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ABSTRACT  

   

This work focuses on simulation of electrical resistivity and optical 

behaviors of thin films, where an Ag or Au thin layer is embedded in zinc oxide. 

Enhanced conductivity and transparency were earlier achieved with multilayer 

structured transparent conducting oxide (TCO) sandwich layer with metal 

(TCO/metal/TCO). Sputtering pattern of metal layer is simulated to obtain the 

morphology, covered area fraction, and the percolation strength. The resistivity as 

a function of the metal layer thickness fits the modeled trend of covered area 

fraction beyond the percolation threshold. This result not only presents the 

robustness of the simulation, but also demonstrates the influence of metal 

morphology in multilayer structure. Effective medium coefficients are defined 

from the coverage and percolation strength to obtain simulated optical 

transmittance which matches experimental observation. The coherence of 

resistivity and optical transmittance validates the simulation of the sputtered 

pattern and the incorporation of percolation theory in the model. 
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Chapter 1: INTRODUCTION 

 

1.1. Transparent Conducting Oxides 

 

Transparent Conducting Oxides (TCOs) have attracted lots of attention due to their 

transparency in visible region, metallic conductance and along with wide range of 

applications in industry. For photosensitive electronic devices, TCOs are essential 

components acting as transparent electrical contacts or electrodes in flat panel displays, 

touch screens, thin film solar cells, and electrochromic devices [1-4]. Many researches 

are dedicated to improve the quality of TCOs for specific requirements depending on the 

targeted application. Generally, a certain sheet resistance is needed in order to meet the 

electrical functionality. The range of sheet resistances is from the order of 400–700 Ω/sq 

required for electrodes in touch screens to below 10 Ω/sq for large area flat panel displays 

and thin film solar cells [5]. Another important property is the transmittance of the layers 

in the spectral range of interest. This range can be determined by the sensitivity of human 

eyes, the efficiency of the absorber material for solar cells, or the emission spectra of the 

active materials used for new lightening technologies[2]. 
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The most popular TCOs are tin-doped indium oxide (ITO), fluorine-doped tin oxide, 

and aluminum-doped zinc oxide. ITO has low electrical resistivity, 2x10
-4 
Ω cm at 

deposition temperature above 250 ℃, and intrinsic band gap 3.7 eV. However, Indium is 

a scarce metal which has increasing demand and also market value. Among all of 

potential ITO substitutions, a TCO/Metal/TCO sandwich structure is proposed to meet 

desired properties and to reduce demands on indium. This multilayer structure is proved 

to have competent quality because the metal interlayer allows one to decrease the overall 

resistivity even though the TCO electrical quality is not optimum [6].  

 

Besides of resistivity, the choice of substrates also plays an important role in 

deciding proper TCOs. The major production of flat panel displays and thin film solar 

cells is based on glass substrates which provide rigid support and can stand the high 

temperature in manufacturing process. However, it is necessary to replace rigid glass with 

flexible plastics in order to meet the expectation for growing renewable energy and 

electronic markets with low prices. It is easier to handle the thickness of polymer foils 

which can vary from tens to hundreds of micrometers. One issue arises in replacing. That 

is, polymer foils are relatively unstable in high temperature which is required in process. 

TCO/Metal/TCO demonstrates its another advantage in achieving good quality under low 

process temperature and becomes a good substitution of TCO single layer [7]. The 

TCO/metal/TCO electrodes have been applied to organic luminescent displays and 

organic photovoltaic devices [7, 8], also in inorganic liquid crystal displays, flexible 

random access memories, capacitors, gas sensors, and dye-sensitized solar cells [6]. 
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1.2. TCO/Metal/TCO Thin Films 

As a solution in material scarcity and substrate heating, TCO/Metal/TCO thin films 

are widely studied in its ability on flexible and low-cost plastic substrates such as 

polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).  

 

Metal layer is the key element in determining the sheet resistance of the 

TCO/metal/TCO structure. Ag is the first choice for the metal interlayer due to its low 

resistivity comparing to other metals, followed by Cu that has an only slightly higher 

value. However, for metal thin films, the transmittance and the sheet resistance change 

rapidly with layer thickness. Due to a transition from a continuous film to one composed 

of distinct islands of metal atoms, properties differ considerably from the bulk metal. In 

general, the critical thickness for this transition depends on the substrate and deposition 

conditions in addition to the specific metal. 
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1.3. Objective 

As increasing attention paid on TCO/Metal/TCO multilayer structure, it is essential to 

understand how metal interlayer results resistivity improvement. Due to the lower optical 

transmittance of metal thin films than pure TCO, the resistivity and the transmittance 

need to compromise for each other as increasing metal layer thickness. In order to 

determine a critical thickness of metal layer, a comprehensive understanding in metal 

layer morphology will assist the discussion of resistivity and optical transmittance.  

 

However, most of embedded metals are not able to be seen by present instruments. A 

lack of study in this field makes experimental results have no path to follow. We therefore 

want to combine a surface morphology simulation and percolation concept to describe the 

resistivity and optical transmittance for different metal thickness in the multilayer 

structure. With this new view point, one should be able to not only fit previous 

experimental results, but also predict the critical metal thickness that results morphology 

transition of metal and resistivity transition of the whole sandwich structure. 
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1.4. Summary 

To simplify the system in discussion, we focus on ZnO/Ag/ZnO and ZnO/Au/ZnO 

which both have complete experimental results done by previous members in our 

research group [9, 10]. Both of the cases were using magnetron sputtering due to its 

advantages in ease of large-area-deposition, low deposition temperature, high deposition 

rate, good adhesion on substrate, good uniformity and simple equipment. The similarity 

in materials and deposition method makes the comparison easier.  

 

A metal surface simulation will be demonstrated in chapter 2. This simulation 

provides the morphology change of the metal interlayer, including particle distribution, 

covered area fraction and percolation phenomena. Basing on the percolation phenomena, 

we propose the resistivity change with metal thickness should be dominated by the 

percolating morphology of the metal layer. A discussion of percolation theory, critical 

thickness prediction and data fitting are contained in chapter 3. Optical transmittance also 

gives evidence in supporting our model. We will introduce Bergman effective medium 

model in order to calculate optical transmittance in chapter 4. Bergman model also uses 

percolation concept to describe the optical properties of discontinuous metal layer. With 

simulated resistivity and optical transmittance, we are able to find the largest Haacke 

figure of merit which points out 9 nm metal interlayer is the best thickness for solar 

applications. The conclusion will be addressed in chapter 5. 



