for the optimal schedule S∗ is

bigger than a.

Proof. We prove the lemma by contradiction. Suppose aS∗ ≤ a. Let a′S∗ and d′
S∗ be the actual charge loss

based on S∗ and the latency for all the jobs after scaling and rounding at Line 6 and 7 in Figure 4.2. First

we show a′S∗ and d′
S∗ are no more than the upper bounds (a′ub and d′

ub) of search in BOm procedure.

a′S∗ = ∑S∗ a′i j = ∑S∗⌈ai j/Ka⌉ ≤ ∑S∗ ai j/Ka +N

= aS∗/Ka +N ≤ a/Ka +N ≤ ⌈a/Ka⌉+N = a′ub

The first step expands the actual charge loss job by job. The second step follows from the definition of

a′i j at Line 6 in Figure 4.2. The third step is true because ⌈ ai j
Ka
⌉ ≤ ai j

Ka
+1. The fourth step follows from

the definition of aS∗ . The fifth step is true because of the assumption aS∗ ≤ a. The remaining steps follow

from the definition of a′ub. Similar to the above, we have the following for d′
S∗ .

d′
S∗ = ∑S∗ d′

i j = ∑S∗⌈di j/Kd⌉ ≤ ∑S∗ di j/Kd +N

= D/Kd +N ≤ ⌈N/δ⌉+N = d′
ub

Next we show S∗ in the scaled problem does not violate the (1+ δ )-relaxed battery capacity

constraint. Let σ ′
S∗(t) be the charge loss at time t based on S∗ after scaling (a′i j is first scaled down by

Ka, then scaled up by Ka when calculating σ ′
S∗(t) at Lines 10 and 15 in BOm). We first show σ ′

S∗(D) ≤

(1+δ )α , then show σ ′
S∗(t)< (1+δ )α , ∀t ∈ [0,D).

σ ′
S∗(D) = Ka ∑

S∗
a′i j +uS∗(D) = Ka ∑

S∗
⌈

ai j

Ka
⌉+uS∗(D)

≤ Ka(∑
S∗

ai j

Ka
+N)+uS∗(D)

= aS∗ +KaN +uS∗(D) = σS∗(D)+δa ≤ (1+δ )α (4.8a)

Steps 1–2 and 4–5 follow from the definitions of σ ′
S∗(D), a′i j, aS∗ and σ∗(D). The third step follows

because ⌈ ai j
Ka
⌉ ≤ ai j

Ka
+1. The last step is true because a ≤ α and σS∗(D)≤ α .

When t ∈ [0,D), S∗ and D are replaced by an initial part of S∗ and t in Equation (4.8a). There-

fore, because σS∗(t)< α in the last step, we have σS∗(t)+δa < (1+δ )α .
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So far, we have showed i) a′ub and d′
ub are the upper bounds of search in BOm and ii) battery

capacity constraint is not violated for S∗ in the scaled problem. We can conclude that procedure test(a,δ )

returns success. Therefore, it is a contradiction that test(a,δ ) returns failure.

Then, we show BA is a tri-criteria approximation algorithm.

Lemma 4.2.3. BA(α,D,δ ) generates a schedule SA with charge loss no more than (1+ 2δ ) times the

optimal charge loss σ∗ when the deadline D is relaxed to (1+ δ + δ
N )D and the battery capacity α is

relaxed to (1+δ )α .

Proof. We first show the approximation ratio of charge loss based on SA, then show the relaxation ratios

of deadline and battery capacity constraints.

Let 2b be the value returned by binary search at Line 3 in Figure 4.2. Thus SA is returned as

solution in Line 4 by test(2b,δ ). Let the latency of all the jobs based on SA be dSA . Denote by σSA(t) the

charge loss at time t based on SA. We have two cases:

Case I: 2b ≤ aS∗ . By Lemma 4.2.1, σSA(dSA)≤ (1+δ )σS∗(D).

Case II: 2b > aS∗ . We have 2b < 2aS∗ because 2b is the smallest value for which test returns success.

Again by Lemma 4.2.1, σSA(dSA

)≤ (1+2δ )σS∗(D).

Next, we derive the upper bound on dSA .

dSA = ∑SA di j ≤ ∑SA Kdd′
i j ≤ Kd(⌈N/δ⌉+N)

≤ δD/N(N/δ +N +1) = (1+δ +δ/N)D

The third step is true because the deadline upper bound of BOm is ⌈N
δ ⌉+N. The other steps are similar

to previous arguments. For t ∈ [0,D], we have

σSA(t)≤ KaN +aS∗ +uS∗(t)≤ αδ +σS∗(t)≤ (1+δ )α

The first step follows from proofs of Lemma 4.2.1. The second step is true because the testing value for

test procedure is no more than α as described at Line 3 in Figure 4.2. Thus KaN ≤ αδ . The last step is

true because σS∗(t)≤ 0. The inequality in the last step becomes < when t ∈ [0,D).

Lemma 4.2.4. The computational complexity of BA(α ,D,δ ) is O( n4r
δ 2 lg lgα).
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Proof. The test procedure takes O(n2ra′ubd′
ub) = O( n4r

δ 2 ) since both a′ub and d′
ub are ⌈N

δ ⌉+N by def-

inition. The BA procedure invokes test procedure lg lgα times. Therefore, the overall complexity is

O( n4r
δ 2 lg lgα).

Thus, we have the following theorem.

Theorem 4.2.1. BA(α ,D,δ ) is a fully polynomial (1+2δ ,1+δ + δ
N ,1+δ ) approximation algorithm.

4.3 Results

Experimental setup

We consider an experimental setup similar to that in [78]. The processor is equipped with four supply

voltage states (v0,v1,v2,v3), whose scaling factors are (1.0, 1
0.8 ,

1
0.6 ,

1
0.4 ). The frequency in each state

is proportional to the supply voltage. The battery capacity α and technical parameter β are set as 4037

(unit:10−2Amin) and 0.273 (unit:min−1/2) respectively. Initially the battery is fully charged. The load (or

battery) current in each state is proportional to the cube of scaling factors of processor supply voltages.

We apply the proposed techniques for 3 realistic applications and 5 synthetic task sequences.

The realistic robot arm controller application includes 9 jobs and is taken from [78]. The load current is

the same as that in [78]. The duration of jobs at lowest voltage v0 is proportional to the supply frequency

and execution cycle numbers. The multimedia benchmark I includes a sequence of 7 multimedia jobs

with load currents and durations at lowest voltage v0 taken from [21]. The multimedia benchmark II

includes a sequence of 8 multimedia jobs taken from Mediabench [59]. The cycle numbers of these jobs

are achieved by SimpleScalar simulations [89] with inputs in Mediabench [59]. The load current of each

job at v0 is set as 50mA. The durations of jobs are calculated from the frequency and cycle numbers. The

5 synthetic job sequences include 15 or 20 jobs whose cycle numbers are randomly generated. The load

current and job durations are calculated similar to those of multimedia benchmark II.

We define an emergency ratio, er, as the ratio between the deadline and the summation of

execution times of active jobs at v0 (lowest v/f state). Smaller the er is, tighter the deadline setting is.

The emergency ratio of all job sequences is set as 0.8 in Section 4.3 and 4.3.

We evaluate the proposed techniques (BO and BA) with comparison to the existing heuristic

algorithm on single processor in [21] (named C&C algorithm). C&C algorithm starts from an initial

solution with highest supply voltage for each job and then repairs battery failures by scaling down v/f
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Figure 4.3: Normalized apparent charge loss with comparison to existing technique [21]

state of tasks. After the repairing step and a further scaling-down of v/f states of tasks, C&C gener-

ates a heuristic solution. For a fair comparison to C&C algorithm, the inputs to our BA algorithms in

experiments addressed in Section 4.3 are modified to ( α
1+δ ,

D
1+δ+ δ

N
,δ ) because BA is a tricriteria ap-

proximation algorithm. Thus, the solutions generated by BA with the modified input setting satisfy the

battery capacity α and deadline D constraints.

We also verify the theoretical bounds of BA by experiments. We set the inputs to our BA

algorithms as (α ,D,δ ) in experiments addressed in Section 4.3. Then, we compare the results from BO

and BA, and verify the approximation quality bounds. The final apparent charge loss, the actual latency

and the peak apparent charge loss are recorded for each solution schedule.

To illustrate the effect of deadline on apparent charge loss, we evaluate the proposed techniques

with the robot arm controller application with different emergency ratios. We slide the emergency ratio

from 0.5 to 1.4 and plot the results generated by BO and BA with input setting (α,D,δ ) in Section 4.3.

The techniques were coded in C++ and simulations were performed on an Intel Core 2 Quad /

2.66GHz / 3GB Windows XP PC.

Comparison to existing technique

We use 3 realistic and 4 synthetic job sequences to evaluate algorithms BO and BA with modified input

settings and compare with C&C. The final apparent charge losses by C&C and BA with δ values (δ =

0.05,0.075,0.125,0.25) are depicted in Figure 4.3 and are normalized with the optimal results by BO.

The BA with δ value is simply denoted as (1+ 2δ )BA in the figure, for example, BA with δ = 0.05 is

denoted as 1.10BA. The x axis lists the job sequence name and numbers.
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Table 4.1: Apparent charge loss and latency approximation with respect to BO

1.10BA/BO 1.15BA/BO 1.25BA/BO 1.50BA/BO
Jobs σ latency σ latency σ latency σ latency
robot arm (9) 93.3% 1.03 89.5% 1.05 84.1% 1.08 74.3% 1.16
multimedia I(7) 92.6% 1.04 88.4% 1.05 81.5% 1.10 65.3% 1.20
multimedia II(8) 89.9% 1.04 86.8% 1.06 82.5% 1.10 70.7% 1.21
synthetic 1(15) 93.8% 1.04 90.7% 1.05 83.6% 1.10 70.6% 1.21
synthetic 2(15) 93.4% 1.04 89.4% 1.06 83.2% 1.10 74.3% 1.21
synthetic 3(20) 93.3% 1.03 89.9% 1.06 85.0% 1.09 73.3% 1.21
synthetic 4(20) 90.9% 1.04 89.4% 1.05 84.7% 1.09 75.0% 1.20
synthetic 5(15) n/a n/a 103.5% 1.06 99.1% 1.09 86.0% 1.19
on average 92.4% 1.04 91.0% 1.06 85.5% 1.09 73.7% 1.20

As is clear from the figure, C&C gives inferior results in comparison to the optimal and BA algo-

rithms. In fact on average, the C&C is over 1.40 (max=1.54) times the optimal. In contrast, 1.10BA and

1.15BA are very close to the optimal in all cases and on average outperform C&C by 27.2% and 26.6%,

respectively. Even with a quality bound setting as 0.50, on average, BA is is within 1.09 (max=1.15) of

the optimal and outperform C&C by 22.5%.

On average for 3 realistic applications, the run time of C&C is within one second, the run time

of optimal algorithm is 372 seconds and the run time of 1.50BA is 3.4 seconds.

In summary, BO and BA with various δ s and modified input settings outperform C&C in all

cases. And the solutions by BA with modified input settings are quite close to the optimal.

Verification of approximation approaches

We use 3 realistic and 5 synthetic job sequences to evaluate the proposed BA. The results generated by

BA with δ values (δ = 0.05,0.075,0.125,0.25) are depicted in Table 4.1. In the left-most column of

table, the job sequence name and job numbers are listed. Then, the next columns show the apparent

charge losses and deadlines of schedules from BA. All the results generated from BA are normalized by

results from BO. As we can see, 1.10BA generates a schedule that consumes 93.2% of the optimal charge

loss with a 1.03 relaxation of deadline. When δ = 0.05, the theoretical bounds on apparent charge loss,

deadline and battery capacity are (1.10,1.05+ 0.05
N ,1.05). The table shows the performance of schedules

generated by BA are all within theoretical bounds for the first 7 job sequences. For the last job sequence

(synthetic 5), there exists no feasible solution. 1.10BA reports no solution found, and 1.15BA, 1.25BA

and 1.50BA generate solutions with relaxed deadline and battery capacity.

On average, 1.10BA can generate a schedule with 1.04 relaxation of deadline, which only con-

sumes 92.4% of charge loss for the optimal schedule. The actual charge loss bound is far less than
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the theoretical bound, which is 1.10 in this case. Similarly, the actual charge loss bounds of schedules

generated from 1.15BA, 1.25BA and 1.50BA are also much less than theoretical bounds. However, the

actual deadline relaxation bounds are close to the theoretical bounds. For example, the actual latency of

1.10BA is 1.04 comparing to the theoretical bound 1.05. We also record the peak apparent charge loss

of schedules. Results show that none of the first 7 applications has peak apparent charge loss more than

battery capacity. For the last job sequence, the 1.15BA, 1.25BA and 1.50BA find solutions and the peak

apparent charge loss is within 1+ δ of battery capacity. We also notice that BO and BAs with various

δ values achieve a trade-off between quality bounds and run time. While BO takes about half an hour

for optimal solution on multimedia benchmark II, BA with a quality bound of 50% only needs about ten

seconds for an approximated solution.

In summary, BA with different δ values generate schedules with- in quality bounds. On average,

the actual bound on apparent charge loss is far less than the theoretical quality bound.

Effect of deadline settings

We demonstrate the effect of deadline settings by the optimal and approximation algorithms by simu-

lating the robot arm job sequence with various emergency ratios from 0.5 to 1.4. Figure 4.4 plots the

apparent charge loss by BO and BA algorithms with emergency ratio settings. The x axis is the actual

latency of schedules normalized to the summation of execution times of active jobs at v0 (lowest v/f

state). The y axis is the apparent charge loss. For BO algorithm, the normalized latency is the emergency

ratio setting. For BA algorithms, the normalized latency is calculated by the actual delay of schedules

generated by BAs, because BA with a designer-defined δ generates a schedule with a 1+δ relaxation of

deadline.

The plots in the figure show the trade-off between deadline setting and battery charge loss is

convex. Note that the peak apparent charge losses of all the BAs are no more than battery capacity

4037. Thus, the designer can choose an appropriate deadline setting for a given battery-powered system

by analyzing the convex curves. Interestingly, we also found that the curves from BO and BAs are

overlapped together. BA algorithms can find a schedule with charge loss close to a point in the optimal

curve. This implies that the overlapped curves from BAs could provide a rough prediction of optimal

charge loss.

Since the plots are overlapped together in Figure 4.4, we re-plot the apparent charge loss −

latency data when er settings are 0.8 and 0.9 in Figure 4.5. The data points inside dash eclipses are

generated by BA algorithm with er = 0.8. The figure shows that BA with increased δ generate schedules
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Figure 4.5: Illustration figure for effect of deadline settings

with decreased apparent charge losses and larger delays. For example, when er = 0.8, the apparent

charge loss generated by 1.50BA is less than that by 1.25BA, but with larger latency. We also notice

that the apparent charge loss by 1.50BA with er = 0.8 is very close to the optimal with er = 0.9. This

is also true for most of the un-plotted data. Smaller the er setting is, the tighter the deadline setting is.

Therefore, we can predict the optimal by BAs with large δ but with tight deadline settings.

In summary, the σ − latency curves generated by BAs can roughly predict the optimal solution

with appropriate deadline setting.

4.4 Conclusions

We consider a battery model with nonlinear dependency on load current profiles and address a battery-

aware energy management problem. We target a sequence of jobs with a deadline constraint executing

on a battery-powered processor equipped with discrete v/f states. In order to maximize battery lifetime,
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the problem is formulated by introducing recovery jobs and the objective becomes to minimize the final

apparent charge loss of battery. Since the problem is NP-hard, we propose a pseudo-polynomial time

optimal algorithm and a fully polynomial time approximation algorithm as solutions. Experimental

results show that the proposed algorithms outperform existing technique [21] and the approximation

algorithms are able to predict the optimal with appropriate deadline settings.
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Chapter 5

Thermal aware scheduling for periodic applications

The chapter addresses a thermal-aware performance optimization problem on embedded processors for

periodic applications with deterministic execution times. The optimal and fully polynomial approxima-

tion algorithms are provided as solutions. The work is organized as follows: Section 5.1 describes system

level power and thermal model, Section 5.2 defines the problem, Section 5.3 discusses the previous work,

Section 5.4 presents the optimal and a fully polynomial approximation scheme for the problem, Section

5.5 discusses the experimental results, and finally Section 5.6 concludes the work.

5.1 Preliminaries

Current modern embedded processors are usually equipped with a set of discrete voltage/frequency

states. Voltage and frequency are respectively the supply voltage and operating frequency to execute

applications. Examples of embedded processor architectures include the Intel StrongARM 1100, Intel

PXA 270, Intel IXP 2400, Freescale MPC8641D, TI OMAP, Nvidia MediaQ Katana and so on. We

present system-level power consumption model and thermal model for this work.

System level power consumption model

The power consumption and frequency of single processor in a particular active state is function of the

operating voltage and frequency. The function can be specified by the designer’s characterization of

system power. For example, the power consumption can be characterized by dynamic and static power

consumption of devices required for executing a task. Our technique is independent of a specific power

model, and is applicable when the power consumption is function of the task characteristics in addition to

operating voltage and frequency. The switching overhead between various active states and from active

to sleep state is considered to be negligible [68]. The wake-up overhead from the sleep state is assumed

to be a processor dependent constant.

System-level thermal model

We utilize a simple first-order lumped RC model proposed by Sabry et el. [84] and frequently used in

recent system-level thermal aware design techniques [7–9,20,22,55,79,98,99] to capture the heat transfer

phenomena. It models the steady and transient heat transfer behaviors of many advanced embedded

processors. These processors are generally deployed in an environment with limited cooling assemblies.

They has well-defined hotspots and it is acceptable to assume a uniform temperature distribution across

package [48, 98]. Further, hardware OEMs often incorporate one thermal diode on one processor, for
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example, the Intel Core Duo [25] and Intel Pentium 4 [34]. Based on these considerations, the model is

applicable for system level design.

Our thermal model is showed in Figure 8.2. In the figure P (unit W ) denotes the power con-

sumption of the processor at current time t, T (unit ◦C) denotes the die temperature, C (unit J/◦C)

denotes the thermal capacitance of the system, R (unit ◦C/W ) denotes the thermal resistance, and Tamb

(unit ◦C) denotes the ambient temperature. The thermal parameters (R and C) can be achieved by op-

timization techniques for thermal modeling [82–84]. The relationship between die temperature and

processor power dissipation can be modeled by:

RC
dT
dt

+T −RP = Tamb (5.1)

Assuming an initial die temperature of To at time 0 and P remains unchanged during time period [0, t],

the final temperature after time t is given by:

T = P ·R+Tamb +(To −P ·R−Tamb) · e−
t

RC (5.2)

The temperature change during the time t is denoted by ∆T = T −To. As t → ∞, T approaches a steady

state temperature of RP+Tamb. In the sleep state the temperature gradually approaches Tamb. Typical

transition time to steady state temperatures is of the order of several hundreds of milliseconds [92].

5.2 Problem definition

The thermal-aware performance optimization problem TAmin can be described as follows.

Given:

• a processor with one sleep state ssleep with power consumption ρsleep, a set of active voltage/frequency

states M(|M|= m) with power consumption ρ j (1 ≤ j ≤ m) in state s j ∈ M, thermal resistance as

R and thermal capacitance as C,
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• a periodic sequence of n jobs J = {J1,J2, ...,Jn} with ti j denoting the run time of job Ji at volt-

age/frequency state s j,

• an initial temperature (at time t = 0) To and peak temperature constraint Tmax,

obtain an assignment of one active voltage state for each job, and select the processor sleep times such

that the total execution time of the n jobs is minimized subject to the temperature constraint.

The problem as described is a discrete optimization problem with nonlinear continuous feed-

back constraint. In the remainder of the work we use jobs and tasks to refer to the same entity. In our

problem definition each task executes in a single active state of the processor. The final temperature on

job completion is determined by the thermal model described in the previous section. The processor can

go into sleep mode on completion of a job, and before the start of the next job. Our problem definition

considers that the task set executes in a periodic manner. The designer specifies an initial temperature To,

and the feasible schedule for the problem should guarantee that the job set is executed by the schedule in

multiple runs (periodic manner) without peak temperature violation. Therefore, we impose an additional

constraint for the periodic characteristic of the job set that the final temperature Tf after one complete

execution of the task set must be less than or equal to To (Tf ≤ To). This constraint is essential to ensure

that the periodic execution of the task set does not violate the temperature constraint.

We incorporate the sleep modes in the problem formulation by considering a sequence of N =

2n+ 1 jobs J′ = {J′1,J
′
2, ...,J

′
2n+1}. Each J′i when i is an even number refers to the job Ji/2 from the

original set, and when i is odd refers to a job Js that denotes that the processor is in sleep state. Assume

the maximum cooling transient time is tms, estimated by cooling the processor from Tmax to Tamb in sleep

mode. The execution time of Js is in the range of [0, tms]. A sleep time of more than tms lowers the

performance in terms of more execution time with no reduction in temperature. We consider the range

[0, tms] as q distinct values {t1, t2, . . . tq} in increments of tms/(q−1). Thus, if tms = 100 and q = 11 we

consider the following values {0,10,20 . . .100}. We assume that length of the sleep interval is selected

from one of the distinct values in the range. Note that 0 belongs to the distinct set of values and it implies

that the processor does not go into the sleep mode.

We integrate the decision problem associated with sleep and active state jobs by considering

that each job J′i has r = (m or q) different choices (r = m if i is even, else r = q), and each choice has an

associated execution time given by ti j (1 ≤ i ≤ 2n+1,1 ≤ j ≤ r). Thus, TAmin is formulated as follows:
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TAmin : minZ = ∑2n+1
i=1 ∑r

j=1 ti jxi j

s.t. RC ·T ′+T −RP = Tamb; (5.3)

∑r
j=1 xi j = 1,∀i ∈ [1,2n+1]; (5.4)

xi j = {0,1};T ≤ Tmax; (5.5)

T (t = 0) = To;T (t = Z)≤ To;

If i is even and xi j = 1 the solution to the above formulation denotes that job Ji/2 executes in active

state s j for time ti j. Similarly, when i is odd and xi j = 1 the processor enters the sleep state for time ti j.

We assume the various time values in the problem formulation are integral (for example they could be

specified in clock cycles). The above formulation includes a non-linear thermal constraint, where P is

a variable of time, determined by the state choice. However, even if the thermal model were linear, the

problem can be shown to be NP-hard.

Theorem 5.2.1. TAmin is NP-hard.

Proof. Consider a special case of the TAmin. We assume that processor sleeps only toward the end for

tms time. Further, we assume that the initial temperature is close to Tamb and the maximum run time of

each job is small enough such that the thermal curve is linear. The special case implies that the thermal

curve of a feasible schedule would be monotonically increasing. The maximum temperature is achieved

on the completion of all jobs. Thus, the objective function can be specified in terms of the execution time

of actual jobs (without the sleep jobs) minZ = ∑n
i=1 ∑m

j=1 ti jxi j. As we consider that the thermal curve is

linear, thermal constraint (5.3) and (8.9d) can be replaced by To +∑n
i=1 ∑m

j=1 ∆Ti jxi j ≤ Tmax where ∆Ti j

denotes the temperature increase due to the execution of job Ji in active state s j.

The special case of TAmin can be shown to be NP-hard by a polynomial reduction from the well

known multiple-choice knapsack problem (MCKP), which is NP-hard. Let tmax be the upper bound on

the execution time of any job, that is tmax = max(ti j),∀Ji ∈ J, j ∈ m. The saving in execution time due to

a job Ji operating in active state s j is given by tmax − ti j. Finding an optimal solution to the problem with

an objective of maximizing the execution savings is equivalent to solving the MCKP. Thus, the TAmin is

NP-hard.

5.3 Related work

Recently, various DVFS and DPM policies have been proposed as solutions of dynamic thermal man-

agement (DTM). To avoid the thermal crisis in high performance processor, most of them have been

addressed as a performance optimization problem under an emergency temperature limit. These work
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can be classified into two categories: i) the online DTM techniques [12, 31, 50, 58, 91, 92, 94] and ii) the

offline DTM techniques [55, 65, 79, 109].

Brooks and Martonosi [12] present a comprehensive summary and comparison of different

DTM techniques aimed at general purpose processors. The techniques are reactive in nature and they

throttle the processor activity by either reducing the frequency (or both voltage and frequency) or restrict-

ing the operation of a unit (decode throttling, I-cache toggling) and so on. They are invoked only when

the temperature crosses a trigger temperature as in Huang’s technique [31]. Skadron et al. [92] present a

feedback control DVFS mechanism by adaptively varying the voltage to maintain the temperature under

a thermal limit. In [91], they also provide a DTM technique by combining the instruction-level paral-

lelism and DVFS technique to manage the temperature. McGowen et al. [58] address a DTM technique

by tuning the voltages when a thermal monitor observes an over-power event. Srinivasan et al. [94]

proposes a predictive DTM algorithm targeted at multimedia application. Lee et al. [50] present a simi-

lar DTM mechanism for MPEG decoding by observing the profiled temperature information to predict

future thermal crisis risk. Recently, Intel has reported about the thermal aware design for some of their

high performance processors [36]. Most of them control the fan speed when the temperature crosses

a threshold. All of these approaches are online, reactive and heuristic techniques, and cannot achieve

performance guarantee within a fixed ratio to the optimal.

