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ABSTRACT  
   

Unanswered questions about the evolution of human gender abound and are 

salient across the anthropological disciplines and beyond. Did adult sex-typed 

behavioral tendencies actually evolve? If so, when?  For what purpose? The best way 

to gain insight into the evolution of human gender is to understand the evolution 

and development of sex-typed behavior in comparative primate taxa. Captive 

research indicates that there are many proximate factors likely to shape the 

development of sex-typed behavior in non-human primates—prenatal and postnatal 

endocrinological experience, social experience, ecological factors, and their 

interactions. However, it is largely unknown how sex-typed behavior proceeds and is 

shaped by those factors in evolutionarily salient environments.  

This study investigated one—whether extrinsic sexually differentiated social 

interactions are likely influential in the development of adult sex-typed behavior in 

wild-living Lemur catta. Little is known about sex-typed development in this species 

or in strepsirrhines in general. This research therefore addresses an important 

phylogenetic gap in our understanding of primate sex-typed development. Behavioral 

observations were carried out on mixed cross-sectional sample of adult females 

(n=10), adult males (n=8), yearling females (n=4), yearling males (n=4), and 

newborn females (n=16) and males (n=14) at Beza Mahafaly Special Reserve in 

southwest Madagascar from September 2008 to August 2009.  

Twenty-three sex-typed behaviors were identified in adults using linear mixed 

effects models and models of group response profiles through time. Of those, only 

eight had a pre-pubertal developmental component. Infants did not exhibit any sex 

differences in behavior, but juveniles (prepubertal, weaned individuals) resembled 
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adults in their (relatively few) patterns of expression of sex-typed behavior. Most 

adult sex-typed behaviors in this species apparently develop at or after puberty and 

may be under gonadal hormone control. Those that develop before puberty do not 

likely depend on extrinsic sexually differentiation social interactions for their 

development, because there is no clear evidence that infants and juvenile male and 

females are not treated differently by others according to sex. If sexually 

differentiated social interactions are important for sex-typed behavioral development 

in subadult Lemur catta, they are likely intrinsically (rather than extrinsically) driven. 
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CHAPTER 1: INTRODUCTION 

Gender is a term that was introduced into the academic literature in the mid-

1950s by the prominent sexologist John Money as a way to distinguish the behavioral 

standards marking membership in each biological sex from biological sex itself [Haig 

2004].  Eventually, the term was embraced by second wave feminist academics of the 

1970s [Haig 2004; Stockett and Geller 2006], who codified the binary opposition of 

biological sex versus culturally constructed gender, and who largely dismissed the 

importance of biological sex as a motivator of sexually differentiated behavior [Scott 

1986; Stockett and Geller 2006].  Since then, third-wave feminist scholars have 

abandoned the binary opposition of sex and gender—shifting focus to the creation 

of identity and the ways in which sex, gender, and the entire male/female binary 

(among other things) are socially constructed through “discourse, representation, and 

repetitive performance” [p. 8, Fausto-Sterling 1993; Nicholson 1994; Stockett and 

Geller 2006].  Meanwhile, evolutionary psychologists have taken up the opposite 

position, treating sexually differentiated human behavior as an adaptive, 

fundamentally binary expression of our universal human nature [e.g., Cosmides et al. 

1992; Tooby and Cosmides 1990a; Wilson 1994].   

The literature is rife with vehement and sweeping claims about both the 

proximate and ultimate causes of human gender, often buttressed with untested 

assumptions.  Some authors insist that socialization—learning processes in which 

species-typical behaviors are acquired through direct interaction [Fragaszy and Perry 

2003]—is almost entirely responsible for the emergence of human sex differentiated 

behavior [e.g., Bleier 1984; Fausto-Sterling 1992].  Implicit in this stance is the 

assumption that socialization cannot produce adaptation, which is used as proof-
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positive that human sex-typed behavior is non-adaptive.  Here, social behavior is 

extricated from biology and considered separate from it.  Of course, this assumption 

is unfounded; it is quite plausible that socialization processes themselves have been 

targets of selection because they produce adaptive behaviors.  On the other extreme, 

some researchers accept as a tenet that sexually differentiated behavior in humans is 

adaptive (even children’s sex differences in object play [Gredlein and Bjorklund 

2005]), and set about to conjure the selective scenarios and proximate mechanisms 

that might explain observed modern patterns of behavior [Bussey and Bandura 1999; 

Eals and Silverman 1994; Eswaran and Kotwal 2004].  But to date, the evolutionary 

history of most human and non-human primate sex-typed behaviors (and the 

processes that drive their development) is completely unknown. 

Hypotheses of behavioral adaptation are challenging to test, but are best 

explored using the comparative method [Harvey and Pagel 1991]. The comparative 

method can reveal elements of adult sex-typed behavior that vary little across many 

species and that may have experienced stabilizing selection; and it can uncover 

patterns of sex-typed behavioral variation that co-vary in reliable ways with other 

factors, such as resource distribution, social system, or specific patterns of social 

interaction. Comparative study of sex-roles across the primate order, therefore, is the 

clearest way to gain insight into questions regarding the evolution of, and adaptation 

in, primate and human sex-typical behavior [Thierry et al. 2008]. 

There is good reason to consider human sex-typed social behavior in its 

broader evolutionary context because the rich historical tradition of research on 

these issues in non-humans may yield important insights for humans.  

Sociobiological and socioecological theories assert that in sexually reproducing 



3 

species, selection may act to maximize the fitness of males and females via different 

behavioral strategies [Emlen and Oring 1977], and much of behavioral ecology and 

sociobiology focuses on understanding how reproductively mature individuals living 

in a particular environment, facing a particular set of constraints, are expected to 

allocate their time and energy to maximize their lifetime reproductive success. 

Indeed, adult sex-differentiated behaviors are plentiful and often complex in many 

taxa, cross-cutting a variety of important aspects of life such as: foraging [Agostini 

and Visalberghi 2005a], intra-group spacing and association [Borries 1993; Koenig 

2000; Pepper et al. 1999; van Schaik 1989], and mating tactics [Hrdy et al. 1995; 

Koenig and Borries 2001; Utami et al. 2002; van Noordwijk and van Schaik 2001; 

van Schaik et al. 1999].   

Infants of mammalian taxa, though, are not born into the world expertly 

doing all of the things that adults do. The number and complexity of sex-

differentiated adult behaviors not present at birth among gregarious mammals begs 

the question: How do these behaviors develop?  That is, what are the proximate 

causes underlying the sex-differential development of sex-typed adult behaviors?  In 

primates in particular, neonate levels of physical activity and social interaction are 

very low compared to adults [Bentley-Condit 2003].  Therefore, many of the 

behaviors we expect to conform to a given set of theoretical principles must develop 

during the process of maturation from neonate to adult.  And just as adult behaviors 

not present at birth must develop during maturation, the development of sex-

differentiated adult behaviors not present at birth must proceed, during maturation, 

in sex-differentiated ways.   
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Research on these questions in non-human primates has been ongoing for 

decades, forming a vast “nature vs. nurture” literature, and overwhelming evidence 

indicates that sex-typed development (indeed, all development) results from the 

interactions thereof [Kelly et al. 1999; Wallen 1996].  Given that, a more refined 

question emerges: How do particular factors interact to shape the development of 

particular behaviors in particular taxa?   

Understanding the proximate causal factors that drive and shape the 

ontogeny of adult behavioral patterns is not only interesting in its own right, but can 

also help to clarify how and why those adult behavioral patterns might have evolved 

by yielding insight into the factors that influence or constrain them [Beaupre et al. 

1998; Duvall and Beaupre 1998].  If selection indeed acts to maximize the fitness of 

males and females via different behavioral strategies [Emlen and Oring 1977], then 

some elements of sex-typed behavior will be adaptive.  But which elements of sex-

typed behavior are adaptive and which are not?  Understanding the proximate 

processes that shape the development of adult sex-typical behaviors from a 

comparative perspective can shed light on this question.   

Non-human primates are the most useful model taxon for investigating the 

proximate and ultimate causes of human sex-typed behavioral development for a 

number of reasons—like humans, they are behaviorally complex as adults; like 

humans, they are behaviorally diverse as a taxon; they are relatively easy to observe 

compared to other behaviorally complex and diverse taxa; they have extraordinarily 

protracted developmental periods; and they are our closest relatives, most likely to 

share with us developmental processes due both to homology and convergence.  The 

complexity of and wide range of variation in adult behavior across the primate order 
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is probably underwritten by equally complex and varied interactive developmental 

processes.  Therefore, broad investigation of developmental processes across 

primates maximizes our potential to identify meaningful regularity in the interactions 

of developmental processes and their outcomes.  Identifying these patterns allows 

for the construction of logically supported inferences about their developmental 

causation.  Compared to many other vertebrates, the environmental factors—such as 

resource availability and social interactions—likely to shape the development of 

behavioral diversity are relatively easy for humans to observe in primates, as none fly, 

and most do not hide their young away from sight in dens.  Because of their 

protracted developmental periods, researchers may be more readily able to observe, 

measure, and tease apart the contributions of different proximate mechanisms to 

behavioral development in primates than in taxa that mature more quickly.  And 

because they are our closest relatives, knowledge about developmental process 

derived from non-human primates is more likely to be directly applicable to humans 

than similar data from non-primate taxa. 

Studying the proximate mechanisms of sex-typed behavioral development in 

primates will contribute importantly to understanding the evolution of sex-typed 

behavior in humans—a topic that is both highly contentious and analytically 

intractable when studied in isolation.  It is logistically challenging (but not 

impossible) to amass data from numbers of carefully observed human groups 

sufficient to capture the range of variation humans exhibit in their adult sex-typed 

behavior.  However, it is infeasible to carefully observe individuals from these groups 

during all of their waking hours over their entire developmental periods.  For this 

reason, most work on the evolution of human gender roles either remains largely 
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theoretical and unencumbered by data or consists of post hoc explanations of the status 

quo.  

 The objective of this study is to investigate whether and how socialization is 

involved in the production of adult sex-typed behavior in a non-human primate 

taxon, Lemur catta.  In doing so, this study articulates with other developmental 

research and adds to our understanding of how one proximate cause (socialization) 

shapes the development of sex-typed behavior in primates.  It also contributes to the 

comparative primate developmental knowledge base needed to eventually answer 

questions about adaptation in and evolution of human gendered behavior in general, 

and to begin to clarify whether the process of sex-typed socialization, itself, may have 

been a target of selection during primate evolutionary history. 
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CHAPTER 2: BACKGROUND 

EVOLUTION OF HUMAN GENDER 

The topic of human gender evolution is hotly debated within and across 

academic disciplines of anthropology, sociology, and psychology.  The degree to 

which human gender differences represent evolutionary adaptation is a point of great 

contention [Wood and Eagly 2002; Worthman 1995].  Perspectives on this topic 

break down into three major scholarly camps—social constructivism, evolutionary 

psychology, and proponents of the biosocial model [reviewed in Wood and Eagly 

2002].  

Social constructionists assume that there are no universal laws underlying 

human behavior and begin inquiry into the mechanisms underlying human gender 

development with the assumption that cultural relativism is a necessary and sufficient 

explanation of human gendered behavior [Wood and Eagly 2002].  From this 

perspective, socialization is entirely responsible for the development of gendered 

behavior of the individual, and human gender differences do not represent long-

term, evolutionary adaptations that characterize Homo sapiens as a species.  Children’s 

gendered behavior is either chosen for them or chosen by them, but is not an 

expression of innate, sexually differentiated qualities.  Implicit in this position is the 

idea that the process of socialization, itself, cannot be a target of natural selection, 

and that behavior and biology are neatly separable. 

On the other end of the spectrum, some evolutionary psychologists explicitly 

assume that all or very nearly all adult sexually differentiated human behavior is the 

product of natural or sexual selection during the Pleistocene in particular [Cosmides 

et al. 1992; Tooby and Cosmides 1990b],  and that the underlying psychological and 
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physiological profiles that motivate behavior result from sexual selection for those 

behaviors [Budaev 1999; Eals and Silverman 1994; Gangestad and Simpson 2000; 

Geary 1995; Joseph 2000; Luxen 2007; MacDonald 1995].  From this perspective, 

socialization is not responsible for the existence of sex differences, and is only 

important in determining their specific exhibition within an individual—perhaps only 

acting as a railroad switch operator sending individuals down a few, sex-typed 

psychological and behavioral paths [Tooby and Cosmides 1990a; Wilson 1994].  The 

phenomenon of human gender difference itself represents a long-term, evolutionary 

adaptation that characterizes (and has characterized) Homo sapiens as a species.  This 

position views behavioral sex differences as the ineluctable products of a 

fundamentally sexually dimorphic human nature [Byrd-Craven and Geary 2007; 

Geary 1995; Tooby and Cosmides 1990a] and views children’s gendered behavior as 

a necessary, adaptive, developmental precursor to “the” adult sex roles that have 

characterized Homo sapiens throughout its evolution [Byrd-Craven and Geary 2007; 

Gredlein and Bjorklund 2005; MacDonald 1995]. It has been used by some to 

explain the persistence of social phenomena such as inequality in the modern 

workplace [Browne 2006].   

The biosocial model of human sex differences has been more recently 

proposed against the backdrop of the historical dichotomy between social 

constructivism and evolutionary psychology and seems to be an attempt to minimize 

the weaknesses and maximize the strengths of each of the other approaches.  The 

biosocial model makes a somewhat more complicated, multi-step assumption about 

the evolution of human gender than either of its predecessors.  It assumes that social 

structures placing males and females in different social roles within groups 



9 

necessarily arise in order to best take advantage (at the group level) of evolved 

differences in male and female body size and reproductive biology, and that once 

those social roles are established, sex differences in endocrinology secondarily arise 

that create sex differences in psychology and canalize the sex roles [Wood and Eagly 

2002].  Whether these secondary biological sex differences emerge from the practice 

of sexually differentiated behavior or are selected for in order to ensure the 

maintenance of sexually differentiated behavior (or both) is unclear.  From this 

perspective, gendered behavioral development of the individual is socialized but may 

also be mediated by underlying, evolved psychological or hormonal mechanisms; 

human gender differences, on the whole, represent the results of an evolutionary 

feedback loop between individuals’ biology and their social environments that was 

initiated with social responses only to biological differences in body size and strength 

and sexually differentiated reproductive behavior (but not to anything else) [Wood 

and Eagly 2002].  Children’s gendered behavior, like that of adults, is driven by a 

complex amalgam of social and biological factors.  Some elements of gendered 

behavior are evolutionary adaptations, and some are simply short-term, socialized 

responses to particular social environments. 

All of these approaches share a common flaw—each makes a foundational 

assumption about the origination of gendered behavior that it never seeks to test.  

Social constructivism assumes that individual biology and social behavior are 

completely independent, that biology does not influence social behavior; and that 

social modulation of behavioral development cannot be a target of selection. It seeks 

to understand only the ways in which gendered behavior is socially mediated and to 

contextualize available data largely from this singular perspective.  Evolutionary 
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psychology assumes that most gendered behavior is substantially mediated by 

individual biology; it seeks to amass data that support this position and to 

contextualize available data on sexually differentiated development largely from this 

singular perspective.  The biosocial model acknowledges the demonstrated 

importance of individual biology, socialization, and the interaction between them in 

the development of gendered behavior, but assumes that sexual dimorphism in body 

size and reproductive function controls the formation of social structure, and that 

biological sex differences that are not directly related to dimorphism or reproduction 

evolved secondarily, in direct response to social constraints.   

 Counter to the foundational assumption of social constructivism, a number 

of lines of evidence suggest that somatically motivated behavioral sex differences in 

humans do exist.  First, non-human experimental models provide clear evidence of a 

few somatically based behavioral sex differences that might also exist in humans.  In 

rodents in particular, the linkages between sexually differentiated endocrinology, 

neural structure and function, and mating behaviors have been explicated [Kelly et al. 

1999].  While I do not assert that hormones control human behavior entirely, work 

on these mammalian models suggests that sex differences in physiology and anatomy 

may be important for shaping sexually differentiated human behavior.  Second, 

clinical research suggests that some human behavioral sex differences may be 

motivated by somatic variation between the sexes.  Girls with classical congenital 

adrenal hyperplasia, which results in elevated prenatal levels of testosterone, exhibit 

male-typical toy preferences and play styles compared to their unaffected sisters 

[Pasterski et al. 2005].  Third, some behavioral sex differences in adult humans are 

echoed in non-human species, suggesting that some behavioral sex differences may 
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always have characterized the human lineage.  Male superiority in spatial skills has 

been documented in both humans and rats [Kelly et al. 1999], and earlier 

development of vocal proficiency has been documented for both human [Bornstein 

et al. 2000; McGuiness 1981; Roulstone et al. 2002] and non-human primate females 

[Gouzoules and Gouzoules 1989].  And fourth, both experimental and correlational 

studies in humans suggest that naturally occurring endocrinological variation may 

underlie temperamental and behavioral variation. Naturally occurring individual 

morning testosterone levels were positively correlated with the daily profit margins 

of 17 British male stock traders [Coates and Herbert 2008].  Experimentally 

administered doses of testosterone decrease “trusting behaviors” in women who are 

inclined to be very trusting [Bos et al. 2010], and increase aggressive behavior in men 

[Kouri et al. 1995].   

Counter to the foundational assumption of evolutionary psychology, a 

number of lines of evidence suggest that socialization is an important driver of 

behavioral sex differences in humans.  First, the comparative research conclusively 

demonstrates that sexually differentiated social experiences are critical drivers of 

some elements of behavioral sex differentiation in non-human animals.  In rodents, 

mothers anogenitally groom male pups more than female pups.  This stimulation is 

important for the development of elimination in both sexes and for the eventual 

development of male sexual behavior.  But maternal anogenital grooming also 

dampens hypothalamic-pituitary-adrenal reactions to stress in both sexes, and the sex 

difference in maternal anogenital grooming results in the sexually differentiated stress 

responses of male and female offspring [Kelly et al. 1999].  Second, some sex 

differences in treatment of children by others have been documented, but this varies 
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across populations.  In studies of American and Dutch pre-school teachers, 

American teachers positively reinforced “female-typical” play activities for both girls 

and boys, while Dutch teachers positively reinforced “sex-typical” play behaviors 

[Fagot 1977b]; in a study of American pre-school children, boys were criticized by 

peers for cross-gender play while girls were not [Fagot 1977a]; and a study of 

American parent-child interactions found that parents treat boys and girls differently 

even when they are not conscious of gender stereotyping [Fagot 1978].  Sex-

differential treatment of children by others provides one opportunity for the social 

acquisition of gendered behavior.  Third, children respond to at least some of their 

perceptions about gender expectations.  Sex differences in children’s toy preferences 

are greater for children who report a caretaker, sibling, or peer who thinks poorly of 

cross-gender play than for children who believe that their caretakers, siblings, and 

peers have a neutral position on cross-gender play [Raag 1999].   Fourth, some 

children adjust their gendered behavior in the presence of an observer.  A study of 

Israeli kindergarteners found that children with less gender-stereotyped toy 

preferences made more strongly gender-stereotyped toy choices in the presence of 

an adult observer than when alone [Wilansky-Traynor and Lobel 2008]. 

  The foundational assumption of the biosocial model of sex difference is less 

straightforward but problematic on several counts.  First, there is no theoretically 

sound reason to assume that the selective pressures that produced or maintained 

body size dimorphism in humans did not simultaneously act on other elements of 

the human body, such as the brain or the hypothalamic-pituitary-adrenal axis, in ways 

that would produce sexually differentiated behavior.  Why natural selection would be 

initially constrained to act on specific aspects of the soma but not others is neither 
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explained by the biosocial model nor a necessary expectation of evolutionary theory.  

Indeed, there are multiple ways in which the heteromorphic sex chromosomes of 

sexually reproducing species produce sex differences in brain and other organ system 

tissues [Arnold 2004]. This argues against the idea that selection would have first 

acted only on body size and reproductive biology but not on other systems.  Perhaps 

more importantly, it is unclear whether the assumptions of the biosocial model are 

even falsifiable.  First, it is unclear whether its adherents suppose that the proposed 

relationships among body size dimorphism and mammalian sex differences in 

reproduction, the resultant emergence of particular social systems, and the secondary 

evolution of other behavioral sex differences hold across all taxa or whether they 

apply only to the origins of human behavioral sex differences.  Hence, it is unclear 

where one should start to think about how to falsify the assumption.  Second, it is 

not immediately apparent which particular sex dimorphic behaviors can be sorted 

into the category of “having to do with dimorphism and/or reproduction” and 

which belong in the “all else” bin, making it difficult to falsify the assumption.  

Third, even if the particular behaviors belonging in each category are clearly 

identified, if these proposed relationships are supposed to apply only to the origins 

of human behavioral sex differences, it may be impossible to falsify the assumption 

that behaviors related to dimorphism and reproduction evolved first, and that all 

others evolved later (depending on the amount of variation in trait covariation across 

modern human populations and the temporal resolution possible to achieve with 

intraspecific comparative methods).   

 A better approach to addressing whether human gendered behavior 

represents evolutionary adaptation, whether it emerges from short-term social 
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pressures, or some combination of the two, is to think of these questions as 

hypotheses to be tested rather than as position statements to be buttressed—an 

approach supported by authors who have called for “the application of stricter 

scientific standards to arguments about the evolution of sex differentiated human 

behaviors” [p. 233, Fausto-Sterling 1997].   

ADVANTAGES OF COMPARATIVE RESEARCH 

Given that males and females across the animal kingdom are subject to 

different selective pressures [Emlen and Oring 1977; Nunn et al. 2009; Trivers 1972], 

there is no logical basis for many of the aforementioned assumptions.  Some 

individual sex-typed behaviors may have emerged prior to others in evolutionary 

history, some may be physiologically mediated and/or socially mediated to varying 

degrees, and some may be adaptive, while others may not be physiologically 

motivated, socially motivated, or adaptive. To what degree particular human sex-

typed behaviors are physiologically and/or socially mediated is an empirical question 

that can be appropriately investigated using the types of correlative and experimental 

studies of humans that are undertaken by both social constructivists and evolutionary 

psychologists and that can be further elucidated by comparative study in several 

ways. To what degree particular human sex-typed behaviors are adaptations is an 

empirical question that can be addressed by comparative study.  

First, the extent to which experimental manipulation of humans is feasible is 

extremely limited; as such, experimental studies in a non-human model system may 

simply be required to answer some questions about the proximate drivers of sex-

typed behavioral development.  Fortunately, non-human primates have been shown 

to make good models for understanding some selectively important phenomena in 



15 

humans already—such as the nature and workings of the infant attachment system 

[Bowlby 1969] and the influence of  hormones on parental behavior [Maestripieri 

1999]—and, due to their close phylogenetic relationships to humans, they are likely 

to share many other homologous and analogous behavioral and psychological traits 

(and trait functions) [Maestripieri 2005b].  

Second, since non-human primates are good model systems for 

understanding human behavior, naturalistic comparative studies of non-human 

primate sex-typed behavior can also contribute substantially to a better 

understanding of the proximate drivers of human gendered behavior.  An 

understanding of intraspecific variation in non-human primate sex-typed behavior 

and its covariates—e.g., ecology, social organization, social interaction—will pinpoint 

probable proximate drivers of sex-typed behavior that may be either overlooked by 

the narrow focus of experimental work or that may not be amenable to study in 

experimental settings.  Comparisons of sex-typed behavior across captive and wild 

settings may also be very instructive for identifying its proximate causes.  Sex-typed 

behaviors that are invariant across captive and wild settings, for example, are 

apparently not driven by ecological variation, which is at its extreme in such 

comparisons.  Despite the ready availability of captive populations of many species 

of non-human primates, this type of comparison has only rarely been leveraged for 

understanding the proximate causes of naturally occurring intraspecific variation [but 

see Altmann and Alberts 1987; Altmann and Alberts 2005; Altmann and Altmann 

1981; Borries et al. 2011; Johnson 2003; Panger 1998; Rangel-Negrín et al. 2009; 

Yamamoto et al. 2008].   
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Third and most importantly, questions regarding the evolution of sex-typed 

behavior require a comparative framework to answer [Nunn 2011].  Knowing the 

evolutionary timing of particular human sex-typed behaviors—an integral part of 

arguments from both evolutionary psychology and the biosocial model—requires 

pinpointing when in primate evolution they first appeared.  Whether particular sex-

typed behaviors are apomorphic or plesiomorphic for humans cannot be assumed a 

priori.  Unfortunately, all three of the dominant perspectives on the evolution of 

human gender make a priori assumptions about the timing of the appearance of 

gendered behavior.  The social constructivist perspective assumes that all gendered 

behavior is very recent in origin—as recent as the culture in which it is situated.  The 

dominant narrative of evolutionary psychology about the Pleistocene as the human 

environment of evolutionary adaptedness (EEA) [Tooby and Cosmides], the 

selective pressures of a sexual division of labor on the human mind [Joseph 2000], 

and the behavioral dimorphism that results seems to assume that human sex-typed 

behaviors are apomorphic. But nonhuman data are used as support for particular 

evolutionary arguments (such as for the adaptive function of spatial superiority in 

human males and verbal superiority in females [Joseph 2000]), simultaneously 

implying that at least some sexually dimorphic behaviors are plesiomorphic for the 

hominin clade.  The biosocial model, like the social constructivist perspective, seems 

to assume that human behavioral sex differences are apomorphic, although this 

assumption does not follow logically from the model itself, given that the presumed 

evolutionary basis of human behavioral sex differences are rooted in sexual 

dimorphism in body size and the sex-specific constraints of mammalian reproductive 

biology, which are not unique to humans [sexual dimorphism, e.g., Leigh 1992]. 
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Being able to make data-based inferences about the evolutionary origins of 

particular human sex-typed behaviors would go a long way toward critically assessing 

the assumptions and suppositions of all three dominant perspectives on human 

gender evolution as well as toward understanding the adaptive nature (or not) of 

human gender. If some human sex-typed behaviors are shared with the other 

primates, cultural relativism alone is insufficient to explain their emergence and 

maintenance (although it would not preclude the potential importance of 

socialization as a driver).  Plesiomorphic human sex-typed behaviors cannot be 

argued to derive from selective pressures associated with a Pleistocene division of 

labor.  And only interspecific comparison can document the temporal relationships 

among the evolution of body size dimorphism, social structure, and behavioral sex 

differences.   

Identifying the evolutionary origins of particular sex-typed behaviors through 

interspecific comparative work will tell us which elements of human gendered 

behavior we share with other taxa and which are uniquely human.  This knowledge, 

while it does not identify adaptation per se, is critical to the formation of informed 

hypotheses of behavioral adaptation.  For example, sex-typed behaviors with deep 

evolutionary histories that have been conserved across many lineages are likely to be 

adaptive, as they have apparently been maintained over long periods of time by 

stabilizing selection.  In contrast, sex-typed behaviors unique to modern humans are 

much more likely to be the result of ephemeral, non-adaptive social pressures. 
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Identifying Adaptation 

An adaptation can be defined as a derived trait that arose at a particular time 

in a lineage as a result of selection for a particular derived function [Coddington 

1994].  Comparative knowledge of sex-typed primate behavior is prerequisite to the 

endeavor of inferring sex-typed behavioral adaptation, because testing hypotheses of 

adaptation requires knowledge of the historical origination or originations, 

respectively, of a hypothesized adaption and its purported function.  This is because 

adaptational hypotheses must link observed patterns of trait variation to observed 

patterns of variation in specific purported causes [Coddington 1994].  Proposed 

causes of particular trait originations must precede or be temporally coincident with 

them [Coddington 1994; Kay and Cartmill 1977], regardless of whether one is using 

the homology or homoplasy approach to identifying adaptation [Coddington 1994].   

Most evolutionary biologists prefer the homoplasy approach to inferring 

adaptation [e.g., Kay and Cartmill 1977; Pagel 1994], because it allows for a statistical 

assessment of the degree of covariance between or among traits that are 

hypothesized to be causally linked [Nunn 2011].  The ability to map trait originations 

onto a well-resolved phylogeny is crucial to the homoplasy approach to inferring 

adaptation, because it allows for the identification of independent and non-

independent occurrences of trait/function covariation and thereby allows for 

inferences about the historical evolutionary processes that may or cannot have 

produced current patterns of trait diversity [Pagel 1997].  For the homoplasy 

approach, only independent instances of trait/hypothesized function correlation are 

of interest—instances of trait/function correlation due to shared ancestry are not 

considered.  Selection will necessarily result in significant correlation between the 
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adaptive trait and the function for which it is adapted, such that multiple, 

independent instances of trait/function covariation across a large sample are 

suggestive of a causal relationship between the two, but significantly correlated 

evolution should not inevitably be interpreted as adaptation [Coddington 1994].  The 

adaptive trait should also be shown to perform the function for which it is 

hypothesized to be an adapation [Kay and Cartmill 1977].  With respect to sex-typed 

behaviors, the hypothesized function is usually simply increased reproductive success 

[Buss et al. 1998], although intermediate functions which supposedly lead to 

increased reproductive success are sometimes proposed (e.g., sexually dimorphic 

spatial skills as a result of selection on men for better hunting capabilities and 

women for better foraging capabilities [Joseph 2000]).  Whatever the adaptive 

hypothesis, effort should be made to demonstrate that the supposed adaptive trait 

has a performance advantage over either the primitive condition that preceded it or 

over less pronounced expressions of the supposed adaptive trait with respect to the 

function it is supposed to fulfill.   

While the homoplasy approach to comparative analysis of trait covariation is 

often thought of as an interspecific comparative endeavor, it need not necessarily be. 

Detailed, cross-cultural comparative work within humans has successfully been 

applied to understanding the evolution of behavioral characteristics such as language 

[Pagel 2009], and may have great utility in clarifying the evolutionary relationships 

among ecology, social organization, and sex-typed behavior for Homo sapiens.  

However, cross-cultural comparative work faces special challenges.  Like 

interspecific comparison, cross-cultural comparison is always challenged by the 

problem that not all instances of cultures with the same trait relationships can be 
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regarded as independent of each other, because some cultures share those trait 

relationships due to common ancestry.  Additionally, cross-cultural comparisons are 

plagued by the fact that not all social characters are transmitted vertically—

undoubtedly, some transmission of social characters occurs horizontally, creating 

non-independence even among cultures without shared ancestry [Mace et al. 1994].  

Researchers are making substantial progress in dealing with these difficulties [Mace et 

al. 1994; Nunn 2006], such that cross-cultural comparative work has increasing 

potential to reveal the recent history of human gendered behavior and the social and 

ecological factors that may drive them.  Work on intraspecific variation in non-

human primates, once population histories can be accurately assessed, may have 

similar potential to reveal the short-term selective pressures that shape sex-typed 

behavioral expression in primates generally.  

Despite its potential, intraspecific comparative work has some limitations: it 

can only reveal the very recent history of sex-typed behavior and has no ability to 

illuminate the deeper evolutionary history of sex-typed behaviors—indeed, it cannot 

even assess whether particular behaviors are plesiomorphic or apomorphic for a 

species; it cannot address the selective factors that were involved in the production 

of plesiomorphic behaviors; and it cannot reveal any useful information about 

behaviors that are invariant within species.  Interspecific comparative work on 

primate sex-typed behaviors can do all of these things, and is unlikely to be 

complicated by non-independence due to horizontal transmission of trait 

covariation; therefore, it has great potential to clarify the evolutionary history and 

adaptive nature of human gendered behavior.   
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But what if interspecific comparative studies identify some patterns of 

gendered behavior that really are found only in humans?  The adaptive significance 

of ubiquitous, uniquely human sex-typed behaviors cannot be assessed using the 

homoplasy approach.  While singular historical events are less analytically tractable 

than repeated ones, they can still be studied using the homology approach.  The 

homology approach to identifying adaptation looks at all instances of evolutionary 

change as singular historical events with unique historical explanations.  It considers 

a number of competing hypotheses—all of which must be falsifiable, and of which 

adaptation is only one of many—to explain the origin of the trait of interest 

[Coddington 1994].  Inferring adaptation using the homology approach requires that 

multiple, carefully considered, independent deductions have been tested against the 

observed data.  As the narrative scenario surrounding the emergence of a unique 

adaptation is elaborated, it should be further tested against available data.  In testing 

hypotheses of singular adaptation, it is especially important to recall that proposed 

adaptations should be shown to increase fitness in the derived context relative to the 

primitive condition [Coddington 1994], as this is one of the few ways to falsify a 

hypothesis of adaptation using the homology approach.  It is also important that 

competing adaptive and non-adaptive hypotheses be simultaneously considered and 

weighed against the data, lest an adaptive hypothesis “persist by monopoly rather 

than competitive merit” [p. 66, Coddington 1994]. 

It should be acknowledged that not all traits originally evolved as adaptations 

will necessarily have retained their original, adaptive functions to the present day—a 

trait lacking current utility may still represent an adaptation, but will no longer have a 

performance advantage [Coddington 1994].  Furthermore, traits that confer a current 
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fitness advantage but which were not actually derived to perform their current 

function are exaptations, not adaptations—just because a trait has current utility in 

performing a particular function does not mean it originally evolved to perform that 

function [Gould and Vrba 1982].  Lastly, some traits may be simply non-adaptive, 

having derived from some other process besides selection and offering no current 

utility [Gould and Lewontin 1979].   

In cases where an adaptation has lost its original function due to subsequent 

environmental change, failure to find a performance advantage associated with the 

trait is not adequate cause to reject a hypothesis of adaptation [Coddington 1994].  

Importantly for identifying adaptation in human gender, adaptations that have lost 

their original function are likely to be most common in cases where lineages have 

experienced dramatic environmental change since the origin of the adaptation 

[Maestripieri and Roney 2006].  Homo sapiens has undergone recent environmental 

change so dramatic that evolutionary psychologists assume we are no longer living in 

the selective environments that produced most of the underlying physiological and 

psychological mechanisms motivating our behavior, and, therefore, make no effort 

to demonstrate fitness effects for the traits they suppose are human adaptations 

[Maestripieri and Roney 2006].   

In fact, they explicitly reject the demonstration of current utility as a 

necessary or informative endeavor in identifying adaptation [Cosmides et al. 1992; 

Tooby and Cosmides 1990a; Tooby and Cosmides 1990b] and assert, instead, that 

evidence of “special design” is sufficient evidence for claims of adaptation [Tooby 

and Cosmides 1990a].  Natural selection is given primacy as a shaper of variation; 

non-adaptive evolutionary processes, though formally acknowledged, are considered 
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“weak” and only suitable as secondary explanations after a concerted attempt to find 

the adaptive features of a character has failed [Tooby and Cosmides 1990a].  If a 

feature or set of features is complex and is improbably closely coordinated with the 

adaptive problem presented by the environment of evolutionary adaptedness, this is 

taken as sufficient evidence of adaptation [Tooby and Cosmides 1990b].   

Yet, there are no clear methods by which even to accomplish the limited 

goals of this adaptationist [Tooby and Cosmides 1990b] approach to identifying 

adaptation.  There are no guidelines about how much correspondence between an 

evolutionary problem and its purported adaptive solution qualifies as “improbable,” 

or even any explanation of how to measure “correspondence.”  Worse, evolutionary 

psychologists accept as tenets that the environment of evolutionary adaptedness for 

almost all human psychology (and the behaviors motivated by it) is limited to the 

Pleistocene (between approximately 2.5 million and 12 thousand years ago) and that 

modern humans’ environments are dramatically different from “the” human 

environments of evolutionary adaptedness [Tooby and Cosmides 1990b].  If the 

human environment of evolutionary adaptedness bears no similarity with the 

present, how are researchers to divine the evolutionary problems that were faced by 

Homo sapiens over a period of more than 2 million years?  That is, how is it possible 

to “meet the conceptual and evidentiary standards for invoking function”[p. 542, 

Buss et al. 1998]  if one has no way of knowing if the proposed function actually 

existed?  This problem is circumvented by yet another assumption—that the 

environment of human evolutionary adaptedness looks sufficiently like the 

environments of modern day hunting and gathering societies that we can use them as 
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stand-ins for Homo sapiens during the period critical to the evolution of the human 

sexually dimorphic human nature [Cosmides et al. 1992].   

Unfortunately, this Panglossian approach [Gould and Lewontin 1979] cannot 

distinguish adaptation from exaptation from evolutionary “spandrel” [Maestripieri 

and Roney 2006].  Just because a particular trait is well-suited to the solution of a 

particular problem does not mean that the problem preceded the trait and selected 

for it, and it does not even mean that problem existed in evolutionary history at all 

(e.g., a nosebridge is a complex structure well-suited to the problem of holding up 

eyeglasses, but the problem of where to place eyeglasses is not one with an 

evolutionary history [Kay and Cartmill 1977]). This is not a minor point. When 

adaptive hypotheses rely on untestable assumptions, they relinquish their status as 

hypotheses and become unfalsifiable conjectures, thereby ceasing to be scientific, 

[Sewell 2004], and ultimately boiling down to little more than “stories” [Gould and 

Lewontin 1979].   

Plausible stories of adaptation can always be conjured, but “the key to 

historical research lies in devising criteria to identify proper explanations among the 

substantial set of plausible pathways to any modern result” [p. 588, Gould and 

Lewontin 1979].  Hypotheses regarding current utility (selective maintenance but not 

selective origin) are both interesting and biologically meaningful in the context of 

human gendered behavior, and are straightforwardly addressed using the homology 

approach because they must only be falsifiable with regard to the current trait-

function relationship.  They may also be falsified using the homoplasy approach.  

But because hypotheses of adaptation specifically address the cause of trait 

origination, they must be falsifiable either with regard to the temporal relationship 
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between the trait of interest and the function that selected for it or with regard to the 

historical trait-function relationship.  In the most straightforward adaptive 

hypotheses, where the historical trait-function relationship is supposed to be 

coincident with the current trait-function relationship, the validity of the proposed 

historical trait-function relationship can be tested simply by testing for current utility.  

But if the historical trait-function relationship is supposed to be obsolete, then tests 

should be devised both to rigorously assess whether the trait would have offered a 

performance advantage over the primitive trait and whether the origination of the 

trait and function have the appropriate temporal relationship for an adaptive 

scenario.  It may be possible to devise tests of historical performance advantage from 

the homology approach using modeling.  But a simpler way of testing the validity of 

a proposed historical trait-function relationship is through the homoplasy approach 

(by seeking out other, extant examples and counter-examples of the relationship), 

and tests of the temporal relationship between trait and function rely wholly on 

comparative analyses.   

Given ideal datasets, the homoplasy approach to identifying adaptation has 

much greater utility than the homology approach (and can also uncover general 

evolutionary patterns); but the two methods are complementary, and the most 

convincing examples of adaptation will be those which have withstood testing by 

both approaches [Coddington 1994].  In reality, the homoplasy approach may not 

always be feasible.  First, it is simply unsuited for truly unique historical events.  

Second, whether comparative analyses are inter- or intraspecific, sampling 

completeness is crucially important for the homoplasy approach, as incomplete 

sampling may lead to biased results [Coddington 1994].  As a result, the homoplasy 
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approach may be infeasible in the early days of research on a particular topic, and 

until sampling resolution is sufficiently high, inferences about adaptation based on 

the homoplasy approach should be viewed cautiously.  Unfortunately, amassing the 

necessary comparative data to achieve sampling resolution sufficient to utilize the 

major strengths of the homoplasy approach takes time.  Realistically, progress toward 

understanding the adaptive and non-adaptive elements of human gender will require 

a combination of both the homoplasy and homology approaches.  This is partly 

because interspecific comparative work is likely to reveal that some elements of 

human gender are unique to humans and are suited only to study via the homology 

approach, while others are shared with other species and are amenable to study via 

the homoplasy approach.  It is also because work on the adaptive nature of human 

gender (using the homology approach) should not wait until primatologists and other 

field biologists have compiled sufficient comparative data on sufficient numbers of 

taxa to assess which aspects of human gendered behavior are shared with other taxa 

(either due to homology or homoplasy) and which are uniquely human.   

WHY STUDY DEVELOPMENT? 

All of the methods outlined above can be used to identify probable 

proximate causation and adaptation in adult sex-typed behavior; but focusing on the 

ontogeny of adult sex-roles will yield a more complete, mechanistic understanding of 

the causes underlying adult sex-typed behaviors, which can further elucidate their 

evolutionary history by revealing the factors that drive and/or constrain their 

development at the proximate level [Beaupre et al. 1998; Duvall and Beaupre 1998; 

Janson and van Schaik 1993].  Among primates, newborns exhibit very little physical 

activity and social interaction [Bentley-Condit 2003], such that development will be 
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an important part of almost all of their adult behaviors (sex-typed or otherwise), and 

the advantages afforded by developmental study can likely be leveraged for most 

primate sex-typed behaviors.  Furthermore, all of the advantages of comparative 

research outlined above for understanding the proximate and ultimate causes of 

adult sex-typed behaviors can also be leveraged for understanding the proximate 

causes underlying sex-typed development.  Thus, comparative study of sex-typed 

development is the most incisive method by which to gain insight into the proximate 

and ultimate causation of human sex-typed behavior. 

PREVIOUS RESEARCH ON SEX-TYPED DEVELOPMENT 

The proximate causes mediating behavioral development have been a topic 

of concerted investigation in humans and non-human primates for decades, forming 

a vast “nature vs. nurture” literature.  Especially since endocrinological research has 

become more logistically feasible, the development of sex-typed behavior, in 

particular, has received increasing attention, and the overwhelming evidence is that 

for all primates, normal, sex-typical behavioral development results from complex 

interactions between and among social, ecological, and somatic factors [Kelly et al. 

1999; Wallen 1996; Wallen and Zehr 2004].  Important  somatic factors that 

influence sex-differential development are internal physiological states, including 

hormones governed by the hypothalamic-pituitary-gonadal (HPG) axis [e.g., Beehner 

et al. 2005; MacLusky et al. 1997; Pereira 1993a; Wallen 2005] genetic [e.g., Agate et 

al. 2003; Arnold et al. 2003; Arnold 2004; Barske and Capel 2010] and neuronal 

factors [MacLusky et al. 1997; Sisk and Foster 2004].  Important social factors 

influencing sex-differential development and behavioral expression are individuals’ 

social interactions with mother and others [Alberts and Altmann 1995a; Drea 1998]. 
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Important ecological factors influencing sex-differential development are sexually 

differentiated nutritional needs [Agostini and Visalberghi 2005; Alberts and Altmann 

1995a; Grassi 2002]. However, the relative importance of the social environment, 

ecological environment, and individual physiology in the development of specific 

sex-typed behaviors is almost entirely unknown for most primate species, and it is 

especially unclear how any of these factors function in natural environments to 

produce behavioral phenotypes [but see Alberts and Altmann 1995b].   

Human Gender Development 

Social causes of behavioral sex differentiation 

Previous research suggests that both social and somatic factors are important 

in shaping the development of human sex-typed behavior.  Because experimentation 

on humans is unethical, it is challenging to unequivocally establish the causal roles of 

either, but both enjoy considerable support.  Research on the social factors that 

influence human gendered behavior involves both observational and experimental 

work.  Research on the “biological” bases of human gendered behavior is primarily 

represented by clinical studies, correlational studies, and psychological experiments 

on infants.   

 That social factors are likely to be important in shaping the expression of 

human sex-typed behavior is well-evidenced.  In western cultures, it is clearly 

documented that male and female children are regularly treated differently by others, 

and children respond to their perceptions of what is apparently expected of them in 

their performance of sex-typed behavior.  Additionally, among different human 

cultures, there are different views on what constitutes appropriate sex-typed 
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behavior, and in some cultures, these definitions have changed a great deal over 

short spans of time. 

 Children are treated in sex-differential ways by their parents, by non-parental 

adults, and by their peers.  A number of studies of children from the 1960s to the 

1980s (in western cultures) indicate that parents and teachers of children react to 

them in sex-differentiated ways prior to the age at which children exhibit sexually 

differentiated behavior of their own.  Within 24 hours of birth, parents describe their 

infants in sex-stereotyped ways [Rubin et al. 1974].  Mothers exhibit more strongly 

affective vocal expression when talking to their infant sons [Roe et al. 1985] and 

engage in more physical contact with them than with infant daughters [Moss 1966], 

but look at and talk to their infant daughters more than their infant sons [Lewis 

1972].  Higher rates of looking at and talking to infant daughters continues through 

the age of two, while the pattern of sex-differential contact time reverses at the age 

of 6 months, after which time mothers spend more time in contact with their 

daughters than their sons [Lewis 1972].  By five months of age, the physical 

environments of male and female infants are sexually differentiated by parent choices 

in clothing color, toy color, and toy type [Pomerleau et al. 1990].  Parents and 

teachers of toddlers 18 months or younger have been found to respond more 

positively to girls’ attempts to communicate than boys’, to pay more attention to 

boys’ negative/assertive behaviors than girls’, [Fagot and Hagan 1991; Fagot et al. 

1985], and to respond more positively to children when they were engaged in sex-

typed play behaviors and less positively to them when they were engaged in cross-sex 

play behaviors [Fagot 1977a; Fagot 1978; Fagot and Hagan 1991].  Parents more 

often respond negatively to girls’ manipulations of objects than to boys’, more often 
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respond negatively to girls’ gross motor activities (e.g., running, jumping, etc.) than 

to boys’, and more often respond positively to girls’ solicitations for help and 

negatively to boys’ solicitations for help [Fagot 1978].  For two year old children, 

who have begun to exhibit sex differentiated activity preferences, teachers more 

often respond negatively to boys in general and especially more often negatively to 

boys engaged in female typical behavior (even though negative responses to children 

are rare at this age).  Peers of two year old children begin to differentiate their 

responses to other children by sex: girls respond more positively to other girls than 

to boys, regardless of whether play is sex-typed or not, while boys respond more 

positively to other boys than to girls, but much more positively to boys engaged in 

male-typed behavior than to boys engaged in female-typed behavior [Fagot 1985].  

