
PCI Express-based Ethernet Switch

by

Caiyi Chen

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2012 by the
Graduate Supervisory Committee:

Joseph Hui, Chair
Martin Reisslein
Yanchao Zhang

ARIZONA STATE UNIVERSITY

May 2012

i

ABSTRACT

A new type of Ethernet switch based on the PCI Express switching fabric is

being presented. The switch leverages PCI Express peer-to-peer communication protocol

to implement high performance Ethernet packet switching.

The advantages and challenges of using the PCI Express as the switching fabric

are addressed. The PCI Express is a high-speed short-distance communication protocol

largely used in motherboard-level interconnects. The total bandwidth of a PCI Express

3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for

PCI Express such as buffer speed, address mapping, Quality of Service and power

consumption need to be considered.

An overview of the proposed Ethernet switch architecture is presented. The

switch consists of a PCI Express switching fabric and multiple adaptor cards. The thesis

reviews the peer-to-peer (P2P) communication protocol used in the switching fabric. The

thesis also discusses the packet routing procedure in P2P protocol in detail. The Ethernet

switch utilizes a portion of the Quality of Service provided with PCI Express to ensure

guaranteed transmission.

The thesis presents a method of adapting Ethernet packets over the PCI Express

transaction layer packets. The adaptor card is divided into the following two parts:

receive path and transmit path. The commercial off-the-shelf Media Access Control

(MAC) core and PCI Express endpoint core are used in the adaptor. The output address

lookup logic block is responsible for converting Ethernet MAC addresses to PCI Express

port addresses. Different methods of providing Quality of Service in the adaptor card

include classification, flow control, and error detection with the cooperation of the PCI

Express switch are discussed.

ii

The adaptor logic is implemented in Verilog hardware description language.

Functional simulation is conducted in ModelSim. The simulation results show that the

Ethernet packets are able to be converted to the corresponding PCI Express transaction

layer packets based on their destination MAC addresses. The transaction layer packets

are then converted back to Ethernet packets. A functionally correct FPGA logic of the

adaptor card is ready for implementation on real FPGA development board.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Joseph Hui. His

enthusiasm, vision, challenge, encouragement, and financial support helped me through

my research. Thanks to Dr. David Daniel, Haojun Luo, Deepthi Sai, Bala Aditya, and

Veera Papirla who gave me technical advice, guidance and suggestion on my research. I

would also like to acknowledge the contribution from my family and friends who gave

me unconditional support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1 INTRODUCTION ... 1

1.1. Types and Issues of Ethernet Switches ... 1

1.2. A New Approach: PCI Express Switching for Ethernet 4

1.3. Challenges of PCI Express Switching .. 6

1.4. Thesis Overview ... 8

1.5. Thesis Outline ... 10

2 BACKGROUND ... 11

2.1. PCI Express Architecture .. 11

2.2. Motherboard and PCI Express Expansion Backplane 13

3 PCI EXPRESS SWITCHING BY PEER-TO-PEER COMMUNICATION

___PROTOCOLS ... 16

3.1. Overview ... 16

3.1.1. Overview of the Proposed PCI Express-based Ethernet Switch 16

3.1.2. Overview of Peer-to-Peer Communication ... 17

3.2. Packet Routing Procedure ... 18

3.2.1. Enumeration and Initialization .. 18

3.2.2. Routing Scheme .. 20

3.3. Quality of Service (QoS) and QoS-related Protocols 22

3.3.1. Reliable and Efficient Switching .. 22

v

CHAPTER Page

3.3.2. Classification ... 24

3.3.3. Scheduling ... 27

3.3.4. Flow Control ... 28

3.3.5. Error Detection .. 30

3.3.6. Device Synchronization .. 31

4 ETHERNET OVER PCI EXPRESS ADAPTATION ... 33

4.1. Overview of the Ethernet over PCI Express Adaptor Card 33

4.2. Encapsulation and Decapsulation ... 35

4.3. Address Mapping Table .. 39

4.4. Output Address Lookup .. 41

4.5. Packets Routing .. 45

4.6. QoS and QoS-related Protocols .. 47

4.6.1. Classification ... 47

4.6.2. Flow Control ... 50

4.6.3. Error Detection .. 57

5 IMPLEMENTATION OF THE PCIE-BASED ETHERNET SWITCH ADAPTOR . 59

5.1. Overview of the PCIe-based Ethernet Switch Adaptor Implementation 59

5.2. Available Resources and Platform Selection .. 62

5.3. AXI4 Interface .. 65

5.4. 10G MAC Core ... 66

5.5. Output Address Lookup .. 68

5.5.1. Ethernet Parser .. 69

5.5.2. Address Mapping Table .. 71

5.5.3. Content-Addressable Memory (CAM) ... 73

vi

CHAPTER Page

5.6. AXI4-Stream FIFO ... 74

5.7. PCI Express Endpoint Core .. 76

5.8. PCI Express Transmit Interface .. 77

5.9. PCI Express Receive Interface .. 80

6 EXPERIMENTAL RESULTS AND DESIGN EVALUATION 83

6.1. Simulation and Testbench Setup ... 83

6.2. Functional Simulation of the Receive Path ... 87

6.3. Functional Simulation of the Transmit Path ... 91

7 CONCLUSIONS AND FUTURE WORK .. 95

REFERENCES ... 97

vii

LIST OF TABLES

Table Page

1. Address Mapping Table ... 40

2. Structure of Tagged Frame .. 48

3. Structure of TCI Field .. 48

4. Platform Selection .. 64

5. AXI4-Stream Interface Signals .. 66

6. Ethernet Parser FSM Description .. 70

7. An Example of the Address Mapping Table .. 72

8. Block RAM-based CAM ... 73

9. CAM Interface Signals .. 74

10. Major Signals in the Write Clock Domain of AXI4 FIFO 75

11. Major Signals of the Transmit Interface on the Transaction Layer Side of the

XpressRich Core .. 76

12. PCIe Tx Interface FSM Description .. 78

13. PCIe Rx Interface FSM Description .. 81

14. Stimuli: XGMII Data Frames .. 85

15. Stimuli: XGMII Control Frames .. 86

viii

LIST OF FIGURES

Figure Page

1. A Typical Shared Bus Switch .. 2

2. A Typical Shared Memory Switch .. 3

3. A Typical Crossbar Switch .. 4

4. A Typical PCI Express System .. 12

5. Three Layers Structure in PCI Express System ... 13

6. GIGABYTE™ GA-X58A-UD9 Motherboard Block Diagram 15

7. Overview of the Proposed PCIe-based Ethernet Switch 17

8. A Simple Demonstration of P2P Communication ... 18

9. Enumerated PCIe System .. 20

10. Classification in the PCIe Switch .. 26

11. Overview of the Ethernet over PCI Express Adaptor Card 34

12. Ethernet Packets Encapsulation and Decapsulation ... 36

13. PCI Express Packets Encapsulation and Decapsulation 38

14. Output Address Lookup Logic ... 42

15. 64-bit Memory Base Address Register Bit Assignment 46

16. Ethernet Class Conversion ... 50

17. Priority-based Dynamic Flow Control with Memory .. 53

18. Implementation of the Ethernet over PCIe adaptor ... 61

19. 10G MAC Core Block Diagram .. 67

20. Output Address Lookup Block Diagram ... 68

21. Ethernet Frame Structure ... 69

22. Ethernet Parser FSM .. 70

23. Address Mapping Illustration .. 72

ix

Figure Page

24. PCIe Tx Interface FSM .. 78

25. PCIe Rx Interface FSM .. 81

26. Simulation Setup Block Diagram .. 85

27. Waveforms of the Receive Path Signals (3 Frames) .. 89

28. Waveforms of the Rx XGMII Interface Signals (Frame 0) 90

29. Waveforms of the MAC Rx FIFO Interface Signals (Frame 0) 90

30. Waveforms of the PCIe Tx Interface Signals (Frame 0) 90

31. Waveforms of the Transmit Path Signals (3 Frames) .. 93

32. Waveforms of the PCIe Rx Interface Signals (Frame 0) 94

33. Waveforms of the MAC Tx Client Interface Signals (Frame 0) 94

34. Waveforms of the Tx XGMII Interface Signals (Frame 0) 94

1

CHAPTER 1

INTRODUCTION

Ethernet, the dominant computer network, has become a well-established

standard for Local Area Network (LAN). It is widely used for connecting machines in a

limited area such as a building, company, or campus. The simplicity, cost-effectiveness,

scalability, and increasing throughput of Ethernet have enabled other types of network

applications such as Storage Area Networks (SAN), Internet Small Computer System

Interface (iSCSI), and Fibre Channel over Ethernet (FCoE). The throughput of Ethernet

has evolved from 10 megabits per second (Mbps) to 10 gigabits per second (Gbps) in

approximately three decades. 40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet

(100GbE) have been proposed and implemented recently in 2010 [1][2].

The Ethernet switch is a critical component in computer networking. The switch

is used for exchanging and forwarding Ethernet frames. An Ethernet switch is largely

used for connecting different types of networks such as Ethernet, Fibre Channels, and

Asynchronous Transfer Mode (ATM). Different applications of Ethernet include campus

LAN access network and core network, data center network, and service provider

aggregation. The switches have limited capacities and incur latency. The delay increases

when Ethernet frames are forwarded through a cascade of switches, which results in

performance degradation of the entire network. Thus, an efficient high throughput

Ethernet switch with low latency is highly desirable.

1.1. Types and Issues of Ethernet Switches

There are three types of switching fabrics that currently used as Ethernet

switching: shared bus, shared memory, and crossbar.

2

A typical shared bus switch structure is shown below in Figure 1. The switch

consists of a shared bus medium with N input/output (IO) devices attached. Only one

packet can traverse the bus at a time between two devices [3]. A centralized arbiter is

used for determining the device to send packet on the bus. The total capacity and number

of devices are bounded by bus capacity and performance of the centralized arbiter,

respectively [4].

Shared Bus

Buffer

I/O

Buffer

I/O

Buffer

I/O

...

Arbiter

1 2 N

Figure 1: A Typical Shared Bus Switch

A typical shared memory switch is shown in Figure 2. It consists of a large

capacity of memory, managed by memory controllers connected to the IO devices. The

maximum input and output capacity of the shared memory switch is determined by the

memory write and read bandwidth. Maximum capacity ranges from 4 Gbps to 10 Gbps.

One major disadvantage of using a shared memory switch is the complexity and cost

increase dramatically as bandwidth increases. A large shared memory switch also

requires very wide memory access paths and very complex arbitration schemes.

3

Shared Memory

Memory

Memory
Controller

I/O Buffer

I/O Buffer

I/O Buffer

.
.
.

Figure 2: A Typical Shared Memory Switch

Another type of switching fabric is a crossbar. Instead of using time division in

shared bus switch, a crossbar switch uses space division method. The crossbar switch can

pass all the input data of multiple ports in parallel through the switching fabric, as shown

in Figure 3. Each connection from an input port to an output port passes through a

dedicated path through the crossbar switch. Total throughput increases linearly with the

number of ports. Space division switch creates a relatively easier way to scale bandwidth

than using higher capacities for shared bus or shared memory switch. However, one

disadvantage of the crossbar switch is requiring contention resolution, which occurs when

multiple inputs request connection to the same output. Output link utilization can fall as

low as 60 percent of its raw capacity due to head-of-line (HOL) blocking [5].

4

Input Buffer

Input Buffer

Input Buffer

Input Buffer

Ou
tp

ut
Bu

ff
er

Ou
tp

ut
Bu

ff
er

Ou
tp

ut
Bu

ff
er

Ou
tp

ut
Bu

ff
er

1

2

3

4

A B C D

Figure 3: A Typical Crossbar Switch

1.2. A New Approach: PCI Express Switching for Ethernet

PCI Express (PCIe), the successor to AGP, PCI and PCI-X, is widely used as

motherboard-level interconnect, passive backplane interconnect, and expansion card

interface. PCIe is a high-speed point-to-point serial connection between devices. It uses

packets as a basic transmission unit with a compatible layered protocol for different

services. As of the latest technological advances, PCI Express Base Specification

Revision 3.0 [6] defines a raw bit rate of 8 gigatransfers per second (GT/s), resulting in a

256 gigabit per second (Gb/s) total bandwidth for a link of 16 lanes. PCI-SIG recently

announced PCI Express 4.0 would evolve into a 16 GT/s bandwidth; essentially doubling

the throughput of PCI Express 3.0 [7].