Liu et al. [55] formulate the dynamic thermal management as a nonlinear programming prob-

lem. Bansal et al. [65] theoretically show that the power management techniques that are effective for

energy saving may not be effective for managing temperature. Yuan et al. [109] present an optimal off-

line temperature-aware leakage minimization technique with a single active state voltage by a dynamic

programming approach. Rao et al. [79] provide an off-line optimal speed profiling algorithm by the

calculus of variation technique with continuous speed. They also present a two-speed approximation so-

lution for the discrete voltage case. All of these are static offline DTM techniques. Most of them assume

that the voltage/frequency is continuous and cannot deal with multiple discrete voltages.

Two fundamental problems of the practical dynamic thermal management have not been ad-

dressed yet. What is the tight upper bound of the performance under a thermal limit with discrete

DVFS? How can we efficiently achieve a good schedule within a quality bound of the optimal? The

solutions are still not clear. The answers to these problems would provide a good basis to evaluate the

online techniques. Moreover, an efficient approximation algorithm with guaranteed quality bound would

be applicable in practice.
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In this work, we focus on these two essential problems. Our objective is to achieve maximum

performance in terms of minimizing the execution time under thermal constraints. At first, we present an

optimal offline DVFS technique with discrete voltage/frequency (v/f) settings for the dynamic thermal

management problem. Next, we provide an (1+ε) FPTAS to efficiently obtain a feasible solution within

a quality bound of the optimal. To the best of our knowledge, our technique is the first one that generates

both the optimal and approximation schedules for a sequence of tasks with discrete voltage/speed states

under thermal constraints. Our technique targets the performance optimization problem with a periodic

task set.

5.4 Algorithms

Optimal algorithm

The optimal algorithm is based on a dynamic programming (DP) approach that runs in pseudo-polynomial

time similar to the knapsack problem [96] . However, TAmin is differentiated from the knapsack problem

because of the non-linear thermal constraint. The central idea of the DP originates from the following

property of the problem: given time Z to execute i jobs (i ≤ 2n+ 1), lower the final temperature on

completion of the i jobs, greater the possibility that the thermal constraint will not be violated on com-

pletion of the remaining jobs. Let T (i,Z) be the minimum final temperature, when i jobs are executed in

exactly Z time. In the DP algorithm, T (i,Z) is minimized subject to Tmax for i ∈ {1,2,3, . . . ,2n+1} and

Z ∈ [1,ZUB] where ZUB is an upper bound on the optimal value of Z. Let Z∗ denote the optimal value.

Z∗ is determined by the smallest value of Z such that T (2n+1,Z)≤ To.

ZUB can be calculated by considering a schedule Sinit as follows. Given an initial temperature To

we first sleep such that T = Tamb. Then we execute the first job at the highest voltage (fastest time) that

does not violate the temperature constraint Tmax. Let T1 denote the temperature at the end of execution

of job J1. Next we again sleep for some time such that the temperature reduces to Tamb from T1. We

then execute the second job at the highest voltage that does not violate the temperature constraint and

again sleep till temperature is equal to Tamb. We repeat for all jobs. Clearly, such a schedule is a feasible

schedule and therefore is a valid upper bound on Z∗.

Let Si,Z be the schedule with T (i,Z). If Si,Z does not exist, define T (i,Z) = ∞. Set T (0,Z) = To

for Z ∈ [1, ...,ZUB]. Set T (1,0) = To, because the first one is a sleep job and can be zero sleep time. The

recurrence relation for the DP algorithm is given by:

T (i,Z) = min
j∈[1,r]

{T (i−1,Z − ti j)+∆T (s j)|T ≤ Tmax} (5.6)
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The non-linear thermal equation (Equation 5.2) is utilized to achieve ∆T (s j) in a particular sleep or

active state. From the recurrence, we can find T (N,Z), for all Z ∈ [1,ZUB]. The optimal solution is then

SN,Z∗ (denoted by S∗ in the remainder of the work), where

Z∗ = min{Z|T (N,Z)≤ To} (5.7)

The recurrence relation leads to an algorithm that constructs a 2-dimension DP table. The row

represents the objective Z ∈ [1,ZUB], and the columns represent the 2n+1 jobs. Each cell has an entry of

the minimum final temperature when Z time is spent and i jobs are finished. Further, each cell also has

an entry for the time ti j associated with sleep or active state s j that generates the minimum temperature

value. The ti j value will be essential for tracing back the final solution. The table is constructed in the

order of row by row. Thus, after the algorithm enters the cell (i,Z), the cells for all the row indices

smaller than Z are filled in. And, the previous i−1 cells in the Zth row are also filled in. The algorithm

need not re-calculate the optimal solution for a given subproblem. For each cell, r calculations are needed

to find the minimum final temperature. Once the algorithm finds the Z∗, the optimal schedule, denoted

by S∗, is achieved by tracing back in the solution table from (2n+1) to 1. This can be easily implemented

by 2n+1 table lookups.

The computation complexity of the DP algorithm is pseudo- polynomial. For each cell, it

needs O(r) computations. The algorithm has O((2n+ 1) ·ZUB) iterations to fill in the cells. Thus, the

computation complexity is O(rn ·ZUB).

(1+ ε) FPTAS for TAmin

The DP algorithm for the optimal solution is not polynomial due to the factor ZUB in the computation

complexity which could be exponential in the size of the problem. We now develop a fully polynomial

time approximation scheme (FPTAS) for TAmin. A FPTAS is an approximation algorithm whose run

time complexity is bounded by a polynomial in the size of the problem and (1/ε). A FPTAS is the best

one can hope for a NP-hard optimization problem [96]. The proposed algorithm generates schedules

whose execution time is guaranteed to be no more than (1+ ε)Z∗ where ε (typically 0 < ε ≤ 1) is a

designer specified quality bound.

Our approximation scheme parallels the FPTAS for the restricted shortest path problem [57,

103]. However, there are several key differences in the TAmin as opposed to the restricted shortest path

due to the non-linear thermal constraints. The approximation algorithm works by scaling and reducing

the search space for Z. It is described in Figure 5.2. The main algorithm is the TAmin-Approx(ε). Ini-
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tially, the algorithm finds the search space [ZLB,ZUB] for Z∗. As described earlier ZUB can be calculated

from Sinit . ZLB can also be estimated from Sinit by summation of the execution time of the jobs in the

active state. Let ti,init denote the execution time for a job J′i (i is even) in the active state for the schedule

Sinit . Thus, ZLB = ∑J′i∈J ti,init . The algorithm then narrows down the search space by probing the scaled

problem in lines 2 to 5. Here, probe(Z,ε) acts as a test procedure that returns success if the scaled prob-

lem has a feasible schedule, otherwise returns failure. The search procedure continues until the solution

space is narrowed down to [ZLB,6ZLB]. Finally, TAapprox(UB,LB,ε) is invoked that returns an (1+ ε)

approximated result. In both probe and TAapprox, the T ′(N,Z′) ≤ To procedure is utilized, which is

similar to the recurrence equation 8.12. The only difference to 8.12 is that the scaled values (Z′ and t ′i j)

are utilized when searching for T (i− 1,Z − ti j). However, non-scaled values of ti j (that is, the original

values of ti j) are utilized for calculation of ∆T . Thus, the feasible solution for the scaled problem is

also feasible for the non-scaled problem and vice versa, as the temperature calculation is made with the

non-scaled time values. Next, we prove TAmin-Approx is an (1+ ε) FPTAS.

Let the tmin = min∀Ji∈J,s j∈M{ti j} denote the minimum execution time of any job in an active

state. Let β = tms/tmin. In the schedule Sinit let βi denote the ratio between the sleep time preceding the

active job J′i (J′i ∈ J) and the execution time of the job ti,init . It is clear that β ≥ βi. Thus, we have

ZUB ≤ tms + ∑
J′i∈J

(βi +1)ti,init

≤ (β +1) ∑
J′i∈J

ti,init +β tmin ≤ (2β +1)ZLB (5.8)

The first inequality follows by modifying Sinit such that the last sleep state is for time tms. The second

inequality follows from β ≥ βi. The last inequality follows from tmin ≤ ZLB. Thus, initially ZUB/ZLB ≤

2β +1 and Z∗ ∈ [ZLB,ZUB] .

Lemma 5.4.1. If probe(Z,ε) returns failure, Z∗ > Z.

Proof. Suppose Z∗ ≤ Z and probe(Z,ε) returns failure.

Z′(S∗) = ∑S∗⌊
ti j

K
⌋ ≤ ∑S∗

ti j

K
≤ Z∗

K
≤ Z

K
≤ ⌊ Z

K
⌋+N (5.9)

Z′(S∗) is the objective value for the scaled version of the problem with the optimal schedule S∗ that

executes in Z∗. Recall that a feasible schedule of the original problem is also a feasible schedule in the

scaled problem. Since the upper bound of the search in probe(Z,ε) is ⌊ Z
K ⌋+N, it would succeed with

S∗. Thus, it is a contradiction.

Lemma 5.4.2. If probe(Z,ε) returns success, Z∗ ≤ Z(1+2ε).
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TAmin-Approx(ε):

0 initially get ZLB and ZUB;
1 ZUB = ZUB/3;
2 while (ZUB ≥ 2 ·ZLB)
3 { let Z =

√
ZLB ·ZUB;

4 if probe(Z,1) = f ailure, ZLB = Z;
5 else ZUB = Z; /* probe(Z,1) = success */}
6 Z f = TAapprox(3 ·ZUB,ZLB,ε);
7 return Z f ;

probe(Z,ε):

8 set K = ε·Z
N ; t ′i j = ⌊ ti j

K ⌋;Z′ = ⌊ Z
K ⌋+N;

9 if T ′(N,Z′)≤ To, return success;
10 else return failure;

TAapprox(UB,LB,ε):
11 set K = ε·LB

N ; t ′i j = ⌈ ti j
K ⌉;Z′ = ⌈UB

K ⌉+N;
12 return Z f = min{Z|T ′(N,Z′)≤ To};

Figure 5.2: A FPTAS for TAmin

Proof. Because the probe succeeds, there is at least one feasible schedule S with the scaled problem such

that

Z′(S)≤ ⌊ Z
K
⌋+N ≤ Z

K
+N (5.10)

Also,

Z′(S) = ∑S ⌊
ti j

K
⌋ ≥ ∑S

ti j

K
−N ≥ Z∗

K
−N (5.11)

The first inequality follows from ⌊ ti j
K ⌋ ≥ ti j

K − 1. The second inequality follows from that Z∗ is the

optimal. The following inequality follows from Equations 8.14 and 8.15, and the definition of K:

Z∗−NK ≤ Z +NK ⇒ Z∗ ≤ (1+2ε)Z (5.12)

Lemma 5.4.3. If LB ≤ Z∗ ≤UB, TAapprox(UB,LB,ε) succeeds and returns Z f ≤ (1+ ε)Z∗.

Proof. Since Z∗ ≤ UB and ⌈UB
K ⌉+N is the upper bound of the DP, the TAapprox(UB,LB,ε) would

succeed. Let S be the optimal schedule in the scaled problem. Note that S∗ is a feasible schedule in the

scaled problem, because the search upper bound in TAapprox is bigger than Z∗. Then, we have

Z f = K ∑S t ′i j ≤ K ∑S∗ t ′i j

≤ ∑S∗ ti j +NK = Z∗+ εLB ≤ Z∗(1+ ε) (5.13)
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The first inequality follows from the fact that optimal schedule S∗ is a feasible solution for the scaled

version of the problem, and the optimal schedule S in the scaled problem would achieve execution time

no more than that with S∗ . The second inequality follows from Kt ′i j ≤ ti j +K, when ti j is rounded up.

The third inequality follows from LB ≤ Z∗.

Lemma 5.4.4. TAmin-Approx generates a (1+ ε) approximation schedule.

Proof. By the Lemma 8.5.3, 8.5.4 and the algorithm, we know that, in the kth iteration of the while loop,

we have

Z[k]
LB ≤ Z∗ ≤ 3 ·Z[k]

UB (5.14)

In the line 6 of TAmin-Approx, ZUB < 2 ·ZLB. In the input of TAapprox, ZLB ≤ Z∗ ≤ 3 ·ZUB < 6 ·ZLB. By

the Lemma 8.5.5, the TAmin −Approx is an (1+ ε) approximation schedule.

Lemma 5.4.5. The complexity of TAmin-Approx(ε) is O( n2r
ε +n2r log logβ ).

Proof. In the line 0 of the TAmin-Approx, the complexity is O(nr). In the probe, the complexity is

O( n2r
ε ), because the Z is scaled by K = εZ

N . In the line 6, the complexity is also O( n2r
ε ) because ZLB ≤

3 ·ZUB < 6 ·ZLB. Now the complexity from line 2 to line 5 is critical for the whole complexity.

In the (k + 1)th iteration of the while loop, we always have Z[k+1]
UB

Z[k+1]
LB

= (
Z[k]

UB

Z[k]
LB

)
1
2 . Recall that the

while loop works only when ZUB ≥ 2 ·ZLB. Let the number of iterations be p. We obtain an upper bound

on p with the following equation:
Z[p]

UB

Z[p]
LB

= (
Z[0]

UB

Z[0]
LB

)(
1
2 )

p ≥ 2 (5.15)

As due to line 1 in TAmin-Approx(ε) we initially have Z[0]
UB

Z[0]
LB

= 2β+1
3 , p is no more than O(log logβ ). So,

the complexity of line 2 to 5 is O(n2r log logβ ). Thus, the overall complexity is O( n2r
ε +n2r log logβ ),

which is polynomial.

Theorem 5.4.1. The TAmin-Approx algorithm is a (1+ ε) FPTAS.

Proof. The result directly follows from Lemma 8.5.6 and 8.5.7.

5.5 Experimental results

Experiment Setup

We obtained the power consumption model from [79] which is based on the data of a 70nm CMOS pro-

cessor from [41]. We choose 6 voltage levels ranging from 0.6V to 1.1V (0.1V per step). The associated
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Figure 5.3: Thermal aware schedule

frequencies were between 0.78GHz and 3.8GHz. The thermal capacitance is chosen as 140.3J/◦C from

HotSpot [92]. The thermal resistance is dependent on the cooling technology and the package process.

It is stated in [75] that the value is in the range of 0.3 to 1.5 with conventional air cooling. We set the

thermal resistance as 0.7◦C/W . We set the maximum temperature constraint as 100◦C corresponding to

a typical thermal constraint on current day processor. The ambient temperature is set as 35◦C. Since

0.1◦C rise/fall may take 105 cycles [92], the granularity of the time is set as milliseconds. The optimiza-

tion techniques were coded in C++ and the experimentations were performed on a Pentium 4/ 2.4GHz/

1GB WindowsXP PC.

Results for Multimedia Benchmarks

We combined four kinds of multimedia applications from MediaBench [59] to obtain a task set with 8

jobs: image compression (jpeg), speech compression (adpcm), encryption/decryption (pegwit) and video

compression (mpeg2). Each category included encoder and decoder. We obtained the workload (worst

case cycle numbers) of each job from SimpleScalar [89]. The workload of these jobs were in the range of

107−109 cycles. The initial temperature of the processor was set as To = 95◦C. We implemented sched-

ules with both our thermal-aware optimal algorithm and energy-aware optimal algorithm from [100] with

the same execution time. The energy-aware optimal technique in [100] performs an exhaustive search

on the optimal energy savings for task sets operating at discrete v/f levels under a deadline constraint.

We depict the thermal curves with both optimal schedules in Figure 1.1. We generated thermal aware

schedules with our technique with quality bounds of 5% (ε = 0.05), 10% (ε = 0.10), 15% (ε = 0.15),

25% (ε = 0.25) and 50% (ε = 0.50). The thermal curves of the results are plotted in Figure 5.4.
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Thermal-aware OPT vs Energy-aware OPT In Figure 1.1, we compared the thermal-aware OPT sched-

ule generated by our technique with the energy-aware OPT schedule generated by the technique from [100]

for 3 iterations (period = 686ms). The two schedules have the same period and execute identical jobs.

The energy-aware OPT schedule executes all the jobs in the beginning and only goes to sleep toward the

end of the iteration. Consequently, the energy optimal schedule generates thermal constraint violations

(up to 106◦C). Figure 5.3 depicts the thermal-aware schedule with the job execution times and sleep

times specified. Compared to the energy optimal schedule the thermal-aware schedule sleeps more fre-

quently. These observations demonstrate that energy optimal schedules are unsuitable for satisfying the

thermal constraints, and justify the need for addressing the thermal aware scheduling problem.
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Thermal-aware OPT vs FPTASs We compared the thermal curve and execution time of the optimal

schedule with schedules for FPTAS with different values of (1+ε) (1.05,1.15,1.5). The thermal curves

are shown in Figure 5.4. As can be seen from the deviation of the curves from the optimal increases as

ε is increased. However, the overall execution time for the schedule is very close to the optimal. The

actual approximation ratios of the schedules were found to be 1.004, 1.016 and 1.032 from bounds of

5%, 15% and 50%, respectively. In other words for the tested benchmark applications our technique is

able to generate schedules within 3.2% of the optimal even with a quality constraint of 50%.

Summary The energy-aware optimal schedule cannot address the thermal aware scheduling problem. For

the benchmark applications our techniques can generate very close to optimal results even with a quality

bound of 50%.

Results for Synthetic Task Set

We evaluated our technique by experimenting with large synthetic task sets with up to 120 nodes. The

number of jobs in each set were varied from 20 to 120 in steps of 20. At each task set number, we

generated 10 sets of tasks. The workload of each job was uniform randomly generated, and varied in the

range of 106 −109 cycles. Then, we calculated the execution time of each job at each active state by the

processor model from [79]. The initial temperature was set at 65◦C. We evaluated the approximation

quality of the results (Figure 5.5) and run times of our technique (Figure 5.6) for different values of ε .

Evaluation of the approximation quality of FPTASs Figure 5.5 illustrates the worst approximation ratio

with respect to OPT for each node number from 20 to 120. The FPTAS with approximation bound from

68



105

110

115

120

125

130

135

140

145

0 475 950 1425
Time (millisecond)

T
e
m

p
e
ra

tu
re

 (
d

e
g

 C
)

T_max Constraint

Iteration 1 Iteration 3Iteration 2

Without the final temperature constraint

With the final temperature constraint

Figure 5.7: Effect of final temperature constraint

400

600

800

1000

1200

1400

1600

1800

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
Thermal Resistance 

T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

T_o=40

T_o=50

T_o=60

T_o=70

T_o=80

T_o=90

T_o=100

Figure 5.8: Effect of initial temperature and thermal resistance

5% to 25% matches the OPT, since the actual approximation ratios of those are no more than 1.025.

Even with the 50% quality bound, the real approximation ratio is no more than 1.05 and the standard

deviation of these ratios is no more than 0.007.

Evaluation of the run time of FPTASs Figure 5.6 depicts the average running times (in seconds) of the

FPTAS with different values of ε . As expected, the run time of the OPT algorithm is the slowest, while

the 1.50 FPTAS is the fastest. The runtime by the OPT algorithm is increasing much faster than the

FPTAS. The figure also infers that the runtime by the OPT algorithm is exponential to the increase of the

node number, while those of the FPTAS are near-linear. The run time of the FPTAS algorithm with 120

tasks for a 50% quality bound is under 5 seconds.
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Summary The actual approximation ratio of the schedules generated by FPTAS for different values of ε

were much better than the theoretical bounds. We can obtain a good trade-off between the design quality

and technique execution time by varying ε .

Effect of final temperature constraint

As the jobs run in a periodic manner the final temperature of the schedule is the initial temperature of the

next iteration. In our problem formulation, we set a constraint Tf ≤ To. Figure 5.7 depicts two schedules

with and without the final temperature constraint. As can be observed from the schedule, absence of the

final temperature constraint causes thermal violations in subsequent iterations.

Effect of initial temperature and thermal resistance

We evaluated the effect of the initial temperature and thermal resistances on the performance of the job

set. We varied the initial temperature from 40◦C to 100◦C (10◦C per step), and the thermal resistance

from 0.1 to 1.5 with 0.2 per step. The results are plotted in Figure 5.8 for a temperature constraint of

100◦C. We observe that as the thermal resistance is reduced the performance of the schedule improves.

This observation points towards incorporating better cooling techniques and may be integrating thermal

aware scheduling with cooling operation. Sometimes increasing the initial temperature improves the

performance. This is primarily due to the final temperature constraint. For example, if To = 40◦C, the

final temperature constraint limits the feasible schedule such that the final temperature is at most 40◦C,

which takes a large amount of sleep time. If To = 80◦C, the schedule can select some v/f levels such

that the temperature is steady around 80◦C. Then the final temperature can be no more than 80◦C with

little sleep time. Therefore, the performance is increased. Although, it seems that an initial temperature

To = Tmax generates the fastest schedule, it may not always be the case. Based on the job set, if To = Tmax

the processor may require to sleep for a finite amount of time before it can begin executing the first job.

Thus, an alternative value of To may generate a shorter schedule.

5.6 Conclusion

We introduced the thermal aware performance maximization problem. We justified the problem by

demonstrating the inability of the energy optimal schedule to satisfy the temperature constraints. We

defined problem and proved that it is NP-hard. We next presented the optimal algorithm and FPTAS for

the problem. Experimental results demonstrate that FPTAS can generate very high quality results even

with an approximation bound of 50%.
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Chapter 6

Thermal aware scheduling for applications with uncertain execution times

The chapter addresses a stochastic version of the thermal-aware performance optimization problem on

embedded processors. In the problem, the required execution cycles of each task follow a randomized

distribution and hereby the execution time varies uncertainly. We give the definition and formulation of

the stochastic problem, and then present optimal and approximated solution. The work is organized as

follows: Section 6.1 presents the preliminaries of system model and defines several important parameters

of the problem, Section 6.2 defines the problem, Section 6.3 discusses the previous work, Section 6.4

presents the optimal and a fully polynomial approximation scheme for the problem, Section 6.5 discusses

the experimental results, and finally Section 6.6 concludes the work.

6.1 Preliminaries

Consider a processor equipped with a finite set of discrete v/f active states M = {s1,s2, ...sm}. Each

state s j has a voltage v j and frequency f j. The processor executes a job (say Ji) at a particular state s j

and consumes power ρi j. Latency is the time spent to execute a job. It is given by the ratio of the job

cycle number w to the scheduled frequency f j, and specified as t = w
f j

.

Similar to the thermal model in Chapter 5, the temperature of a processor is modeled by a

lumped RC circuit due to the duality between heat transfer and electronic phenomena. The thermal

resistance R and thermal capacitance C capture heat transfer phenomena and are specified as part of

the model. Assume the power consumption of the processor is P during a time period t. The current

processor temperature T after processor works for time t with power consumption P can be computed

from the following equation.

T = P ·R+Tamb +(To −P ·R−Tamb) · e−
t

RC (6.1)

To is the initial temperature when t = 0. Tamb is the ambient temperature. The final temperature after the

execution of a job Ji with cycle number wi in state s j is denoted by Tf (i) and calculates as:

Tf (i) = To +(T s
i j −To) · (1− e

− wi
RC f j ) = To +∆T (s j,wi) (6.2)

where T s
i j is the steady temperature with power consumption ρi j and given by T s

i j = ρi jR+Tamb. In this

equation, ∆T (s j,wi) is the temperature change from To when processor executes the job with wi cycles

at state s j.

In our system, we consider a sequence of independent jobs J = {J1,J2, ...Jn} to be executed

on the processor. A DVFS algorithm is one that decides which active state should be chosen for the
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execution of jobs. Each job Ji has some workload (wi), specified as the number of CPU cycles to

complete. Each wi varies randomly and follows a probability distribution Pi with the best case cycle

number BCCi and the worst case cycle number WCCi. We assume that the workloads of the various jobs

are uncorrelated with each other. We determine at design time the unique active state for execution of

each job. The resulting v/f schedule for J is denoted by A .

The designer specifies a peak temperature limit Tm for the execution of J . When CPU cycles

of a job vary randomly, we can think of dynamic thermal management (DTM) as consisting of two

DVFS mechanisms, the non-violation (or off-line) mechanism and the violation (or on-line) mechanism.

The non-violation mechanism is the off-line v/f schedule A , in the case that Tm won’t be violated. The

violation mechanism is on-line response, in the case that Tm is/might be violated. The on-line response

mechanism is triggered once the scheduler determines that peak temperature is/might be violated. For

example, the online scheduler may decide to abort the remaining jobs or execute the jobs in the run in

lowest v/f state.

The work focuses on design time or off-line DVFS scheme as a system-level thermal manage-

ment approach. In the case of the off-line scheme with uncertain job cycle time, the designer can specify

the thermal constraint as – the probability that the schedule A will not violate Tm is no less than β

( 1
2 < β ≤ 1). For example if the designer specifies β as 0.80, the system should complete tasks based

on A without violating the thermal constraint with a probability of 80%. We denote β as the survival

probability. The actual statistical requirement on the system is that the survival probability for all the

jobs is no less than β based on the schedule A .