At later ages, once sexually differentiated behavior is well-established, gender-typing 

and sex-differential treatment of children by others continues.  Parents, teachers, and 

peers of three and to five year-old children reinforce sex-typed behavior by 

responding positively to gender-typed behavior and by ignoring or punishing cross-

gendered behavior, with boys, but not girls, receiving harsh criticism for cross-

gender behavior from peers, teachers [Fagot 1977a], and fathers [Langlois and 

Downs 1980].  Sex differential treatment by parents may be attenuated by the age of 

five [Fagot and Hagan 1991], but teachers are still more likely to attend to boys’ 

attempts to communicate than girls’ [Fagot et al. 1985].  Instances of sex-typed 

socialization across a these studies had small effect sizes and large variances, such 

that particular socialization effects were not statistically significant in all samples 

[Fagot and Hagan 1991]; but still, the socialization of sex-typed toy play in children 

up to four years old is particularly robust across studies and through time [Fagot 
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1977a; Fagot and Hagan 1991], as is the presence of the general phenomenon of sex-

typed interaction with adults and peers.  Interestingly, the ways in which adults 

respond to children in sexually differentiated ways does not always correspond to 

their ideas about gender-typed behaviors—for example, parents did not consider 

“asking for help” a sex-typed behavior, but did respond to this behavior differently 

based on the child’s sex.  This suggests that even when there is no intention to 

socialize children in gender dichotomous ways, it occurs anyway [Fagot 1978].   

While it could be argued that sex-differential treatment of children by others 

is actually a response to innate sex differences in the children themselves (and while 

some of it may actually be, particularly mother-infant interaction), a series of “Baby 

X” experiments has shown that, at least with some characteristics of adult-infant 

interaction, adult perception of a child’s sex strongly influences the ways in which 

they interact with children from three to fourteen months of age and swamps any 

effect that might be due to the actual sex of the child [Seavey et al. 1975; Sidorowicz 

and Lunney 1980].  The original “Baby X” experiment [Seavey et al. 1975] 

introduced a three month old female dressed in yellow to unfamiliar graduate 

students (with no children of their own) as a either a boy, a girl, or without giving a 

gender identification, and observed which toys adults used to play with the infant. If 

the baby had been introduced as a girl, both men and women chose a sex-

stereotyped toy for the infant. If the baby had been introduced as a boy, this effect 

was not found, but the authors posit that this was probably because the male-

stereotypical toy provided—a football—was not age appropriate [Seavey et al. 1975].  

For the gender unknown condition, adults guessed the infant’s gender and justified 

their guesses using sex stereotyped behavioral and physical characteristics—i.e., 
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softness for “girl” and strength for “boy” [Seavey et al. 1975].  A repetition of this 

study using infants of both sexes aged three to eleven months found a similar (but 

stronger) pattern of sex-typed toy choices according to the infants’ perceived sex by 

undergraduate men and women.  A third experiment on  law students and their 

spouses (who were, themselves, parents) using toddlers of both sexes aged 13 to 14 

months also found that adults play with unfamiliar children in gender-stereotyped 

ways according to their perception of the child’s sex, but not according to its actual 

sex [Frisch 1977].   A fourth experiment on parents of young children found that 

they direct more verbal attention, more interaction without eye contact, and use 

more neutral facial expressions with a perceived girl and more often look directly at a 

perceived boy.  This sex differential treatment of the infant was despite the fact that 

most of the parents did not believe that children are sexually differentiated at six 

months, or that it was important for them to be so [Culp et al. 1983], and suggests 

that even when not intended, gender dichotomous social signals are continuously 

sent to children. 

 Given how early and repeatedly children receive cues from others about their 

own gender, it is reasonable to think, as social constructionists do, that they would 

tend to respond to those gendered behavioral expectations.  Given that children are 

almost certainly  active agents of their own gender construction [McIntyre and 

Edwards 2009], it is difficult to say how much of their gender construction or 

performance is in response to external social pressures rather than expressions of 

their own innate tendencies.  But some research clearly demonstrates that children’s 

perceptions of gender expectations can constrain their behavioral expression.  In an 

experimental setting in which more and less stereotypically gendered five year old 
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children were observed playing with a choice of gender typical and atypical toys, the 

presence of an adult observer significantly changed the toy choices of less 

stereotypically gendered boys (but not those of less stereotypical girls)—less 

masculine boys chose more masculine toys when they knew they were being 

observed than when they thought they were not being observed [Wilansky-Traynor 

and Lobel 2008].  Four year old children have also been found to play less with 

opposite-sex toys when peers are present than when alone [Serbin et al. 1979].  

These data suggest that external social factors do influence children’s behavioral 

expression with respect to gender. 

Another line of evidence that suggests external social factors are an 

important cause of sex-typed behavioral expression in humans is the existence of 

variation in the particulars of that expression across modern human cultures.  While 

behavioral differences that are associated with each biological sex may be ubiquitous 

across societies [Whiting and Edwards 1973] many of the particular expressions of 

those behavioral differences are not.  In some cultures, it is considered inappropriate 

for women to operate motor vehicles, but this certainly does not represent 

expectations of women everywhere.  In present-day Mahafaly culture in rural 

Madagascar, it is acceptable for a man to wear a hot pink, floppy gardening hat but 

not for a woman to have short hair (personal observation); in present-day American 

culture it is acceptable for a woman to have short hair, but a boy with pink nail 

polish causes a media flap [Netburn 2011].  Furthermore, the particular behaviors 

considered appropriate for each gender can change rapidly within a culture through 

time [Tallichet and Willits 1986].  A thorough treatment of cross-cultural and 

temporal variation in sex-typed human behavioral expression is beyond the scope of 
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this study, but its existence suggests that external social factors are strongly at play in 

the development and maintenance of human gender roles.   

“Biological” causes of behavioral sex differentiation 

There are well-documented differences in western men and women in spatial 

skills and attention; since this is an area less obviously subject to socialization than 

many other adult human sex differences, they have often been assumed to represent 

innate, biological human sex differences.  Without any instruction or specific 

training, men tend to focus on the “geometrical positions of objects in space” while 

women concentrate on “the position of objects relative to one another” [Ecuyer-

Dab and Robert 2004]. This sex difference in attention to object location is manifest 

in the ways men and women spontaneously attend to maps and directions—men use 

Euclidean, geometrical features and women use more landmarks [Ecuyer-Dab and 

Robert 2004]. Similarly, several studies have demonstrated female superiority in 

object and object location memory [Duff and Hampson 2001; Eals and Silverman 

1994; Silverman and Eals 1992], but female advantage disappears when specific 

instructions are given to note object locations [Silverman and Eals 1994], suggesting 

a sex difference in attention to particular object features. However, some sex 

differences in visual skill are not due to simply to sex differences in attention.  When 

test subjects are asked specifically to recall object location, females still outperform 

men, but only for objects are located on the right side of the field of vision 

[Alexander et al. 2002].   That these sex differences in visual processing habits are 

spontaneous and are not actively constrained by social factors in any obvious way 

has been taken to suggest that they result, at least partly, from innate differences 

between males and females as opposed to entirely from experiential factors.  But still, 
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they may result from sex differential experience with certain kinds of activities 

(possibly socialized ones) that demand particular kinds of visual processing and 

attention, much like feline visual capability depends on the nature of post-natal visual 

input [Blakemore 1976].     

A more convincing set of data for the importance of biological motivators of 

behavioral sex differences comes from clinical research on medical conditions that 

disrupt sex-typical hormone function.  Congenital adrenal hyperplasia (CAH) is 

caused by mutations in the CYP21A2 gene that causes a defect in the 21-hydroxylase 

enzyme, which is needed for the synthesis of cortisol.  The resultant cortisol 

deficiency ultimately results in downstream overproduction of adrenal testosterone 

during gestation [Minutolo et al. 2011].  Girls with CAH are usually characterized by 

masculinized genitalia and male-typical play behaviors [Pasterski et al. 2005] and toy 

preferences [Berenbaum and Hines 1992]. Boys with CAH seem to be exposed to 

slightly lower than normal levels of gestational testosterone, as they exhibit sex-

typical toy preferences but less than typical rough play [Hines and Kaufman 1994]. 

(It has been proposed that the increased adrenal testosterone production somehow 

“clamps” the normal production of gonadal testosterone in the fetus, resulting in 

lower than average gestational testosterone exposure [Wallen 2005].)    

Correlative studies have attempted to follow up on the role of non-

pathogenic variation in prenatal testosterone exposure on childhood behavioral 

tendencies.  A study of the circulating testosterone of nearly 14,000 pregnant British 

women and their children’s behavioral tendencies at three and a half years of age 

found that girls of mothers with high levels of circulating gestational testosterone 

exhibited more male-typical play while girls of mothers with low levels of circulating 
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gestational testosterone exhibited more female-typical play; there was no relationship 

between boys’ play styles and maternal gestational testosterone, possibly due to the 

swamping effects of the amount of testosterone produced by male fetuses [Hines 

and Golombok 2002].  These studies suggest that fetal physiology and the fetal 

hormone environment organize innate behavioral tendencies of children, and given 

that the particular fetal physiological peculiarities of CAH also effect genital 

masculinization in girls to varying degrees, it is not unreasonable to attribute the 

behavioral tendencies of this group of children to fetal physiology, even if there is 

not a one-to-one causal relationship between the two.  Still, these types of studies of 

older children cannot control for the possibilities that behavioral tendencies of their 

subjects are instead produced through unconscious socialization or genetic similarity 

between parents and daughters, mothers in particular [Cohen-Bendahan et al. 2005]. 

In an effort to minimize the influence of socialization and to pinpoint more 

definitively innate sex differences in human children, some studies have attempted to 

focus on the youngest infants possible.  Numerous studies have sought to establish 

whether or not infant boys are more physically active than infant girls [Campbell and 

Eaton 1999; Cossette et al. 1991], but results are inconclusive.  Researchers have 

attempted to determine whether the well-established sex difference in children’s toy 

preference is rooted in innate sex differences in object preference [Alexander et al. 

2009; Connellan et al. 2000].  This research has found a neonatal sex difference with 

small effect size in visual preference when given a choice between a human face and 

a complex picture comprising mixed up fragments of a human face (girls tend to 

look preferentially at the face while boys tend to look preferentially at the complex 

picture), and that a sex-typed preference for red versus blue does not exist for 
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toddlers’, as has often been proposed (in fact, both sexes prefer pink and red over 

blues) [Alexander et al. 2009].  Alexander [2003] suggests that the slight, innate sexual 

bias in visual preference apparently demonstrated by Connellan et al. [2000] leads 

male infants to selectively attend to male-typed objects, and through their increased 

exposure to them, to develop their visual processing skills for male-typed objects and 

vice versa—a feedback loop between preference for and experience with certain types 

of visual cues, an idea supported by a previous finding that boys’ visual-spatial ability 

is correlated with sex-typed activity preferences [Connor and Serbin 1977]. But 

critics reject the interpretation of the sex differences in these studies as innate 

because the Connellan et al. [2000] study did not control for whether the infant was 

being held or was in a bassinette during experimentation, and it is well-documented 

that western adults handle and interact with children in sex-differential ways based 

on their belief about the child’s sex, and even with day-old infants, the opportunity 

for sex-differential handling by adults has arisen (K. Clancy, personal 

communication).   

Distinguishing the roles of “nature” and “nurture” in sex-typed development 

Sorting out how much of human sex-typed behavior derives from innate 

motivations, how much is experientially motivated or constrained, and how much of 

an interaction there is between the two is quite a challenge.  The methodological 

constraints of research on humans are greater than for any other species.  A number 

of tools that might yield more insight into this puzzle are unethical (i.e., experimental 

manipulation of prenatal hormone concentrations) [McIntyre and Edwards 2009] 

while others are simply infeasible (i.e., observing all of a subject’s social interactions 

or establishing the reproductive success of individuals who adopt different 
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behavioral strategies).  Furthermore, because this is such an emotionally charged 

topic, interpretations of even the same data tend to be polemical.  For example, a 

number of elements of adult treatment of infants have been found to vary according 

to sex, but many have not, and the effect size of sex-differential treatment by others 

is usually small (the effect size of sex differences in infant behavior are fewer and 

smaller).  Although all researchers today admit the importance of complex 

biocultural interactions in human sex-typed development [McIntyre and Edwards 

2009], discerning the weight of the importance of each type of causal factor is open 

to interpretation.  Researchers with a social constructionist bent tend to highlight the 

presence of adult sex-differential treatment of infants, downplay the behavioral sex 

differences of infants, and point out small differences in treatment by adults are 

potentially more important than is belied by their initial size due to the ways in which 

they can be elaborated through cumulative experience and response by children 

[Sidorowicz and Lunney 1980].  In contrast, researchers with a biological bent will 

highlight the small effect size of adult treatment of infants, emphasize the potential 

importance of the role of infant sex differences in temperament in an interaction 

feedback loop between infants and adults, thereby downplaying the importance of 

external pressures in the process of sex-typed development [McIntyre and Edwards 

2009].  Social constructionists will interpret the dramatic and very consistent results 

of the Baby X experiments as evidence that adults rely heavily on children’s gender 

in order to structure interactions with them [Sidorowicz and Lunney 1980], while 

researchers with a biological perspective on human gender will point out that in the 

experimental paradigm, with no previous familiarity with the individual preferences 

of the child, adults have nothing other than stereotypes to rely on to structure their 
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interactions with the child [McIntyre and Edwards 2009].  Thus, even when 

contextualizing the same data, social constructionists tend to give the impression that 

sex-typed treatment of children by others is likely the most important driving force 

in sex role development and researchers with a biological focus tend to give the 

impression that children’s expression of innate sex differences is probably the most 

important driving force in sex role development.  One way around this problem may 

be to study these questions in non-human model taxa for which most researchers 

probably have less investment in a particular result versus another. 

Captive non-human primate sex-typed development 

With regard to the causes of behavioral sex differentiation, the common rat, 

mouse, and rabbit models are not likely to be entirely applicable to more precocial 

taxa such as primates [Wallen 2005]; non-human primate models are much more 

likely to be of use in attempting to explain human sexual differentiation and other 

complex, human biobehavioral phenomena [Carroll and Maestripieri 1998; 

Maestripieri 1999; Maestripieri 2005b; Maestripieri and Carroll 1998; Plant 2001]. 

Like humans, non-human primates have an extended period of infancy and juvenility 

during which their behavioral phenotypes fully develop [Altmann and Pereira 1985]. 

But most non-human primate species develop much faster than humans, are more 

experimentally tractable than humans, and are therefore valuable as a model for 

inquiry into the causes of human sexual differentiation [Altmann and Pereira 1985; 

Curry 2001; Maestripieri 2005b; Wallen 2005].  Like humans, there is convincing 

evidence that behavioral development in non-human primates is driven both by 

social and somatic factors.  Social influences on the normal development of sex-

typed behaviors, in particular, have not been subject to such intense scrutiny as in 
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humans, but a great deal of experimental work on the behavioral effects of early 

social experience suggests that social factors are likely to be important in normative 

sex-typed development.  Somatic influences on sex-typed behavioral development, 

on the other hand, have been and continue to be much more thoroughly investigated 

than is possible in research on humans.    

Social causes of behavioral sex differentiation 

Decades of captive research on the proximate mechanisms of primate social 

development have unequivocally demonstrated that the social environment is 

fundamentally important to the development of later behavior.  A number of studies 

involving manipulation of the early social environment have demonstrated that 

complex social environments result in more normative infant and juvenile behavior, 

while socially deprived environments generally lead to poor behavioral outcomes 

[Harlow and Harlow 1962a; Harlow and Harlow 1962b; Ruppenthal et al. 1976; 

Wallen 2005]. Macaques reared in more socially complex or less stressful 

environments exhibit less fear and fewer fear-related behaviors [Capitanio 1984; 

Champoux et al. 1991], less agonism [Capitanio 1984; Champoux et al. 1991], more 

dominant social behavior [Capitanio 1984], more social play [Champoux et al. 1991],  

less self-directed behavior [Champoux et al. 1991], and develop the ability to 

discriminate between strangers and their mothers earlier in life [Rosenblum 1987]. 

Chimpanzee infants reared alone exhibit suppressed levels of distress vocalizations 

when exposed to stressors [Randolph and Mason 1969]. Even when subjected to 

rearing differences during only the first 30 days of life, chimpanzee infants reared in 

an enriched environment are happier, more alert, more able to quiet themselves, are 

less fussy, less fearful, more cooperative, have greater attention spans, are more 
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persistent, exhibit less object attachment, and are less tense during testing for the 

first year of life [Bard and Gardner 1996]. This suggests that behavior may be 

sensitive to early, brief periods of social stress. While much of this research has not 

focused on the development of sex-typed behaviors, per se, the importance of the 

social environment for normal behavioral development in general suggests that it is 

almost certainly influential for normal sex-typed behavioral development in 

particular.  Where investigation has focused on rearing effects of sex-typed 

behavioral development, results echo those on species-typical behavioral 

development: more socially complex environments promote the development of 

more proficient sexual behavior [Capitanio 1984; Champoux et al. 1991; Goldfoot 

1977; Goy and Wallen 1979; Harlow 1965; Mason 1978; Wallen 1996; Wallen et al. 

1977; Wallen et al. 1981] more sex-typical play behaviors [Spijkerman et al. 1995; 

Wallen 1996; Wallen 2005], and more species-typical behavioral sex differentiation 

[Meredith and Fritz 2005; Spijkerman et al. 1996; Spijkerman et al. 1997] 

Despite the paucity of data on social development in strepsirrhines [Gould 

1990], some data indicate that species-typical socialization is also important for their 

normative development. Though the Duke University Primate Center has had much 

success in breeding aye-ayes using wild-caught males, captive bred males have failed 

to breed successfully on their own.  The first successful breeding by a captive-born 

male was only achieved after two years of behavioral coaching by Primate Center 

staff.   Due to husbandry constraints, upon the birth of a younger sibling, older 

offspring were historically removed from their mothers and housed with an 

opposite-sex peer. The Primate Center now introduces younger males to animals of 

all ages and reproductive states, because they suspect that social learning plays an 
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important role in the development of mating behavior (Gibson D., pers. comm.). 

Together, these data indicate that relationships with conspecifics may be important 

to the development of sex- and species-typical social behavior in all primates, not 

just in anthropoids [Nash 1993; Nash 2004], a point which deserves much increased 

attention and research.   

Most of the aforementioned manipulations of early social and/or hormonal 

environments are far outside the normal range of variation a primate experiences 

under natural conditions and are therefore of questionable utility in determining 

whether normal social interactions with group members influence behavioral 

development under normal circumstances. But a few captive studies have shown that 

even “normal” variation in early social environment can produce short and long-

term effects on behavioral development.   

Non-manipulative studies suggest that normally occurring variation in 

particular elements of the social environment influence developmental outcomes.  

For example, in many cercopithecoid taxa, infant play patterns are correlated with 

maternal rank—offspring of higher ranked mothers play more, use more dominant 

behaviors in their play, and are more independent [Fedigan 1972; Gard and Meier 

1977; Norikoshi 1974; Tartabini and Dienske 1979]. Dominant mothers are usually 

more relaxed in their mothering style, so that infants are in contact with them less, 

which allows them to play more [Altmann 1978; French 1981; White and Hinde 

1975]. But even in cases where maternal rank is uncorrelated with maternal style, 

maternal style is still correlated with infant play patterns and later adult behavior—

early  maternal rejection within normal limits seems to promote less anxiety and 

more independence, and this effect is long-lasting [Hemelrijk and Dekogel 1989; 
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Schino et al. 2001].  In free-ranging rhesus macaques, infants exhibit patterns of 

social interaction that mimic their relatives’. Infants in high-ranking lineages spend 

more time with their relatives than infants in low-ranking lineages, irrespective of 

differences in mother-infant relationships  [Berman 1983].  

Although these studies lend strong circumstantial evidence that the nature of 

the mother-infant relationship or social environment influences the behavior of 

offspring, they cannot control for the possibility that the correspondence of maternal 

style and infant behavior are due to the genetic relatedness of mothers and infants. 

Rosenblum and colleagues [Andrews and Rosenblum 1991; Rosenblum and 

Paully 1984] convincingly demonstrated that the social milieu during rearing, 

specifically, can strongly affect infants’ later behavior. They changed the foraging 

demands placed on social groups of bonnet macaque mothers and infants without 

changing the amount of food actually available to the animals [Andrews and 

Rosenblum 1991; Rosenblum and Paully 1984]. Groups were subjected to low 

foraging demand, high foraging demand (food was hidden and animals had to forage 

longer to find food), and variable foraging demand (foraging demand protocol 

oscillated randomly between high and low demand). These changed foraging 

demands affected both female-female relationships and mother-infant relationships. 

Females subjected to low foraging demand (LFD) were least aggressive and most 

affiliative; variable foraging demand (VFD) females were most aggressive; high 

foraging demand (HFD) females were intermediate. Mother-infant dyads that 

experienced VFD were more often in contact, spent less time out of visual contact, 

and made and broke contact more often than dyads in the other groups. Infants 

reared in the VFD environment exhibited reduced social behavior, less object 
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exploration, less play, and eventually showed signs of depression—long bouts of 

sitting hunched over with closed eyes, often self-clinging. Previous to this study, 

depression had only been recorded when infants were separated from their mothers 

[Rosenblum 1987]. VFD infants were also more subordinate to LFD infants 

[Andrews and Rosenblum 1991; Rosenblum and Paully 1984]. Because these 

individuals were reared identically other than the foraging demands placed on their 

mothers, these long-term effects must have arisen from changes in the social 

environment borne of changes in foraging demand.  

 Maestripieri [2005a] demonstrated that a month’s exposure to an abusive 

foster mother resulted in dramatically increased odds of a female becoming an 

abusive mother herself. This pattern was uncorrelated with genetic relatedness—

none of the biological daughters of abusive mothers fostered by non-abusive 

mothers grew up to be abusive mothers—and suggests that the transmission of 

patterns of maternal behavior from generation to generation can be mediated 

experientially.  Other cross-fostering studies have also shown that the mother-infant 

relationship affects infant behavior.  Infants cared for by punitive females spend less 

time in ventral contact with them and exhibit more self-directed disturbance 

behaviors than infants cared for by nurturant females, and these effects are 

independent of genetic relatedness or individual physiology (which could be 

inherited, or a result of prenatal experience) [Suomi 1987].  

 These experimental data demonstrate unequivocally that some aspects of the 

early social environment can affect later social behavior. The particular elements of 

the social environment that mediate normal behavioral development are still unclear, 

as is how the early social environment shapes sex-typed behavioral development in 
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particular.  But another important line of evidence supporting the importance of the 

social environment in normative primate sex-typed behavioral development is that 

not all manipulations of rearing environment affect males and females in the same 

way.  Sackett [1972] tested the exploratory behavior of rhesus monkeys from 5 

variously complex rearing environments. Complexity of rearing situation was 

positively correlated with motor activity, exploration, and responsiveness to complex 

visual stimuli, but females were more robust to the effects of deprivation rearing 

than males. Males and females also respond differently to different combinations of 

rearing and post-rearing environments. In highly aggressive environments, female 

rhesus present to others more than males do, irrespective of rearing experience. In 

low-aggression environments, there is no sex difference in presenting, except if 

infants were reared in isosexual groups, in which case males present more than 

females [Wallen 1996]. On Cayo Santiago, free-ranging rhesus macaque infants 

apparently do not differ by sex in grooming and play behavior until their mothers 

resume sexual behavior. But at this point, male infants increase the amount of time 

they spend playing [Berman et al. 1994] while females decrease the amount of time 

they spend playing, and increase the amount of time they spend grooming non-

maternal group members [Berman et al. 1994]. After a sibling birth, males spend 

more time farther from their mothers [Devinney et al. 2001]; females spend more 

time in close proximity to their mothers, approach their mothers more, and groom 

their mothers more than males do [Devinney et al. 2001]. This represents a sex 

difference in social response to a normal but probably stressful life event, and 

implies that the birth of a sibling (or not), and the sex of the yearling partly 

determine the resultant yearling behavioral phenotype. These cases illustrate that the 
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two sexes may be affected differently by their early social environment, and that their 

pattern of responses to later social environments may also differ by sex. Such sex 

differences in response to environment could serve as one mechanism of sexual 

differentiation in behavioral development. 

Biological causes of behavioral sex differentiation 

 Identification of somatic causes of behavioral sex differentiation has been 

one of the greatest contributions of captive, experimental research in this area.  A 

large body of work beginning with the search for the underlying causes of human 

hormonal disorders [Wallen 2005] and based on testing and further exploring the 

mammalian model of sexual differentiation [Jost et al. 1970] has revealed much about 

the biological motivators of sexually differentiated behavior in non-human primates.   

A number of studies suggest that some non-human primate behavioral sex 

differentiation may be innate, but does not identify the proximate drivers involved.  

For example, sex-typed toy preferences common in humans are also found in vervet 

and rhesus monkeys presented with novel toys [Alexander and Hines 2002; Hassett 

et al. 2008]. Both studies suggest that there is some degree of innate sex difference in 

object preference, because neither species of monkeys had previous familiarity with 

these toys, so they did not have sex differential experience with them.  Male 

superiority in spatial memory in captive rhesus macaques is another sex difference 

with no obvious environmental cause, social or otherwise, suggesting the presence of 

innate sex differences for this trait in this species [Lacreuse et al. 1999].   

Many experimental studies have been able to isolate the effects of particular 

hormonal factors on specific sex-typed behaviors.  Experimental manipulation of the 

prenatal androgenic environment in macaques has clearly demonstrated that prenatal 
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hormones affect later sexual differentiation in play behavior and sexual behavior in 

both males and females, but that not all behaviors respond similarly to a given 

androgenic manipulation regime [Goy et al. 1988]. For example, levels of prenatal 

androgen sufficient to produce masculinized mounting behavior in female Japanese 

macaques do not masculinize rough and tumble play [Eaton et al. 1990] and levels 

sufficient to induce male-typical mounting and play behaviors in female rhesus are 

insufficient to suppress female-typical infant interest [Herman et al. 2003].  

Additionally, the timing of androgen exposure during gestation is important in 

determining its effects on later behavior. The behavioral effects of androgen 

manipulation during late gestation are usually more pronounced than those in early 

gestation [Wallen 2005]. For example, rhesus juvenile mounting behavior seems to 

be particularly sensitive to androgen manipulation in late gestation even though it 

can also be affected by early gestational hormone manipulation [Goy et al. 1988]. 

This phenomenon may result from the importance of androgen influence on sexual 

differentiation of the mammalian brain, which occurs perinatally, and which depends 

on the presence of gonadal testosterone for the development of a number of male 

brain traits related to adult sexual behavior [Hines 2003; McCarthy et al. 2003]. 

Within this overall pattern of increasing androgen sensitivity as gestation progresses, 

though, different behaviors still have their own unique timing of peak sensitivity to 

androgens [Hines 2003]. Female rhesus macaques who experience elevated levels of 

prenatal testosterone early in gestation exhibit masculinized mounting behavior, but 

no increased frequencies of rough play; females who experience elevated levels of 

prenatal testosterone late in gestation exhibit both more mounting and rough play 

than unmanipulated females [Goy et al. 1988]. This indicates that different behaviors 
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have different schedules of sensitivity to androgens, which makes sense in light of 

the fact that neurological development is protracted in primates [Wallen 2005].  

Some gestational androgenic effects on behavior have been less clear. The 

administration of flutamide (an androgen blocker) and androgens to rhesus macaque 

fetuses at different times in gestation produced a suite of results that did not coincide 

with expectations derived from previous studies [Wallen 2005]. In particular, 

flutamide did not produce de-masculinization effects consistent with androgen 

suppression, which it should have. However, one clear and important result from 

this study was that the effects of variation in the prenatal hormonal environment on 

behavior may sometimes be latent, rather than immediate. Increased androgenic 

exposure did not increase females’ rates of rough play during the first year of life as 

expected, but did so in the second year of life [Wallen 2005].  

Available data indicate that some aspects of juvenile social behavior might be 

sensitive to neonatal hormones, but that, in general, the developmental component 

of primate behavioral sex differentiation is not strongly driven by neonatal 

hormones, because sex-typical behavior does not appear to be strongly affected by 

neonatal castration or pharmaceutical suppression of the neonatal testosterone surge. 

In rhesus macaques, infant and juvenile sexually dimorphic play and mounting 

behaviors are unaffected by experimental manipulation of neonatal hormones 

[Brown and Dixson 1999; Wallen et al. 1995] and by gonadectomization at birth 

[Goy and Phoenix 1971; Wallen 2005]. However, suppression of neonatal 

testosterone does affect adult male sexual behavior; adult males who experienced 

neonatal testosterone suppression masturbate and copulate less with receptive 

females than control males [Eisler et al. 1993]. These data suggest that sexual 
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differentiation of social behavior through juvenility is relatively independent of 

postnatal circulating hormones [Goy and Phoenix 1971], but that “. . . hormonal 

influences during the neonatal period elaborate predispositions that are organized 

prenatally” [Wallen 2005, p.11].  

There is evidence that puberty involves increased structural changes in the 

brain [Sisk and Foster 2004], but it is unknown whether this is due to increased 

sensitivity to the organizing effects of androgens during this developmental time. It 

is also unknown whether puberty affects post-pubertal androgen sensitivity or how 

pubertal androgens influence the development of fully adult mating behavior [Wallen 

2005].  Regardless of the precise mechanisms of influence, pubertal hormones are 

important drivers of sexual differentiation.  Male and female rhesus monkeys exhibit 

differences in the ages at which they can perform visual discrimination tasks, which 

can be altered by manipulation of peripubertal hormone concentrations [Bachevalier 

and Hagger 1991; Hagger and Bachevalier 1991].  And it is clear that some sex-

typical juvenile behaviors that are independent of post-natal hormonal influence 

during juvenility come under hormonal control (or at least influence) in adulthood. 

For example, in rhesus macaques, adult male mounting behavior is dramatically 

decreased when testosterone is artificially suppressed [Wallen 2001; Wallen et al. 

1991], and in pig-tail macaques, adult female interest in infants is increased by 

estrogen treatment [Maestripieri and Zehr 1998]. By adulthood, then, some sex-

differential behaviors are at least partially controlled by the presence of sex-

differential gonadal hormones.  

Though non-human primates are probably the best models of human sexual 

differentiation, two caveats bear consideration.  First, the traditional mammalian 
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model of androgenic sex differentiation [Jost et al. 1970] has been found to be an 

oversimplification; sexual differentiation also relies on hormonal feminization 

processes [Fitch and Denenberg 1998] and other, non-hormonal processes, such as 

Y chromosome presence and X-gene dosage effects on the brain [Arnold et al. 

2003].  Second, not all primates are alike in how hormones affect their behavior. In 

rhesus macaques, male sex-typical mounting and play behavior is mostly determined 

by prenatal hormones [Brown and Dixson 1999; Brown et al. 1999], but neonatally 

castrated marmosets and tamarins display no later mounting behavior even when 

testosterone is artificially administered, indicating that neonatal hormones are more 

important for sexual differentiation of behavior in these taxa [Dixson 1993; Epple et 

al. 1990]. Developmental endocrinology studies on primates have all been done in 

captivity, and have therefore largely been limited to macaques, mangabeys, and 

callitrichids [Brown and Dixson 1999]. Little is known about the normative 

developmental endocrinology of other primate taxa or its effects on sexual 

differentiation of behavior, and it should not be assumed that other taxa conform to 

known patterns. 

Social/somatic interaction 

 Another strength of captive research has been its ability to document the 

interaction between social and hormonal causes of behavioral development in 

general, if not sexual differentiation in particular.  Captive research has clearly shown 

that the early social environment can create variation in individuals’ brains and 

physiology. In a study of 29 male rhesus monkeys, nursery reared monkeys had 

smaller midsagittal corpus callosum areas associated with a decrease in white matter 

volume and performed poorly in cognitive testing compared to monkeys reared with 
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their mothers in a naturalistic setting [Sanchez et al. 1998]. Insufficient tactile 

stimulation experienced by isolate-reared rhesus monkeys alters later hormone 

secretion patterns [Champoux et al. 1989]. Pigtail macaques separated from their 

mothers and subsequently provided with a juvenile allomother experience significant 

immunosuppressive effects from the separation, but not if they have an already 

established attachment to their allomother [Boccia et al. 1994]. And animals reared in 

variable foraging demand environments have highly reactive stress hormone profiles 

compared to those reared in low foraging demand environments at 3 and 4 years of 

age [Suomi 1997].  Because an individual’s brain and physiology influence its later 

behavior, the effects of early social environment on the brain and physiology could 

serve as a mechanism by which early social environment influences behavioral 

development.  The importance of this phenomenon should not be underestimated; 

for example, in the wild, highly reactive female macaques often exhibit inadequate 

maternal care, and highly reactive males often emigrate late and enter new groups 

with low rank [Suomi 1997]. 

Individuals’ brains and physiologies may also prime them to react in different 

ways to the same environmental stimuli [Ellis et al. 2011].  For example, highly 

reactive macaques, which in most circumstances suffer deficits compared to their less 

reactive peers, do very well if reared by the “right” kind of mother.  Suomi [1997] 

selected highly-reactive and normally reactive infant rhesus and cross-fostered them 

with either normal or especially nurturant mothers. Extra nurturing had no effect on 

normal monkeys, but had drastically ameliorative effects for highly reactive monkeys. 

Instead of suffering all of their typical behavioral deficits, highly reactive monkeys 

reared by especially nurturant mothers became behaviorally precocious. Later in life, 
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they became adept at recruiting and maintaining allies in response to agonistic 

encounters, rose to high rank, and stayed there. Furthermore, when these females 

had their own offspring, they exhibited the highly nurturant maternal style of their 

foster mothers, not the inadequate care of their biological mothers that contributed 

to their reactive stress physiology in the first place [Suomi 1997].   

Given that males and females do differ in some aspects of their physiology 

and anatomy, these differences may prime the sexes to have different outcomes from 

their interactions with the same environmental stimuli.  In some cases, males and 

females do indeed have different phenotypic responses to the same environmental 

stimulus.  Female peer-reared rhesus macaques have higher stress hormone levels in 

response to alcohol infusion than mother-reared animals of either sex. Male stress 

hormone response to alcohol, though, is unaffected by rearing condition, suggesting 

that the function of the neuroendocrine stress axis responds differently to early 

stressors in each sex [Barr et al. 2004].  Sex-differential responses to similar 

environmental stimuli could serve as one mechanism by which social environment 

could shape sexual differentiation in behavior.  

The idea that individual phenotypes result from complex interactions 

between an individual’s innate characteristics and its experience with characteristics 

of its social and physical environment is not a new one [Capitanio 1984; Capitanio 

1985; Deputte and Quris 1996; Galef and Wright 1995; Lewis and Cherry 1977; 

Pasterski et al. 2005; Pereira 1995].  Primates, especially, are born into complex social 

environments and maturity takes years to achieve. In that time, an individual must 

navigate its changing social environment so as to survive and eventually reproduce. 

The adult behavioral phenotype is the result of a long period of maturation, and it 
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would be unreasonable to think that such a protracted process would not be affected 

by the environment in which it occurs.   

Wild non-human primate sex-typed development 

Non-manipulative research in the wild cannot establish with as much 

certainty either the environmental or somatic causes of sex-typed development as 

manipulative research in captivity.  As a result, naturalistic research in this area lags 

substantially behind manipulative and non-manipulative captive work, and it is 

difficult to neatly separate research on external factors that motivate behavioral sex 

differentiation from research on innate factors.  Despite its challenges, naturalistic 

research on the causes of behavioral sex differentiation has a number of strengths.  

Naturalistic studies are valuable because an important potential environmental 

motivator of sexual differentiation—realistic ecological variation and/or sexually 

differentiated responses to the natural environment—can only be investigated in the 

wild. Additionally, animals are not artificially constrained in their association patterns 

and may therefore exhibit sex differential behavior in the wild that is made 

impossible for them in captive settings—e.g., dispersal behavior.  As a result, the 

findings of research conducted on naturally occurring populations may be more valid 

than captive research for understanding development as it occurs in natural 

populations [Borries et al. 2011]. 

Social and ecological causes of behavioral sex differentiation 

Wherever adult sex differences in diet and foraging behavior are present, 

those sex differences must develop during the postnatal period, as primates are not 

strongly sexually differentiated in either social [Barthold et al. 2009; Förster and 

Cords 2005; Nash 1978] or dietary behavior at birth. Sex differences in adult social 
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behavior are numerous and varied—adults differ by sex in levels of aggressive 

behavior [Cords et al. 2010], dominance, in how overtly sociable they are [Clarke 

1990; Cords et al. 2010; Strier 2002], in how diversified their social networks are 

[Clarke 1990], and in their three-dimensional spacing relative to other individuals 

[Ekernas and Cords 2007; Robinson 1981].  Given that social factors have been 

shown to influence the course of behavioral development in captivity, it is reasonable 

to suppose that any sex-differential treatment by others during the developmental 

period may contribute to behavioral sex differentiation.   

In general, few sex differences in treatment by other group members have 

been found at early ages in wild primates.  No sex differences have been found in 

treatment of infants by others in blue monkeys [Förster and Cords 2005] until the 

age of six months, when mothers begin grooming female infants much more than 

male infants, and when male infants dramatically increase their rates of approaching 

and leaving their mothers [Förster and Cords 2002].  No sex differences have found 

in treatment of infants by others in red-fronted brown lemurs  [Barthold et al. 2009], 

ring-tailed lemurs [Gould 1990], or olive baboons [Nash 1978].  But some sex 

differences have been observed in some species.  Female-female pairs of common 

marmoset twins are carried more by fathers than male-male or male-female pairs 

[Yamamoto et al. 2008].  And in yellow baboons, infant maternal rank influences the 

suckling time of female but not male infants, and experienced mothers initiate 

contact more with male infants than with female infants [Nguyen et al. 2010].  While 

sex differences in treatment by others are few and subtle compared to those 

documented at later ages (below), Nguyen et al. [2010] suggest that adult behavioral 

sex differentiation might be rooted in very early sex differences in social interactions. 
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By juvenility, behavioral sex differences are typically more numerous and 

more pronounced.  Females typically show more interest in infants than their male 

peers [Cheney 1978; Clarke et al. 1998; Cords et al. 2010; Crockett and Pope 2002; 

Förster and Cords 2005], when sex differences in play are found, males typically play 

more frequently  and more intensely than females, and juveniles often preferentially 

associate and interact with like-sex partners in both foraging and non-foraging 

contexts [Cheney 1978; Crockett and Pope 2002; Milton 2002; Pereira 1988; van 

Noordwijk et al. 1993], although the intensity of those social associations varies by 

species  [Clarke et al. 2007] and this pattern is not ubiquitous [Cords 2000; Nikolei 

and Borries 1997; Strier 2002].  By juvenility, though, it is very challenging to sort out 

which parts of sex differential social interaction are internally motivated versus 

externally motivated or constrained, at least until detailed studies with fine temporal 

resolution of behavioral sampling and large sample sizes are available.   

Studies focusing on the development of sex-typed foraging behavior in the 

wild are few, but have generated intriguing results regarding the proximate 

mechanisms that might be involved.  Agostini and Visalberghi [2005a] found a 

number of sex differences in the foraging behavior of both adult and juvenile tufted 

capuchins.  They also found that juvenile males (but not juvenile females) 

preferentially associated with and directed their food interest toward same-sex adults, 

and that the amount of time juvenile males spent in association with adult males was 

positively correlated with their targeting of animal prey, but not with other male-

typical foraging characteristics (such as microhabitat foraging preference).  The 

authors suggest that especially complex sex-differential foraging behaviors may 

require some type of social learning, while simpler ones arise independently.  In the 
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same vein, Lonsdorf [2005] convincingly demonstrated that juvenile female 

chimpanzees imitate their mothers’ termite-fishing techniques—a very complex 

foraging behavior that takes years of practice to perfect.  Juvenile males, in contrast, 

learn termite-fishing only through goal emulation (and are less proficient than 

females, in the end), but both sexes rely on some degree of social learning for the 

development of this foraging behavior.  Studies of wedge-capped capuchins 

[Robinson 1981] and long-tailed macaques [van Noordwijk et al. 1993], have 

demonstrated that juveniles of these species exhibit some elements of adult, sex-

typed foraging behaviors, and that they also associate preferentially with like-sexed 

individuals over opposite-sexed individuals.  While particular types of social learning 

in these species have yet to be identified, social learning of any type [Lonsdorf 2005],  

if present, would be facilitated by sex-segregated spacing during foraging.  

While these studies suggest that the development of some sex differences in 

foraging behavior might rely on factors such as interaction with same-sex social 

models, this may not be the case for all species or for all behaviors.  In some species, 

such as white-faced capuchins and common marmosets, juveniles are proficient 

foragers at young ages [MacKinnon 2006; Schiel et al. 2010].  Additionally, the 

development of species-typical sex-typed dietary behavior can sometimes develop 

without role models, as occurred in the population of black-handed spider monkeys 

who survived initial release onto Barro Colorado Island as subadults and went on to 

develop species-typical diets and sex-typical association patterns and behaviors on 

their own [Milton 2002]. Additionally, in some species, such as vervet monkeys, the 

sex differences in adult diet and foraging schedules are not found in juveniles at all 

[Harrison 1983].  The variation in developmental schedules of particular sexually 
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differentiated elements of foraging behavior suggests that they are canalized by 

different proximate mechanisms in different species, and that some may rely on 

social or environmental factors for their development, while some may result from 

internally motivated differences in interaction with the same environmental cues. 

Biological causes of behavioral sex differentiation 

Although primate infants are not strongly sexually differentiated in their 

behavior at young ages, some infant sex differences have been noted.  The earlier a 

behavioral sex difference appears, the more likely it is to be innate rather than 

environmentally motivated.  As in captivity, sex differences in play behavior have 

been noted for wild infant blue monkeys and olive baboons, in which males play 

longer and rougher than females [Förster and Cords 2005; Owens 1975].  And 

mantled howling monkey infant females react more positively to social interactions 

initiated by non-maternal group members and engage in social interactions with 

more group members than male infants [Clarke 1990].   

Very little is known about endocrinological development among wild 

primates [Gesquiere et al. 2005], making it difficult to assess how endocrinological 

factors might motivate behavioral sex differentiation in natural settings.  In yellow 

baboons, Gesquiere et al. [2005] found that infant males were characterized by high 

and rapidly declining levels of fecal testosterone, which remained low through 

juvenility and increased again during the months just before testicular enlargement; 

female infants were characterized by a similar rapid decline of fecal estrogen, which 

then increased again as females approached menarche.  Testosterone levels also 

increase in male chimpanzees [Seraphin et al. 2008] and vervet monkeys [Whitten 

and Turner 2009] as they approach sexual maturity.  Notably, the increase in 
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testosterone and estrogen in male and female yellow baboons, respectively, as they 

approached sexual maturation occurred prior to the unequivocal development of 

secondary sexual characteristics.  Therefore, the use of somatic indicators of sexual 

maturation may overestimate the age at which hormonal maturation begins and 

should be used as proxies for sexual maturation with due caution. 

Social/biological interaction 

Overall, data from the wild are still insufficient to draw conclusions about 

environmental or biological motivators of sexual differentiation or their interactions 

across primates as a whole.  Even at their best, as previously acknowledged, non-

experimental studies in the wild cannot conclusively identify causal factors that 

motivate sexual differentiation in social behavior.  But these studies can reject 

specific hypotheses of causation, and, where multiple lines of developmental data are 

available, particular factors likely to be influential in the development of particular 

sex-typed behaviors can be identified by revealing their correlational relationships 

[Fragaszy and Perry 2003].   

One example of the potential of this approach to understanding the complex 

causes of behavioral sex differentiation comes from the large body of work on the 

population of yellow baboons at Amboseli, Kenya.  The development of sex 

differences has been at least a partial focus of many studies on the Amboseli 

baboons, from a number of perspectives, and from before birth to the end of the 

reproductive lifespan.   

A number of maternal effects on aspects of life history that are closely tied to 

reproductive success have been noted in this population.  For offspring of both 

sexes, maternal dominance rank is positively correlated with the pace of offspring 
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maturation—the offspring of high ranking females reach maturational milestones 

earlier.  For daughters, maternal dominance rank influences both the age at first 

menarche and the age at first birth [Altmann et al. 1988].  For sons, maternal 

dominance  rank influences the age at testicular enlargement (a signal of pubertal 

onset) and the age at which adult rank is achieved [Alberts and Altmann 1995b].  

This is partly due to the fact that offspring of high-ranking mothers grow faster, but 

maternal rank has an independent positive effect on the attainment of reproductive 

maturational milestones, even after controlling for growth rates [Altmann and 

Alberts 2005].  For daughters, these benefits of a high-ranking mother translate 

directly into increased reproductive success.  For sons, the age of first consortship is 

dependent on a number of additional factors, not least of which is the number of 

reproductively available females, but age at adult rank achievement  and age at first 

consortship are positively correlated [Alberts and Altmann 1995a].  The proximate 

mechanisms that underlie these maternal effects on maturational schedule are not yet 

clear, but the Amboseli data provide a number of interesting possibilities, discussed 

below.  