The reasons for choosing PCI Express as a switching architecture for Ethernet are

as follows. Firstly, a rich set of PCI Express protocols enables packets to be routed with a

5

guaranteed bandwidth and excellent Quality of Service (QoS). In physical transmission,

PCIe adopts point-to-point interconnect with differential signaling. The bandwidth of 256

Gb/s per link (with 16 lanes, per PCIe Specification 3.0) is a solid foundation for high

throughput switching. PCI Express defines a packet routing scheme to regulate traffic to

be switched in a fast and efficient manner. Rather than using bus cycles in PCI, PCIe uses

packet-based transaction model to define packets format and boundaries, which leads to

better data integrity. PCI Express provides Quality of Service such as traffic prioritization,

flow control, and error detection/handling. These features provide reliable transmission,

deterministic performance, and differentiated services.

Secondly, the crossbar switching fabric is a structural entity widely used in PCIe

switching. Crossbar switch meets the growing need of highly-scalable and high-capacity

Ethernet switches. An efficient Ethernet switching architecture is the crossbar switch with

a contention resolution. The contention resolution issue in the PCIe switching can be

solved by an arbitration infrastructure [8]. This functionality is able to support a set of

arbitration policies that resolve traffic contention for an egress port from multiple ingress

ports. Different arbitration policies can be applied to different applications for classified

services.

Thirdly, peer-to-peer (P2P) communication protocol in PCIe enables traffic to be

switched without involving the Central Processing Unit (CPU). Similar to Direct Memory

Access (DMA) in modern computers, CPU is only responsible for initiating and

terminating the P2P transaction between two devices in P2P communication. Peer

devices have fully control of the communication procedure during the transaction. If the

transaction is completed, one of the peer devices will report to the CPU. If an error occurs

during the transaction, one of the peer devices will send an interrupt to the CPU. The

CPU is only occupied at certain points of the entire transaction. The CPU is free to

6

proceed to other unrelated tasks. Hence, P2P communication reduces switching latency,

process overhead, and power consumption.

Finally, PCI Express switches are much more competitive than Ethernet switches

in terms of their market prices. The cost of a traditional Ethernet switch is relatively high,

especially for throughput of over 10 Gbps/port. For example, the price of an Ethernet 20-

port Switch with a total capacity of 200 Gbps (IBM 46C7191 10Gb) is $9,543, while a

10-port PCI Express Gen2 switch with a total capacity of 416 Gbps (OSS-PCIe-1U-SW-

x4-2.0) is $2,499 [9]. Low cost large capacity commercial off-the-shelf PCI Express

switch chips are massively produced for board-level interconnect applications. It is

possible to build an affordable Ethernet switch based on the PCI Express switch

architecture.

1.3. Challenges of PCI Express Switching

Several challenges exist in the PCI Express switching.

a) Buffer speed

[10]

. There could be multiple buffers in the PCI Express switching

fabric and adaptor card for smoothing traffic flow from links of different speed.

The total bandwidth of a PCIe link can reach as high as 256 Gb/s (with 16 lanes

per PCIe 3.0). Thus, for a 40-byte packet passing through a channel without

classification, the cycle time of the buffer memory at the port is around 1.25ns.

Considering arbitration, address mapping, and error detection overhead, the

actual requirement may be much higher. This buffering speed is challenging with

today’s memory technology .

b) Arbitration. Arbitration logic in PCI Express switching fabric is used for

determining packets to be routed from a specific virtual channel (input buffers) or

port at a certain time. Consider two 40-byte packets to be routed from two 256

7

Gb/s links to a single 256 Gb/s link. The arbitration logic has only 1.25ns to

solve the contention. The contention resolving time becomes smaller when the

number of ports increases [10].

c) Address Mapping

d)

. When an Ethernet packet with new source MAC address is

received by the adaptor card, the source address must be stored associated with

the receiving port number of the PCIe switch. The header fields are analyzed and

reported to the address mapping logic. The address mapping logic translates the

destination MAC address to the corresponding target port number of the PCIe

switch. The address mapping procedure and the address mapping table

management incur overhead and latency.

Quality of Service

e)

. The Quality of Service feature becomes difficult to

implement at a higher link speed. First, the classification mechanism divides

traffic into different categories. The Ethernet priority indicator to traffic class

mapping as well as the traffic class to virtual channel mapping require a much

higher speed. Second, the flow control algorithm needs to be perfectly selected

and tuned to meet variable types of traffic. Last, error detection involves

considerable computational overhead, especially when packet sizes are very

small.

Power consumption

[11]

. PCI Express provides different device and link power states

for efficient power management. There is always a tradeoff among exit latency

(the time to switch between different power states), power saving, and

operational robustness . Level zero (L0) power state has good exit latency,

but often leads to link failure and large power consumption. Level one (L1)

power state saves more power but has poor exit latency. More testing is needed

when using lower power state while ensuring switches are working robustly.

8

Power consumption becomes more critical for larger capacities of PCIe switching

systems.

f) Testing and debugging

[12]

. PCI Express adopts serial bus instead of parallel bus

topology for PCI. In a parallel bus, all signals in a data transfer can be probed

simultaneously. In a serial bus like PCI Express, data is conveyed by a

differential pair. The clock and header information are embedded in the signal.

Interpreting those signals into a meaningful representation of different layers

requires advanced tools .

1.4. Thesis Overview

The demand is to design a unique high performance and cost-effective multi-

gigabit Ethernet switch by leveraging recent advances in PCI Express switching

technologies. The thesis proposes a PCI Express-based Ethernet switch. This allows

Ethernet traffic to be switched over the PCI Express architecture with a high throughput

and low cost.

The thesis makes the following contributions. First, research is conducted for

using peer-to-peer communication protocol to switch Ethernet traffic via PCI Express.

PCI Express is widely used for interconnection between hosts and devices, while peer-to-

peer communication is seldom used for personal computers or servers. Although the PCI

Express Specifications define P2P communication, P2P packets routing methods are not

fully discussed. In this thesis, device initialization process is reviewed and P2P packets

routing procedure is presented. The Quality of Service considerations are reviewed for

further discussion in Ethernet over PCIe adaptation.

Secondly, essential adaptation protocols and logics are presented. Ethernet

packets use MAC addresses to indicate the target host, while PCI Express transaction

9

layer packets use routing IDs or routing addresses to indicate target endpoint device or

function. Thus, address mapping methods are discussed in this thesis, regarding how the

mapping table is created and maintained. Output address lookup logic is presented for

determining the correct outgoing PCIe routing ID/address based on the mapping table. A

certain way to decapsulate and encapsulate Ethernet packets to form PCIe transaction

layer packets is presented. Quality of service is discussed, which enables Ethernet packets

to be transmitted efficiently outside the switch as well as cooperating with PCIe Quality

of Service methods inside the switch to provide reliable data exchange.

Thirdly, the thesis presents a possible way to implement the PCIe-based Ethernet

switch adaptor. A commercial 10G MAC Intellectual Property (IP) core is reviewed for

part of the implementation. A universal interface of IP blocks called AXI4 is reviewed.

Each individual logic block conforms to AXI4 interface specification. The output address

lookup logic is implemented by an Ethernet parser logic, a Content-Addressable Memory

(CAM), and an array. The parser logic is responsible for parsing Ethernet packets and

providing source/destination MAC address, length/type, etc. The CAM is responsible for

content matching and address lookup in an efficient way. In addition, First-In First-Out

(FIFO) logic is customized based on a commercial universal AXI4 FIFO IP. FIFO is used

for safely pass data from one clock domain to another asynchronous clock domain. A

commercial PCI Express endpoint IP core is customized. PCIe interface logic blocks are

presented for interfacing Ethernet MAC layer signals to PCIe transaction layer signals.

Finally, functional simulations are conducted for the logic implementation of the

adaptor. The simulations demonstrate Ethernet packets to PCI Express transaction layer

packets conversion and vice versa. The simulation uses a loop back configuration to

verify the function of the adaptation logic blocks. The stimuli of Ethernet frames is fed

into the 10G MAC core. The frames then pass through the receive path, loop back to the

10

transmit path, and return to the MAC core. A possible functional simulation method for

peer-to-peer switching using the PCIe endpoint core is discussed. The performance and

issues of the proposed switch design is evaluated by these simulation results.

In summary, the PCIe-based Ethernet switch utilizes PCI Express peer-to-peer

communication, transaction layer packet routing protocol, and internal crossbar switching

fabric to implement Ethernet packet switching. The Ethernet over PCIe adaptor converts

Ethernet packets to PCIe packets and feeds them to the PCIe switch seamlessly based on

Field Programmable Gate Array (FPGA) logic blocks. The entire design leverages traffic

class, virtual channel, flow control, and error detection mechanisms in PCIe along with

new protocols defined in the adaptor to provide Quality of Service (QoS) for Ethernet

packets switching.

1.5. Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 reviews the background

of PCI Express and its expansion backplane. Chapter 3 presents an overview of PCI

Express switching architecture. Chapter 4 gives possible methods of Ethernet over PCIe

adaptation. Chapter 5 presents a possible design of the PCIe-based switch adaptor.

Chapter 6 shows the experimental results. Chapter 7 concludes the entire thesis.

11

CHAPTER 2

BACKGROUND

2.1. PCI Express Architecture

The background knowledge of PCI Express is introduced here, especially that

related to the proposed switching structure. PCI Express is a high-speed, high-

performance, point-to-point, dual simplex, and differential signaling interconnection

architecture among various devices. A PCI Express “link” is a physical connection

between two devices. A “lane” is a pair of differential lines for transmitting and receiving

signals. A PCI Express interconnect consists of either x1, x2, x4, x8, x12, x16 or x32

lanes of point-to-point link. For example, a x1 link consists of 1 lane or 1 differential

signal pair in each direction for a total of 4 wires.

A typical PCI Express system is shown in Figure 4. PCI Express applies a

hierarchical tree structure with a “Root Complex” located on the top level. Endpoint

devices can be connected directly to the Root Complex or through a “Switch”. A Switch

can have multiple endpoints connected to it, for switching traffic between a processor and

an endpoint, or among endpoints. The internal switch consists of multiple virtual PCIe

bridges, which connect different ports. Each endpoint device may implement up to 8

“functions”. A system could have up to 256 PCI Express links.

12

Figure 4: A Typical PCI Express System [12]

PCI Express uses transactions for data exchange. PCIe system supports memory

read and memory write, I/O read and I/O write, configuration read and configuration

write and message transactions. PCI Express encodes transactions using packet based

protocols, which is different from previous PCI and PCI-X architectures using bus cycles.

The PCI Express Specification defines a layered architecture for device design. Figure 5

shows the three layers structure, comprising Transaction Layer, Data Link Layer, and

Physical layer.

13

Figure 5: Three Layers Structure in PCI Express System

PCI Express 3.0 can achieve 8Gbit/s per lane per direction and 512Gbit/s total

bandwidth for a x32 link. PCI Express also supports peer-to-peer communication which

allows data to be directly transferred between different endpoints without involving a

processor. This feature reduces the overhead of CPUs and increases the switching

throughput. PCI Express also provides QoS control which divides traffic into traffic

classes with different priorities. PCI Express is extensively used in the personal computer

(PC) industry.

2.2. Motherboard and PCI Express Expansion Backplane

The motherboard is the most important circuit board in a PC, workstation, or

server system. A motherboard holds most of the crucial components including the CPU in

the system and provides connectors for other peripherals. It can be as simple as a

backplane with multiple expansion cards, or as complex as a highly integrated circuit

board supporting a full range of multimedia functions.

14

The PCI Express architecture is extensively used in computer systems due to its

high speed board-level interconnect. Figure 6 shows one type of system on a motherboard,

in which PCI Express buses are connected to a Northbridge (NB). Some of Intel®

Northbridge chipsets are called I/O Hub (IOH) [13]. The Northbridge or IOH coordinates

and connects the CPU, PCIe or AGP graphic interface, RAM and Southbridge (SB).

Other types of systems are designed so that PCI Express buses are connected to CPUs

directly. Some functions of the Northbridge are migrated into CPU to lower cost and

improve performance.