6 

Chapter 2: METAL SURFACE SIMULATION 

 

2.1.  Introduction 

Due to the low resistivity of metal, great improvement in resistivity has been 

observed in dielectric-metal-dielectric multilayer structure. It is obvious that the more 

metal is embedded the lower resistivity can be performed. However, in order to keep the 

advantage of transparent conducting oxide, a thinner metal layer is preferred to retain the 

transparency. Fortunately, a few nanometer metal thin layer already provides acceptable 

resistivity which is more than four orders lower than pure oxides and also thin enough to 

allow light transmission [11]. In this thickness, metal layer is so thin that islands appear 

instead of continuous and homogeneous film. Therefore, the morphology of these islands 

should dominate the conduction mechanism. Also, possible optical resonance on metal 

should be taken into consideration [12-14]. In pursuing a balance between transparency 

and resistivity, we need to have a full understanding in the metal thin layer, including 

morphology, conduction mechanism and effects in transmittance.  

 

Although scanning electron microscope (SEM) and atomic force microscopy (AFM) 

can provide good images of metal islands, strong dependence of manual analysis, 

including counting islands and measuring spacing between islands, makes the extracted 

parameters unreliable and inaccurate [15]. Moreover, for the whole multilayer structure, 

it is hard to have metal only images. To overcome these problems, we simulate metal 

deposition and perform a simulated metal surface with reasonable extracted parameters. 

Comparing images and our model, one can obtain a clear view of metal layer, especially 
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on its dependence of deposition time and thickness. It will be easy to adjust simulation 

parameters for different materials or deposition methods. 

 

In this chapter, the concept of our simulation and how to connect simulation results 

to experimental observation will be described. A discussion in the formation of a 

continuous metal film from discontinuous islands will also demonstrate the reliability of 

our simulation. 
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2.2.  Sputtered pattern simulation 

2.2.1. Metal Island Growth  

 Depending on deposition rate, metal islands on a flat substrate will grow into 

uniform thin film under different paths. Under low deposition rate, one can imagine 

atoms attach to the substrate one by one. The very first atom has high mobility to walk 

randomly on the substrate, as does the second atom. It is highly possible that two atoms 

meet and form a larger island which has lower mobility. This island will then meet the 

consequent atoms and keep increasing size and decreasing mobility. Slow deposition 

machine, such as molecular beam epitaxy, can produce films with large grains. However, 

in our case, sputter deposition is used, causing many isolated atoms present before 

migration or large islands form. Atoms bond to neighbors before they migrate to a distant 

island. Also, consider adatom-adatom interaction; metals themselves have stronger 

bonding energy than the one between metal and amorphous oxide. Therefore, it is more 

possible that metal grows under Volmer-Weber (V-W) growth mode [16]. V-W mode 

described thin film growth starts from islands formation. Even when thickness of thin 

film is larger than one monolayer, islands are preferred to be the main morphology.  

 For our few nanometer metal thin layer, two stages of formation has been 

proposed [9]. In the beginning, as the deposition time increases the number of islands 

also increases, but no obvious coalescence shows up until stage two. During this period, 

island formation follows V-W mode. In the second stage, islands are dense and able to 

coalesce with others to decrease their surface potential. A detailed discussion and another 

stage of formation will be performed by comparing real sample images and simulation 

results.  
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2.2.2. Simulation concept 

 We make two straight forward assumptions in sputtering mechanism. First, for a 

given time interval, the same amount of metals will be sputtered onto the substrate. 

Second, those metals are randomly distributed clusters having the same size. That is, for a 

certain area, there is a possibility (p) to be occupied by a certain amount of metal. As the 

sputtering time increasing to two time intervals, another randomly distributed deposition 

layer with the same p will overlap on the first deposition result. Therefore, increasing 

sputtering time is proportional to increasing the number of passed layers.  

 

 To achieve this layer-by-layer simulation, we generate an L square array to 

represent each pass in which each site position has the same possibility (p) to be occupied. 

Then, we take the integral of the results for several passes where each has the same 

occupied possibility but randomly distributed occupied positions. A schematic figure 

presents this concept (figure 2.1.A). Figures 2.1.B, C, and D demonstrate integral results 

of one, two and three passed layers, respectively. It can be observed that some positions 

have surrounding neighbors and some do not. Neighbors are defined as those that connect 

with each other only 1 site from the top, bottom, left and right. In figure 2.1.E, different 

colors indicate different isolated islands. It should be noticed that each island has 

different shapes and distances to other islands. This two results play important roles in 

conduction mechanism and will be discussed later.  
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A 

 

 

 
B                         C                         D 

 

 
E 

 

Figure 2.1. Illustration of simulation concept (A) and occupied sites for the integral of 

different number of passed layers (B-E): In A, layer-by-layer deposition 

concept shows adding number of passed layers with different distribution of 

occupied sites. B, C, and D demonstrates the increase of occupied sites with 

1, 2 and 3 number of passes, respectively. E uses different colors to indicate 

different isolated islands. 
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 To build the sputtered pattern in 3-D, we need to determine its shape and volume. 

Although many different shapes of sputtered metal clusters are possible, a hemisphere is 

one of the most possible and easy to define shapes. Therefore, in our simulation, we 

apply a hemisphere to represent sputtered metal clusters. A hemisphere replaces and is 

centered at an occupied position of previous discussion. The radius of this hemisphere is 

the distance between two array points (1 unit). This simulation enhances the overlapped 

areas between two adjoined occupied positions which matches our expectation that 

adjoined metal clusters prefer to aggregate for decreasing surface potential. 