First, maternal dominance rank during pregnancy and shortly after birth may 

influence the development of offspring endocrine profiles.  In wild snowshoe hares, 

predation pressure has been shown to increase maternal stress hormone levels, and 

offspring conceived in high-predation environments also have increased stress 

hormone levels as adults.  It has been suggested that this phenomenon may be 

responsible for the  enigmatic persistence of suppressed population-level 

reproductive rates even after population-level predation pressure has decreased 

[Sheriff et al. 2010].  The evidence for similar mechanisms operating in baboon 
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development is not entirely clear.  Early maturing baboon males consistently have 

higher fecal glucocorticoid and testosterone levels than late maturing males, but in a 

study of a large sample of males, this effect was not statistically significant across the 

lifespan [Gesquiere et al. 2005].  Given, though, that a number of other factors 

influence circulating glucocorticoid and testosterone levels in both males and their 

mothers—such as rainfall, temperature [Beehner et al. 2005; Gesquiere et al. 2005; 

Gesquiere et al. 2008; Gesquiere et al. 2010], variation in the social environment, and 

individual variation in hormone response [Sapolsky 1991; Sapolsky 1985]—the lack 

of statistical significance here may not indicate a lack of biological significance.  

Regardless, maternal rank at the time of a male’s conception was found to be 

unrelated to hormone levels for either sex across the subadult period [Gesquiere et 

al. 2005], suggesting that this is not the pathway by which maternal dominance rank 

regulates sons’ maturational schedules.  On the other hand, another study on the 

same population found that maternal dominance rank at the time of a male’s 

conception accounted for 42% of the variance in adolescent male fecal 

glucocorticoid concentrations in the 20 months prior to their natal dispersal—sons 

of high-ranking mothers had lower fecal glucocorticoid levels than sons of low-

ranking mothers [Onyango et al. 2008].  Onyango et al. [2008] suggest that this could 

be of selective importance because chronically elevated levels of glucocorticoids are 

associated with stress-related disease pathology.  Perhaps the maternal effects on 

sons’ stress physiology are only detectable during the developmental stage when sons 

are gearing up for what will likely be their most costly life event—natal dispersal 

[Alberts and Altmann 1995a]; perhaps, over the subadult period in general, 

underlying maternal effects on sons’ stress physiology are attenuated by the effects of 
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other factors.  While these results have not yet clarified exactly how maternal rank is 

related to offspring endocrine development, they do suggest that something about 

maternal rank is an important proximate factor. 

Second, maternal physiology may modulate mothers’ behavioral responses 

toward their offspring.  Late gestational fecal glucocorticoids are positively correlated 

with maternal responsiveness to infants [Nguyen et al. 2008], suggesting that 

hormonal modulation of some characteristics of the mother-infant relationship does 

occur in baboons.  Late gestational fecal estrogen and testosterone concentrations in 

multiparous females are significantly higher when the fetus is male versus when the 

fetus is female [Altmann et al. 2004], suggesting that fetal sex may influence maternal 

hormone profiles in different ways, which may in turn influence maternal behavior 

toward infants in ways that vary according to infant sex.  Prenatal fecal estrogen 

concentrations are negatively correlated with suckling time in infant daughters, but 

even though prenatal estrogen levels are higher when carrying sons, they do not 

influence suckling time in sons [Nguyen et al. 2010], suggesting (unsurprisingly) that 

the relationships among fetal sex, maternal gestational physiology, and maternal-

infant interaction are complex. 

Even though the physiological (or other) causes of variation in maternal 

behavior toward infants are not yet well-understood, it is clear that the mother-infant 

relationship sometimes varies according to offspring sex in potentially important 

ways.  Experienced mothers initiate changes in infant contact more than less 

experienced mothers, but this effect is more pronounced with male infants [Nguyen 

et al. 2010].   High ranking mothers carry their infants the least, and this effect is 

stronger with male infants than with female infants [Samuels and Altmann 1992].  
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And high maternal dominance rank is negatively correlated with suckling time in 

infant daughters, but not in infant sons [Nguyen et al. 2008].  Decreased rates of 

infant carrying and more changes in infant contact may both promote infant 

independence, which may in turn promote the earlier acquisition of social and 

ecological competence.  This would be an important effect, as foraging efficacy in 

yearling females (with respect to protein and energy intake) has been shown to 

reliably predict the probability of surviving to adulthood, female fertility, and female 

reproductive lifespan [Altmann 1991].  The apparent maternal bias toward 

encouraging the independence of sons more than daughters and the apparent 

maintenance of suckling rates for sons despite the action of maternal hormone 

physiology that reduces them in daughters could reflect the much greater potential 

impact that increased caloric intake has on subadult male growth rates and 

maturation as compared to those of subadult females [Altmann and Alberts 2005]. 

 Mothers, of course, are not the only individuals who can influence subadult 

developmental trajectories; indeed, in baboons, fathers also influence the 

maturational schedules of their offspring.   Fathers selectively support their juvenile 

offspring in agonistic encounters [Buchan et al. 2003], and paternal presence in the 

group is associated with reduced time to maturation for daughters.  Paternal presence 

is also associated with reduced time to maturation for sons, but only for fathers of 

high rank at the time of their sons’ births [Charpentier et al. 2008].   

Certainly, subadults, themselves, are expected to be active participants in 

shaping their developmental trajectories, as they, above all others, have the most to 

gain from their own development.  Nguyen et al. [Nguyen et al. 2010] suggest that 

this effort may begin in the womb, with fetuses producing glucocorticoids that 
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induce maternal responsiveness.  Postnatally, yellow baboons, like those of many 

other species, exhibit sexually differentiated choices of social partners and social 

interactions.  Juvenile males put more effort into maintaining proximity to adult 

males than do juvenile females, while juvenile females put more effort into 

maintaining proximity to unrelated adult females than do juvenile males [Pereira 

1988].  Among unrelated adult female social partners, juvenile females preferred 

lactating females and those from high-ranking matrilines, while juvenile males 

preferred cycling females and showed no preference for female rank [Pereira 1988].  

These types of juvenile social preferences seem to correspond well with the 

expectation that juveniles will tailor their social associations in ways that will facilitate 

the acquisition of current and/or future benefit [Pereira 1988].  Male coalitionary 

support is an important factor in the acquisition of and maintenance of male 

dominance and/or access to females [van Schaik et al. 2004], which is closely tied to 

male reproductive success [Schülke et al. 2010].  Since yellow baboons are female 

philopatric, resident females (but not males) will be the lifelong social partners for 

juvenile females.  Relationships with lactating females provide the possibility of 

access to interaction with their infants, which are attractive to females of most 

species, possibly because female primates have long been under selection to be 

responsive to infants, as it makes them better mothers (thereby increasing their 

reproductive fitness) [Silk 1999].  Relationships with higher ranking females are likely 

to be of more current and future benefit than relationships with lower ranking ones.  

Males, though, rise above all females in dominance rank as they surpass them in 

physical size [Pereira 1995], so the rank of their female social partners is likely to be 

much less important than the reproductive status of those partners.  Lastly, juveniles 
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may structure their social relationships so as to help them modulate the negative 

effects of stressors, as seen in adult female chacma baboons [Wittig et al. 2008]. 

The available data on sexually differentiated development from Amboseli is 

beginning to shed light on the workings of the complex and interactive system of 

social, ecological, and endocrinological factors that together underpin the 

differentiated life histories and social relationships of male and female baboons.  It 

illustrates the promise of work that seeks to understand linkages between maternal 

physiology and offspring physiology, maternal physiology and behavior, and 

offspring physiology and behavior in naturally living primates. 

SHORTCOMINGS OF PREVIOUS RESEARCH 

The false dichotomy of social versus biological, and environmental versus 

innate 

All available data indicate that the social environment shapes individual 

biology in selectively important ways (e.g., human life history schedule [Ellis et al. 

1999; Kuzawa et al. 2010] or modulation of hormonal effects on primate aggression 

[Zumpe and Michael 1996]), which then shapes how individuals interact further with 

their social environments.  Sometimes, even, historical environments that individuals 

themselves did not experience affect their biology via environmental effects on the 

biology of their forbears [Sheriff et al. 2010], and this could be true of social 

environments as well.  All researchers of sex-typed development in humans and non-

humans probably now acknowledge  that the social environment and individual 

biology are so interactive that they really do not stand alone: “We should not be 

tempted to think that even the bodies of infants are, so to speak, all biology and no 

culture” [p. 90, McIntyre and Edwards 2009].  But still, the tendency to dichotomize 
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and oppose social and biological causes of behavioral development persists, 

especially in the arena of human sex-typed development.  Granted, it is possible to 

use a dichotomy as a heuristic while still recognizing and seeking to understand the 

variation within/around it [Worthman 1995].  But often it seems as if some 

researchers consider biologically motivated behavioral sex differences to be 

immutable, natural, adaptive, and therefore desirable, while socially motivated sex 

differences are considered easily changed, separate from the natural world, non-

adaptive, and therefore of questionable value.   

How, though, in studies of mammals, can the social be considered non-

biological?  If the social interactions of infant rats effect sexually differentiated 

physiological change that results in sexually differentiated behavior, is this a 

biological or a non-biological process?  Insofar as all mammalian biology has in 

common a single, defining feature that is simultaneously somatic and social—infant 

nourishment by mother’s milk—nurture is an integral part of successful mammalian 

nature, and there was never really any good reason to conceive of the two as 

separable.  It is for this reason that I distinguish between motivators of behavior that 

are intrinsic versus extrinsic to the individual. Intrinsic motivators of sexual 

differentiation stem from within an individual; extrinsic motivators of sexual 

differentiation are external to the individual. Intrinsic factors can be social, 

psychological, somatic, hormonal, genetic, etc., depending on the research question.  

Extrinsic factors are ecological and social.  Both intrinsic and extrinsic behavioral 

motivators may have been previously shaped by each other. There is no claim that 

intrinsic factors are “innate” and, by implication, independent of previous influence 

by extrinsic factors. 
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The implications of a continued reliance on a false social/biological 

dichotomy in research on sex-typed behavior are not insignificant.  Often built on 

this shoddy foundation is the implicit (and sometimes explicit), incorrect assertion 

that elements of human gendered behavior that are shared with non-human animals 

must be somatically rather than socially mediated [Joseph 2000].  But this assumption 

is unfounded.  Instead, the fact that some elements of behavioral sex differentiation 

in non-human animals are socially mediated suggests that some human socially 

motivated behavioral sex differences may have been selected for throughout human 

evolutionary history.  Some socially mediated behavioral characteristics may be 

adaptive.  Additionally, some sex-typed social/physiological/psychological feedback 

loops may be self-perpetuating and stable over long periods of time, but that does 

not necessarily mean that they are immutable, intrinsic properties of the biological 

sexes [contra Browne 2006; Byrd-Craven and Geary 2007; Joseph 2000].  This point 

is most clearly illustrated by Sapolsky’s “pacific” baboons, a troop that developed 

atypically affiliative patterns of social interaction among males and between males 

and females after the most aggressive and dominant males in the group died of 

tuberculosis. Not only did the original low-ranking surviving males have unusually 

friendly interactions for baboons, but so did later immigrant males [Sapolsky and 

Share 2004].  

Although the assumption of many that sex differences that are found across 

mammals can be assumed to be “biological” or “ecological” in nature and not 

“socialized” is unfounded, it is an empirical question that can be tested.  

Additionally, the best way to tease apart which socialized human sex differences can 
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reasonably be considered adaptive, and which cannot, is through comparative 

analysis of socialized sex differences in non-human primates.    

Shortcomings of non-human primate data for understanding adaptation in 

sex-typed development 

Unfortunately, this type of comparative analysis is not yet possible, [Förster 

and Cords 2005], because studies that have investigated the development of sex 

differences in behavior in unprovisioned, wild primate populations remain too few 

[Agostini and Visalberghi 2005; Altmann 1980; Altmann and Pereira 1985; Clarke et 

al. 2007; Förster and Cords 2002a; Förster and Cords 2005; Gould 1990; Hashimoto 

and Furuichi 1994; Hiarawa-Hasegawa 1989; Pereira 1988; Zucker and Clarke 1992].  

Most of our knowledge of primate sex-typed biobehavioral development derives 

from captive research on catarrhines—specifically, common chimpanzees [Anestis 

2005; Anestis 2006; Bard 1994; Bard and Gardner 1996; Davenport et al. 1973; Fritz 

et al. 1992; Howell et al. 2006; Maki et al. 1993; Randolph and Mason 1969; 

Spijkerman et al. 1995; Spijkerman et al. 1996; Spijkerman et al. 1997; Turner et al. 

1969] and cercopithecine monkeys [Andrews and Rosenblum 1991; Andrews and 

Rosenblum 1994; Bachevalier and Hagger 1991; Boccia et al. 1991; Boccia et al. 

1994; Brown and Dixon 2000; Chamove et al. 1967; Champoux et al. 1989; Chism 

1986; Clarke and Snipes 1998; de Waal and Johanowicz 1993; Deputte and Quris 

1996; Deputte and Goy 1991; Drago and Thierry 2000; Eaton et al. 1986; Fairbanks 

and McGuire 1988; Goy et al. 1988; Gust 1995; Harlow 1962; Maestripieri 1994; 

Maestripieri 2001; Maestripieri 2004; Maestripieri 2005a; Maestripieri and Megna 

2000; Maestripieri and Ross 2004; Parker et al. 2006; Preston et al. 1970; Richards et 

al. 2009; Rosenblum 1987; Rosenblum and Paully 1984; Rowell and Chism 1986; 
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Ruppenthal et al. 1976; Ruppenthal et al. 1974; Ruppenthal et al. 1991; Sackett 1972; 

Sackett et al. 2002; Sanchez et al. 2010; Schino et al. 2001; Seay et al. 1972; Setchell 

and Dixson 2002; Setchell et al. 2001; Suomi 1997; Suomi et al. 1983; Suomi 1987; 

Tartabini and Dienske 1979; Thornton and Goy 1986; Tomaszycki et al. 2001; 

Tomaszycki et al. 2005; Toscano et al. 2009; Wallen 1996; Wallen 2005; Wallen et al. 

1977; Wallen et al. 1981; Wallen et al. 1995; Wallen and Zehr 2004; Worlein and 

Sackett 1997].  Important contributions on other taxa can be found in the literature 

on captive primates [Birnie et al. 2011; Byrne and Suomi 1998; Dixson 1993; Epple 

et al. 1990; Mayeaux et al. 2002; Mayeaux 2008; Nash 1991; Nash 2003; Palagi et al. 

2002; Paukner and Suomi 2008; Pereira 2002; Pereira 1995], and some of this work is 

on free-ranging captive animals living in species-typical social settings that may 

mirror developmental environments in the wild [Berman 1980; Berman 1992; 

Berman 1997; Devinney et al. 2001; Fedigan and Zohar 1997; Pereira 1995].  But 

nutritional constraints are usually relaxed in captivity, often accelerating some aspects 

of development [e.g., Altmann and Alberts 1987], and altering the social milieu in 

ways that can impact social development [Rosenblum and Paully 1984] and intrinsic 

physiology [Rangel-Negrín et al. 2009]. As a result,  studies of wild populations are 

needed to validate extrapolation from captive studies to wild populations, to discover 

evolutionarily significant processes of behavioral sex differentiation that do not 

occur in captivity, and to identify developmental processes that are appropriate for 

further investigation in captivity.   

Overall, captive work has demonstrated that the social environment drives 

social development, but has shed less light on which particular elements of the social 
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environment are causally linked to the development of later behaviors, especially in 

natural environments.  This body of research details the behavioral components 

necessary for the socialization of sex-typed behavior in non-human primates, but has 

yet to clarify whether, which, or how particular patterns of social interaction shape 

particular elements of primate sex-typical social development in complex 

socioecological settings. Comparative study performed on developmental systems in 

the wild will generate data that are unquestionably applicable to understanding the 

functioning of those systems in natural environments as well as to the evolution of 

developmental system components.   

RESEARCH GOALS 

 The overall goal of this study is to increase scientific understanding of the 

intrinsic and extrinsic social factors likely to be involved in the development of adult 

sex-typical primate behavior in order to help clarify the evolutionary history of the 

intrinsic and extrinsic social factors thought to be important in human sex-typed 

gender socialization.  Because causation of developmental sex differentiation is 

complex and the social factors involved in normative sex-typed development remain 

poorly understood, further investigation is best focused on simple, fast-developing 

primate models. Knowledge gained from these models can be applied to and will 

help focus future investigations of more complex, slower-developing taxa.  Captive 

research has shown that gonadal hormones in most species are quiescent after 

infancy and prior to adolescence, and that in general, primate prepubescent behavior 

is largely unaffected by gonadal hormones [Wallen 2005]. In order to isolate social 

causes and limit, as much as possible, the confounding influences of sexual 

differentiation due to gonadal hormone production and ecological niche 
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differentiation and, study will focus on the prepubescent developmental stages of a 

gregarious, monomorphic species.  

This study will compare male and female social development from birth to 

just prior to sexual maturity in wild ring-tailed lemurs in order to identify social 

factors likely to be important for sex-typed development in this species.  Ring-tailed 

lemurs were chosen as a study taxon for a number of reasons.   

First, ring-tailed lemurs are among the most primitive of the gregarious 

primates. Because strepsirrhines have not received much attention in studies of 

sexual differentiation compared to the haplorhines, this study will help to fill out our 

understanding of primate sex-typed development and ameliorate one of the major 

shortcomings of previous developmental research. Second, infant Lemur catta have 

substantial opportunity for social interaction at early ages.  Infants first break contact 

with their mothers in the second week of life and engage in dyadic social play as early 

as the third [Gould 1990]. Additionally, mother-infant pairs are the objects of intense 

affiliative contact initiated by other group members during infants’ first weeks of life, 

providing opportunity for interaction between infants and non-maternal group 

members while infants cling to their mothers [Nakamichi and Koyama 2000]. Third, 

ring-tailed lemurs develop relatively quickly and have a relatively simple demographic 

structure (annual age cohorts) resulting from their strict seasonality. They have a 

one-year inter-birth interval, and reach sexual maturity in two years in captivity (and 

sometimes in free-ranging food-supplemented populations) [Gould et al. 2003; 

Overdorff et al. 1999]. As a result, and in contrast to species with slower life 

histories, all group members occupy discrete, easily identifiable age/sex classes, and it 

is feasible to examine the entire (or nearly so) prepubescent period over the course 
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of one year using mixed longitudinal sampling of infants and juveniles. Fourth, they 

live in relatively large multi-male, multi-female social groups (L. catta, 5-30 individuals 

[Gould et al. 2003] but have relatively small home ranges [Sussman 1974; Sussman 

1991], such that 6-8 large social groups typically provide sufficient numbers of 

infants and juveniles for study by a single researcher (in contrast to most other lemur 

species that live in smaller groups).  Lastly, they are not strongly size-dimorphic 

[Kappeler 1990], minimizing, as much as possible for species with multi-male multi-

female social organization, the contribution of sex differences in ecology and life 

history schedule to the development of sex-typed behavior. 

Study of sex-typed development in ring-tailed lemurs will also maximize 

opportunities for more immediate comparative study in several ways.  Because of 

their phylogenetic distance from the better-studied cercopithecoids and their 

particular combination of social similarities to and differences from the baboons in 

particular—multi-male, multi-female social structure, promiscuous mating, stable 

dominance relationships, and matrilocality in common [Pereira 1993b] but body size 

monomorphism and female dominance in contrast [Pereira and Kappeler 1997]—

ring-tailed lemurs make a good comparative taxon to those that have already been 

well-studied.  Furthermore, study focusing on the social causes of behavioral sex 

differentiation in ring-tailed lemurs dovetails with previous and ongoing work by the 

Lemur Biology Project at Beza Mahafaly Special Reserve and its associates on ring-

tailed lemur ecology [Sauther et al. 1999], health [Sauther et al. 2002], life history 

[Gould et al. 2003], social behavior [Gould 1997], endocrinology [Gould and Ziegler 

2007; O'Mara 2008], and ecological and endocrinological development.   
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Theoretical Model and Hypotheses 

Whenever adult social roles differ between the sexes, as long as infants are 

less sexually differentiated than adults, infants’ developmental trajectories (and the 

processes that drive them) will also differ between the sexes [Hemelrijk and Dekogel 

1989] (Figure 2-1).  In such cases, if socialization plays a driving role in the 

development of sex-typical behavior, sex differences in extrinsic and/or intrinsic 

subadult social behavior must be present. 

 

Fig. 2-1. Schematic of hypothetical behavioral developmental trajectories when 

infants are born differentiated by sex versus undifferentiated. 

This study aims to test, specifically, whether extrinsic sexually differentiated 

social interactions are important for the development of intrinsic behavioral sex 

difference. This approach should definitively identify extrinsic social factors that are 

not important in sex-differential socialization, preventing them from obfuscating 
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relationships among those that are, both in this and future work. Furthermore, it will 

identify extrinsic social factors  likely to be influential in the development of 

particular sex-differential intrinsic social behaviors by revealing their correlational 

relationships [Fragaszy and Perry 2003]. Socialization can be intrinsically driven just 

as it can be extrinsically driven—recall that individuals may have sex-typed responses 

to the same stimulus. However, because this study does not address variation in 

prenatal, neonatal, and postnatal physiological experience, it is impossible to assess 

whether the intrinsic subadult behavioral sex differences identified in this study 

represent sex-differential responses to the same social stimulus or intrinsically 

motivated sex-differential behavior unrelated to extrinsic social factors. Therefore, 

this study will be limited to investigating the importance of extrinsic processes of 

socialization involved in sex-typed behavioral development in this species. 

 Identifying which adult sex-differential behaviors are candidates for 

socialization is pre-requisite to identifying potential extrinsic socialization processes. 

In order for sex-typical behaviors to be shaped by patterns of subadult social 

interaction, they must have an ontogenetic component. They cannot be strongly 

present at birth, and cannot arise suddenly upon sexual maturity,  when gonadal 

hormones become active and start to play a significant role in driving sex-differential 

behavior [Wallen 2005] (Figure 2-2). If infants are adult-like in their degree of 

behavioral sexual differentiation, then no developmental explanation is needed to 

account for adult sex-typical behavior (Figure 2-1).  
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Fig. 2-2. Schematic of hypothetical behavioral sex differentiation caused only by 

sexual maturation. 

Intrinsic adult sex-typed social behaviors that were candidates for 

socialization during the subadult period were identified by testing for:  

1) Quantifiable sex difference in intrinsic social behavior in adulthood and  

2) demonstrable ontogenetic components of those sex-typed behaviors prior 

to sexual maturation (adult levels of sex difference cannot be present at 

infancy and sex difference must be apparent before sexual maturity).    

Tests for quantifiable adult behavioral sex differences in patterns of 

aggression, dominance, submission, affiliation, proximity, infant interest, 

responsibility for proximity maintenance, and scent marking are explicated in chapter 

4. Tests for the ontogenetic components of documented intrinsic adult sex-typed 

social behaviors are explicated in chapter 5. 

 After adult sex-typed social behaviors with a subadult developmental 

component were identified, patterns of extrinsic social interaction with group 

members that might play a causal role in shaping the development of species-typical 

sex differences in intrinsic adult behavior were isolated by identifying:  
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3) sex differential treatment of subadults by other group members—

specifically, sex differences in receipt of agonism and affiliation from, and 

proximity patterns to and responsibility for proximity maintenance to mother 

and others.  

Once sex differences in subadult treatment by others were identified, I 

qualitatively assessed:  

4) whether the appearance of those sex differences in extrinsic social 

interactions preceded or coincided with the development of particular intrinsic sex 

differential behaviors (e.g., increased receipt of aggression by infant males compared 

to infant females might precede the development of spatial segregation by sex).   

Extrinsic social interactions that do not differ by sex, and that do not precede 

or coincide with sexual divergence in a given intrinsic social behavior cannot be 

responsible for sexual differentiation of that social behavior.   

Although the present study focuses on discovering social factors responsible 

for shaping the development of sex-differential behavior, it is probable that the 

development of sex differences in ecology also causes sex differences behavior. In 

that case, sexual differentiation in behavior is expected to coincide with sexual 

differentiation in ecology (Figure 2-3). Behavioral sex differentiation that occurs 

prior to the onset of sex differences in ecology, though, cannot be explained by these 

factors. Tests for extrinsic sexually differentiated social and ecological factors and 

qualitative assessments of their importance in the development of intrinsic sex-typed 

social behavior are presented in chapter 6. 
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Fig. 2-3. Schematic of hypothetical behavioral sex differentiation caused only by 

ecological sex differentiation. 
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CHAPTER 3: METHODS 

FIELD SITE 

 Beza Mahafaly Special Reserve (BMSR) is situated in a dry forest in 

southwestern Madagascar [Sauther et al. 2002] at 23° 30’ S latitude and 44° 40’ E 

longitude [Loudon 2006] (Figure 3-1). The reserve comprises two parcels of land 

situated within a larger tract of continuous forest.  Parcel 1 contains 80 ha of riverine 

gallery forest [Sauther et al. 1999]. Due to a recent park expansion, Parcel 2 now 

contains approximately 4,000ha of didierea spiny forest. This study was carried out in 

and around Parcel 1.  Forest to the west and south of Parcel 1 is relatively degraded 

as a result of firewood collection and grazing by local livestock. Parcel 1 is bordered 

in the east by the Sakamena River, which forms a water barrier in the rainy season 

but not the dry season, when the riverbed is completely dry.  East of the river and at 

the river’s western edge south of Parcel 1, land has been cleared for cultivation of 

crops (Figure 3-1).  As of this writing, the reserve operates under the auspices of 

Madagascar National Parks. There is no hunting of lemurs in this area, and Parcel 1 

is fenced to prevent incursion by cows and goats from surrounding villages. The 

fence does not entirely prevent forest use for grazing purposes, but Parcel 1 is 

substantially more vegetated than the surrounding forest [Sauther and Cuozzo 2009].  
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Fig. 3-1. Map of Beza Mahafaly Special Reserve [Sussman and Ratsirarson 2006]. 

INDIVIDUAL IDENTIFICATION 

 The ring-tailed lemurs in Parcel 1of BMSR have been studied for decades 

[Sauther et al. 1999] and are well-habituated to the presence of human observers. 

Most individuals of ≥ 2 years of age from nine social groups were individually 

marked with collars and tags prior to the beginning of behavioral data collection in 

September, 2008.  A few adults and all juveniles and infants were not marked with 
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collars and tags at the onset of data collection.  To facilitate quick, reliable individual 

identification, some of these individuals were dye-marked.  Six adults, six juveniles, 

and eight infants were marked with Nyanzol-D, a long-lasting, non-toxic dye 

[Honess and MacDonald 2003].  Using a solution of Nyanzol-D, isopropyl alcohol, 

and hydrogen peroxide according to Honess & MacDonald [Honess and MacDonald 

2003], I squirted target individuals from a distance of 1.5m-3m using a hypodermic 

syringe with a needle, making sure that the individuals were not looking at me when 

they were squirted.  This was so that dye did not accidentally reach their eyes, noses, 

and/or mouths, and to ensure that they did not learn to associate human observers 

with being squirted with liquid. After the successful application of dye, I followed the 

individuals to ensure that they did not groom the dye before it was dry.  If they tried 

to groom the dye, I distracted them by making noises or following them closely 

enough that they kept moving until they lost interest in grooming the dye.  Usually, I 

marked individuals while they were foraging, and most of them returned to foraging 

within a minute of dye application.  I marked young infants when they were clinging 

to their mothers to avoid getting dye on their faces.  I did not dye infants less than 2 

months old, as their regular association with their mothers prior to that time made 

them easy to identify.  Dye re-application was necessary for some individuals after a 

period of 3-4 months.  After my initial stock of isopropyl alcohol was exhausted, I 

used locally distilled rum in its place, which was equally effective, much less costly, 

and reliably available. It should be noted that before I was able to acquire 

hypodermic needles in Tulear, I attempted dye-marking with only an open syringe, 

but this made aim rather poor, and when I did succeed in “hitting” animals, too 

much dye was applied by this method, such that the dye did not dry quickly, and it 
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was a challenge to prevent animals from ingesting it. I therefore strongly discourage 

the use of any application method that results in a relatively large stream of Nyanzol-

D hitting an animal (water gun, syringe without a needle-like applicator, etc.).  

BEHAVIORAL SAMPLING 

 Behavioral data were collected from a mixed longitudinal, cross-sectional 

sample of infant (0-1 years old), juvenile (1-2 years old), and adult (>2 years old) 

Lemur catta from September 2008 to August 2009 using focal individual sampling 

[Altmann 1974]. Behavioral data collection began during the September 2008 birth 

season. Thus, the 2008 infant cohort was newborn at the onset of data collection and 

approximately 1 year old at the termination of data collection, while the 2007 cohort 

(juvenile, in this study) was approximately 1 year old at the onset of data collection 

and 2 years old at the termination of data collection. All adult females in the sample 

were non-maternal during data collection—they did not have infant offspring.  All 

adult males and most adult females in the adult dataset were ≥3 years old during data 

collection, but in order to maintain a sufficient sample size of adult females without 

infants, a few 2-3 year old females were sampled.  Each age class was evenly divided 

by sex to the extent possible given availability of individuals across the nine 

individually marked, habituated study groups.  

Adult females without dependent offspring were chosen to represent the 

adult behavioral trajectories to which infants and juveniles would be compared 

because the sex-typed behavior of adult females with dependent infants would be 

overlain by the constraints and motivations of motherhood. Adult females without 

infants should provide a better estimate of baseline adult sex-typed behavior and 

because infants, juveniles, and adult males cannot have dependent infants, adult 
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females without infants are a better comparator against which to assess the 

development of baseline sex-typed social behavior in subadults. Adult females with 

dependent infants were still considered “adult females” when they were the social 

partners of subjects.   

 Sampling of groups rotated through a set group order.  Data collection for a 

given group continued until each study subject in the group had been sampled for 

one to two hours.  Completion of a sampling cycle for one group could take 

anywhere from one to four days, depending on the number of individuals sampled in 

the group and observation success. Completion of the entire group rotation took an 

average of 10 days, such that each group, and thus each subject, was usually sampled 

twice per calendar month. The target was 2-4 hours of focal data per subject per 

month.  

 Data were collected 6 days per week from just after dawn until just before 

dusk with a daily lunch break that commenced upon the onset of the individuals’ 

mid-day rest period.  The observation day was divided evenly into 4 temporal 

segments: early morning, late morning, early afternoon, and late afternoon.  Within 

groups, individual sampling order was random, except that it was balanced across the 

day during a single group observation cycle as much as possible.  Focal individual 

follows were 30 minutes in duration to ensure that each subject could be sampled at 

multiple times of day within each group sampling cycle.  Focal individual follows 

included a combination of continuous data collection of social interactions with the 

focal individual and instantaneous data collection for other behavioral measures at 

three-minute intervals (detailed below).  If an individual was out of sight on the 

interval, the behavior exhibited closest to the interval within ± 15 seconds of the 
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interval was recorded.  If the focal individual was not seen within ± 15 seconds of 

the interval, it was designated “out of sight.”  Focal observations with more than two 

“out of sight” scans were discarded.  If a focal observation was discarded, I 

attempted to relocate the focal individual.  If the individual could be located within 

10 minutes, I re-started focal observation of the same individual.  If the individual 

could not be found (or seen due to visibility constraints) within 10 minutes, I moved 

on to observation of the next visible individual in the sampling order.   

 Behaviors were recorded using a detailed ethogram that was designed to be 

as comparable as possible to those used in other studies of lemur social behavior 

(Table 3-1) [e.g., Pereira and Kappeler 1997].  Focal individual activity (Table 3-1), 

distance from the nearest neighbor within 5m, identities of all neighbors in contact, 

within reach (0m > x ≥ 0.3m) and within 3m (0.3m > x ≥ 3m), position within 

group (Figure 3-2), canopy position (Figure 3-3), and group activity state were 

recorded at three-minute intervals [Altmann 1974]. Not all behaviors in the ethogram 

were used in instantaneous sampling; those that were are marked as “scan” or “both” 

in Table 3-1.

 

Fig. 3-2. Position within group. During linear group progressions, focal individuals 
were designated as leading, middle, or lagging. All other times, focal individuals were 

 



designated as “in” or “out.” When designated “out,” distance from the nearest group 
member was recorded in 5m increments.
 

Fig. 3-3. Canopy position. 

All social interactions 

behaviors (i.e., groom other versus groomed by other) were recorded continuously 

on a handheld Raon micro

Behaviors recorded are marked as “continuous” or

passively in contact with and within reach of a nearest neighbor were recorded 

during continuous data collection, but all overt social interactions that occurred while 

in contact with or within reach of another were recorde

contact and passive time within reach. Similarly, though the occurrences of all social 

interactions were recorded, the JWatcher software can only record the elapsed time 

of a single behavior. Multiple behaviors cannot be simul

for cases in which simultaneous social interactions occurred, I recorded the 
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designated as “in” or “out.” When designated “out,” distance from the nearest group 
member was recorded in 5m increments. 

 

 

All social interactions with the focal individuals and the direction of those 

, groom other versus groomed by other) were recorded continuously 

on a handheld Raon micro-PC using JWatcher V1.0 [Blumstein et al. 2000]. 

Behaviors recorded are marked as “continuous” or “both” in Table 3-1. Time spent 

passively in contact with and within reach of a nearest neighbor were recorded 

during continuous data collection, but all overt social interactions that occurred while 

in contact with or within reach of another were recorded preferentially over passive 

contact and passive time within reach. Similarly, though the occurrences of all social 

interactions were recorded, the JWatcher software can only record the elapsed time 

of a single behavior. Multiple behaviors cannot be simultaneously timed. Therefore, 

for cases in which simultaneous social interactions occurred, I recorded the 

designated as “in” or “out.” When designated “out,” distance from the nearest group 

with the focal individuals and the direction of those 

, groom other versus groomed by other) were recorded continuously 

. 

1. Time spent 

passively in contact with and within reach of a nearest neighbor were recorded 

during continuous data collection, but all overt social interactions that occurred while 

d preferentially over passive 

contact and passive time within reach. Similarly, though the occurrences of all social 

interactions were recorded, the JWatcher software can only record the elapsed time 

taneously timed. Therefore, 

for cases in which simultaneous social interactions occurred, I recorded the 
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occurrence of all behaviors in order to preserve the sequence of events associated 

with approaches to and leaves from the focal, but then preferentially recorded the 

time of the behavior that was more active on the part of the focal individual (e.g., the 

time the focal groomed another over the time the focal was groomed by a third). As 

a result, I do not have accurate bout counts for behaviors like grooming—they are 

inflated. 

Scent marking events were recorded during continuous data collection as 

social interactions because they are social communications. Vocalizations, although 

they are rightly considered social interactions, were not recorded during continuous 

data collection for two reasons.  First, the number of social interactions that could be 

recorded during continuous data collection was limited by the JWatcher software, 

and the number of distinct Lemur catta vocalizations catalogued by Pereira & 

Kappeler [1997] were too numerous to include.  Second, the recording equipment 

and analytical software necessary for a rigorous bioacoustical analysis of vocalizations 

was not available to me, and such an analysis was beyond the scope of this study.  

During instantaneous sampling, only one behavior was assigned for each 

time interval [Martin and Bateson 1986].  However, the behaviors in the ethogram 

used during instantaneous sampling are not all mutually exclusive.  Therefore, if two 

behaviors occurred simultaneously on an interval (e.g., avoidance of another 

individual during travel), priority was given to social behaviors over non-social 

behaviors.  Similarly, more than one social behavior can occur simultaneously (e.g., 

cling to mother and groom).  In such cases, priority was given to the more overt 

social interaction of the two, or the social interaction that is more active on the part 

of the focal individual (groom supercedes cling, and cuff supercedes receipt of 
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grooming).  If an individual was engaged in overt social interaction with more than 

one individual (e.g., the focal could be grooming one individual and groomed by 

another), the behavior directed by the focal individual toward another was given 

preference. 

Nearest neighbor designation can be similarly ambiguous.  Here, nearest 

neighbor designation was always preferentially assigned to individuals with whom the 

focal was engaged in overt social interaction.  Rarely, an individual was engaged in 

overt social interaction with an individual that was not its physically closest 

conspecific (e.g., an individual can engage in the agonistic “look away” with another, 

physically distant individual for long periods of time while other individuals are in 

closer proximity to the focal).  More often, an individual was equidistant to more 

than one individual without being engaged in social interaction with any of them.  

For non-contact proximity decisions of these types, if the focal individual was 

equidistant to more than one individual on an interval, the individual that the focal 

individual was facing was designated the nearest neighbor.  If the focal individual was 

in contact with more than one individual on an interval, the individual with whom 

the focal had the most body contact was designated as the nearest neighbor.  If the 

focal individual had the same amount of body contact with more than one 

individual, the neighbor that the focal individual was facing was designated as the 

nearest neighbor.  In the very few cases where a nearest neighbor could not be 

assigned using the above decision rules, I chose the nearest neighbor based on my 

subjective assessment of which of the individuals in question was more often the 

focal individual’s nearest neighbor.  On the rare occasions in which this last decision 

rule was employed, it biased nearest neighbor assignments in the direction of 
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offspring and mothers associating preferentially—a bias which should be rendered 

insignificant by the strong real preferential associations of those individuals.   

SAMPLES 

 The aforementioned sampling regime resulted in just over 1000 hours of 

behavioral data: 375 hours of focal data on infants, 148 hours on juvenile females, 

157 hours on juvenile males, 168 hours on adult females, and 170 hours on adult 

males. These samples averaged 14 hours of observation/month for each age/sex 

class. Age/sex class membership changed throughout the year when individuals 

disappeared from the study population, but infants who were observed from birth to 

study termination were observed for an average of 39.6 hours each, juveniles 

observed for the entire 12-month study period were observed for an average of 39 

hours each, and adults observed for the entire study period were observed for an 

average of 34 hours each. These samples are comparable to published developmental 

studies both in captivity [e.g., 1 hour/week per mother-infant dyad, Maestripieri 

2003] and in the wild [e.g., 38.5 hours/subject, total, Förster and Cords 2005]. See 

Table 3-2 for timing and observation time of all individuals sampled. 

 During data collection, individuals who left the dataset due to disappearance 

were replaced by other individuals in the same age/sex category, if available, in order 

to maintain a sample size of as close to five individuals per age/sex category as 

possible.  Sample sizes could not be maintained throughout the study at n=5 for all 

age/sex classes (Figure 3-4) due to lack of availability of individuals in those age/sex 

classes throughout the entire collared BMSR population. This was especially true for 

male infants as a result of high mortality rates in the 2008 cohort.   
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SEASONS 

 During data collection in 2008-2009, the rainy season began in mid-October 

and ended in late March. Infants of the 2008 cohort were fully weaned by their 7th 

month of age, in March or April. All infants in the sample were still nursing at low 

rates in March, but only half of the, nursed in April. No nursing was observed in 

May.  Mating pulses were late April to mid-May and mid-June to mid-July, 2009.  
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ANALYTICAL METHODS 

Counts of behavioral events and summations of time spent in behavioral 

states were extracted from JWatcher .txt files using a custom-written program in SAS 

9.2.  Individual monthly mean rates (# event occurrences per hour) were calculated 

for behavioral events that were included in analyses performed and individual 

monthly mean times were calculated for behavioral states that were included in 

analyses. These were derived from continuous data. Individual monthly mean 

distances from and proportions of time spent in proximity to nearest neighbors were 

calculated from scan data.  Group size varied across study subjects and through time, 

providing subjects with different numbers of individuals at which to direct behaviors 

or from which to receive them.  When appropriate, rates of and time spent engaged 

in behaviors were therefore corrected for partner availability before analysis. For 

analyses involving overall rates of or time engaged in interaction with  others, this 

was accomplished by dividing by the number of group members available to the 

focal individual and multiplying by a constant (in this case, the overall average group 

size) to bring values back to their original scale. This correction allows for testing of 

the null hypothesis that individuals direct their social behavior toward others at 

uniform rates based on probability of encounter, and assumes a Brownian motion 

model of higher probability of inter-individual encounter in larger groups than in 

smaller ones. For analyses involving rates of or time engaged in interaction with 

particular age/sex classes, correcting for partner availability was accomplished by 

calculating deviations from rates/times of interaction with each age/sex class 

expected if the focal individual distributed those interactions randomly across all 

available group members. This controls for inter-individual differences in overall 
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rates/times of interaction (tested in the analyses described above), allows for testing 

of the null hypothesis that individuals distribute their behavior randomly toward 

group members of each age/sex class based on probability of encounter, and 

assumes a Brownian motion model of higher probability of encounter of age/sex 

classes that have more members.  

Even though the actual dates of behavioral collection each month were not 

the same for every individual, generating monthly mean behavioral measurements for 

all individuals created a balanced longitudinal dataset—one in which all individual 

share the same measurement occasions.  This is advantageous because the methods 

available for analysis of unbalanced longitudinal data due to mistimed measurement 

occasions are comparatively limited [Fitzmaurice et al. 2004].  Individual monthly 

mean measurements were used as units of analysis in two types of regression models 

for correlated responses.  These classes of regression models appropriately account 

for the dependence and correlation in the data due to repeated measurements on the 

same individuals [Fitzmaurice et al. 2004]. 

Linear mixed effects models (LMEMs), which model the mean response as a 

combination of fixed effects—those assumed to be shared by all individuals—and 

random effects—those unique to particular individuals [Fitzmaurice et al. 2004; 

Singer and Willett 2003] were used whenever possible.  These analyses model group 

response profiles through time while accounting for individual differences that 

underlie natural heterogeneity within the groups [Fitzmaurice et al. 2004].  These 

very flexible models impose minimum restrictions on individual and group responses 

through time [Fitzmaurice et al. 2004].  In these analyses, when addressing questions 

about sex differences, individual ID was assigned as a random effect with sex and 
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time (in months) as predictor variables.  When addressing questions about age 

differences, individual ID was assigned as a random effect with cohort and/or time 

(in months) as predictor variables.   

After the model-fitting protocol outlined in Singer and Willett [2003], 

individual response profiles were first qualitatively examined in order to determine 

whether they should be modeled as linear or quadratic responses, but sample sizes 

were rarely sufficient to model quadratic individual response profiles and linear 

individual response profiles were usually used.  In most circumstances, the most 

complex LMEMs that could be fit were linear individual response profiles and linear 

group responses profiles.  In some cases, it was not even possible to estimate 

individual slopes, and the LMEM was simplified to address only individual and 

group intercepts, effectively reducing analysis to a test of sex differences, but one 

which appropriately handles repeated measurements and uneven sampling due to 

missing data for some individuals.  

Because LMEMs could not always be fit, response profiles of group means 

were also fit.  These are conceptually straightforward analyses that characterize 

patterns of temporal change in the mean response in each group and determine 

whether they differ from each other [Fitzmaurice et al. 2004].   These analyses are 

well-suited to questions about a single covariate (e.g., sex) when the pattern of 

differences between groups is not known a priori [Fitzmaurice et al. 2004] (as in these 

data, in which the yearly temporal patterning of specific behaviors is unknown).  

Response profiles analyses impose minimal structural restrictions on the mean 

response through time and the covariance among repeated measurements, allowing 

arbitrary patterns of variation in both.  As a result, they are relatively robust to bias 
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resulting from model misspecification of the mean and covariance [Fitzmaurice et al. 

2004].  Because these analyses summarize the data by the estimated group mean 

response at each measurement occasion, they require that the data are balanced with 

respect to timing of repeated measurements [Fitzmaurice et al. 2004], a requirement 

satisfied by using monthly mean individual values. In some cases in which sample 

size was very low, the model was reduced to test only for yearly mean sex 

differences.  All models were fit using restricted maximum likelihood estimation, 

which is usually less biased in small samples of correlated data than traditional 

maximum likelihood methods of estimation [Fitzmaurice et al. 2004].   

Both types of models can appropriately cope with unbalanced samples due to 

missing data on specific individuals (a problem common in longitudinal studies) 

without simply discarding those individuals from the analysis, as long as the data are 

“missing completely at random” or “missing at random” [Fitzmaurice et al. 2004; 

Singer and Willett 2003].  If the missing data mechanism—the reason underlying the 

missingness—is non-random with respect to the variable of interest, missing data 

may introduce bias [Fitzmaurice et al. 2004].   

When data are “missing completely at random,” the reason they are missing 

is unrelated both to the specific responses that, in principle, would have been 

observed but for the missingness of the individual, as well as to the responses that 

were observed. In such cases, the missing data do not complicate analysis 

[Fitzmaurice et al. 2004].  Here, the observed data represent a random sample of the 

complete data, which, themselves, should be a random sample of the population 

data.   
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Data are considered “missing at random” when they are unrelated to the 

specific responses that, in principle, would have been observed but for the 

missingness of the individual, but are related to the set of observed responses 

[Fitzmaurice et al. 2004].  For example, if individuals who are most aggressive leave 

the sample more often as a result of death due to higher incidence of fatal fights, the 

data are “missing at random.” An analysis of rates of aggression that does not correct 

for this will be biased (in this case, underestimating mean population rates of 

aggression). Incidentally, in such cases, analyses such a rmANOVA that are restricted 

to individuals with data at all measurement occasions will also be biased in exactly 

this way [Fitzmaurice et al. 2004]—eliminating these individuals from the analysis 

does not solve the problem.  To deal with this, the sample can be stratified by so-

called “completers” and “non-completers,” and non-completers’ values are modeled 

based on their own observed values [Fitzmaurice et al. 2004].  When data are 

“missing at random,” the likelihood-based methods used by LMEM and response 

profile analysis are still capable of providing unbiased estimates of the mean 

response though time as long as the model for the mean response and the within-

subject correlation (random effects structure and covariance, respectively) are 

correctly specified [Fitzmaurice et al. 2004].   