The optimization goal is to minimize the expected latency L when the statistical thermal con-

straint is satisfied.1 The expected latency L is given by the summation of expected latency for each job

based on A . The expected latency for each job Ji depends on the expected cycle number of Ji and the

scheduled execution state s j.

6.2 Problem definition

The thermal aware performance optimization problem for the tasks with stochastic CPU demands, de-

noted as STAmin, can be described as follows.

1Considering the trade-off between latency and the survival probability under thermal constraint, the goal of some real time
embedded systems could be maximizing the survival probability subject to an expected deadline constraint. This is a dual problem
to STAmin.
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• Given

• a processor with a set of active voltage/frequency(v/f) states M = {s1,s2, ...sm}, where s j =<

v j, f j >;

• a sequence of n independent jobs J = {J1,J2, ...Jn}, each job Ji consumes power ρi j in s j;

• for each Ji in J , wi is specified by a random distribution tuple < Pi,BCCi,WCCi >;

• an initial temperature To and a peak temperature limit Tm;

The objective is to obtain a v/f schedule A such that the expected latency L for all the jobs is minimized

when the survival probability of A is no less than a specified constant value β ( 1
2 < β ≤ 1).

Let yi denote the event that the final temperature after executing Ji is no more than Tm. The

probability of yi depends on the final temperature after the execution of Ji−1, cycle number of current

job Ji and the scheduled execution state. For a v/f schedule A , the probability of yi only depends on

the first two factors. The final temperature after the execution of Ji−1 is determined by the random cycle

number of previous job Ji−1. Note that Tf (i) represents the final temperature after completing the first i

jobs. Let the peak temperature for schedule A be denoted by Tp(A ). Then, the survival probability can

be formulated as:

Pr[Tp(A )≤ Tm] = Pr[y1,y2, · · · ,yn]

= Pr[y1|To]×Pr[y2, · · · ,yn|Tf (1)]

= ∏n
i=1 Pr[yi|Tf (i−1)] (6.3a)

The first equation follows from the thermal model and the selection of a single active v/f state for

each job. Second equation is derived on the basis of conditional probability property. The last equation

represents the survival probability of the A as the product of the conditional survival probability of every

job.

The expected latency for each Ji executed at s j, denoted as Li j, is given by

Li j = E[wi]/ f j (6.4)

E[wi] is the expected cycle number for Ji. It is the sum (for discrete probability distribution) or integration

(for continuous probability distribution) of the probability of each possible wi value multiplied by wi.

Thus, the expected latency L of the schedule A is the summation of expected latency of each job. Thus,

STAmin can be formulated as follows.
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min L =
n

∑
i=1

m

∑
j=1

Li jxi j

∏n
i=1 Pr[yi|Tf (i−1)]≥ β

∑m
j=1 xi j = 1,∀Ji ∈ J

T (0) = To,xi j = {0,1}

xi j = 1 denotes Ji is executed at s j, otherwise 0. The objective is to find an optimal schedule

A ∗ such that L is minimized and Pr[Tp(A ) ≤ Tm] ≥ β based on A ∗. This problem involves nonlinear

equations and stochastic random variables. Because the deterministic version of this problem is NP-

hard [112], we have the following theorem.

Theorem 6.2.1. The STAmin problem is at least NP-hard.

In the following sections we present optimal and approximation algorithms as solutions for the

problem.

6.3 Related work

There exists a considerable amount of work for micro-architecture level dynamic thermal manage-

ment [31] [12] [92] [92] [58] [94] [50] for general purpose microprocessors. In the case of embed-

ded systems researchers have proposed off-line techniques that exploit DVFS mechanisms to guarantee

that peak temperature constraint is not violated [65] [55] [109] [79]. One only can achieve the opti-

mal/approximated results with these techniques if the CPU clock cycle demands of applications do not

vary. However, the application CPU demand in many embedded system does vary [56]. We demonstrate

(in Section 6.5) that design with fixed clock cycle time (best case, average or even worst case) for a

task as assumed by optimal existing technique [112] can cause thermal constraint violations in realistic

scenarios. To the best of our knowledge, system-level stochastic thermal aware design problem has not

yet been addressed.

In the past, researchers have addresses stochastic problems in the context of energy aware de-

sign. Stochastic energy aware design problem attempts to minimize expected energy for tasks with

statistical CPU demands to meet the deadline constraint [56] [102] [29] [73]. However, these techniques

cannot be utilized to solve our problem due to the non-linear behavior of the processor thermal model.

Further, researchers have also addressed stochastic versions of classical theoretical problems such as

knapsack [45] [24]. Although, existing approaches provide insight into problem formulation they cannot

be utilized to solve the stochastic version of the thermal aware design problem.
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To the best of our knowledge, this work is the first one that defines the stochastic version of the

thermal-aware design problem and presents optimal and FPTAS algorithms as solutions.

6.4 Algorithms

At first, we present an optimal algorithm SO′ for the STAmin problem with β = 1. Then an optimal

algorithm SO for the problem with arbitrary β is proposed based on SO′. We further study the case

that each job cycle demand is in normal distribution. We propose a FPTAS, named SA, for the STAmin

problem instance where the cycle demand for each job follows a normal distribution.

Optimal algorithm

We first consider the STAmin problem with β = 1. Then we extend the solution for the extreme case

to the general case with an arbitrary β . The main idea in our proposed optimal algorithms is: among

the schedules for the first i jobs with the same expected latency and the same survival probability, lower

the final temperature in the worst scenario, less time will be spent to complete the remaining jobs. We

assume that all latency values are integral2. Let Lub be the summation of execution time for each job with

worst case cycle number at the lowest possible frequency. Lub denotes the upper bound of the expected

latency. We denote the optimal expected latency as L∗. Let L denote any possible value for L∗ in [1,Lub].

Optimal schedule with β = 1

When β = 1, all Pr[yi|Tf (i− 1)] values must be equal to 1. Thus, the stochastic thermal constraint

becomes a hard constraint. This implies that a feasible v/f schedule should ensure that all the jobs survive

in all scenarios. Given a schedule A , the worst case scenario for peak temperature can be described as

follows:

• if the execution of job Ji increases (or does not decrease) the processor temperature, Ji is executed

with WCCi cycles.

• if the execution of job Ji decreases the processor temperature, Ji is executed with BCCi cycles.

Essentially, if the execution of job increases the peak temperature it is executed for the longest possible

time (largest workload), and if the execution of a job reduces the peak temperature it is executed for the

shortest possible time (smallest workload). Given an initial temperature To and A , we can generate the

thermal curve and determine the cycle number of each job based on the worst case scenarios described

2We can adjust the units of latency such that all the possible values are integral.
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above. The jobs with non-decreasing (or increasing) thermal curve are denoted as hot jobs and the jobs

with decreasing thermal curve are described as cool jobs. Note that the hot (or cool) job is defined by

the worst case scenario for a particular schedule. It implies that the job is supposed to heat up (or cool

down) temperature. In actual scenario, the job can heat up, cool down or maintain temperature.

The main observation is that the final temperature after the execution of each job in the worst

case scenario is always the highest among all the other cases with any possible CPU cycle demands.

Thus, the design based on the worst case scenario ensures that every job survives all scenarios if there

exists a solution for the worst case scenario.

We present an optimal algorithm based on dynamic programming, named SO′ algorithm, to

solve this problem by minimizing the final temperature after finishing first i jobs in the worst case sce-

nario. Our algorithm is differentiated from the optimal algorithm for the deterministic thermal aware

design problem [112] by two critical steps – the definition of the worst case scenario, and the calculation

of the final temperatures. In Section 6.5 we demonstrate that the solution techniques for the determinis-

tic thermal aware design problem [112] cause temperature violations as they do not account for variable

task execution times.

Let Ai,L denote a v/f schedule for the first i jobs whose expected latency is exactly equal to L.

For each Ji ∈ J and each L ∈ [1,Lub], we define Tf (i,L) to be the minimum final temperature in the

worst scenario among all the Ai,L schedules subject to Tm. The final temperature after the execution of

Ji−1 is the initial temperature of Ji. Tf (i,L) is initialized to To for i = 0 and ∀L ∈ [1,Lub]. Thus, we have

the following recursive relation in the dynamic program for determination of Tf (i,L).

Tf (i,L) = min
∀s j∈M

{Tf (i−1,L−Li j)+∆T (s j,wil)|T (i,L)≤ Tm} (6.6a)

Let T j
o (i) = Tf (i − 1,L − Li j) be the initial temperature for Ji executing at s j. Thus, if the

steady state temperature for Ji in state s j denoted by T s
i j is no less than T j

o (i), Ji is classified as a hot

job, alternatively it is a cool job. For hot jobs wil = WCCi and for cool jobs wil = BCCi. Note that the

notation of hot/cool jobs are all based on a v/f schedule, and initial temperature To for the first job. Li j is

calculated by Equation 6.4. ∆T (s j,wi j) is the temperature change when Ji with wil cycles starts at T j
o (i)

and executes at s j. It is calculated based on Equation 6.2.

The dynamic program calculates Tf (i,L) for each i and L, and constructs a two dimensional

state table shown in Table 6.1. The rows represent the jobs from J1 to Jn and the columns represent

possible L values in increasing order. The first row i = 0 all fills in To. In each cell (i,L), Tf (i,L) is filled

in and given by Equation 6.6. The SO′ algorithm fills in cells column by column.
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0 1 2 ... L ... Lub

0 To To ... To To
J1 Tf (1,1) Tf (1,2) ... Tf (1,L) Tf (1,Lub)
... ... ... ... ... ... ...
Ji Tf (i,1) Tf (i,2) ... Tf (i,L) Tf (i,Lub)
... ... ... ... ...
Jn Tf (n,1) Tf (n,2) ... Tf (n,L) Tf (n,Lub)

Table 6.1: State table for SO′ algorithm

Once the table is fully filled in, SO′ algorithm can calculate the optimal L∗ as.

L∗ = min
∀L

{L|T (n,L)≤ Tm} (6.7)

Once L∗ is found, the optimal schedule A ∗ can be obtained by a general backtracking step of dynamic

programming. The overall computation complexity is equal to the complexity to construct Table 6.1,

which is O(nmLub) and is pseudo-polynomial.

Optimal schedule with arbitrary β

We first describe a property for a modified version of the SO′ algorithm, and then propose an optimal

algorithm SO for the STAmin problem with arbitrary β ( 1
2 < β ≤ 1).

We assume the probability distribution of each job Pi is already discretized to a finite set Qi

with qi CPU cycle numbers Qi = {wi1,wi2, ...wiqi} in increasing order. wi1 is BCCi and wiqi is WCCi.

For each wil in Qi, a value pil represents the probability that wi is equal to wil . And ∑qi
l=1 pil = 1. Figure

6.1 plots the probability distribution for cycle number of Jk as discrete bars. There are five possible cycle

numbers for wk. The probability of each cycle number is denoted as p1, ..., p5 as the height of the bars.

Here p1 + p2 + ...+ p5 = 1 and Pr[wk = wk3] = p3.

In the SO′ algorithm we arbitrarily select a job Jk and for that job we utilize an arbitrary wkl

(BCCk ≤ wkl ≤WCCk) to calculate the final temperatures for row k. Notice that we do the modification

for one and only one job. For all other jobs Ji we utilize BCCi or WCCi values as before. We get a new

v/f schedule Am.

We define a variable αk as follows (see Figure 6.1): if Jk is visualized as a hot job based on

the v/f schedule, αk = Pr[wk ≤ wkl ]; otherwise, αk = Pr[wk ≥ wkl ]. For hot jobs, αk is equal to the

summation of the probability that wk is no more than wkl (in the figure, αk = p1 + p2 + p3, if wk3 is

chosen as wkl); for cool jobs, αk is equal to the summation of the probability that wk is no less than wkl

(in the figure, αk = p3 + p4 + p5, if wk3 is chosen as wkl)3. Then Am has the following property.

3We also define αk here for continuous distribution to be referenced in later section. For continuous distribution as represented
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Figure 6.1: Definition of αk

Lemma 6.4.1. Am might violate peak temperature Tm and αk is a tight lower bound for survival proba-

bility based on Am.

Proof. For the following two cases, we first show that Am might violate Tm, then justify αk is a tight

lower bound.

• Case 1 – Jk is a cool job: Jk would satisfy Tm since the thermal curve is falling. In the generation

of the schedule Am, Tf (k) is calculated by wkl (≥ BCCk). Notice that for the worst case scenario

we should have calculated Tf (k) by considering its runtime on the basis of BCCk. Now, when

the job Jk is actually executed it may require BCCk cycles. Thus, the temperature after execution

of Jk would be greater than (or equal to) Tf (k). Consequently, based on the schedule Am (which

was defined on the basis of Tf (k)), a hot job J j ( j > k) could violate Tm. However, if Jk executes

with cycle number no less than wkl , all the jobs are guaranteed not to violate Tm. This is because

for all other jobs we consider the worst case scenario as described in algorithm SO′. Therefore,

Pr[Tp(A )≤ Tm] is no less than the probability that the cycle demand of Jk is equal to or more than

wkl , which is αk = Pr[wk ≥ wkl ].

• Case 2 – Jk is a hot job: As Tf (k) is calculated by wkl , the execution of job Jk may violate Tm if its

actual cycle demand is greater than wkl . Even if Jk does not violate Tm, there could exist a hot job J j

( j > k) that violates Tm because final temperature after execution of Jk might be greater than Tf (k)

(which was utilized to generate Am). However, if Jk executes with a cycle number no more than

wik, all the jobs will satisfy Tm for sure. Thus, the survival probability Pr[Tp(A )≤ Tm] is no less

than the probability that cycle demand of Jk is equal to or less than wik, which is αk =Pr[wk ≤wkl ].

by the dashed curve in Figure 6.1, if the cycle number on the dashed line is wk3 and wk3 is chosen as wkl , αk is the area (integration)
under the curve to the left of the straight line for hot jobs, or to the right of wk3 for cool jobs.
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From Lemma 6.4.1, we define the physical meaning of αk as the survival probability due to Jk,

because Tf (k) is calculated by wkl . Now, we modify the SO′ algorithm further. We arbitrarily choose a

wil to calculate the final temperature of Row i for each (and every) Ji in Table 6.1. Thus, a schedule A ′

is generated. For each Ji, if Ji is a hot job based on A ′, αi = Pr[wi ≤ wil ], else αi = Pr[wi ≥ wil ]. We

define the following property for A ′.

Lemma 6.4.2. The survival probability for A ′ is no less than ∏n
i=1 αi.

Proof. Consider the situation that when the jobs are executing, each hot job Ji executes with cycle

number wi no more than wil and for each cool job J j executes with cycle number w j no less than w jl

(i ̸= j ∈ {1,2, ...,n}). In this case, all the jobs based on A ′ do not violate Tm for sure. The probability

of this situation occurring is ∏n
i=1 αi. Therefore, the lower bound of survival probability is ∏n

i=1 αi. By

Lemma 6.4.1, it is a tight lower bound.

The statistical thermal constraint can be formulated as follows because of Lemma 6.4.2.

n

∏
i=1

αi ≥ β (6.8)

The objective of the STAmin problem is then to achieve a schedule S =< A ,B > such

that the expected latency is minimized and Equation 6.8 is satisfied. A is a v/f schedule and B =<

α1,α2, ...,αn > is the survival probability associated with each job Ji. Note that for each αi there exists

an associated wil for Ji which is utilized to calculate Tf (i).

We then present an optimal algorithm SO based on dynamic programming with three dimension

state table – rows represent jobs from J1 to Jn, columns represent the expected latency L from 1 to Lub,

and the third dimension represents the survival probability α due to the first i jobs. Each cell (i,L,α)

in the state table contains Tf (i,L,α) which is the minimum final temperature when the first i jobs are

finished with expected time equal to L and the survival probability due to the first i jobs is α .

Notice that in the dynamic programming table the L dimension represents all possible values

from 1 to Lub. Similarly, we require all possible values of α . We include all possible values of α in

a set D . D is constructed from the set of possible survival probability values associated with each job

Ji denoted by Di. Di can be obtained by calculating Pr[wi ≤ wil ] and Pr[wi ≥ wil ],∀wil ∈ Qi. |Di| =

2×qi,qi = |Qi|. We prune the Di set to only include values in the range [β ,1]. Now, D can be constructed
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by considering all possible product combinations of αi, D =
∪

∏i∈={1,...,n} αi,∀αi ∈ Di. |D | = qn,q =

max(q1, . . . ,qn). We sort D in the ascending order to construct the third dimension of the dynamic

programming table.

In the dynamic program, Tf (i,L,α) can be calculated by the following recursive relation:

Tf (i,L,α) = min
∀s j∈M ;∀αi∈Di

{Tf (i−1)+∆T (s j,wil)|Tf (i,L,α)≤ Tm} (6.9a)

Tf (i−1) = Tf (i−1,L−Li j,
α
αi

) (6.9b)

When T s
i j ≥ Tf (i− 1), Ji is classified as a hot job and we can find a wil for each αi, where

αi = Pr[w ≤ wil ]; otherwise Ji is a cool job and αi = Pr[w ≥ wil ]. Thus, the optimal L∗ is achieved as the

smallest L when a feasible Tf (n,L,β ′) is obtained. Here β ′ is the smallest value in D and β ′ ≥ β . Thus,

L∗ = min
∀L

{L|Tf (n,L,β ′)≤ Tm} (6.10)

Each feasible schedule includes a v/f schedule A and a survival probability assignment B for all the

jobs. With the L∗, we can back track and get the optimal schedule S ∗ =< A ∗,B∗ >.

The computational complexity of SO is O(nmqLubqn) which is exponential in n. In the follow-

ing section we present a (1+ ε) FPTAS algorithm for the STAmin problem when the cycle demand for

each job follows a normal distribution. The discretization scheme for survival probability in the FPTAS

algorithm can be utilized to reduce the complexity of SO to pseudo-polynomial.

Approximation algorithm

We present a (1+ ε) FPTAS, named SA, for the STAmin problem when the CPU demand wi of each Ji

follows a continuous normal distribution Pi. Given a quality bound ε (0< ε ≤ 1) and a peak temperature

relaxation bound µ (0< µ < 1), the FPTAS generates a schedule S + =<A +,B+ > which can achieve

(1+ ε) times the optimal L∗ under an (1+ µ) relaxation of peak temperature limit Tm. The FPTAS

discretizes the sets [β ,1] and [1,Lub] in a manner that gives us a solution with expected latency no more

than (1+ ε)L∗ in polynomial time, at the expense of a slight loss in terms of feasibility - the solution

schedule may overrun the peak temperature limit Tm up to Tm +µ(Tm −Tamb).

Let fi(·) (gi(·)) represent the survival probability distribution function for job Ji assuming that

it is a hot (cold) job. We state:

Lemma 6.4.3. fi(·) and gi(·) are continuous functions of wi for hot and cold jobs, respectively. For hot

jobs, fi(·) is concave and monotonically increasing with wi when β > 1
2 . For cool jobs, gi(·) is concave

and monotonically decreasing with wi when β > 1
2 .
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SA(µ,δ ,Tm):

1 l = 1, r = g = ⌈lgLub⌉;
2 choose γ based on the definition;
3 D ′ = {1,(1+ γ)−1,(1+ γ)−2, ...,(1+ γ)−h};
4 binary search smallest 2b s.t. test(2b,µ,δ ,Tm) returns success;
5 S + = test(2b,µ ,δ ,Tm);
6 return S +;

test(L,µ,δ ,Tm):

1 K = δL
n , L′ = ⌈ L

K ⌉+n, L
′
i j = ⌈Li j

K ⌉, ∀α ,αi ∈ D ′;
2 S + = SOm(L′,Tm +µ(Tm −Tamb),β );
3 if (S +! = null) return S + and success;
4 else return f ailure; endif;

Figure 6.2: FPTAS for STAmin problem

The lemma follows trivially from normal distribution of wi, and definitions of survival proba-

bility for hot and cold jobs.

The approximation scheme is described in Figure 6.2. It executes in polynomial time by scaling

and reducing search spaces for possible L and α values. Given two variables µ ,δ (δ = ε/2) specified

by the designer, the main algorithm is SA(µ ,δ ,Tm). The algorithm conducts a binary search over the

space L = {1,2,22, ...,2g} (g = ⌈lgLub⌉), until the smallest L = 2b is found such that a test procedure

returns success. After 2b is found, the solution S + is generated by the test procedure on 2b with (1+ε)

approximation.

The function test(L,µ ,δ ,Tm) returns success if there exists a solution on the testing value L,

otherwise returns failure. In test() a modified SO algorithm, named SOm, is invoked which is similar

to SO algorithm. It uses dynamic programming on the scaled spaces for possible L and α values in

Equation 6.9. L and Li j are scaled to L
′

and L
′
i j by a scaling factor K = δL

n and rounded up. L
′

is the

upper bound in state table as Lub in SO algorithm.

The discretization of α values is more involved. Let µ′= µ
n . For each job Ji we define:

wh(i) =WCCi(1+µ′)−1 (6.11a)

wc(i) = BCCi(1+µ′) (6.11b)

γi = min(
1

fi(wh(i))
−1,

1
gi(wc(i))

−1) (6.11c)

We define γ ≤ min∀i(γi). Possible α values lie in a finite set D ′ which is obtained by discretization of

the range [β ,1] as follows D ′ = {1,(1+ γ)−1,(1+ γ)−2, ...,(1+ γ)−h}. Here (1+ γ)−h is the smallest
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value no less than β . Possible αi values for each Ji are discretized similarly and belong to D ′.

Lemma 6.4.4. For each αi in [β ,1] with associated wi of a hot or cool job Ji, f−1
i ((1+γ)αi)≤ (1+µ′)wi

if Ji is a hot job; g−1
i ((1+ γ)αi)≥ wi

1+µ′ if Ji is a cool job.

Proof. When αi > fi(wh(i)) for hot job (or αi > gi(wc(i)) for cool job), the lemma is clearly true because

wi(1+µ′) =WCCi (or wi(1+µ ′)−1 = BCCi). For the case αi ≤ fi(wh(i)) for hot job (or αi ≤ gi(wc(i))

for cool job), we have

• Case 1 - hot job: Since γ ≤ 1
fi(wh(i))

− 1, γ ≤ fi((1+µ ′)wi)
αi

− 1 as 1
fi(wh(i))

≤ fi((1+µ ′)wi)
αi

by Lemma

6.4.3. Thus, we have (1+γ)αi ≤ fi((1+µ′)wi). Again by Lemma 6.4.3 we have f−1
i ((1+γ)αi)≤

(1+µ′)wi.

• Case 2 - cool job: Since γ ≤ 1
gi(wc(i))

− 1, γ ≤ gi(wi(1+µ′)−1)
αi

− 1 as 1
gi(wc(i))

≤ gi(wi(1+µ ′)−1)
αi

by

Lemma 6.4.3. Thus, we have (1+ γ)αi ≤ gi(wi(1+ µ ′)−1). Again by Lemma 6.4.3 we have

g−1
i ((1+ γ)αi)≥ wi

1+µ ′ .

Thus, it is proved.

The modified SOm algorithm takes Tm + µ(Tm − Tamb) and β as parameters. This specifies

that the feasible solution for the scaled problem satisfies Pr[Tp ≤ Tm + µ(Tm −Tamb)] ≥ β . We prove

that SA is an (1+ ε) FPTAS. Let the optimal schedule be S ∗ =< A ∗,B∗ > for the STAmin problem.

Round each α∗
i in B∗ up to the smallest value αu

i in D
′

no less than α∗
i . Denote the new schedule as

S u =< A ∗,Bu >.

Lemma 6.4.5. In the STAmin problem with non-scaled L and Li j and ∀α,αi ∈ D ′, Su is a feasible

solution.

Proof. We first prove that in the worst case scenario with Bu, the peak temperature with A ∗ is no more

than Tm +µ(Tm −Tamb). Then we show that the survival probability based on Bu is no less than β .

We consider two possible cases based on the thermal classification of the job Ji. We observe

α∗
i ≤ αu

i ≤ min((1+γ)α∗
i ,1). Recall that µ ′= µ

n . We then prove the statement T ∗
f (i)≤ T u

f (i)≤ T ∗
f (i)+

iµ′(Tm −Tamb) by induction.

We first show the statement is true for the base case i = 1.
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• Case 1 – hot job: From Lemmas 6.4.3 and 6.4.4 we have f−1(α∗
i ) ≤ f−1(αu

i ) ≤ f−1(min((1+

γ)α∗
i ,1))⇒ w∗

i ≤ wu
i ≤ min((1+µ′)w∗

i ,WCCi). Thus, for a single job executed in state s j starting

from To, we have ∆T ∗
i j ≤ ∆T u

i j ≤ (1 + µ ′)∆T ∗
i j , where all the ∆T are non-negative. Therefore,

T ∗
f (1)≤ T u

f (1)≤ T ∗
f (1)+µ ′(Tm −Tamb) holds true.