 

Our simulation code is built on Matlab R2011, distributed by the MathWorks 

company. Program flow starts from assigning a size (L) for an array. An L x L array will 

be created and each site in this array has a random number between 0 and 1, which is 

generated by Matlab’s built-in random number generator. By choosing a desired 

probability p, all sites with a random number smaller than p are kept and their positions 

are also recorded as coordinates on an x-y plane where hemispheres with a radius of 1 are 

located on recorded positions. Adjusting p allows us to determine the desired density of 

occupied positions in each pass. Depending on the random numbers generated each time, 

the actual recorded positions will be different. For another pass, a new L x L array is 

created with different random numbers and recorded positions. By adding two layers 

together, we can say it represents the deposition results for two time intervals. Our 

simulation uses a start-from-beginning calculation. That is, to obtain the integral results 

of three passes and five passes separately, it will generate three arrays and another five 
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new arrays instead of simply adding the result of two passes on the one of three passes. In 

this way, we can have more general distribution without a strong dependence on previous 

results. 

 

 The 3-D layer-by-layer deposition result is performed and shown in figure 2.2 A 

(array size: 15, probability: 0.1, number of passes: 2) Another parameter, contour value, 

is introduced here to increase the flexibility of our surface simulation. As discussed above, 

metal clusters will reshape themselves to achieve the lowest surface potential. Therefore, 

a little edge shrinking should be expected to match a practical situation. The contour 

value c is a variable parameter that can be used to determine the top contour view of 

vertical height. By changing the c value, one can emphasize on his/her expecting 

phenomena. For example, a lower c will generate a surface with clusters widely spread. 

On the other hand, a higher c corresponds to a surface which contains clusters with 

smaller radiuses and emphasizes the threshold for the appearance of large-area 

coalescence. Therefore, in a low c case, the coverage is relatively large for the first few 

passes, but for the integral coverage of a large number of passes increasing rate of the 

coverage slows down. Figure 2.2 B demonstrates the contour plot of figure 2.2 A with 

c=0.5. We will define islands and calculate areal coverage and distances between islands 

based on this type of contour plots. 
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A 

 

 
B 

 

Figure 2.2 Topography and morphology simulation. A is a 3-D layer-by-layer deposition 

result (array size:15; probability:0.1; number of layers:2). B is a 2-D contour 

plot of A ( contour height=0.5) 
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2.3. Results and sample images 

We use “coverage” here to represent the total covered area fraction in our simulation. 

Because we set a contour value, we are able to consider the edge-shrinking effect and 

focus on large island formation. However, the coverage becomes different from simply 

calculating the probability of appearance. We need to count the whole covered area on 

the contour plot. Three curves in figure 2.3 demonstrate the influence of different p, c to 

the total coverage. The p value dominates the increasing rate of coverage as the number 

of passes increases. The c value mainly controls the total coverage in the first few passes. 

The solid curve in figure 2.4 A is the simulated coverage change with increasing 

number of passes for p=0.1 and c=0.5. The tendency is similar to a second order 

polynomial starting from 0 and getting close to 1 when the number of passes is larger 

than 6. For real samples, we can also obtain coverage extracted from SEM images of bare 

metals on oxides. Figure 2.4 B is a series of images of Ag on the top of ZnO. The Ag 

layer is not covered by another layer of ZnO. The ZnO is sputtered at 10 mTorr argon 

pressure using 100 W RF power. Ag is deposited using 10 mTorr argon pressure and 40 

W DC power. The thickness labeled on figures are determined by Rutherford 

Backscattering Spectrometry. The coverage is analyzed in ImageJ. Rough analysis of 

coverage indicates the covered areal fractions are 0.39, 0.64, 0.82, 0.92 for 2nm, 4nm, 

6nm, 8nm Ag layer, respectively. Accuracy is influenced by manual color threshold 

control and image contrast. As can be seen on images, there are wrinkles on Polyethylene 

Naphthalate (PEN) substrates. Because PEN is one type of polymer, heating during 

sputtering and SEM scanning may result in agglomeration of polymers and destroy the 

smooth surface.   
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By comparing the coverage extracted from images to simulation results, we see the 

coverage of 2 nm, 4 nm, 6 nm and 8 nm match the simulated coverage for number of 

passes 2, 4, 6 and 8, respectively. This discrete mapping not only supports our layer-by-

layer growth assumption, but also gives a clue in connecting real samples and the virtual 

number of passes. Therefore, we are able to tune the p and c values for a better fitting to 

the real coverage change. Our goal is to build a surface to describe statistical behaviors 

and minimize number of samples prepared. Even though simulated patterns are not 

exactly the same as observation, the continuous curves describe overall behaviors which 

are close to the observation.  

 

Figure 2.3. Coverage comparison with respect to different occupant probability (p) and 

contour height (c).  

For red solid line, the p equals to 0.08 and c is 0.5. Black solid line has lower 

p (0.04) and the same c (0.5) as red one. A slower increasing with respect to 

number of passes is observed and indicates probability dominates coverage 

increasing rate. Blue dashed line has the same p (0.08) as red solid line but 

lower c (0.1). Higher increasing rate in the first few number of passes but 

small increase for larger number of passes are due to little emphasis on 

overlapping phenomenon for small contour height value. 
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A 

 

 
B 

 

Figure 2.4. Coverage prediction and SEM picture comparison. A has a predicted 

coverage in solid line and four shaded squares (■) representing coverage 

extracted from SEM pictures shown in B. B contains four SEM pictures 

with different metal thickness: Above left, 2 nm; above right, 4 nm; below 

left, 6 nm; below right, 8 nm.  
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As described in Metal Island Growth section, we expect to find nearest distances 

between islands continuously decrease due to more islands formation. However, our 

simulation results show that after first decreasing an increase of spacing ensues (figure 

2.5.) In the same figure, one can observe the number of islands increases at the beginning 

and turns to decrease at the same time island spacing increases. This explained what 

exactly happens when coalescence starts to dominate surface morphology. In the 

beginning of deposition, the number of islands increases while space is filled by small 

islands, so their spacing decreases. However, as islands start to coalescence with nearest 

neighbors, the number of islands is less and large spacing is left. Then, we observe the 

averaged spacing increases. Further coalescence and coarsening result in continuously 

decrease in both the number of islands and their spacing as expected. The turn point 

presents evidence in large scale coalescence. Reasonable explanation indicates the 

robustness of our simulation that can predict and describe real morphology change. 
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Figure 2.5. Predicted number of islands per unit area and average distance between 

islands. Linked black shaded squares (--) represent the number of islands 

change with increase of metal layer thickness. Blue shaded triangles (-▲-) 

denote the distance between islands change with increase of metal layer 

thickness. Red dashed circle points out unexpected change which is closer 

to real observation. 