Regardless of the missing data mechanism, missing data will result in a 

reduction in the precision of estimation of the mean response, and the more missing 

data, the less precise the estimation [Fitzmaurice et al. 2004], which may be 

important to consider when comparing groups with different degrees of missingness.  

In this sample, missingness was a problem of varying severity for each cohort.   
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Model fitting was performed using PROC MIXED in SAS 9.2 according to 

the methods outlined in Singer and Willett for LMEMs [Singer and Willett 2003] and 

according to the methods in Fitzmaurice et al. [Fitzmaurice et al. 2004] for analysis 

of response profiles.  For all models, the best model and the best fit variance 

structure were chosen using Akaike Information Criterion for small samples (AICc) 

[Fitzmaurice et al. 2004; Singer and Willett 2003].  The Akaike Information Criterion 

(AIC) measures the amount of information in the data that is lost by fitting a given 

model, providing a relative measure of how well a given model fits the data 

compared to other models.  The AIC is only a relative measure of fit and does not 

provide information about whether a model is a good or poor fit to the data. The 

AICc provides a correction for small sample sizes and was, therefore, used here. The 

advantage of the AICc over likelihood-ratio tests of model fit is that it can be used to 

compare models that are not nested—i.e., that are not subsets of one another [Singer 

and Willett 2003].  

In order to assess the assumptions of fit LMEMs, the functional form 

assumptions, normality, and homoscedasticity were qualitatively examined after the 

protocol of Singer and Willett [2003].  The functional form assumptions for 

individual-level change were examined using ordinary least squares (OLS) estimated 

individual trajectories of change plotted against the individual data.  The functional 

form assumptions for group-level change were examined using ordinary least squares 

estimates of individual growth parameters plotted against the predictors.  Normal 

probability plots of the raw residuals were examined for substantial departures from 

normality, which is rather difficult to assess at such small sample sizes.  The 
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assumption of homoscedasticity was assessed by plotting raw residual values against 

the predictors.   

In order to assess the assumptions of the fit response profile models, residual 

analysis and diagnostics were performed using Cholesky transformed residuals after 

the protocol outlined in Fitzmaurice et al. [2004]. The Cholesky decomposition 

transforms the residuals such that they have constant variance and zero correlation 

[Fitzmaurice et al. 2004]. The fit of the model for the mean response and the 

assumption of constant variance were tested by examining a scatterplot of 

transformed residuals versus the transformed predicted vales.  If time was modeled, 

the model for the mean response was tested by examining a scatterplot of 

transformed residuals versus transformed time.  The normality assumption was 

tested using normal probability plots of the transformed residuals.  The fit of the 

model for variance was tested by examining a scatterplot of the absolute values of 

the transformed residuals versus the transformed predicted values and versus 

transformed time.  The Cholesky transformed residuals were output using the 

VCIRY option in PROC MIXED.    

It should be noted that for most tests, the model assumptions were not well-

met, and the models were not particularly well-fitting.  The residuals were rarely 

normally distributed and were usually skewed due to the high number of real zeros 

recorded for many behaviors (e.g., rates of adult male aggression directed at adult 

females), as well being characterized by a “floor effect” of zero for behaviors that 

occur at low rates.  Several transformations of the data for a number of variables 

were attempted, but had little ameliorative effect; due to the poor outcomes of 

attempted transformations and the large number of behavioral variables, the data 
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were left untransformed.  Due to small sample sizes, it was not possible to fit more 

complex models that might have better described the temporal patterns of some 

variables.  Therefore, the results of individual analyses should be considered 

cautiously.  The specific models used to generate each result (and my confidence in 

them) are explicated with each result in the sections that follow.   

Because LMEMs account for inter-individual variation, they should yield 

more precise estimates of group mean responses than RP models.  Therefore, 

whenever an LMEM could be fit, its results are discussed.  When the LMEM is not 

the best-fitting model according to the AICc, its results are discussed in conjunction 

with the results of the best fitting mean response profile model.    

In some cases, the most complex LMEM that could be fit was one that 

allowed random individual intercepts (yearly means) but did not incorporate 

individual or group slopes.  In other words, a test of sex differences in response 

across the year while accounting for inter-individual variation only in the starting 

value, but not accounting for individual variation in slope.  I will refer to this type of 

model as the random intercepts LMEM.  I will refer to LMEMs that incorporate 

both random individual intercepts and random individual slopes as linear LMEMs.  

Similarly, in some cases, the best fit response profile model was a simple model of 

group sex differences in mean response across the year, assuming no systematic 

change through time.  This is equivalent to a single summary measure analysis in 

which the summary measures are the yearly group means (with a slope of zero), but 

appropriately accounts for correlation between repeated measurements on the same 

individuals, which summary measure analysis cannot do when the data are 

unbalanced due to missingness, as they are here [Fitzmaurice et al. 2004].  I will refer 
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response profile models that assume no systematic change through time as mean RP 

models and those that characterize systematic change through time as linear (or 

quadratic) RP models.   

In some cases, LMEMs could not be fit. This might occur for a number of 

reasons. LMEMs are more complex models than RP models because they are multi-

level models (modeling both individual and group change through time) and because 

they are fit using a more complex variance structure (unstructured). In some cases, 

there may not have been enough observations to fit such a complex model. In other 

cases, there may have been too little interindividual or temporal variation to specify a 

non-zero variance or covariance model. In other cases, there may have too much 

intraindividual variation to fit a variance or covariance model. In these cases, I used 

the less complex RP models to interpret the data. 

In these analyses, no particular outlying observations were thought to be due 

to an observation or recording error.  The types of outliers usually seen were 

instances of high rates of behavior or high numbers of social partners compared to 

other individuals in a given month. Because these variables were calculated by 

summing individual events and records of specific individuals in proximity to a focal 

individual, these types of outlying observations could not derive from a single, 

random observational or data entry error. In investigating outliers, special attention 

was paid to the data from “non-completers.” If an outlying individual was also a 

non-completer, careful consideration was given to whether the individual’s values 

might be related to the reason it left the sample. Two adult males left the sample 

early in the observation year because they emigrated from their groups. Two adult 

females left the sample because they gave birth to infants. Many infants and one 
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juvenile left the sample due to death. If the two adult males were outliers, 

consideration was given to whether their values for the behavior under consideration 

may have been related to the process of emigration. If the two adult females were 

outliers, consideration was given to whether their values for the behavior under 

consideration may have been related to their nearing parturition. In the case of 

infants, so many of them were “non-completers” that the unusual individuals in the 

sample were really the “completers.” In no case were there sufficient data to stratify 

the model by completers and non-completers. As previously discussed, removing 

individuals from analysis who are only “missing at random” does not solve the 

problem of bias in the analysis. Therefore, when “non-completers” were outlying in 

ways that were likely to bias analysis, this issue was explicitly discussed. 
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TABLE 3-2. Individual samples by observation month for adults and juveniles 
and by real age for infants. 

Observation 
month (adults 
and juveniles) 
/ Age 
(infants) ID Age/Sex 

time 
observed 
(hours) 

0 ADF185 AD♀ 1.5 

0 ADF23 AD♀ 0.5 
0 ADF276 AD♀ 2 
0 ADM175 AD♂ 3 
0 ADM192 AD♂ 1.5 

0 ADM263 AD♂ 1 
0 08F(154) INF♀ 5.5 
0 08F(171) INF♀ 5.5 
0 08F(176) INF♀ 3 

0 08F(185) INF♀ 3.5 
0 08F(214) INF♀ 5 
0 08F(23) INF♀ 2 
0 08F(268) INF♀ 1.5 

0 08F(300) INF♀ 2.5 
0 08F(328) INF♀ 6 
0 08F(334) INF♀ 5.5 
0 08F(364) INF♀ 4.5 

0 08M(167) INF♂ 3.5 
0 08M(172) INF♂ 2.5 
0 08M(181) INF♂ 3.5 
0 08M(183) INF♂ 6 

0 08M(184) INF♂ 4 
0 08M(321) INF♂ 5.5 
0 08M(338) INF♂ 5.5 
0 08M(368) INF♂ 4 

0 08M(9) INF♂ 4.5 
0 07F(9) JUV♀ 2.5 
0 07F326 JUV♀ 1.5 
0 07F329 JUV♀ 1.5 

0 07F336 JUV♀ 3 
0 07M(44) JUV♂ 2 
0 07M331 JUV♂ 1.5 

 
 



107 

TABLE 3-2. Continued. 

0 07M335 JUV♂ 1.5 

1 06F325 AD♀ 2 
1 ADF167 AD♀ 1 
1 ADF207 AD♀ 2 
1 ADF23 AD♀ 2 

1 ADF235 AD♀ 2.5 
1 ADF276 AD♀ 3 
1 ADF334 AD♀ 2 
1 ADM175 AD♂ 2 

1 ADM245 AD♂ 3.5 
1 ADM263 AD♂ 4 
1 ADM3/0P AD♂ 4 
1 ADM4/0P AD♂ 4 

1 08F(137) INF♀ 3.5 
1 08F(154) INF♀ 4 
1 08F(171) INF♀ 3.5 
1 08F(176) INF♀ 3.5 

1 08F(185) INF♀ 3 
1 08F(214) INF♀ 4 
1 08F(217) INF♀ 0.5 
1 08F(297) INF♀ 3 

1 08F(297o) INF♀ 2 
1 08F(300) INF♀ 4.5 
1 08F(328) INF♀ 4 
1 08F(364) INF♀ 3 

1 08F(44) INF♀ 1.5 
1 08M(167) INF♂ 4.5 
1 08M(172) INF♂ 1.5 
1 08M(181) INF♂ 3 

1 08M(183) INF♂ 2 
1 08M(184) INF♂ 2 
1 08M(227) INF♂ 2 
1 08M(234) INF♂ 1.5 

1 08M(246) INF♂ 2.5 
1 08M(319) INF♂ 3 
1 08M(321) INF♂ 1.5 
1 08M(9) INF♂ 5.5 

1 07F(9) JUV♀ 3 
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TABLE 3-2. Continued. 

1 07F326 JUV♀ 5.5 

1 07F329 JUV♀ 5 
1 07F336 JUV♀ 3.5 
1 07M331 JUV♂ 6 
1 07M335 JUV♂ 3.5 

1 07M337 JUV♂ 6.5 
1 07M340 JUV♂ 6.5 
2 06F325 AD♀ 4 
2 ADF207 AD♀ 3 

2 ADF23 AD♀ 3.5 
2 ADF235 AD♀ 4 
2 ADF276 AD♀ 3.5 
2 ADM175 AD♂ 4 

2 ADM245 AD♂ 4 
2 ADM263 AD♂ 3.5 
2 ADM3/0P AD♂ 1 
2 ADM4/0P AD♂ 0.5 

2 ADM5/2P AD♂ 2.5 
2 ADM7/1P AD♂ 1.5 
2 08F(154) INF♀ 4 
2 08F(171) INF♀ 4 

2 08F(176) INF♀ 2 
2 08F(185) INF♀ 2 
2 08F(214) INF♀ 3 
2 08F(300) INF♀ 5 

2 08F(328) INF♀ 3 
2 08F(44) INF♀ 3.5 
2 08M(155) INF♂ 5 
2 08M(234) INF♂ 3.5 

2 08M(319) INF♂ 0.5 
2 08M(9) INF♂ 3.5 
2 07F(9) JUV♀ 4 
2 07F326 JUV♀ 3 

2 07F329 JUV♀ 4 
2 07F336 JUV♀ 4 
2 07M331 JUV♂ 3.5 
2 07M335 JUV♂ 4 

2 07M337 JUV♂ 4 
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TABLE 3-2. Continued. 

2 07M340 JUV♂ 4 

3 06F305 AD♀ 3 
3 06F325 AD♀ 2 
3 ADF207 AD♀ 2 
3 ADF231 AD♀ 0.5 

3 ADF235 AD♀ 3 
3 ADF276 AD♀ 3 
3 ADM175 AD♂ 3.5 
3 ADM245 AD♂ 1.5 

3 ADM263 AD♂ 3 
3 ADM5/2P AD♂ 2.5 
3 ADM7/1P AD♂ 2 
3 08F(154) INF♀ 1.5 

3 08F(214) INF♀ 2.5 
3 08F(300) INF♀ 1 
3 08F(328) INF♀ 2 
3 08F(44) INF♀ 3 

3 08M(234) INF♂ 2 
3 08M(9) INF♂ 3.5 
3 07F(9) JUV♀ 3 
3 07F326 JUV♀ 4.5 

3 07F329 JUV♀ 4 
3 07F336 JUV♀ 3 
3 07M331 JUV♂ 4.5 
3 07M335 JUV♂ 3 

3 07M337 JUV♂ 2 
3 07M340 JUV♂ 3 
4 06F305 AD♀ 3 
4 06F325 AD♀ 3 

4 ADF207 AD♀ 3.5 
4 ADF235 AD♀ 2.5 
4 ADF276 AD♀ 1.5 
4 ADM175 AD♂ 2.5 

4 ADM245 AD♂ 2.5 
4 ADM263 AD♂ 1.5 
4 ADM5/2P AD♂ 3 
4 ADM7/1P AD♂ 3 

4 08F(154) INF♀ 3.5 
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TABLE 3-2. Continued. 

4 08F(214) INF♀ 3 

4 08F(300) INF♀ 3 
4 08F(328) INF♀ 4.5 
4 08F(44) INF♀ 5 
4 08M(155) INF♂ 4 

4 08M(234) INF♂ 5 
4 08M(9) INF♂ 4 
4 07F(9) JUV♀ 3.5 
4 07F326 JUV♀ 1.5 

4 07F329 JUV♀ 1.5 
4 07F336 JUV♀ 3.5 
4 07M331 JUV♂ 1.5 
4 07M335 JUV♂ 3.5 

4 07M337 JUV♂ 3.5 
4 07M340 JUV♂ 3 
5 06F305 AD♀ 4 
5 06F325 AD♀ 3.5 

5 ADF207 AD♀ 3 
5 ADF235 AD♀ 3.5 
5 ADF276 AD♀ 4.5 
5 ADM175 AD♂ 4 

5 ADM245 AD♂ 4.5 
5 ADM263 AD♂ 4.5 
5 ADM5/2P AD♂ 3 
5 ADM7/1P AD♂ 3 

5 08F(154) INF♀ 3.5 
5 08F(214) INF♀ 4.5 
5 08F(300) INF♀ 5 
5 08F(328) INF♀ 3 

5 08F(44) INF♀ 1.5 
5 08M(155) INF♂ 5 
5 08M(234) INF♂ 1.5 
5 08M(9) INF♂ 3 

5 07F(9) JUV♀ 5.5 
5 07F326 JUV♀ 5 
5 07F329 JUV♀ 5 
5 07F336 JUV♀ 5.5 
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TABLE 3-2. Continued. 

5 07M331 JUV♂ 5 

5 07M335 JUV♂ 5 
5 07M337 JUV♂ 3.5 
5 07M340 JUV♂ 3 
6 06F305 AD♀ 1.5 

6 06F325 AD♀ 3 
6 ADF207 AD♀ 3 
6 ADF235 AD♀ 1 
6 ADF276 AD♀ 2 

6 ADM175 AD♂ 1.5 
6 ADM245 AD♂ 1.5 
6 ADM263 AD♂ 2 
6 ADM5/2P AD♂ 3 

6 ADM7/1P AD♂ 3 
6 08F(154) INF♀ 3.5 
6 08F(300) INF♀ 4.5 
6 08F(328) INF♀ 3.5 

6 08F(44) INF♀ 4.5 
6 08M(155) INF♂ 2 
6 08M(234) INF♂ 4.5 
6 08M(9) INF♂ 3 

6 07F(9) JUV♀ 1.5 
6 07F326 JUV♀ 2 
6 07F329 JUV♀ 2 
6 07F336 JUV♀ 1.5 

6 07M331 JUV♂ 2 
6 07M335 JUV♂ 1.5 
6 07M337 JUV♂ 3 
6 07M340 JUV♂ 3 

7 06F305 AD♀ 2.5 
7 06F325 AD♀ 3 
7 ADF207 AD♀ 2.5 
7 ADF235 AD♀ 3 

7 ADF276 AD♀ 4.5 
7 ADM175 AD♂ 2.5 
7 ADM245 AD♂ 3 
7 ADM263 AD♂ 4.5 
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TABLE 3-2. Continued. 

7 ADM5/2P AD♂ 3 

7 ADM7/1P AD♂ 3 
7 08F(154) INF♀ 3 
7 08F(300) INF♀ 3 
7 08F(328) INF♀ 3.5 

7 08F(44) INF♀ 4 
7 08M(155) INF♂ 4 
7 08M(234) INF♂ 4 
7 08M(9) INF♂ 4.5 

7 07F(9) JUV♀ 3 
7 07F326 JUV♀ 4 
7 07F329 JUV♀ 4.5 
7 07F336 JUV♀ 3 

7 07M331 JUV♂ 4 
7 07M335 JUV♂ 3 
7 07M337 JUV♂ 3 
7 07M340 JUV♂ 3.5 

8 06F305 AD♀ 4.5 
8 06F325 AD♀ 2.5 
8 ADF207 AD♀ 3 
8 ADF235 AD♀ 4 

8 ADF276 AD♀ 3.5 
8 ADM175 AD♂ 4 
8 ADM245 AD♂ 4 
8 ADM263 AD♂ 3 

8 ADM5/2P AD♂ 3 
8 ADM7/1P AD♂ 3.5 
8 08F(154) INF♀ 3.5 
8 08F(300) INF♀ 3.5 

8 08F(328) INF♀ 3.5 
8 08F(44) INF♀ 5.5 
8 08M(155) INF♂ 4 
8 08M(9) INF♂ 2 

8 07F(9) JUV♀ 1.5 
8 07F326 JUV♀ 3 
8 07F329 JUV♀ 3 
8 07F336 JUV♀ 4.5 
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TABLE 3-2. Continued. 

8 07M331 JUV♂ 3 

8 07M335 JUV♂ 4.5 
8 07M337 JUV♂ 4.5 
8 07M340 JUV♂ 3.5 
9 06F305 AD♀ 3 

9 ADF207 AD♀ 2.5 
9 ADF235 AD♀ 4 
9 ADF276 AD♀ 3 
9 ADF334 AD♀ 3.5 

9 ADM175 AD♂ 3.5 
9 ADM245 AD♂ 3 
9 ADM263 AD♂ 3 
9 ADM5/2P AD♂ 2.5 

9 ADM7/1P AD♂ 3 
9 08F(154) INF♀ 4 
9 08F(300) INF♀ 3 
9 08F(328) INF♀ 5.5 

9 08F(44) INF♀ 4 
9 08M(155) INF♂ 5.5 
9 08M(9) INF♂ 2 
9 07F326 JUV♀ 3.5 

9 07F329 JUV♀ 3.5 
9 07F336 JUV♀ 4 
9 07M331 JUV♂ 3.5 
9 07M335 JUV♂ 4 

9 07M337 JUV♂ 2 
9 07M340 JUV♂ 2.5 
10 06F305 AD♀ 3 
10 ADF207 AD♀ 5 

10 ADF235 AD♀ 3 
10 ADF276 AD♀ 3.5 
10 ADF334 AD♀ 4.5 
10 ADM175 AD♂ 3.5 

10 ADM245 AD♂ 3 
10 ADM263 AD♂ 3.5 
10 ADM5/2P AD♂ 4 
10 ADM7/1P AD♂ 4.5 



114 

TABLE 3-2. Continued. 

10 08F(154) INF♀ 3.5 

10 08F(300) INF♀ 4.5 
10 08F(328) INF♀ 1.5 
10 08M(155) INF♂ 2 
10 07F326 JUV♀ 4 

10 07F329 JUV♀ 4.5 
10 07F336 JUV♀ 3.5 
10 07M331 JUV♂ 3.5 
10 07M335 JUV♂ 3.5 

10 07M337 JUV♂ 5 
10 07M340 JUV♂ 4.5 
11 06F305 AD♀ 1.5 
11 ADF207 AD♀ 1.5 

11 ADF235 AD♀ 1.5 
11 ADF276 AD♀ 1.5 
11 ADF334 AD♀ 1.5 
11 ADM175 AD♂ 1.5 

11 ADM245 AD♂ 1.5 
11 ADM263 AD♂ 1.5 
11 ADM5/2P AD♂ 1.5 
11 ADM7/1P AD♂ 1.5 

11 07F326 JUV♀ 1.5 
11 07F329 JUV♀ 1.5 
11 07F336 JUV♀ 2 
11 07M331 JUV♂ 1.5 

11 07M335 JUV♂ 2 
11 07M337 JUV♂ 1.5 
11 07M340 JUV♂ 1.5 
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CHAPTER 4: ADULT SEX DIFFERENCES 

In this study, the behavior of individuals toward others is considered intrinsic 

to the individual and the behavior of others toward individuals is considered extrinsic 

to the individual.  The purpose of this study is to pinpoint differences in extrinsic 

social factors that may be responsible for shaping the development of intrinsic adult 

behavioral sex differences. Achieving this goal requires several foundational steps. 

First, intrinsic adult behavioral sex differences must be identified. Second, in order to 

identify social factors that may drive the development of those adult sex-typed 

behaviors, the presence of sexual differentiation in those behaviors must be 

identified in subadults. This is because once gonadal maturation has occurred, it is 

presently impossible to determine, in a non-experimental setting, whether hormones 

or social interactions are more likely the cause of sexual differentiation, but before 

sexual maturation, gonadal hormone activation can be excluded as a confound. 

Third, extrinsic sex differences must be identified for subadults. Fourth, the 

temporal relationships between extrinsic and intrinsic sex differences in subadults 

must be qualitatively examined, and any extrinsic sex differences that postdate the 

development of intrinsic sex differences can be excluded as causal to intrinsic sex 

differences. This chapter presents results on tests of sex differences in adult patterns 

of agonism and affiliation toward others, patterns of proximity to others, expressions 

of interest in infants, and scent marking behavior. 

Adult ring-tailed lemurs are female-dominant; females enjoy priority of 

access to food and resting places and are able to supplant adult males at will. They 

are more aggressive than males and are, on average, more spatially cohesive than 

males [Pereira 2002]. While adult behavioral sex differences in Lemur catta are 
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generally well-understood, quantifying them in this population allowed me to control 

for differences in detectable effect size that might be due to temporal variation, intra-

specific variation, or statistical power and creates an appropriate benchmark against 

which to compare juvenile behavioral development in the present sample.  

As mentioned in Chapter 3, when LMEMs were the best fitting models, only 

those results are presented. When they were not, the results of the best fitting RP 

model is also presented. In many cases, the results of the best fitting LMEM and RP 

models agree. When they did not, the data were explored qualitatively to make a 

decision about which results seemed most reasonable; my decision-making process is 

explained in those instances. Scatterplots of the data are provided to allow for 

visualization of the temporal trends and amount of variation present. Results of fit 

models are presented in tabular format for each variable including: model type, effect 

parameter estimates (intercept, time, sex, sex*time, etc.), standard errors, degrees of 

freedom, t-statistics, and p-values. P-values of <0.05 are considered significant and 

those between 0.10 and 0.05 are discussed as “tendencies.” Throughout, positive 

parameter estimates for the effect of sex indicate that female values exceed male 

values, and negative parameter estimates for the effect of sex indicate that male 

values exceed female values.  

AGONISM 

 Agonism subsumes aggressive, fearful, dominant, and submissive 

interactions. The agonistic behavioral events recorded in this study were: avoid, bite, 

charge, chase, cuff, feint to cuff, flee, jump fight, look away/glance, lunge, reject, 

stink fight, supplant, take food, and threat.  Because “take food” was sometimes an 

expression of dominance and was at other times a behavior that mothers tolerated 
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from their infants, this behavior was excluded from all analyses. “Reject” is an 

agonistic behavior that is mostly directed by mothers, who were not study subjects, 

toward infants, and is therefore not considered in the following analyses of adults. 

The following analyses investigate adult sex differences in the four types of intrinsic 

adult expressions of agonism in order to identify those that are quantifiably sexually 

differentiated: 1) aggression directed toward others, 2) fear of others, 3) non-

aggressive dominance of others, and 4) submission to others. The individual 

behaviors that each type of agonism comprises are summarized in Table 4-1 and are 

listed at the beginning of each of the following subsections. 

TABLE 4-1. Individual component behaviors of the four types of agonism. 

AGONISM 

Aggression Dominance Submission Fear 

bite supplant avoid flee 
charge 

chase 
cuff 

feint to cuff 
jump fight 

look away/glance 
lunge 

stink fight 
threat 

 

Aggression 

Aggressive behaviors are the subset of agonistic behaviors that are active and 

overtly interactive.  They are more energetically costly than less overtly aggressive 

forms of agonism, and they have more potential for aggressive escalation than less 

overtly aggressive forms of agonism. In this study, aggressive behaviors are: bite, 

charge, chase, cuff, feint to cuff, jump fight, look away/glance, lunge, stink fight, and 
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threat. Analyses of aggression toward others were performed on monthly mean 

hourly rates of aggressive events. 

Rates of Aggression toward others 

An LMEM could not be fit. The best mean RP model indicates that females 

have significantly higher rates of aggression than males (Table 4-2). Qualitatively, it 

appears that adult female rates of aggression increase during the later part of the 

observation year, but given that the best fit model is a mean model and not a linear 

one, this temporal trend was not statistically significant. 

TABLE 4-2. RP model parameter estimates for rates of aggression in adult 
males and females. 

Variable Model Effect est SE DF t p 

Aggression mean RP INT 0.22 0.09 16 2.39 0.03* 
    SEX 0.30 0.13 16 2.34 0.03* 
INT = α, the regression intercept.; when the parameter estimate for 
SEX is positive, ♀>♂, and vice versa; * p ≤ 0.05. All tables follow these 
conventions. 
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Fig. 4-1. Adult rates of aggression toward others. Circle size and line thickness are 
weighted by number of repeated values. All figures of this type follow these 

conventions. 
 

Considering aggression toward all others may obscure patterns of aggressive 

behavior toward specific age/sex classes. It is possible that adult males and females 

target different age/sex classes with their aggressive behavior. Therefore, adult sex 

differences in rates of aggression directed toward particular age/sex classes was also 

examined. 

 Aggression toward Adult Females  

  Because adult females exhibit higher rates of aggression overall than adult 

males, if both sexes exhibit their aggression toward others at random, adult females 

will exhibit higher rates of aggression toward particular age/sex classes as an artifact 

of their higher rates of aggression overall. Therefore, expected rates of aggression 

toward each age/sex class were calculated based on individual rates of aggression and 
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the availability of members of each age/sex class. Deviations (abbreviated Dev in 

Tables) from those expectations were then calculated and used in analyses of 

aggression toward each age/sex class. Focal animals were all non-maternal adult 

females, but they could express aggression toward any adult female.  The identities of 

the mothers of adults were unknown in this sample.  Therefore, adult females to 

whom adult female subjects exhibited aggression could have been their mothers, 

sisters, aunts, etc., and may or may not have been carrying dependent offspring.  

In these models, an intercept of zero indicates no bias either toward or away 

from exhibiting aggression to particular age/sex classes at the beginning of the 

observation year. A positive intercept indicates more aggression toward a particular 

age/sex class than expected at random, and a negative intercept indicates less than 

expected at random. In models that do not include a time effect, the intercept 

represents yearly mean values. 

The best fit mean random intercept LMEM and mean RP models for the 

deviations from rates of aggression toward adult females expected if individuals 

randomly distributed their aggressive behavior across all group members reveals that 

the sexes do not differ from each other in their bias of aggression toward adult 

females. Rather, both sexes tend to exhibit slightly less aggression toward adult 

females than expected if their distribution of aggression were random (Table 4-3, 

Figure 4-2).  
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TABLE 4-3. Model parameter estimates for deviations of rates of aggression 
toward adult females. 

Variable Model Effect est SE DF t p 
Dev Aggression to 
AF 

random int. 
LMEM 

INT -0.09 0.05 16 -1.67 0.11 

SEX -0.04 0.08 103 -0.56 0.58 

Dev Aggression to 
AF 

mean  RP INT -0.06 0.03 16 -1.94 0.07 

  SEX -0.06 0.04 16 -1.53 0.14 

AF = adult females; all tables follow this convention. 

 

Fig. 4-2. Deviations from expected rates of aggression toward adult females. 

 It is surprising to see aggression by adult males toward adult females at all.  

Further investigation reveals that there were only eight observed instances of 

aggression directed by adult males toward adult females, and half of those instances 

were committed by a single male (263 from orange group).  These aggressive events 

were not disproportionately directed at young females, but they were 

disproportionately directed at females who had not yet had an infant, which has been 

documented previously [Sauther et al. 1999].  It is possible that the three aggressive 
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events directed at parous females by males were recording errors. Indicating 

“receipt” of a behavior by the focal individual required an extra keystroke, and it is 

possible that some of these data points represent a failure to register that 

keystroke—essentially, a typo. However, I do not think that this explains every 

aggressive event exhibited by adult males toward adult females, as I recall being 

surprised (rarely, but on more than one occasion) by witnessing aggression by male 

263 toward group females. Nevertheless, this behavior was rare. 

Aggression toward Adult Males 

 An LMEM could not be fit, but the best fit mean RP model indicates no sex 

difference in the deviations from rates of aggression toward adult males expected at 

random, and no evidence of bias of adult aggression either toward or away from 

adult males (Table 4-4, Figure 4-3). 

TABLE 4-4. RP model parameter estimates for deviations from expected rates 
of aggression toward adult males. 

Variable Model Effect est SE DF t p 
Dev Aggression 
to AM 

mean RP INT 0.00 0.02 16 0.19 0.85 

  SEX -0.05 0.03 16 -1.66 0.12 

 AM = adult males; all tables follow this convention. 
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Fig. 4-3. Deviations from expected rates of aggression toward adult males. 

 

Aggression toward Juvenile Females 

 Juveniles are those in the cohort that were 12-23 months old during this 

study. An LMEM could not be fit, but according to the best fit mean RP model, 

there is no sex difference in the deviations from rates of aggression toward juvenile 

females expected at random, and no evidence of bias of adult aggression either 

toward or away from juvenile females (Table 4-5, Figure 4-4.).   

TABLE 4-5. RP model parameter estimates for deviations from expected rates 
of aggression toward juvenile females. 

Variable Model Effect est SE DF t p 

Dev Aggression 
to JF 

mean RP INT -0.01 0.00 16 -1.33 0.20 

  SEX -0.01 0.01 16 -1.42 0.18 

JF = juvenile females; all tables follow this convention. 
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Fig. 4-4. Deviations from expected rates of aggression toward juvenile females. 

 

 

Aggression toward Juvenile Males 

There is no sex difference in bias of aggression toward juvenile males 

according to either the best fit random intercept LMEM or means RP models, and 

no evidence that adults bias their aggression either toward or away from juvenile 

males (Table 4-6, Figure 4-5). 

TABLE 4-6. LMEM model parameter estimates for deviations from expected 
rates of aggression toward juvenile males. 

Variable Model Effect est SE DF t p 

Dev Aggression 
to JM 

random 
int. LMEM 

INT -0.01 0.03 16 -0.45 0.66 

SEX 0.02 0.04 103 0.66 0.51 

JM = juvenile males; all tables follow this convention. 
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Fig. 4-5. Deviations from expected rates of aggression toward juvenile males. 

 

Aggression toward Infants 

Infants were the cohort individuals that were 0-11 months old during this 

study. Aggression toward this cohort was not analyzed separately according to sex 

because, after the first few months of study, the infant mortality pattern across study 

groups resulted in several female infants, but only a single male infant, being 

available to focal adults for social interaction. There is no sex difference in the 

deviations from rates of aggression toward infants expected at random according to 

either the best fit random intercepts LMEM or the mean RP models, and no 

evidence of bias of adult aggression either toward or away from infants (Table 4-7, 

Figure 4-6). 
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TABLE 4-7. Model parameter estimates of deviations from expected rates of 
aggression toward infants. 

Variable Model Effect est SE DF t p 

Dev 
Aggression 
to INFs 

random int. 
LMEM 

INT -0.02 0.03 16 -0.68 0.50 

SEX 0.03 0.04 103 0.85 0.40 

mean RP INT -0.02 0.01 16 -1.40 0.18 

  SEX -0.02 0.02 16 -1.40 0.18 

INFs= infants; all tables follow this convention. 

 

 

Fig. 4-6. Deviations from expected rates of aggression toward infants. 

Non-aggressive dominance 

Non-aggressive dominance in this study is the behavior “supplant”.  This is 

not an overtly aggressive behavior and requires no physical contact, but, like taking 

priority of access to food while subordinate animals wait, it is an overt expression of 

dominance. 
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Rates of supplanting others 

 According to the best fit LMEM, there is a significant sex difference in mean 

rates of supplants, with adult females supplanting others more often than do adult 

males. The best fit mean RP model indicates a trend toward higher rates of supplants 

by adult females (Table 4-8, Figure 4-7).   

 

TABLE 4-8. Model parameter estimates for rates of supplanting others. 

Variable Model Effect est SE DF t p 

Supplant 

random int. 
LMEM 

INT 0.18 0.06 16 2.88 0.01* 

SEX 0.20 0.09 103 2.37 0.02* 

mean RP 
 

INT 0.16 0.04 16 3.81 0.002* 

SEX 0.11 0.06 16 1.78 0.09† 
* p ≤ 0.05;  † 0.05 < p ≤ 0.10 

 

 

Fig. 4-7. Adult rates of supplanting others. 
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As with aggressive behavior, considering supplants toward all others may 

obscure patterns of supplanting of specific age/sex classes. Given female dominance 

in this species, it is probable that adult males and females target different age/sex 

classes with their expression of dominance. Therefore, adult sex deviations from 

rates of supplants expected if adults directed their supplants randomly across all 

available group members were also examined. 

Supplanting Adult Females 

An LMEM could not be fit. According to the best fit mean RP model, there 

is no sex difference in the deviations from rates of supplanting adult females 

expected at random, but a significant bias against supplanting adult females by both 

sexes (Table 4-9, Figure 4-8).   

 

TABLE 4-9. RP model parameter estimates for deviations from expected rates 
of supplanting adult females. 

Variable Model Effect est SE DF t p 
Dev 
Supplant AF 

mean RP INT -0.05 0.02 16 -3.20 0.006* 

SEX 0.03 0.02 16 1.64 0.12 

* p ≤ 0.05 
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Fig. 4-8. Deviations from expected rates of supplants of adult females. 

 

Supplanting Adult Males 

 An LMEM could not be fit. According the best fit mean RP model, adults 

differ significantly in their deviations from expected rates of supplanting adult males, 

with adult males biasing their expression of supplants more heavily toward adult 

males than adult females do.  This significant sex difference justifies investigating the 

bias in rates of supplanting adult males for each sex independently.  The best fit 

mean RP models indicate that adult males supplant adult males significantly more 

often than expected at random, but that adult females tend to supplant adult males 

less often than expected at random (Table 4-10, Figure 4-9). 
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TABLE 4-10. RP model parameters estimates of deviations from expected 
rates of supplanting adult males. 

Variable Model Effect est SE DF t p 
Dev Supplant 
AM 

mean RP 
  

INT 0.07 0.02 16 3.54 0.003* 
SEX -0.06 0.03 16 -2.39 0.03* 

AF (only) Dev 
Supplant AM 

mean RP INT -0.03 0.02 9 -1.80 0.10† 

AM (only) Dev 
Supplant AM 

mean RP INT 0.10 0.02 7 4.05 0.005* 

* p ≤ 0.05;  † 0.05 < p ≤ 0.10 

 

 

Fig. 4-9. Deviations from expected rates of supplanting adult males. 
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Supplanting Juvenile Females 

 Adults were only observed to supplant juvenile females on three occasions. 

All were exhibited by adult females, but the rarity of this behavior obviates the 

possibility of a significant sex difference. An LMEM could not be fit. As expected, 

according the best fit mean RP model, there is no sex difference in the deviations 

from rates of supplanting juvenile females expected at random, but both sexes 

supplant juvenile females significantly less often than expected (Table 4-11, Figure 4-

10). 

TABLE 4-11. RP model parameter estimates of deviations from expected rates 
of supplanting juvenile females. 

Variable Model Effect est SE DF t p 

Dev 
Supplant JF 

mean RP INT -0.01 0.00 16 -2.93 0.01* 

SEX 0.01 0.01 16 1.32 0.21 
* p ≤ 0.05;  † 0.05 < p ≤ 0.10 

 

 

Fig. 4-10. Deviations from expected rates of supplants of juvenile females. 
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Supplanting Juvenile Males 

 According the best fit random intercepts LMEM and mean RP model, there 

is no sex difference in the deviations from rates of supplanting juvenile males 

expected at random, and no evidence for a bias either toward or away from 

supplanting juvenile males (Table 4-12, Figure 4-11). 

 

TABLE 4-12.  Model parameter estimates of deviations from expected rates of 
supplants of juvenile males. 

Variable Model Effect est SE DF t p 

Dev 
Supplant 
JM 

random int.  INT -0.01 0.01 16 -1.02 0.32 

 LMEM SEX 0.01 0.01 103 0.59 0.56 

mean RP INT -0.01 0.01 16 -1.65 0.12 

  SEX -0.01 0.01 16 -1.31 0.21 

 

 

Fig. 4-11. Deviations from expected rates of supplants of juvenile males. 
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Supplanting Infants 

 According the best fit mean RP model, there is no sex difference in the 

deviations from rates of supplanting infants expected at random, but adults supplant 

infants less often than expected at random (Table 4-13, Figure 4-12). 

 

TABLE 4-13. RP model parameter estimates of deviations from expected 
rates of supplants of infants. 

Variable Model Effect est SE DF t p 
Dev 
Supplant 
INFs 

mean RP 
  

INT -0.02 0.00 16 -3.40 0.004* 

SEX 0.00 0.01 16 -0.70 0.50 

* p ≤ 0.05 

 

 

Fig. 4-12. Deviations from expected rates of supplants of infants. 

Adult deviations from rates of Supplants of Infants expected at random
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Avoidance 

Avoidance is a low-intensity submissive behavior in which a subordinate 

individual changes position in order to preclude interaction with a dominant 

individual.  In that regard, “avoid” is a submissive behavior intrinsic to the focal 

individual rather than a response to an extrinsic behavior directed at the focal 

individual, as is the act of being supplanted by another individual. 

Rates of Avoidance of Others 

 According to the best fit random intercepts LMEM and mean RP models, 

there is no significant difference between adult male and adult female rates of 

avoidance of others overall (Table 4-14, Figure 4-13). 

 

TABLE 4-14. Model parameter estimates of rates of avoidance of others. 

Variable Model Effect est SE DF t p 

Avoidance 

random int. 
LMEM 

INT 0.32 0.08 16 3.88 0.001* 

SEX -0.09 0.12 103 -0.79 0.43 

mean RP INT 0.03 0.04 16 0.59 0.57 

  SEX 0.04 0.06 16 0.72 0.48 

* p ≤ 0.05 
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Fig. 4-13. Adult rates of avoidance of others. 

 

Adult deviations from rates of avoidance of adult females expected at random 

 There is no sex difference in adult deviations from expected rates of 

avoidance of adult females at random according to the best fit random intercepts 

LMEM and mean RP models, and no evidence that adults avoid adult females more 

or less than expected at random (Table 4-15, Figure 4-14). 

 

TABLE 4-15. Model parameter estimates of deviations from expected rates of 
avoidance of adult females. 
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Dev 
Avoid AF 

random int. 
LMEM 

INT 0.03 0.06 16 0.53 0.60 

SEX 0.11 0.08 103 1.36 0.18 

mean RP INT -0.01 0.03 16 -0.51 0.61 

  SEX 0.05 0.04 16 1.34 0.20 
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Fig. 4-14. Deviations from expected rates of avoidance of adult females. 

 

Adult deviations from rates of avoidance of adult males expected at random 

The best fit random intercepts LMEM and mean RP models indicate no sex 

difference in the deviations from rates of avoidance of adult males expected at 

random, and no evidence that adults avoid adult males at non-random rates (Table 4-

16, Figure 4-15). 

 

TABLE 4-16. Model parameter estimates of deviations from expected rates of 
avoidance of adult males. 

Variable Model Effect est SE DF t p 

Dev Avoid 
AM 

random int. 
LMEM 

INT 0.03 0.05 16 0.54 0.59 

SEX -0.10 0.07 103 -1.57 0.12 

mean RP INT -0.02 0.02 16 -1.50 0.15 

  SEX -0.02 0.02 16 -0.87 0.40 
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Fig. 4-15. Deviations from expected rates of avoidance of adult males. 

 

Adult deviations from rates of Avoidance of Adult Males expected at random
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Adult rates of avoidance of juvenile females 

 Adults were never observed to avoid juvenile females (Figure 4-16).

 

Fig. 4-16. Adult rates of avoidance of juvenile females. 

 
Adult rates of avoidance of juvenile males 

 Only one adult male was ever observed to avoid a juvenile male.  Both 

occasions of this behavior involved the same adult male/juvenile male dyad.  The 

rarity of this behavior precludes the possibility of a statistically significant sex 

difference (Figure 4-17). 
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Fig. 4-17. Adult rates of avoidance of juvenile males. 

 

Adult rates of avoidance of infants 

 One adult male was observed to avoid one infant female on one occasion 

when the infant female was nearly a year old.  The infant female involved was a 

particularly precocious infant of the dominant female in the group who had learned 

early on that if she persistently, vocally protested her treatment by other individuals, 

her mother or another high ranking female would eventually come to her aid.  The 

rarity of this behavior precludes the possibility of a statistically significant sex 

difference (Figure 4-18). 
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Fig. 4-18. Adult rates of avoidance of infants. 

 

Fear 

Fear is represented by the behavior “flee”, which is a much more extreme 

and energetically costly form of submission than all others. 

Rates of Fear of Others 

 While the boxplots of adult rates of fear of others suggest an increase 

through time, the scatterplots of individual data points do not suggest such a pattern. 

The best fit LMEM and RP models are a random intercepts model and mean model, 

respectively. They indicate no significant sex difference in the expression of fear of 

others (Table 4-17, Figure 4-19).  
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TABLE 4-17. Model parameter estimates of rates of fear of others. 

Variable Model Effect est SE DF t p 

Fear 

random int. 
LMEM 

INT 0.41 0.11 16 3.60 0.002* 

SEX -0.10 0.16 103 -0.64 0.53 

mean RP INT 0.15 0.04 16 3.72 0.002* 

  SEX -0.09 0.06 16 -1.57 0.14 
* p ≤ 0.05 

 

 

Fig. 4-19. Adult rates of fear of others. 

As with all other agonistic behaviors, sex differences in the expression of fear 

toward specific age/sex classes may be present.  

Fear of Adult Females 

 The best fit random intercepts LMEM and mean RP models indicate no sex 

difference in the deviations from rates of fear of adult females expected at random.  

But according to the best fit random intercepts LMEM, adults of both sexes fear 
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model indicates that both sexes express fear of adult females as expected at random 

(Table 4-18, Figure 4-20). A qualitative examination of individual ordinary least-

squares (OLS) regressions suggest that most individuals tend to express fear of adult 

females a bit more than expected at random, but the effect does not seem to be very 

strong (Figure 4-21). I therefore accept a conservative interpretation that adults of 

both sexes express fear of adult females as expected at random.  

Note that the individual OLS regressions do not include samples from 

individuals who were sampled for only one month, and therefore under-represent 

the data that are actually used by the LMEM and RP models. They do not 

appropriately account for within-subject correlation, and they are not used in any of 

the analyses presented herein. LMEM uses maximum-likelihood methods to estimate 

individual slopes and intercepts, and RP models do not consider individual slopes 

and intercepts. Individual OLS regressions are only used here as a way to 

qualitatively assess and visualize individual longitudinal trends, as suggested by Singer 

and Willett [2003]. 

 

TABLE 4-18. Model parameter estimates of deviations from expected rates of 
fear of adult females. 

Variable Model Effect est SE DF t p 

Dev Fear 
of AF 

random int. 
LMEM 

INT 0.16 0.07 16 2.14 0.05* 

SEX 0.02 0.10 103 0.19 0.85 

mean RP INT 0.03 0.03 16 1.06 0.31 

  SEX 0.00 0.04 16 -0.06 0.95 
* p ≤ 0.05 
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Fig. 4-20. Deviations from expected rates of fear of adult females. 

 

Fig. 4-21. Individual OLS regressions of deviations from expected rates of fear of 
adult females. 
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Fear of Adult Males 

Both the best fit random intercepts LMEM and RP model indicate no sex 

difference in deviations from expected rates of fear of adult males at random, but 

that adults of both sexes fear adult males less often than expected at random (Table 

4-19, Figure 4-22). 

 

TABLE 4-19. Model parameter estimates of deviations from expected rates of 
fear of adult males. 

Variable Model Effect est SE DF t p 

Dev Fear 
of AM 

random int. 
LMEM 

INT -0.10 0.04 16 -2.46 0.03* 

SEX -0.01 0.06 103 -0.11 0.91 

mean RP INT -0.04 0.01 16 -2.91 0.01* 

  SEX 0.01 0.02 16 0.75 0.46 
* p ≤ 0.05 

 

 

Fig. 4-22. Deviations from expected rates of fear of adult males. 
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Fear of Juvenile Females, Juvenile Males, and Infants 

 Adults were never observed to fear juvenile females, juvenile males, or 

infants.   