Typically, PCs have two to six PCI Express slots; workstations and servers tend

to have more. If more PCIe slots are needed, a PCI Express expansion backplane can be

used for expanding PCIe connectivity outside the PC, workstation or server. The

backplane uses a Host Bus Adaptor (HBA) to connect the host computer to the expansion

backplane through a PCIe cable. The host treats devices on the backplane the same as

devices connected directly to the motherboard.

15

Figure 6: GIGABYTE™ GA-X58A-UD9 Motherboard Block Diagram [14]

16

CHAPTER 3

PCI EXPRESS SWITCHING BY PEER-TO-PEER COMMUNICATION PROTOCOLS

3.1. Overview

3.1.1. Overview of the Proposed PCI Express-based Ethernet Switch

The proposed PCIe-based Ethernet switch consists of a motherboard and several

Ethernet over PCIe adaptor cards as shown in Figure 7. The adaptors are plugged into

PCIe slots of the motherboard. PCIe slots are connected to a PCI Express switch (inside

the IOH, in this case). The IOH is controlled by the CPU through a QPI bus. Other

peripherals (such as AGP bus) and chips (such as Southbridge) are connected to the IOH

as well. Ethernet cables are connected to the adaptors through RJ-45 connectors or Small

Form-factor Pluggable (SFP) connectors. Received Ethernet packets are processed by

conversion logics in the adaptors. The adaptors can either adopt Field Programmable

Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC) for packets

processing. In a multi-port Ethernet switch application, users can connect a PCIe

backplane to the motherboard through a Host Bus Adaptor (HBA) and PCIe cable (not

drawn in this figure). The adaptors plugged into the backplane should be treated the same

as local adaptors.

17

CPU

IOH(NB)

SB

Motherboard (Intel Architecture)

PCI Express Bus

QPI

PCI BusLPC Bus

PCIe Bus

Ethernet Over PCI Express Adaptors

1 2 3 4 5

Figure 7: Overview of the Proposed PCIe-based Ethernet Switch

3.1.2. Overview of Peer-to-Peer Communication

PCI Express peer-to-peer (P2P) communication enables data direct transfer

between two PCI Express devices without involving many CPU cycles. Figure 8

illustrates the procedure of a P2P communication between two endpoint devices

(adaptors in case of an Ethernet switch). Peer-to-peer traffic can be routed between

multiple functions within an endpoint device, or be routed between devices through

switches, even crossing hierarchy domains through a Root Complex as long as the Root

Complex supports P2P.

Figure 8 illustrates the process of TLPs routing between adaptor 2 (requester) and

adaptor 5 (completer) through a PCIe switch. First, Memory Read (MRd) TLP is sent by

the requester to the PCIe switch. The ingress port of PCIe switch forwards the TLP to the

correct egress port. The switch sends MRd to completer. The completer processes the

request and sends back a Completion with data (CplD) to the switch ingress port. Finally,

the switch forwards CplD to the egress port and then to the requester.

18

Processor

Root Complex

PCIe Switch

Adaptor
3

Adaptor
1

Adaptor
2

Adaptor
4

Adaptor
5

MRd

MRd
CplD

CplD

Requester Completer

Figure 8: A Simple Demonstration of P2P Communication

3.2. Packet Routing Procedure

3.2.1. Enumeration and Initialization

Address information of PCI Express buses such as Bus, Device, Function (BDF)

number and routing address are important for packet routing. When a system powers up,

the configuration software (in the operating system) does not contain any address

information of the PCI Express buses. Hence, the enumeration process is needed for

discovering all the buses, devices, and functions in the system.

In the enumeration process, the configuration software attempts to read the

header register (also called configuration space) in each device starting with device 0, bus

0 (the device attached to CPU directly) based on depth-first search. The device refers to

both the endpoint and the switch/root complex port. Type 0 configuration space exists in

19

endpoint devices and type 1 configuration space exist in switch or bridge devices.

Different values returned from the header register indicate different types of devices. The

configuration software also performs a series of configuration writes to set or update the

bridge’s bus number in each header register. The Primary Bus refers to the bus connected

to the upstream side of the device. The Secondary Bus refers to the bus connected to the

downstream side and the Subordinate Bus refers to the fastest downstream bus number.

After enumeration, the system software will have a complete list of BDF

numbers in the system. Figure 9 shows part of the BDF information of an enumerated

PCI Express system.

The configuration space in each device (including the endpoint and switch port)

contains Base Address Registers (BARs). BARs are used for indicating the address range

that a device can be accessed. An initialization process occurs after enumeration. During

the initialization time, the startup configuration software tries to access the configuration

space in each device. After the device receives the request from the software, the device

sends back the amount of address space it needs (i.e. the size of BARs). The software

then writes to the BARs in that device indicating the exact address range the device was

assigned to. After the initialization process, address routing can be used in transactions.

Transactions with addresses contained in the BARs will be accepted by that device.

20

Processor

Root Complex

Adaptor
3

Adaptor
1

Adaptor
2

Adaptor
4

Adaptor
5

DP

DP

DP

DP

DP

UP

Virtual Bus 0 inside

Virtual Bus 1

Virtual Bus 2

Switch Upstream Port
Type 1 Configuration Space
 Dev 0 Pri 1 Sec 2 Sub 7

Virtual Bus 4

Virtual Bus 3

Virtual Bus 5
Virtual Bus 6

Virtual Bus 7

Switch Downstream Port
Type 1 Configuration Space
 Dev 2 Pri 2 Sec 4 Sub 4

Switch Downstream Port
Type 1 Configuration Space
 Dev 5 Pri 2 Sec 7 Sub 7

Endpoint
Type 0 Configuration Space

Bus 4 Dev 0 Func 0

Endpoint
Type 0 Configuration Space

Bus 7 Dev 0 Func 0

Figure 9: Enumerated PCIe System

3.2.2. Routing Scheme

There are three routing schemes in PCI Express: Address Routing, ID Routing,

and Implicit Routing. The Address Routing scheme is mainly used for Memory Read

(MRd), Memory Write (MWr), IO Read (IORd), and IO Write (IOWr) Transaction Layer

Packets (TLPs). ID Routing scheme is mainly used for Configuration Read (CfgRd),

Configuration Write (CfgWr) and Completion (Cpl) TLPs. Implicit Routing is mainly

used for Message (Msg) TLPs. Note that although all three routing schemes are supported

21

in peer-to-peer communication, configuration read and write TLPs using ID Routing are

not allowed.

Take the following Memory Read (MRd) TLP routing as an example. Detailed

routing procedures are given in Figure 9 and described as follows:

a) Addressing Routing scheme is used for MRd TLP routing. Endpoint device

Adaptor 2 (Requester) obtains the routing address of Adaptor 5 (Completer)

either from the OS or from an address table inside the device. Adaptor 2 then

generates a MRd request TLP directed to Adaptor 5 with the routing address in

the TLP header.

b) The downstream port with Device #2 of the switch receives the request. The port

determines that the address lies outside its address range and forwards the

transaction to its Primary Bus (Virtual Bus 2).

c) The downstream port with Device #5 determines that the address lies within its

address range and forwards the transaction to Virtual Bus 7 through its

Secondary Bus.

d) The Adaptor 5 (Completer) receives the transaction, determines that the address

lies within one of the BARs, accepts the packet, and responds to the requester by

generating one or more completion transaction(s) with data (CplD) using ID

Routing. The Bus, Device, Function (BDF) number is obtained from the request

transaction. In this case, Bus # is 4, Device # is 0, and Function # is 0.

e) The downstream port with device #5 receives the CplD, determines that the Bus

#4 lies outside its Secondary Bus # 7and Subordinate Bus #7, and then forwards

the CplD to its Primary Bus – Virtual Bus 2.

22

f) The downstream port with Device #2 receives the transaction, determines that the

Bus #4 lies within its Secondary Bus #4 and Subordinate Bus #4, and then

forwards the transaction to its Secondary Bus – Virtual Bus 4.

g) The Adaptor 2 receives the CplD, verifies the BDF and recognizes itself as the

destination component. The Adaptor 2 then starts to process the data.

3.3. Quality of Service (QoS) and QoS-related Protocols

In general, Quality of Service (QoS) refers to the ability to allow traffic to be

transferred with certain requirements. In the context of PCI Express switching fabric,

QoS refers to the ability to provide a guaranteed bandwidth and latency for different

types of transactions. Performance factors are taken into account of QoS, including

transmission rate, effective bandwidth, latency, error rate, etc. Particularly in the PCI

Express Specification 2.1, QoS focuses on providing differentiated services. The

following sections discuss mechanisms that are critical to provide QoS and QoS-related

features for the PCIe-based Ethernet switch.

3.3.1. Reliable and Efficient Switching

The transaction layer in PCI Express assumes that the lower layers provide a

reliable transportation channel. The transaction layer is only responsible for transmitting

and receiving transaction layer packets (TLPs) when informed by the application layer.

The layer is not aware of the status of transmitted TLPs (e.g. whether the TLPs have

arrived at the other end, and if some errors have occurred or not).

PCI Express utilizes ACK/NAK protocol to provide reliable transportation of

transaction layer packets. Before a TLP is transmitted, the transmitter buffers the TLP to

a replay buffer for later use. After the data link layer of a receiver receives a TLP from

the transmitter, the data link layer first checks the cyclic redundancy check (CRC) field

23

of the packet. The CRC field is calculated by the transmitter based on an error checking

algorithm. The receiver calculates the CRC of the packet based on the same algorithm. If

the CRC calculated by the receiver is the same as the CRC field received, the receiver

will send an ACK data link layer packet (DLLP) to the transmitter. The TLP backed up in

the replay buffer is then dropped. If the CRC calculated by the receiver is different than

the CRC field received. The receiver will send a NAK DLLP to the transmitter. The

transmitter will then resend the packet from the replay buffer. Hopefully, the TLP will be

received correctly. If so, an ACK DLLP is send back and the replay buffer is cleared. If

not, a NAK DLLP is sent back and the TLP will be resend again.

The ACK/NAK protocol ensures TLP to be transmitted in a reliable way without

error or loss. However, efficiency issues arise when a large TLP is transmitted. We

assume that a large TLP is transmitting from a transmitter of a network device to an

ingress port of the PCIe switch. The ingress port is not able to check the CRC field until

it receives the whole packet. Thus, the switch cannot forward the packet until receiving

the entire packet and checking the CRC field. The latency of the switch at minimum is

the time required to pass the packet through the ingress port and the processing time. If

the packet needs to pass through multiple switches, the overall latency will increase.

One way to reduce latency is to use cut-through mode in PCI Express. In cut-

through mode, the egress port of the switch starts forwarding the TLP immediately after

the first bit arrives at the ingress port. When the entire packet is received, the switch will

calculate and check the CRC field. If no errors occur, the switch will send the ACK

DLLP to the transmitter. If an error occurs, the switch will attach an End Bad Packet

(EDB) symbol to the end of the packet instead of the original END symbol. Meanwhile,

the CRC field is inverted. The switch then sends a NAK DLLP to the transmitter for

retransmission. When the target device receives the corrupted packet, the device detects

24

the EDB symbol and inverted CRC field, and discard the packet. The receiver cannot

send the NAK DLLP to the transmitter since the switch has already sent the NAK.

3.3.2. Classification

The Ethernet over PCI Express switch allows for different types of traffic that

requires differentiated services. For example, normal Ethernet traffic should take higher

priority than mass storage transactions, while taking a lower priority than video data for

high performance video cards. PCI Express utilizes Traffic Class (TC) and Virtual

Channel (VC) as part of a solution for providing differentiated services for different

applications.

Different numbers of TCs represent different transmission priorities. TC values

can be assigned from TC0 to TC7, which is carried in packet header. Larger values

indicate higher priorities. TC0 must be implemented by every PCI Express device. VC

identifies the physical transmission line into different virtual channels. VC0 to VC7 can

be used for one link. VC0 must be implemented by every device.

Device drivers and firmware are able to configure the number of TCs and VCs

that the device can support. Configuration software is responsible for setting up the VCs

for each link in the PCI Express system. The number of VCs in each link is the smallest

number of VCs each device attached to that link can support. For example, device A and

switch port B is attached to the same link. Device A supports up to 2 VCs while port B

supports up to 5 VCs. Hence, a number of 2 VCs are assigned to that link.