 

2.4 Summary 

Details of the algorithm of our simulation are given in this chapter. Discussions also 

show the reasonableness and the reliability of our simulation. It should be noticed that we 

have two parameters p and c which can be obtained by considering extracted information 

from image analysis and comparing with different material. Simulation results give us 

distances between islands and coverage change with thickness. In later chapters, 

simulation results will be used to explain the resistivity variation and to determine 

effective medium coefficient in describing optical behaviors.  
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Chapter 3: RESISTIVITY WITH PERCOLATION THEORY 

 

3.1  Introduction 

Transparent conducting oxide (TCO) embedded with metal thin layer has been 

widely studied because of their specialty. Great improvement of conductivity but 

elimination of transparency with increasing metal layer thickness make it extremely 

important to find a critical thickness of the metal layer that has low resistivity but remains 

qualified transparency. In order to gain insight on this issue, we focus on the dielectric-

metal-dielectric stacks which were fabricated, measured and reported previously from our 

group. As described in chapter 1, zinc oxide has great potential as a commercial TCO 

material, and noble metals, Au and Ag, are proposed to be most suitable due to their 

optical performance. In this chapter, we will demonstrate how our simulation results 

predict and fit experimental results by using the concept of percolation. 
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3.1.1. Sample discussion and Resistivity model 

 There are two types of sample in our discussion. First, we look into variation of 

resistivity of ZnO/Ag/ZnO and then migrate to ZnO/Au/ZnO as a further proof for the 

robustness of our simulation.  

 

As a consequent study of previous experimental results, we follow the same 

fabrication procedure and conditions [9, 10]. Both ZnO/Ag/ZnO and ZnO/Au/ZnO 

samples are deposited on flexible substrate polyethylene naphthalate (PEN) for potential 

studies on flexible display.  

 

Details of fabrication can be found in previous reports [9,10], partial information is 

provided here for better understanding of sample structure. The base pressure prior to 

deposition was approximately 1x10
-7

 Torr. The ZnO was sputtered at 10 mTorr argon 

pressure using 100 W RF power. Silver and Gold were deposited using 10 mTorr argon 

pressure and 40 W DC power. There was no break in vacuum at any stage during the 

preparation of the films. Both top and bottom ZnO layers were approximately 30 nm 

thick. The Ag thicknesses were varied between 8 nm and 14 nm, Au thicknesses were 

varied between 1 nm and 12 nm. Schemes in figure 3.1 A show the construction of two 

different stacks. 
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A 

 

 
B 

 

Figure 3.1. Illustration of two ZnO/Metal/ZnO and parallel resistor model. Left figure in 

A is ZnO/Ag/ZnO configuration; right figure in A is for ZnO/Au/ZnO. B has 

three resistors (two for ZnO and one for metal layer) connecting in parallel. 

 

Figure 3.1.B schematically presents our model that the resistance of the top and 

bottom ZnO films are in parallel with the resistance from metal layer. This model is 

straight forward and reasonable in describing the dominant role in resistivity of each 

layer. However, in our observation, metal layer is filled by discontinuous islands, so bulk 

or thin film resistivity are both not applicable here. We propose a new view point by 

looking into the percolation phenomena of metal thin film. Using the simulation result of 

sputtered pattern from the last chapter, a fitted curve appears and shows critical metal 

thickness and resistivity change.  
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Figure 3.2.A and B show the change of resistivity of ZnO/Ag/ZnO and 

ZnO/Au/ZnO, respectively. From our group’s previous experiments [9, 10], one can 

observe the resistivity drops at 8 nm Ag stack, but the lack of data points with metal 

thickness between 0 nm and 8 nm makes the critical drop point vague. More clear and 

dividable stages in ZnO/Au/ZnO indicate three possible stages: For 0 nm to 2 nm Au 

films, a slow decrease of resistivity implied a discontinuous film and its limitation in 

resistivity improvement. After that, a steep change in resistivity indicated metal thin film 

start to dominate the resistivity of the whole stack. What is happening during this 

transition is our main concern. 

 

    
        A                                                             B 

Figure 3.2. Resistivity of ZnO/Ag/ZnO and ZnO/Au/ZnO versus metal layer thickness. 

A is for Ag embedded multilayer structure; B is for Au embedded structure. 
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3.1.2. Percolation theory 

 In observing metal island coalescence, we find a similar phenomena to 

percolation. Relative observation has also been reported [15]. Resistivity of thin metal 

film changes with annealing time and temperature were also related to percolation of 

metal morphology [17]. The importance of morphology gives us a hint and makes us 

question ourselves how the resistivity changes when the morphology is in transition, 

especially from isolated islands to uniform metal thin films. Here is an introduction of 

percolation as a preview of the concept which will be discussed later. 

 

 Percolation theory is usually applied to describe phase transition. With a given 

probability of occupancy for each site, adjoined sites form a cluster if they happened to 

be both occupied. Figure 3.3. shows the occupied sites when p=0.5 and p=0.6. Different 

isolated islands are colored with different colors. Arrows in both ends of one large cluster 

in figure 3.3. point out the appearance of an infinite cluster when p is large enough. 

Percolation threshold (pc) is the critical probability that an infinite cluster may appear. If 

the probability is larger than pc, there is at least one infinite cluster regarding to all sites. 

The value of pc strongly depends on the dimension of sites, bonding type, and lattice 

structure. For an one dimensional lattice, percolation threshold is 1 which means all sites 

have to be occupied to form an infinite chain. For a 2-D square lattice, percolation 

threshold is about 0.593. Accuracy depends on the number of calculated sites. 
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Figure 3.3. Illustration of occupied sites and clusters in different probability.  

Each color represents one cluster. Left picture has more small individual 

clusters than right one. An infinite path appears from one arrow to another in 

right picture. 