Discussion – Agonism 

The following tables summarize tests of adult sex differences in agonistic 

behavior, and tests of adult patterns of bias in their agonistic behavior toward 

particular age/sex classes. Only statistically significant results are presented; empty 

cells represent results of no statistical significance. In general, adults exhibit few sex 

differences in their expression of agonistic behavior (Table 4-20). They are limited 

to: adult females exhibiting more aggression (Table 4-21), adult females supplanting 

others more often (Table 4-21), and males concentrating their supplanting behavior 

on other adult males while females did not (Table 4-21). These results are consistent 

with expectations for a female dominant species, as are other results (that are not 

sex-typed), such as both sexes exhibiting more fear of adult females, fewer supplants 

of adult females, and less fear of adult males than expected at random. It should be 

noted that although females are more aggressive than males on average, there is a 

great deal of overlap and a high degree of inter- and intra-individual variation in both 

overall rates of agonism and overt aggression throughout the year.   

Qualitatively, it appears that there may be a tendency for female aggression to 

increase at the end of the observation year (Figure 4-1). If so, this could be due to 

the fact that the rainy season has ended by that time and resource availability during 

that season declines (Figure 4-23). Increased intra-group aggression during times of 

resource uncertainty is consistent with data from captive experimentation 

[Rosenblum 1987].  
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TABLE 4-20. Summary of sex differences in overall rates of agonism. 

 
Intrinsic 
Agonistic 
Behavior 

Sex 
Difference Time effects 

Aggression ♀ + � � 
Supplant ♀ + � � 
Avoid � � � 

Fear � � � 
For Sex Difference:  
+ indicates significantly more than the opposite sex;  
� indicates no significant difference. 
For Time effects:  
�  indicates no temporal effect.              
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TABLE 4-21. Summary of sex differences in bias of agonism toward each 
partner age/sex class. 

Intrinsic 
Agonistic Bias 

Partner 
type 

Sex-typed 
bias Time effects 

Aggression AF � � � � 
Aggression AM � � � � 
Aggression JF � � � � 
Aggression JM � � � � 

Aggression INFs � � � � 
Supplant AF ♀ – ♂ – � � 
Supplant AM � ♂ + � � 
Supplant JF ♀ – ♂ – � � 

Supplant JM � � � � 
Supplant INFs ♀ – ♂ – � � 
Avoid AF � � � � 
Avoid AM � � � � 

Fear AF ♀ + ♂ + � � 
Fear AM ♀ – ♂ – � � 
For Sex-typed bias:  
+ indicates significantly more than expected at random; 
– indicates significantly less than expected at random; 
� indicates no significant difference from that expected at random.  
For Time effects:  
�  indicates no temporal effect.              
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Fig. 4-23. Annual resource availability and precipitation at Beza Mahafaly Special 
Reserve [Sauther and Cuozzo 2009]. 

 

AFFILIATION 

Grooming 

 Grooming is the only overt form of affiliation in Lemur catta besides play, of 

which adults engage in very little.  The amount of time spent grooming another 

individual includes the amount of time spent allogrooming and mutual grooming 

with that individual. 

Time spent grooming  

 The best fit random intercepts LMEM indicates a significant sex difference 

in the amount of time adults spend engaged in grooming others, but the best fit 

mean intercept response profile model does not (Table 4-22, Figure 4-24). Plots of 

individual OLS regressions are somewhat suggestive that, on average, adult females 

may spend more time grooming than adult males (Fig. 4-25).  Plots of individual 

yearly means are clearly suggestive that, as a group, adult females spend more time 

on average over the course of the year grooming others (Fig. 4-26). Taken together, 
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these results suggest that adult females spend more time grooming others than adult 

males, but remain inconclusive. Because I generally prefer the results of LMEMs to 

RP models, I tentatively accept the interpretation that adult females spend more time 

grooming others than adult males, but not that there is a great deal of variation in 

grooming times as well as overlap between the sexes. 

There is one non-completer male and one non-completer female that have 

very unusual individual OLS regressions, suggesting that they are outliers (Figure 4-

27). But the individual values at each month belonging to those individuals are not 

outlying and they should not, therefore, unduly influence either type of analysis (the 

random intercepts LMEM does not consider inter-individual variation in slopes). 

TABLE 4-22. Model parameter estimates of time spent grooming others. 

Variable Model Effect est SE DF t p 

Grooming 

random int. 
LMEM 

INT 0.84 0.18 16 4.57 0.0003* 

SEX 0.53 0.26 103 2.03 0.05* 

mean RP INT 0.56 0.14 16 4.09 0.0009* 

  SEX 0.11 0.19 16 0.60 0.56 
* p ≤ 0.05 
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Fig. 4-24. Adult time spent grooming others. 

 

Fig. 4-25. Ordinary least squares regressions of individual time spent grooming 
others. 
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Individual adult female time spent Grooming

Fig. 4-26. Individual annual means of time spent grooming others.
individual monthly means; lines represent individual annual means. 

this type follow these conventions.
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Individual adult male time spent Grooming 

 

Individual adult female time spent Grooming 

 

26. Individual annual means of time spent grooming others. Dots represent 
individual monthly means; lines represent individual annual means.  All figures of 

this type follow these conventions. 
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      Time spent grooming – Male data points

 
 
    Time spent grooming – Female data points

Fig. 4-27.  Individual adult time spent grooming: males (upper left); male outlier 
(upper right); females (lower left); female outlier (lower right).
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Male data points                   Time spent grooming - ADM3/0P

Female data points                 Time spent grooming - ADF23 

 
27.  Individual adult time spent grooming: males (upper left); male outlier 

(upper right); females (lower left); female outlier (lower right).  
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time are of deviations from expectations of grooming time per age/sex class if an 

individual’s grooming were distributed randomly across all group members.  

TABLE 4-23. Model parameter estimates of deviations from expected time 
spent grooming adult females. 

Variable Model Effect est SE DF t p 

Dev 
Groom 
AF 

random int. 
LMEM 

INT 0.05 0.06 16 0.74 0.47 

SEX 0.07 0.09 103 0.74 0.46 

mean RP INT 0.04 0.07 16 0.65 0.52 

  SEX 0.06 0.10 16 0.64 0.53 
 

 

Fig. 4-28. Deviations from expected time spent grooming adult females. 
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 According to both the best fit random intercepts LMEM and mean RP 
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4-29).  When analyzed separately by sex, both the best fit random intercepts LMEM 

and mean RP model indicate that adult females spend significantly less time 

grooming adult males than expected at random, while the best fit RP model indicates 

that adult males groom adult males as expected at random (Table 4-24). 

TABLE 4-24. Model parameter estimates of deviations from expected time 
spent grooming adult males. 

Variable Model Effect est SE DF t p 

Dev 
Groom 
AM 

random int. 
LMEM 

INT 0.02 0.07 16 0.26 0.80 

SEX -0.38 0.10 103 -3.76 0.0003* 

mean RP INT -0.04 0.04 16 -0.98 0.34 

  SEX -0.20 0.06 16 -3.28 0.005* 
AF Dev 
Groom 
AM 

random int. 
LMEM 

INT -0.36 0.08 9 -4.46 0.002* 

mean RP INT -0.23 0.04 9 -6.21 0.0002* 
AM Dev 
Groom 
AM 

mean RP INT -0.02 0.01 7 -1.60 0.15 

* p ≤ 0.05 

 

Fig. 4-29. Deviations from expected time spent grooming adult males. 
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Grooming Juvenile Females 

 There is no significant sex difference in deviations from grooming time 

focused on juvenile females expected at random according to the best fit random 

intercepts LMEM and mean RP models (Table 4-25, Figure 4-30).  The best fit mean 

RP model indicates that adults spend less time grooming juvenile females than 

expected at random, but the best fit random intercepts LMEM finds no difference 

from random expectation (Table 4-25).  

TABLE 4-25. Model parameter estimates of deviations from expected time 
spent grooming juvenile females. 

Variable Model Effect est SE DF t p 

Dev 
Groom JF 

random int. 
LMEM 

INT -0.04 0.03 16 -1.40 0.18 

SEX -0.02 0.04 103 -0.43 0.67 

mean RP  INT -0.03 0.01 16 -2.37 0.03* 

  SEX 0.01 0.02 16 0.93 0.37 
* p ≤ 0.05 

 

 

Fig. 4-30. Deviations from expected time spent grooming juvenile females. 
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Grooming Juvenile Males 

 An LMEM could not be fit. As with adult grooming of juvenile females, 

there is no significant sex difference in deviations from expected at random in time 

spent grooming juvenile males according to the best fit RP model, but both sexes of 

adults spend less time grooming juvenile males than expected at random (Table 4-26, 

Figure 4-31). 

TABLE 4-26. RP model parameter estimates of deviations from expected 
rates of grooming juvenile males. 

Variable Model Effect est SE DF t p 
Dev Groom 
JM 

mean RP INT -0.02 0.01 16 -2.47 0.03* 
SEX -0.01 0.01 16 -0.97 0.35 

* p ≤ 0.05       
 

 

Fig. 4-31. Deviations from expected time spent grooming juvenile males. 
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Grooming Infants 

 Recall that adult females are those without dependent infants, such that these 

analyses are of adult females grooming infants not their own. Analyses of the 

deviations from time spent grooming infants expected at random are unclear. An 

LMEM could not be fit. The best fitting mean and linear RP models indicate no sex 

difference in deviations from time spent grooming infants expected at random, but 

the less well-fitting quadratic RP model indicates a significant sex difference, a 

significant time2 effect, and significant sex*time interaction and sex*time2 interaction 

(Table 4-27, Figure 4-32). In this model, females bias their grooming more toward 

infants than males, but their grooming bias toward infants decreases with time and 

increases very slightly with time2.  

Separate analyses by sex do not clarify the issue (Table 4-27). According to 

the best fit random intercepts LMEM, adult males do not bias their grooming 

toward or away from infants, but according to the best fit mean RP model, they 

groom infants significantly less than expected at random.  According to the best fit 

mean RP model, adult females groom infants significantly less than expected at 

random, although very slightly. An examination of the individual OLS regressions 

and individual yearly means does not support the interpretation that females, on 

average, groom infants less than expected at random (Figure 4-33). Indeed, the 

scatterplots of deviations from expected values at random (Figure 4-32), the plots of 

individual OLS  regressions (Figure 4-33), and the yearly mean values of those 

deviations (Figure 4-34) all suggest that adult males and adult females do have 

different patterns of deviations from values of grooming infants expected at random. 

At least some adult females appear to strongly biasing their grooming time toward 
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infants in the first half of the year, but return to levels expected at random during the 

second half.  Perhaps a better model to describe the underlying pattern present here 

would be some sort of discontinuous change model, but such models are too 

complex to fit to these particular data.  

TABLE 4-27. Model parameter estimates of deviations from expected time 
spent grooming infants. 

Variable Model Effect est SE DF t p 

Dev 
Groom 
INFs 

mean RP INT -0.04 0.02 16 -2.51 0.02* 

  SEX 0.00 0.02 16 0.06 0.95 

linear RP INT -0.04 0.06 16 -0.62 0.54 

 SEX 0.04 0.09 16 0.47 0.64 

 TIME 0.00 0.01 101 -0.02 0.98 

  SEX*TIME 0.00 0.01 101 -0.47 0.64 

quad RP INT 0.02 0.12 16 0.18 0.86 

 SEX 0.38 0.17 16 2.21 0.04* 

 TIME -0.02 0.03 99 -0.67 0.50 

 SEX*TIME -0.10 0.05 99 -2.24 0.03* 

 TIME2 0.00 0.00 99 0.73 0.47 

  SEX*TIME2 0.01 0.00 99 2.13 0.04* 

AM 
Dev 
Groom 
INFs 

random int. 
LMEM 

INT -0.02 0.03 7 -0.87 0.41 

mean RP INT -0.03 0.01 7 -3.17 0.02* 

AF Dev 
Groom 
INFs 

mean RP INT -0.04 0.01 9 -2.78 0.02* 

* p ≤ 0.05 
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Fig. 4-32. Deviations from expected time spent grooming infants. 
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Fig. 4-33. Ordinary least squares regressions of individual time spent grooming 
infants.  
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Fig. 4-34. Individual annual mean values of deviations from expected 

In cases where overall time engaged in a behavior differs between the sexes, 

it is not useful to examine raw time engaged in that behavior with particular age/sex 

classes, because those times are not controlled in any way for overall sex differences. 

Here, because the results of some grooming analyses are unclear (including overall 

time grooming), analyses of raw time spent grooming particular age/sex classes may 

help to clarify grooming biases. 
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According to all best fit analyses of absolute time spent grooming others 

(rather than deviations from expectations at random), there are no sex differences in 

absolute grooming time directed toward particular age sex/classes except with 

respect to infants. Adult females groom non-filial infants significantly more than 

adult males do, but less as infants age (Table 4-28). In fact, many adult females spend 

no time grooming infants from January onward (Figure 4-35).  

TABLE 4-28. Model parameter estimates of absolute time spent grooming 
others, by age/sex class. 

Variable Model Effect est SE DF t p 

Time 
Groom 
AF 

random int. 
LMEM 

INT 0.40 0.11 16 3.50 0.003* 

SEX 0.18 0.16 103 1.13 0.26 
mean RP INT 0.15 0.07 16 2.18 0.04* 
  SEX -0.02 0.09 16 -0.19 0.85 

Time 
Groom 
AM 

random int. 
LMEM 

INT 0.27 0.07 16 4.10 0.0008* 

SEX -0.14 0.09 103 -1.52 0.13 
mean RP INT 0.28 0.07 16 3.79 0.002* 
  SEX -0.15 0.10 16 -1.44 0.17 

Time 
Groom JF 

mean RP 
  

INT 0.02 0.02 16 1.27 0.22 
SEX 0.02 0.03 16 0.71 0.49 

Time 
Groom 
JM 

mean RP INT 0.07 0.04 16 1.87 0.08† 
SEX 0.03 0.05 16 0.57 0.57 

Time 
Groom 
INFs 

linear RP INT 0.14 0.11 16 1.29 0.22 

  SEX 1.02 0.16 16 6.55 <.0001* 

TIME -0.02 0.01 101 -1.32 0.19 

  SEX*TIME -0.12 0.02 101 -6.44 <.0001* 
* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 4-35. Adult absolute time spent grooming infants. 

 

Summary and Discussion – Grooming 
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difference in overall time spent grooming is probably driven mostly by higher time 

spent grooming infants by adult females. Interestingly, other than a female 

preference for young infants, adults of both sexes groom subadults very little, and 

adult females groom members of the infant cohort very little after they are 5-6 

months old (Table 4-30). Although I refer to them here as “infants” for clarity 

(because analyses were performed on the cohort across the entire year), members of 

the infant cohort are technically no longer infants after approximately 6 months old, 

when they are weaned and transition to juvenility.  In other words, only actual infants 

are of interest to non-maternal adult females. Adult females exhibit no particular 

interest in grooming non-filial juveniles of any age, regardless of whether they are 

young (members of that year’s infant cohort) or old (members of the previous year’s 

infant cohort). 

It is possible that individual females preferred particular infants as grooming 

partners, that those particular infants left the sample due to disappearance, and that 

this explains the temporal pattern apparent in adult female grooming of non-filial 

infants. Further testing of this dataset may be able to address this alternative 

explanation. However, previous research indicates that mother-infant pairs are of 

great interest to other group members, more so than either infants or mothers alone 

[Nakamichi and Koyama 2000], so I suspect that the real effect captured here is that 

adult females lose interest in infants once they are fully independent. 
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TABLE 4-29. Summary of sex differences in overall time spent grooming. 

Intrinsic affiliative 
behavior 

Sex 
Difference 

Time 
effects 

Grooming overall ♀ + ? � � 
Sex difference: + significantly greater   
                        ?  equivocal result 
                        �  no difference 
Time effects: �  no effect              
 
 

TABLE 4-30. Summary of sex differences in bias of grooming of each partner 
age/sex class. 

 

Intrinsic 
Affiliative Bias Partner type Sex-typed bias Time effects 

Grooming AF � � � � 
Grooming AM ♀ – � � � 
Grooming JF � � � � 

Grooming JM � � � � 
Grooming INFs ♀ +  � ♀ – � 
Sex-typed bias: + significantly more than expected at random  
                         – significantly less than expected at random 
                         �  no difference from expected at random  
Time effects: – decrease with time 
                      �  no effect 
 

PROXIMITY PATTERNS 

One way in which adults have been suggested to differ by sex is in their 

proximity patterns [Pereira 2002]. It is uncertain whether proximity patterns can 

fairly be considered intrinsic patterns of association, given that proximity is at least 

theoretically determined by all individuals’ spacing choices. However, it is also not 

clear that it should be considered extrinsic to the individual, as the individual should 

be at least partially in control of its proximity to others. Global measures of 

proximity are investigated here with the acknowledgement that they may not be fully 
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intrinsically determined. If important sex differences are found, future work can 

focus on disentangling responsibility for those sex-typed patterns.  

Proximity patterns here are quantified along two dimensions—average 

number of individuals in proximity per scan and average time (number of scans) 

spent in proximity. These measures are derived from instantaneous data in which 

proximity to all group members within 3 meters was recorded. These measures are 

irrespective of activity and reflect only spatial relationships to others. 

Number of neighbors in proximity 

Neighbors in Contact 

 An LMEM could not be fit. A qualitative examination of the boxplots and 

scatterplots of the data suggests that there are some interesting temporal trends 

within each sex, but the best fit RP model according the AICc is a mean RP model, 

and independent analyses by sex also are best fit by random intercepts and mean 

models (Table 4-31). Regardless, both the best fit mean RP model and the next best-

fitting linear RP model indicate a significant sex difference in the average number of 

neighbors in contact per scan, with females having more neighbors in contact per 

scan than males (Table 4-31, Figure 4-36). Additionally, the linear RP model finds a 

significant sex*time interaction effect, in which the sex difference decreases through 

time (Table 4-31).  An investigation of the individual OLS regressions for this 

variable indicates an outlying non-completer female (#23) who has high numbers of 

neighbors in contact per scan but who left the dataset due to having an infant (Figure 

4-37). It is possible that this individual’s values are high due to her pregnant 

condition and that she does not well-represent non-maternal females’ patterns of 

proximity at this time. But this female was not removed from this or subsequent 
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analyses for several reasons. First, only the second of her three monthly values was 

outlying (Figure 4-38), and several other females who did not have unusually high 

numbers of neighbors also left the sample due to having an infant, suggesting that 

there is nothing about the pre-parturient state that induced her high numbers of 

neighbors in one month. Second, removing her from the analysis does not change 

the results (Table 4-32), indicating that she, alone, is not responsible for the 

significant sex difference here.  

TABLE 4-31. Model parameter estimates of number of neighbors in contact. 
Variable Model Effect est SE DF t p 

# neighbors 
in contact 

mean RP INT 0.06 0.01 16 4.28 0.0006* 

SEX 0.05 0.02 16 2.71 0.02* 

# neighbors 
in contact 

linear RP INT 0.03 0.03 16 0.92 0.37 

TIME 0.01 0.00 101 1.36 0.18 

SEX 0.14 0.04 16 3.27 0.005* 

SEX*TIME -0.02 0.01 101 -2.22 0.03* 

# neighbors 
in contact 
AF 

random int. 
LMEM 

INT 0.22 0 9.00 4.42 0.002* 

mean RP INT 0.05 0 9.00 4.54 0.001* 

# neighbors 
in contact 
AM 

mean RP INT 0.03 0 7.00 5.14 0.001* 

* p ≤ 0.05        
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Fig. 4-36. Adult average number of neighbors in contact per scan. 

 

Fig. 4-37. Individual ordinary least squares regressions of number of neighbors in 
contact per scan. 

Average number of neighbors in Contact per scan - Adults

Males

Sep
Oct

Nov
Dec

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Females

Sep
Oct

Nov
Dec

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

 

        Average number of neighbors in Contact per scan 
 

         Males                  Females 

    Sep    Nov    Jan    Mar     May    Jul 
 

          Oct     Dec    Feb   Apr     Jun     Aug 
Sep    Nov    Jan    Mar     May    Jul 
 

       Oct    Dec    Feb    Apr    Jun    Aug 



Average number of neighbors in contact per scan 

Average number of neighbors in contact per scan 

Fig. 4-38. Adult female average number of neighbors in contact per scan (top) and 
values from an outlying female (below).
 

TABLE 4-32. RP model parameter estimates of number of neighbors in 
contact with adults with individual ADF23 removed from the analysis.

 
Variable Model 

# neighbors 
in contact 

mean RP 
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* p ≤ 0.05  
 
 
 

          

          

169 

Average number of neighbors in contact per scan – Adult females 

 
 

Average number of neighbors in contact per scan - ADF23 

 
 

38. Adult female average number of neighbors in contact per scan (top) and 
from an outlying female (below).  

32. RP model parameter estimates of number of neighbors in 
contact with adults with individual ADF23 removed from the analysis.

Effect est SE DF t 

 INT 0.06 0.01 16 4.28 

SEX 0.05 0.02 16 2.71 

 INT 0.06 0.01 15 4.07 

SEX 0.06 0.02 15 2.88 

     

          Sep    Nov    Jan    Mar    May    Jul  

          Sep    Nov    Jan    Mar    May    Jul  

38. Adult female average number of neighbors in contact per scan (top) and 

32. RP model parameter estimates of number of neighbors in 
contact with adults with individual ADF23 removed from the analysis. 

p 

0.0006* 

0.02* 

0.001* 

0.01* 
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Neighbors within Reach 

The best fit random intercepts LMEM indicates a significant sex difference 

in the average number of neighbors within reach, with females having more 

neighbors within reach than males (Table 4-33, Figure 4-39). The best fitting mean 

RP model indicates no sex difference. As in most instances of disagreement between 

the LMEM and RP models, I preferentially accept the LMEM results because this 

type of analysis at least partially accounts for inter-individual differences.  

TABLE 4-33. Model parameter estimates of number of neighbors in reach. 

Variable Model Effect est SE DF t p 

# neighbors 
in reach 

random int. 
LMEM  

INT 0.10 0.16 16 0.61 0.55 

SEX 0.52 0.22 103 2.37 0.02* 
mean RP INT 0.08 0.03 16 3.05 0.008* 

  SEX -0.06 0.04 16 -1.68 0.11 
* p ≤ 0.05 

 

 

Fig. 4-39. Average number of neighbors within reach. 
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Neighbors in 3m 

Both the best fit random intercepts LMEM and mean RP models indicate a 

significant sex difference in the average number of neighbors within 3m, in which 

adult females, on average, have more neighbors within 3m than adult males (Table 4-

34, Figure 4-40).  

TABLE 4-34. Model parameter estimates of number of neighbors within 3 
meters. 

Variable Model Effect est SE DF t p 

# neighbors 
in 3m 

random int. 
LMEM 

INT 1.73 0.14 16 12.19 <.0001* 

SEX 0.72 0.20 103 3.63 0.0004* 

mean RP INT 1.50 0.10 16 14.78 <.0001* 

  SEX 0.50 0.14 16 3.51 0.003* 
* p ≤ 0.05 

 

 

Fig. 4-40. Average number of neighbors within 3 meters. 
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Time in proximity 

Time in Contact with Others 

An LMEM could not be fit. The best fit linear RP model indicates a 

significant sex difference in the number of scans per hour spent in contact, with 

females spending more time in contact with others than males, as well as a significant 

sex*time interaction in which this sex difference decreases through time (Table 4-35). 

Analyses by sex indicate that this is due to an increase in contact time for adult males 

as the year progresses. Qualitatively, it appears that there are complex temporal 

patterns of time spent in contact for adult females that are not well-captured by these 

analyses (Figure 4-41). 

TABLE 4-35. Model parameter estimates of time in contact with others. 

Variable Model Effect est SE DF t p 
Time in 
contact 

linear RP INT 0.44 0.43 16 1.01 0.33 
 SEX 2.63 0.61 16 4.28 0.0006* 
 TIME 0.14 0.07 101 1.89 0.06† 
  TIME*SEX -0.32 0.11 101 -3.03 0.003* 

AF Time in 
contact 

mean RP INT 1.50 0.20 9 7.35 <.0001* 

AM Time in 
contact 

linear RP INT 0.16 0.11 7 1.44 0.19 

TIME 0.15 0.03 51 4.59 <.0001* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10  
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Fig. 4-41. Average time in contact with others. 

 Time within Reach of Others 

 The most complex LMEM that could be fit was a random intercepts LMEM, 

which indicates a significant sex difference in time spent within reach of others, with 

females spending more time within reach of others than males (Table 4-36). The best 

fit linear RP model also indicates a significant sex difference with females spending 

more time within reach of others overall, and a significant sex*time interaction 

(Table 4-36). Analyses by sex indicate that this is because adult females spend a great 

deal more time within reach of others at the beginning of the observation year, but 

less as the observation year progresses, while males exhibit no temporal change 

(Table 4-36, Figure 4-42). 
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TABLE 4-36. Model parameter estimates of time spent in reach of others. 
Variable Model Effect est SE DF t p 

Time in 
reach 

random int. 
LMEM 

INT 1.54 1.20 16 1.29 0.22 

SEX 4.39 1.62 103 2.72 0.008* 

linear RP INT 1.72 0.58 16 2.96 0.009* 

 SEX 4.10 0.84 16 4.88 0.0002* 

 TIME 0.00 0.07 101 0.00 1.00 

  TIME*SEX -0.43 0.10 101 -4.46 <.0001* 

AF 
Time in 
reach 

linear LMEM INT 7.35 1.43 9 5.14 0.0006* 

TIME -0.31 0.10 50 -3.05 0.004* 

linear RP INT 6.06 0.61 9 10.00 <.0001* 

TIME -0.47 0.08 50 -6.15 <.0001* 

AM 
Time in 
reach 

random int. 
LMEM 

INT 1.62 0.28 7 5.70 0.0007* 

mean RP INT 1.61 0.31 7 5.26 0.001* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
 

 

Fig. 4-42. Average time within reach of others. 
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Time within 3m of Others 

 The best fit quadratic LMEM indicates that females tend to spend more time 

within 3m of others than males (Table 4-37). There is also a tendency for both sexes 

to spend more time within 3m of others as the observation year progressed. These 

results were confirmed by the best fit linear RP model, which indicated significant 

positive effects of sex (females) and time on the amount of time spent within 3m of 

others (Table 4-37, Figure 4-43). 

TABLE 4-37. Model parameter estimates of number of time within 3 meters 
of others. 

Variable Model Effect est SE DF t p 

Time in 
3m 

quad LMEM INT 11.87 1.58 16 7.50 <.0001* 

 SEX 3.82 2.18 87 1.75 0.08† 
 TIME -0.48 0.47 12 -1.02 0.33 

 SEX*TIME -0.08 0.67 87 -0.12 0.91 

 TIME2 0.07 0.04 87 1.87 0.07† 

  SEX*TIME2 -0.01 0.06 87 -0.10 0.92 

linear RP INT 10.34 1.18 16 8.73 <.0001* 

 SEX 4.00 1.63 16 2.45 0.03* 

 TIME 0.35 0.12 101 2.89 0.005* 

  TIME*SEX -0.10 0.17 101 -0.58 0.56 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 4-43. Average time within 3 meters of others. 

 

Time within 5m of others (inclusive) 

 This measure is all-inclusive. If an individual had no neighbors within 5m, it 

was considered not to have any neighbors at all. Both the best fit linear LMEM and 

RP models indicate that females spend significantly more time than males within 5m 

of others, and that both sexes spend significantly more time within 5m of others as 

the observation year progressed (Table 4-38). In other words, adult males spend 

significantly more time alone than adult females, and both sexes spend less time 

alone as the observation year progresses (Figure 4-44). 
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TABLE 4-38. Model parameter estimates of number of time within 5 meters 
of others. 

Variable Model Effect est SE DF t p 

Time in 
5m 

linear 
LMEM 

INT 12.94 1.53 16 8.48 <.0001* 

SEX 4.86 2.08 89 2.34 0.02* 

 TIME 0.62 0.12 12 5.24 0.0002* 

  SEX*TIME -0.24 0.17 89 -1.42 0.16 

linear RP INT 12.90 1.60 16 8.07 <.0001* 

 SEX 4.89 2.17 16 2.25 0.04* 

 TIME 0.64 0.11 101 6.02 <.0001* 

  TIME*SEX -0.23 0.15 101 -1.50 0.14 

* p ≤ 0.05 
 

 

Fig. 4-44. Average time within 5 meters of others. 
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whether adults exhibited a bias toward or away from proximity to particular age sex 

classes, I calculated deviations from rates of proximity with each age/sex class 

expected at random given the amount of time an individual spent in proximity to 

others and conducted tests of sex differences in those deviations. 

Contact with Adult Females 

 The best fit random intercepts LMEM indicates no sex difference in the 

deviations from rates of contact with adult females expected at random, but the best 

fit mean RP model indicates a significant sex difference, with females biasing their 

time more heavily toward contact with other females than do males (Table 4-39). 

Qualitatively, it appears that adult males and females have reversed patterning of bias 

toward contact time with adult females, with adult females showing a bias toward 

contact time with them at the beginning of the observation year that decreases with 

time and adult males showing a bias toward contact time with adult females at the 

end of the observation year (Figure 4-45). Analyses by sex bear this out—the best fit 

models for adult females indicate either that adult females bias their contact time 

toward adult females or that they bias their time toward adult females but that they 

do so less as time progresses, while adult males tend to bias their contact time 

slightly away from adult females overall (Table 4-39). Because a qualitative 

examination of the scatterplots and the analyses by sex are in concordance with the 

mean RP model, in this case I tentatively accept the results of the mean RP model 

that females spend significantly more of their contact time with adult females than 

adult males do.   
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TABLE 4-39. Model parameter estimates of deviations from expected time in 
contact with adult females. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
contact 
AF 

random int. LMEM INT 0.56 0.43 17 1.32 0.20 
  TIME -0.01 0.06 13 -0.09 0.93 
mean RP INT -0.08 0.10 16 -0.76 0.46 
  SEX 0.34 0.14 16 2.40 0.03* 

AF Dev 
Time in 
contact 
AF 

linear LMEM INT 1.46 0.58 9 2.50 0.03* 

  TIME -0.06 0.04 50 -1.68 0.10† 
mean RP INT 0.31 0.10 9 3.08 0.01* 

AM Dev 
Time in 
contact 
AF 

mean RP INT -0.07 0.03 7 -2.13 0.07† 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 

 

 

Fig. 4-45. Deviations from expected time spent in contact with adult females. 
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Within Reach of Adult Females 

 An LMEM could not be fit. The best fit mean RP model indicates no sex 

difference in bias toward or away from time spent within reach of adult females 

(Table 4-40). And, since the intercept is not significantly different from zero, there is 

also no evidence of bias exhibited toward or away from time spent within reach of 

adult females by either sex (Table 4-40, Figure 4-46).  

TABLE 4-40. RP model parameter estimates of deviations from expected time 
spent in reach of adult females. 

Variable Model Effect est SE DF t p 
Dev Time in 
reach AF 

mean RP 
  

INT -0.11 0.09 16 -1.24 0.23 

SEX 0.20 0.13 16 1.56 0.14 
 

 

Fig. 4-46. Deviations from expected time spent in reach of adult females. 
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Within 3m of Adult Females 

 The best fit linear LMEM indicates that adult females bias their time within 

3m of others significantly more heavily toward other females than do adult males 

(Table 4-41). The best fit linear RP model suggests that adult females tend to bias 

their time within 3m of others more heavily toward other females than do adult 

males. Both models indicate a sex*time interaction effect, with females biasing their 

time within 3m of others less heavily toward adult females as the study year 

progressed. Analyses by sex indicate that adult females spend significantly more time 

than expected at random within 3m of other adult females at the beginning of the 

observation year, but that the effect decreases significantly through time, whereas 

males spend time within 3m of adult females as expected at random (Table 4-41, 

Figure 4-47).  

TABLE 4-41. Model parameter estimates of deviations from expected time 
spent within 3 meters of adult females. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
3m AF 

linear 
LMEM 

INT 0.37 1.33 16 0.28 0.78 

SEX 4.05 1.84 89 2.21 0.03* 

TIME 0.11 0.17 12 0.66 0.52 

SEX*TIME -0.51 0.24 89 -2.14 0.04* 

linear RP INT 0.20 0.97 16 0.20 0.84 

SEX 2.68 1.36 16 1.96 0.07† 
TIME -0.02 0.11 101 -0.21 0.83 

TIME*SEX -0.39 0.16 101 -2.44 0.02* 

AF Dev 
Time in 
3m AF 

linear 
LMEM 

INT 4.79 1.13 9 4.24 0.002* 

TIME -0.42 0.17 50 -2.52 0.02* 

linear RP INT 4.68 1.18 9 3.97 0.003* 

TIME -0.42 0.17 50 -2.49 0.02* 

AM Dev 
Time in 
3m AF 

random int. 
LMEM 

INT 0.94 0.92 7 1.03 0.34 

mean RP INT 0.93 0.98 7 0.96 0.37 

* p ≤ 0.05; † 0.05 < p ≤ 0.10  
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Fig. 4-47. Deviations from expected time spent within 3 meters of adult females. 
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similar results, with adult males tending to be in contact with adult males more than 

expected at random at the beginning of the observation year but decreasing their bias 

toward contact time with adult males as time progressed (Table 4-42).  

TABLE 4-42. Model parameters estimates of deviations from expected time 
spent in contact with adult males. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
contact 
AM 

random int. 
LMEM 

INT 0.00 0.30 16 0.02 0.99 

SEX -1.13 0.41 103 -2.79 0.007* 

mean RP INT 0.06 0.12 16 0.47 0.64 

  SEX -0.60 0.17 16 -3.57 0.002* 
AF Dev 
Time in 
contact 
AM 

linear LMEM INT -1.76 0.37 9 -4.73 0.001* 

  TIME 0.13 0.05 50 2.74 0.009* 

mean RP INT -0.43 0.11 9 -4.06 0.003* 

AM Dev 
Time in 
contact 
AM 

linear LMEM INT 0.55 0.24 7 2.34 0.05* 

  TIME -0.11 0.04 51 -3.11 0.003* 

linear RP INT 0.17 0.08 7 2.07 0.08† 

  TIME -0.03 0.01 51 -2.72 0.009* 
* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 4-48. Deviations from expected time spent in contact with adult males. 

Within Reach of Adult Males 

 The best fit random intercepts LMEM and mean RP models indicate a 

significant sex difference in deviations from time spent within reach of adult males at 

random (Table 4-43, Figure 4-49), but in opposite directions. The LMEM indicates 

that females bias their time within reach of others substantially more strongly away 

from adult males than adult males do, while the best fit mean RP model suggests that 
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Individual OLS regressions for this variable do not support an interpretation of adult 

females biasing their time within reach of others more strongly toward adult males 
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among females than there is among males (Figure 4-50). Analyses by sex indicate that 
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adult males spend time within reach of other adult males as expected at random. For 

adult females, the best fit linear LMEM indicates that adult females spend less time 

than expected within reach of adult males at the beginning of the observation year, 

but tend to spend more time within reach of them as time progresses. In contrast, 

the best fit mean RP model indicates that adult females spend time within reach of 

adult males as expected at random, so the female pattern is uncertain. Because the 

two analyses of sex difference are in direct opposition, I accept the most 

conservative results suggested by the sex-specific analyses, which indicate no 

deviations from random expectations in time spent within reach of adult males, but 

note that, qualitatively, males exhibit hardly any deviation from random expectations 

with respect to time spent within reach of adult males, while females exhibit a great 

deal of inter- and intra-individual variation in this variable. 

TABLE 4-43. Model parameter estimates of deviation from expected time 
spent within reach of adult males. 

Variable Model Effect est SE DF t p 

Dev Time 
in reach 
AM 

random int. 
LMEM 

INT -0.05 1.26 16 -0.04 0.97 

SEX -3.47 1.70 103 -2.04 0.04* 

mean RP INT -0.20 0.15 16 -1.35 0.20 

  SEX 0.42 0.20 16 2.09 0.05* 

AF Dev 
Time in 
reach AM 

linear LMEM INT -4.22 1.48 9 -2.84 0.02* 

  TIME 0.17 0.09 50 1.87 0.07† 

mean RP INT 0.21 0.15 9 1.45 0.18 
AM Dev 
Time in 
reach AM 

random int. 
LMEM INT -0.11 0.09 7 -1.19 0.27 

mean RP INT -0.06 0.04 7 -1.57 0.16 
* p ≤ 0.05; † 0.05 < p ≤ 0.10  
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Fig. 4-49. Deviations from expected time spent within reach of adult males. 
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Fig. 4-50. Individual ordinary least squares regressions of deviations from expected 
time spent within reach of adult males.  

Within 3m of Adult Males 

 The best fit linear LMEM and RP models both indicate a significant sex 

difference in which adult females bias their time within 3m of others more heavily 

away from adult males than do adult males, and the linear RP model indicates an 

additional time*sex interaction in which this sex difference is attenuated with time 

(Table 4-44). Analyses by sex indicate that adult females spend significantly and 

substantially less time than expected at random within 3m of adult males (Table 4-44, 

Figure 4-51). Analyses of males indicate that, if the main sex difference is attenuated 

with time, it is because males spend less of their time within 3m of others with adult 

males as time progresses (Table 4-44, Figure 4-51). Qualitative examination of the 

individual OLS regressions support that interpretation (Figure 4-52). 
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TABLE 4-44. Model parameter estimates of deviations from expected time 
spent within 3 meters of adult males. 

 
Variable Model Effect est SE DF t p 

Dev Time 
in 3m AM 

linear 
LMEM 

INT 0.01 1.97 16 0.00 1.00 

SEX -7.08 2.71 89 -2.62 0.01* 

 TIME -0.34 0.28 12 -1.24 0.24 

  SEX*TIME 0.62 0.38 89 1.62 0.11 

linear RP INT -0.41 1.45 16 -0.28 0.78 

 SEX -6.64 2.02 16 -3.29 0.005* 

 TIME -0.28 0.18 101 -1.56 0.12 

  TIME*SEX 0.61 0.25 101 2.39 0.02* 

AF Dev 
Time in 
3m AM 

random int. 
LMEM 

INT -5.82 0.81 9 -7.21 <.0001* 

AM Dev 
Time in 
3m AM 

linear 
LMEM 

INT -0.34 1.32 7 -0.26 0.80 

TIME -0.28 0.14 51 -1.99 0.05* 

mean RP INT -2.40 0.56 7 -4.30 0.004* 

* p ≤ 0.05 
 

 

Fig. 4-51. Deviations from expected time spent within 3 meters of adult males. 
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Fig. 4-52. Individual ordinary least squares regressions of deviations from expected 
time spent within 3 meters of adult males.  

 

Contact with Juvenile Females 

 The best fit LMEM and RP models find no sex difference in bias toward or 

away from juvenile females in time spent in contact with others (Table 4-45, Figure 

4-53). Adults may spend less of their contact time with juvenile females than 

expected at random, but this is only indicated by the mean RP model and not the 

random intercepts LMEM, so it is not definitively the case. 

TABLE 4-45. Model parameter estimates of deviations from expected time 
spent in contact with juvenile females. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
contact 
JF 

random int. LMEM INT -0.05 0.35 16 -0.15 0.88 
  SEX 0.65 0.48 103 1.37 0.17 
mean RP INT -0.07 0.03 16 -2.12 0.05* 
  SEX -0.07 0.05 16 -1.52 0.15 

* p ≤ 0.05 
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Fig. 4-53. Deviations from expected time spent in contact with juvenile females. 

 

Within Reach of Juvenile Females 

An LMEM could not be fit. The best fit mean RP model indicates no sex 

difference in bias toward or away from juvenile females in time spent within reach of 

others, but suggests that adults tend to spend slightly less time within reach of 

juvenile females than expected at random (Table 4-46, Figure 4-54).  

TABLE 4-46. RP model parameter estimates of deviations from expected time 
spent within reach of juvenile females. 

Variable Model Effect est SE DF t p 

Dev Time in 
reach JF 

mean RP INT -0.05 0.03 16 -1.79 0.09† 
  SEX -0.02 0.04 16 -0.54 0.60 

† 0.05 < p ≤ 0.10  
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Fig. 4-54. Deviations from expected time spent within reach of juvenile females. 

Within 3m of Juvenile Females 

 Neither the best fit random intercepts LMEM nor RP model suggest any 

difference from random allocation of time spent within 3m of juvenile females, as 

there is no sex difference and no difference from an intercept of zero (Table 4-47, 

Figure 4-55). 

TABLE 4-47. Model parameter estimates of deviations from expected time 
spent within 3 meters of juvenile females. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
3m JF 

random int. LMEM INT 0.03 0.26 16 0.11 0.91 

  SEX 0.59 0.36 103 1.61 0.11 

mean RP INT 0.04 0.27 16 0.14 0.89 

  SEX 0.60 0.39 16 1.56 0.14 
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Fig. 4-55. Deviations from expected time spent within 3 meters of juvenile females. 

Contact with Juvenile Males 

 An LMEM could not be fit. The best fit mean RP model indicates a tendency 

for adult females to spend less of their contact time with juvenile males than do adult 

males (Table 4-48).  Analyses by sex indicate that both adult males and adult females 

spend less of their contact time with juvenile males than expected, adult females 

simply spend even less of it with juvenile males than do adult males (Figure 4-56). 
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TABLE 4-48. Model parameter estimates of deviations from expected time 
spent in contact with juvenile males. 

Variable Model Effect est SE DF t p 

Dev Time in 
contact JM 

mean RP INT -0.02 0.02 16 -1.00 0.33 

  SEX -0.06 0.03 16 -1.74 0.10† 

AF Dev 
Time in 
contact JM 

linear LMEM INT -0.28 0.08 9 -3.63 0.006* 

  TIME 0.03 0.01 50 2.66 0.01* 

mean RP INT -0.06 0.03 9 -2.05 0.07† 
AM Dev 
Time in 
contact JM 

mean RP INT -0.04 0.01 7 -4.95 0.002* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10  

 

 

Fig. 4-56. Deviations from expected time spent in contact with juvenile males. 
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Within Reach of Juvenile Males 

 The linear LMEM indicates no significant sex difference, sex*time 

interaction or deviation from random expectation in bias in time spent within reach 

of others toward or away from juvenile males (Table 4-49). The best fit RP mean and 

linear models each suggest that females tend to bias their time within reach of others 

more strongly away from juvenile males than males do (Table 4-49, Figure 4-57). I 

preferentially accept the results of the linear LMEM because the LMEM accounts 

for inter-individual variation in intercepts and slopes, and because an examination of 

the individual OLS regressions does not support an interpretation of adult females 

spending less time than expected within reach of juvenile males (Figure 4-58). In 

general, adults do not bias their time spent within reach of others toward or away 

from juvenile males. 

 

TABLE 4-49. Model parameter estimates of deviations from expected time 
spent within reach of juvenile males. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
reach 
JM 

linear LMEM INT 0.06 0.34 16 0.18 0.86 

 SEX -0.11 0.47 89 -0.23 0.82 

 TIME 0.01 0.04 12 0.26 0.80 

  SEX*TIME 0.00 0.05 89 0.08 0.93 

mean RP INT -0.08 0.06 16 -1.18 0.25 

  SEX -0.18 0.09 16 -1.97 0.07† 

† 0.05 < p ≤ 0.10  
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Fig. 4-57. Deviations from expected time spent within reach of juvenile males. 
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Fig. 4-58. Individual ordinary least squares regressions of deviations from expected 
time spent in contact with juvenile males.  
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does not address temporal effects (Figure 4-60). Analyses by sex indicate that adult 

females begin the year within 3m of juvenile males at random rates, but tend to bias 

their time toward juvenile males as the year progresses, while adult males spend more 

time than expected within 3m of juvenile males overall. Therefore, in this case, I 

accept the results of the linear RP model—that adult males and females have 

different temporal patterns of time expenditure within 3m of juvenile males, if not 

differences in overall time expenditure with them. 

 

TABLE 4-50. Model parameter estimates of deviations from expected time 
spent within 3 meters of juvenile males. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
3m JM 

random int. 
LMEM 

INT 0.59 0.30 16 1.99 0.06† 
SEX 0.69 0.41 103 1.66 0.10† 

linear RP INT 0.34 0.40 16 0.85 0.41 

 TIME 0.04 0.04 101 1.06 0.29 

 SEX -0.19 0.56 16 -0.34 0.74 

  TIME*SEX 0.19 0.06 101 3.33 0.001* 

AF Dev 
Time in 
3m JM 

linear LMEM INT 0.47 0.58 9 0.81 0.44 

  TIME 0.16 0.08 50 1.91 0.06† 
linear RP INT 0.47 0.60 9 0.78 0.46 

  TIME 0.16 0.08 50 1.94 0.06† 
AM Dev 
Time in 
3m JM 

mean RP INT 0.60 0.22 7 2.78 0.03* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10  
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Fig. 4-59. Deviations from expected time spent within 3 meters of juvenile males. 
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Fig. 4-60. Individual ordinary least squares regressions of deviations from expected 
time spent within 3 meters of juvenile males.  
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TABLE 4-51. Model parameter estimates of deviations from expected rates of 
contact with infants. 

Variable Model Effect est SE DF t p 

Dev Time 
in contact 
INFs 

mean RP INT -0.12 0.02 16 -5.51 <.0001* 

  SEX 0.13 0.03 16 4.01 0.001* 

AF Dev 
Time in 
contact 
INFs 

random 
int. LMEM 

INT 0.03 0.10 9 0.30 0.77 

mean RP INT -0.07 0.05 9 -1.61 0.14 

AM Dev 
Time in 
contact 
INFs 

mean RP 
  

INT 
  

-0.11 
  

0.02 
  

7 
  

-5.87 
  

0.0006* 
  

* p ≤ 0.05  

 

 

Fig. 4-61. Deviations from expected rates of contact with infants. 
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Within Reach of Infants 

 The most complex LMEM that could be fit was a random intercepts model 

that indicates that adult females bias their time within reach of others more strongly 

toward infants than adult males (Table 4-52, Figure 4-62). The best fit mean RP 

model finds no such sex difference. An examination of the OLS regressions for 

individuals suggests high adult female bias toward being within reach of young 

infants that tapers toward rates expected at random as infants age (Figure 4-63). 