• Case 2 – cool job: From Lemmas 6.4.3 and 6.4.4 we have g−1(min((1+ γ)α∗
i ,1)) ≤ g−1(αu

i ) ≤

g−1(α∗
i )⇒ max(w∗

i (1+µ ′)−1,BCCi)≤wu
i ≤w∗

i . Therefore, for a single job executed at s j starting

from To, we have ∆T ∗
i j ≤ ∆T u

i j ≤
∆T ∗

i j
(1+µ ′) ≤ (1−µ ′)∆T ∗

i j , where all the ∆T are negative. Therefore,

T ∗
f (1)≤ T u

f (1)≤ T ∗
f (1)+µ ′(Tm −Tamb) holds true.

The last inequality in both cases is true because every |∆T ∗
i j | with S∗ is no more than (Tm −Tamb).

Then we show that, if the statement is true when i = k−1, it is also true when i = k.

Jk is executed starting from T ∗
f (k − 1) in S∗ and from T u

f (k − 1) in Su. In S∗ and Su, Jk is

executed in the same v/f state, say s j.

• Case 1 – hot job: Similar to i = 1 case, we have w∗
k ≤ wu

k ≤ min((1+ µ ′)w∗
k ,WCCk). Because

w∗
k ≤ wu

k and T ∗
f (k− 1) ≤ T u

f (k− 1), we get T ∗
f (k) ≤ T u

f (k). On the other hand, because wu
k ≤

(1+µ ′)w∗
k and T ∗

f (k−1)≤ T u
f (k−1), we get ∆T u

k j ≤ (1+µ ′)∆T ∗
k j by the definition of ∆T (s j,wi)

and the base case i = 1. Note that ∆T ∗
k j is non-negative. Therefore,

T u
f (k) = T u

f (k−1)+∆T u
k j

≤ T ∗
f (k−1)+(k−1)µ′(Tm −Tamb)+(1+µ ′)∆T ∗

k j

≤ T ∗
f (k)+ kµ′(Tm −Tamb)

The first equation follows from the thermal model. The second equation follows from the state-

ment with i = k−1 case and the inequality ∆T u
k j ≤ (1+µ ′)∆T ∗

k j. The third equation follows from

thermal model and |∆T ∗
k j| ≤ Tm −Tamb.

• Case 2 – cool job: Similar to i = 1 case, we have max(w∗
k(1+µ′)−1,BCCk)≤ wu

k ≤ w∗
k . Because

w∗
k ≥ wu

k and T ∗
f (k− 1) ≤ T u

f (k− 1), we get T ∗
f (k) ≤ T u

f (k). On the other hand, because wu
k ≥

(1+µ′)−1w∗
k and T ∗

f (k−1)≤ T u
f (k−1), we get ∆T u

k j ≤ (1−µ ′)∆T ∗
k j by the definition of ∆T (s j,wi)

and the base case i = 1. Note that ∆T ∗
k j is negative. With similar proofs as case 1, we have

T u
f (k) = T u

f (k−1)+∆T u
k j

≤ T ∗
f (k−1)+(k−1)µ′(Tm −Tamb)+(1−µ ′)∆T ∗

k j

≤ T ∗
f (k)+ kµ′(Tm −Tamb)
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Thus, we have proved that, for each Ji in J with v/f schedule A ∗, we can always get the final temper-

ature relationship: T ∗
f (i)≤ T u

f (i)≤ T ∗
f (i)+ iµ′(Tm −Tamb). Therefore the peak temperature Tp relation-

ship for n jobs is that T ∗
p ≤ T u

p ≤ T ∗
p +nµ ′(Tm −Tamb). Since T ∗

p ≤ Tm for A ∗ and µ ′ = µ
n , we can get

T u
p ≤ Tm +µ(Tm −Tamb). Thus, Bu is feasible for peak temperature limit Tm +µ(Tm −Tamb).

Now we show that the survival probability is no less than β with S u. Since S ∗ is feasible with

β , ∏n
i=1 α∗

i ≥ β . For S u, we have the following equation due to the relation between α∗
i and αu

i

n

∏
i=1

αu
i ≥

n

∏
i=1

α∗
i ≥ β

Thus, it is proved.

Let L# be the optimal for the STAmin problem with non-scaled L and Li j. Note that in this case all

the possible α and αi lie in the discretized D ′. The peak temperature limit is set to be Tm+µ(Tm−Tamb).

The associated optimal schedule is denoted as S # =< A #,B# >. We have:

Lemma 6.4.6. L# ≤ L∗.

Proof. By lemma 6.4.5, we can achieve a feasible schedule S u from S ∗ with peak temperature limit

Tm +µ(Tm −Tamb) and survival probability β . Then we have

L# ≤ Lu = L∗

The first step is true because the S # is the optimal schedule for the problem with scaled α and non-scaled

L. The second step follows that Su has the same v/f schedule as S∗.

Lemma 6.4.7. L+ achieved by SA(µ,δ ,Tm) is no more than (1+2δ ) times L∗.

Proof. Because of the scaling and rounding of L, the expected latency L+ achieved by S+ is no more

than (1+ 2δ ) times L#. The proofs parallel to those in Chapter 2 and are omitted here. Thus, we have

L+ ≤ L#(1+2δ ). By Lemma 6.4.6, L+ ≤ L∗(1+2δ ).

The computational complexity of the test() function is O( n2mh
δ ). By the definition of D

′
,

h ≤ − lgβ
lg(1+γ) . The binary search in SA invokes test procedure lglg(Lub) times. Thus, the computational

complexity of SA is fully polynomial and equal to O( n2mh
δ lg lgLub). Note that the peak temperature limit

with L+ is no more than Tm +µ(Tm −Tamb) because the input for SOm is the relaxed value. We have the

following theorem when ε = 2δ .
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Theorem 6.4.1. SA(µ,δ ,Tm) is an (1+ε) FPTAS when peak temperature Tm is relaxed to Tm +µ(Tm −

Tamb).

6.5 Experimental results

Experiment Setup

Processor thermal model : We consider the 70nm CMOS processor model from [79] with 6 volt-

age/frequency levels from 0.6V/0.78GHz to 1.1V/3.8G Hz (0.1V per step). The thermal capacitance

and resistance settings are chosen as those in [92]. We set 35◦C as ambient temperature, 65◦C as initial

temperature and 100◦C as peak temperature limit.

Applications : We evaluate the proposed techniques by experimentations with both multimedia appli-

cations and synthetic task sequences. The multimedia task sequence includes four kinds of multimedia

encoder/decoders from MediaBench [59]: image compression (jpeg), speech compression (adpcm), en-

cryption/ decryption (pegwit) and video compression (mpeg2). The synthetic task sequences include 10,

15, 20 nodes with the WCC in normal, piosson or equal distribution. Each task has different WCC.

Discrete distribution of cycle numbers : We assign each task three discrete CPU cycle numbers (0.01WCC,

0.3WCC, WCC) with probabilities (0.03, 0.85, 0.12), respectively. We utilize the discrete distributions

to evaluate SO with respect to SO′.

Continuous distribution of cycle numbers : The cycle number for each task is generated by normal

distribution in the range of [0.01·WCC, WCC] with mean as 0.505·WCC and deviation as 5000. We

utilize the continuous distributions to evaluate SA with respect to SO′.

Evaluation of SO with respect to SO′ : We set the β of SO at 0.8. SO′ generates the solution with β = 1.

Evaluation of SA with respect to SO′ : We set the survival probability of of SA at 0.8. To evaluate SA

techniques, we still use Tm = 100◦C as the input of SOm in Figure 6.2 to ensure the solution is feasible. µ

is set as 0.02. Theoretically, the expected latency by solutions from SA is no more than (1+ε) times the

optimal expected latency with peak temperature limit no less than 98.7◦C. For each task set we generate

solutions by varying the quality bound on SA as ε = 0.05,0.15,0.25.

Simulations : For each task set, we simulate the execution of applications with solutions generated by

SO′ for discrete distributions, SO′ for continuous distributions, SO and SA. In order to evaluate average

latency and actual survival probability, 10,000 iterations are tested with the schedules achieved by the

techniques for each task sequence. We record the average latency over those iterations without thermal

violation and obtain the survival probability over the 10,000 iterations.
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Platform : The techniques were coded in C and experimentations were performed on a Pentium 4/2.4GHz/1GB

Windows XP PC.

Limitation of existing deterministic technique

We generate a v/f schedule for the multimedia job sequence by utilizing the optimal technique in Chapter

5 for the deterministic version of the system-level thermal aware design problem. We assume that the

designer only considers the worst case cycle number wi for each task to generate schedule. The expected

thermal curve with fixed cycle number for each job is shown in Figure 6.3. The expected thermal curve

satisfies thermal constraint. We next consider that in actual case the cycle number of the jobs follows a

discrete distribution in the range [0.01 ·wi,wi] with 0.1 ·wi as the average. Figure 6.4 plots the observed

thermal curve when most (5 out of 8) of the jobs execute with their average cycle number (0.1 ·wi). As

we can see, the peak temperature constraint is violated most of time in actual case when the optimal

schedule by the deterministic algorithm is applied. Thus, we demonstrate that the optimal thermal aware

design technique for the deterministic version of the problem [112] cannot address the stochastic version.

Performance improvement and survival probabilities

We compare the improvement in expected latency by comparing our SO and SA techniques with SO′.

Performance improvement is defined as the ratio of the expected latency achieved by SO′ divided by

the expected latency achieved by SO or SA. Table 6.2 shows the performance improvement (P improve)

with 10 task sets. The performance improvements were calculated by simulations over 10,000 iterations.

The SO approach provides average performance improvement as 1.12 comparing to SO′ when survival

probability of SO is set as 80%. With poisson-20 job sequence, it can even improve to 1.35 with respect

to SO′ approach. The SA approach can achieve average performance improvement of 1.06 when the

quality bound ε = 0.05. When ε = 0.25, the average improvement is still 1.04. For normal-10 job

sequence, the performance improvement due to 1.25SA is over 1.11 in comparison to SO′.

The actual survival probability by SO′ is verified to be always 1 on the task sequences when cy-

cle number of each task follows either discrete or continuous distribution. The actual survival probability

(actual β in the table) by SO and SAs for all the cases were also verified, and none of them is less than

80%. We notice that for some job sequences the observed survival probability is higher than β = 80%

and sometimes even 100%. The reason is that the product ∏n
i=1 αi might be larger than designer specified

survival probability setting by Lemma 6.4.2. We conservatively calculate survival probability by taking

cool jobs into account, and reduce potential thermal violation risks due to cool jobs in the worst-case

scenario. Therefore, the observed survival probability becomes higher than the theoretical one. We also
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SO 1.05SA 1.15SA 1.25SA
Jobs β P improve actual β P improve actual β P improve actual β P improve actual β
multimedia-8 80% 1.18 88.2% 1.04 100% 1.02 100% 1.02 100%
normal-10 80% 1.10 84.0% 1.03 100% 1.03 100% 1.03 100%
poisson-10 80% 1.05 100% 1.04 94.9% 1.04 94.9% 1.04 100%
uniform-10 80% 1.24 88.2% 1.12 100% 1.11 100% 1.11 100%
normal-15 80% 1.04 83.1% 1.03 94.6% 1.03 94.6% 1.02 95.0%
poisson-15 80% 1.01 100% 1.10 100% 1.10 100% 1.07 100%
uniform-15 80% 1.14 89.0% 1.08 100% 1.08 100% 1.06 100%
normal-20 80% 1.03 83.0% 1.01 98.7% 1.01 99.9% 1.01 99.9%
poisson-20 80% 1.35 98.6% 1.02 99.7% 1.01 99.7% 1.01 100%
uniform-20 80% 1.01 89.0% 1.07 100% 1.07 100% 1.06 100%
average P improve 1.12 / 1.06 / 1.05 / 1.04 /

Table 6.2: Performance improvement and observed survival probabilities
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Figure 6.3: Expected thermal curve by deterministic thermal aware design in Chapter 5

notice that the observed survival probability by SAs are much higher than the setting and SO. This is

primarily due to the fact that SA is an approximation algorithm and the ε and µ results in a conservative

design.

Effect of survival probability setting

We consider the impact of survival probability setting on the performance improvement. Figure 6.5

depicts performance improvement with respect to SO′ with different survival probability settings by the

proposed techniques: SO and SA (ε = 0.05, 0.15, 0.25) on multimedia-8 benchmark. We observe that the

performance improvement increases when the survival probability setting is lowered. The performance

is improved to 1.17 by SO when survival probability setting is 85%. In other words, with 15% survival

probability relaxation, we can achieve 1.17 performance improvement in comparison to the case with

β = 1. The performance can be improved to 1.10 by 1.15SA when survival probability setting is 75%.
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Figure 6.4: Actual thermal curve with average cycle number for the solution of deterministic thermal
aware design in Chapter 5
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Figure 6.5: Performance improvement w.r.t. SO′ with different survival probability β on multimedia-8
benchmark

6.6 Conclusion

We defined the stochastic version of the system level thermal aware design problem. The problem

seeks an off-line v/f schedule such that the expected latency is minimized, and survival probability is

no less than a specified value β . We proved that the problem is at least NP-hard. We presented an

optimal algorithm SO′ for the case when survival probability β = 1. We next presented an optimal

algorithm SO that can solve problem instances with arbitrary 1
2 ≤ β < 1 and discrete distribution of

clock cycle demands for each job. Finally, we studied the problem instance when the CPU cycle demand
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for each job follows a normal distribution. We proposed a (1+ ε) FPTAS algorithm that can generate

solutions in polynomial time when the peak temperature limit Tm is relaxed to Tm + µ(Tm −Tamb). We

demonstrated that the techniques for deterministic thermal aware design cannot solve the stochastic

version of the problem. We presented experimental results that evaluated the performance improvements

due to relaxation of survival probability and comparisons of observed survival probabilities with designer

specified values.
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Chapter 7

Thermal aware task sequencing on embedded processors

The chapter presents the study on the thermal aware task sequencing or ordering problem on embedded

processors with or without DVFS capabilities. The objective of the thermal aware design problem is

to maximize the throughput for a periodic task set subject to a peak temperature Tm constraint. The

problem (denoted as TS ) is motivated by two primary observations (i) task execution order or sequence

has a significant impact on thermal profile and consequently the performance of an application, and (ii)

arbitrarily long periodic execution of the task set requires the determination of an initial temperature

setting T ∗
o that enables feasible (Tm is not violated) schedules in all iterations. T ∗

o which needs to be

determined as part of the problem solution is the optimal initial temperature (at the start of each iteration)

of the sequence in steady state that results in highest throughput.

The work is organized as follows: Section 7.1 addresses the motivation and related work, Sec-

tion 8.3 describes the problem, Section 7.3 finds an optimal initial temperature setting, Sections 7.4 and

7.5 propose algorithms for the problem on processors without and with DVFS capabilities, Section 8.6

presents experimental results and Section 9.1 draws conclusions.

7.1 Motivation and related work

We are interested in the thermal aware sequencing problem for a periodic task set on an embedded

processor. Recent work observes that task execution order or sequencing has a profound impact on

temperature profile of an application. Jayaseelan et al. [40] enumerate task sequences for a task set with

8 tasks and observe 9.02◦C difference in the peak temperatures between the worst task sequence (highest

peak temperature) and the best task sequence (lowest peak temperature) for identical performance. As

we are interested in throughput maximization for a task set subject to peak temperature constraint (Tm),

the 9.02◦C difference could be traded-off for improved throughput for the same Tm constraint in our

problem. As the task set is executing on a DVFS and DPM equipped embedded processor, we also need

to determine the v/f states of the tasks and sleep times of the processor in the selected sequence.

In addition to determining the task sequence, v/f states and sleep times, the solution for TS

must also specify the initial temperature for each iteration in the steady state. Zhang et al. [111] observe

that for a given task sequence the v/f and sleep time schedules generated by their technique have higher

throughput with some initial temperature settings To. They observe that the throughput of the solution

generated with To = 100◦C is 1.23 times higher than that with To = 50◦C. Thus, we are interested in

finding an optimal initial temperature setting T ∗
o in the steady state that can lead to optimum schedules
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for TS , which have the highest throughput. The processors should be able to start with any initial

temperature which is no more than the optimal initial temperature under a feasible schedule.

As we are interested in a periodic task set, we must also ensure the feasibility (wrt to peak

temperature constraint Tm) of the schedule over multiple iterations. Existing techniques [40, 105] do

not consider the periodic execution of their task set. Hence, their schedules for the task set may not be

feasible in successive iterations. Existing work [111] has also ensure feasibility by imposing a constraint

on the final temperature (Tf ) at the end of each iteration Tf ≤ To (To is specified as part of their problem).

The constraint is conservative because some schedules with Tf > To are feasible under Tm [74]. Quan

et al. [74] present necessary and sufficient conditions for the feasibility of schedules. However, their

conditions require pseudo-polynomial time feasibility checks at all time points in a period if Tf > To.

Therefore, we need a simpler strategy that ensures the feasibility of schedules over multiple iterations

when To is not specified as part of the problem.

7.2 Thermal aware sequencing

System model

We consider a processor equipped with a finite number of active discrete v/f states and a sleep state ss.

Each active state s j is associated with a voltage v j and a frequency f j. We assume that the application

is specified as a task graph consisting of tasks communicating through finite sized FIFOs. The FIFOs

contain data that is transmitted from the producer task to the consumer task. We assume that the various

FIFOs in the graph are pre-loaded with sufficient preliminary data to permit the execution of every task.

Thus, the tasks can be visualized as independent periodic tasks. Periodicity implies that the task set is

executed in a repetitive manner. Once one iteration of the task set is finished, the processor continues to

execute the next iteration. We assume each task (say τi) is executed at a unique v/f state (say s j).

For task τi at s j, the processor consumes power ρi j(t) at time t, which includes dynamic power

ρd
i j and leakage power ρs(t) of the processor. The dynamic power ρd

i j is modeled as the average dynamic

power which is a constant for τi at s j. The leakage power ρs(t) is temperature-dependent and is approxi-

mated by a piece-wise linear equation as ρs(t) = αT (t)+β [54]. Here α and β are leakage coefficients

of the processor and T (t) is the temperature at time t. Therefore, ρi j(t) = ρd
i j +αT (t)+β . The execution

time of τi at s j is ti j. Latency is defined as the completion time of the task set. To maximize throughput

of a periodic task set, we aim at minimizing the latency of the task set per iteration.

We adopt a thermal model widely used by recent work [8,40,74,111] in order to predict future

die temperatures. The die temperature of the processor is modeled by a lumped RC circuit with specified
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thermal parameters: resistance r and capacitance c. For a task τi at state s j, the die temperature at the

time t (T (t)) can be derived from the model

rc
dT (t)

dt
+T (t)− rρi j(t) = Tamb (7.1)

Tamb is the die’s ambient temperature. With the dynamic and leakage power model, we decouple the

temperature-leakage dependency to the following equation

rc
1−αr

dT (t)
dt

+T (t) =
(ρd

i j +β )r+Tamb

1−αr
= Ts(τi,s j) (7.2)

Here Ts(τi,s j) defines the steady state temperature of τi at s j, which is a constant dependent on dynamic

power ρd
i j. Clearly, higher dynamic power of a task results in higher steady state temperature for the task.

Let To be the initial temperature when t = 0. For the task τi at s j starting at time zero, the die temperature

at the completion ti j is

T (ti j) = Toe−Kti j +Ts(τi,s j)(1− e−Kti j) (7.3)

Here K is the chip-dependent time constant K = rc
1−αr . We consider the processor has a peak temperature

limit Tm, beyond which it is unsafe to execute tasks.

Problem definition

The thermal aware task sequencing problem TS is defined as follows. Given

• an embedded processor equipped with a set of active v/f states M = {s1,s2, ...sq} with s j = ⟨v j, f j⟩

and a sleep state ss;

• a set of periodic independent tasks Γ = {τ1,τ2, ...,τn}, where every task τi at s j requires dynamic

power ρd
i j and execution time ti j;

• a leakage power model with parameters α and β ;

• a thermal model with thermal parameters r and c and a peak temperature limit Tm.

The objective is to seek a schedule S = {Π,A,To} such that (i) the latency of the task set per iteration is

minimized and (ii) the temperature of the periodic task set is no more than Tm over multiple iterations.

We introduce a sleep task τs when processor could sleep in between the normal or active tasks. Π is

the task execution sequence including sleep tasks. Π = τπ1 ...τπi ...τπl (|Π|= l ≤ 2n+1), where πi is the

task index at the ith position. A is the corresponding execution time schedule for each task in Π, which

specifies v/f state for each active task and sleep time for each sleep task. To is the initial temperature
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setting of Π with the schedule A. Note that in implementation it is not necessary to start the executions

of the task set with To. The solution schedules starting with any temperature below To are still feasible

according to the thermal model. We assume that each task is only executed at one v/f state and processor

consumes zero power with negligible switching overheads at sleep state.

There are several special cases of TS . Based on the task execution order, the special case of

the problem with fixed execution order and a given initial temperature To has been shown to be NP-hard

by a reduction from the multiple choice knapsack problem in [111]. Based on the processor model, the

subproblem of TS with a given To to minimize peak temperature without sleep task has been shown to

be NP-hard by a reduction from the bottleneck traveling salesman problem in [40]. Thus, it is clear that

the problem is NP-hard. In the next section, we show that, even though the problem is NP-hard, we can

find an optimal initial temperature setting T ∗
o .

7.3 Optimal setting of To

We seek an initial temperature setting T ∗
o that can lead to optimum solutions for TS . At first, we state

the following lemma based on Equation 7.3 and the convexity of the function e−Kx.

Lemma 7.3.1. Consider schedules S = {Π,A,T1} and S′ = {Π,A,T2} with T1 ≥ T2. Let T (S, ti) and

T (S′, ti) be the temperatures at time ti by S and S′. 0 ≤ T (S, ti)−T (S′, ti) ≤ T1 −T2 always holds true

and T (S, ti)−T (S′, ti) is monotonically decreasing over time ti.

Proof. By thermal model in Equations 7.2 and 7.3, for a sequence of schedules, we can derive the

temperature for any schedule Sa starting with To at time ti as follows.

T (Sa, ti) = Toe−Kti + f (7.4)

Here f is a function that is independent to To but depends on the execution sequence and time schedules

in Sa during [0, ti]. Since the Π,A in S and S′ are the same, the f functions in equation 7.4 by S and S′

are equal. Thus, we get

T (S, ti)−T (S′, ti) = (T1 −T2)e−Kti ≤ T1 −T2 (7.5)

The second inequality follows from 0 < e−Kti ≤ 1. Since T1 ≥ T2, T (S, ti)−T (S′, ti)≥ 0. Because e−Kti

is monotonically decreasing over ti, T (S, ti)−T (S′, ti) is monotonically decreasing over ti.

Then, we find the optimal initial temperature setting as follows.
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Theorem 7.3.1. For TS , Tm is an optimal initial temperature setting with the property: if there exists a

feasible schedule S subject to a peak temperature limit Tm, there always exists one feasible schedule S′

that starts with the initial temperature Tm and achieves the same latency as that by S.

Proof. Assume a feasible schedule for TS is S = {Π,A,Ti} (Π = τπ1 ...τπl ,Ti ̸= Tm) and the peak tem-

perature by S in multiple iterations is Tp during the execution of task τπk . We show that we can always

find a feasible schedule starting with Tm for TS with the same latency as that by S.

We construct a new schedule S′ = {Π′,A′,Tm} with Π′ = τπk+1 ...τπl τπ1 ...τπk and A′ is the same

execution time schedule as A but in the order of Π′. For example, suppose that Π = τ1τ2τ4τ3τ5 and

the peak temperature Tp occurs during execution of τ4. Based on thermal model, Tp must be the final

temperature of τ4. Thus, Π′ = τ3τ5τ1τ2τ4. We show that S′ is feasible for TS subject to thermal

constraint in the following possible cases.

• Case I (Tp = Tm): Π′ and A′ starting with Tm is obviously feasible under thermal constraint. Thus,

S′ is feasible for TS .

• Case II (Tp < Tm): Compare the temperatures by S and S′ when both schedules start from the

execution of τπk+1 . The initial temperatures of S and S′ are differently Tp and Tm. Because of the

periodic nature of the task set, S′ and S have the same execution sequence and time schedules after

τπk+1 . By Lemma 7.3.1, the temperature difference between S′ and S is no more than Tm − Tp.

Because Tp is the peak temperature by S, the peak temperature by S′ is no more than Tm.

Finally, S′ achieves the same latency as S because it schedules the same task set with the same execution

time schedule as S.

The schedules with initial temperature Tm are guaranteed to be feasible over multiple iterations

based on Lemma 7.3.1, because the final temperature of one iteration is always no more than Tm. There-

fore, we are able to transform TS to a problem with Tm (denoted as TS (Tm)). TS (Tm) only considers

TS for one iteration of the task set starting with Tm. Based on Theorem 7.3.1, we have

Theorem 7.3.2. Solving TS (Tm) is equivalent to solving TS .

Proof. We show that a feasible schedule for TS is feasible for TS (Tm) with the same latency and vice

versa.
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Proofs for TS ⇒ TS (Tm): Suppose that a feasible schedule for TS is S = {Π,A,Ti} and the

maximum temperature by S is Tp during the execution of task τπk . Similar to the proofs for Theorem

7.3.1, we can always construct a feasible schedule starting with Tm for TS . This schedule is clearly

feasible for TS (Tm) with the same latency.