VC numbers or IDs are assigned by configuration software, except that VC0 is

hardwired. Before transmission, different TCs must be mapped to VCs by software via

VC Resource Control Register. Note that one or multiple TCs can be mapped to a single

VC but one TC can’t be mapped to multiple VCs.

25

Figure 10 illustrates the classification structure of a PCI Express switch. When

switching is performed, the receive paths of Adaptor 1 and Adaptor 2 convert Ethernet

packets to PCIe Transaction Layer Packets (TLPs). The TLPs with different TCs are

mapped to different VCs by a TC/VC mapping logic. Before routing through a crossbar

fabric, TLPs from different VCs are scheduled to be sent by a VC arbitration logic

(VARB). After proper routing, another TC/VC mapping logic resolves different TLPs

from the link and sends them to multiple VCs of different ports. Port arbitration logics

(PARBs) schedule the transmission of TLPs from different ports to aggregate to one VC.

TLPs from different VCs are then arbitrated to the egress port by a VARB. Finally, TLPs

are converted back to Ethernet packets by the transmit path of Adaptor 3.

26

TC
/V
C
Ma
pp
in
g

Po
rt
1
VC
0

Po
rt
1
VC
1

VA
RB

TC
/V
C
Ma
pp
in
g

Po
rt
4
VC
0

VA
RB

TC
/V
C
Ma
pp
in
g

Po
rt
1
VC
0

Po
rt
4
VC
0

PA
RB

Po
rt
1
VC
1

PA
RB

Po
rt
4
VC
1

VC
0

VC
1

VA
RB

Ethernet
over
PCIe

Adaptor
1

Receive
Path

Ethernet
over
PCIe

Adaptor
3

Transmit
Path

Ethernet
over
PCIe

Adaptor
2

Receive
Path

Ethernet
Packets

Ethernet
Packets

Ethernet
Packets

PCIe Link

Switch
Port 1

(Ingress)

Switch
Port 2

(Ingress)

Switch
Port 3
(Egress)

Crossbar Fabric PCIe Switch

1 2 3 4 5

1

2

3

4

5

PCIe Link

Figure 10: Classification in the PCIe Switch

27

3.3.3. Scheduling

Scheduling solves the issue of traffic contention, which is caused by packets

from multiple ingress ports or channels aggregating to one egress port or channel. The

scheduling mechanism in the PCIe-based Ethernet switch is implemented by Virtual

Channel (VC) arbitration and port arbitration protocol in PCI Express.

VC arbitration determines the ordering of TLPs being transmitted from the same

port. The VARB logic in Figure 10 illustrates an example of VC arbitration. In general,

three methods can be used for VC arbitration.

a) Strict Priority

In this method, the priority of a TLP is uniquely determined by its VC ID. VC7

has the highest priority while VC0 has the lowest priority. Strict Priority requires that

high priority VCs get precedence over low priority VCs. For example, if VC2 up to VC7

are used for strict priority method, TLPs in VC2 cannot be transmitted if any TLPs with

VC3 to VC7 are pending. One problem of this method is that in some extreme cases, low

priority TLPs may suffer from huge latencies due to sustained high throughput of high

priority TLPs. In order to solve this problem, PCI Express requires that high priority

TLPs must be regulated to avoid the starvation of low priority TLPs.

b) Split Priority

This method splits the VCs into two groups by the “VC Capability Register 1”.

The high priority group keeps applying Strict Priority method while the low priority

group uses alternative priority method determined by software. Either Equal Round

Robin or Weighted Round Robin method can be used for the low priority group. This

method avoids low priority traffic from starvation and provides more flexibility for the

scheduling scheme.

28

c) Equal or Weighted Round Robin

This method is applied by setting the highest priority VC within the low priority

group in the Split Priority method. The Equal Round Robin method gives every VC the

same possibility to be transmitted, which is purely hardware-based. The Weighed Round

Robin method involves a VC Arbitration Table. System software is able to configure the

table by adding more entries for higher priority VCs than lower priority VCs. The VC

arbiter then reads all table entries sequentially and sends out the TLP with the

corresponding VC in the entry. Thus, high priority TLPs are more likely to be transmitted.

In the Ethernet over PCIe implementation, the Strict Priority method could be

applied when the network is operating in relatively low throughput or with small amount

of burst traffic. The Split Priority method could be applied when the throughput of certain

types of traffic have to be guaranteed. The Weighted Round Robin method could be

applied when priority rules are flexible and traffic types are unpredictable.

3.3.4. Flow Control

In Ethernet switching, input ports may send high throughput of data to one or

more output port(s) resulting in data congestion or packet loss at the output. This problem

is very significant when multiple input ports are directing large amounts of data to an

output port at the same time. However, simply blocking the sending port will cause head-

of-line blocking. The input buffer will overflow and the overall performance will be

dramatically deceased. Hence, a proper flow control mechanism should be implemented

to improve or prevent this type of issue. Since PCI Express switching fabric is leveraged

for Ethernet frame switching, the flow control mechanism in PCI Express is implemented

in the switch.

29

A credit-based flow control mechanism is used in PCI Express. In PCIe peer-to-

peer switching, a peer can send a transaction packet to the other peer before the

transmitter verifies the receiver has enough buffer space to store the packet. The available

buffer space is called Flow Control Credits (FCCs). After initialization, the receiver starts

to report the size of the receive buffer to the opposite link. The receiver should continue

updating the available space in the buffer (FCCs) afterwards. Before transmission, the

transmitter checks the FCCs of the data buffer in the target receiver. If a limited FCC is

reported, the transmitter suspends the transmission. As soon as the receiver side reports

enough FCCs, the transmitter is allowed to transmit again. Upon receipt of the transaction

packets, the receiver removes the data in the buffer at a proper time. After the data is

removed, the receiver adds more FCCs based on the amount of removed data. Updated

FCCs are reported to the opposite side of the link.

In PCI Express, the head-of-line blocking problem is solved by using different

flow control buffers for different virtual channels (VCs). If one of the receiving buffers is

full and starts to report limited FCCs, the corresponding VCs at transmit side is blocked.

Transaction packets in other VCs are still able to be sent out to the receivers that are

reporting sufficient FCCs. Besides transmit buffers, each receiving port implements

different data buffers for different VCs as well. Thus, a VC that is full on packets does

not affect the transmission of other VCs. The overall possibility of overflow is decreased.

As stated in 3.3.1, there are eight VCs per link in PCI Express. In addition, flow control is

managed separately by six different kinds of transaction types. Therefore, there are 8 VCs

x 6 types = 48 data buffers per port. Multiple data buffers ensure that the report of limited

FCCs doesn’t affect much on the whole transmission.

30

3.3.5. Error Detection

Error detection is necessary due to unreliable transmission channels, logic block

malfunctions, data source corruptions, etc. The PCI Express switch must be able to detect

errors generated from Ethernet over PCIe adaptors, PCIe transmission channels, and

inside the PCIe switch. Ethernet over PCIe adaptors must be able to detect errors from

host devices, Ethernet transmission channels, PCI Express switches, and PCIe

transmission channels. PCI Express switching utilizes the error detection mechanisms

from the PCI Express Specification. The mechanisms that are related to the proposed

Ethernet switch are discussed below.

The first type of error is ECRC error. This type of error can be generated by PCIe

devices or PCIe transmission channels. The Ethernet over PCIe adaptor must generate a

32-bit cyclic redundancy check (CRC) that covers the header and data portions of the

transaction layer packet (TLP) and attach the CRC to the end of the TLP. This type of

CRC is called end-to-end CRC (ECRC), which is typically checked by the ultimate

recipient of the transaction. The PCIe switch between two adaptors may optionally check

and report ECRC errors. The switch must route and forward the packets intact even

though errors have been detected in TLPs. If an adaptor detects an ECRC error in a

request TLP, the adaptor may simply drop the packet without forwarding to the receiving

logic. This will result in completion time-out in the requesting adaptor at the end. The

requesting adaptor can resend this request at a certain time depending on the specific

implementation. If an adaptor detects an ECRC error in a completion TLP, the adaptor

may drop the packet and report the error to the adaptor driver. The driver could request

the adaptor to retransmit the packet at a certain time depending on the specific

implementation.

31

The second type of error is TC to VC mapping error. As mentioned in 3.3.1, the

transmitter should consult with the receiver to decide the number of VCs which can be

used for transmitting different classes of packets. Errors may happen in the meantime

resulting in the receiver receiving packets that request non-supported VC numbers. A TC

to VC mapping error could be reported to the device driver or OS.

The third type of error is flow control error. This type of error typically occurs

when the flow control credit is reported incorrectly. For example, the specification

defines the minimal flow control credit size that a VC should report after initialization. If

the first flow control credit that a receiver receives is smaller than that number, a flow

control error must be reported to the root complex.

3.3.6. Device Synchronization

Device drivers and system software should have full control of all the endpoint

functions when data switching occurs. The system software should be aware of the

switching status while all the traffic bypasses the CPU.

Specifically, the system software should be able to stop outstanding transactions

for particular devices when necessary. When hot-plug occurs, BDF numbers may be

changed when renumbering devices. Requests or completions from one peer still in flight

may be redirected to a wrong destination. Thus, a stop mechanism should be

implemented in device drivers and system software. The stop mechanism contains the

following aspects.

a) Block requests generation.

The system software is able to block devices from generating new requests

through drivers. The command register in each device function controls requests

generation. When blocking, system software should send configuration write transactions

to devices to change the command register. In particular, Bus Master Enable bit which

32

controls the ability of the endpoint device to issue memory and I/O read/write requests

should be set to 0; SERR# Enable bit which enables reporting of non-fatal and fatal errors

should be set to 0; Interrupt Disable bit which controls endpoint function to generate

INTx interrupts should be set to 1.

b) Block requests propagation.

Each request from peer A to peer B should go through the driver with the

permission of the system software. When stopping, the system software should issue a

“stop notice” to a group of device drivers. The drivers should then block the requests of

their devices from propagating to the destination peers until the system software issues a

“resume notice”.

c) Determine requests reached destinations.

For non-posted requests (requests requiring the completer to send back

completion packets), the Transaction Pending (TP) bit in the device Status Register

indicates whether the request has been completed. Endpoint functions set the TP bit to 1

after sending the request. The TP bit is set back to 0 when the requests are completed or

terminated by system software.

For posted requests (requests not requiring the completer to send back

completion packets), the system software should issue a “flush notice” to all endpoint

devices which have sent a posted request in the last transaction. The devices should then

send a non-posted read request with zero-length to the corresponding Traffic Class (TC).

Consequently, determination of the read request is handed to TP bit.

33

CHAPTER 4

ETHERNET OVER PCI EXPRESS ADAPTATION

4.1. Overview of the Ethernet over PCI Express Adaptor Card

The Ethernet over PCI Express adaptor card implements Ethernet over PCI

Express adaptation. The block diagram of the adaptor is shown in Figure 11. Ethernet

packets pass through a receive path when the PCIe-based Ethernet switch receives

incoming packets. The receive path consists of an Ethernet Physical (PHY) layer, an

Ethernet Media Access Control (MAC) layer, Receive Path Adaptation logic blocks, a

PCI Express Transaction layer, a PCI Express Data Link layer, and a PCI Express

Physical (PHY) layer. Ethernet packets pass through a transmit path when the switch

transmits outgoing packets. The transmit path is the reverse of the receive path, except

that the packets pass through “transmit path adaptation” logic blocks instead of the

“receive path adaptation” logic blocks.

The different layers of the Ethernet and PCI Express logic blocks implement

encapsulation and decapsulation, encoding and decoding, collision detection and

handling, error detection and handling, flow control, classification, etc. Receive and

transmit path adaptation logic blocks implement output address lookup, classification,

flow control, and error detection in cooperation with the layered logic blocks.

34

PCI Express Transaction Layer

PCI Express Data Link Layer

PCI Express Physical Layer

Ethernet Media Access Control Layer

Ethernet Physical Layer

Transmit Path Receive Path

Receive Path AdaptationTransmit Path Adaptation

Output Address Lookup

Classification

Flow
Control

Error
Detection

Classification

Flow
Control

Error
Detection

Figure 11: Overview of the Ethernet over PCI Express Adaptor Card

35

4.2. Encapsulation and Decapsulation

Figure 12 shows the encapsulation and decapsulation processes by the two

Ethernet layers. When the Ethernet over PCIe adaptor receives Ethernet packets, the

Ethernet PHY layer logic and the MAC layer logic decapsulate the Ethernet packets and

send the data payload to the upper layers. When the adaptor transmits data, the MAC and

PHY layer logics encapsulate the data payload from the upper layers to form Ethernet

packets and send the packets to the Ethernet physical medium.