 

 The resistivity change with respect to two dimensional percolation was performed 

by Last and Thouless [18]. They punched holes to control the removed area of a 

conductive paper. Removing conductive area is the opposite direction from our case 

which adding more mass to form connection. The more removed areas caused lower 

conductivity. Their results indicated that a more rapid drop in conductivity occurs when 

the concentration of holes close to a threshold value. When the concentration of holes is 

lower than threshold, there are many paths for electrons to travel through. As closing to 

threshold, most paths are disconnected and lots of daggling paths on the rest of connected 

paths. Those daggling paths result in conductance rapid drop because even they present 

as paths but they have no contribution to the conductance. Once all paths are 

disconnected from one side of paper to the other side. It is called percolation threshold 

[18].   
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It is well known that conductivity has a relationship with occupancy probability as 

        
  [18] where pc is the threshold probability and   is the conductivity 

exponent.  

 

In the case of no biased percolation disorder,   equals to 1.299 [18]. However, the 

coalescence of metal islands in our case differs from simple percolation. The coalescence 

is mainly caused by the increase of deposited mass which makes both lateral and vertical 

growth. However, in observing percolation on our metal layer morphology, we only 

emphasize on lateral distribution. This emphasis diverges our model from unbiased 

situation.   , therefore, in later resistivity discussion   will be set as a free scaling 

parameter. Our goal is to find a certain deposition time (or thickness) that islands form 

large clusters and dominate the resistivity of the multilayer structure. Moreover, an 

interesting view point is to determine percolation strength which corresponds to how 

many sites are involved in infinite metal clusters on the surface. This percolation strength 

is an important parameter not only in resistivity calculation but also in optical effective 

medium coefficient calculation. Percolation strength (P) is defined as following 
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3.2  Metal thin film model 

 From the morphology of sputtered Ag on ZnO, we notice metal islands form first 

during a short sputtering time and then large scale of coalescence happens before 

continuous film appears. A continuous film can be referred to continuous paths for 

electron transmission. When the spacing between paths is filled, a continuous film 

becomes an uniform film. These phenomena indicate three stages instead of two in 

previous report [9]. Figure 3.4. divides this three stages into A, B and C schematic plots: 

A) Islands only; B) Percolating, may or may not reach threshold; and C) well-covered 

surface. For our interest of finding the decrease of resistivity, we focus on stage B, that is, 

when islands become large clusters and form conducting paths. In this stage, the surface 

contains some continuous paths but also some discontinuous islands. We need to take 

percolation strength into consideration. 

 

 

Figure 3.4. Illustration of metal morphology in different stages: In A stage, there are 

small islands only. In B stage, islands start to connect with each other and 

form larger conducting paths. In C stage, the surface is an uniform metal 

layer. 
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We start from our simulation. As described in chapter 2, we can have a sequence of 

surfaces denoting the results for a sequence of deposition time. The random array for 

defining possible metal location has dimensions of 50 x 50. The 3-D array for profiling 

metal hemisphere is 10 times larger with a step 0.1 between consequent integers. Figure 

3.5. is a sequence of the morphology of deposition results, with probability p=0.1 and 

contour height c=0.5. Figure 3.4 A-H demonstrates the integral results of different 

number of passed layers from 1 to 8 as described in chapter 2. Table 3.1 contains useful 

information extracted from morphology simulation results. It includes the numbers of 

islands, the nearest distances between islands, the average sizes of spacing, and 

percolation strength. All the length-related numbers are timed a factor (factor= 1.5) to 

match from the dimensionless array numbers with real observation from SEM images. In 

defining the percolation strength, we use the longest cluster in every simulated surface as 

the percolating chain. It is obvious that percolation strength approaches the coverage for 

large number of passes because only one large island is left.  

 

Figure 3.5. Simulated metal surface morphology. From A to H, the number of passes 

continuously increase from 1 to 8. Green filled areas represent metal; black 

edges are metal island boundaries.  
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Table 3.1. Information extracted from morphology simulation results, including coverage, 

island morphology and percolation strength 
Thickness 

(nm) 
Coverage 

Number of Islands 

(/sq) 

Distance (nm) 

(Nearest distance)  

Spacing (nm)  

(hole size) 

Percolation 

Strength 

1 0.20 25 13.3 37.5 0.02 

2 0.40 30 6.7 45.2 0.06 

3 0.53 26 8.7 39.1 0.07 

4 0.64 13 7.4 19.5 0.19 

5 0.75 9 6.3 13.5 0.58 

6 0.83 6 4.9 9.3 0.72 

7 0.87 4 1.8 6.2 0.84 

8 0.91 2 1.8 3.3 0.90 

  

 

Simulation results indicate the coverage follows a second order polynomial. The 

coverage obtained from SEM images and simulated coverage are shown in chapter 2. 

There is a great match of simulated coverage as p=0.1 and c=0.5 to the coverage from 

images with respect to embedded Ag thickness. The number of passes matches deposited 

thickness. In this demonstration, we find the two reasonable parameters to simulate the 

coverage. Different values of parameters may be needed in discussing different sputtering 

conditions and materials. 
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3.3 Resistivity tendency prediction 

3.3.1. ZnO/Ag/ZnO 

 From Han’s experimental results [9], we can see a drop in resistivity of 8nm Ag 

embedded thin film. Unfortunately, a lack of data points makes it difficult to address a 

continuous curve in describing resistivity change. In Han’s discussion, a continuous film 

appears when Ag thickness reached 14 nm. From percolation view, this means there is a 

threshold thickness smaller than 14 nm. Our objective is to determine the threshold 

thickness that percolating Ag layer has a resistivity low enough to dominate the 

resistivity of the whole sandwiched ZnO/Ag/ZnO.  

 

 Simulation results tell us large percolation occurs when Ag thickness increases 

from 4 nm to 5 nm when percolation strength jumps from 0.19 to 0.58. We can therefore 

assume the threshold is somewhere between this range. As discussed in introduction of 

percolation theory, we know the resistivity will be proportional to       
  . Although 

each point here has different probability of occupancy, a reasonable use of coverage for 

both p and pc eliminates the bias since it exits in both values. Correction factor goes into 

exponent  . Therefore, pc becomes the critical coverage of metal layer; p is the coverage 

varying with metal layer thickness.  