Proofs for TS (Tm)⇒ TS : By the definition of TS (Tm) and Lemma 7.3.1, a feasible schedule

for TS (Tm) is obviously feasible for TS with the same latency.

TS (Tm) is NP-hard because the equivalent problem TS is NP-hard. In later sections, we

propose optimal algorithm for several subproblems of TS and provide heuristic algorithms for more

general instances of TS as solutions.

7.4 Sequencing without DVFS

In this section, we solve TS for processors without DVFS capability. We assume the v/f state of the

processor is fixed. We first present an optimal algorithm for several special cases. Finally, we give an

algorithm for the more general instance of the problem.

Task sets with homogeneous power

For a task set with homogeneous power, we assume that the dynamic power consumption of each task

τi is identical to ρd and the associated execution time of τi is ti. Thus, by Equation 7.2, the steady state

temperature of each task at the fixed v/f state (denoted as Ts) is equal.

Suppose that Ts ≤ Tm. This implies that Tm won’t be violated due to the executions of these

tasks. The optimal schedule is to execute all the tasks in an arbitrary order without sleep tasks. The

optimal latency is the summation of execution times of all the tasks.

Now we consider that Ts > Tm. This implies that processor may violate Tm due to the executions

of these tasks. We provide an optimal algorithm SEQ f . The main idea of SEQ f is to minimize sleep time

since sleep task is the only candidate for cooling the processor. We set the initial temperature To to Tm

according to Theorem 7.3.1. Then we arbitrarily pick a task τh such that it is executed in the following

manner. Processor sleeps the minimum time ts such that the task τh can be finished under Tm and the

final temperature of τh (denoted as Tf ) is Tm. The minimum sleep time ts is derived from the following

equation based on the thermal model

Tf = Toe−K(ts+th)+Ts(τh)(1− e−Kth) (7.6)

Here th is the execution time of τh. Ts(τh) is the steady state temperature of τh, which is Ts in this special
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case. Repeat this pattern for all the remaining tasks. Then output the schedule S f . The computational

complexity of SEQ f is O(n).

We can show SEQ f is optimal for a task set with two tasks based on the thermal model due to

the fact that we can only cool the processor with sleep tasks. Then we have Theorem 7.4.1 by visualizing

the optimal schedule for two tasks as one unit task and constructing optimal schedule S f from bottom-up.

We first show that the algorithm generate optimal solutions for task sets with two tasks. Then

we show the optimality of the algorithm for a task set with arbitrary number of tasks.

Lemma 7.4.1. For a task set with two tasks, schedule S f has the smallest latency under Tm by starting

Tm.

Proof. We consider S f and S′ for two tasks τ1,τ2. S f = {Π = τsτ1τsτ2,A = ts1t1ts2t2,Tm} and S′ = {Π′ =

τsτ1τ2,A′ = t ′st1t2,Tm} with the same latency D = ∑∀ti∈A ti. S f schedules processor sleeps the minimum

time ts1 derived from Equation 7.6 with To = Tf = Tm. Repeat this pattern for τ2. S′ schedules processor

sleeps t ′s = ts1 + ts2 and then executes τ1,τ2. Let T (S f ,D) and T (S′,D) be the temperatures by S f and S′

at time D. By the thermal model, T (S f ,D)−T (S′,D) is equal to

Ts((e−K(t2+ts2)− e−K(t1+t2+ts2))− (e−Kt2 − e−K(t1+t2)))

Because e−Kt is monotonically decreasing over t and convex, we have T (S f ,D)≤ T (S′,D).

Since T (S f ,D) = Tm and T (S,D) ≤ T (S′,D), S′ requires sleep time no less than t ′s such that

T (S′,D) ≤ Tm. Therefore, the overall latency of S′ is no less than D if S′ becomes feasible under Tm.

Further, S f schedules processor to sleep the minimum time such that it is feasible under Tm. Thus, S f

causes the smallest latency.

Thus, we have the theorem 7.4.1.

Theorem 7.4.1. S f is optimal for task sets with homogeneous power consumption on processors without

DVFS capability.

Proof. By Lemma 7.4.1, S f has the smallest latency for two tasks. For task set with more than two

tasks, we visualize the optimal schedule for two tasks as one task. Then we construct optimal schedule

bottom-up and finally get an optimal schedule which is S f . Because the final temperature of each task

in S f for two tasks is Tm, an arbitrary execution order is optimal for the independent periodic task set.

Therefore, S f is optimal for TS .
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Task sets that all tasks raise temperatures

We consider a task set with heterogeneous power consumption on processors without DVFS capability.

We assume the dynamic power of each task τi is ρd
i and its execution time is ti. For the special case

of TS where all the tasks raise temperatures, sleep task is the only candidate for cooling the processor.

Thus, we have the following theorem proved similar to Theorem 7.4.1.

Theorem 7.4.2. The special case of TS for task sets where all tasks raise temperatures on processors

without DVFS capability is solved optimally by SEQ f .

General instance of the problem

We classify tasks into cool and hot tasks for a given Tm. The cool (or hot) tasks are the ones whose

steady state temperatures calculated by Equation 7.2 are no more (or more) than Tm. Cool tasks imply

that processor is safe to execute these tasks starting with any temperature below Tm, while hot tasks

imply that processor is not safe to execute these tasks starting with some temperatures below Tm. The

general instance of the problem involves task sets including both cool and hot tasks with heterogeneous

power consumption. We have the same assumptions for the dynamic power and execution times of tasks

as those in Section 7.4.

For a given Tm, both sleep and cool tasks are candidates for cooling the processor. Clearly,

sleep tasks cool the processor faster than cool tasks and can cool the processor to temperatures lower

than those by cool tasks. On the other hand, the advantage of cool tasks over sleep tasks is that cool tasks

do not introduce extra time to finish the task set.

Thus, to minimize the latency of a task set, we provide a heuristic algorithm SEQs in Figure

7.1 based on a property of the schedules. The main idea of SEQs is as follows. Starting with Tm, we

seek an optimized cool task sequence consisted of all cool tasks (without sleep and hot tasks) to lower

the temperature as much as possible. Then we insert hot tasks into cool task sequence such that we can

finish all hot tasks without sleep tasks under Tm. If we fail to do so, we introduce sleep tasks.

Optimizing the cool task sequence

Algorithm SEQs initially classifies tasks into cool and hot tasks based on their steady state temperatures

calculated by Equation 7.2. Then it starts with a task sequence Lc consisted of all cool tasks. Lc arranges

the tasks in the decreasing order of their power consumption based on the following lemma. This lemma
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SEQs(Γ,Tm):

1 classify tasks into cool and hot tasks;
2 Lc = cool tasks in decreasing order of power;
3 calculate the maximum {TI} for hot tasks under Tm;
4 Lh = hot tasks in increasing order of TI ;
5 To := Tm;
6 while (Lh is not empty){
7 τh = the first task in Lh;
8 if (Lc is not empty) {
9 get {TF} by cooling thermal curve of Lc starting with To;
10 if (TF [π|Lc|]≤ TI [h]){
11 find TF [πi−1]> TI [h]≥ TF [πi];
12 put τπ1 , ...,τπi ,τh to tail of Π;
13 put tπ1 , ..., tπi , th to tail of A;}
14 else {
15 put τπ1 , ...,τπk ,τs,τh, to tail of Π;
16 ts = minimum sleep time starting with TF [|Lc|] for τh;
17 put tπ1 , ..., tπk , ts, th, to tail of A; }}
18 else {
19 ts = minimum sleep time starting with To for τh;
20 put τs,τh to tail of Π;
21 put ts, th to tail of A; }
22 To = final temperature by {Π, A, Tm};
23 update Lc, Lh;}
24 return Sn = {Π,A,Tm}.

Figure 7.1: Algorithm for TS on processors without DVFS

can be proved by a task set with two tasks based on the thermal model. It also holds for an arbitrary task

set by swapping neighboring tasks into decreasing order of power.

Lemma 7.4.2. For a task set with no sleep tasks and thermal constraint, given an initial temperature

To, the temperature at the completion of the task set is minimized if tasks are executed in the decreasing

order of their power consumption.

Proof. We first show that the lemma holds for two tasks {τ1,τ2} with dynamic power ρd
1 ,ρ

d
2 (ρd

1 ≥ ρd
2 ).

Suppose that S = {τ1τ2, t1t2,To} and S′ = {τ2τ1, t2t1,To} .

Let Ts1 and Ts2 be the steady state temperatures for τ1,τ2. Clearly, Ts1 ≥ Ts2 because ρd
1 ≥ ρd

2 .

Let T (S,D) and T (S′,D) be the final temperatures at D= t1+t2 by S and S′. Based on the thermal model,

we have

T (S,D)−T (S′,D) = (Ts2 −Ts1)(1+ e−KD − e−Kt1 − e−Kt2).

Since Ts2 ≤ Ts1 and 1+ e−KD ≥ e−Kt1 + e−Kt2 , we have T (S,D)≤ T (S′,D).
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Then, we show the lemma holds for an arbitrary task set. Suppose that a task sequence Π =

...τiτ j...τk has the lowest final temperature at τk and ρd
i < ρd

j . We get a new task sequence Π′ by swapping

τiτ j to τ jτi. Therefore, the final temperature at τi by Π′ is no more than that at τ j by Π. Because the

final temperatures of the two tasks are the initial temperatures for the identical remaining task sequence

in Π and Π′, the final temperatures by Π′ is no more than that by Π by Lemma 7.4.2. Because Π has the

lowest final temperature, we can get a sequence in decreasing order of power consumption by swapping

neighbor tasks with increasing order of power in Π, and achieve the lowest final temperature.

Lowering temperatures with cool tasks

The hot tasks are sorted in the increasing order of their respective maximum initial temperatures (TI) that

enables feasible execution of each task. TI for each hot task can be derived from the thermal model by

setting the final temperature Tf of this task as Tm (Tf = Tm). The hottest task is the one with the lowest

TI . SEQs in Figure 7.1 calculates TI for each hot task and let Lh be the unscheduled hot task sequence in

increasing order of TI . The hottest task is the first one in Lh.

Initially, SEQs lowers the temperatures only with cool tasks. It then inserts hot tasks into the

cool task sequence Lc. Suppose Lc = π1...πk...π|Lc|, where πk is the task index of the kth position in Lc.

Set To = Tm. We generate a cooling thermal curve by executing Lc starting with To. The final temperature

at each cool task by Lc is recorded in a sequence {TF}= TF [π1], ...,TF [π|Lc|]. For instance, suppose that

Lc = c1,c2, ...,c7 with all cool tasks in decreasing order of power. As showed in Figure 7.2(a), we

generate a cooling thermal curve starting with Tm based on the thermal model. Each TF point is the final

temperature of a cool task in Lc.

Then, we pick the hottest task τh from Lh. Let the maximum initial temperature of τh is TI [h].

If TF [π|Lc|]> TI [h], all the tasks in Lc are not enough to lower the temperature for executing τh under Tm.

Thus, we add a sleep task with minimum sleep time right after Lc and before τh such that τh is executable

under Tm and the final temperature of τh is Tm. TF [π|Lc|]≤ TI [h] implies that there are enough cool tasks

for executing τh under Tm. We find the ith position in {TF} such that TF [πi−1] > TI [h] ≥ TF [πi]. We

insert τh between τπi and τπi+1 in Lc. For instance, suppose that current hottest task is τh and we find

TF [c3]> TI [h]≥ TF [c4] in Figure 7.2(a). We generate a sequence as in Figure 7.2(b).

Next, we update Π and A. We delete the first i tasks from Lc and τh from Lh, and update To by

the final temperature of current schedule {Π,A,Tm}. We repeat the process until all the cool tasks are

utilized to lower the temperatures for hot tasks (Lc is empty).
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Figure 7.2: Example of SEQs

Lowering temperatures with sleep tasks

When Lc is empty, we can only lower temperatures with sleep tasks for the remaining hot tasks. There-

fore, similar to algorithm SEQ f , we add a sleep task with minimum sleep time ts right before each re-

maining hot task. ts is derived from Equation 7.6 with Tf = Tm. Thus, we get a solution Sn = {Π,A,Tm}.

The computation complexity of SEQs is O(n2).

7.5 Sequencing with DVFS

We consider the general instance of TS for processors that have DVFS capabilities. We present a novel

algorithm SEQd (shown in Figure 7.3). SEQd initially triggers SEQs with all the tasks at the highest v/f

state and achieves a schedule SV . It then eliminates some sleep times in SV to reduce latency by scaling

down some tasks. Because the scaling-down lowers the temperatures, there is a chance to speed up some

tasks under Tm. Thus, SEQd incrementally speeds up some tasks to further reduce latency.
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SEQd(Γ,Tm):

1 SV = SEQs(Γ,Tm); /* Γ at highest v/f state */
2 if (there exists a sleep task in SV ) {
3 SV = ScaleDown(SV ,Tm)
4 signsp = 1;
5 while (signsp){
6 SV = SEQs(Γ,Tm); /* Γ at v/f states by SV */
7 (SV ,signsp) = SpeedU p(SV ,Tm)}};
8 return SV ;

ScaleDown(Sd ,Tm):

1 for i = 2: |Πd |{
2 if τπi is not τs and τπi−1 = τs in Πd{
3 ts = execution time of τπi−1 in Ad
4 Tf (i−2) = final temperature of the first i−2 tasks in Sd
5 find j in [1 : q] with smallest tg
6 t ′s = preceding sleep time s.t. τπi j is executed under Tm;
7 if t ′s is not zero {
8 replace ts, tπi by t ′s, tπi j in Ad ;}
9 else{
10 replace τs,τπi by τπi in Πd ;
11 replace ts, tπi by tπi j in Ad ;}}}
12 return Sd

SpeedU p(Su,Tm):

1 maxG = 0;signsp = 0;
2 for i = 1 : |Γ|{
3 ti = execution time τi of in Au;
4 for k = 1 : q{
5 if (tik < ti and Su is feasible when τi at sk) calculate Gik;
6 if Gik > maxG {
7 record τi as τg and v/f state sk as sg; update maxG;
8 signsp = 1;}}}
9 if (signsp) modify the v/f state of τg in Su to sg;
10 return Su and signsp

Figure 7.3: Algorithm for TS

Scaling down v/f states

For a schedule with sleep tasks, it is beneficial to scale down v/f states of some tasks with preceding

sleep tasks. This can be proved by the thermal model and the convexity of e−Kx.

Thus, we initially invoke SEQs with tasks at the highest v/f state and get SV which is then set

as the input schedule Sd = {Πd ,Ad ,Tm} of ScaleDown(). Note that in this step, if a task at the highest
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v/f state is too hot and cannot be scheduled under Tm even starting with Tamb, we lower the v/f state of

this task to a state such that the task is schedulable starting with Tamb. After we get Sd , we try to scale

down the v/f state of all the tasks that are preceded by sleep tasks. Suppose τπi ̸= τs and τπi−1 = τs in Πd .

Here πi is the task index at the ith position of Πd . Let ts be the sleep time of τπi−1 in Ad and Tf (i−2) be

the final temperature of the first i− 2 tasks in Sd . We scale down τi to the jth v/f state and scale down

the preceding sleep time to t ′s such that their sum tg = t ′s + tπi j is minimized subject to Tm. Here t ′s is

the minimum sleep time preceding τπi j starting with Tf (i− 2) and can be derived from Equation 7.6.

We repeat it for all the tasks in the order of Πd . Because every task preceded by a sleep task in Sd has

final temperature Tm, the solution schedule after scaling down still satisfies thermal constraint based on

Lemma 7.3.1. The scaled tasks do not necessarily have the final temperature as Tm because the scaling

might cause the final temperatures of some tasks to fall below Tm. This implies there is a chance to speed

up some tasks.

Speeding up some tasks

Let the schedule after scaling be Su. We try to speed up tasks in Su iteratively in order to further reduce

latency. We pick the task τi at sk with the largest gain Gik. Gik denotes the execution time difference

(positive) of τi before and after the speedup to sk. τi at sk should maintain the feasibility of Su. After

τi is speed to sk, we trigger SEQs with the task set associated with v/f schedule in Su. Then, SEQs

outputs a new schedule. We repeat the process until we cannot speed up any task and the final solution

is generated. The computational complexity of SEQd is O(n2q) or O(n3).

7.6 Results

Experimental setup

We considered a PICA processor [89] with 4 DVFS scaling factors {1,0.8,0.6,0.4} and the frequencies

were in the range of 1.12 GHz to 2.8GHz. The thermal capacitance and resistance settings were derived

similar to those in [40, 111] (from HotSpot [93]). We set 50◦C as die ambient temperature and 100◦C as

peak temperature limit. We set 100◦C as initial temperature of the processor for the existing techniques.

We evaluated the proposed techniques by experimentations with 18 benchmarks from Medi-

abench [59], SPEC CPU95 and CPU2000 [2] on the processor model. The Mediabench benchmarks

included 10 tasks with five kinds of multimedia applications: jpeg, mpeg2, adpcm, pegwit, epic. The

SPEC benchmarks included 8 tasks: sha, compress, gcc, go, applu, mgrid, perl, anagram. We created 8

representative task sets each with 8 tasks chosen from the 18 benchmarks. We obtained cycle number
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and dynamic power of each task at the highest v/f state from Wattch [13]. The cycle numbers of tasks

were in the range of 106 to 109 and the dynamic power of tasks were in the range of 25W to 50W. We

considered the leakage power with parameters derived from [54]. The steady state temperatures of tasks

at the highest v/f state were calculated by our thermal model (Equation 7.2) and were in the range of

90◦C to 140.3◦C. For each task τi at a v/f state with scaling factor s, the dynamic power of τi at that

state was obtained by scaling the dynamic power of τi at the highest v/f state by s3. The execution time

of τi with cycle number ci at the v/f state with scaling factor s was proportional to ci
s fb

, where fb was the

frequency at the highest v/f state.

We obtained a task sequence MinT P to evaluate our techniques. MinT P was the task execution

order with the lowest peak temperature (not necessarily lower than Tm) for a task set starting with 100◦C

and executed for 1 iteration. MinT P did not include sleep tasks and it was generated by exhaustive

enumeration in exponential time.

We evaluated our technique SEQs by assuming that the processor only executed at the highest

v/f state. We compared SEQs against the following techniques:

• MinT P+SP: Because simply executing MinT P starting with Tm violates Tm constraint, MinT P+

SP executes MinT P with a sleeping policy SP. SP is: if a task in MinT P violates Tm, we introduce

a preceding sleep task with minimum sleep time that is given by Equation 7.6.

• JMs: JMs [40] heuristically minimizes the peak temperature of a task set including sleep tasks on

processors without DVFS capability subject to a latency constraint. We do a binary search for the

smallest latency such that JMs outputs a feasible schedule under Tm. We recorded the smallest

latency as the latency by JMs.

We next considered the more general instance of the problem for a processor that has DVFS

capabilities. We evaluated our technique SEQd against the following approaches:

• MinT P+OptV S: OptV S [111] optimally solves the latency minimization (or throughput maxi-

mization) problem for a given task sequence subject to Tm constraint in pseudo-polynomial time.

MinT P+OptV S achieves solutions by invoking OptV S on the MinT P sequence of the task set.

• JMd : JMd in [40] heuristically minimizes the peak temperature of a task set under a deadline

constraint. Similar to JMs, we recorded the smallest deadline by a binary search with JMd as the

latency by JMd .
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Figure 7.4: Normalized latency on processors without DVFS

The techniques and experimentations were coded in C and performed on a Pentium 4/2.4GHz/1GB

Windows XP PC.

Evaluation for processors without DVFS

We compare the latencies for solutions by SEQs against MinT P+ SP and JMs. Figure 7.4 plots the

normalized latencies with respect to those by MinT P+ SP. The latencies by SEQs are very close to

those by MinT P+SP in all tested cases and for task sets 7 and 8 they are exactly equal. Task sets 7 and

8 have tasks that all raise temperatures. As proved in Theorem 7.4.1, the special case of the problem

instance (with tasks that all raise the temperature) is solved optimally by SEQ f (and consequently by

SEQs). Thus, the experimental results validate our theoretical proofs. Further, SEQs outperforms JMs

for all the 8 task sets. For task set 4, JMs generates schedule with latency 2.26 times that by SEQs. On

average, SEQs generates schedules with latencies that are 73% (27% improvement) of that by JMs.

Evaluation for processors with DVFS

Figure 7.5 depicts normalized latencies for solutions by SEQd and JMd with respect to those by MinT P+

OptV S. Interestingly, SEQd outperforms or matches MinT P+OptV S in all the 8 cases. This is because

MinT P+OptV S does not consider task sequencing and v/f scheduling simultaneously in comparison to

SEQd . Thus, SEQd outperforms MinT P+OptV S in many cases. Further, SEQd outperforms JMd in all

the tested cases. On average, SEQd generates sequences and schedules with latency 90.5% (min: 84.3%

for Task set 5, 9.5% average performance improvement) of that by JMd .

In terms of average runtime, SEQs and JMs execute in 0.000015s and 9.358s, respectively.

SEQd takes 0.00063 s, while JMd and MinT P+OptV S execute in 1.558 s and 16.066 s, respectively.
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Figure 7.5: Normalized latency on processors with DVFS

7.7 Conclusions

We proposed thermal aware sequencing techniques to maximize the throughput of a periodic task set

subject to a peak temperature limit. As part of the solution, we found an optimal initial temperature

setting T ∗
o that can lead to optimum solutions and guarantees the solution feasibility over multiple itera-

tions. Next, we proposed an optimal algorithm for special cases on processors without DVFS capability

for (i) task sets with homogeneous power consumption and (ii) task sets having heterogeneous power

consumption where all tasks raise the temperature. We then developed several sequencing properties

and proposed a novel algorithm SEQs for the problem on processors without DVFS capability. Finally,

we proposed a novel algorithm SEQd for the general instance of the problem. Experimental results

showed that our algorithms outperform existing techniques JMs and JMd [40].
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Chapter 8

Thermal aware scheduling by considering the impact of package temperature

The chapter addresses a thermal aware design problem for a periodic task sequence on an embedded

processor under a peak temperature constraint. We consider a temperature-dependent leakage power

model with discrete voltage/frequency settings and a sophisticated thermal model derived from HotSpot

for an embedded processor with die and package. We prove that the problem is NP-hard. We provide

a pseudo-polynomial time optimal algorithm and a fully polynomial time approximation scheme (FP-

TAS) based technique as solutions to the problem. The solution techniques to the thermal aware design

problem are constructed on the top of solutions to a subproblem with package temperature and power

budget constraints. We show the NP-hardness of the subproblem. We provide a pseudo-polynomial time

optimal algorithm and a bi-criteria FPTAS as solutions for the subproblem. The bi-criteria FPTAS gen-

erates solutions within guaranteed quality bound when the power budget constraint is relaxed to a certain

amount. We evaluate our techniques by simulations with realistic and synthetic benchmarks mapped to

an embedded CMOS processor. The simulation results demonstrate our FPTAS based technique for the

addressed thermal aware design problem is able to match optimal solutions when a designer specified

quality bound (QB) is set at 10%, can generate solutions that are quite close to optimal (< 3%) even

when QB is set at a higher value (50%), and executes within 20 seconds (with QB ≥ 50%) for large task

sets with 50 nodes (while the optimal technique takes several hundreds of seconds).

The work is organized as follows: Section 8.1 discusses previous work and delineates the con-

tributions of the work, Section 8.2 introduces the power, thermal and task models for the thermal aware

scheduling problem, Section 8.3 formally defines the thermal aware scheduling problem and proves that

it is NP-hard, Section 8.5 presents the optimal algorithm for the problem, Section 8.5 proposes the FP-

TAS for the problem, Section 8.6 presents the experimental results, and finally Section 9.1 concludes the

work.

8.1 Previous Work

The work addresses thermal aware scheduling problem on a single processor based on a CTM derived

from the HotSpot simulator. The related research can be classified into five categories as shown in Table

8.1 on the basis of the problem formulation, application domain and solution strategies. The first three

classification schemes in the table are based upon the problem formulation, while the fourth and fifth

schemes are based on application domain and solution strategy, respectively. The scope of our work

can be classified as optimal and approximation algorithms for off-line, inter task DVFS technique with
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Table 8.1: Classification based on problem formulation, application domain and solution strategy

Classification scheme Existing work
1 Off-line or

design time
algorithms

[17, 19, 20, 22, 30, 55, 64, 74, 77, 79, 98, 99]

On-line or
real-time
algorithms

[7–9, 12, 26, 61, 92–94]

2 Inter-task
DVFS
(task executes
at
one DVFS
state)

[7–9, 17, 20]

Intra-task
DVFS
(task runs at
many
DVFS states)

[10, 12, 19, 22, 26, 30, 55, 61, 64, 74, 76, 79, 92–94, 98, 99]

3 Discrete
DVFS states

[12, 17, 19, 20, 26, 92–94]

Continuous
DVFS range

[7–9, 22, 55, 64, 77, 79, 98, 99]

4 General pur-
pose
computing

[17, 18, 23, 64, 79, 85]

Embedded
computing

[7–10, 19, 20, 22, 74]

5 Heuristic
approaches

[12, 17, 26, 55, 61, 68, 92–94]

Optimal or
approximation
algorithms

[7–9, 19, 20, 22, 64, 77, 79]

discrete DVFS and DPM states aimed at embedded computing systems.