Assume the Ethernet PHY layer adopts 10GBASE-T. 10GBASE-T as a standard

defined in IEEE 802.3an-2006 provides 10 Gb/s connections over unshielded or shielded

twisted pair cables [29]. Ethernet signals transmit over four pairs of balanced cabling.

Each of the twisted pair has a data rate of 2500 Mb/s resulting in an aggregation rate of

10 Gb/s. The physical signals use 16-level Pulse-amplitude Modulation (PAM) with a

modulation rate of 800 Megasymbols per second.

XGMII and MDIO signals couple between the PHY and MAC layers. XGMII

provides independent 32-bit-wide transmit and receive data paths. XGMII data stream is

a sequence of bytes consisting of a preamble, a start of frame delimiter (SFD), a data

payload, and an end of frame delimiter (EFD). MDIO is a bidirectional signal used for

transferring control information and status between the PHY layer and Station

Management Entity (STA) in the MAC layer. The structure of the MDIO frame is not

drawn in Figure 12.

The MAC layer applies a media access discipline known as Carrier Sense

Multiple Access with Collision Detection (CSMA/CD). The MAC layer also

encapsulates and decapsulates Ethernet frames with a frame boundary delimitation,

source and destination addresses, and an error detection field. A MAC frame consists of a

Destination Address (DA), a Source Address (SA), a Length/Type field, MAC client data,

36

a Pad field (if the frame is smaller than the minimum length), and a Frame Check

Sequence (FCS) field.

When the adaptor receives Ethernet packets, the PHY layer logic decodes and

converts 16-PAM physical signals to XGMII packets. The MAC layer logic then

decapsulates the XGMII packets to MAC frames and sends the MAC frames to the upper

layer logics. When the adaptor transmits Ethernet packets, the MAC layer logic

encapsulates MAC frames to XGMII packets. The PHY layer logic then encodes and

converts the XGMII packets to 16-PAM signals.

Ethernet Physical Layer

Ethernet Media Access Control Layer

Ethernet Physical Medium

Preamble SFD Data EFD

XGMII

MDIO

XGMII

MDIO

DA SA
Length
/Type

MAC Client Data PAD FCS

16-PAM

XGMII Packet

MAC frame

PCI Express Layers

Re
ce
iv
e

Tr
an
sm
it

Figure 12: Ethernet Packets Encapsulation and Decapsulation

Figure 13 shows the encapsulation and decapsulation processes by the PCI

Express layers. When the adaptor receives Ethernet packets, the PCI Express three-layer

logics receive frames from the “receive path adaptation” logic along with PCIe routing

addresses/IDs and other information. The three-layer logics encapsulate the Ethernet

frames to form PCIe physical packets and send the packets to the PCIe physical medium.

When the adaptor transmits data, the PCIe three-layer logics receive the PCIe packets

37

from the PCIe physical medium. The logics then decapsulate the packets to form Ethernet

frames and send the frames to the “transmit path adaptation” logics.

The PCIe transaction layer logic is responsible for encapsulation of outbound

Ethernet MAC frames to form TLP packets and decapsulation of inbound TLP packets to

form Ethernet MAC frames. Note that the “outbound” and “inbound” are defined in terms

of PCIe packets transmitting to or from the PCIe physical medium. When encapsulating a

MAC frame, the transaction layer appends a header and an optional ECRC field to the

frame. The header is 3 double words or 4 double words in size and may contain

information such as routing address/ID, TLP type, transfer size, tag, traffic class, byte

enables, and attributes. The optional ECRC field is used for error detection, as discussed

in 3.3.5. When decapsulating a MAC frame, the transaction layer checks the ECRC field

and removes the header and ECRC field. The transaction layer also implements Virtual

Channels (VCs) buffers and a flow control mechanism.

The PCIe data link layer logic is responsible for encapsulation of outbound TLPs

to form link packets and decapsulation of inbound link packets to form TLPs. When

encapsulating a TLP, the data link layer appends a sequence ID and a Link CRC (LCRC)

to the TLP. The sequence ID field is used for the ACK/NAK protocol discussed in 3.3.1.

The LCRC field covers the sequence ID and TLP field for the peer data link layer to

check for any CRC errors. When decapsulating a TLP, the data link layer logic checks

the LCRC field and removes the sequence ID and LCRC field. The data link layer logic

is also responsible for generating Data Link Layer Packets (DLLPs). DLLPs are used for

link management functions such as ACK/NAK protocol, power management, and

exchanging of flow control information.

The PCIe physical layer logic is responsible for the encapsulation of outbound

link packets and DLLPs to form physical packets and the decapsulation of inbound

38

physical packets to form link packets and DLLPs. When encapsulating a link packet or

DLLP, the physical layer appends the packet with a “start” and “end” character with the

aid of a multiplexer. The characters are framing symbols used for detecting the start and

end of the packet. The packet is then stripped to different lanes, scrambled, encoded,

converted to serial bit stream, and finally transmitted to the PCIe physical medium. When

decapsulating, the physical layer logic converts serial bit streams to parallel symbol

streams, decodes, de-scrambles, and un-strips the streams to form physical layer packets.

Start and end characters are then removed from the physical packets to form link packets

or DLLPs. The link packets or DLLPs are handed to the data link layer.

PCIe Physical Layer

PCIe Data Link Layer

PCIe Transaction Layer

Start Link Packet End

Sequence TLP LCRC ACK/NAK CRC

Header Data Payload ECRC

DA SA
Length
/Type

MAC Client Data PAD FCS

Ethernet MAC Frame

Transaction Layer Packet (TLP)

Data Link Layer Packet (DLLP)Link Packet

Physical Packet

Ethernet Layers

PCIe Physical Medium

Ou
tb

ou
nd

In
bo

un
d

...

1 Lane2 Lane3 Lane

Figure 13: PCI Express Packets Encapsulation and Decapsulation

39

4.3. Address Mapping Table

Ethernet packets use Media Access Control (MAC) addresses to indicate

destination devices. PCI Express TLPs use routing addresses or routing IDs to indicate

destination endpoint devices (adaptors). A manageable mapping table between the MAC

addresses in Ethernet packets and the routing addresses/IDs in PCIe TLPs is a must for

Ethernet over PCIe adaptation.

The routing addresses of PCI Express endpoint devices have different

representations in the PCIe system. In a system memory map, the endpoint devices can be

mapped into prefetchable memory devices or memory-mapped IO (MMIO) devices.

Prefetchable memory refers to the memory that does not have any side effects from read.

The MMIO devices use regular memory space in the system to access IO devices. A

legacy PCIe device such as a PCI or PCI-X device should be mapped into a system IO

map, which is separate from the system memory map. In this case, the Ethernet over PCIe

adaptor must be mapped to a prefetchable memory device or MMIO device. The adaptor

can use either 32-bit or 64-bit addresses, depending on the PCI Express system.

The Operating System (OS) is responsible for creating the address mapping table.

When the system is powered on, certain routines in the Basic Input/Output System (BIOS)

perform the enumeration process. After the enumeration, Bus, Device, Function (BDF)

numbers are assigned and stored in the OS. Either the memory mapping address, IO

mapping address or pre-fetch address of each device is also stored in the OS [15].

When the adaptor receives Ethernet packets, the source MAC addresses of the

Ethernet packets indicate the addresses of the transmitter which the packets came from.

The Ethernet packets are analyzed by an “Ethernet parser” logic in the adaptor card. The

logic sends the source MAC addresses to the operating system with the adaptor’s BDF

number (ID) or routing address. When the OS receives the information, it creates an

40

address mapping table with the mapping of source MAC addresses, BDF numbers, and

routing addresses.

An example address mapping table is shown in Table 1. According to the PCI

Express Specification Revision 3.0 [6], the maximum number of buses in a PCIe system

is 256; the maximum number of devices on a bus is 32; the maximum number of

functions in a device is 8. Hence, an 8-bit Bus field, a 5-bit device field, and a 3-bit

function field occupy the first 16 bits of the entries in the mapping table. A 64-bit routing

address field is also reserved in the table. If a 32-bit routing address is applied in the PCIe

system, only the lower 32 bits of the field can be accessed.

Table 1: Address Mapping Table

[131] [130] [129:128] [127:80] [79:17] [47:16] [15:8] [7:3] [2:0]
Entry
No.

Valid
(1
bit)

Age
(2 bits)

Source
MAC
Address
(48 bits)

Routing
Address
(upper
32 bits)

Routing
Address
(lower
32 bits)

Bus #
(8
bits)

Device

(5 bits)

Func
tion

(3
bits)

A 3-bit status field is attached to each entry. The field consists of a 2-bit age field

and a 1-bit valid field. According to the IEEE 802.1D standard, entries that are not being

accessed for a long time should be aged out [16]. Thus, a 2-bit age field is appended to

each entry to indicate the time that the entry existed. The age field is reset to “00” when a

new entry is created or an existing entry is received. The age field is set to “01” if the

entry has not been received for a certain amount of time. The age field is set to “10” if the

entry has timed out and can be rewritten. Age “11” denotes the entry should be kept

perpetually. The system software then should implement a timer to increase the age field

up to “10”. The valid bit indicates whether this entry should be kept or rewritten. For

41

example, if “10” is detected in an age field, then the valid bit should be set to “0”,

indicating the entry is invalid and can be rewritten when a new entry is received.

The OS is responsible for management of the mapping table such as updating,

adding and deleting entries. When a mapping entry A is received, the OS first searches

the table for the source MAC address in entry A. If an existing entry B matches the

source address, the OS then should rewrite the BDF field and routing address field with

the source address in entry A. If no result is found, the OS must allocate an address with

valid bit “0” and write the new entry to that address.

4.4. Output Address Lookup

After proper processing, every Ethernet packet must be directed to the target PCI

Express endpoint adaptor according to the destination MAC address. The “output address

lookup” logic in the adaptor is responsible for looking up the routing ID or address of the

target PCIe adaptor based on the destination MAC address using the Address Mapping

Table. The basic structure of the lookup logic is shown in Figure 14.

Each PCIe-based switch adaptor should implement the Output Address Lookup

logic. The operating system is responsible for sending control signals periodically to the

adaptors. The control signals include updating, adding, and deleting entries of the address

mapping table. The lookup logic must create and maintain an address mapping table

identical to the table in the operating system. When the adaptor receives Ethernet packets,

the Ethernet parser sends the destination MAC addresses of the packets to the Output

Address Lookup logic. The lookup logic looks up the corresponding routing address/ID

of the target adaptor. The lookup result is sent to upper layer logic in order to generate

PCI Express transactions.

42

Output Address Lookup

Address
Mapping
Table

Destination MAC Address

Routing Address

Ethernet Parser

Ethernet Packet

Ethernet Packet

Ethernet Packet

Figure 14: Output Address Lookup Logic

There are different approaches of the mapping table storage and address lookup.

The cache-based approach uses multiple caches to store a small forwarding sub-

table containing only the most recent or frequent destination addresses. Other less

frequently used addresses are stored in a slower but larger memory. The destination

addresses of incoming packets are always searched inside the cache first. If no matching

entry is found, the full mapping table is accessed. This approach can only work when the

destination addresses in the Ethernet packets are not constantly changing, which will

43

yield a high cache-hit-ratio. However, the approach becomes inefficient in networks of

unpredictable and dynamic traffic [10][17].

The trie-based approach uses a multi-way tree structure to handle address strings.

Each node in the tree contains zero or more pointers to its child nodes. Each address

lookup process starts from the root node of the tree. For a binary tree, whether the left

node or the right node is visited is based on the value of each bit in the address string.

The furthest node that the address can reach returns the corresponding target address

information. The trie-based approach is mainly used in the “longest prefix matching” for

IP packets [18]. In Ethernet switches, the approach can still be used. The difference is

that each MAC address has only one corresponding PCIe port ID/address. The node at

which the searching stops is always at a leaf node and not a parent node. It is a tradeoff

between searching time and storage complexity. Searching time is reduced when the

destination addresses are randomly distributed, however, a wider tree needs to be built

resulting in a storage capacity increase. On the other hand, concentrated ranges of

addresses reduce the overall storage complexity, but the amount of memory accesses is

increased when the addresses are similar (long prefixes are matched).