 

A best fit curve is the solid line presented in figure 3.6. Critical thickness of Ag 

layer is 4.6 nm where continuous paths form, but an uniform film does not appear until 

the thickness reaches 14 nm. Exponent   equals to 3.0. In thickness range from 4.6 nm to 

14 nm, percolation phenomenon dominates the metal interlayer morphology. Therefore, 



30 

the resistivity drop with respect to Ag thickness mainly follows its relationship with 

morphology transition. For thickness thinner than 4.6 nm, discontinuous metal layer 

along with relatively far apart islands remain high resistivity which may mainly depend 

on the electron ability in tunneling and thermal emission. Percolation phenomenon in this 

region demonstrates little influence. On the other hand, as the thickness increases over 14 

nm where the metal layer is uniform, one can expect another drop in resistivity because 

uniform film has even lower resistivity. From the observation, the resistivity is 

approaching to the one of pure metal thin film (10
-6

 Ω cm), but the limitation at around 

10
-4

 Ω cm indicates the existence of contact resistance and other effects should be taken 

into consideration, such as grain boundary scattering and electron mean free path length. 

 

Figure 3.6. Resistivity simulation of ZnO/Ag/ZnO versus the thickness of Ag layer. Red 

solid line denotes simulation where the coverage change of Ag layer 

dominates the resistivity change. Black shaded squares () are original 

experimental results. 
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3.3.2. ZnO/Au/ZnO 

 Since our model works in Ag case, another application on Au interlayer case will 

prove the robustness of the model. We now use Sivaramakrishnan’s resistivity results on 

ZnO/Au/ZnO [10] which shows more specific stages transition.  

 

 Two parameters in simulation need to be adjusted to simulate the behavior of gold 

on ZnO surface, especially its wetting ability. Although many studies on Ag and Au 

nanoparticles have been done [19-21], most of them discussed about adhesion energy of 

metal on orientated oxides instead of amorphous ones like ZnO from sputtering. However, 

a quantitative comparison indicates that smaller but better uniform distributed Au 

particles should be expected. Therefore, we use a little higher p=0.16 and c=0.6 than 

those in Ag case to simulate Au surface which has more generally distributed small 

sputtered particles. Figure 3.7. contains Sivaramakrishnan’s data points and one solid 

fitted line which follows       
   . pc is the coverage of a 2.6 nm thick Au layer and 

decay exponent   here equals to 2.3. This gives us a critical thickness, 2.6 nm, which is 

the turn point when the resistivity of metal layer starts to dominate. The metal layer 

becomes uniform as the thickness reaches 7.2 nm. 
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Figure 3.7. Resistivity simulation of ZnO/Au/ZnO versus the thickness of Au layer. Red 

solid line denotes simulation where the coverage change of Au layer 

dominates the resistivity change. Black shaded squares () are original 

experimental results. 

 

3.4 Summary 

 Well fitted curves not only provide us a continuous tendency for easier calculation 

but also predict the thickness when the morphology largely changes. For ZnO/Ag/ZnO, 

resistivity starts to drop when Ag is 4.4nm thick, and an uniform film needs to be thicker 

than 10nm. For ZnO/Au/ZnO, Au middle layer percolates faster and greatly lowers the 

resistivity with 2.6 nm thickness, and it forms uniformity at 7.2 nm. Since our model can 

describe electrical behavior properly, a discussion of optical properties with calculation 

of effective medium coefficient will focus on ZnO/Au/ZnO in next chapter.  
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Chapter 4: OPTICAL TRANSMITTANCE 

 

4.1  Introduction 

High optical transmittance is an important characteristic of transparent conducting 

oxides. Since our multilayer structures have metal embedded, how does the metal layer 

behave in terms of optical transmittance becomes an issue in pursuing a highly 

conductive with good transparency material.  

 

 Although bulk metal barely presents transparency especially in visible light region, 

lights are able to transmit through thin metal films. This characteristic has been widely 

studied and used as a method to determine the thickness of thin film. However, when the 

thickness scale goes down to few nanometers, discontinuity has to be taken into 

consideration [22]. The optical properties of inhomogeneous materials can be described 

by so-called effective dielectric functions if the wavelength of the probing radiation is 

much larger than the typical sizes of the inhomogeneities of the system [23]. We 

therefore define an effective medium which has a matrix material and metal particles to 

represent the discontinuous metal layer. From the simulation results, we are able to 

describe the morphology change of metal layers with sputtering time. In the resistivity 

discussion, percolation behaviors demonstrate their importance in dominating the 

resistivity of metal layer. Therefore, our optical model will also include a parameter to 

describe the percolation in discontinuous metal layer.  
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 For future study in plasmon resonance, we would like to focus on noble metals 

which can result in surface plasmon. Since nice fitted resistivity tendency with 

percolating surface coverage on ZnO/Au/ZnO samples is demonstrated, we concentrate 

on simulating optical behaviors of Au embedded multilayer structures. The results will be 

another support of our percolation simulation. 

 

4.2  Bergman model 

Because of the discontinuity of metal layer, we replace a continuous thin film model 

with an effective medium which contains partial metal in a matrix material. The matrix 

material here is ZnO. In order to determine effective medium coefficient of discontinuous 

metal layer, we introduce Bergman representation [24] to calculate transmittance spectra 

of ZnO/Au/ZnO with respect to different Au thickness. 

 

 Bergman presented his calculation on effective dielectric constant of a composite 

material in 1978 [24]. Depending on the microscopic geometry of material, he defined a 

set of characteristic geometric functions, whose general analytical properties can be 

derived. It is also known as the most general form of effective medium approach: 

            
      

   

 

 
               

  

    
                          [24] 

 

    ,    and   are the dielectric function of effective medium, matrix material and 

embedded metal, respectively. A spectral density        contains all the morphological 

details of the microgeometry which are normalized in interval [0,1] for n. f is the volume 

fraction of metal in matrix material. Every microgeometry is represented by a particular 
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spectral density. However, a continuous spectral density is insufficient to describe the 

discontinuity of metal layer. A diverging term from continuous spectral density includes 

percolation strength and  -function in the form of                           . The 

g0 is a function of the volume fraction and the percolation strength. gcon describes the 

continuous terms as for uniform materials. The aim of this function is to describe the 

discontinuity of embedded metal. The weighting between matrix and metal material will 

determine the overall optical behaviors of materials. 