Our problem instances are characterized by the consideration of a realistic processor model that

supports only discrete v/f states (as opposed to the idealistic scenario with continuous speed settings).

Note that our discrete v/f state consideration differs from the existing approaches [79, 99] in that the

available v/f states are the inputs to our problem. Further, similar to [7–9, 107], we consider that each

task operates at a single v/f state. This is due to the consideration that inter-task v/f scheduling has

less overhead than intra-task techniques, and is easier (more practical) to implement [97]. General

purpose thermal aware design approaches address the thermal aware design problem under a continuous

workload model, and do not incorporate the notion of discrete tasks. Most of the approaches aim at

workload maximization (clock cycles executed) under thermal constraints on a processor that supports
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continuous DVFS settings. In contrast we are focused upon embedded computing systems with well

defined task sets executing on a processor with discrete DVFS states. Finally, our research focuses on off-

line optimal/approximation approaches for the addressed thermal management problems. The proposed

approaches are able to generate DVFS and DPM schemes with provably solution quality bounds in

polynomial time.

The thermal model considered by our approaches accounts for the impact of leakage power

consumption and package temperature on the die temperature of the processor. In comparison to the

existing techniques that fall within the scope of our work (as described above) there are two fundamental

problems of system-level thermal management on processors with discrete v/f states that have not been

addressed by previous work. What is the tight upper bound of the performance under a thermal constraint

with discrete DVFS for a periodic job sequence executing on an embedded processor ? How can we ef-

ficiently achieve a good schedule within a quality bound of the optimal ? The answers to these problems

would not only enable thermal aware (static) design of embedded systems, but also provide a good basis

to evaluate some on-line techniques. Moreover, an efficient approximation algorithm with guaranteed

quality bound would be applicable in run time. This work provides answers to these questions.

8.2 Preliminaries

Processor power consumption model

We consider an embedded processor with discrete active v/f states and a sleep state [41, 81]. In a par-

ticular active state, the dynamic power of the processor can be estimated off-line by static analysis of

applications. We denote the total dynamic power of the processor during executing job Ji in state s j at

time t is ρi j(t). If the job and execution state are not specified, we denote the dynamic power of the

processor at time t as ρ(t). The total leakage power dissipation of the processor at time t is temperature

dependent, which can be approximated by a piece-wise linear form as αT (t)+β [55]. Here α and β

are constant leakage coefficients of the processor and T (t) is the current temperature of the die at time t.

The total power dissipation of the processor at time t is the summation of dynamic power ρ(t) and the

leakage power at time t, which is given by

p(T, t) = ρ(t)+αT (t)+β (8.1)

In the equation the term p(T, t) consists of two factors; a die temperature dependent component that

is denoted as pT (t) = αT (t), and a die temperature independent component which is given by ps(t) =

ρ(t) + β . The switching overheads between various active states and from active to sleep state are
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Figure 8.1: Hotspot compact thermal model for quad-core processor

considered to be negligible in comparison to task run times [68]. The wake-up overhead from the sleep

state is assumed to be a processor dependent constant.

Processor thermal model

The processor temperature profile is generated from a first-order Resistor-Capacitor (RC) compact ther-

mal model (CTM) derived from the Hotspot simulator [32]. Figure 8.1 depicts the Hotspot quad-core

RC CTM. Hotspot models multiple layers of the processor including the die, thermal interface material

(TIM), heat spreader, heat sink, and finally the ambient environment. In the model the intra-layer thermal

conductance is denoted by Rxti (unit W/◦C) where x = d, t,h or s for die, TIM, heat spreader, or heat

sink, respectively. The inter layer thermal conductance is denoted by Rxi (unit W/◦C), and the thermal

capacitance of each layer is given by Cxi (unit J/◦C). The heat generation on the die is a function of

the processor power consumption and is represented by perfect current sources in the RC CTM as Pdi.
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Finally, Ra and Ca denote the ambient thermal conductance and capacitance, respectively, and Tamb rep-

resents the ambient temperature. As such the Hotspot model is primarily meant for simulation, and is

not conducive for design time thermal optimization techniques.

We derive a RC thermal model which is conducive for design time optimization from the

Hotspot CTM by making several key observations. The intra-layer thermal conductances are much

larger (at least 4 times) than the corresponding inter-layer thermal conductances, that is Rxti >> Rxi.

This is due to the fact that the lateral heat-transfer cross sectional areas are much less than vertical ones,

and consequently their contribution to the thermal RC time constants is negligible in comparison with the

vertical thermal conductances. Further, the RxiCxi time constants of the TIM, heat spreader and heat sink

are much larger than the RdiCdi time constant of the die. As the thermal aware design problem primarily

focuses on satisfying the temperature constraints on the die, the RC model of the TIM, heat spreader and

heat sink can be collapsed into a single RC model for the chip package. Further, as we are interested

in a single embedded processor core, and we ignore the impact of intra-layer thermal conductances, the

die temperature is approximated as uniform across the core. This assumption is supported by the ob-

servation that the hotspot of a processor is well-defined and alleviates the need for a finer granularity

CTM [98]. The current ACPI specification [3] includes an example for thermal management with the

processor specified as a single thermal zone. We derive the CTM (left hand side of Figure 8.2). In the

following paragraphs we discuss the calculation of the die and package temperatures based on this CTM.

Die temperature calculation

In the derived CTM (see Figure 8.2) Rd is the thermal conductance from the die to the package, and Cd is

the die capacitance. Similarly, Rp is the thermal conductance from the package to the ambient environ-

ment, and Cp is the package capacitance. The die temperature has a much smaller time constant (RdCd ≈

in the order of ten milliseconds) than the package temperature time constant (RpCp ≈ in the order of one

minute). For time duration of the order of 0.1RpCp, the package temperature can be considered to be

constant. Consequently, the die temperature can be modeled by the bottom right hand side of Figure 8.2,

and calculated by the following equation:

Cd
dT (t)

dt
=−

T (t)−Tp(t)
Rd

+ p(T (t), t) (8.2)

T (t) and Tp(t) are the respective die and package temperature at time t. We replace p(T (t), t) by the

power model in Equation 8.1, and combine the parameters of T (t). Let R′
d = Rd

1−αRd
. We have the

following equation:

Cd
dT (t)

dt
=−T (t)

R′
d

+(
Tp(t)
Rd

+β +ρ(t)) (8.3)
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Figure 8.2: Compact thermal model for single core derived from Hotspot

Note that the Tp(t) is considered as a constant during 0.1RpCp. Therefore, the equation is an ordinary

differential equation (ODE). By solving Equation 8.3, the die temperature is calculated by the following

equation:

T (t) = T (0)exp
− 1

R′dCd
t
+T s

d (t)(1− exp
− 1

R′dCd
t
) (8.4)

Here T s
d (t) is considered as the steady state die temperature at the end of the time period t = 0.1RpCp. Be-

cause 0.1RpCp >> RdCd , T s
d (t) is calculated by considering dT (t)

dt ≈ 0 at the end of time period 0.1RpCp.

T s
d (t)≈ R′

d(
Tp(t)
Rd

+β +ρ(t)) (8.5)

From the equation, T s
d (t) is a function of package temperature Tp(t) and the dynamic power ρ(t).

Calculation of the package temperature

The package temperature is approximated in the top right hand side of Figure 8.2 and is updated every

0.1RpCp. We have the following equation.

Cp
dTp(t)

dt
=−

Tp(t)−Tamb

Rp
+ p(T (t), t) (8.6)

We substitute p(T (t), t) by Equation 8.1, and replace the T (t) in Equation 8.1 by Equation 8.5 since

the package temperature is updated every 0.1RpCp. Then we combine the parameters of Tp(t). Let

R′
p =

RpRd
Rd−αR′

dRp
. Thus, we have

Cp
dTp(t)

dt
=−

Tp(t)
R′

p
+

αR′
d

Rd
Tamb +(1+αR′

d)(β +ρ(t)) (8.7)

Again, this is the form of an ODE. We solve it to update Tp(t) every 0.1R′
pCp. When the processor

dissipates a fixed amount of dynamic power ρ(t) for a long time t >> R′
pCp, the package temperature
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reaches the steady state temperature, which is given by

T s
p(t)≈ R′

p(
αR′

d
Rd

Tamb +(1+αR′
d)(β +ρ(t))) (8.8)

Calculation of the die temperature at the completion of each job

When the processor executes a job Ji in state s j, we can achieve dynamic power consumption traces

by offline analysis. Assume that we know the die temperature Td(0) and package temperature Tp(0)

at the start of the first job. Once the job schedule (execution state of each job) is known, we feed the

corresponding dynamic power into the Equation 8.4, and calculate the final die and package temperatures

at job completion by Equation 8.4. The package temperature is updated by solving Equation 8.7 every

0.1RpCp ≈ 10s or at the completion of each job (depending upon the earliest time instance). The die

and package temperatures at the completion of a job are the starting die and package temperatures of the

following job. Then we calculate the die and package temperatures at the completion of the following

job. Once a job is finished (starting from time 0 and finishing at time t), the die and package temperature

changes during the time t are respectively denoted by ∆Td = Td(t)−Td(0) and ∆Tp = Tp(t)−Tp(0).

When the processor is in sleep state, the dynamic power is very small and negligible. The die

temperature gradually approaches the package temperature. If the time is long enough, the package

temperature gradually approaches to the ambient temperature Tamb. Typical transition time of the die

temperature to package temperature is of the order of tens of milliseconds [93].

Task model

We consider a periodic task set described as a sequence of n jobs J = {J1,J2, ...,Jn}. The jobs are

independent and the order of execution is specified by the sequence. Periodic task set denotes that the

sequence of n jobs are executed in an iterative manner1. Once one run of the task set is finished, the

processor continues to execute the task set for the next run. We are interested in the design time or static

version of the thermal aware design problem. Thus, we assume that the tasks have been characterized for

their run times. The worst case execution time of each job Ji in v/f state s j is known and is denoted by ti j.

The duration of each job at the lowest v/f state (slowest frequency) is in the range of ten to hundreds of

milliseconds which is comparable to the die temperature time constant (RdCd). The number of iterations

of the entire application is many or infinite.

The task model as described is encountered in communication and multimedia sub-systems

of many embedded computing systems. These sub-systems display dataflow behavior, and they can
1Note that the concept of periodicity is different from the traditional concept in real-time schedules [19, 52, 53, 98, 99].
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be most naturally specified as a set of jobs iteratively executing over a stream of data. For example

H.264 decoding can be expressed by our task model. As such applications are often encountered in

mobile embedded devices which only include the basic convection cooling mechanism without a fan,

the thermal aware design problem as addressed in the work is of particular significance.

8.3 Problem Description

The thermal-aware performance optimization problem TAmin can be described as follows. Given:

• a processor with one sleep state ssleep with power consumption ρsleep and a set of active v/f states

M(|M|= m) with technology dependent parameters α and β ;

• a processor thermal model with die thermal resistance as Rd and thermal capacitance as Cd , pack-

age thermal resistance as Rp and thermal capacitance as Cp;

• a periodic sequence of n independent jobs J = {J1,J2, ...,Jn} with ti j denoting the run time of job

Ji at v/f state s j and ρi j denoting the dynamic power consumption of job Ji at v/f state s j (s j ∈ M);

• a peak temperature limit Tmax.

The objective is to obtain an assignment of one active v/f state for each job, and select the processor sleep

times such that the latency of the n jobs is minimized subject to the peak temperature constraint. Our

problem definition considers that the entire task set executes in a periodic manner for a long time (infinite

for the purposes of thermal modeling). As we are interested in generating schedules that are valid under

all temperature conditions, we consider the initial die temperature at the start of each iteration to be

Tmax. The associated initial package temperature is a function of the schedule that is generated as part

of the solution. The problem as described is a discrete optimization problem with nonlinear continuous

feedback constraint. In the remainder of the work we use jobs and tasks to refer to the same entity.

We incorporate the sleep modes in the problem formulation by considering a sequence of N =

2n+ 1 jobs J′ = {J′1,J
′
2, ...,J

′
2n+1}. Each J′i when i is an even number refers to the job Ji/2 from the

original set (named active jobs), and when i is odd refers to a job Js that denotes that the processor

is in sleep state (named sleep jobs). The only difference between J and J′ is that J′ includes all the

jobs in J and sleep jobs before and after each job in J. For example, given a task sequence J with

n = 3 active jobs, J = {J1,J2,J3} we can construct a new sequence J′ with 2n+ 1 = 7 jobs as follows

J′ = {Js,J1,Js,J2,Js,J3,Js}= {J′1,J
′
2,J

′
3,J

′
4,J

′
5,J

′
6,J

′
7}. Note that the order of active jobs in J remains the

same in set J′.
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Assume the maximum die cooling transient time at a steady state package temperature is tms,

estimated by cooling the processor die from Tmax to Tamb in sleep mode (package temperature is assumed

to be at Tamb). The execution time of Js is in the range of [0, tms]. A sleep time of more than tms lowers the

performance in terms of more execution time with no reduction in temperature. We consider the range

[0, tms] as q distinct values {t1, t2, . . . tq} in increments of tms/(q−1). Thus, if tms = 100 and q = 11 we

consider the following values {0,10,20 . . .100} 2. We assume that the length of sleep interval is selected

from one of the distinct values in the range. Note that 0 belongs to the distinct set of values and it implies

that the processor does not go into the sleep mode. We can integrate the decision problem associated with

sleep and active jobs by considering that each job J′i has r = (m or q) different choices (r = m if i is even,

else r = q), and each choice has an associated execution time given by ti j (1 ≤ i ≤ 2n+ 1,1 ≤ j ≤ r).

Thus, TAmin can be formulated as follows:

TAmin : minZ = ∑2n+1
i=1 ∑r

j=1 ti jxi j

sub ject to Cd
dT (t)

dt
=−T (t)

R′
d

+(
Tp(t)
Rd

+β +ρ(t)) (8.9a)

Cp
dTp(t)

dt
=−

Tp(t)−Tamb

Rp
+ p(T (t), t) (8.9b)

∑r
j=1 xi j = 1,∀i ∈ [1,2n+1]; (8.9c)

Td(t = 0) = Tmax;Td(t)≤ Tmax; (8.9d)

xi j = {0,1}; (8.9e)

The objective is to minimize the execution time per iteration of the job sequence. Constraints 8.9a and

8.9b specify the thermal model. Constraint 8.9c demonstrates if i is even and xi j = 1 the solution to the

above formulation denotes that job Ji/2 executes in active state s j for time ti j. Similarly, when i is odd

and xi j = 1 the processor enters the sleep state for time ti j. We assume the various time values in the

problem formulation are integral. Constraint 8.9d specifies the initial die temperature setting. It also

specifies that the peak die temperature during multiple iterations of job sequence execution should be

no more than Tmax. The above formulation includes non-linear die and package thermal models, where

temperatures are determined by equivalent first order RC circuits. However, even if the thermal models

were linear and the package temperature is stable, the problem can be shown to be NP-hard.

Theorem 8.3.1. TAmin is NP-hard.

Proof. Consider a special case of TAmin. We assume the package temperature is stable at Tamb. Further,

we assume that processor sleeps only at the beginning for tms time such that the task sequence can be
2The distinct values in the range do not necessarily have an equal interval between any two neighboring values. For example,

we can make the first value as 0, which represents that the processor does not go into sleep mode. We can make the second value
as the wakeup overhead plus the sleep time that represents the wakeup overhead is considered.
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executed under Tmax for repetitive execution of the schedule. After the sleep job, the die temperature

becomes Tamb. We assume the maximum run time of each actual job is small enough such that the

thermal curve is linear. The special case implies that the thermal curve of a feasible schedule would be

monotonically increasing after the sleep job. The final die temperature is achieved on the completion

of all actual jobs, which should be no more than Tmax. Thus, the objective function can be specified

in terms of the execution time of actual jobs (without the sleep jobs) minZ = ∑n
i=1 ∑m

j=1 ti jxi j. As we

consider that the die thermal curve is linear, die thermal constraints (8.9a) and (8.9d) can be replaced by

Tamb +∑n
i=1 ∑m

j=1 ∆Ti jxi j ≤ Tmax where ∆Ti j denotes the die temperature increase due to the execution of

job Ji in active state s j.

The special case of TAmin can be shown to be NP-hard by a polynomial reduction from the well

known multiple-choice knapsack problem (MCKP), which is NP-hard. Let tmax be the upper bound on

the execution time of any job, that is tmax = max{ti j},∀Ji ∈ J, j ∈ m. The saving in execution time due to

a job Ji operating in active state s j is given by tmax − ti j. Finding an optimal solution to the problem with

an objective of maximizing the execution savings is equivalent to solving the MCKP. Thus, the TAmin is

NP-hard.

In the following sections we provide optimal and FPTAS based algorithms as solutions to the

thermal aware scheduling problem.

8.4 TAmin for periodic job sequences

In this section, we address the TAmin problem for periodic job sequences as specified in the task model.

We consider the die and package temperature vary during the short and long term of the job sequence

execution. We also consider the impact of the package temperature on the die temperature. When the

job sequence is executed with many (or even infinite) iterations by a schedule, the package temperature

is heated up to a steady state temperature by the average power dissipated by the processor. We consider

the average power dissipated by the processor as the average power of the schedule per iteration when

package temperature reaches steady state. We seek the optimal schedule with minimal latency such that

the die and package temperatures remain under Tmax all the time.

Optimal solution

Main idea

The main idea for the optimal schedule is based on the following lemma.
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Lemma 8.4.1. Given a schedule S consuming the average power ρav, if S is feasible under Tmax con-

straint when package temperature is in the steady state, S is always feasible under Tmax constraint.

Proof. Based on the package thermal model in Equation 8.8, a fixed amount of average power of the job

sequence by schedule S causes package temperature rise to a steady state (say Tsp). According to the

package temperature model in Equation 8.7, Tsp is the highest that the package temperature could rise

during multiple iterations of S. Based on the die temperature model in Equation 8.4, the higher package

temperature causes the higher die temperature profile for a schedule. Since Tsp is the highest package

temperature during multiple iterations of S, S executed at Tsp has the highest die temperature profile

comparing to S executed at all the package temperatures lower than Tsp. Because S executed at Tsp is

feasible under Tmax constraint, the lemma is proved.

From the lemma, the optimal schedule (denoted by S∗) has the following properties.

i. When the package temperature is in steady state (denoted by T ∗
sp), the die temperature per iteration

is no more than Tmax.

ii. When the package temperature is in steady state, the average power consumed by S∗ keeps the

package temperature below T ∗
sp.

iii. The latency of the job sequence per iteration is minimized.

The properties (1) and (2) specify S∗ is feasible under Tmax constraint all the time based on the lemma.

The property (3) specifies the latency of S∗ is the smallest. To achieve the optimal schedule S∗, we utilize

the following steps.

i. For a given steady state package temperature Tsp, we calculate the average power ρav. ρav is the

maximum average power of feasible schedules that ensures the package temperature is no more

than Tsp. We define ρav as the associated power budget to Tsp.

ii. For a given Tsp, we have a test procedure that answers the following question. Suppose that the

package temperature is in a steady state Tsp associated with a power budget ρav. Assume the

processor starts from the die temperature Tmax and the package temperature Tsp. Does there exist

a schedule S such that during one iteration of the schedule the peak temperature limit Tmax is not

exceeded, the latency of one iteration is minimized and the average power of S is no more than

ρav? A solution schedule for the question is the feasible schedule with minimal latency when the

package temperature is in the steady state Tsp.
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iii. We utilize a search algorithm for the optimal solution based on the test procedure with many Tsp

values. The test procedure returns solution schedules for these Tsp values. The solution schedule

with the smallest latency is the final solution.

Find the associated power budget to a given Tsp

For a given steady state package temperature Tsp, the associated power budget is the average power

consumption that leads to the Tsp. According to the thermal model in Equation 8.8, we replace T s
p(t) by

Tsp and replace ρ(t) by ρav for the steady state package temperature. Thus, ρav is given by

ρav =
1

1+αR′
d
(

1
R′

p
Tsp −

αR′
d

Rd
Tamb)−β (8.10)

Here ρav is the average power that continuously heats the chip package when the job sequence is executed

in many iterations. Since ρav is calculated from the steady state package temperature model, ρav is the

maximum average power of schedules that guarantees the package temperature is below Tsp.

Test procedure for TAmin

We address the question to be answered by the test procedure as a subproblem of the TAmin problem

(denoted by TAPmin). The TAPmin problem is the TAmin problem for the job sequence with power budget

constraint when the package temperature is in steady state. The TAPmin problem described in Section

8.5 has two more constraints.

i. The package temperature remains in a steady state Tsp;

ii. The average power of a solution schedule should not exceed the associated ρav to Tsp.

The first constraint specifies the steady state package temperature setting. The second constraint ensures

during multiple iterations of a solution schedule the package temperature does not exceed the steady

state package temperature setting for the TAPmin problem.

In Section 8.5, we provide an optimal algorithm TAP−OPT and a polynomial-time approxi-

mation algorithm TAP−FPTAS as solutions to the TAPmin problem. The solution techniques in Section

8.5 perform as test procedures for the TAmin problem. If a solution exists for the subproblem, our test

procedure TAP−OPT/TAP−FPTAS produces an optimal/approximated schedule at the package tem-

perature setting Tsp such that the peak temperature constraint is satisfied, the actual average power of the

schedule is no more than power budget associated with Tsp, and the latency per iteration is minimized.

117



Search for the optimal solution

We utilize a search algorithm based on the test procedure to find the optimal steady state package tem-

perature setting that produces the optimal solution for the TAmin problem. In the search algorithm, the

test procedure is the TAP−OPT algorithm described in Section 8.5. One straightforward method for the

optimal solution is to utilize the test procedure to test each possible package temperature setting in the

range of lower and upper bound. The upper bound of the steady state package temperature setting is Tmax

since Tmax is the peak temperature limit. The lower bound of the steady state package temperature setting

is Tamb. We discreterize the range of the steady state package temperature settings at the granularity of

1◦C. In our technique we further reduce the search space based on the following property.

We observe that the package temperature and power budget constraints in the subproblem

TAPmin are correlated. When the steady state package temperature setting Tsp is set to a higher value

(the package temperature setting constraint is tighter), the associated power budget to Tsp is bigger (the

power budget constraint is looser). The correlated constraints cause the existence of a knee with an

optimal steady state package temperature setting T ∗
sp specified in the following property.

Lemma 8.4.2. If Tsp > T ∗
sp, the optimal latency to the TAPmin problem is monotonically increasing as

Tsp increases. If Tsp < T ∗
sp, the optimal latency to the TAPmin problem is monotonically decreasing as Tsp

increases.

We prove the property with the illustration of the figure 8.3. Figure 8.3 shows two scenarios of

the TAPmin problems with relaxed constraints. The gray full line plots the optimal latency Z values to the

TAPmin problems when the power budget constraint is relaxed to infinity. x axis represents the package

temperature setting Tsp for the TAPmin problems. y axis represents the optimal solution Z for the TAPmin

with various Tsp settings. As Tsp increases, the processor sleeps more or executes at a lower v/f state in

order to maintain the die temperature under Tmax. Hereby, the optimal latency to the TAPmin problem

monotonically increases as Tsp increases. In the other scenario, the black dotted line plots the optimal

returns Z to the TAPmin problems when the package temperature setting Tsp is relaxed to Tamb. x axis

represents the power budget. Note that the power budget is a function of the package temperature setting.

We map the power budget axis to the associated package temperature setting axis in the plot. y axis

represents the optimal solution Z for the TAPmin with various power budget values. As the power budget

increases, the processor reduces sleep time or executes at a higher v/f state because the average power

of solution schedules can be bigger. Hereby, the optimal latency to the TAPmin problem monotonically
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Figure 8.3: Illustration of the knee with the optimal Z∗ and optimal T ∗
sp

TA−OPT (|J′|)/∗TA−FPTAS(ε, |J′|)∗/:

0 set TLB = Tamb and TUB = Tmax;
1 set Z∗ = ∞, S∗ = NULL;
2 set Z = 0, Tsp = TUB;
3 do {
4 if (TAP−OPT (Tsp, |J′|)

returns success with Z and S){
/* 4 if (TAP−FPTAS(ε,Tsp, |J′|)

returns success with Z and S){ */
5 if (Z∗ ≥ Z) {record Z∗ = Z, S∗ = S };
6 else { break; }}
7 Tsp = Tsp −1; }
8 while (Tsp > TLB);
9 return Z∗,S∗;

Figure 8.4: Optimal algorithm for TAmin (Specifications in /**/ are the modifications for the approxima-
tion algorithm TA−FPTAS procedure

decreases as the power budget increases. The two scenarios cross at a knee with package temperature

setting T ∗
sp and solution Z∗. The solutions to the original TAPmin problem exist in the upper half of the

black dotted line (Tsp ≤ T ∗
sp) and the upper half of the gray full line (Tsp ≥ T ∗

sp) both to the knee. At the

knee with T ∗
sp, the optimal latency to the TAPmin problem is the smallest among all the solutions to the

TAPmin problems with possible package temperature settings. Thus, the optimal latency Z∗ to the TAPmin

problem at the knee is the optimal to the TAmin problem. We further verify the property with experiments

in later section 8.6. Next we provide the search algorithm.