The hashing table approach provides a compact and well-organized way to store

the address mapping table as well as an efficient way to lookup the corresponding PCIe

routing IDs/addresses. Hashing is a method of transforming a set of data into preferable

unique memory addresses for data storage [19]. Hashing uses the MAC address as the

memory address occupies extensive memory space. The hashing function converts the

source MAC address to a memory address or pointer for storing the MAC address

associated with the PCIe port ID/address. However, the hashing approach introduces hash

collisions, which may cause decreased address table capacity and inefficient bandwidth

utilization. During the design of the switch, the hashing function needs to be carefully

44

chosen to accommodate address distribution in a real network in order to reduce hash

collisions [20].

Another approach is Content-Addressable Memory (CAM). CAM is a

specialized matching memory that performs parallel comparison. MAC addresses are

stored in the data field instead of the address field of the CAM. The corresponding PCIe

routing ID/address is stored in the address field. When a destination MAC address is

received, the CAM outputs the address field (i.e. PCIe routing ID/address) of the MAC

address. The CAM approach is simpler than the hashing table and trie-based approaches.

CAM has the disadvantage of high cost-to-density ratio and high power-consumption

[18].

The selection among these different approaches depends on the specific

application and network traffic condition. Some performance metrics [21] discussed

below also need to be considered.

a) Lookup Speed

b)

: The lookup speed needs to meet the increasing demand of high

bandwidth Ethernet communication. For a 10 Gbps Ethernet channel, the lookup

logic has to perform destination ID/address lookup at 31.25 million times per

second, when considering a minimum size of a 40-byte packet.

Storage Requirement:

c)

 Randomly distributed Ethernet packets require large

amount of storage. Proper management and organization is necessary to maintain

the mapping table as concise as possible, leading to fast memory access and low

power consumption.

Update Time: The update time is very critical when the Ethernet switch is located

in a large LAN with constantly changing hosts and variable Ethernet packets.

Certain updating algorithms need to be performed to avoid routing instabilities

while interfering little with normal lookup operations.

45

d) Scalability:

e)

 It is expected that the size of forwarding tables will increase at a

speed of 25k entries per year. The ability of an algorithm to handle large

forwarding tables is required.

Flexibility:

4.5. Packets Routing

 Most current lookup algorithms can be implemented in either

software or hardware. Some of the algorithms have the flexibility of being

implemented in different ways such as ASIC, network processors, or generic

processors.

Before the switch routes packets, Base Address Registers (BARs) must be set

specifically in the Ethernet over PCIe adaptors. BARs are used to indicate the type and

start address of the device when using address routing. Figure 15 shows the bit

assignment of a 64-bit BAR. Whether the memory address or IO address is stored in the

BAR depends on the “memory space indicator” bit. IO transactions are only allowed for

legacy devices and software (e.g. PCI and PCI-X). Hence, the “memory space indicator”

bit should be set to “0” in the BAR to indicate the adaptor is a memory device. The

“prefetchable attribute” bit defines the memory as prefetchable or not. The PCI Express

Specification encourages that resources mapped into memory space should be designed

as prefetchable whenever possible. PCI Express endpoints other than legacy endpoints

must support 64-bit addressing for any BAR that requests a prefetchable memory space.

In the case of the Ethernet over PCIe adaptor, the prefetchable attribute bit is set to “1”;

and a 64-bit decoder is used. The range of the memory space address could be set to a

minimum of 128 bits.

46

Figure 15: 64-bit Memory Base Address Register Bit Assignment [12]

As stated in 3.2.2, there are three routing schemes in PCI Express: Address

Routing, ID Routing, and Implicit Routing. In the case of Ethernet over PCI Express,

Ethernet packets transmission from transmitter A to receiver B can be treated as memory

write from peer A to peer B in PCI Express. Ethernet packets reception from transmitter

B to a receiver A can be treated as memory write from peer B to peer A. Hence, the

Address Routing scheme is adopted for Ethernet packet switching since only the memory

write (MWr) transaction is needed. ID Routing and Implicit Routing are only necessary

for the native configurations in the PCI Express system.

The memory write routing procedure is simpler than the example discussed in

3.2.2. The transaction layer logic in an adaptor (Requester) first encapsulates an Ethernet

frame with a header including the Completer’s routing address, MWr transaction type,

payload size, traffic class, etc. The logic also appends an ECRC field covering the header

and payload at the end of the frame. The TLP is then encapsulated in the data link layer

logic and buffered in the TLP replay buffer. When the link packet is transmitted through

the physical layer logic and received by the switch downstream port correctly, the switch

downstream port returns an ACK DLLP to the Requester. The Requester discards the

copy of the TLP from the replay buffer. Next, the switch forwards the MWr TLP to the

correct egress port using the routing address. If the Completer receives the TLP without

47

an error, it returns an ACK DLLP to the switch; and the switch discards the copy of the

TLP in the replay buffer. MWr requests are posted transactions, in which Completers do

not return completion packets.

4.6. QoS and QoS-related Protocols

Similar to the QoS of PCI Express as discussed in 3.3, the QoS in the context of

Ethernet over PCIe adaptation refers to providing an Ethernet connection of differentiated

services for the hosts connected to the adaptors as well as coordinating the QoS provided

inside the PCIe switching fabric. The QoS protocol (classification) and QoS-related

protocols (flow control and error detection) are discussed below.

4.6.1. Classification

Basic Ethernet packets do not contain any classification information. Solutions

have been proposed in order to classify different sort of packets. For example, one

solution offers higher priority for smaller frames to adapt inter-frame gap. Another

solution uses a variable length of preamble field to represent different priorities [22].

The IEEE 802.1Q standard [23] defines Virtual Local Area Network (VLAN),

which enables a group of hosts to communicate as if they were attached to the same

broadcast domain. At the same time, the standard adds a 4-byte tag field into the basic

Ethernet frame. The tag field enables priority information to be conveyed within the

Ethernet frame. The tag field also allows VLAN Identifier (VLAN ID) to be conveyed

with the VLAN classification information throughout the network.

The structure of a tagged frame is shown in Table 2. A Tag Protocol Identifier

(TPID) field and a Tag Control Information (TCI) field are added to the basic Ethernet

frame.

48

Table 2: Structure of Tagged Frame

No. of
Bytes 7 1 6 6 2 2 2 42-

1496 4

Field Preamble SFD DA SA TPID TCI Type Length Data CRC

An EtherType value is included in the TPID field, which is used for identifying

the frame as a tagged frame and selecting the corresponding tag decoding function. A

regular EtherType value is 8100 in hexadecimal representing “Customer VLAN Tag”

type. The TCI field contains 16-bit control information as shown in Table 3.

Table 3: Structure of TCI Field

No. of Bits 3 1 12
Field PCP DEI VID

Priority and Drop Eligible parameters are encoded in the Priority Code Point

(PCP) field and Drop Eligible Indicator (DEI) field, respectively. The DEI field along

with the PCP field specifies the priority level and the number of bits that can be dropped.

Up to 8 levels of priorities can be selected by using the PCP field. The highest priority

level is 7, which can be used for network-critical traffic such as the Routing Information

Protocol (RIP) and Open Shortest Path First (OSPF) table updates. Level 5 or 6 can be

used for delay-sensitive applications such as video and voice transmission. Levels 1 to 4

can be used for controlled-load applications such as business-critical traffic. Level 0 is

left to the default best-effort traffic [24]. VID is the identification of VLAN, which

contains 4096 possible VIDs.

The PCI Express-based switch adaptor is responsible for converting different

classes of Ethernet packets to Traffic Classes (TCs) in PCI Express. As Figure 16 shows,

49

when an Ethernet packet is received, the Ethernet Parser logic determines whether the

packet is VLAN tagged or not. In other words, the switch interface should be VLAN-

aware. If the packet is VLAN tagged, the parser logic must extract the Priority Code

Point (PCP) field from the packet, decode the level of priority, and convert the priority

level to the corresponding TC number in PCI Express. Next, the TC number is sent to the

PCIe Transmit Interface logic. The logic adds the TC number into the TLP header. On

the other hand, if the packet is not VLAN tagged, the parser logic must assign the packet

with TC0 and send the packet to the interface logic. The interface logic then adds TC0 to

the TLP header. Obviously, this type of Ethernet packets is mapped to the VC0 in the PCI

Express.

50

PCIe Tx Interface

Ethernet Parser

PCP to TC mapping

Packet is
VLAN Tagged

Ethernet Packet

Yes

No

TLP Header Encoding

TLP Header

FmtR Type R TC R ...

TC0 TCx

Figure 16: Ethernet Class Conversion

4.6.2. Flow Control

As stated in 3.3.4, the internal switch utilizes the PCI Express flow control

mechanism. This mechanism ensures that packets are transmitted smoothly (without

packet loss or buffer overflow) inside the switching fabric. However, a flow control

mechanism must also be implemented outside of the switch. For example, if an input

buffer of a host connected to an egress port of the switch is about to overflow, the host

should report to the switch to slow down or pause transmission to avoid packet loss.

51

4.6.2.1. Conventional Flow Control

The IEEE 802.3x standard annex 31B [25] defines a MAC control PAUSE

operation for basic flow control across Ethernet. This conventional flow control

mechanism is still being used though the IEEE 802.3x standard has been withdrawn. The

PAUSE operation is used for inhibiting transmission of Ethernet frames for a specified

period of time to avoid buffer overflow. The receiver side normally uses a high and a low

threshold to indicate receive buffer status. The transmitter side normally implements an

“on and off” state machine to control data transmission. If the buffered data level reaches

the high threshold, the receiver will send a PAUSE frame to the opposite side of the link.

The PAUSE frame contains a timer parameter which ranges from 0 to a maximum pause

time of 65535. The time unit is 512 bit time depending on the specific implementation. A

globally-assigned multicast MAC address 01-80-C2-00-00-01 has been reserved for the

PAUSE frame. After the transmitter receives the PAUSE frame, the state machine will be

triggered to the “off” state. The transmitter then stops transmitting frames until the timer

expires or receives another PAUSE frame with a zero timer. If the receiver consumes the

buffered data and the buffer level reaches the low threshold, the receiver will send

another PAUSE frame timer parameter equal to zero. The transmitter then turns to the

“on” state and resumes transmission upon receiving the zero timer PAUSE frame.

4.6.2.2. Priority-based Dynamic Flow Control with Memory (PDFC)

The conventional flow control mechanism defined in the IEEE 802.3x standard

can be applied to basic networks. However, the mechanism suffers from data congestion

and starvation in unpredictable networks since only fixed PAUSE timers can be sent.

New mechanisms have been put forward to solve this issue, such as Dynamic Pause Time

Calculation (DPTC) [26]. The DPTC method calculates the pause time according to the

network congestion to avoid buffer overflows and underflows. DPTC reduces the number

52

of PAUSE frames needed to be sent and optimizes buffer utilization, but the head-of-line

blocking issue still remains unsolved. The Priority Flow Control (PFC) protocol defined

in the IEEE 802.1Qbb standard extends the basic flow control mechanism in the IEEE

802.3x standard to multiple Class of Services (CoSs) [27]. The PFC protocol implements

a separate flow control method for different classes of data to solve the head-of-line

blocking problem. However, the PFC protocol still uses the fix PAUSE frame timer

resulting in the control of a particular class of queues not being optimized.

A Priority-based Dynamic Flow Control with Memory (PDFC) method is

presented here. PDFC leverages different flow control mechanisms for multiple CoSs

defined in the PFC as well as creates a new method of calculating pause time

dynamically based on throughput and past events. The PDFC method is illustrated in

Figure 17.

53

...

H

M

L

MAC

PHY

MAC Control

MACsec

01-80-C2-00-00-01

Station MAC Address

0x8808
0x0101

Class-enable Vector
Timer (Class 0)
Timer (Class 1)
Timer (Class 2)
Timer (Class 3)
Timer (Class 4)
Timer (Class 5)
Timer (Class 6)
Timer (Class 7)
Timer (Class 8)
Timer (Class 9)

CRC

...

Water Level
Monitor

Pause Time
Calculation

Logic

Register

MAC

PHY

MAC Control

MACsec

...