Analyses by sex are not elucidatory. The best fit random intercepts LMEM for adult 

females indicates that they exhibit a bias toward infants in their time within reach of 

others, while the best fit mean RP model finds that they spend their time within 

reach of infants as expected at random. Males, also, do not exhibit a bias toward or 

away from infants with respect to time spent within reach of others. Due to these 

conflicting results, I accept the conservative conclusion that there is no clear 

evidence for any bias for adults of either sex toward or away from infants with 

respect to time spent within reach of others. 
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TABLE 4-52. Model parameter estimates of deviations from expected time 
spent within reach of infants. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
reach 
INFs 

random int. 
LMEM 

INT -0.03 0.85 16 -0.04 0.97 

SEX 2.49 1.14 103 2.18 0.03* 

mean RP INT -0.01 0.07 16 -0.10 0.92 

  SEX -0.09 0.10 16 -0.92 0.37 

AF Dev 
Time in 
reach 
INFs 

random int. 
LMEM 

INT 2.44 1.03 9 2.37 0.04* 

mean RP INT -0.04 0.06 9 -0.76 0.46 

AM Dev 
Time in 
reach 
INFs 

mean RP INT -0.02 0.01 7 -1.51 0.17 

* p ≤ 0.05  

 

 

 

 

Fig. 4-62. Deviations from expected time spent within reach of infants. 
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Fig. 4-63. Individual ordinary least squares regressions of deviations from expected 
time spent within reach of infants.  

 

Within 3m of Infants 

 The best fit random intercept LMEM and mean RP models indicate no 

significant sex difference in bias toward or away from infants in time spent within 

3m of others, nor any deviation from random expectation (Table 4-53, Figure 4-64).  

TABLE 4-53. Model parameter estimates of deviations from expected time 
spent within 3 meters of infants. 

Variable Model Effect est SE DF t p 

Dev 
Time in 
3m INFs 

random int. 
LMEM 

INT 0.37 0.64 17 0.57 0.57 

TIME 0.10 0.09 13 1.05 0.31 

mean RP INT 0.48 0.41 16 1.15 0.27 

  SEX 0.82 0.58 16 1.43 0.17 
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Fig. 4-64. Deviations from expected time spent within 3 meters of infants. 
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increase their time in contact and time within 3m of others throughout the year. 

Both sexes decrease the time they spend alone throughout the year.  Additionally, it 

appears that these results oversimplify what may be more complex patterns of 

temporal change in proximity. Qualitatively, it appears that adult females have a 

quadratic changes in proximity through time rather than linear ones, beginning with 

high number of neighbors and lots of time spent in close proximity (in contact and 

within reach) at the beginning of the year that rapidly decrease and then gradually 

increase again toward the end of the year (Figures 4-65, 4-66, 4-67, 4-68).  

The two spring mating pulses observed in 2009 are marked on Figures 4-65 

through 4-68 by grey bars. It is reasonable to hypothesize that the increase in 

proximity measures for males late in the observation year stems from males working 

harder to maintain proximity to females during the mating season. This may also 

explain apparent (but statistically non-significant) increases in female proximity 

measures late in the observation year. Another reasonable conjecture regarding 

increased adult female proximity measures late in the observation year is that they are 

related to increased agonism late in the year as a result of decreasing resource 

availability (Figure 4-23). Future work may be able to test these conjectures. Adult, 

non-maternal female proximity patterns do seem to be strongly coincident with 

patterns of infant maturation in September through January. 
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TABLE 4-54. Summary of sex differences in global proximity measures. 

Proximity measure 
Sex 
Difference Time effects 

Total # neighbors in contact ♀ + � � 
Total # neighbors in reach ♀ + � � 
Total # neighbors in 3m ♀ + � � 

Time in contact with others ♀ + � ♂ + 
Time in reach of others ♀ + ♀ – � 
Time in 3m of others ♀ + ♀ + ♂ + 
Time in 5m of others ♀ + ♀ + ♂ + 
Sex difference: + significantly greater   
Time effects: + increase with time 
                      – decrease with time 
                      �  no effect              
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TABLE 4-55. Summary of sex differences in bias of proximity to each partner 
age/sex class. 

Proximity measure 
Partner 
type Sex-typed bias Time effect 

Time in contact AF ♀ + � � � 

Time in reach AF � � � � 
Time in 3m AF ♀ + � ♀ – � 
Time in contact AM ♀ – ♂ + ♀ + ♂ – 
Time in reach AM � � � � 

Time in 3m AM ♀ –– ♂ – � ♂ – 
Time in contact JF � � � � 
Time in reach JF � � � � 
Time in 3m JF � � � � 

Time in contact JM ♀ –– ♂ – � � 
Time in reach JM � � � � 
Time in 3m JM � ♂ +  ♀ + � 
Time in contact INFs � ♂ – � � 

Time in reach INFs � � � � 
Time in 3m INFs � � � � 
Sex-typed bias: + significantly more than expected at random  
                         – significantly less than expected at random 
                       –– significantly less than – 
                         �  no difference from expected at random  
Time effects: + increase with time 
                      – decrease with time 
                      �  no effect 
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Fig. 4-65. Average numbers of neighbors in contact; grey bars indicate spring mating 
pulses in 2009. 

 

 

Fig. 4-66. Average numbers of neighbors in within reach; grey bars indicate spring 
mating pulses in 2009. 
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Fig. 4-67. Average amount of time spent in contact with others; grey bars indicate 
spring mating pulses in 2009. 

 

 

Fig. 4-68. Average amount of time spent within reach of others; grey bars indicate 
spring mating pulses in 2009. 
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In general, adult females spend more time in proximity with adult females 

and less time proximity to adult males than adult males. In other words, there is an 

overall pattern of spatial association with same-sex peers. Additionally, adult males 

do not spend much time in contact with subadults. Either they avoid subadults or 

subadults avoid them. Future work can address this point.  

Adult patterns of time spent in contact with adult males reflects the yearly 

temporal patterns mentioned above (see Figure 4-42). When infants are young, adult 

females without infants bias their time in contact away from adult males because they 

are biasing it toward other adult females. From May through August, adult males 

begin to avoid other adult males, probably as a result of mating competition, while 

adult females bias their contact toward them, probably as a result of mating effort on 

the part of males that is tolerated by females during the mating season, or as a result 

of mating effort on the part of females. These analyses do not reveal whether focal 

females are targeting adult females with infants or just adult females in general when 

infants are young or whether adult males or adult females are responsible for 

maintaining the increased proximity between opposite-sex adults during the mating 

season, but future work will investigate these issues. Adult sex differences in patterns 

of proximity to juveniles are few and are not obviously relatable to temporal patterns 

of variation in resource availability or reproductive cyclicity.  Notably, analyses for 

proximities of “contact” and “within reach” are not entirely duplicative, indicating 

that they may reliably reflect proximities that have different “value” to the animals.  

INFANT INTEREST 

 The components of what I consider here as expressions of “infant interest” 

have already been discussed in other sections, but are revisited here in this section 
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because sex differences in infant interest, in particular, characterize juvenile and adult 

primates of many species [Papio cynocephalus ursinus: Cheney 1978; Alouatta palliata: 

Clarke et al. 1998; Cercopithecus mitis: Cords et al. 2010, Förster and Cords 2005; 

Alouatta seniculus: Crockett and Pope 2002]. Two ways in which infant interest might 

be expressed are in grooming directed toward them and in maintenance of proximity 

to them.   

Grooming 

As previously indicated (Table 4-30), adult females groom infants more than 

adult males do, but only when infants are young. 

Proximity 

 Adult females without infants of their own do not bias their time in contact 

with others toward non-filial infants in particular, but adult males bias their contact 

time away from infants (Table 4-51). Both measures of infant interest indicate that 

adult females are more interested in infants than adult males are, but it appears that 

adult males are disinterested in infants rather than that adult females are especially 

interested in them. 

Responsibility for maintenance of proximity as quantified by the Hinde index 

is a commonly used measure of the nature of the mother-infant relationship [Hinde 

and Atkinson 1970], and is conceptually well-suited to assessing infant interest. 

However, it was not used here to assess infant interest (or interest in any other type 

of relationships between age/sex classes) because it did not lend itself well to being 

used across different types of dyadic relationships. Different types of dyads engaged 

in dramatically different rates of proximity changes, and as such, a Hinde index 

would not have characterized the interaction patterns of all types of dyads equally 



212 

well. For example, while the average number of proximity changes per adult female-

infant dyad per month was approximately 11, the average number of proximity 

changes per adult male-infant dyad per month was only 4.5. First of all, I considered 

4.5 proximity changes to be an insufficient number to accurately characterize 

responsibility for proximity. Secondly, the disparity among the rates of proximity 

changes that characterized the different types of dyads meant that some types of 

dyadic relationships would be well-characterized because they had sufficient samples 

of proximity changes, while others would be prone to biased estimates as a result of 

small sample sizes, and I did not think comparisons of these types of variably well-

characterized relationships would be meaningful.  

SCENT MARKING 

In this study, scent-marking behavioral events recorded were: anogenital 

marking, brachial marking, ante-brachial marking, anoint tail, tail wave, and tail play.  

Anogenital scent marking is performed by rubbing the anogenital scent glands [Palagi 

et al. 2002] on branches. Antebrachial marking involves depositing secretions from 

the antebrachial glands on a branch using a stereotyped sequence of motions; first 

the animal grasps a branch with the manus (which usually involves moving to an 

orthograde posture), then forcefully rotates the manus and forearm around the 

branch (clockwise when marking with the right forelimb, counterclockwise when 

marking with the left), gouging the substrate with a keratinous brachial spur and 

squeezing secretions from the brachial gland [Palagi et al. 2002].  Brachial marking 

sometimes immediately precedes antebrachial marking. It involves passing the 

antebrachial scent glands over the ipsilateral brachial scent glands, thereby mixing the 

secretions of the brachial and antebrachial scent glands prior to their deposition 
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[Palagi et al. 2002]. Anoint tail involves an individual drawing its tail repeatedly 

between the antebrachial scent glands, depositing olfactory secretions onto the tail, 

usually just prior to waving the tail over the back toward another individual in a “tail 

wave” [Kappeler 1998].  Tail play involves drawing the tail repeatedly through the 

forearms in the context of play [Pereira and Kappeler 1997] and is included here 

because it may serve as a precursor to or a developmental component of the scent 

marking behaviors of anoint tail and tail wave.  The following analyses investigate 

adult sex differences in: hourly rates of anogenital marking, brachial marking and 

ante-brachial marking, anoint tail and tail wave, and tail play.  Both sexes have 

anogenital scent glands and engage in anogenital scent marking [Palagi et al. 2002].  

Typically, only males have antebrachial and brachial scent glands and antebrachial 

spurs [Palagi et al. 2002; Sauther and Cuozzo 2008], so brachial and antebrachial 

scent marking is largely limited to males, as is tail anointing, tail waving, and tail play 

[Pereira 2002].  

Ano-genital marking (A-G mark) 

 The best fit random intercepts LMEM indicates no significant sex difference 

in rates of anogenital marking, while the best fit mean RP model indicates a trend 

toward a sex difference in rates of anogenital marking. Qualitatively, a means model 

does not appear to fit the male data particularly well, but neither the best fit linear 

nor quadratic RP models detect significant sex differences or any sex*time 

interactions (Table 4-56, Figure 4-69). 
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TABLE 4-56.  Model parameter estimates of rates of ano-genital marking. 

Variable Model Effect est SE DF t p 

A-G 
mark 

random int. 
LMEM 

INT 1.62 0.54 16 3.02 0.008* 

SEX -0.76 0.73 103 -1.04 0.30 

mean RP INT 0.45 0.17 16 2.61 0.02* 

  SEX 0.42 0.24 16 1.75 0.10† 
* p ≤ 0.05; † 0.05 < p ≤ 0.10 

 

 

Fig. 4-69. Rates of ano-genital marking among adults. 
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Indeed, focal females were never observed to wrist-mark, and males wrist-marked 

more during the first quadrant of the observation year (September-December) and 

less throughout the rest of the year (Figure 4-70).   

TABLE 4-57. Model parameter estimates of rates of antebrachial marking. 

Variable Model Effect est SE DF t p 

Rate 
antebrachial 
mark 

random 
int. 
LMEM 

INT 14.19 4.12 16 3.44 0.003* 

SEX -14.19 5.58 103 -2.54 0.01* 

linear RP INT 3.69 0.73 16 5.03 0.0001* 

SEX -3.69 1.06 16 -3.50 0.003* 

TIME -0.33 0.07 101 -4.70 <.0001* 

  SEX*TIME 0.33 0.10 101 3.26 0.002* 
* p ≤ 0.05 

 

 

Fig. 4-70. Rates of antebrachial marking among adults. 
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less than males. In contrast, the best fit mean RP model does not find a significant 

sex difference in rates of brachial marking, even though females were never observed 

to brachial mark (Table 4-58). A qualitative examination of the scatterplot of brachial 

marking suggests that a linear or quadratic model may better fit the male data (Figure 

4-71). More complex LMEMs could not be fit, but the best fit quadratic RP model 

indicates significant sex*time and sex*time2 interactions, with males brachial marking 

less as time increases and slightly more as time2 increases. Here, I conclude that these 

data do not fit any of these models well, but that adult males brachial-mark 

significantly more than females and significantly less as the observation year 

progresses.  

TABLE 4-58. Model parameter estimates of rates of brachial marking. 

Variable Model Effect est SE DF t p 

Rate 
brachial 
mark 

random int. 
LMEM 

INT 3.28 0.82 16 3.99 0.001* 

SEX -3.28 1.12 103 -2.94 0.004* 

mean RP  INT 0.22 0.10 16 2.08 0.05* 

  SEX -0.22 0.15 16 -1.48 0.16 

quad RP INT -0.23 0.25 16 -0.93 0.37 

SEX 0.23 0.35 16 0.66 0.52 

TIME 0.57 0.16 99 3.54 0.0006* 

  SEX*TIME -0.57 0.23 99 -2.53 0.01* 

TIME^2 -0.05 0.01 99 -3.61 0.0005* 

  SEX*TIME^2 0.05 0.02 99 2.58 0.01* 
* p ≤ 0.05 
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Fig. 4-71. Rates of brachial marking among adults. 

Rates of Anoint Tail and Tail Wave 

One focal female was observed to “anoint tail” on one occasion. According 

to the best fit random intercepts LMEM, males and females differ significantly in 

their rates of anoint tail, with females anointing less than males, but according to the 

best fit mean RP model, they do not (Table 4-59). As with brachial and antebrachial 

marking, a mean model does not appear to be a particularly good fit for the male 

data (Figure 4-72), but the best fit linear and quadratic RP models also do not find 

significant sex differences or sex*time interactions. Again, that these data do not fit 

any of these models well, but adult males anoint their tails significantly more than do 

adult females. 
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TABLE 4-59.  Model parameter estimates of rates of anoint tail. 

Variable Model Effect est SE DF t p 

Anoint 
tail 

random int. 
LMEM INT 1.14 0.25 16 4.49 0.0004* 

  SEX -1.13 0.35 103 -2.23 0.002* 

mean RP INT 0.02 0.07 16 0.23 0.82 

  SEX -0.02 0.10 16 -0.17 0.86 
* p ≤ 0.05 

 

 

Fig. 4-72. Rates of anoint tail among adults. 

 Focal females were never observed to tail wave.  An LMEM could not be fit, 

but the best fit RP model indicates a significant sex difference in rates of tail waving, 

with males tail waving more than females (Table 4-60, Figure 4-73). 

TABLE 4-60. Model parameter estimates of rates of tail wave. 

Variable Model Effect est SE DF t p 

Tail 
wave 

mean RP INT 0.39 0.05 16 7.18 <.0001* 

  SEX -0.39 0.08 16 -5.04 0.0001* 
* p ≤ 0.05 
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Fig. 4-73. Rates of tail wave among adults. 

Rates of Tail Play 

 Adult males were never observed to anoint their tails in the context of play. 

One focal adult female was observed to “anoint” her tail during play on two 

occasions (Figure 4-74).  This female was a member of the 2-3 year old cohort. 
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Fig. 4-74. Rates of tail play among adults. 

Summary and Discussion – Scent marking 

There are no sex differences in rates of ano-genital marking, but as expected, 

adult males antebrachial and brachial mark, anoint tail, and tail wave significantly 

more often than adult females (Table 4-61). Male brachial and antebrachial marking 

behavior is characterized by strong temporal patterns of high rates of marking just 

after infants are born, but no other clear peaks of scent marking activity. Even 

though there is no significant effect of time on ano-genital marking, male ano-genital 

marking appears to share the temporal patterning of brachial and antebrachial 

marking. In other words, male scent marking behavior “jumps” from baseline in 

October to December.   
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TABLE 4-61. Summary of results of tests for sex differences in scent marking 
behaviors. 

 

 

It could be argued that this male marking behavior serves to “defend” 

territories or core areas in the service of protection of infants and/or resources for 

use by lactating females. However, males are not typically involved in inter-group 

aggressive encounters in Lemur catta [Sauther et al. 1999], suggesting that they are not 

especially motivated to defend resources. On the other hand, this period of time 

coincided with a number of male emigrations. In fact, I lost two male focal 

individuals from one group during the month of November because three adult 

males emigrated from that group. I know their disappearance was not due to death, 

because after their emigration from my study group, I regularly found them together 

in the range of a neighboring group. They eventually immigrated into this group, but 

it took some months for them to do so. During the time leading up to that 

emigration, these males would make periodic forays so far away from their group 

that I terminated their focal observations if they were more than 50m away from the 

group for fear that I would lose the group for the rest of the day. Emigrations 

occurred in another group during this time, as well, and those males were also not 

Scent marking 
Sex 
Difference Time effects 

Ano-genital � � 
Antebrachial ♂ + ♂ – 
Brachial ♂ + ♂ – 

Anoint tail ♂ + � 
Tail wave ♂ + �   
Sex difference: + significantly greater   
                        �  no difference 
Time effects: – decrease with time 
                      �  no effect              
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predated because they rejoined the group many months later, and one of my group 

was shadowed regularly enough by an extra-group male during this time that I dye-

marked him. He did not eventually join the group. Therefore, it seems that the peak 

in male scent marking during this time is probably related to male migration events. 

However, this was not the only period of male emigration during the year. 

Each of my study groups gained two immigrant males in February and one gained an 

immigrant male in June. Yet, there is no spike in scent marking behavior during this 

time, nor during the mating season. Perhaps, then, elevations in male marking 

behavior are a function of particular males and their own impending moves. Given 

my sample sizes, it may not be possible to know, but it could be that males who are 

going to emigrate are responsible for the spike in marking behavior. Or, it could be 

that male migration events are more threatening when infants are young, and males 

are more inclined to “defend” their core areas against potential immigrants during 

this time.  

SUMMARY – ADULT SEX DIFFERENCES 

This chapter has investigated and quantified intrinsic adult behavioral sex 

differences in agonism, affiliation, proximity, infant interest, and scent marking. 

Twenty-three statistically significant behavioral sex differences were identified 

(Tables 4-62 and 4-63). 
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TABLE 4-62. Summary of sex differences in adult intrinsic behaviors. 

Intrinsic behavior 
Sex 
Difference Time effects 

Aggression ♀ + � � 
Supplant ♀ + � � 

Total # neighbors in contact ♀ + � � 
Total # neighbors in reach ♀ + � � 
Total # neighbors in 3m ♀ + � � 
Time in contact with others ♀ + � ♂ + 

Time in reach of others ♀ + ♀ – � 
Time in 3m of others ♀ + ♀ + ♂ + 
Time in 5m of others ♀ + ♀ + ♂ + 

Antebrachial mark ♂ + ♂ –   
Brachial mark ♂ + ♂ – 
Anoint tail ♂ + � 
Tail wave ♂ + �    
Sex difference: + significantly greater   
Time effects: + increase with time 
                      – decrease with time 
                      �  no effect              
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TABLE 4-63. Summary of sex differences in bias in intrinsic behaviors toward 
each partner age/sex class. 

 
Intrinsic behavior Partner type Sex-typed bias Time effect 

Supplant AM � ♂ + � � 

Grooming AM ♀ – � � � 
Grooming INFs ♀ +  � ♀ – � 

Time in contact AF ♀ + � � � 
Time in 3m AF ♀ + � ♀ – � 
Time in contact AM ♀ – ♂ + ♀ + ♂ – 
Time in 3m AM ♀ –– ♂ – � ♂ – 

Time in contact JM ♀ –– ♂ – � � 
Time in 3m JM � ♂ +  ♀ + � 
Time in contact INFs � ♂ – � � 
Sex-typed bias: + significantly more than expected at random  
                         – significantly less than expected at random 
                       –– significantly less than – 
                         �  no difference from expected at random  
Time effects: + increase with time 
                      – decrease with time 
                      �  no effect 
 

For a female dominant species, there are surprisingly few quantifiable sex 

differences in agonistic behavior, but sex differences in patterns of proximity to 

others are quite marked. Adult females are generally more agonistic toward others 

than adult males, but are also more spatially cohesive than adult males. Whether 

higher rates of agonism partially result from greater cohesion is a question for future 

research. Greater cohesion does not result in higher rates of affiliative interaction 

(grooming) overall. Instead, adult females bias their grooming toward young infants 

and away from adult males. Adult males are either constrained to or motivated to 

focus most of their supplanting behavior on other adult males. The following 

chapter will investigate which of these adult sex-typed behaviors become sexually 
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differentiated in the subadult period and are therefore reasonable candidates for 

behaviors that might rely on the social environment for their development. 
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CHAPTER 5: INTRINSIC SUBADULT SEX DIFFERENCES 

This chapter will investigate the development of adult sex-typed behaviors 

documented in the previous chapter. By limiting my investigation of juvenile sex 

differences to behaviors known to differ by sex in adults, it may seem that I assume 

that juvenile sex differences function only in preparation for adult behavioral roles. 

This is not the case. I recognize that some juvenile behaviors may function as 

preparatory for adult roles while other juvenile behaviors may serve to promote 

behavioral competence specific to life as a juvenile, and that the latter may also be 

sex-typed. I limit my investigation here to the investigation of the developmental 

components of adult sex-typed behaviors because I am interested, ultimately, in 

understanding how adult sex-typed behaviors develop and how selection acts on the 

developmental processes that produce adult sex-typed behavior.  

AGONISM 

As in the adult analyses, LMEMs are presented alone when they are the best 

fitting model according to AICc. When LMEMs are not the best-fitting model, their 

results are presented in conjunction with the best fit RP model. If an LMEM could 

not be fit, only the best fit RP model is presented.  

Aggression 

Rates of Aggression toward others 

While adult females exhibit higher rates of overtly aggressive behavior than 

do adult males, there is no evidence of such a sex difference in either infants or 

juveniles (Table 5-1). Infants were only overtly aggressive on six occasions. While six 

aggressive events were directed by infant females at other infants (Figure 5-1), closer 

examination reveals that a single infant—08F(154)—was responsible for five of 
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them. Qualitatively, three infants were noted to be generally more aggressive to their 

single infant groupmates and all of these were female, but they were also all of 

mothers of higher rank than the groupmate to which they were aggressive. The high 

rates of infant mortality in this sample, and the fact that infants only direct 

aggression toward other infants combined to create a low rate of occurrence of 

infant aggression from which no real conclusions about sex differences can be 

drawn. Juveniles also show no sex difference in rates of overt aggression (Table 5-1, 

Figure 5-2), and this is not an artifact of poor sampling. 

 
TABLE 5-1. Model parameter estimates of overall rates of aggression directed 

by subadults. 

Age Variable Model Effect est SE DF t p 
INF Aggression random int 

LMEM 
INT 0.00 0.02 26 0.00 1.00 

  SEX 0.02 0.02 78 1.22 0.23 

JUV Aggression mean RP INT 0.14 0.05 7 3.13 0.02* 

      SEX 0.12 0.07 7 1.78 0.12 
INF = infant cohort; JUV = juvenile cohort; * p ≤ 0.05. All tables 
follow these conventions. 
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Fig. 5-1. Overall rates of aggression directed by infants toward others.  
 

 

Fig. 5-2. Overall rates of aggression directed by juveniles toward others. 
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Non-aggressive dominance 

Rates of supplanting others 

 While adult females supplant others more often than adult males do, neither 

infants nor juveniles exhibit this sex difference (Table 5-2, Figure 5-3, Figure 5-4). As 

with overt aggression, all seven instances of supplanting others were exhibited by 

female infants. In contrast to overt aggression, four different female infants 

supplanted others. Unfortunately, the pattern of surviving infants across groups left 

male infants in the sample with fewer age-mates than the female infants in the 

sample. Therefore, given that infants only supplant infants, a comparison of male 

and female infants may not be a fair one in this case. The juvenile analysis is not 

confounded by these sampling problems, but juveniles show no sex difference in 

rates of supplanting others (Table 5-2, Figure 5-4).  

 

TABLE 5-2. Model parameter estimates of rates of supplanting others by 
subadults. 

Age Variable Model Effect est SE DF t p 

INF Supplant mean RP INT 0.00 0.02 26 0.00 1.00 
SEX 0.04 0.02 26 1.62 0.12 

JUV Supplant random int 
LMEM  

INT 0.08 0.03 7 2.75 0.03* 
    SEX 0.03 0.04 83 0.78 0.44 

* p ≤ 0.05 
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Fig. 5-3. Overall rates of supplants of others by infants. 
 

 

Fig. 5-4. Overall rates of supplants of others by juveniles. 

 

Infant rates of Supplants of Others

Age

o
cc

u
rr

e
n

ce
s 

p
e

r 
h

o
u

r

Males

-2 0 2 4 6 8 10 12
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Females

-2 0 2 4 6 8 10 12

Juvenile rates of Supplants of Others

o
cc

u
rr

e
n

ce
s 

p
e

r 
h

o
u

r

Males

Sep
Oct

Nov
Dec

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Females

Sep
Oct

Nov
Dec

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Age (months) 



231 

Deviations from rates of supplanting juvenile females expected at random 

 While adult males supplant same-sex agemates more often than expected and 

adult females supplant opposite-sex agemates less often than expected, there is no 

evidence of subadult bias in distribution of supplanting behavior. However, these 

results are strongly constrained by the lack of choice in objects of subadult 

supplanting behavior. For infants, the particular distribution of surviving infants 

across groups resulted in their having no opportunity to choose the sex of the infant 

they supplanted, so analyses by sex were not performed. Juvenile females were in 

groups that offered them a choice between male and female age-mates, but juvenile 

males had no choice in the sex of juveniles available to them for supplanting (or any 

other behavioral interactions)—two males had only female peers available to them 

and the other two had only male peers. Given that juveniles do not supplant adults, 

choices of social partners available as targets of supplanting behavior were limited 

for juvenile males. In other words, the exhibition of a sex-bias on the part of juvenile 

males is constrained—the only way for juvenile males to exhibit a bias toward or 

away from supplanting peers would have been for them to bias their supplants away 

from or toward infants—to exhibit a cross age-group bias rather than just a within 

age-group sex bias. Nevertheless, juvenile females were not constrained thusly, and 

juveniles exhibited no sex differences the rates at which they biased their supplanting 

of juvenile females, juvenile males, or infants (Table 5-3). 
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TABLE 5-3. Model parameter estimates of deviations from expected juvenile 
rates of supplanting juveniles and infants. 

Age Variable Model Effect est SE DF t p 
JUV 
  

Dev 
Supplant JF 

random int 
LMEM 

INT 0.02 0.02 7 0.85 0.42 

SEX 0.02 0.03 83 0.69 0.49 

JUV Dev 
Supplant JM 

random int 
LMEM 

INT 0.01 0.01 7 1.01 0.35 

  SEX 0.01 0.02 83 0.31 0.76 

JUV Dev 
Supplant 
INFs 

random int 
LMEM 

INT 0.03 0.02 7 1.64 0.15 

  
SEX 0.00 0.02 83 -0.09 0.93 

 

SUMMARY – AGONISM 

There are no sex differences in intrinsic agonism before 24 months of age 

(Tables 5-4 and 5-5.). There are hints that female infants might be more agonistic 

toward other infants than infant males—a pattern very similar to that found by 

Gould [1990] at Berenty—but at present, the most reasonable conclusion is that 

these patterns are artifacts of small sample sizes of agonistic behaviors and are due 

more to individual differences than to sex differences. Juveniles exhibit no sex 

differences in agonism (Tables 5-4 and 5-5). In short, adult sex-differential patterns 

of agonism do not appear to have a subadult developmental component. 
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TABLE 5-4. Summary of sex differences in overall rates of agonism in 
subadults. 

Age Intrinsic Agonism Sex Difference Time effects 

INF Aggression � � � 
INF Supplant � � � 

JUV Aggression � � � 
JUV Supplant � � � 
Sex Difference: � no significant difference 
Time effects: � no effect 
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TABLE 5-5. Summary of sex differences in bias of agonism toward each 
partner age/sex class in subadults. 

Age Intrinsic Agonism bias Partner type Sex-typed bias Time effect 

INF Supplant bias JF n/a 
INF Supplant bias JM n/a 

INF Supplant bias INFs n/a 
JUV Supplant bias JF � � � � 
JUV Supplant bias JM � � � � 
JUV Supplant bias INFs � � � � 
For Sex-typed bias: � no significant difference from that expected at random 
For Time effects: � no effect              

 

AFFILIATION 

Grooming 

 Adult females bias their grooming time away from adult males. Since it is 

unclear whether a similar pattern in subadults would involve adult males or male 

peers, both were investigated. 

Subadult deviations from time spent grooming adult males expected at random 

 Infants do not bias their grooming away from adult males, although the best 

fit linear RP model indicates that there is a time*sex interaction, with infant females 

spending less of their grooming time on adult males as the observation year 

progresses (Table  5-6, Figure 5-5). However, by the end of the observation year, 

there was only one surviving infant male (Figures 5-3 and 5-4), so sex differences 

that are related to the timing of behavior throughout the year in this cohort are 

unreliable and should not be seriously considered. 

 Juveniles, on the other hand, show a clear sex difference in the distribution 

of their grooming time of adult males, with both fit models indicating that juvenile 
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females bias their grooming away from adult males significantly more than juvenile 

males do (Table 5-6, Figure 5-6).  

This sex difference justifies investigating juvenile patterns of grooming adult 

males by sex. Results from LMEM and RP models for each sex are not in complete 

agreement (Table 5-6). The random intercept LMEMs indicate that juvenile females 

groom adult males significantly less than expected at random but that juvenile males 

groom adult males at expected rates. In contrast, mean RP models suggest that 

juvenile females only tend to groom adult males less than expected at random, but 

that juvenile males groom adult males significantly less than expected random (Table 

5-6). As usual with conflicting results between the LMEM and RP models, I 

preferentially accept the LMEM results, because these analyses account for inter-

individual variation. Furthermore, a visual examination of the individual OLS 

regressions (Figure 5-7) supports the interpretation that, on average, juvenile females 

spend less time than expected grooming adult males but that juvenile males groom 

adult males as expected at random. 
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TABLE 5-6. Model parameter estimates of deviations from expected time 
spent grooming adult males by subadults. 

Age Variable Model Effect est. SE DF t p 

INF Dev 
Groom 
AM 

linear RP INT -0.02 0.01 28 -1.69 0.10† 
  TIME 0.00 0.01 77 0.33 0.74 

  SEX 0.01 0.02 28 0.77 0.45 

    TIME*SEX -0.05 0.01 77 -5.39 <.0001* 

JUV Dev 
Groom 
AM 

random int 
LMEM 

INT -0.05 0.08 7 -0.64 0.54 

SEX -0.40 0.12 83 -3.41 0.001* 

mean RP INT -0.17 0.04 7 -3.94 0.006* 

  SEX -0.25 0.06 7 -4.05 0.005* 

JF Dev 
Groom 
AM 

random int. 
LMEM 

INT -0.45 0.09 3 -5.27 0.01* 

mean RP INT -0.09 0.03 3 -2.78 0.07† 
JM Dev 
Groom 
AM 

random int. 
LMEM 

INT -0.05 0.08 4 -0.61 0.57 

mean RP INT -0.10 0.02 4 -5.12 0.007* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
 

 

Fig. 5-5. Deviations from expected time spent grooming adult males by infants.  
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Fig. 5-6. Deviations from expected time spent grooming adult males by juveniles. 

 

 

Fig. 5-7. Individual ordinary least squares regressions of deviations from expected 
time spent grooming adult males by juveniles.  
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Subadult deviations from time spent grooming juvenile females expected at random 

 Infants do not bias their grooming toward or away from juvenile females 

(Table 5-7, Figure 5-8), but juvenile females bias their grooming away from other 

juveniles females significantly more than juvenile males do (Table 5-7, Figure 5-9).  

This sex difference justifies investigating patterns of grooming juvenile females by 

sex. According to analyses by sex, juvenile females bias their grooming significantly 

away from juvenile females while juvenile males tend to bias their grooming away 

from juvenile females at the beginning of the observation year but tend to do less so 

as the observation year progresses (Table 5-7). It is important to note that although 

these analyses find statistically significant sex difference for this variable, the amount 

of bias found here is very, very small compared to the degree of negative grooming 

bias juvenile females exhibit toward adult males. In fact, they are comparable to the 

deviations from expected found in the following analysis of grooming juvenile males 

(Table 5-8), in which no significant differences were found. 

TABLE 5-7. Model parameter estimates of deviations from expected time 
spent grooming juvenile females by subadults. 

Age Variable Model Effect est. SE DF t p 

INF Dev 
Groom JF 

random int. 
LMEM 

INT -0.01 0.03 28 -0.50 0.62 

  SEX 0.04 0.04 79 1.20 0.24 

INF Dev 
Groom JF 

mean RP INT 0.00 0.00 28 -0.49 0.63 

    SEX 0.00 0.00 28 0.18 0.86 

JUV Dev 
Groom JF 

mean RP INT -0.02 0.01 7 -2.07 0.08† 
  SEX -0.03 0.01 7 -3.22 0.01* 

JF Dev 
Groom JF 

mean RP INT -0.02 0.00 3 -3.35 0.04* 

              

JM Dev 
Groom JF 

linear LMEM INT -0.06 0.02 4 -2.46 0.07† 
TIME 0.01 0.00 41 1.71 0.09† 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-8. Deviations from expected time spent grooming juvenile females by infants.  
 

 

Fig. 5-9. Deviations from expected time spent grooming juvenile females by other 
juveniles. 
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Subadult deviations from time spent grooming juvenile males expected at random 

 Infants show no significant sex difference in their bias in grooming juvenile 

males (Table 5-8, Figure 5-10). According to the best fit random intercept model, 

juveniles also show no significant sex difference in their bias in grooming juvenile 

males, but according to the best fit mean RP model, juvenile females more strongly 

bias their grooming away from juvenile males than juvenile males do (Table 5-8, 

Figure 5-11). As with most instances of disagreement between the LMEM and RP 

models, I preferentially accept the results of the LMEM because it partially accounts 

for inter-individual variation. An investigation of the individual OLS regressions for 

this variable (Figure 5-12) also does not support an interpretation that juvenile 

females, as a group, bias their grooming away from juvenile males more strongly than 

do juvenile males.  

 

TABLE 5-8. Model parameter estimates of deviations from expected time 
spent grooming juvenile males by subadults. 

Age Variable Model Effect est. SE DF t p 
INF Dev 

Groom 
JM 

mean RP INT 0.00 0.00 28 -2.23 0.03* 

    SEX 0.00 0.00 28 1.70 0.10† 

JUV Dev 
Groom 
JM 

random int. 
LMEM 

INT -0.04 0.03 7 -1.27 0.24 

SEX 0.01 0.04 83 0.26 0.80 
mean RP INT 0.00 0.01 7 -0.36 0.73 

  SEX -0.02 0.01 7 -3.40 0.01* 

* p ≤ 0.05 
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Fig. 5-10. Deviations from expected time spent grooming juvenile males by infants.  
 

 

Fig. 5-11. Deviations from expected time spent grooming juvenile males by other 
juveniles. 
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Fig. 5-12. Individual ordinary least squares regressions of deviations from expected 
time spent grooming juvenile males by other juveniles.  

 
 

Subadult deviations from time spent grooming infants expected at random 

 Adult females bias their grooming toward infants of young ages while adult 

males show no such bias. Infants show no clear sex difference in biasing their 

grooming toward or away from infants (Table 5-9, Figure 5-13). Juveniles exhibit a 

sex difference similar to the adult sex difference, with juvenile females biasing their 

grooming much more strongly toward infants than juvenile males do (Table 5-9, 

Figure 5-14). Analyses by sex indicate that juvenile females bias their grooming 

significantly toward infants while juvenile males bias their grooming time 

significantly away from infants (Table 5-9).  
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TABLE 5-9. Model parameter estimates of deviations from expected time 
spent grooming infants by subadults. 

Age Variable Model Effect est. SE DF t p 

INF Dev 
Groom 
INFs 

mean RP INT 0.00 0.00 28 0.28 0.78 

    SEX -0.01 0.00 28 -1.64 0.11 

JUV Dev 
Groom 
INFs 

mean RP INT -0.05 0.03 7 -1.69 0.14 

  SEX 0.10 0.04 7 2.50 0.04* 

JF Dev 
Groom 
INFs 

mean RP INT 0.22 0.03 3 7.01 0.006* 

JM Dev 
Groom 
INFs 

mean RP INT -0.04 0.01 4 -2.78 0.05* 

* p ≤ 0.05 

 

 

Fig. 5-13. Deviations from expected time spent grooming infants by other infants.  
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Fig. 5-14. Deviations from expected time spent grooming infants by juveniles. 

Summary – Affiliation 

 Infants do not exhibit any clear sex differences in the rates at which they 
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 Juveniles, on the other hand, exhibit clear sex differences in grooming 

behavior that echo those seen in adults. Like adult females, juvenile females spend 

less time than expected at random grooming adult males and more time than 

expected grooming infants, with no other strong or clear biases in grooming 

behavior toward or away from other age/sex classes (Tables 5-10, 5-11). Also as in 

adults, whether or not juveniles exhibit a sex difference in overall time spent 

grooming is unclear (Table 5-12, Figure 5-15), but any sex difference in total time 

spent grooming is probably driven largely by the sex difference in time spent 

grooming infants. 

 
TABLE 5-10. Summary of sex differences in overall rates of affiliation in 

subadults. 

Age 
Intrinsic affiliative 
behavior 

Sex 
Difference Time effects 

INF Grooming overall � � � 
JUV Grooming overall ♀ + ? � � 
Sex difference: + significantly greater   
                        ?  equivocal result 
                        �  no difference 
Time effects:    �  no effect              
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TABLE 5-11. Summary of sex differences in bias of affiliation toward each 
partner age/sex class in subadults. 

Intrinsic 
affiliative bias Age Partner type Sex-typed bias Time effect 

Grooming 

INF 

AM � � ♀ – ? 

JF � � � � 

JM � � � � 

INFs � � � � 

JUV 
AM ♀ – � � � 

INFs ♀ + ♂ – � � 
Sex-typed bias: + significantly more than expected at random  
                         – significantly less than expected at random 
                         �  no difference from expected at random  
Time effects: – decrease with time 
                      ?  equivocal result 
                      �  no effect 
 

 

TABLE 5-12. Model parameter estimates of total time spent grooming by 
juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Groom  

random int. 
LMEM 

INT 0.96 0.23 7 4.12 0.004* 

SEX 0.56 0.33 83 1.67 0.10† 
mean RP INT 0.42 0.13 7 3.29 0.01* 

SEX 0.42 0.18 7 2.35 0.05* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-15. Overall time spent grooming by juveniles. 
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considered, because the infant male sample is so small after the first quadrant of the 

observation year.   

Infant proximity patterns are strongly marked by temporal trends related to 

maturation in which infants have fewer neighbors in contact and within reach (but 

not within 3m) as time progresses, but slightly more, again, in contact toward the end 

of the observation year. In other words, infants become less cohesive through time 

overall, as one would expect, and resembling the temporal pattern of reduced 

cohesion exhibited by adult females throughout the observation year. 

 Juvenile contact patterns are also marked by temporal trends in which 

juveniles seem to have more neighbors in contact at the beginning of the observation 

year, fewer in the middle, and more at the end of the observation year, but there are 

no significant temporal trends in the number of neighbors at other proximities 

(Table 5-13). 
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TABLE 5-13. Model parameter estimates of number of neighbors in proximity 
to subadults. 

Age Variable Model Effect est. SE DF t p 

INF 
# 
neighbors 
in contact 

random 
int. 
LMEM 

INT 0.71 0.09 25 8.34 <.0001* 

SEX -0.10 0.12 78 -0.87 0.39 

quadratic 
RP 

INT 1.08 0.07 25 15.20 <.0001* 

SEX -0.12 0.09 25 -1.27 0.21 

TIME -0.30 0.05 74 -6.32 <.0001* 

TIME2 0.03 0.01 74 4.83 <.0001* 

SEX*TIME 0.07 0.06 74 1.17 0.24 

SEX*TIME2 -0.01 0.01 74 -1.47 0.15 

JUV 
# 
neighbors 
in contact 

quadratic 
LMEM 

INT 0.36 0.08 7 4.77 0.002* 

SEX 0.13 0.11 73 1.25 0.22 

TIME -0.09 0.03 6 -3.57 0.01* 

TIME2 0.01 0.00 73 3.46 0.0009* 

SEX*TIME -0.02 0.04 73 -0.50 0.62 

SEX*TIME2 0.00 0.00 73 0.63 0.53 

mean RP INT 0.06 0.03 7 2.09 0.08† 
SEX -0.02 0.04 7 -0.45 0.66 

INF 
# 
neighbors 
in reach 

random 
int. 
LMEM 

INT 0.61 0.08 25 7.73 <.0001* 

SEX -0.15 0.11 78 -1.38 0.17 

linear RP INT 0.62 0.09 25 7.23 <.0001* 

TIME -0.06 0.01 76 -4.69 <.0001* 

SEX -0.15 0.11 25 -1.36 0.19 

TIME*SEX 0.03 0.02 76 1.70 0.09† 

JUV 
# 
neighbors 
in reach 

random 
int. 
LMEM 

INT 0.21 0.04 7 5.78 0.0007* 

SEX 0.09 0.05 83 1.78 0.08† 

mean RP INT 0.06 0.02 7 2.59 0.04* 

SEX 0.05 0.03 7 1.71 0.13 

INF 
# 
neighbors 
in 3m 

mean RP INT 2.76 0.18 25 15.48 <.0001* 

SEX -0.03 0.23 25 -0.14 0.89 

JUV 
# 
neighbors 
in 3m 

random 
int. 
LMEM 

INT 2.49 0.17 7 14.32 <.0001* 

SEX 0.13 0.25 83 0.54 0.59 

mean RP INT 1.28 0.26 7 4.86 0.002* 

SEX -0.11 0.38 7 -0.29 0.78 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 



250 

 

 

Fig. 5-16. Average number of neighbors in contact with infants per scan.  
 

 

Fig. 5-17. Average number of neighbors in contact with juveniles per scan. 
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Fig. 5-18. Average number of neighbors within reach of infants per scan.  
 

. 

Fig. 5-19. Average number of neighbors within reach of juveniles per scan. 
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Fig. 5-20. Individual ordinary least squares regressions of number of individuals 
within reach of juveniles per scan. 

 

 

Fig. 5-21. Average number of neighbors within 3 meters of infants per scan.  
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Fig. 5-22. Average number of neighbors within 3 meters of juveniles per scan. 

Average number of scans per hour in proximity – contact, within reach, within 3m, within 5m 
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observation year. As with the number of neighbors at different proximity levels, 

above, there are significant temporal trends in the amount of time spent in proximity 

to others. As the observation year progresses, infants spend significantly less time in 

proximity to others at all distances, and juveniles spend significantly less time in 

contact with, within reach of, and within 3m of others. These patterns in infants and 

juveniles resemble adult female temporal proximity patterns and not those of adult 

males. 
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TABLE 5-14. Model parameter estimates of time in proximity to others for 
subadults. 

 
Age Variable Model Effect est. SE DF t p 

INF Time in 
contact 

random 
int. 
LMEM 

INT 12.79 1.58 25 8.11 <.0001* 

SEX -0.76 2.15 78 -0.35 0.72 

quadratic 
RP  

INT 19.05 0.41 25 46.41 <.0001* 

SEX 0.54 0.54 25 0.99 0.33 

TIME -4.71 0.41 74 -11.59 <.0001* 

TIME2 0.34 0.04 74 8.37 <.0001* 

SEX*TIME -0.50 0.52 74 -0.95 0.34 

SEX*TIME2 0.02 0.05 74 0.38 0.70 

JUV Time in 
contact 

random 
int. 
LMEM 

INT 2.84 0.51 7 5.54 0.0009* 

SEX 1.35 0.73 83 1.84 0.07† 

quadratic 
RP  

INT 5.81 0.99 7 5.88 0.0006* 

SEX 1.55 1.38 7 1.12 0.30 

TIME -1.46 0.36 79 -4.01 0.0001* 

TIME2 0.12 0.03 79 3.88 0.0002* 

SEX*TIME -0.02 0.50 79 -0.03 0.97 

SEX*TIME2 0.00 0.04 79 -0.06 0.96 

INF Time in 
reach 

quadratic 
LMEM 

INT 8.87 0.76 25 11.74 <.0001* 

SEX -0.87 1.02 58 -0.86 0.39 

TIME -1.91 0.38 16 -4.97 0.0001* 

TIME2 0.13 0.04 58 3.21 0.002* 

SEX*TIME 0.91 0.47 58 1.95 0.06† 
SEX*TIME2 -0.08 0.05 58 -1.57 0.12 

linear RP INT 8.07 0.72 25 11.26 <.0001* 

TIME -0.73 0.18 76 -4.07 0.0001* 

SEX -0.58 0.97 25 -0.60 0.56 

TIME*SEX 0.25 0.23 76 1.09 0.28 

JUV Time in 
reach 

linear RP INT 4.77 0.51 7 9.40 <.0001* 

TIME -0.32 0.06 81 -5.13 <.0001* 

SEX 0.84 0.72 7 1.17 0.28 

TIME*SEX 0.02 0.09 81 0.28 0.78 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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TABLE 5-14. Continued. 