 

4.3  Optical transmittance simulation 

Transmittance spectra are obtained from the same ZnO/Au/ZnO samples in 

Sivaramakrishnan’s report [10]. Here are fabrication and measurement details. The base 

pressure prior to deposition was approximately 1x10
-7

 Torr. The ZnO was sputtered at 10 

mTorr argon pressure using 100 W RF power. Gold was deposited by using 10 mTorr 

argon pressure and 40 W DC power. There was no break in vacuum at any stage during 

the preparation of the films. Both top and bottom ZnO layers were approximately 30 nm 

thick. The Au thicknesses were varied between 1 nm and 12 nm. Schema in figure 3.1a 

showed the constructions of the stack. 
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Optical transmittance and reflectivity were measured using an Ocean Optics double 

channel spectrometer (model DS200) in the wavelength range 300-900 nm with an 

aluminum mirror as the reference for reflectivity and a bare polyethylene naphthalate 

(PEN) substrate for transmittance. Tungsten-halogen and deuterium lamps were used for 

the visible and UV light sources, respectively. All the simulations are done with the help 

of SCOUT, optical simulation software developed by Dr. W. Theiss [25]. 

 

Because the optical behaviors of most materials are sensitive to the fabrication 

method, we only use the general database for Au which has less variation in refractive 

index than oxides and polymers. Before fitting Au embedded multilayer structures, we 

start from fitting the transmittance of bare PEN substrate and bare ZnO on PEN to define 

their dielectric functions and refractive index.  
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4.3.1. Bare PEN 

An O'Leary-Johnson-Lim (OJL) model and two Kim oscillators [5] are used as the 

model to identify the dielectric function and the refractive index of PEN. OJL model 

describes the interband transition, and the two oscillators are expected to the handle 

possible damping in materials. The experimental and the fitted transmittance of a PEN 

substrate with 0.125 m thickness is shown in figure 4.1. The deviation is 1.13% which is 

small enough and suggests the reliability of fitted parameters.  

 

Figure 4.1. Experimental and simulated optical transmittance spectra of bare PEN 

substrate. Blue open squares () represent experimental observation. Red 

solid line is fitting curve. Deviation: 1.13%. 
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4.3.2. ZnO/PEN 

 We now build a ZnO layer on the top of PEN substrate without any metal layer 

involved. OJL interband transition model and Drude model are used to describe the ZnO 

layer. Drude model takes care of possible absorption and damping in ZnO [5]. We 

identified the thickness of ZnO thin film from Rutherford backscattering spectrometry. In 

the same sputtering conditions described in chapter 4.1, five minutes sputtering results in 

a 34 nm ZnO layer. To compare with the metal embedded multilayer structure, we used 

the transmittance of 68 nm ZnO on PEN for parameter fitting. Figure 4.2 is the fitted 

spectra. The deviation is 0.49%. It indicates the success in using proper models.  

 

Figure 4.2. Experimental and simulated optical transmittance spectra of 68 nm ZnO thin 

film on PEN substrate. Blue open squares () represent experimental 

observation. The red solid line is fitting curve. Deviation: 0.49%. 
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4.3.3. ZnO/Au/ZnO/PEN 

 When the metal is involved, we need to consider if it is an uniform thin film or a 

discontinuous film with percolating clusters. From the resistivity discussion and coverage 

simulation, we suggested the gold layer starts to dominate the resistivity when the 

thickness reaches 2.6 nm. An uniform Au layer appears as the thickness reaches 7.2 nm. 

Basing on these results, we simulate the metal layer with two different models.  

 

For an uniform metal layer, general Au refractive index is extracted from the 

literature (Johnson & Christy) [26], denoted as Au (JC). For a discontinuous metal layer, 

we use Bergman representation which contains a matrix material, ZnO, and metal 

particles, Au, in calculating effective medium coefficients. Figure 4.3 schematically 

illustrates the structures and models in this two cases. 

 

 

Figure 4.3. Metal layer optical models for two configurations. The middle layer in the left 

is typically uniform Au thin film and suits for general Au model. In the right, 

the middle layer contains partial Au particles in ZnO matrix. This 

combination of two materials is described by Bergman model.  
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 According to our resistivity simulation, for the metal thickness larger than 7.2 nm, 

the metal layer should be able to perform as an uniform metal layer. Figure 4.4. and 4.5. 

present experimental observation of 12 nm and 9 nm Au embedded multilayer samples, 

and along with the fitted spectra which use continuous metal layer model. It can be 

observed that metallic behaviors dominate Infrared region. Electron damping and 

scattering at the edge of grain boundary reduce the transmittance in Infrared region. This 

phenomenon becomes more serious as the thickness of metal layer increases. Good 

matching between experiment and our simulation validates our model that metal layers 

are uniform for 12 nm and 9 nm. 

 

Figure 4.4. Experimental and simulated optical transmittance spectra of 12 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The red solid line is fitting curve. Deviation: 1.21%. 
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Figure 4.5. Experimental and simulated optical transmittance spectra of 9 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The red solid line is fitting curve. Deviation: 1.49%. 