Figure 8.4 depicts the search algorithm for the optimal package temperature setting T ∗
sp and

the optimal solution Z∗. The search range is between Tamb and Tmax. Line 0 sets the upper bound and
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lower bound of the package temperature setting. Lines 3-8 executes the search based on the TAP−OPT

procedure with input Tsp. Line 2 sets the package temperature setting Tsp as the upper bound of package

temperature Tmax. Line 4 triggers TAP−OPT procedure with Tsp as input. If TAP−OPT returns success

in Line 4, Lines 5-6 record the current solution and determines whether the optimal solution is found.

Based on Lemma 8.4.2 we seek the knee in the range of Tsp from the upper bound. According to the

lemma, the solution latency Z should first decrease then increase as the test Tsp value decreases. Line

5 compares the current latency Z with the previous recorded latency Z∗. Until the previous recorded

latency Z∗ is less than current latency Z, we stop the search because the previous recorded solution is the

knee. Z∗ is the final solution for the TAmin problem when we stop the search. If search continues, Line

8 increments the next package temperature setting. Lines 9 returns the solution according to the search

result.

We denote the range of package temperature settings at the granularity of 1C◦ as a constant

L. The computational complexity of the optimal algorithm TA−OPT is L times the computational

complexity of the TAP−OPT algorithm. In the later section we show that the computation complexity

of the TAP−OPT algorithm is pseudo-polynomial time. To reduce the runtime of the solution technique,

we further provide a polynomial time algorithm based on the FPTAS in Section 8.5 for the TAPmin

problem. Next we present the FPTAS based algorithm.

FPTAS based algorithm

We modify the optimal algorithm to an FPTAS based algorithm by replacing the test procedure TAP−

OPT with the FPTAS TAP−FPTAS presented in Section 8.5 for the subproblem TAPmin. The segmenta-

tion /**/ in Figure 8.4 describes the algorithm TA−FPTAS. TA−FPTAS requires a designer-specified

quality bound ε as input. The ε is an input to the test procedure TAP−FPTAS that can produce quality-

guaranteed solutions for the subproblem TAPmin at each package temperature setting Tsp.

In the TA− FPTAS described in Figure 8.4 similar to TA−OPT algorithm, we utilize the

search algorithm to search for the knee with the steady state package temperature setting that leads to

the smallest latency. The search algorithm triggers the TAP−FPTAS with ε instead of TAP−OPT

procedure to test each package temperature setting. Finally it finds the knee that leads to the smallest

latency. The smallest latency is the final solution.

The test procedure TAP−FPTAS in Line 4 of Figure 8.4 is able to achieve an approximated

solution for a given steady state package temperature Tsp and a given quality bound ε . As proved in

Section 8.5, TAP−FPTAS with ε is a bi-criteria approximation algorithm that generates solutions within
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proved bounds. Because TAP−FPTAS is fully polynomial time technique, the run time of TA−FPTAS

is polynomial.

In the next section, we describe the TAPmin problem and provide the TAP−OPT and TAP−

FPTAS techniques as solutions. The techniques TAP−OPT and TAP−FPTAS are utilized as the test

procedures as part of the techniques TA−OPT and TA−FPTAS for the TAmin problem.

8.5 TAmin for job sequence with power budget constraint

In this section, we consider the subproblem TAPmin as the TAmin problem with a power budget constraint

when package temperature is in steady state. The problem description is similar to the TAmin problem

except that the solution schedule is constrained by a power budget and a steady state package temperature

setting. During the job execution, the package temperature remains the same as the steady state package

temperature setting (say Tsp) because the job execution time is much shorter comparing to the package

temperature time constant. The average power of the solution schedule is constrained by the associated

power budget ρav to Tsp calculated from Equation 8.10.

Similar to the formulation of TAmin, we formulate the subproblem for a job sequence J′ inte-

grating sleep jobs and active jobs as follows.

TAPmin : minZ = ∑2n+1
i=1 ∑r

j=1 ti jxi j

sub ject to Cd
dT (t)

dt
=−T (t)

R′
d

+(
Tp(t)
Rd

+β +ρ(t)); (8.11a)

E = ∑2n+1
i=1 ∑r

j=1 ei jxi j ≤ ρav ·Z; (8.11b)

∑r
j=1 xi j = 1,∀i ∈ [1,2n+1]; (8.11c)

Td(t = 0) = Tmax;Tp(t) = Tsp;Td(t)≤ Tmax; (8.11d)

xi j = {0,1}; (8.11e)

The objective of the TAPmin problem is to minimize the execution time of one run of the job sequence

including total N = 2n+ 1 sleep and active jobs. xi j represents that job J′i is executed at the jth power

level or option. ti j is provided as the execution time of J′i at the jth option. Constraint 8.11a specifies that

the die temperature in the TAPmin problem follows Equation 8.3, which is a decoupled die temperature

thermal model. We assume the package temperature remains the same as the initial package temperature

Tsp specified in Constraint 8.11d. The starting die temperature is initialized as the peak temperature limit

Tmax. Constraint 8.11b specifies the average power of the solution schedule is no more than the power

budget ρav calculated from Tsp. We specify the power budget constraint in the form of energy constraint.

The energy consumption E of the solution schedule is no more than the power budget ρav times the
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execution time Z. ei j is provided as the energy consumption of J′i at the jth option. Similarly constraint

8.11c specifies that only one v/f level is selected for each job.

The TAPmin problem is NP-hard because a special case of TAPmin has been proved to be NP-

hard in the proof of Theorem 8.3.1. The NP-hard problem addressed in the proof of Theorem 8.3.1 is a

special case of the TAPmin problem without considering power budget constraint and assuming that the

package temperature is the ambient temperature. Since the special case of TAPmin is NP-hard, TAPmin is

NP-hard. Next, we provide the optimal algorithm and the approximation algorithm as solutions to the

TAPmin problem.

Optimal algorithm for TAPmin

Overview

The optimal algorithm is based on a dynamic programming (DP) approach that runs in pseudo-polynomial

time similar to the knapsack problem [96] . However, TAPmin is differentiated from the knapsack prob-

lem because the problem includes multiple constraints, especially the non-linear thermal constraint. The

central idea of the DP originates from the following property of the problem.

Lemma 8.5.1. Consider an optimal solution S∗ for the problem that executes the job sequence in Z∗

time. Let the optimal solution finish execution for the first i jobs in J′ with execution time Z and energy

consumption E. Then a partial solution S′1:i that minimizes the final die temperature after executing the

first i jobs of J′ in exactly Z time and exactly E energy can be utilized to generate a complete solution

that executes in Z∗ time (same as the optimal solution).

Proof. The final die temperature after the execution of the first i jobs with exactly Z time and E energy by

S∗ and S′1:i are differently denoted as T S∗
d and T

S′1:i
d with T

S′1:i
d ≤ T S∗

d . We construct a full schedule S′ with

the partial schedule S′1:i and the remainder of the optimal schedule S∗ for jobs (J′i+1, ...,J
′
N). According

to the die temperature thermal model for executing one iteration of the job sequence, the remainder of

the optimal schedule S∗ for jobs (J′i+1, ...,J
′
N) starting from T S∗

d is feasible under thermal constraint when

starting from T
S′1:i

d . Thus, S′ is feasible under thermal constraint. Furthermore, S′ consumes identical

execution time Z∗ and identical energy consumption as those of S∗. Consequently, S′1:i leads to a solution

that executes by Z∗.

Our DP incrementally generates a schedule that minimizes the final die temperature for all

possible jobs i with total execution time Z and total energy consumption E. Then, the smallest Z value
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with i = N under energy constraint and the associated traceback schedule are obtained as the solution

for the overall problem. Let T (i,Z,E) be the minimum final die temperature, when the first i jobs are

executed in exactly Z time and exactly E energy. In the DP algorithm, T (i,Z,E) is minimized subject

to Tmax for i ∈ {1,2,3, . . . ,2n+ 1}, Z ∈ [1,ZUB] and E ∈ [1,EUB] where ZUB is an upper bound on the

optimal value of Z and EUB is an upper bound on the energy of a feasible schedule. Let Z∗ denote the

optimal value. Z∗ is determined by the smallest value of Z such that T (2n+1,Z,E)≤ Tmax and E ≤ ρavZ.

Calculation of ZUB and EUB

ZUB can be calculated by considering a schedule Sinit as follows. Given an initial die temperature Tmax

and an initial package temperature Tsp, the processor first sleeps such that Td ≈ Tsp. Then the processor

executes the first active job at the highest voltage (fastest frequency) that does not violate the temperature

constraint Tmax. Let T1 denote the die temperature at the end of execution of job J1. Next the processor

again sleeps for some time such that the die temperature reduces to Tsp from T1. Then it executes the

second active job at the highest voltage that does not violate the temperature constraint and again sleeps

till the die temperature is equal to Tsp. The processor repeats the execution pattern for all jobs.

For example, suppose there is an active job sequence J = {J1,J2,J3} with Sinit . The package

temperature is 55◦C and the peak temperature is 100◦C. The corresponding task sequence J′ becomes

{Js,J1,Js,J2,Js,J3,Js }. In Sinit , the first sleep job Js is executed such that temperature reaches 55◦C3.

Then, J1 is executed at an available v/f state as fast as possible such that peak temperature remains below

Tmax. Sinit repeats the execution pattern for J2 and J3 until the last Js is executed to reach 55◦C. Clearly,

such a schedule is feasible under thermal constraint. Therefore the latency by the schedule is a valid

upper bound ZUB on Z∗.

EUB can be calculated from ZUB and the average power budget ρav for the package temperature

setting Tsp achieved from Equation 8.8. EUB is given by ZUB ∗ρav.

Dynamic programming algorithm

Let Si,Z,E be the schedule with T (i,Z,E). If Si,Z,E does not exist, we define T (i,Z,E) = ∞. Set

T (0,Z,E) = Tmax for Z ∈ [1, ...,ZUB] and E ∈ [1, ...,EUB]. We set T (1,0,0) = Tmax, because the first

job is a sleep job and it can have zero sleep time and zero energy. The recurrence relation for the DP

3According to the thermal model in a sleep mode the temperature will approach Tsp asymptotically. Therefore, in practice for
a sleep mode we consider the time required for the temperature to fall reasonably close (say within 1%) of Tsp.
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TAP−OPT (Tsp,N)/*TAP−OPTm(N,ZUB, t ′i j,EUB,e′i j)*/

0 set T (i,Z,E) = ∞(∀i = 1 : N,∀Z = 1 : ZUB,∀E = 1 : EUB);
1 set T (0,Z,E) = Tmax(∀Z = 1 : ZUB,∀E = 1 : EUB);
2 for i = 1 : N {
3 for Z = 1 : ZUB {
4 for E = 1 : EUB {
5 Tmin = ∞;
6 for j = 1 : r {
7 calculate Th = T (i−1,Z − ti j,E − ei j)+∆T (s j);
/*7 calculate Th = T (i−1,Z − t ′i j,E − e′i j)+∆T (s j);*/
8 if (Th ≤ Tmax) and (Th < Tmin), set Tmin = Th and jh = j; }
9 fill Tmin in cell (i,Z,E) as T (i,Z,E) and record jh; } } }
10 find the smallest Z∗ with T (N,Z,E)≤ Tmax and E ≤ Z ∗ρav;
/*10 find the smallest Z∗ with T (N,Z,E)≤ Tmax and E ≤ Z +N;*/
11 if found, trace back and return success, Z∗ and S∗;
12 else return failure;

Figure 8.5: Optimal algorithm for the TAPmin (Specifications in /* */ are the modifications for the TAP−
OPTm procedure invoked by approximation algorithm in Section 8.5)

algorithm is given by:

T (i,Z,E) = min
j∈[1,r]

{T (i−1,Z − ti j,E − ei j)+∆T (s j)|T ≤ Tmax} (8.12)

The non-linear decoupled die temperature equation (Equation 8.3) is utilized to achieve the die temper-

ature change (denoted by ∆T (s j)) due to a particular sleep option or an active job execution. From the

recurrence, we can find T (N,Z,E), for all Z ∈ [1,ZUB] and E ∈ [1,EUB]. The optimal solution is then

SN,Z∗,E (denoted by S∗ in the remainder of the work), where

Z∗ = min{Z|T (N,Z,E)≤ Tmax,E ≤ ρav ∗Z} (8.13)

The recurrence relation leads to an algorithm TAP−OPT (Tsp,N) in Figure 8.5 that constructs a

3-dimension DP table (refer to Lines 2-9 in Figure 8.5). The x index of the table represents the sequence

of N = 2n + 1 jobs (including both active jobs and sleep jobs). The y index represents all possible

objective values Z ∈ [1,ZUB]. And the z index represents all possible energy consumption values E ∈

[1,EUB]. Each cell has an entry of the minimum final die temperature when Z time and E energy are

spent, and the first i jobs are finished. Further, each cell (i,Z,E) also has an entry for the time ti j and

the energy ei j associated with sleep or active state s j that generates the minimum final die temperature

value. The ti j and ei j values will be essential for tracing back the final solution. The table is constructed

in the order of x index increasing. Thus, after the algorithm enters the cell (i,Z,E), the cells for all

the x index smaller than i are filled in. And, the previous cells with 1 : Z − 1, 1 : E − 1 and the ith
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index are also filled in. The algorithm need not re-calculate the optimal solution for a given subproblem

T (i−1,Z − ti j,E − ei j). For each cell, r calculations are needed to find the minimum final temperature.

Once the algorithm finds Z∗, the associated schedule, denoted by S∗, is achieved by tracing back in the

solution table from (2n+1) to 1. This can be easily implemented by 2n+1 table lookups.

Figure 8.5 describes the pseudo-codes of dynamic programming algorithm TAP−OPT (Spec-

ifications in /* */ are the modifications for the TAP−OPTm procedure invoked by approximation algo-

rithm in Section 8.5). N and Tsp are the inputs representing the total number of the new job sequence

and the steady state package temperature setting. From the jobs and Tsp we derive the upper bound of

the optimal Z∗ and the upper bound of energy consumption. Lines 0-1 initialize the DP table. Lines 2-9

construct the DP table by Equation 8.12. Lines 10-12 find the optimal Z∗ by Equation 8.13 and return

the optimal schedule, or return failure if no feasible solution exists.

Computational complexity analysis

The computational complexity of the DP algorithm is pseudo-polynomial. For each cell, it needs O(r)

computations (Lines 5-9 in Figure 8.5). The algorithm has O((2n+1) ·ZUB ·EUB) iterations to fill in the

cells (Lines 2-3 in Figure 8.5). Thus, the computation complexity is O(rn ·ZUB ·EUB).

Proofs of optimality

Next we prove the optimality of the proposed algorithm.

Lemma 8.5.2. Given N, Z and E the recurrence relation T (N,Z,E) (defined by Equation 8.12) gives

the lowest die temperature when N jobs are executed in exactly Z time and exactly E energy if a feasible

solution exists.

Proof. We prove by induction.

• For N = 1, J′ only has one job (sleep job) and thus there always exists a feasible solution. For any

given Z, E and by Equation 8.12, T (1,Z,E) is equal to mins j∈[1,r]{Tmax +∆T (s j)}. s j is chosen

from q choices in sleep state. It is clear that Equation 8.12 gives the lowest final die temperature

for N = 1 job executed in exactly Z time and exactly E energy.

• Suppose that, for N = i and any given Z, E, T (i,Z,E) is either the lowest final die temperature

for the first N = i jobs with exactly Z execution time and exactly E energy subject to thermal

constraint, which is given by Equation 8.12. Or, T (i,Z,E) remains the initialized value as infinity

if no feasible solution exists.
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• Let us consider N = i+1. For any given Z and E and by Equation 8.12, when processor chooses

the jth state to execute J′i+1, T (i+1,Z,E) is given by
ch

Tj(i+1,Z,E) = {T (i,Z − t(i+1) j,E − e(i+1) j)+∆T (s j)|T ≤ Tmax}

Therefore, there are two cases for Tj(i+1,Z,E):

– Case I (T (i,Z − t(i+1) j,E − e(i+1) j) is infinity): Tj(i+ 1,Z,E) is also infinity, because there

is no feasible solution for the first i jobs executed in exactly Z − t(i+1) j time and exactly

E − e(i+1) j energy subject to thermal constraint.

– Case II (T (i,Z− t(i+1) j,E −e(i+1) j) is not infinity): By thermal model, the lower starting die

temperature leads to the lower final die temperature for the i+ 1th job. Thus, by induction

hypothesis, Tj(i+ 1,Z,E) achieves the lowest final die temperature for the first (i+ 1) jobs

subject to thermal constraint.

Thus, Tj(i + 1,Z,E) minimizes the final die temperature for the first (i+ 1) jobs in exactly Z

execution time and exactly E energy. Then, Equation 8.12 enumerates all possible j states for

J′i+1. Therefore, for any given Z, E, Equation 8.12 gives the lowest final die temperature such that

the first N = i+1 jobs are executed in exactly Z time and exactly E energy.

Theorem 8.5.1. Our dynamic programming algorithm generates optimal solutions for TAPmin.

Proof. By Lemma 8.5.2, for a given Z and a given E, Equation 8.12 calculates the lowest final die

temperature for N jobs with exactly Z execution time and exactly E energy. And it finally generates

a feasible solution under thermal constraint (if it exists). By Lemma 8.5.1, given the optimal value Z∗

for N jobs, Equation 8.12 always finds a feasible solution, and the feasible solution does not preclude

optimal solutions for TAPmin. Therefore, given Z∗, the algorithm is able to generate a feasible solution

for N jobs, which is an optimal solution for the problem. Further, Equation 8.13 enumerates all possible

Z values and E values for the N jobs and picks the smallest Z value with feasible solution as the result.

Therefore, our algorithm generates optimal solutions for TAPmin.
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(1+ ε) FPTAS for TAPmin

Overview

The DP algorithm for the optimal solution is not polynomial due to the factor ZUB and EUB in the com-

putational complexity which could be exponential in the input size of the problem. We now develop a

bi-criteria fully polynomial time approximation scheme (FPTAS) for TAmin. A FPTAS is an approxima-

tion algorithm whose run time complexity is bounded by a polynomial in the input size of the problem

and (1/ε). A FPTAS is the best one can hope for a NP-hard optimization problem [96]. A bi-criteria

approximation algorithm is an algorithm with quality bounds (η ,ζ ) for the problem, where η and ζ are

constants. If there exists a feasible solution, our algorithm finds a feasible schedule such that the total

execution time is no more than ηZ∗ when the energy constraint is relaxed to ζ ·ρavZ∗. The proposed

bi-criteria FPTAS generates schedules whose execution time is guaranteed to be no more than (1+ε)Z∗

and whose energy consumption is guaranteed to be no more than (1+ 2ε)ρavZ∗, where ε (typically

0 < ε ≤ 1) is a designer specified quality bound.

The approximation algorithm works by scaling and reducing the search space4 for the optimal

Z∗. The algorithm utilizes a probe procedure to test a possible optimal value Z in a search space for

the optimal. The probe procedure can fail or succeed on a testing value Z. The failure/success result

can be used to adjust the upper or lower bound of the search space for the optimal. The search space

is iteratively narrowed down by repetitive invocation of the probe procedure until the ratio between the

upper and lower bounds of the optimal is a constant. Then, the algorithm invokes an approximation

procedure to get the approximated result.

Approximation algorithm

The algorithm is described in Figure 8.6. The main algorithm is the TAPmin−FPTAS(ε,Tsp,N). Initially,

the algorithm finds the search space [ZLB,ZUB] for Z∗. As described earlier ZUB can be calculated from

Sinit . ZLB can also be estimated from Sinit by summation of the execution time of the jobs in the active

state. Let ti,init denote the execution time for a job J′i (i is even) in the active state for the schedule

Sinit . Thus, ZLB = ∑J′i∈J ti,init . The algorithm then narrows down the search space by probing the scaled

problem in lines 2 to 5. Here, probe(Z) acts as a test procedure that returns success if the scaled problem

has a feasible schedule, otherwise returns failure. The search procedure continues until the solution

4Our approximation scheme parallels the FPTAS for the restricted shortest path problem [57]. However, TAPmin is distinctly
different from the restricted shortest path problem due to the non-linear thermal constraints and the power budget constraint. Thus,
although there are some similarities in the solution approaches, the problem formulation and proofs are different.
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TAP−FPTAS(ε,Tsp,N):

0 initially get ZLB and ZUB;
1 ZUB = ZUB/3;
2 while (ZUB ≥ 2 ·ZLB)
3 { let Z =

√
ZLB ·ZUB;

4 if probe(Z) = f ailure, ZLB = Z;
5 else ZUB = Z; /* probe(Z) = success */}
6 Z f = TAPapprox(3 ·ZUB,ZLB,ε);
7 return Z f ;

probe(Z):

8 set KZ = Z
N ; t ′i j = ⌊ ti j

KZ
⌋;Z′ = ⌊ Z

KZ
⌋+N;

9 set KE = Z∗ρav
N ;e′i j = ⌊ ei j

KE
⌋;E ′ = N;

10 return TAP−OPTm(N,Z′, t ′i j,E
′,e′i j);

TAPapprox(UB,LB,ε):

11 set KZ = ε·LB
N ; t ′i j = ⌈ ti j

KZ
⌉;Z′ = ⌈UB

KZ
⌉+N;

12 set KE = ε·LB·ρav
N ;e′i j = ⌈ ei j

KE
⌉;E ′ = ⌈UB

KZ
⌉+N;

13 return Z f = TAP−OPTm(N,Z′, t ′i j,E
′,e′i j);

Figure 8.6: A FPTAS for the TAPmin

space is narrowed down to [ZLB,6ZLB]. Finally, TAPapprox(UB,LB,ε) is invoked that returns an (1+ε)

approximated result. In both probe and TAPapprox, the TAP−OPTm procedure in Figure 8.5 is utilized,

which is similar to our proposed TAP−OPT procedure with the recurrence equation 8.12 and the optimal

equation 8.13. The only difference to the TAP−OPT procedure with equation 8.12 is that the scaled

values (Z′, t ′i j and e′i j) are utilized when searching for T (i− 1,Z − ti j,E − ei j) (Line 7 in Figure 8.5).

However, non-scaled values of ti j (that is, the original values of ti j) are utilized for calculation of ∆T .

Thus, the feasible solution for the scaled problem is feasible for the non-scaled problem with the thermal

constraint and vice versa, because the temperature calculation is made with the non-scaled time values.

The only difference to the TAP−OPT procedure with equation 8.13 is that the scaled value of total

energy consumption is constrained by the scaled Z value plus N (Line 10 in Figure 8.5). This is because

the scaling factor KE for energy is ρav times KZ . Thus we utilize a scaled energy constraint to replace the

non-scaled one. This leads to the energy constraint relaxation in the final solution by the approximation

algorithm.

Proofs for FPTAS

Next, we prove TAP−FPTAS is an (1+ ε) FPTAS.

Let the tmin = min∀Ji∈J,s j∈M{ti j} denote the minimum execution time of any job in an active
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state. Let θ = tms/tmin. Recall that tms is the maximum cooling transient time for the processor to cool

from Tmax to Tsp in sleep mode. In the schedule Sinit let θi denote the ratio between the sleep time

preceding the active job J′i (J′i ∈ J) and the execution time of the job ti,init . It is clear that θ ≥ θi. Thus,

we have
ZUB ≤ tms + ∑

J′i∈J

(θi +1)ti,init ≤ θ tmin +(θ +1) ∑
J′i∈J

ti,init ≤ (2θ +1)ZLB

The first inequality follows from Sinit that processor first sleeps for time tms before executing all the active

jobs. The second inequality follows from θ ≥ θi. The last inequality follows from tmin ≤ ZLB. Thus,

initially ZUB/ZLB ≤ 2θ +1 and Z∗ ∈ [ZLB,ZUB] . Because ZUB is initialized as ZUB/3 before entering the

while loop of the TAP−FPTAS(ε) procedure, inside the while loop ZUB/ZLB ≤ 2θ+1
3 .

Lemma 8.5.3. If probe(Z) returns failure, Z∗ > Z.

Proof. We prove it by contradiction. Suppose that Z∗ ≤ Z and probe(Z) returns failure.

We first show that the latency of the S∗ in the scaled problem is no more than the searching Z′

upper bound. Note that Z∗ is the optimal execution time for the original problem and S∗ is the associated

optimal schedule. Recall that a feasible schedule of the original problem is also a feasible schedule in the

scaled problem under thermal constraint. Thus, S∗ is still feasible for the scaled version of the problem.

Denote Z′(S∗) as the optimal for the scaled version of problem with S∗.

Z′(S∗) = ∑S∗⌊
ti j

KZ
⌋ ≤ ∑S∗

ti j

KZ
=

Z∗

KZ
≤ Z

KZ
≤ ⌊ Z

KZ
⌋+N

In the first equation according to the objective function, Z′(S∗) can be represented by the summation of

scaled execution time for N jobs with S∗. The second inequality follows from the inequality property of

floor operation. The third equality follows from Z∗ = ∑S∗ ti j. Because of Z∗ ≤ Z, the fourth inequality

holds true. The last inequality follows from the property of floor operation. Then, Z′(S∗) is no more than

the upper bound of the search in probe(Z).