   
     

Age Variable Model Effect est. SE DF t p 

INF Time in 
3m  

random 
int. 
LMEM 

INT 15.35 0.32 25 48.28 <.0001* 
SEX 0.78 0.41 78 1.92 0.06† 

mean RP INT 15.36 0.40 25 37.94 <.0001* 

SEX 0.83 0.53 25 1.56 0.13 

JUV Time in 
3m 

linear RP INT 15.73 0.40 7 39.02 <.0001* 

SEX 0.48 0.58 7 0.84 0.43 

INF Time 
in 
5m 

random int. 
LMEM 

INT 19.63 0.16 25 120.80 <.0001* 

SEX 0.04 0.22 78 0.19 0.85 

linear RP INT 19.98 0.18 25 114.06 <.0001* 

TIME -0.15 0.04 76 -3.55 0.0007* 

SEX -0.01 0.23 25 -0.06 0.95 

TIME*SEX 0.05 0.05 76 0.91 0.37 

JUV Time 
in 
5m 

random int. 
LMEM 

INT 18.52 0.22 7 83.03 <.0001* 

SEX 0.28 0.32 83 0.87 0.39 

linear RP INT 18.96 0.18 7 105.82 <.0001* 

SEX 0.04 0.26 7 0.15 0.88 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-23. Average infant time in contact with others.  
 

 

Fig. 5-24. Average juvenile time in contact with others. 
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Fig. 5-25. Average infant time within reach of others.  
 

 

Fig. 5-26. Average juvenile time within reach of others. 
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Fig. 5-27. Average infant time within 3m of others.  
 

 

Fig. 5-28. Average juvenile time within 3m of others. 
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Fig. 5-29. Average infant time within 5m of others.  
 

 

Fig. 5-30. Average juvenile time within 5m of others. 
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Subadult deviations from time spent in proximity to other age/sex classes expected at random  

In general, where adults show sex differences in biases of time spent in 

proximity to peers, they show a bias toward proximity with same-sex peers at the 

beginning of the observation year and less bias toward same-sex peers as the year 

progresses.  With regard to juveniles and infants, adult females bias their contact time 

more strongly away from juvenile males than adult males do, and adult males spend 

more time within 3m of juvenile males than expected at random throughout the year, 

while adult females show a temporal trend of increasing allocation of their time 

within 3m of others to juvenile males as time progresses. Adult males also 

significantly bias their contact time strongly away from infants while adult females do 

not. 

Among infants, there are very few sex differences in proximity biases. The 

best fit RP model suggests that infant females spend less of their contact time with 

adult females than infants males do (Table 5-15), and this is supported by a 

qualitative examination of the scatterplot of the infant data at early ages (Figure 5-

31). However, the best fit random intercepts LMEM does not find a significant sex 

difference (Table 5-15), perhaps because, at later ages, infant females appear to spend 

more of their contact time with adult females than infant males do (Fig. 5-31).  

Infant females may also tend to spend more of their time within 3m of others with 

adult females than infant males do (Table 5-15, Figure 5-32), and individual OLS 

regressions indicate that this effect is not only due to the one unusual male infant 

(Fig. 5-33).  Infants exhibit no sex difference in the amount of their time in 

proximity to others spent with any other age/sex class at any distance (Tables 5-16 

through 5-19). 
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It is worth noting that infants are less in control of their own proximity at 

early ages as they are at later ones. Infants do not begin feeding on their own until at 

least 6 weeks of age. Given the sampling issues in this cohort and the changes this 

cohort undergoes in controlling its use of space, it may be more appropriate, in 

future, to analyze 0-2 month old infants and 3-11 month old infants separately. In 

general, though, there is almost no evidence for infant sex differences in proximity to 

other age/sex classes, and all potential sex differences are limited to proximity to 

adult females.  

TABLE 5-15. Model parameter estimates of deviations from expected time 
spent in proximity to adult females by infants. 

Age Variable Model Effect est. SE DF t p 

INF Dev 
Time in 
contact 
AF 

random 
int. 
LMEM 

INT -2.84 0.45 25 -6.37 <.0001* 

SEX -0.42 0.60 78 -0.69 0.49 

quadratic 
RP  

INT -4.20 0.35 25 -12.15 <.0001* 

SEX -1.16 0.46 25 -2.54 0.02* 

TIME 1.16 0.23 74 5.05 <.0001* 

TIME2 -0.10 0.03 74 -3.70 0.0004* 

SEX*TIME 0.10 0.29 74 0.35 0.73 

SEX*TIME2 0.02 0.03 74 0.53 0.60 

INF Dev 
Time in 
reach 
AF 

random 
int. 
LMEM 

INT 0.52 0.36 25 1.44 0.16 

SEX -0.33 0.49 78 -0.68 0.50 

linear RP INT 1.14 0.43 25 2.64 0.01* 

TIME -0.26 0.11 76 -2.41 0.02* 

SEX -0.78 0.58 25 -1.33 0.20 

TIME*SEX 0.24 0.14 76 1.75 0.08† 
INF Dev 

Time in 
3m AF 

random 
int. 
LMEM 

INT 4.40 0.55 25 8.06 <.0001* 

SEX 1.36 0.70 78 1.94 0.06† 

linear RP INT 5.77 0.86 25 6.74 <.0001* 

TIME -0.41 0.20 76 -2.05 0.04* 

SEX -0.19 1.13 25 -0.17 0.87 

TIME*SEX 0.46 0.25 76 1.85 0.07† 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-31. Deviations from expected time in contact with adult females by infants.  
 

 

Fig. 5-32. Deviations from expected time in 3m of adult females by infants.  
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Fig. 5-33. Individual OLS regressions of deviations from expected time in 3m of 
adult females by infants.  
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TABLE 5-16. Model parameter estimates of deviations from expected time in 
proximity to adult males by infants. 

Age Var. Model Effect est. SE DF t p 

INF Dev 
Time in 
contact 
AM 

quad. 
LMEM 

INT -7.33 0.47 25 -15.58 <.0001* 

SEX -0.29 0.63 58 -0.46 0.64 

TIME 2.15 0.25 16 8.62 <.0001* 

TIME2 -0.18 0.03 58 -6.18 <.0001* 

SEX*TIME -0.09 0.31 58 -0.31 0.76 

SEX*TIME
2 

0.03 0.03 58 0.89 0.37 

INF Dev 
Time in 
reach 
AM 

random 
int. 
LMEM 

INT -3.59 0.72 25 -4.96 <.0001* 

SEX 0.49 0.99 78 0.49 0.62 

linear 
RP 

INT -2.52 0.51 25 -4.96 <.0001* 

TIME 0.36 0.07 76 4.93 <.0001* 

SEX 0.67 0.64 25 1.05 0.30 

TIME*SEX -0.28 0.09 76 -3.10 0.003* 

INF Dev 
Time in 
3m AM 

random 
int. 
LMEM 

INT -9.36 1.23 25 -7.60 <.0001* 

SEX 0.00 1.67 78 0.00 1.00 

linear 
RP 

INT -10.29 1.35 25 -7.64 <.0001* 

TIME 0.45 0.29 76 1.57 0.12 

SEX 2.11 1.81 25 1.17 0.25 

TIME*SEX -0.90 0.35 76 -2.61 0.01* 

* p ≤ 0.05 
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TABLE 5-17. Model parameter estimates of deviations from expected time 
spent in proximity to juvenile females by infants. 

Age Var Model Effect est. SE DF t p 

INF Dev 
Time in 
contact 
JF 

quad. 
LMEM 

INT -0.64 0.24 25 -2.65 0.01* 

SEX -0.09 0.33 58 -0.28 0.78 

TIME 0.17 0.10 16 1.62 0.13 

TIME2 -0.01 0.01 58 -1.00 0.32 

SEX*TIME 0.10 0.13 58 0.80 0.43 

SEX*TIME2 -0.01 0.01 58 -0.70 0.49 

INF Dev 
Time in 
reach JF 

random 
int. 
LMEM 

INT 0.46 0.22 25 2.08 0.05* 

SEX -0.24 0.30 78 -0.80 0.43 

mean RP INT 0.14 0.11 25 1.18 0.25 

SEX -0.14 0.15 25 -0.95 0.35 

INF Dev 
Time in 
3m JF 

random 
int. 
LMEM 

INT 0.98 0.48 25 2.05 0.05* 

SEX -0.28 0.65 78 -0.44 0.66 

mean RP INT 0.69 0.42 25 1.65 0.11 

SEX -0.63 0.56 25 -1.12 0.27 

* p ≤ 0.05 
 

TABLE 5-18. Model parameter estimates of deviations from expected time 
spent in proximity to juvenile males by infants. 

Age Variable Model Effect est. SE DF t p 

INF Dev 
Time in 
contact 
JM 

random 
int. 
LMEM 

INT -0.42 0.15 25 -2.73 0.01* 

SEX -0.07 0.21 78 -0.32 0.75 

linear RP INT -0.60 0.19 25 -3.21 0.004* 

TIME 0.07 0.05 76 1.60 0.11 

SEX -0.19 0.26 25 -0.72 0.48 

TIME*SEX 0.03 0.06 76 0.48 0.63 

INF Dev 
Time in 
reach 
JM 

random 
int. 
LMEM 

INT -0.19 0.08 25 -2.37 0.03* 

SEX 0.08 0.11 78 0.72 0.47 

mean RP INT -0.10 0.06 25 -1.71 0.10† 
SEX 0.02 0.07 25 0.30 0.77 

INF Dev 
Time in 
3m JM 

mean RP INT 0.32 0.32 25 0.99 0.33 

SEX 0.35 0.41 25 0.85 0.41 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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TABLE 5-19. Model parameter estimates of deviations from expected time 
spent in proximity to infants by infants. 

Age Var. Model Effect est. SE DF t p 

INF Dev 
Time 
in 
contact 
Infants 

random 
int. 
LMEM 

INT -1.96 0.39 25 -5.01 <.0001* 

SEX 0.82 0.53 78 1.53 0.13 

mean 
RP 

INT -0.04 0.05 25 -0.71 0.49 

SEX -0.01 0.07 25 -0.16 0.88 

INF Dev 
Time 
in 
reach 
Infants 

random 
int. 
LMEM 

INT 2.19 0.77 25 2.86 0.009* 

SEX 0.09 1.06 78 0.08 0.93 

mean 
RP 

INT 0.00 0.04 25 0.05 0.96 

SEX 0.06 0.05 25 1.13 0.27 

INF Dev 
Time 
in 3m 
Infants 

quad. 
LMEM 

INT 4.84 1.13 25 4.28 0.0002* 

SEX -0.83 1.55 58 -0.53 0.60 

TIME -0.62 0.39 16 -1.59 0.13 

TIME2 0.02 0.04 58 0.38 0.70 

SEX*TIME -0.21 0.47 58 -0.44 0.66 

SEX*TIME2 0.04 0.05 58 0.83 0.41 

quad. 
RP  

INT 4.38 0.90 25 4.89 <.0001* 

SEX -1.50 1.19 25 -1.26 0.22 

TIME -1.17 0.31 74 -3.75 0.0004* 

TIME2 0.08 0.03 74 2.72 0.008* 

SEX*TIME 0.34 0.39 74 0.86 0.39 

SEX*TIME2 -0.02 0.04 74 -0.60 0.55 

* p ≤ 0.05 
 

In contrast, juveniles exhibit a number of sex differences in how they allocate 

their time in proximity to others. Juvenile females tend to spend more of their time 

within 3m of others with adult females than do juvenile males (Table 5-20). Analyses 

by sex indicate that both sexes significantly bias their time spent within 3m of others 

toward adult females, but that juvenile females simply allocate more of their time 

within 3m of others to adult females than juvenile males do (Table 5-20). 

Additionally, according to the best fit models by sex, juvenile females spend 
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significantly less of their time within 3m of others toward adult females as the 

observation year progresses (or at the very least, they tend to) while juvenile males 

show no change through time (Table 5-20, Figure 5-34). 

 

TABLE 5-20. Model parameter estimates of deviations from expected time 
spent in proximity to adult females by juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Dev 
Time in 
contact 
AF 

random 
int. 
LMEM 

INT -0.48 0.20 7 -2.42 0.05* 

SEX 0.11 0.28 83 0.38 0.70 

mean RP INT -0.43 0.15 7 -2.94 0.02* 

SEX 0.11 0.21 7 0.50 0.63 

JUV Dev 
Time in 
reach 
AF 

mean RP INT -0.29 0.12 7 -2.39 0.05* 

SEX 0.14 0.17 7 0.84 0.43 

JUV Dev 
Time in 
3m AF 

random 
int. 
LMEM 

INT 3.20 0.79 7 4.03 0.005* 

SEX 2.07 1.14 83 1.81 0.07† 

linear RP INT 3.32 1.26 7 2.64 0.03* 

TIME 0.00 0.19 81 -0.01 0.99 

SEX 3.74 1.78 7 2.10 0.07† 
TIME*SEX -0.36 0.27 81 -1.30 0.20 

JF Dev 
Time in 
3m AF 

linear 
LMEM 

INT 7.33 1.24 3 5.91 0.01* 

TIME -0.40 0.14 40 -2.81 0.008* 

linear RP INT 6.93 1.47 3 4.70 0.02* 

TIME -0.33 0.23 40 -1.45 0.15 

JM Dev 
Time in 
3m AF 

random 
int. 
LMEM 

INT 3.25 0.51 4 6.42 0.003* 

mean RP INT 3.29 0.57 4 5.73 0.005* 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-34. Deviations from time expected within 3m of adult females for juveniles 
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females, but not males, allot more of their time within 3m of others to adult males as 

the observation year progresses (Table 5-21). 

 

TABLE 5-21. Model parameter estimates of deviations from expected 
time spent in proximity to adult males by juveniles. 

 
Age Var. Model Effect est. SE DF t p 

JUV Dev 
Time in 
contact 
AM 

random 
int. 
LMEM 

INT -0.23 0.34 7 -0.69 0.51 

SEX -1.29 0.48 83 -2.68 0.009* 

mean RP INT -0.53 0.24 7 -2.27 0.06† 
SEX -0.09 0.33 7 -0.27 0.80 

JF Dev 
Time in 
contact 
AM 

random 
int. 
LMEM 

INT -1.52 0.40 3 -3.78 0.03* 

mean RP INT -1.53 0.47 3 -3.26 0.05* 

JM Dev 
Time in 
contact 
AM 

random 
int. 
LMEM 

INT -0.23 0.27 4 -0.85 0.45 

mean RP INT -0.53 0.09 4 -5.60 0.005* 

JUV Dev 
Time in 
reach 
AM 

random 
int. 
LMEM 

INT -0.39 0.29 7 -1.35 0.22 

SEX -1.14 0.41 83 -2.77 0.007* 

linear RP INT -0.59 0.43 7 -1.36 0.22 

TIME 0.05 0.05 81 1.03 0.30 

SEX -1.72 0.61 7 -2.79 0.03* 

TIME*SEX 0.11 0.07 81 1.53 0.13 

JF Dev 
Time in 
reach 
AM 

random 
int. 
LMEM 

INT -2.68 0.47 3 -5.70 0.01* 

TIME 0.23 0.07 40 3.29 0.002* 

linear RP INT -0.41 0.19 4 -2.15 0.10† 
JM Dev 
Time in 
reach 
AM 

random 
int. 
LMEM 

INT -0.86 0.30 4 -2.84 0.05* 

TIME 0.09 0.04 41 2.02 0.05* 

linear RP INT -2.69 0.58 3 -4.64 0.02* 

TIME 0.24 0.09 40 2.60 0.01* 
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TABLE 5-21. Continued 

JUV Dev 
Time in 
3m AM 

random 
int. LMEM 

INT -6.62 1.05 7 -6.32 0.0004* 

SEX -4.16 1.50 83 -2.77 0.007* 

linear RP INT -5.30 1.63 7 -3.26 0.01* 

TIME -0.23 0.21 81 -1.13 0.26 

SEX -7.46 2.31 7 -3.22 0.01* 

TIME*SEX 0.62 0.30 81 2.07 0.04* 

JF Dev 
Time in 
3M AM 

random 
int. LMEM 

INT -
12.75 

1.82 3 -7.02 0.006* 

TIME 0.38 0.22 40 1.70 0.10† 
linear RP INT -

12.75 
1.99 3 -6.40 0.008* 

TIME 0.38 0.23 40 1.66 0.10† 
JM Dev 
Time in 
3M AM 

linear RP INT -5.24 1.47 4 -3.58 0.02* 

TIME -0.25 0.22 41 -1.12 0.27 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
 

 

Fig. 5-35. Deviations from expected time in contact with adult males for juveniles. 
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Fig. 5-36. Deviations from expected time within reach of adult males for juveniles. 

 

Fig. 5-37. Deviations from expected time within 3m of adult males for juveniles. 
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There are no sex differences in how much of their contact time or time 

within 3m juveniles spend with infants, but the best fit random intercepts LMEM 

suggests that juvenile females bias the time they spend within reach of others more 

strongly toward infants than do juvenile males (Table 5-22, Figure 5-38). In contrast, 

the best fit mean RP model finds no sex difference (Table 5-22). A qualitative 

examination of the individual OLS regressions suggests that, on average, juvenile 

females do spend more of their time within reach of others with infants than juvenile 

males do (Fig. 5-39). Analyses by sex find that juvenile males spend time within reach 

of infants expected at random (Table 5-22). The best fit linear LMEM finds that 

juvenile females spend more time than expected at random in reach of infants at the 

beginning of the year, but less as the year progresses, but the best fit mean RP model 

finds no difference from random expectation (Table 5-22). Therefore, I conclude 

that if juvenile females bias their time in proximity to others toward infants, it is 

limited to the distance of being within reach. 
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TABLE 5-22. Model parameter estimates of deviations from expected time 
spent in proximity to infants by juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Dev 
Time in 
contact 
Infants 

random int. 
LMEM 

INT -0.12 0.22 7 -0.54 0.61 

SEX 0.33 0.32 83 1.03 0.31 

mean RP INT -0.06 0.07 7 -0.86 0.42 

SEX -0.10 0.11 7 -0.92 0.39 

JUV Dev 
Time in 
reach 
Infants 

random int. 
LMEM 

INT 0.17 0.30 7 0.56 0.59 

SEX 1.03 0.43 83 2.43 0.02* 

mean RP INT -0.11 0.06 7 -1.87 0.10† 
SEX 0.08 0.09 7 0.83 0.44 

JF Dev 
Time in 
reach 
Infants 

linear 
LMEM 

INT 2.01 0.47 3 4.32 0.02* 

TIME -0.16 0.06 40 -2.47 0.02* 

mean RP INT -0.14 0.08 3 -1.78 0.17 

JM Dev 
Time in 
reach 
Infants 

random int. 
LMEM 

INT 0.16 0.21 4 0.77 0.49 

mean RP INT 0.15 0.23 4 0.65 0.55 

JUV Dev 
Time in 
3m 
Infants 

random int. 
LMEM 

INT 1.48 0.46 7 3.19 0.02* 

SEX 0.82 0.67 83 1.23 0.22 

mean RP INT 1.54 0.40 7 3.85 0.006* 

SEX 0.03 0.58 7 0.04 0.97 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-38. Deviations from expected time within reach of infants for juveniles. 

 

 

Fig. 5-39. Individuals OLS regressions of deviations from expected time within reach 
of infants for juveniles.  

Juvenile deviations from scans within Reach of Infants expected at random

sc
a

n
s 

p
e

r 
h

o
u

r

Males

Sep
Oct

Nov
Dec

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

-2

0

2

4

6

8

10

Females

Sep
Oct

Nov
Dec

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Individual Juvenile deviations from scans within Reach of Infants expected at random 
 

   Males           Females 

sc
an

s 
pe

r 
ho

ur
 

    Sep    Nov     Jan     Mar     May    Jul           Sep    Nov     Jan     Mar    May     Jul 
 

         Oct     Dec     Feb     Apr     Jun     Aug          Oct     Dec     Feb     Apr     Jun     Aug 



276 

With respect to juvenile peers, the picture is even less clear, due to sampling 

issues. Due to the particular distribution of juveniles across study groups, only two 

juvenile males had access to juvenile females as social partners. Furthermore, in the 

fourth quarter of the observation year, only two juvenile females had access to 

another juvenile female. Similarly, only two juvenile males had access to another 

juvenile male throughout the year. As a result, any trends and significant differences 

in time spent in proximity to other juveniles are based on extremely small samples.  

That said, with respect to time spent in proximity to juvenile females, the 

best fit quadratic LMEM suggests that there may be sex-differential tendencies in 

time spent in proximity to juvenile females in which juvenile females spend less of 

their contact time with juvenile females than juvenile males do, but more of it as time 

progresses (Table 5-23, Figure 5-40). However, the best fit mean RP model finds no 

overall difference across the year. With respect to time spent in proximity to juvenile 

males, the best fit LMEMs (which, in these cases, were the best fitting models 

overall) suggest that juvenile females bias their contact time away from juvenile males 

more than juvenile males do (Table 5-23, Figure 5-41) and but bias their time within 

3m of others toward juvenile males than juvenile males do (Table 5-23, Figure 5-42). 

Notably, the effect sizes for these findings of trends and significant sex differences 

are smaller than those for measures of proximity to both infants and adults (Tables 

5-22 through 5-21), and much smaller than measures of proximity to adults (Tables 

5-20 and 5-21). Therefore, because the apparent sex differences are slight and are 

based on very small samples, I conclude that there is no strong evidence for sex-

differential patterns of proximity to juveniles among other juveniles. There are no 
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unequivocal temporal patterns in the allocation of time in proximity to other 

juveniles throughout the observation year. 
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TABLE 5-23. Model parameter estimates of deviations from expected time 
spent in proximity to juveniles by juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Dev 
Time in 
contact 
JF 

quadratic 
LMEM 

INT 0.59 0.29 7 2.06 0.08† 
SEX -0.80 0.41 73 -1.94 0.06† 
TIME -0.25 0.10 6 -2.61 0.04* 

TIME2 0.02 0.01 73 2.77 0.007* 

SEX*TIME 0.22 0.13 73 1.66 0.10† 
SEX*TIME2 -0.01 0.01 73 -1.15 0.26 

mean RP INT -0.02 0.05 7 -0.33 0.75 

SEX 0.01 0.08 7 0.12 0.91 

JUV Dev 
Time in 
reach 
JF 

mean RP INT -0.04 0.03 7 -1.36 0.22 

SEX -0.09 0.05 7 -1.82 0.11 

JUV Dev 
Time in 
3m JF 

random 
int. 
LMEM 

INT 0.65 0.31 7 2.08 0.08† 
SEX 0.46 0.45 83 1.03 0.31 

mean RP INT 0.64 0.36 7 1.79 0.12 

SEX 0.47 0.51 7 0.93 0.38 

JUV Dev 
Time in 
contact 
JM 

quadratic 
LMEM 

INT 0.09 0.16 7 0.58 0.58 

SEX -0.46 0.22 73 -2.07 0.04* 

TIME 0.00 0.05 6 0.03 0.98 

TIME2 0.00 0.00 73 -0.65 0.52 

SEX*TIME 0.10 0.07 73 1.38 0.17 

SEX*TIME2 -0.01 0.01 73 -1.05 0.30 

JUV Dev 
Time in 
reach 
JM 

random 
int. 
LMEM 

INT 0.09 0.08 7 1.06 0.32 

SEX -0.18 0.12 83 -1.55 0.13 

mean RP INT -0.02 0.04 7 -0.35 0.74 

SEX -0.09 0.06 7 -1.43 0.20 

JUV Dev 
Time in 
3m JM 

random 
int. 
LMEM 

INT 0.48 0.27 7 1.77 0.12 

SEX 0.82 0.39 83 2.09 0.04* 

INT 0.29 0.22 7 1.32 0.23 

SEX 0.25 0.31 7 0.79 0.46 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 5-40. Deviations from expected time in contact with juvenile females for 
juveniles. 

 

 

Fig. 5-41. Deviations from expected time in contact with juvenile males for juveniles. 
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Figure 5-42. Deviations from expected time in contact with juvenile males for 
juveniles. 

 

Summary – Proximity Patterns 
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TABLE 5-24. Summary of sex differences in global proximity measures in 
subadults. 

Age Intrinsic affiliation 
Sex 
Difference Time effects 

fINF 

Total # neighbors in contact � ♀ ᴜ ♂ ᴜ 

Total # neighbors in reach � ♀ – ♂ – 
Total # neighbors in 3m � � � 
Time in contact with others � ♀ ᴜ ♂ ᴜ 
Time in reach of others � ♀ ᴜ ♂ ᴜ 

Time in 3m of others � � � 
Time in 5m of others � ♀ – ♂ – 

JUV 

Total # neighbors in contact � ♀ ᴜ ♂ ᴜ 

Total # neighbors in reach � � � 

Total # neighbors in 3m � � � 

Time in contact with others � ♀ ᴜ ♂ ᴜ 

Time in reach of others � ♀ – ♂ – 

Time in 3m of others � � � 

Time in 5m of others � � � 
Sex difference: �  no difference 
Time effects: – decrease with time 
                        ᴜ quadratic effect ( decrease with time, increase with  
                         time2 ) 
                      �  no effect              
 
 
Infants exhibit no convincing sex differences in their proximity patterns to 

particular age/sex classes at these sample sizes (Table 5-25). In contrast, some sex 

differences in proximity patterns to particular age/sex classes are well-established by 

the ages of 12-13 months (Table 5-25).  

Juvenile sex differences are largely limited to patterns of proximity to adults 

in which each sex biases its time in proximity to others more strongly toward same-

sex adults than the other. Both sexes of juveniles bias their time within 3m of others 

toward adult females, but juvenile females tend to do so more strongly (Table 5-25).  
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Furthermore, the pattern of bias toward adult females is attenuated through 

time for juvenile females but remains constant for juvenile males. This is similar to 

the adult sex-differential pattern in which adult females bias their time within 3m of 

others toward adult females at the beginning of the observation year, but less so as 

the year progresses while adult males show no temporal change. It is dissimilar to the 

adult pattern in that juveniles of both sexes bias their time within 3m of others more 

heavily toward adult females than do adults (Fig. 5-43), such that even though 

juvenile males spend less of their time within 3m of adult females than juvenile 

females do, they still spend more of it with adult females than expected at random, 

while adult males spend time within 3m of adult females as expected at random.  

The juvenile pattern is also dissimilar to the adult pattern in that juvenile 

females do not spend more of their time in contact to adult females than do juvenile 

males. The matrilineal relationships of adults older than four years of age in this 

sample are not well-known. As such, it is possible that adult females who were 

spending more time in contact with other adult females were actually spending time 

in contact with their own mothers, and that this pattern might be present in analyses 

of juvenile time in proximity to their mothers. However, no clear sex differences in 

juvenile proximity to their mothers were found (Table 5-26).  
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TABLE 5-25. Summary of sex differences in bias of proximity to each partner 
age/sex class in subadults. 

Age Partner type 
Proximity 
level Sex-typed bias Time effect 

INF 

AF 
contact ♀ –– ? ♂ – ? ♀ ∩ ♂ ∩ 

reach � � ♀ – ♂ – 

3m � � ♀ – ♂ – 

AM 
contact � � ♀ ∩ ♂ ∩ 

reach � � ♀ + ♂ + 

3m � � � � 

JF 
contact � � � � 

reach � � � � 

3m � � � � 

JM 
contact � � � � 

reach � � � � 

3m � � � � 

INFs 
contact � � � � 

reach � � � � 

3m � � � � 

JUV 

AF 
contact � � � � 

reach � � � � 

3m ♀ ++ ♂ + � � 

AM 
contact ♀ – � � � 

reach ♀ –– ♂ – ♀ ++ ♂ + 

3m ♀ –– ♂ – 

JF 
contact � � � � 

reach � � � � 

3m � � � � 

JM 
contact � � � � 

reach � � � � 

3m � � � � 

INFs 
contact � � � � 

reach ♀ + ? � ♀ – ? � 

3m � � � � 
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TABLE 5-25. Continued. 
Sex-typed bias: + significantly more than expected at random  
                        ++ significantly more than +; 
                        – significantly less than expected at random; 
                        –– significantly less than –; 
                        ?  equivocal result 
                         �  no difference from expected at random  
Time effects: + increase with time 
                      – decrease with time 
                        ᴜ quadratic effect (– with time,  + with time2); 
                        ᴜ quadratic effect (+ with time, – with time2);  
                      ?  equivocal result 
                      �  no effect 
 
 

 

Figure 5-43. Deviations from expected time in within 3m of adult females for adults 
and juveniles. 
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TABLE 5-26. Model parameter estimates of deviations from expected time in 
contact with mother by juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Dev Time in 
contact 
MOM 

random int. 
LMEM 

INT 0.76 0.47 7 1.61 0.15 

SEX 1.19 0.68 83 1.75 0.08† 
mean RP INT -0.08 0.14 7 -0.60 0.57 

SEX 0.32 0.19 7 1.63 0.15 

JUV Dev Time in 
reach MOM 

mean RP INT 0.51 0.12 7 4.26 0.004* 

SEX -0.07 0.17 7 -0.38 0.72 

JUV Dev Time in 
3m MOM 

random int. 
LMEM 

INT 0.81 0.45 7 1.79 0.12 

SEX 0.00 0.65 83 0.00 1.00 

mean RP INT 0.80 0.51 7 1.57 0.16 

SEX 0.00 0.73 7 0.00 1.00 

MOM = the focal individual’s mother; * p ≤ 0.05; † 0.05 < p ≤ 0.10. All tables 
follow these conventions. 

 

 The most marked sex difference in proximity patterns among juveniles are 

in proximity to adult males. Juvenile females bias their time in proximity to others 

away from adult males at all distances, and more strongly than juvenile males do at all 

distances (Table 5-25).  This is similar to the adult pattern in which adult females bias 

their time in contact with and within 3m of others more strongly away from adult 

males than adult males do. It is different from the adult pattern in that adult females 

exhibit significantly less bias away from proximity to males as the observation year 

progresses, while juvenile females exhibit no temporal change in contact bias, but do 

tend to be less biased against spending time within reach and within 3m of adult 

males as the observation year progresses.  

The juvenile male pattern also does not match the adult male pattern of 

proximity to adult males. Adult males spend less of their contact time and time 

within 3m of others on adult males as time progresses, while juvenile males exhibit 

no temporal change in the amount of contact time or time within 3m of others they 
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spend with adult males, and increase the amount of time within reach of others they 

spend with adult males (Table 5-25).  For juveniles, there is no strong evidence of 

sex differences in proximity bias toward other juveniles and infants.  

INFANT INTEREST 

In terms of behaviors that can be interpreted as measures of infant interest, 

adult females bias their grooming toward infants while males do not, and adult 

females spend more time in contact with infants than males do (although less time 

than expected at random). Like adults, juvenile females bias their grooming time 

toward infants (Table 5-11), while juvenile males bias them slightly away from infants 

(Table 5-11). But unlike adults, there is no sex difference in bias toward time spent in 

contact with infants (Table 5-25), and instead juvenile females may exhibit a bias 

toward spending more of their time within reach of others with infants when infants 

are young (Table 5-25), while adult females show no such bias. The lack of a sex-

difference in contact time bias with respect to infants does not lie with juvenile 

females, but with juvenile males. Unlike adult males, who spend significantly less 

time in contact with infants than expected at random, juvenile males do not bias 

their contact time toward or away from infants (Table 5-25), just like juvenile and 

adult females do not.  

The juvenile female bias in time within reach of others toward infants when 

infants are young could indicate a stronger desire on the part of juvenile females to 

be near infants than adult females, or it could be a sampling artifact of juvenile 

proximity maintenance to their mothers, who tended to have dependent infants. The 

juvenile bias toward proximity within 3m of infants is probably due simply to their 
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spending more time in proximity to their mothers and/or adult females than juvenile 

males do. 

SCENT MARKING 

 In adults, males antebrachial and brachial mark, anoint tail, and tail wave 

significantly more often than adult females, but there is no sex difference in rates of 

anogenital marking, and adults were almost never observed to tail play.  

Infants 

 Infants were never observed to anogenital mark, anoint tail, or tail wave. One 

infant male was observed to brachial “mark” on one occasion and to antebrachial 

“mark” on two occasions. The same infant was observed to tail play on three 

occasions.  

Juveniles 

 Juveniles were never observed to anogenital mark, anoint tail, or tail wave. 

Juveniles of both sexes were observed to tail play, but juvenile males exhibited 

significantly higher rates of tail play than juvenile females (Table 5-27, Figure 5-44). 

Juvenile males also exhibited significantly higher rates of brachial and antebrachial 

marking (Table 5-27, Figures 5-45 and 5-46); like adult females, juvenile females were 

never observed to engage in these behaviors. It seems that juvenile males are 

developing sex-typed scent marking behavior, and exhibit tail play in place of 

anointing their tails (which involves the identical motor pattern) and tail waving. 
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TABLE 5-27. Model parameter estimates for rates of scent-marking related 
behavior by juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Rates of tail 
play 

mean RP INT 0.67 0.15 7 4.36 0.003* 

 SEX -0.62 0.22 7 -2.82 0.03* 

 Rates of 
antebrachial 
mark 

mean RP INT 0.63 0.13 7 4.67 0.002* 

 SEX -0.63 0.19 7 -3.26 0.01* 

 Rates of 
brachial mark 

mean RP INT 0.13 0.03 7 5.09 0.001* 

 SEX -0.13 0.04 7 -3.56 0.01* 

* p ≤ 0.05 
 

 

Fig. 5-44. Juvenile rates of tail play. 
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Fig.  5-45. Juvenile rates of antebrachial mark. 

 

Fig. 5-46. Juvenile rates of brachial mark. 
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SUMMARY – SUBADULT DEVELOPMENT OF ADULT SEX-TYPED 

BEHAVIORS 

Adult sex-typed patterns of agonism do not have a subadult developmental 

component. Higher rates of overall aggression and supplanting by adult females are 

not mirrored by the subadult cohorts (Table 5-28). Nor to subadults exhibit any 

agonistic bias toward any particular age/sex class as is found in adults (Table 5-29), 

even when adjustments are made to consider age-mates rather than adult partners.  

Global adult sex-typed proximity patterns are also not found in subadults; females 

subadults are not more cohesive than males (or males less so) as in adults (Table 5-

28).  

However, juveniles do show some similarities to adults in terms of their 

affiliation with and proximity to particular age/sex classes. Juvenile females bias their 

grooming away from adult males and toward infants, just as adult females do (Table 

5-29). Additionally, adult sex-typed patterns of proximity bias with respect to adult 

males and females are partially exhibited by juveniles—juvenile females bias their 

contact time away from adult males and more strongly toward adult females than 

their male peers (Table 5-29).  

Juvenile males also exhibit behavioral patterns that resemble those of same-

sex adults. Juvenile males exhibit significantly more brachial and antebrachial 

marking than do females, even if they do not exhibit the temporal patterns in their 

marking behavior found in adult males (Table 5-30).  
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TABLE 5-28. Summary of sex differences in adult sex-typed global agonism 
and proximity measures across age classes. 

 

Intrinsic behavior Age 
Sex 
Difference Time effects 

Aggression 
AD ♀ + � � 

JUV � � � 

INF � � � 

Supplant 
AD ♀ + � � 

JUV � � � 

INF � � � 

Total # neighbors in 
contact 

AD ♀ + � � 

JUV � ♀ ᴜ ♂ ᴜ 

INF � ♀ ᴜ ♂ ᴜ 

Total # neighbors in 
reach 

AD ♀ + � � 

JUV � � � 

INF � ♀ – ♂ – 

Total # neighbors in 3m 
AD ♀ + � � 

JUV � � � 

INF � � � 

Time in contact with 
others 

AD ♀ + � ♂ + 

JUV � ♀ ᴜ ♂ ᴜ 

INF � ♀ ᴜ ♂ ᴜ 

Time in reach of others 
AD ♀ + ♀ – � 

JUV � ♀ – ♂ – 

INF � ♀ ᴜ ♂ ᴜ 

Time in 3m of others 
AD ♀ + ♀ + ♂ + 

JUV � � � 

INF � � � 

Time in 5m of others 
AD ♀ + ♀ + ♂ + 

JUV � � � 

INF � ♀ – ♂ – 
Sex difference: + significantly greater   
                        �  no difference 
Time effects: + increase with time 
                      – decrease with time 
                        ᴜ  quadratic effect ( – with time, + with time2 ) 
                      �  no effect              
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TABLE 5-29. Summary of sex differences in adult sex-typed agonism to, 
grooming of, and proximity to each partner age/sex class in subadults. 

Intrinsic 
behavior 

Partner 
type Age 

Sex-typed 
bias Time effect 

Supplant 

AM 
AD � ♂ + � � 

JUV n/a 

INF n/a 

JM 
JUV � � � � 

INF n/a       

Grooming 

AM 
AD ♀ – � � � 

JUV ♀ – � � � 

INF � � ♀ – ? 

INFs 
AD ♀ + � ♀ – � 

JUV ♀ + ♂ – � � 

INF � � � � 

Time in 
contact 

AF 
AD ♀ + � � � 

JUV � � � � 

INF ♀ –– ♂ – ♀ ∩ ♂ ∩ 

Time in 3m AF 
AD ♀ + � ♀ – � 

JUV ♀ ++ ♂ + � � 

INF � � ♀ – ♂ – 

Time in 
contact 

AM 
AD ♀ – ♂ + ♀ + ♂ – 

JUV ♀ – � � � 

INF � � ♀ ∩ ♂ ∩ 

Time in 3m AM 
AD ♀ –– ♂ – � ♂ – 

JUV ♀ –– ♂ – � � 
INF � � � � 

Time in 
contact 

JM 
AD ♀ –– ♂ – � � 

JUV � � � � 

INF � � � � 

Time in 3m JM 
AD � ♂ +  ♀ + � 

JUV � � � � 

INF � � � � 

Time in 
contact 

INFs 
AD � ♂ – � � 
JUV � � � � 
INF � � � � 
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TABLE 5-29. Continued. 
Sex-typed bias: + significantly more than expected at random  
                        ++ significantly more than +; 
                        – significantly less than expected at random; 
                        –– significantly less than –; 
                         �  no difference from expected at random  
Time effects: + increase with time 
                      – decrease with time 
                        ᴜ quadratic effect (+ with time, – with time2);  
                      �  no effect 
 

 
TABLE 5-30. Summary of sex differences in adult sex-typed scent marking 

across all age classes. 
 

Intrinsic 
behavior Age 

Sex 
Difference Time effects 

Antebrachial 
mark 

AD ♂ + ♂ – � 
JUV ♂ + � � 
INF n/a � � 

Brachial 
mark 

AD ♂ + ♂ –   

JUV ♂ + � � 

INF n/a � � 

Anoint tail 
AD ♂ + �   

JUV n/a � � 

INF n/a � � 

Tail wave 
AD ♂ + 

JUV n/a � � 

INF n/a � � 
Sex difference: + significantly greater   
Time effect:   – decrease with time 
                      �  no effect              
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Infants do not exhibit any sex differences in any adult sex-typed behaviors 

(Tables 5-28 through 5-30); adult-like behavioral sex differences are only found in 

juveniles. Due to the sampling issues in the infant cohort, I cannot exclude the 

possibility that juvenile sex-differences begin to develop before one year of age, but I 

can clearly conclude that some adult sex-differences develop during the subadult 

period, between 12 and 23 months at the latest.  

Additionally, these juvenile sex differences almost certainly develop before 

gonadal maturation. These juveniles were captured during the months of June and 

July, and they were still smaller in body size than adults, with no indication of the 

development of secondary sexual characteristics (personal obs.). Furthermore, the 

juvenile cohort was never seen to anogenital mark, a behavior which is thought to be 

a behavioral marker of sexual maturation. 

The behavioral sex differences exhibited by juveniles are not always entirely 

concordant with those seen in adults. However, this does not indicate that the 

juvenile sex differences found do not represent subadult developmental 

developmental trajectories of eventual adult sex-typed patterns. Developmental 

components of adult sex-typed behaviors are not expected to exactly match the fully 

developed adult manifestations of those behaviors. Furthermore, generalized or 

baseline sex-typed behavioral tendencies will be overlain and influenced by factors 

that will differ by age class. Baseline proximity patterns, for example, will be further 

shaped by the adult need to mate during the mating season, which will not influence 

juvenile proximity patterns, and by the juvenile tendency to maintain proximity to 

their mothers, which will not constrain the association patterns of non-natal adult 

males.  
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The adult sex-typed behaviors that appear to have a subadult developmental 

component that, therefore, might be influenced by subadult social interactions are: 

sex-typed patterns of grooming of adult males and infants, sex-typed patterns of 

proximity bias with respect to adult females and adult males, sex-typed patterns of 

infant interest (represented by grooming and proximity bias), and sex-typed patterns 

of scent marking (Table 5-31). 
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TABLE 5-31. Summary of adult sex-typed behaviors possessing a subadult 
developmental component. 

Intrinsic behavior 
Partner 
type Age 

Sex 
difference 

Grooming 

Adult ♂ 
AD ♀ – 

JUV ♀ – 

Infants 
AD ♀ + 

JUV ♀ + 

Time in 3m Adult ♀ 
AD ♀ + 

JUV ♀ + 

Time in contact Adult ♂ 
AD ♀ – 

JUV ♀ – 

Time in 3m Adult ♂ 
AD ♀ – 

JUV ♀ – 

Time in close 
proximity 

Infants 
AD ♀ + 

JUV ♀ + 

Antebrachial mark n/a 
AD ♂ + 

JUV ♂ + 

Brachial mark n/a 
AD ♂ + 

JUV ♂ + 
Sex difference: + significantly greater   
                        – significantly less 
 

 

As discussed in Chapter 4, expression of adult social behavior (sexually 

differentiated and otherwise) appears to be strongly driven by seasonal variation—in 

particular, by the birth season and the mating season. This is to be expected, as most 

adult females will be directly involved in the social activities and pressures unique to 

the birth season as a result of caring for a dependent infant, most males will be 

involved in the social activities and pressures unique to one of dispersal “seasons” 

that loosely corresponds with the birth season, and adults of both sexes will be 

directly involved in the social activities and pressures unique to the mating season. It 

is less obvious whether or how patterns of subadult social behavior will be affected 
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by these seasonal variations, but given that adult social patterns are changing, 

subadult social patterns may undergo concomitant change, even if only due to 

constraint resulting from changes in adult interaction patterns. 
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CHAPTER 6: POTENTIAL EXTRINSIC MOTIVATORS OF INTRINSIC 

SEXUAL DIFFERENTIATION 

The adult sex-typed behaviors that appear to have a subadult developmental 

component are: sex-typed patterns of grooming of adult males and infants, sex-typed 

patterns of proximity bias with respect to adult females and adult males, sex-typed 

patterns of infant interest, and sex-typed patterns of scent marking. Because these 

behaviors have a developmental component that appears before gonadal maturation, 

they must be dependent on pre-maturational inputs for their development—either 

prenatal processes, and/or postnatal but prematurational hormonal and/or social 

processes or ecological constraints. Unfortunately, the effects of prenatal processes 

on subadult behavior are beyond the scope of this study and will not be considered 

further. Postnatal, prematurational hormone effects will be investigated in future 

work. The present study will be limited only to a consideration of social and gross 

ecological processes that may shape the development of subadult behavioral sex 

differences. There are two main types of behavioral interactions that might shape the 

development of behavioral sex differences—other individuals may be either 

differentially agonistic or affiliative toward subadults of each sex. Due to the 

particular distributions of juveniles and infants across groups in this sample, it is 

difficult to characterize the sex-typed interactions of juveniles with other juveniles 

and impossible to characterize those of infants with other infants. Therefore, only 

the behavior of older age cohorts toward infants and juveniles will be considered 

here. 
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AFFILIATION (GROOMING) FROM OTHERS 

Infants 

 Although there were no clear intrinsic behavioral sex differences among 

infants, a number of intrinsic behavioral sex differences were found among juveniles. 

While the presence of sex-differential treatment by others toward infants apparently 

did not motivate the immediate development of sex-differential behavior in those 

individuals, sex-differential treatment of infants could be important for shaping later 

behavioral sex differences. Therefore, despite the lack of intrinsic behavioral sex 

differentiation in infants found in this sample, sex-differential treatment of infants by 

older cohorts was still investigated. 

 There is no clear evidence of sex-differential receipt of grooming in total, or 

from particular age/sex classes except from adult males (Table 6-1). The best fit 

linear RP model suggests that infant females tend to receive less overall grooming 

than infant males (Fig. 6-1), but that this difference tends to decrease over time. Still, 

neither effect on overall grooming rates received reaches statistical significance. 

There are also no significant sex differences in the amount of grooming received 

from mothers, non-maternal adult females, juvenile females, or juvenile males (Table 

6-1).  