 

When the metal layer thickness goes down to 6 nm, the uniform metal layer 

model is not suitable anymore. We migrate to Burgman model. There are three main 

parameters in using Burgman model: volume fraction, percolation strength and spectral 

density. Our sputtering pattern simulation can provide exact values for the volume 

fraction and the percolation strength. Table 4.1 is the volume fraction and percolation 

strength for 6 nm, 4 nm, 3 nm, 2 nm and 1 nm Au layer.  
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Table 4.1. Parameters used in Bergman model for each Au layer thickness 

Au layer thickness (nm) Volume Fraction Percolation Strength 

6 0.91 0.91 

4 0.78 0.76 

3 0.70 0.41 

2 0.56 0.06 

1 0.27 0.02 

 

By setting spectral density as a free fitting parameter, we obtain relatively good 

fitting curves for 6 nm to 2 nm. In the 6 nm and 4 nm Au layer thickness, both model 

results are both presented for comparison. Bergman model provides a smaller deviation 

in both cases. The deviation drops from 1.57% to 0.37% by using Bergman model. Figure 

4.6. to 4.10. present the optical transmittance for 6 nm, 4 nm, 3 nm, 2 nm and 1 nm Au 

layer, respectively. For 1 nm Au layer, even Bergman model cannot give a good fitting 

curve. This limitation suggests other factors may be involved. Possible issues are the 

inaccuracy in determining the metal layer thickness, the limitation of effective medium 

model and the manual calculation of the coverage. 
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Figure 4.6. Experimental and simulated optical transmittance spectra of 6 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The black solid curve is the fitting curve using uniform Au thin 

film model. Deviation:1.57%. The red solid line is Bergman fitting curve. 

Deviation: 0.37%. 

 

 

Figure 4.7. Experimental and simulated optical transmittance spectrum of 4 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The black solid curve is the fitting curve using uniform Au thin 

film model. Deviation: 5.2%. The red solid line is Bergman fitting curve. 

Deviation: 1.82%.  
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Figure 4.8. Experimental and simulated optical transmittance spectra of 3 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The red solid line is Bergman fitting curve. Deviation: 2.8%. 

 

 

Figure 4.9. Experimental and simulated optical transmittance spectra of 2 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The red solid line is Bergman fitting curve. Deviation: 3.5%. 
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Figure 4.10. Experimental and simulated optical transmittance spectra of 1 nm Au 

embedded multilayer structure. Blue open squares represent experimental 

observation. The red solid line is Bergman fitting curve. Deviation: 4.4%. 

 

4.4  Summary 

 In this chapter, optical transmittance simulation demonstrates good coherence 

with the previous resistivity discussion. When the metal thickness is smaller than 2 nm, 

the metal layer has low a volume fraction and percolation strength. As expected, for 

metal thickness larger than 2 nm, the metal layer dominates optical behaviors: 

transmittance decreases with Au thickness increase in long wavelength region due to 

more electron scatterings and the short wavelength absorption due to the electron 

interband transition. The continuous metal layer model does not fit for thickness smaller 

than 6 nm which supports previous conclusion that the metal layer is discontinuous in this 

thickness. By using effective medium model, good matches between the observation and 

the simulation are obtained. 
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Chapter 5: CONCLUSION 

 

 From the morphology simulation and the real surface observation, a phenomena 

similar to percolation is observed. Based on simulation results, we are able to use the 

coverage as a known parameter for data fitting. Three growth stages of the metal layer are 

proposed including islands only stage, percolating stage and uniform thin film stage. For 

islands only in metal layer, resistivity remains high since islands are far apart and not able 

to largely reduce resistivity. However, in second stage, good consistence between the 

experimental observation and percolation theory implies that metal layer is percolating as 

the thickness increases. Islands form conductive paths during this stage, but part of metal 

may remain isolated or only form short conductive paths. Therefore, the resistivity 

decreases. Finally, the metal layer becomes an uniformly thin film and performs 

dramatically reduction in resistivity which is close to the resistivity of metal.  

 

 Another proof supporting the transition from percolating films to uniform thin 

films is the optical behavior. We use the effective medium model to calculate the overall 

optical behaviors for discontinuous films, and simulation results are well consistent with 

the observation in this model. This indicates the parameters in effective medium model 

are trustable which include the volume fraction and percolation strength defined from 

morphology simulation.  
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 Since we are pursuing a low resistivity and high transparency material, a figure of 

merit (FOM) is defined as transmittance divided by sheet resistance. Higher FOM 

indicates the material has better performance. To emphasize on resistivity performance, 

Haacke [27] proposed that the transmittance should be multiplied by 10 times. We have 

estimated the Haacke figure of merit,  
  

, for the transparent conducting films as follows: 

 
  

 
   
  

   
                                                      [27] 

 

where     is the average transmittance and     is the sheet resistance. For our interests in 

solar cell applications,     is weighted with respect to solar irradiance at sea level [28]. 

We use Haacke figure of merit to identify the optimal metal thickness in ZnO/Au/ZnO 

case. The variation of FOM is also presented in figure 5.1. It can be seen that the largest 

FOM appears with 9 nm Au interlayer which just reaches the uniform thin film thickness. 

Further increase in metal layer thickness makes decrease in transmittance. Table 5.1. 

contains Haacke FOM for different metal interlayer thicknesses. It should be noticed that 

even 7 nm metal interlayer has higher transmittance in near infrared region, but its FOM 

is smaller than the one with 6 nm interlayer. This is because 7nm metal interlayer has 

better light transmittance in infrared wavelength, but the atmosphere absorbs more lights 

in that region. The advantage of the 7 nm interlayer is not demonstrated with solar 

spectrum. 
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Figure 5.1. Haacke figure of merit with respect to Au interlayer thickness. Exact value of 

each point is provided in table 5.1. 

 

Table 5.1. Values of Haacke figure of merit with respect to metal interlayer thickness. 

Metal Interlayer Thickness (nm) Haacke Figure of Merit (Ω    
3 7.61x10

-7
 

4 4.56x10
-5

 

5 2.56x10
-4

 

6 4.75x10
-4

 

7 3.80x10
-4

 

8 8.17x10
-4

 

9 1.24x10
-3

 

12 4.89x10
-4

 

 

 

 The coherence of resistivity and optical transmittance validates the simulation of 

the sputtered pattern and the incorporation of percolation theory. Instead of using data 

points, we obtain relatively continuous variation of resistivity and optical transmittance. 

We are able to describe and predict material properties without depending on 

experimental results which may be insufficient in describing whole property transition.  
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 The models and simulation in this work can be improved by considering more 

details of the morphology transformation depending on interested topics or different 

sputtering rates. By inserting different parameters into the simulation, one is able to apply 

the results on different materials. Basing on the understanding of metal layer morphology, 

the criteria for generating surface plasmon which strongly depends on metal island size 

can be well studied as a future topic. Further improvement on similar material structures 

can also be reached.  
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