Then we show that the energy consumption of the S∗ in the scaled problem (denoted as E ′(S∗))

is no more than the searching upper bound of energy E ′.

E ′(S∗) = ∑S∗⌊
ei j

KE
⌋ ≤ ∑S∗

ei j

KE
=

∑S∗ ei j

KE
≤ ρav ∗Z∗

KE
= N

Z∗

Z
≤ N

In the first equation, E ′(S∗) is represented by the summation of scaled energy consumption time for N

jobs with S∗. The first inequality follows from the inequality property of floor operation. The second

inequality follows from the energy constraint for Z∗. The third equality follows from the definition of

Z∗.
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Since the upper bound of E in the scaled problem is more than E ′, S∗ in the scaled problem

should satisfy the energy constraint. Since the upper bound of Z in the scaled problem is more than Z′,

S∗ in the scaled problem should be found. So, probe succeeds on Z with S∗. This is contradiction to the

assumption that probe would fail on Z.

Lemma 8.5.4. If probe(Z) returns success, Z∗ ≤ 3 ·Z.

Proof. Because the probe procedure succeeds, there is at least one feasible schedule S with the scaled

problem such that

Z′(S)≤ ⌊ Z
KZ

⌋+N ≤ Z
KZ

+N (8.14)

Also,

Z′(S) = ∑S ⌊
ti j

KZ
⌋ ≥ ∑S

ti j

KZ
−N ≥ Z∗

K
−N (8.15)

The first inequality follows from ⌊ ti j
KZ

⌋ ≥ ti j
KZ

− 1. The second inequality follows from that Z∗ is the

optimal in the original problem. The following inequality follows from Equations 8.14 and 8.15, and the

definition of KZ in probe(Z):

Z∗−NKZ ≤ Z +NKZ ⇒ Z∗ ≤ 3 ·Z (8.16)

Lemma 8.5.5. If LB ≤ Z∗ ≤UB, TAPapprox(UB,LB,ε) succeeds and returns Z f ≤ (1+ ε)Z∗ subject

to (1+2ε) relaxation of energy constraint.

Proof. We first show that TAPapprox(UB,LB,ε) succeeds if LB ≤ Z∗ ≤ UB. We have two steps to

justify it.

i. We show that the scaled Z value of S∗ (denoted by Z′(S∗)) is smaller than the upper bound of

search space.

Z′(S∗) = ∑S∗⌈
ti j

KZ
⌉ ≤ ∑S∗

ti j

KZ
+N ≤ UB

KZ
+N (8.17)

The first and second equations follow from the definition of time value scaling in the TAPapprox.

The third equation follows from the assumption Z∗ ≤UB. Therefore, Z′(S∗ is smaller than ⌈UB
KZ

⌉+

N, which is the upper bound of search space.

ii. We show that the scaled E value of S∗ (denoted by E ′(S∗)) is smaller than the upper bound of

search space and satisfies the scaled energy constraint.

E ′(S∗) = ∑S∗⌈
ei j

KE
⌉ ≤ ∑S∗

ei j

KE
+N ≤ ρavZ∗

KE
+N =

Z∗

KZ
+N (8.18)

130



The first and second equations follow from the definition of energy value scaling in the TAPapprox.

The third equation follows from the energy constraint of S∗ in the original problem. The fourth

equation follows from KE =KZ ∗ρav. Therefore, the scaled E value of S∗ is smaller than ⌈UB
KZ

⌉+N,

which is the upper bound of search space. And, E ′(S∗) is smaller than Z′(S∗)+N because of upper

rounding of ti j values. Thus, S∗ in the scaled problem satisfies the scaled energy constraint.

Since S∗ in the scaled problem are within the search space, it satisfies the scaled energy constraint and

the non-scaled thermal constraint, TAPapprox succeeds.

Next, we show that TAPapprox returns a succeeded solution S+. S+ has execution time Z f in

the non-scaled problem with Z f ≤ (1+ε)Z∗ subject to (1+2ε) relaxation of energy constraint. We also

denote the total execution time of S+ in the non-scaled problem by E(S+).

By the design of TAPapprox, S+ is the optimal schedule in the scaled problem and S∗ is a

feasible schedule in the scaled problem. We have

Z f = KZ ∑S+ t ′i j ≤ KZ ∑S∗ t ′i j ≤ ∑S∗ ti j +NKZ = Z∗+ εLB ≤ Z∗(1+ ε) (8.19)

The first inequality follows from the fact that optimal schedule S∗ is a feasible solution for the scaled

version of the problem, and the optimal schedule S+ in the scaled problem would achieve execution time

no more than that with S∗. The second inequality follows from KZt ′i j ≤ ti j +KZ , when ti j is rounded up.

The third inequality follows from LB ≤ Z∗. Therefore Z f ≤ Z∗(1+ ε).

We denote the the total execution time and the total energy consumption of S+ in the scaled

problem by Z′(S+) and E ′(S+). We then show that S+ generated by TAPapprox is feasible under the

1+2ε relaxation of energy consumption constraint. We have two steps to justify it.

i. We first seek the upper bound of E ′(S+) in the scaled problem.

E ′(S+)≤ Z′(S+)+N ≤ ∑S∗ t ′i j +N ≤ Z∗

KZ
(1+ ε)+N (8.20)

The first inequality follows from the scaled energy constraint in the scaled problem (Line 10 in

Figure 8.5 for TAP−OPTm procedure). The second inequality follows from that S+ is the optimal

schedule in the scaled problem. The third inequality has been proved in the equation 8.19(see the

third and sixth items).

ii. Then we seek the upper bound of E(S+) in the non-scaled problem.

E(S+) = ∑S+ ei j ≤ KEE ′(S+)≤ KE(
Z∗(1+ ε)

KZ
+N) (8.21)

= (1+ ε)ρavZ∗+ εLBρav ≤ (1+2ε)ρavZ∗ ≤ (1+2ε)ρavZ f (8.22)
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The first equation follows from the ceil operation to scale ei j in TAPapprox. The second inequality

follows from Equation 8.20. The last equation is derived due to KE
KZ

= ρav. The third inequality

follows LB ≤ Z∗. The last inequality follows that Z∗ is the optimal in the non-scaled problem.

Since the energy constraint of S+ is ρavZ f , S+ is feasible under 1+ 2ε relaxation of the energy

constraint.

Lemma 8.5.6. TAP−FPTAS generates an (1+ ε) approximation schedule subject to (1+ 2ε) relax-

ation of energy constraint.

Proof. By the Lemma 8.5.3, 8.5.4 and the algorithm, we have the following equation in the kth iteration

of the while loop.

Z[k]
LB ≤ Z∗ ≤ 3 ·Z[k]

UB (8.23)

In the line 6 of TAPapprox, ZUB < 2 ·ZLB. In the input of TAapprox, ZLB ≤ Z∗ ≤ 3 ·ZUB < 6 ·ZLB. By

the Lemma 8.5.5, TAPapprox generates an (1+ε) approximation schedule subject to 1+2ε relaxation

of energy consumption.

Lemma 8.5.7. The complexity of TAP−FPTAS(ε) is O( n3r
ε +n3r log logθ).

Proof. In the line 0 of the TAP−FPTAS, the complexity is O(nr). In the probe, the complexity is

O(n3r), because Z is scaled by KZ = Z
N and E is scaled by KE = ρavZ

N . In the TAPapprox, the complexity

is O( n3r
ε ), because Z is scaled by KZ = εZLB

N , E is scaled by KE = ερavZLB
N and ZLB ≤ 3 ·ZUB < 6 ·ZLB in

Line 6. Now the complexity from line 2 to line 5 is critical for the whole complexity.

In the (k+1)th iteration of the while loop, we always have Z[k+1]
UB

Z[k+1]
LB

=

√
(

Z[k]
UB

Z[k]
LB

) = (
Z[k]

UB

Z[k]
LB

)
1
2 . Recall

that the while loop works only when ZUB ≥ 2 ·ZLB. Let the number of iterations be p. We obtain an

upper bound on p with the following equation:

Z[p]
UB

Z[p]
LB

= (
Z[0]

UB

Z[0]
LB

)(
1
2 )

p ≥ 2 (8.24)

As due to line 1 in TAP−FPTASε) we initially have Z[0]
UB

Z[0]
LB

= 2θ+1
3 , p is no more than O(log logθ). So,

the complexity of line 2 to 5 is O(n3r log logθ). Thus, the overall complexity is O( n3r
ε +n3r log logθ),

which is polynomial to the problem size.

Theorem 8.5.2. TAP−FPTAS is a {1+ ε,1+2ε} bi-criteria FPTAS.

Proof. The theorem directly follows from Lemmas 8.5.6 and 8.5.7.
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8.6 Results

Experiment Setup

We derive the thermal model with thermal capacitances and thermal resistances for the die and package

of an embedded processor from HotSpot [93]. We set the maximum temperature constraint as 100◦C

corresponding to a typical thermal constraint on modern processors. The ambient temperature is set as

45◦C. The initial die temperature and the initial package temperature are set differently as 65◦C and

55◦C. Since 0.1◦C rise/fall may take 105 cycles with a 3GHz processor [93], the granularity of the time

in the experiments is set as milliseconds. We obtained the power consumption model from [79] which

is based on the data of an embedded CMOS processor from [41]. We choose 6 voltage levels ranging

from 0.6V to 1.1V (0.1V per step). The associated frequencies were between 0.78GHz and 3.8GHz. We

coded the proposed optimization techniques in C++ and the experimentations were performed on a core

i5/ 2.4GHz/ 8GB Windows 7 PC.

We experimented with realistic benchmarks by combining two kinds of applications from Me-

diabench [59] and SPEC CPU benchmarks [2] to obtain a task set with 8 jobs. The Mediabench bench-

marks include decryption (pegwit), speech compression (rawcaudio, rawdcaudio) and image compres-

sion (cjpeg). The SPEC benchmarks include sha, gcc, epic and compress95. We obtained the workload

(worst case cycle numbers) of each job from SimpleScalar [89]. The workload of these jobs were in the

range of 106 −108 cycles. We evaluated our techniques by experimenting with large synthetic task sets

with up to 50 nodes. The number of jobs in each set was varied from 5 to 50 in steps of 5 or 10. At

each task set number, we generated 10 sets of tasks. The workload of each job was uniform randomly

generated, and varied in the range of 106 − 108 cycles. Then, we calculated the execution time and the

energy consumption of each job at each active state by the processor model from [79].

Comparisons with the thermal-aware OPT based on a thermal model only considering steady state

package temperature

We implemented schedules with both our thermal-aware optimal algorithm for TAmin and thermal-aware

optimal technique from [112] for the realistic applications with the same amount of iterations. The

thermal aware problem addressed in [112] is similar to TAmin except that the thermal model in [112]

considers only a steady state package temperature. The thermal-aware optimal technique in [112] (de-

noted as TAF −OPT ) performs a dynamic programming technique for the optimal latency of periodic

task sequence operating at discrete v/f levels under a peak temperature constraint. The technique in [112]
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Figure 8.7: Temperature profile of optimal solutions generated by TA−OPT and TAP−OPT with
multiple iterations

assumes the package temperature remains steady as the initial package temperature, which does not con-

sider the impact of the package temperature change to the die temperature when the package temperature

is not in steady state. We compared the TA−OPT and TAF −OPT schedules for 3000 iterations on

a processor with an initial die temperature 65◦C and an initial package temperature 55◦C. The two

schedules execute identical job sequence.

We depict the thermal curves with both optimal schedules in Figure 8.7. Both the package tem-

peratures of the two schedules are rising when the schedules are executed in multiple iterations. As we

can see, the package temperature by TAF −OPT schedule is rising faster than the one by the TA−OPT

schedule. The rising package temperatures cause die temperatures rising by the two schedules. The

TAF −OPT schedule generates thermal constraint violations (up to 180◦C). The TA−OPT schedule

keeps the die temperature under thermal constraint all the time. Figure 8.6 depicts the thermal profiles

of both schedules when the package temperature reaches a steady state. The steady state package tem-

perature of TAF −OPT schedule is at 132.2◦C (in practice such a high package temperature can even

cause the temperature runaway), while the one of TA−OPT schedule is at 83.6◦C. Compared to the

TAF −OPT schedule, the TA−OPT schedule consumes less average power, which lowers the pack-

age temperature in steady state. These observations demonstrate that the thermal aware OPT technique

based on a thermal model without considering the impact of package temperature is unable to satisfy the

thermal constraints, which justifies the need for addressing the problem based on a sophisticated thermal
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Figure 8.9: Subproblem optimal solution vs. steady state package temperature

model with considering the impact of variable package temperature to the die temperature.

Effect of steady state package temperature settings for TAPmin

As we describe in previous section, the TAPmin problem is a subproblem of TAmin, which considers the

task sequence with power budget constraint when the package temperature stays in a particular steady

state temperature. In our technique TA−OPT for TAmin, we explore the solutions to the TAPmin with

135



various steady state package temperature settings in the range of [Tamb,Tmax]. In the experiment, we

varied the package temperature settings and generated optimal solutions by our optimal technique TAP−

OPT for TAPmin with a synthetic application including 30 tasks. We recorded the optimal solution Z

value for each TAPmin with a package temperature setting and plotted them in the Figure 8.6.

Figure 8.6 demonstrates that solutions to the TAPmin problem exist in a certain window of pack-

age temperature settings between 65◦C and 88◦. At the package temperature settings of Tsp > 88◦, there

is no feasible solution for the TAPmin problem due to too high package temperature setting. At the

package temperature settings of Tsp < 65◦C, because of tight power budget constraint, processor has to

sleep much long even if the package temperature falls to the ambient temperature. Obviously this kind

of schedules are not optimal solutions with minimal latency, we exclude them in the plot. Within the

window of package temperature settings with solutions, the optimal solution Z values for the TAPmin

problems are monotonically decreasing with the increase of Tsp in the range of [65◦C,84◦C]. When Tsp

is in the range of [65◦C,84◦C], the power budget constraint dominates the TAPmin problem. Due to the

increase of Tsp, the associated power budget constraint is relaxing. Thus the solution schedule sleeps

less or is able to execute the task at higher power level such that the execution time of solution schedule

is reduced. We also found the optimal solution Z values for the TAPmin problems are monotonically in-

creasing with the increase of Tsp settings in [84◦C,88◦C]. This is because the peak temperature constraint

dominates the TAPmin problem when Tsp is in [84◦C,88◦C]. Due to the increase of Tsp, the peak temper-

ature constraint is tightened. Thus the solution schedule sleeps more or need to execute at a lower power

level to avoid violating the peak temperature constraint, which results in the increase of the latency of

solution schedule. 84◦C is the optimal Tsp that both power budget and peak temperature constraints are

evenly balanced and thus the optimal schedule solution is the smallest. Since the package temperature

settings have such a monotonically decreasing/increasing pattern to the TAPmin solutions, we utilize the

property in our technique by finding the monotonically increasing/decreasing knee to reduce the search

time for the optimal solution to TAmin.

Evaluation of the quality of the TA−FPTAS techniques

We evaluated thermal aware schedules by our FPTAS based technique TA−FPTAS with designer spec-

ified quality bounds of 5% (ε = 0.05), 10% (ε = 0.10), 15% (ε = 0.15), 25% (ε = 0.25) and 50%

(ε = 0.50) with synthetic benchmarks.
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Evaluation of the quality bound of TA−FPTAS

We evaluated the quality bounds of the TA−FPTAS with the synthetic benchmarks for 5 to 50 tasks.

Figure 8.6 illustrates the worst approximation ratio with respect to the solutions to TA−OPT for each

task number from 5 to 50. The TA−FPTAS with approximation bound from 10% to 50% matches the

TA−OPT , since the actual approximation ratios of those are no more than 1.025. Even with the 50%

quality bound, the real approximation ratio is no more than 1.024 and the standard deviation of these

ratios is no more than 0.01. We also executed the schedules with 1000 iterations and recorded the peak

die temperatures during the execution. As expected, none of the schedule exceeds the peak temperature

limit 100◦C.

In summary, for the synthetic benchmarks in the experiments, the actual approximation ratios

of the schedules generated by the proposed FPTAS are much better than the theoretical bounds.

Evaluation of the run time of TA−FPTAS

Figure 8.6 depicts the average running times (in seconds) of the TA − FPTAS with different values

of ε for synthetic benchmarks. As expected, the run time of the TA−OPT algorithm is the slowest,

while the 1.50 TA−FPTAS is the fastest. The runtime by the TA−OPT algorithm is increasing much

faster than the TA−FPTAS. As we increases the task number in the experiments which increases the

total execution time and the total energy of the task sequence, the figure infers that the runtime by the

TA−OPT algorithm is exponential to the increase in execution time and energy consumption, while

those of the FPTAS are near-linear to the ones. The run time of the TA−FPTAS algorithm with 50 tasks

for a 50% quality bound is under 20 seconds.

In summary, we can obtain a good trade-off between the design quality and solution time by

varying ε .

8.7 Conclusions

We introduced a thermal aware performance maximization problem for short task sequence with multiple

iterations. Distinct from our previous work in [112], we considered a temperature dependent leakage

power model and a sophisticated thermal model derived from HotSpot [93] for a processor with die and

package. We justified the problem by demonstrating the inability of the existing thermal aware technique

to satisfy the thermal constraint without considering the impact of variable package temperature to the

die temperature. We defined the thermal aware scheduling problem TAmin and proved that it is NP-hard.
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We provided the optimal and FPTAS based techniques for the TAmin problem. The techniques are based

on the solution techniques to a sub-problem of the TAmin problem. The subproblem consider the TAmin

problem at a steady state package temperature for the short task sequence with power budget constraint.

We presented the optimal algorithm and bi-criteria FPTAS algorithm for the subproblem. Experimental

results demonstrated that the proposed FPTAS based algorithm for the TAmin problem can generate very

high quality results even with a designer specified quality bound of 50%. Evaluations of the runtime

of the approximation technique showed that our technique is efficient for large task sets with up to 50

nodes.
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Chapter 9

Conclusions and future directions

In this chapter, we conclude the research work in the dissertation and present several future potential

research directions inspired by this work.

9.1 Conclusions

Th work focuses on the system level power and thermal management for periodic applications on em-

bedded processors with discrete DVFS and DPM capabilities.

System level power management

We address the following work in the context of system level power management.

• We considered the power minimization problem under real time schedules (EDF and RM) on an

embedded processor. We formulated the problem as a discrete NP hard problem to minimize

the energy consumption of a set of real time applications under utilization bound constraint for

EDF/RM schedules. We presented a (1+ε) fully polynomial approximation scheme for the prob-

lem that generates a solution within (1+ε) times the optimal. The proposed algorithm offers the

lowest computational complexity among existing techniques for the same problem.

• We addressed the energy efficient problem on homogeneous and heterogeneous CMP architec-

tures. we formulated the problem as an integer linear programming problem in order to minimize

the latency for a set of applications with an energy budget constraint. We first showed the strongly

NP-hardness of the problem and presented 2-approximation algorithms for the problem on both

homogeneous and heterogeneous CMP architectures. The proposed algorithms offer the tightest

approximation bound among the existing approaches up to the date.

• We considered the battery widely utilized on mobile devices as a limited power source and ad-

dressed the battery-aware energy management problem based on a nonlinear battery discharging

model. We formulated the problem as a bicriteria problem based on the nonlinear battery dis-

charging model and a deadline constraint. We first showed the NP-hardness of the problem. Then

we presented an optimal and a tri-criteria fully polynomial approximation algorithm for the same.

The proposed approximation algorithm that generates a solution within (1+ε) times the optimal

when the deadline and battery capacity constraints are relaxed to certain bounds. To the best of our
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knowledge, this is the first known approximation algorithm the battery-aware energy management

problem with nonlinear battery discharging model.

System level thermal management

We address the following work in the context of system level thermal management.

• We addressed a thermal aware scheduling problem that minimizes the latency for a sequence of

periodic tasks on an embedded processor under a peak temperature constraint. We showed the

problem is NP-hard. Then we proposed the optimal and (1+ ε) fully polynomial approximation

scheme as solutions. To the best of our knowledge, this is the first work that propose both optimal

and approximation algorithm for the thermal-aware scheduling problem.

• We defined the stochastic version of the thermal aware scheduling problem when the tasks have

uncertain execution times. Then we presented an optimal algorithm when the execution cycles of

tasks follow discrete distribution. For the tasks whose execution cycles follows normal distribu-

tion, we proposed an approximation algorithm as solution. This is also the first work that propose

both optimal and approximation algorithm for the stochastic thermal-aware scheduling problem.

• We addressed the task sequencing and scheduling problem on an embedded processor under ther-

mal constraints. The problem seeks to minimize the latency for a periodic application by obtaining

an optimized task sequence and DVFS schedules subject to a peak temperature constraint. We first

derived an optimal initial temperature that can generate optimum solutions. This is the first work

that finds such an optimal initial temperature setting for the addressed problem till to date.We

then presented optimal solutions for several sub-problems and a novel algorithm for the general

instances of the problem.

• We addressed the thermal aware scheduling problem for periodic applications with many iterations

by considering the effect of the package temperature to the die temperature. The problem is to

maximize the throughput for a periodic task sequence executing on an embedded processor with

multiple iterations. We considered a sophisticated thermal model including die and package and

a temperature-dependent leakage power model. We first proved that the problem is NP-hard. We

provided a pseudo-polynomial time optimal algorithm and a fully polynomial time approximation

scheme (FPTAS) based technique as solutions to the problem. The solution techniques to the

thermal aware design problem are constructed on the top of solutions to a subproblem with package

temperature and power budget constraints. We showed the NP-hardness of the subproblem. Then
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we provided a pseudo-polynomial time optimal algorithm and a bi-criteria FPTAS as solutions for

the subproblem. The bi-criteria FPTAS generates solutions within guaranteed quality bound when

the power budget constraint is relaxed to a certain amount.

Summary

In the dissertation, we addressed several key system level power and thermal management problems

for periodic applications executing on the general embedded processors with discrete DVFS and DPM

capabilities. We developed optimal algorithms and/or efficient approximation algorithms for solving

the key problems. We also conducted theoretical analysis for certain problems such as deriving the

optimal initial temperature setting for the thermal aware task sequencing problem. The proposed efficient

algorithms can be utilized in practical embedded applications with fast run time. For all the proposed

algorithms, we validated them with extensive experiments for the quality bounds and studied the effects

of various parameters to the solutions generated by the proposed techniques.

9.2 Future directions

Thermal aware sequencing for applications with uncertain execution times In the dissertation, we con-

sider the thermal aware scheduling for applications with uncertain execution times. The sequence of

the schedule is given. For some applications that are fully pipelined, the task sequence could affect the

feasibility of schedules under thermal constraints for tasks with uncertain execution times. One future

direction is to study the thermal aware task sequencing for applications with uncertain execution times.

The future direction can help the worst case analysis for fully pipelined applications.

Battery-aware power management on CMP We are entering a CMP architecture era. Many embedded

systems are designed with CMP architectures in order to increase application throughput etc. The power

source of these systems are mainly battery. Therefore, the study on battery-aware power management on

CMP architectures is still very important for the design of embedded systems. There exists a considerable

amount of work on battery-aware power management on CMP architectures. Chowdhury et al. [21]

design static scheduling algorithms for periodic real-time applications on single and multiple processors.

Yuan et al. [108] present online battery-aware scheduling algorithms on multiprocessors and extend their

work in [15]. Although these techniques are efficient for battery-aware energy management, all of them

are heuristic techniques and the quality of the solutions cannot be guaranteed.

In the dissertation, we addressed the battery-aware energy management problem on single pro-

cessor and power management on CMPs. We provided optimal and fully polynomial approximation
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algorithms for both problems as solutions. The provided solutions could potentially enable the study on

guaranteed quality techniques for the battery-aware energy management on CMP architectures.

Thermal management for throughput maximization on CMPs The performance of many embedded ap-

plications are specified by latency. Thus, the objective to maximize performance becomes to minimize

latency of the applications. The latency minimization problem with thermal management on CMPs con-

siders an application is specified by a set of tasks to be executed on the CMP architecture with m identical

cores. Latency is defined by the makespan of the set of tasks to be mapped on the CMP. The objective

is to minimize makespan of the set of tasks. The outcome involves the mapping from tasks to cores, the

execution order of tasks on each core, the v/f assignment for the execution of each task, and the sleep

time selection on each core.

In recent past, researchers have begun to address the latency minimization problem with thermal

management on CMP architectures [17,26,61,64,101]. [17,26,61,101] consider task specifications, and

also consider task allocation as part of the problem. However, all of these techniques assume continuous

v/f states for the processors. To the best of our knowledge, there is no existing solutions with quality

bounds for latency minimization problem with thermal management on CMP architectures with discrete

v/f states. Our work on thermal management for periodic applications for single embedded processors

could potentially enable the work on the approximation algorithms for the thermal management problem

on CMP architectures.
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