In contrast, the best fit mean RP model indicates that infant females receive 

significantly less grooming from adult males than infant males do (Table 6-1). 

Analyses of grooming received by adult males for each sex indicate that infant males 

receive slightly more grooming from adult males than infant females do and there is 

no temporal change in receipt of grooming for infant males, but that infant females 

receive less grooming from adult males through time (Table 6-1, Fig. 6-2). 
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Qualitative examination of individual OLS regressions (Fig. 6-3) illustrates that this 

result is due to an unusual pattern of grooming received by only one infant male 

(08M234), in which his grooming by adult males increased through time. This 

particular infant male had an ill mother who weaned him early and who, after that 

time, groomed him little. He may have been seeking out grooming from whence he 

was most likely to receive it and least likely to receive aggression. This pattern also 

mirrors the trends seen in overall rates of receipt of grooming, begging the question 

of whether this one infant male’s receipt of grooming is driving the sex differential 

trends in overall rates of grooming received, but an examination of individual infant 

OLS regressions of time groomed per hour (Fig. 6-4) shows that this infant’s 

grooming patterns do not account for those trends. Considering these results all 

together, I conclude that there is no good evidence that infants experience sex-

differential grooming by adult males or that they experience sex-differential rates of 

grooming overall, although the latter may merit further research. 
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TABLE 6-1. Model parameter estimates for time groomed by others for 
infants. 

Age Variable Model Effect est. SE DF t p 

INF Groomed 
total 

linear 
RP 

INT 2.91 0.35 27 8.23 <.0001* 

TIME -0.33 0.06 77 -5.65 <.0001* 

SEX -0.80 0.46 27 -1.73 0.09† 
TIME*SEX 0.14 0.08 77 1.81 0.07† 

INF Groomed 
by MOM 

random 
int. 
LMEM 

INT 0.84 0.17 27 4.89 <.0001* 

SEX 0.00 0.24 79 0.00 1.00 

linear 
RP 

INT 0.71 0.16 27 4.34 0.0002* 

TIME -0.09 0.02 77 -3.66 0.0005* 

SEX 0.06 0.21 27 0.28 0.78 

TIME*SEX 0.02 0.03 77 0.71 0.48 

INF Groomed 
by AF 

quad. 
LMEM 

INT 1.58 0.29 27 5.36 <.0001* 

SEX -0.38 0.40 58 -0.95 0.34 

TIME -0.50 0.18 17 -2.83 0.01* 

TIME2 0.04 0.02 58 2.04 0.05* 

SEX*TIME 0.03 0.22 58 0.14 0.89 

SEX*TIME2 0.01 0.02 58 0.35 0.73 

mean 
RP 

INT 0.05 0.09 27 0.53 0.60 

SEX 0.13 0.11 27 1.20 0.24 

INF Groomed 
by AM 

mean 
RP 

INT 0.40 0.07 27 5.45 <.0001* 

SEX -0.23 0.10 27 -2.36 0.03* 

Male 
groomed 
by AM 

mean 
RP 

INT 0.40 0.09 13 4.33 0.0008* 

Female 
groomed 
by AM 

linear 
RP 

INT 0.34 0.06 14 5.57 <.0001* 

TIME -0.04 0.01 49 -3.33 0.002* 

INF Groomed 
by JF 

random 
int. 
LMEM 

INT 0.12 0.05 27 2.48 0.02* 

SEX -0.06 0.06 79 -0.92 0.36 

INF Groomed 
by JM 

mean 
RP 

INT 0.01 0.02 27 0.73 0.47 

SEX 0.03 0.02 27 1.15 0.26 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 6-1. Average time groomed by others for infants.  
 

 

Fig. 6-2. Average time groomed by adult males for infants.  
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Fig. 6-3. Individual OLS regressions for average time groomed by adult males for 
infants.  

 

 

Fig. 6-4. Individual OLS regressions for average time groomed by others for infants.  
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Juveniles 

There is no evidence that juveniles differ by sex in the rates at which they 

receive grooming—either overall, or from particular age/sex classes (Table 6-2).   

TABLE 6-2. Model parameter estimates for time groomed by others for 
juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV Groomed 
TOT 

random int. 
LMEM 

INT 0.84 0.22 7 3.87 0.006* 

SEX 0.17 0.31 83 0.55 0.58 

mean RP INT 0.18 0.06 7 2.81 0.03* 

SEX -0.06 0.09 7 -0.62 0.56 

JUV Groomed 
by MOM 

random int. 
LMEM 

INT 0.16 0.13 7 1.28 0.24 

SEX 0.24 0.18 83 1.34 0.18 

mean RP INT 0.00 0.03 7 0.02 0.99 

SEX 0.01 0.04 7 0.38 0.71 

JUV Groomed 
by AF 

mean RP INT 0.03 0.03 7 0.78 0.46 

SEX 0.01 0.04 7 0.21 0.84 

JUV Groomed 
by AM 

random int. 
LMEM 

INT 0.57 0.24 7 2.34 0.05* 

SEX -0.48 0.36 83 -1.34 0.18 

mean RP INT 0.01 0.01 7 0.92 0.39 

SEX -0.01 0.01 7 -1.08 0.32 

TOT  = total; * p ≤ 0.05. All tables follow these conventions. 
 

 

AGGRESSION AND SUPPLANTS RECEIVED FROM OTHERS 

Infants 

There is no evidence that infants received sex-differential expressions of 

overt aggression—either overall, or from particular age/sex classes (Table 6-3). 
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TABLE 6-3. Model parameter estimates for rates of aggression received from 
others for infants. 

 
Age Variable Model Effect est. SE DF t p 

INF TOT 
Aggression 
received 

random int. 
LMEM 

INT 0.74 0.18 27 4.15 0.0003* 

SEX -0.10 0.24 79 -0.44 0.66 

mean RP INT 0.30 0.12 27 2.57 0.02* 

SEX -0.15 0.15 27 -0.96 0.34 

INF Aggression 
from 
MOM 

random int. 
LMEM 

INT 0.14 0.08 27 1.67 0.11 

SEX 0.07 0.11 79 0.67 0.51 

mean RP INT 0.14 0.08 27 1.61 0.12 

SEX 0.07 0.11 27 0.66 0.51 

INF Aggression 
from AF 

mean RP INT 0.1635 0.06 27 2.65 0.01* 

SEX -0.066 0.08 27 -0.83 0.42 

INF Aggression 
from AM 

mean RP INT 0.06 0.02 27 3.38 0.002* 

SEX -0.03 0.02 27 -1.49 0.15 

INF Aggression 
from JF 

random int. 
LMEM 

INT 0.02 0.02 27 0.92 0.37 

SEX 0.00 0.03 79 0.11 0.91 

INF Aggression 
from JM 

random int. 
LMEM 

INT 0.0074 0.04 27 0.18 0.85 

SEX 0.0628 0.05 79 1.17 0.25 

mean RP INT 0.01 0.04 27 0.17 0.87 

SEX 0.06 0.06 27 1.04 0.31 

* p ≤ 0.05 
  

 Infants do not experience sex differences in overall rates of being supplanted, 

or in being supplanted by any age/sex class except for in being supplanted by adult 

females (Table 6-4). Infant females are supplanted by adult females significantly 

more often than infant males are (Fig. 6-5). However, infants were never supplanted 

until the age of 2 months, and there were only three infant males in the sample older 

than 2 months of age, such that this result should be regarded cautiously. I think that 

this result accurately describes what happened in this sample and results from real 

differences in how often the males and females in this particular infant sample were 

supplanted. Qualitatively, my impression is that males of the infant cohort kept 
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themselves out of situations in which they would be supplanted and that they were 

largely ignored by adults compared to females of the infant cohort. However, I feel 

less certain as to whether the few male infants in this sample accurately represent 

male infants more broadly.  

 

TABLE 6-4. Model parameter estimates for rates of supplants received from 
others by infants. 

Age Variable Model Effect est. SE DF t p 

INF TOT 
Supplants 
received 

random 
int. 
LMEM 

INT 0.13 0.07 27 1.89 0.07† 
SEX 0.04 0.09 79 0.46 0.65 

INF Supplants 
from 
MOM 

random 
int. 
LMEM 

INT 0.03 0.02 27 1.90 0.07† 
SEX -0.03 0.02 79 -1.18 0.24 

INF Supplants 
from AF 

mean RP INT 0.02 0.02 27 0.88 0.39 

SEX 0.06 0.02 27 2.59 0.02* 

INF Supplants 
from AM 

random 
int. 
LMEM 

INT 0.03 0.02 27 1.74 0.09† 
SEX -0.01 0.02 79 -0.44 0.66 

INF Supplants 
from JF 

N/A  BEHAVIOR NOT SEEN 
   

INF Supplants 
from JM 

random 
int. 
LMEM 

INT 0.00 0.03 27 0.00 1.00 

SEX 0.04 0.04 79 1.25 0.22 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 6-5. Average rates of being supplanted by adult females for infants.  
 

Juveniles 
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TABLE 6-5. Model parameter estimates for rates of aggression received from 
others for juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV TOT 
Aggression 
received 

random int. 
LMEM 

INT 0.40 0.12 7 3.43 0.01* 

SEX 0.23 0.16 83 1.39 0.17 

mean RP INT 0.34 0.09 7 3.83 0.006* 

SEX 0.09 0.13 7 0.75 0.48 

JUV Aggression 
from MOM 

random int. 
LMEM 

INT 0.03 0.03 7 1.00 0.35 

SEX 0.13 0.05 83 2.74 0.007* 

mean RP INT 0.04 0.04 7 0.92 0.39 

SEX 0.12 0.06 7 2.08 0.08† 
JUV Aggression 

from AF 
random int. 
LMEM 

INT 0.25 0.10 7 2.56 0.04* 

SEX 0.09 0.14 83 0.63 0.53 

mean RP INT 0.22 0.06 7 3.37 0.01* 

SEX 0.06 0.09 7 0.60 0.57 

JUV Aggression 
from AM 

mean RP INT 0.08 0.03 7 2.79 0.03* 

SEX -0.01 0.04 7 -0.14 0.89 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
  

 

Fig. 6-6. Average rates of receiving aggression from mother for juveniles.  
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 There are no juvenile sex differences in rates of being supplanted, either 

overall, or by adults of different sex classes (Table 6-6). 

 

TABLE 6-6. Model parameter estimates for rates of supplants received from 
others for juveniles. 

Age Variable Model Effect est. SE DF t p 

JUV TOT 
Supplants 
received 

random int. 
LMEM 

INT 0.83 0.31 7 2.69 0.03* 

SEX -0.50 0.46 83 -1.08 0.28 

mean RP INT 0.35 0.07 7 4.92 0.002* 

SEX -0.03 0.10 7 -0.31 0.76 

JUV Supplants 
from MOM 

random int. 
LMEM 

INT 0.04 0.02 7 1.76 0.12 

SEX -0.01 0.03 83 -0.19 0.85 

mean RP INT 0.04 0.03 7 1.18 0.28 

SEX 0.01 0.04 7 0.27 0.79 

JUV Supplants 
from AF 

mean RP INT 0.13 0.03 7 4.09 0.005* 

SEX 0.03 0.05 7 0.71 0.50 

JUV Supplants 
from AM 

mean RP INT 0.10 0.02 7 4.16 0.004* 

SEX -0.05 0.03 7 -1.41 0.20 

* p ≤ 0.05 

 

EXTRINSIC SOCIAL INTERACTIONS – SUMMARY 

 There is little evidence that extrinsic, sexually differentiation social 

interactions are important in the development of adult sex-typed behavior in Lemur 

catta, because there is very little evidence that extrinsic, sexually differentiated social 

interactions occur. Infants are not treated in sex-differential ways by others except 

for the possibility that infant females are supplanted more often by adult females 

than infant males are (Table 6-7). Similarly, juveniles do not experience sex 

differential treatment by adults except in that juvenile females receive more 

aggression from their mothers than do juvenile males (Table 6-8). These patterns of 

interaction are not simply the result of sex differences in proximity patterns to adult 
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females and mothers, however, because infant females are not significantly more 

often in proximity to adult females than infant males (Table 5-26) and juvenile 

females are not significantly more often in proximity to their mothers than juvenile 

males (Table 5-27). Thus, these sex differential interactions with mothers and non-

maternal adult females may represent real sex differences in treatment by other 

group members of potential import for the development of later behavior.  

TABLE 6-7. Summary of sex differences in extrinsic social behavior received 
by infants. 

Age Extrinsic behavior 
Partner 
type 

Sex difference 
or bias Time effect 

INF 

Groomed overall n/a � ♀ – ♂ – 

Groomed 

MOM � � ♀ – ♂ – 

Adult ♀ � � ♀ ᴜ ♂ ᴜ 

Adult ♂ � � ♀ – � 

Juvenile ♀ � � � � 

Juvenile ♂ � � � � 
Overt aggression overall n/a � � � 

Overt aggression 

MOM � � � � 

Adult ♀ � � � � 

Adult ♂ � � � � 

Juvenile ♀ � � � � 

Juvenile ♂ � � � � 
Supplants overall n/a � � � 

Supplants 

MOM � � � � 

Adult ♀ ♀ + � � � 

Adult ♂ � � � � 

Juvenile ♀ n/a 

Juvenile ♂ � � � � 
Sex-typed bias: + significantly more than opposite sex or than expected at random  
                         �  no difference from opposite sex or from expected at random  
Time effects: – decrease with time 
                        ᴜ quadratic effect (– with time,  + with time2); 
                      �  no effect 
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TABLE 6-8. Summary of sex differences in extrinsic social behavior received 
by juveniles. 

Age Extrinsic behavior 

Partner 
type 

Sex 
difference or 

bias Time effect 

JUV 

Groomed overall n/a � � � 

Groomed 

MOM � � � � 
Adult ♀ � � � � 
Adult ♂ � � � � 

Overt aggression overall n/a � � � 

Overt aggression 

MOM ♀ + � � � 
Adult ♀ � � � � 
Adult ♂ � � � � 

Supplants 

MOM � � � � 
Adult ♀ � � � � 
Adult ♂ � � � � 

Sex difference: + significantly greater   
Time effects:  �  no effect              

 

SEX DIFFERENTIAL ECOLOGY 

An animal’s ecological needs will determine where it should be in space and 

time, and as such, will affect the number, sex, and ages of the conspecifics with 

which that individual can or must interact [Altmann 1980]. Whenever males and 

females are foraging at different times, in different places, or are focusing on 

different resources, they will necessarily have access to a different set of social 

partners, and they may face different constraints on their interactions with those 

social partners. In such cases, sex-differential social behavior may be an artifact of 

sex-differential niche use. Further complicating the issue, some authors [Agostini and 

Visalberghi 2005] have proposed that the initial development of ecological niche 

divergence may sometimes stem from social causes, rather than the reverse. 
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The simplest way to control for the effects of sex differences in ecology on 

sex-differential social behavior is to examine behavior that occurs before sexual 

differentiation in ecology. However, many juvenile primates exhibit sex-typical 

resource use patterns prior to sexual maturation [Grassi 2002], and mothers of some 

species might even base their own foraging choices on the sex of their dependent 

infant [Bercovitch 2002]. Detailed studies of diet at early ages should reveal whether 

young animals that are foraging in different places among different social partners 

actually differ in their diets. If not, such patterns would suggest that diverging dietary 

needs are not responsible for motivating sex-differential foraging behavior even if 

they are associated with time engaged in foraging.   

Unfortunately, the developmental timeline of sexual differentiation in feeding 

ecology of Lemur catta is still unknown, and if it were generally known, yearly 

seasonal variation would call for a documentation of early dietary shifts in this 

particular sample in order to fully address this issue. A detailed investigation of the 

diets of the particular subadults sampled here was beyond the scope of this project. 

However, it is only the effects of dietary divergence on social divergence that is of 

interest here, and not dietary divergence, per se. Therefore, I have investigated 

subadult sex differences in social proximity during foraging. If sex differences in 

social proximity during foraging are present, they cannot reliably be attributed to 

either dietary or social sex differentiation by this study. But, if there are no sex 

differences in social proximity during foraging, dietary divergence is probably not 

driving sex differences in intrinsic social behavior. 
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Feeding time 

While sex differences in amount of time spent feeding will not necessarily 

influence the set of social partners available to subadults in sex differential ways, it 

would affect the amount of time subadults have to express intrinsic behavioral sex 

differences. However, neither infants nor juveniles exhibit sex differences in the 

amount of time they spend feeding (Table 6-9). 

TABLE 6-9. Model parameter estimates for time spent feeding by subadults. 

Age Variable Model Effect est. SE DF t p 

INF Time 
feeding 

random 
int. 
LMEM 

INT 2.73 0.80 25 3.41 0.002* 

SEX 0.36 1.09 78 0.33 0.74 

quad. RP  INT 0.22 0.17 25 1.32 0.20 

SEX -0.24 0.22 25 -1.11 0.28 

TIME 1.77 0.27 74 6.58 <.0001* 

TIME2 -0.11 0.03 74 -3.43 0.001* 

SEX*TIME 0.35 0.34 74 1.02 0.31 

SEX*TIME2 -0.04 0.04 74 -1.13 0.26 

JUV Time 
feeding 

random 
int. 
LMEM 

INT 6.03 0.40 7 14.93 <.0001* 

SEX 
-0.95 0.58 83 -1.64 0.11 

mean RP INT 6.03 0.46 7 13.09 <.0001* 

SEX -0.94 0.66 7 -1.43 0.20 

* p ≤ 0.05 
 

SEX DIFFERENCES IN PROXIMITY DURING FEEDING/FORAGING 

 Dietary sex divergence can occur in at least two ways—either through 

modeling of same-sex others or as a result of an intrinsic need to utilize sex-typed 

resources. This study cannot distinguish between them, but in either case, sex 

differences, if present, should be reflected in individuals’ nearest neighbor 

distributions during feeding. If subadults are achieving dietary sexual differentiation 
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through same-sex modeling, they should be closer to and more overtly attentive to 

same-sex adults. If they are simply driven to dietary sex differentiation by an 

underlying need to consume sexually differentiated food resources, they should find 

themselves in close proximity to other same-sex individuals who have the same 

underlying dietary needs. Therefore, to assess whether gross dietary sex 

differentiation is an important potential cause underlying the intrinsic subadult sex 

differences in social behavior documented in this study, the only measure of 

proximity during feeding and foraging investigated here was nearest neighbor 

identity. 

Infants 

There is no evidence of an infant sex difference in foraging time spent with 

adult females as nearest neighbors, but patterns of nearest neighbor association with 

mother and adult males during feeding are less clear (Table 6-10). The most complex 

LMEMs that could be fit were random intercepts models. Those indicate that there 

is no sex difference in foraging time spent with mother as a nearest neighbor, but an 

overall tendency for infant females to spend less foraging time with adult males as 

nearest neighbors than infant males do. In contrast, the best fit RP models are 

quadratic and account for temporal changes throughout the year. These suggest that 

there is a sex*time interaction with regard to foraging time spent with mother as a 

nearest neighbor in which females spend more of their foraging time with mother as 

a nearest neighbor as the observation year progresses, and that there is no sex 

difference with regard to foraging time spent with adult males as nearest neighbors. 

Examination of the scatterplots and individual OLS plots reveal that there is little 

reason to conclude that infant females are spending significantly more of their 
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foraging time with mother as a nearest neighbors as time progresses (Figures 6-7, 6-

8) and that there may be good reason to conclude that infant females, on average, 

tend to spend less of their foraging time with adult males than infant males do 

(Figures 6-9, 6-10). Because the LMEMs partially account for inter-individual 

variation and because their results are supported by a qualitative examination of the 

individual OLS regressions, I conclude that there is no sex difference in terms of 

infant feeding time spent with mother as a nearest neighbor but a tendency for infant 

females to spend less of their foraging time with adult males than infant males do. 

Incidentally, one of the three infant males for which good longitudinal data are 

available exhibits a different pattern from all other infants with regard to how much 

of his foraging time he spent as a nearest neighbor of adult males (08M155). This 

was not the infant whose mother was ill, so I have no reason to think that his 

unusual spatial patterning resulted from pathological processes. 
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TABLE 6-10. Model parameter estimates for deviations from expected time 
spent feeding with nearest neighbors at random for infants by adult partner 

type. 
Age Variable Model Effect est. SE DF t p 

INF Dev feed 
nearest 
MOM 

random 
int. 
LMEM 

INT 0.84 0.22 25 3.87 0.0007* 

SEX 
0.09 0.29 78 0.33 0.75 

quad. 
RP  

INT 0.26 0.14 25 1.87 0.07† 

SEX -0.20 0.18 25 -1.11 0.28 

TIME 0.22 0.12 74 1.92 0.06† 
TIME2 -0.02 0.01 74 -1.76 0.08† 

SEX*TIME 0.32 0.14 74 2.28 0.03* 

SEX*TIME2 -0.03 0.02 74 -1.88 0.06† 

INF Dev feed 
nearest AF 

random 
int. 
LMEM 

INT -0.40 0.14 25 -2.79 0.01* 

SEX 
-0.04 0.19 78 -0.22 0.83 

linear 
RP 

INT -0.11 0.06 25 -1.85 0.08† 

TIME -0.11 0.03 76 -3.55 0.0007* 

SEX 0.07 0.08 25 0.88 0.39 

TIME*SEX 0.02 0.04 76 0.48 0.63 

INF Dev feed 
nearest 
AM 

random 
int. 
LMEM 

INT -0.64 0.14 25 -4.60 0.0001* 

SEX 
-0.32 0.18 78 -1.80 0.08† 

quad. 
RP  

INT -0.08 0.05 25 -1.82 0.08† 

SEX 0.09 0.06 25 1.51 0.14 

TIME -0.39 0.07 74 -5.46 <.0001* 

TIME2 0.04 0.01 74 3.73 0.0004* 

SEX*TIME -0.12 0.09 74 -1.32 0.19 

SEX*TIME2 0.00 0.01 74 0.00 1.00 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 

Dev indicates deviation from time expected at random 



317 

 

Fig. 6-7. Deviations from expected time foraging with mother as a nearest neighbor 
at random for infants.  

 

 

Fig. 6-8. Individual OLS regressions of deviations from expected time foraging with 
mother as a nearest neighbor at random for infants.  
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Fig. 6-9. Deviations from expected time foraging with adult males as nearest 
neighbors at random for infants.  

 

 

Fig. 6-10. Individual OLS regressions of deviations from expected time foraging with 
mother as a nearest neighbor at random for infants.  

 Infant foraging time with AMs as nearest neighbors - deviations from expectations at random

month

sc
a

n
s 

p
e

r 
h

o
u

r

Males

-2 0 2 4 6 8 10 12
-5

-4

-3

-2

-1

0

1

2

Females

-2 0 2 4 6 8 10 12

08M155 

Individual deviations from foraging time with Adult Males as nearest neighbor expected at 
random - Infants 

           Males      Females 

sc
an

s 
pe

r 
ho

ur
 

Age (months) 

Age (months) 



319 

 
 There are no infant sex differences in foraging time spent with juveniles or 

other infants as nearest neighbors (Table 6-11). 

TABLE 6-11. Model parameter estimates for deviations from expected time 
spent feeding with nearest neighbors at random for infants by subadult 

partner type. 
Age Variable Model Effect est. SE DF t p 

INF Dev feed 
nearest JF 

random int. 
LMEM 

INT 0.03 0.05 25 0.52 0.61 

SEX 0.01 0.07 78 0.15 0.88 

INF Dev feed 
nearest JM 

mean RP INT 0.00 0.00 25 -1.70 0.10† 

SEX 0.00 0.00 25 0.91 0.37 

INF Dev feed 
nearest 
INFs 

random int. 
LMEM 

INT -0.09 0.07 25 -1.27 0.22 

SEX 0.13 0.10 78 1.28 0.20 

mean RP INT -0.045 0.03 25 -1.57 0.13 

SEX 0.0115 0.04 25 0.30 0.77 

† 0.05 < p ≤ 0.10 
 

Juveniles 

 There are no juvenile sex differences in feeding time spent with adult males 

and non-maternal adult females as nearest neighbors, but there is some suggestion 

that juvenile females tend to spend more of their feeding time with their mothers as 

nearest neighbors than juvenile males do (Table 6-12, Fig. 6-11). Qualitative 

examination of the individual OLS regressions (Fig. 6-12) indicate that only two of 

four juvenile males spend less feeding time with their mothers as nearest neighbors 

than the juvenile female group does.  Therefore, I conclude that there is no strong 

evidence that juveniles exhibit a sex difference in their feeding time spent with their 

mothers as nearest neighbors, but suggest that this pattern deserves future 

investigation. 
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TABLE 6-12. Model parameter estimates for deviations from expected time 
spent feeding with nearest neighbors at random for juveniles by adult partner 

type. 
Age Variable Model Effect est. SE DF t p 

JUV Dev feed 
nearest 
MOM 

random int. 
LMEM 

INT -0.07 0.16 7 -0.44 0.68 

SEX 0.40 0.23 83 1.72 0.09† 
mean RP INT -0.08 0.18 7 -0.42 0.68 

SEX 0.41 0.26 7 1.54 0.17 

JUV Dev feed 
nearest AF 

random int. 
LMEM 

INT 0.28 0.24 7 1.15 0.29 

SEX -0.36 0.35 83 -1.04 0.30 

mean RP INT -0.12 0.16 7 -0.71 0.50 

SEX 0.08 0.23 7 0.34 0.75 

JUV Dev feed 
nearest 
AM 

random int. 
LMEM 

INT -0.86 0.14 7 -5.96 0.0006* 

SEX -0.06 0.21 83 -0.31 0.76 

mean RP INT -0.87 0.16 7 -5.26 0.001* 

SEX -0.06 0.24 7 -0.24 0.82 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
 

 

Fig. 6-11. Deviations from expected time foraging with mother as a nearest neighbor 
at random for juveniles.  
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Fig. 6-12. Individual OLS regressions of deviations from expected time foraging with 
mother as a nearest neighbor at random for juveniles.  

 
  

As with previous analyses of juvenile-juvenile interactions, the results of 

analyses of bias in feeding time spent with other juveniles are problematic. There is 

no evidence of a juvenile sex difference in feeding time spent with juvenile females 

as a nearest neighbor, but juvenile females apparently spend significantly more 

feeding time with a juvenile male as a nearest neighbor than juvenile males do (Table 

6-13). Recall, though, that only two juvenile males had the opportunity to have a 

juvenile male nearest neighbor; all juvenile male-juvenile male interactions describe 

only those of this dyad, and my impression of this dyad was that their relationship 

was not particularly affiliative. Furthermore, examination of the scatterplot (Fig. 6-

13) and individual OLS regressions (Fig. 6-14) show that the significant effect here is 
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females, and only due to feeding proximities late in the year. Therefore, I conclude 

that there is no good evidence that juveniles exhibit a sex difference in their tendency 

to feed near other juveniles. There is also no evidence that juveniles exhibit a sex 

difference in their feeding time spent with infants as nearest neighbors (Table 6-14). 

 

TABLE 6-13. Model parameter estimates for deviations from expected time 
spent feeding with nearest neighbors at random for juveniles by subadult 

partner type. 
Age Variable Model Effect est. SE DF t p 

JUV Dev feed 
nearest JF 

random 
int. 
LMEM 

INT 0.14 0.07 7 1.99 0.09† 
SEX -0.08 0.10 83 -0.77 0.45 

JUV Dev feed 
nearest 
JM 

mean RP INT 0.03 0.03 7 1.12 0.30 

SEX 
0.11 0.04 7 2.63 0.03* 

JUV Dev feed 
nearest 
INFs 

linear RP INT -0.70 0.19 7 -3.70 0.008* 

TIME 0.09 0.03 81 2.79 0.007* 

SEX 0.18 0.27 7 0.64 0.54 

TIME*SEX -0.05 0.05 81 -0.95 0.34 

* p ≤ 0.05; † 0.05 < p ≤ 0.10 
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Fig. 6-13. Deviations from expected time foraging with juveniles males as nearest 
neighbors at random for juveniles.  

 

 

Fig. 6-14. Individual OLS regressions of deviations from expected time foraging with 
juveniles males as nearest neighbors at random for juveniles.  
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Ecological sex differences - Summary 

 Gross ecological factors do not seem to be key causal motivators of sexual 

differentiation in subadult intrinsic social behavior because there are no significant 

subadult sex differences in gross ecological measures (Table 6-14).  

TABLE 6-14. Summary of subadult sex differences in socioecological 
measures. 

Age Ecological factor 
Partner 
type 

Sex-typed 
bias Time effect 

INF 

Time spent feeding n/a � � � � 

Nearest neighbor 
when feeding 

MOM � � � � 

AF � � � � 

AM � � � � 

JF � � � � 

JM � � � � 

INFs � � � � 

JUV 

Time spent feeding n/a � � � � 

Nearest neighbor 
when feeding 

MOM � � � � 

AF � � � � 

AM � � � � 

JF � � � � 

JM � � � � 

INFs � � � � 
Sex-typed bias: �  no difference from expected at random  
Time effects: �  no effect 
 

SUMMARY - EXTRINSIC MOTIVATORS OF INTRINSIC SEXUAL 

DIFFERENTIATION 

In sum, the only potential causal factor of subadult sexually differentiated 

behavioral development identified in this study is higher rates of aggression by 

mothers toward their juvenile daughters than toward their juvenile sons. Whether 

higher rates of maternal aggression toward juvenile daughters is a causal factor 

motivating juvenile sex differentiation in intrinsic social behavior depends on 

whether increased maternal aggression precedes intrinsic sex differences. 
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Unfortunately, the temporal resolution afforded by the data from this study is 

insufficient to address this point for several reasons. First, maternal aggression 

toward juveniles is not very common; second, there were only four juveniles of each 

sex in the collared population. The combination of these two factors results in poor 

temporal resolution of the development of this sex difference in the juvenile sample. 

Third, due to the sampling problems in the infant cohort at later ages, there is no 

reliable indication of what is happening with maternal aggression toward offspring in 

the months immediately preceding the data presented here on the juvenile cohort. In 

other words, unless good resolution on the development of this sex difference is also 

available for the period of 0-11 months, one cannot be certain that one has captured 

the onset of this sex difference. Resolution of this issue will have to wait for future 

study. 
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CHAPTER 7: DISCUSSION AND CONCLUSIONS 

SEX-TYPED SOCIALIZATION 

This study found essentially no evidence for extrinsic socialization of the 

development of sex-typed adult behavior in Lemur catta. Twenty-two quantifiable sex 

differential behaviors were identified in adults. As expected, infants were not found 

to exhibit adult patterns of behavioral sex differentiation for any of those twenty-two 

behaviors (contra Figure 2-1-A). Therefore, infants were not sexually differentiated in 

any of the adult sex-typed behaviors documented in this study, allowing for the 

possibility of a pre-pubertal developmental component to each (Figure 2-1-B).  

However, only a portion of these adult sex-typed behaviors were found to 

differ by sex in the juvenile cohort—patterns of grooming of adult males and infants; 

some elements of patterns of proximity to adult females, adult males, and infants; 

and male-typical marking behaviors (Table 5-31). The rest presumably develop 

sometime after the age of 24 months, just prior to, at, or after sexual maturity, as in 

Figure 2-2. While these late-developing behaviors may depend on social input for 

their appearance and maintenance, it is difficult to make a case that they are not 

simply dependent on gonadal hormone input of instead. Therefore, only overall 

grooming rates and patterns of grooming of adult males and infants, patterns of 

proximity to adult females, adult males, and infants, and male-typical marking 

behaviors are considered potential targets of extrinsic socialization. 

This study found evidence of sex differential treatment of subadults by 

others in only two behaviors—infant females are supplanted more often by adult 

females than infant males are, and juvenile females receive more aggression from 

their mothers than juvenile males do. Therefore, only two sex differential social 
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interactions (one in infancy and one in juvenility) were potential socialization agents 

for eight sexually differentiated juvenile behaviors. Unfortunately, this study did not 

have the resolution necessary to assess the temporal relationships between these 

extrinsic sex differences and the intrinsic subadult sex differences they might have 

shaped. As a result, these two types of sex differential treatment by adults cannot be 

rejected as causal in the development of juvenile sex differences in intrinsic social 

behavior.  

However, it is not immediately obvious how receiving more supplants from 

adult females and more aggression from one’s mother would be expected to result in 

the particular set of juvenile sex differences found in this study. I cannot imagine a 

scenario in which being supplanted more often by adult females or receiving more 

aggression from mother would directly cause decreased proximity to and rates of 

grooming adult males or increased proximity to and rates of grooming infants on the 

part of juvenile females, or in increased rates of scent-marking related behavior on 

the part of juvenile males. An argument could be made that being supplanted more 

often by adult females or receiving more aggression from mother resulted in juvenile 

females seeking out allies or other “friends,” resulting in their increased rates of 

overall grooming of others and increased proximity to adult females. However, 

coalitions are conspicuously absent in ring-tailed lemurs [Pereira 1995; Sauther et al. 

1999], and interactions that could be interpreted as triadic averaged only five per 

month. Furthermore, only four triadic interactions recorded could be interpreted as 

third-party intervention on behalf of a juvenile. A more fine-grained investigation of 

this hypothesis might reveal that juvenile females are grooming and maintaining 

proximity to individuals other than those from whom they are receiving aggression, 
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which would suggest that juvenile females are indeed seeking out “friends” in 

response to the aggression they receive. Until this investigation can be completed, I 

tentatively conclude that this study has produced no evidence that sex differential 

socialization by adults is an important driver of ring-tailed lemur sex-typed social 

development.  

It is important to caution that even though this study found evidence for 

only two types of sex differential treatment of subadults by others, this does not 

indicate that other types of sex differential treatment of subadults do not occur. The 

limited sample sizes in this study only allowed for detection of sex differences with 

relatively large effect sizes and precluded the identification of subtle sex differences 

in treatment by others. This was especially true for the infant cohort in months 3-11, 

but characterized the sample overall. Due to the small sample sizes used here, sex 

differential treatment by others characterized by small effect sizes are invisible to this 

study.  

This caveat is not just theoretical—relatively subtle sex differences in 

treatment of infants by others do occur in primates and have been documented in 

studies of other species with larger sample sizes. In captive rhesus macaques, 

mothers investigate the genitals of male infants more often than those of female 

infants [Goy et al. 1988] and are more responsive to male infants’ distress calls 

[Tomaszycki et al. 2001]. In free-ranging Barbary macaques, mothers choose social 

partners based on their own infants’ sex [Timme 1995]. In captive sooty mangabeys, 

non-maternal group members direct more types of social interaction toward female 

infants, engage in more types of contact behaviors with female infants, and larger 

numbers of non-maternal group members interact with female infants than with 
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male infants [Deputte and Quris 1996]. In wild yellow baboons, high-ranking 

mothers initiate more changes in contact with their sons and nurse their daughters 

less [Nguyen et al. 2010]. In captive rhesus macaques, milk quality and composition 

(but not total milk energy available to offspring) differs according to infant sex 

[Hinde 2009]. None of this work can assess whether these sex differences in mother-

infant interactions are driven by mothers or infants, but they illustrate the types of 

subtle but potentially important early sex-differential interactions that have been 

documented in studies of other primates but which, if they occur in Lemur catta, will 

have been missed by this one.  Future work will investigate sex differences in more 

detailed aspects of subadult social interactions such as responsibility for proximity 

maintenance with mothers, responsibility for initiating grooming with particular 

age/sex classes, and further investigation of the contexts in which juveniles receive 

aggression from their mothers. 

Therefore, despite the fact that this study found no support for the primacy 

of sex-differential treatment of subadults by adults in behavioral sex differentiation, 

the potential importance of sex-differential treatment by adults in that process is not 

negated for this species. Still, this study reveals that sex-typed treatment of subadults 

by adults is more subtle than the expression of sex-typed behavior on the part of 

juveniles, which, to me, suggests that juvenile sex differences are more likely 

dependent on some other proximate factor for their development. The two most 

likely candidates are sexually differentiated ecological demands and sexually 

differentiated organizational and activational hormone effects. 
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ECOLOGICAL CAUSES 

I also found no evidence that sexual differentiation in feeding and foraging 

behavior, specifically, is driving the development of the behavioral sex differences 

documented in this study. However, my treatment of sexual differentiation in 

foraging behavior in this study was not sufficiently rigorous to conclusively rule out 

sex-differential ecology as a driver of pre-pubescent behavioral sex differentiation. A 

more rigorous investigation of this question would thoroughly investigate the timing 

of actual dietary sex differentiation, which proved to be beyond the scope of this 

study due to the impossibility of distinguishing many Lemur catta food plants from 

each other without both botanical training and the assistance of a Malagasy botanist 

familiar with those plants.  Documentation of the timing of actual dietary divergence 

between males and females relative to sex divergence in other behavioral variables 

may rule out ecological constraints as a causal factor in behavioral sex 

differentiation—until there is sexual divergence in diet, ecological constraint cannot 

be argued to be responsible for sexual divergence in other arenas. Whenever dietary 

and social sex divergence co-vary, distinguishing causation becomes an intractable 

problem (just as when behavioral and hormonal sex differences co-occur). Further 

complicating the issue, just as dietary divergence may drive social sex differentiation, 

social sex differentiation may drive or facilitate dietary divergence [Agostini and 

Visalberghi 2005], and covariance between the two does not indicate that ecological 

constraint is the causal factor underlying both. It is not yet clear whether this is a 

problem for understanding the casual factors underlying behavioral sex 

differentiation in Lemur catta, as the temporal relationships among particular aspects 

of ecological and social behavior are still unknown. However, the findings of this 
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study may support conceptualizing of this problem from an entirely different 

perspective that solves this conundrum (discussed below).  

HORMONAL CAUSES 

Impending work on the developmental profiles of total androgens and 

estradiol will soon address the role of postnatal hormones in the development of 

sex-typed behavior in this population. Developmental profiles of estradiol and total 

androgens will be created to test for changes in steroid hormone levels that 

correspond temporally to the appearance of the juvenile sex-typed behaviors found 

in this study and that can be inferred to be activating their development. 

Some authors have previously suggested that the development of anogenital 

marking is under direct control of gonadal hormones because it corresponds with 

sexual maturation in captivity [Palagi et al. 2002; Pereira 2002]. The behavioral data 

here—no evidence of anogenital marking prior to 24 months of age in a population 

in which sexual maturation does not occur until at least 26 months of age [Pereira 

1995]—are consistent with this hypothesis, and the hormonal data to directly address 

it will soon be produced by M. Teague O’Mara and myself. 

 The developmental schedule of other types of marking behavior suggests a 

potential role for prenatal organization of marking behavior. Despite the accelerated 

somatic and gonadal maturational schedules that characterize captive settings and 

that are reflected in the early onset of anogenital marking in captivity compared to 

the wild, the juvenile onset of brachial and antebrachial marking behavior at 12-13 

months of age appears to be invariant across settings (Figure 7-1). This invariance 

suggests that the juvenile onset of brachial and antebrachial marking is unrelated to 

somatic growth. It bears resemblance to the onset of male-typical urinary behavior in 
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domestic dogs, which is determined by prenatal and neonatal (but not postnatal) 

hormones [Ranson and Beach 1985]. Still, juvenile rates of brachial and antebrachial 

marking do not mirror adult rates, suggesting that juvenile and adult marking 

behaviors are motivated at least partially by different causal factors. Perhaps they 

come under the control of gonadal hormones at maturity even though they are not 

dependent on gonadal control in the juvenile period, as with male mounting 

behavior and female patterns of infant interest in rhesus and pig-tail macaques, 

respectively [Maestripieri and Zehr 1998; Wallen et al. 1991]. 

 

Fig. 7-1. Developmental timing of scent marking behaviors in captivity (solid 
symbols) and at Beza Mahafaly (open symbols). Tail play, wrist mark, and brachial 

mark data are from Palagi et al. [2002], which observed individuals only through the 
age of 18 months. These behaviors are marked in grey through 24 months because 
they are unlikely to have ceased between the ages of 18 and 24 months in captivity. 

 

Unfortunately, aside from the inferences made above, investigating the role 

of prenatal hormones in lemur sex-typed development was well beyond the scope of 

this particular study and will have to wait for future research. Therefore, regardless of 
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the outcomes of impending research on postnatal hormonal development, this study 

will never be able to rule out the hypothesis that juvenile lemur sexual differentiation 

is hormonally programmed in the womb, and that no kind of social input need be 

invoked to explain sexual differentiation. Certainly, much experimental work has 

established the important roles of both prenatal and postnatal hormones in the 

development of sex-typed behavior, and sexual differentiation does not proceed 

normally without their appropriate, sex-typed input in other primate species 

[Deputte and Goy 1991; Eisler et al. 1993; Goy and Phoenix 1971; Goy et al. 1988; 

Maestripieri and Zehr 1998; Pasterski et al. 2005; Pomerantz et al. 1986; Thornton 

and Goy 1986; Wallen 2001; Wallen et al. 1991; Wallen and Hassett 2009]. Still, while 

experimental work has shown that hormonal inputs are crucial to the normative 

development of sex-typed behavior, it has also shown—across many species and 

many behaviors—that the acquisition of the adult behavioral phenotype 

simultaneously relies on social input [Capitanio 1984; Champoux et al. 1992; 

Champoux et al. 1991; Goldfoot 1977; Harlow 1962; Harlow 1965; Harlow and 

Harlow 1962a; Harlow and Harlow 1962b; Maestripieri 2005a; Maestripieri et al. 

2007; Mason 1978; Ruppenthal et al. 1976; Suomi 1997; Wallen 1996; Wallen 2005; 

Wallen et al. 1977; Wallen et al. 1981] and that social environment and/or experience 

can affect the expression of hormones that are typically thought to contribute to the 

development and expression of sex-typed behavior [e.g., Muller et al. 2009; Wobber 

et al. 2010]. Therefore, a position that envisions juvenile lemurs as prenatally 

hormonally programmed automatons is less reasonable than the alternative 

hypothesis I now put forward. 
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JUVENILE MODEL-SEEKING 

This study conclusively demonstrates that sex-typed treatment of subadults 

by adults is uncommon (or, at most, subtle) compared to the expression of sex-typed 

behavior on the part of juveniles, which suggests that juvenile Lemur catta are likely 

the prime movers of their sexual differentiation, not adults. This is not to say that 

sexually differentiated interactions with adults are unimportant in the development 

of species typical sex-typed behavior. Even when sexually differentiated social 

interactions result from juvenile-driven sexually differentiated proximity patterns, 

those social interactions may be important for further shaping behavioral sex 

differences. The evidence produced by this study simply suggests that, ultimately, the 

sexually differentiated developmental process in Lemur catta is more “bottom-up” 

than it is “top-down”—that subadults make the first sexually differentiated moves in 

their sexually differentiated social feedback loops and, with respect to behaviors that 

are not due solely to hormonal organization and activation, are largely responsible 

for driving their own behavioral sex differentiation.  

The portion of subadult behavioral sex differentiation that relies on social 

input may be driven primarily in ring-tailed lemurs by juvenile “model-seeking” 

[Agostini and Visalberghi 2005; Lonsdorf 2005; Pereira 1988; Schiel and Huber 

2006], and the way that juveniles ensure that they have access to sex-appropriate 

models may be through their proximity maintenance to them [Pereira 1988]. This is 

not a new idea, but considered from this perspective, the sex-differential treatment 

of juveniles by mothers is more likely an outcome of patterns of proximity of 

juveniles to their mothers than a cause of juvenile behavioral sex differentiation, and 

juvenile proximity patterns are justifiably considered to be more intrinsically than 
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extrinsically determined (although, granted, others will have some contribution to 

these patterns).  

If juvenile model-seeking via proximity maintenance is important in 

behavioral sex differentiation, increased aggression by mothers to juvenile females is 

more likely to be a response to some element of juvenile female proximity to 

mothers rather than a cause of it. Although this study did not find sex differences in 

juvenile proximity to mothers in measures derived from scan data, per se, other 

juvenile female proximity and behavioral tendencies documented in this study likely 

bring juvenile females in closer proximity to their mothers. For example, compared 

to male peers, juvenile females are more often in proximity to and spend more time 

grooming infants. Sometimes, these infants would have been their siblings and would 

have been in close association with their (shared) mothers. Perhaps juvenile female 

proximity to and increased interactions with their own siblings made them more 

likely than juvenile males to attract their mothers’ ire. There may be other measures 

of intrinsic juvenile behavior not yet quantified from these data that will help to 

assess this hypothesis of juvenile model-seeking via sexual differentiation in 

proximity, and the narrower (and quite different) focus of this question will direct 

further investigation of this dataset. 

Juvenile seeking of adult behavioral models is to be expected in sexually 

differentiated systems. This type of bottom-up social learning would seem to be a 

more effective target of selection than top-down socialization, and a juvenile model-

seeking process of behavioral sex differentiation is consistent with the rarity of 

teaching found in non-human animals [Whiten et al. 2003] but the commonness of 

social learning by imitation, goal emulation, and other mechanisms in which the 



336 

responsibility for social learning rests with the learner [Galef and Laland 2005; 

Hoppitt and Laland 2008; Pike and Laland 2010; Webster and Laland 2008]. Juvenile 

model-seeking also seems to apply to the acquisition of sex-typed foraging behavior 

in primates [Agostini and Visalberghi 2005; Lonsdorf 2004; Lonsdorf 2005]. If 

juveniles acquire all of their socially influenced behavioral sex differences through 

model-seeking, then sexual differentiation in feeding and foraging behavior need not 

be considered a confound of sexual differentiation in non-foraging contexts;  instead, 

both may be more appropriately considered parallel manifestations of the same 

underlying process of behavioral sex differentiation. 
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