Flow
Control

PDFC Frame

Classified
Queues

Ethernet
Channel

Transmitter

Receiver

Figure 17: Priority-based Dynamic Flow Control with Memory

54

The PDFC method utilizes tagged frame (defined in 4.6.1) to prioritize different

classes of frames. The Priority Code Point (PCP) field in the tagged frame contains the

priority level of each frame. Each device has to implement classified queues for different

priorities of frames. Each queue has three watermarks, High (H), Middle (M) and Low

(L), which can be programmed by the operator. The water level monitor and the register

are responsible for recording water levels (length of queue) and time. The pause time

calculation logic calculates a proper pause time for each queue based on the recorded data

in the monitor and the register. Similar to the PAUSE frame defined in the IEEE 802.3x

standard, a PDFC frame contains different timers for different prioritized classes.

Suppose the transmitter is sending Ethernet packets faster than the receiver can process

during transmission. When one of the classified queues in the receiver reaches the middle

or high watermark, the receiver generates a PDFC frame and sends the frame to the

Ethernet channel. After the transmitter receives the frame, the transmitter extracts the

timer field and suspends the transmission of that particular queue for a certain amount of

time based on the value of the timer. The queue is allowed to resume the transmission

when the timer expires.

The calculation method of PDFC evaluates an optimized pause time based on the

changing rate of water levels and the past pause time. Let 𝐿𝐿𝑀𝑀 and 𝐿𝐿𝐻𝐻 denote water levels

at the watermark middle and high, respectively. 𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 denotes the pause time that was

calculated last time when reaching the water level middle. 𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denotes the actual

duration that the water level falls from middle to low. Similar denotations apply to

𝑇𝑇𝐻𝐻_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑇𝑇𝐻𝐻_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . The calculated pause time TM when reaching water level middle is

given by

𝑇𝑇𝑀𝑀 = 32768 × 𝐹𝐹1 �
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑

� × 𝐹𝐹2 �
𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� (1)

55

Where,

𝐹𝐹1 �
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑

� = �
𝑅𝑅1
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 ≤ 𝑅𝑅1
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑

< 1

1 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅1
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑

≥ 1
�

𝐹𝐹2 �
𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� =

⎩
⎪
⎨

⎪
⎧𝑅𝑅2

𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 ≤ 𝑅𝑅2

𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
< 1

1 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅2
𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
≥ 1

�

Term 𝐹𝐹1 �
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑
� is a factor to describe the increasing rate of the data in queue. The

term is calculated by monitoring the water level increment around the middle level during

a short period of time. The higher the ratio, the longer the pause time should be set to

avoid potential overflow. 𝑅𝑅1 is a parameter which can be tuned by the operator. The term

𝐹𝐹1 �
𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑
� is limited within 1. Term 𝐹𝐹2 �

𝑇𝑇𝑀𝑀 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑀𝑀 _𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� is a ratio to adjust the pause time 𝑇𝑇𝑀𝑀

based on the pause time that was calculated last time and the actual time period that data

falls from the middle to low water level. If 𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is larger than 𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , it indicates the

pause time set last time was too long so that the queue was about to underflow. Thus, the

ratio 𝑇𝑇𝑀𝑀 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑀𝑀 _𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 is less than 1; shorter pause time 𝑇𝑇𝑀𝑀 is set. If 𝑇𝑇𝑀𝑀_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is smaller than 𝑇𝑇𝑀𝑀_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,

it indicates the pause time set last time was too short so that the queue had potential of

overflow. Thus, the ratio 𝑇𝑇𝑀𝑀 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑀𝑀 _𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

 is more than 1; larger pause time 𝑇𝑇𝑀𝑀 is set. 𝑅𝑅2 is a

parameter which can be tuned by the operator. The term 𝐹𝐹2 �
𝑇𝑇𝑀𝑀 _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑀𝑀 _𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� is also limited

within 1. The coefficient of 32768 is set to be around the middle of the maximum pause

time 65535.

Similar to the previous equation, the pause time when reaching water level high

TH is given by

56

𝑇𝑇𝐻𝐻 = 65535 × 𝐹𝐹3 �
𝑑𝑑𝐿𝐿𝐻𝐻
𝑑𝑑𝑑𝑑

� × 𝐹𝐹4 �
𝑇𝑇𝐻𝐻_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝐻𝐻_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� (2)

Where,

𝐹𝐹3 �
𝑑𝑑𝐿𝐿𝐻𝐻
𝑑𝑑𝑑𝑑

� =

⎩
⎪
⎨

⎪
⎧𝑅𝑅3 �

𝑑𝑑𝐿𝐿𝐻𝐻
𝑑𝑑𝑑𝑑

�
2

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 ≤ 𝑅𝑅3 �
𝑑𝑑𝐿𝐿𝐻𝐻
𝑑𝑑𝑑𝑑

�
2

< 1

1 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅3 �
𝑑𝑑𝐿𝐿𝐻𝐻
𝑑𝑑𝑑𝑑

�
2

≥ 1

�

𝐹𝐹4 �
𝑇𝑇𝐻𝐻_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝐻𝐻_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� =

⎩
⎪
⎨

⎪
⎧𝑅𝑅4

𝑇𝑇𝐻𝐻_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝐻𝐻_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 ≤ 𝑅𝑅4

𝑇𝑇𝐻𝐻_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝐻𝐻_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
< 1

1 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅4
𝑇𝑇𝐻𝐻_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝐻𝐻_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
≥ 1

�

The difference with 𝑇𝑇𝐻𝐻 is that term 𝐹𝐹3 �
𝑑𝑑𝐿𝐿𝐻𝐻
𝑑𝑑𝑑𝑑
� is proportional to �𝑑𝑑𝐿𝐿𝐻𝐻

𝑑𝑑𝑑𝑑
�

2
 instead of

𝑑𝑑𝐿𝐿𝑀𝑀
𝑑𝑑𝑑𝑑

. This is a punishment algorithm to increase the pause time dramatically when the

data increasing rate is too high. Besides, the coefficient is set to be the maximum value

65535.

The PDFC method memorizes the pause time calculated last time and the actual

draining time. The method can be improved by memorizing more records, then take an

average of the past calculated pause time and the past actual draining time. This

improved method can be used for networks with variable throughput.

The determination of the watermarks is also important, especially for the middle

and high watermarks. The receiver must predict the potential extra packets it will receive

after data reaches the middle or high watermark [28]. The PDFC frame has to be sent

early enough for frame transmission and processing by the transmitter. The receiver has

to reserve enough buffer space to ensure that the extra packets will not cause overflow.

The determination of watermarks must consider the following aspects.

57

a) Transmission time of a Maximum Transmission Unit (MTU)

b)

: When the receiver

needs to send a PDFC frame, the receiver cannot interrupt the current

transmitting frame. In the worst case scenario, a MTU will have just started

transmitting the first bit when the PDFC frame needs to be sent. The receiver

must wait until the MTU has completed its transmission. Similarly, the MTU

transmission must be completed at the transmitter end after the transmitter

decides to suspend transmission. The transmission time of MTU at both ends

must be considered.

Transmission time in Ethernet channel:

c)

 It takes some time for the PDFC frame to

reach the transmitter after the frame is sent by the receiver. Certain amounts of

packets are received by the receiver during that time. Similarly, after the

transmitter suspends transmission, the packets in the channel should finally reach

the receiver. Hence, the transmission time on both sides must be considered.

Transmitter respond time and transceiver latency:

4.6.3. Error Detection

 After the transmitter receives a

PDFC frame, the processing time before the transmitter suspends transmission

must be taken into account. In addition, both the transmitter and receiver suffer

from transceiver latency. Extra packets are sent by the transmitter at the speed of

wire during that time.

As discussed in 3.3.5, Ethernet over PCIe adaptors must be able to detect errors

from host devices, Ethernet transmission channels, PCI Express switches, and PCIe

transmission channels. The errors from the PCIe structure (including PCIe switches and

transmission channels) are detected by the PCIe error detection mechanism. The errors

from Ethernet structure (including host devices and Ethernet transmission channels) are

detected by the Frame Check Sequence (FCS) field in the Ethernet frames.

58

The IEEE 802.3an [29] standard defines the format of Ethernet Media Access

Control (MAC) frame. The FCS filed in the MAC frame consists of a 32-bit CRC, which

covers all the fields in the MAC frame except the preamble, start of frame delimiter

(SFD), and FCS.

When a host transmits Ethernet frames, the transmitter of the host generates a

CRC based on the scheduled Ethernet frame. The frame is transmitted from the egress

port of the host with the FCS field attached to the end. Errors may occur at the

transceivers (both the host and switch) and the transmission channels. When the Ethernet

over PCIe adaptor receives the frame, the adaptor calculates a CRC based on that frame.

If the calculated CRC is the same with the FCS field in the frame, the adaptor will keep

the frame and forward it to the PCIe switch. If the calculated CRC is different from the

FCS field, the adaptor will drop the frame and report an error to the driver through PCI

Express. The transmit path of the adaptor is not responsible for checking the FCS field in

frames. However, it may need to generate a FCS field when new Ethernet frames are

created.

59

CHAPTER 5

IMPLEMENTATION OF THE PCIE-BASED ETHERNET SWITCH ADAPTOR

5.1. Overview of the PCIe-based Ethernet Switch Adaptor Implementation

Basic Ethernet over PCI Express adaptation logics in the adaptor are

implemented as shown in Figure 18. The Output Address Lookup logic, PCIe Transmit

Interface logic, and PCIe Receive Interface logic are designed in Verilog HDL.

Commercial IP cores including the 10G Ethernet MAC Core, PCIe Endpoint Core, PCIe

PHY, and AXI FIFOs are customized. The 10G Ethernet PHY chip is included on the

FPGA development board. The logic blocks in the adaptor are divided into three different

clock domains: MAC Rx Clock Domain, PCIe User Clock Domain, and MAC Tx Clock

Domain. The clock frequencies in the three clock domains are defined by standards. The

adaptor is designed to be implemented in an FPGA platform. FPGA has a shorter and

simpler development cycle compared to ASIC. The QoS features are not implemented in

the adaptor at this time.

As discussed in Chapter 4, the 10G Ethernet PHY logic and 10G Ethernet MAC

Core perform the functionality of the Ethernet Physical layer and Ethernet MAC layer

respectively. The interface between the 10G MAC Core and 10G PHY is XGMII. The

PCIe Endpoint Core performs the functionality of the PCIe Transaction Layer, PCIe Data

Link Layer, and PCIe MAC Sub-layer (part of the PCIe Physical Layer). The PCIe PHY

performs the functionality of Physical Coding Sub-layer (PCS) and Physical Media

Attachment (PMA), which are the remaining parts of the PCIe Physical Layer. The

interface between the PCIe Endpoint Core and PCIe PHY is called the PHY Interface for

the PCI Express Architecture (PIPE) interface.

60

The MAC Transmit FIFO and MAC Receive FIFO are used for dividing the

paths into three separate clock domains and passing data among the domains safely. The

two MAC FIFOs and the PCIe Transmit FIFO are also used for data buffering and flow

control. The Output Address Lookup logic contains an Ethernet Parser, a Content-

Addressable Memory (CAM), and an array. The PCIe Transmit Interface counts the

lengths of Ethernet frames sent out from the MAC Rx FIFO and then gathers the lengths,

routing addresses, and other information obtained from the lookup logic to send to the

PCIe Endpoint Core. The Ethernet frames are also sent to the PCIe Tx Interface by the

PCIe Tx FIFO to provide the data payload of TLPs. The PCIe Rx Interface analyzes

TLPs sent from the PCIe Endpoint Core and sends Ethernet frames to the MAC Tx FIFO.

Note that the logic blocks in the PCIe User Clock Domain of the Receive Path are called

“Transmit” logics. The logic blocks in the PCIe User Clock Domain of the Transmit Path

are called “Receive” logics. The “Tx” and “Rx” are named in terms of the PCIe Endpoint

Core rather than the 10G MAC Core.

61

PCI Express PHY

PCIe Endpoint Core

PCIe Tx Interface

PCIe
Tx FIFO

Output
Address
Lookup

MAC Rx FIFO

10G Ethernet MAC Core

10G Ethernet PHY

MAC Tx FIFO

PCIe Rx Interface

Transmit Path Receive Path

MAC Tx Clock
Domain

PCIe User Clock
Domain

XGMII Interface

PIPE Interface

MAC Rx Clock
Domain

Figure 18: Implementation of the Ethernet over PCIe adaptor

62

5.2. Available Resources and Platform Selection

Related open source or commercial projects and IP cores can be used as

reference designs. Here is a description of some of the available resources for designing

the adaptor logic blocks.

Ethernet MAC IP cores are available from open source community, FPGA

suppliers and IP core developers.

OpenCores organization shares a tri-mode (10/100/1000 Mbps) Ethernet MAC

core which implements a MAC controller conforming to the IEEE 802.3 specification

[30]. The core is designed using less than 2000 LCs/LEs to be implemented fully

function. The core also provides tcl/tk script language for configuring parameters. A

verification system is designed with a tcl/tk interface, by which the stimulus can be

generated and the output packets can be verified by a CRC-32 checksum. The advantage

of the OpenCore MAC core is that the internal logics can be modified for specific

applications. The disadvantages are the lack of documentation and the bandwidth is

capped up to 1 Gbps.

Both Xilinx® and Altera® provide tri-mode MAC cores and 10G MAC cores for

design evaluation. The 10G MAC core provided by Xilinx supports most of the device

families up to the latest Virtex-7. The core is designed to the IEEE 802.3-2008

specification, supporting flow control [31]. The client side interface uses AXI4, which is

a family of micro controller buses. The PHY side uses either an external 32-bit XGMII

interface or an internal 64-bit interface. The 10G MAC core provided by Altera also

supports the device families up to the latest Stratix V GX [32]. The client side uses the

Avalon [33] interface, which is a standard bus for Altera IP cores. The PHY side uses the

XGMII interface for connecting to an internal XAUI/PHY IP or external PHY chip. Both

MAC cores from the Xilinx and Altera have flexible configurations and rich features.

63

PCI Express endpoint IP cores are available from IP core developers and FPGA

suppliers.

The XpressRICH IP core provided by PLDA® is an all-in-one soft IP including

PCI Express endpoint, root port, dual-mode and switch controller IPs [34]. XpressRICH

supports up to PCI Express Specification Rev 2.0 with x8 lanes. The PHY side interface

is the PHY Interface for PCI Express (PIPE). The application layer interface supports 64-

bit or 128-bit data path per VC. The disadvantage of XpressRICH core is that it does not

support the standard AXI4 interface for Xilinx FPGAs or Avalon interface for Altera

FPGAs.

Both Xilinx® and Altera® provide PCI Express endpoint IP cores. The PCIe

endpoint core from Xilinx complies with PCI Express Specification Rev 2.1 [35]. The

core supports one VC with a maximum of x8 lanes. The main application layer interface

is an AXI4 interface for transactions. The PHY side interface uses differential transmit

and receive pairs. The DMA engine is not included in the core, but the engine can be

purchased from third-party companies. Altera provides the PCIe endpoint core complying

with PCIe Specification Rev 2.0 [36]. The core supports up to x8 lanes with one VC. The

application layer side uses Avalon interface, while the PHY side is PIPE interface. The

core provides a DMA reference design.

Some open source projects are available for using as reference designs.

NetFPGA [37] is a platform for building high performance networking systems

on FPGA development board. The latest version, NetFPGA-10G, supports 10G Ethernet

MAC and PCI Express gen2 with x8 lanes. In the network interface card (NIC) reference

design, Ethernet packets from four 10G MAC cores are directed and arbitrated to the PCI

Express interface. The output port lookup logic is used for setting the destination port

data field of all incoming packets to be that of the host, and sets the destination port of all

64

outgoing packets to be that of the small form-factor pluggable (SFP+) connection. This

logic can be a reference of the Output Address Lookup logic in the switch design.

An open router project, called BORA-BORA, implements multi-gigabit-per-

second routing on a shared PCI bus [38]. The group developed a High-speed Enhanced

Routing Operation (HERO) architecture between a MAC core and a PCI core in a

programmable NIC card. Ethernet packets whose destination can be determined locally

can be exchanged directly between two NICs using a fast path. However, the project uses

the PCI-X bus instead of the PCI Express bus. The HERO core lies in the network layer

for packet routing instead of the data link layer for switching.

RiceNIC [39] is a reconfigurable and programmable Gigabit Ethernet NIC

developed in an open platform. RiceNIC provides significant computation and storage

resources that are largely unutilized when performing the basic tasks of network interface.

The hardware architecture can be used as a reference, but again, the design uses PCI

instead of PCI Express.

The FPGA development board needs to be selected from the two largest FPGA

suppliers, Altera and Xilinx. Table 4 summarizes the available resources when using

FPGAs from different suppliers.

Table 4: Platform Selection

 Altera® Stratix V Xilinx® Virtex-7
Open Source
MAC IP core

OpenCore triple speed
(10/100/1000 Mb/s) MAC core

OpenCore triple speed MAC
core

Ethernet MAC
IP core from
FPGA suppliers

1G/10G/40G/100G 1G/10G/100G/400G
10G MAC MegaCore®. Interfaces:
MAC Client side uses Avalon
Interface. PHY side need an Altera
PHY IP core such as a soft XAUI
PHY with external PHY.

10G MAC LogiCore®.
Interfaces: MAC Client side
uses AXI4 interface. PHY
side uses XGMII or internal
interfaces.

PCI Express IP
core from FPGA
suppliers

Gen 1/2/3 Gen 2/3
PCI Express Compiler MegaCore
Functions. Application interfaces:

7 Series Integrated Block for
PCI Express with AXI4-

65

Avalon-ST application interface,
descriptor/data application
interface or Avalon-MM
application interface.

Stream interface. DMA
engine is available from third-
party company.

PCI Express IP
core from third-
party: PLDA®
XpressRICH
core

Application layer side: descriptor/data interface. PHY side: PIPE
interface with PHYPCS layer.
PHY side: need to write PHYPCS
layer or purchase PHY IP and
modify the IP.

Application layer side: need
to migrate to AXI4 interface.
PHY side: need to write
PHYPCS layer or purchase
PHY IP and modify the IP.

PLDA® P2P
core

Application layer: AXI4 interface only, no Avalon or DMA
interface, support Gen 1/2/3. Both soft/hard IPs are available.

The Xilinx Virtex-7 development board is selected to be the platform of the

PCIe-based Ethernet switch adaptor. First, the current PCIe IP cores do not support P2P

communication protocols. The cost of a customized P2P PCIe endpoint core is too high.

PLDA® announced that it will release a P2P IP core with AXI4 interface recently. Hence,

designing with the Xilinx platform with AXI4 interface IPs will be easier for migrating to

the P2P core in the future. Secondly, the AXI4 interface from Xilinx is a widely used

industrial standard compared to the Avalon interface from Altera. IP cores provided by

ARM partners can be used in Xilinx platform as well. Third-party AXI tools are available

for providing a variety of verification, system development, and performance

characterization. Finally, most of the open source projects are developed based on Xilinx

platforms. Reusing the IP cores shortens the developing cycle of the switch.

5.3. AXI4 Interface

AXI is part of ARM AMBA, a family of micro controller buses. AXI4 interface

is widely used in Xilinx IPs [40]. AXI4 is a standardized protocol and is flexible for

different applications. There are three types of AXI4 interfaces. AXI4 is used for high-

performance memory-mapped requirements. AXI4-Lite is used for simple, low-

66

throughput memory-mapped communication. AXI4-Stream is used for high-speed

streaming data.

Both Ethernet and PCIe packet data transfer in the adaptor implement the AXI-

Stream interface. AXI-Stream does not require an address phase to be transmitted with

the data phases and allows unlimited data burst size. The Ethernet MAC addresses and

PCIe routing addresses are encapsulated into packet data. Two interconnect IPs act as a

master-slave pair in the AXI4 interface. The master interface is responsible for data

transmission; the slave interface is responsible for data reception. Table 5 lists the AXI4-

Stream signals that are mainly used in the logic cores of the adaptor.

Table 5: AXI4-Stream Interface Signals

Signal Direction Representation
TVALID Master to Slave Indicating the corresponding data phase

is valid.
TREADY Slave to Master Indicating the slave is ready to receive

data.
TDATA Master to Slave Conveying stream data.
TKEEP Master to Slave Indicating which byte(s) of the packet

phase is valid
TLAST Master to Slave Indicating the last data phase

5.4. 10G MAC Core

The adaptor adopts the 10G MAC core IP provided by Xilinx. The MAC client

side uses the AXI-Stream interface for data stream transfer and the AXI4-Lite interface

for management and MDIO interfaces. The PHY side uses XGMII and MDIO interfaces.

Figure 19 shows the block diagram of the 10G MAC core [31].

67

Figure 19: 10G MAC Core Block Diagram

When the MAC core receives Ethernet frames, the client must be prepared to

accept data at any time. The data is transmitted on consecutive clock cycles through the

“rx_axis_tdata” signal. The “rx_axis_tlast” signal asserts when the final data phase

approaches. The “rx_axis_tuser” signal asserts along with the “rx_axis_tlast” signal if the

frame was successfully received by the MAC core, thus indicating the frame should be

analyzed by the client. The “rx_axis_tkeep” signal indicates which byte(s) of the data

phase is (are) valid. The “keep” signal should be especially paid attention to the last data

phase.

When the MAC core transmits Ethernet frames, the client should asserts the

“tx_axis_tvalid” signal with the “tx_axis_tdata” and “tx_axis_tkeep” signals presented in

the same clock cycle. After the MAC core asserts the “tx_axis_tready” signal, the client

must provide the remainder of the data phases to the core. The end of the data phase is

indicated by the “tx_axis_tlast” signal with an appropriate “tx_axis_tkeep” signal.

68

5.5. Output Address Lookup

The Output Address Lookup logic block consists of an Ethernet Parser, a

Content-Addressable Memory (CAM), and an Array as shown in Figure 20. The 10G

MAC Rx FIFO sends Ethernet frames and control signals to the Ethernet Parser logic.

The parser logic then sends destination MAC addresses to the CAM and sends source

MAC addresses to the driver or OS. The OS gathers the source MAC addresses along

with the routing addresses/IDs of the corresponding adaptors in the PCIe system. The OS

then creates an address mapping table in the PCIe system and sends the table to the CAM

and Array in each adaptor. When the CAM and Array receive the destination MAC

addresses sent from the Ethernet Parser, they look up the PCIe routing addresses/IDs by

their destination addresses. The routing addresses/IDs are finally sent to the PCIe Tx

Interface. The Array is necessary since the PCIe routing addresses are too wide to be

stored as CAM addresses.

Ethernet
Parser

CAM Array

Ethernet Data
& Control

Clock

Destination
MAC Address

Source MAC
Address &
Control

Source MAC
Address & CAM

Address

PCIe Routing
Address & CAM

Address

CAM Address

Ready Busy

Ready

Device Driver or OS

Output Address Lookup

PCIe Routing
Adderss

10
G

MA
C

Rx
 F

IF
O

PC
Ie

 T
x

In
te

rf
ac

e

Figure 20: Output Address Lookup Block Diagram

69

5.5.1. Ethernet Parser

The Ethernet parser logic is responsible for analyzing the headers of Ethernet

packets that are received. The parser logic extracts the destination MAC address, source

MAC address, and length/type field. These fields are sent to the upper layer logic with a

“complete” signal.

The structure of the Ethernet frames is shown in Figure 21. The preamble and

SFD field in the frame header are disabled in this implementation. The first data phase is

aligned with the Least Significant Bit (LSB) of the destination MAC address field. The

parser logic reads the entire 48 bits of the destination MAC address and the first 16 bits

of the source MAC address during the first data phase. The logic reads the rest of the 32

bits of the source MAC address and length/type field during the second data phase.

Figure 21: Ethernet Frame Structure

The implementation adopts a 4-state Finite State Machine (FSM) as shown in

Figure 22. Table 6 describes details of the states transition.

70

0
IDLE

1
READ_
WORD_1

2
READ_
WORD_2

3
WAIT_
LAST

Data Valid

Data Valid

Data Valid

Last Data
Phase

Figure 22: Ethernet Parser FSM

Table 6: Ethernet Parser FSM Description

No. State Name Description
0 IDLE Wait for the first data phase. If the Ethernet frame from the

MAC Rx FIFO is valid, the FSM transfers to state 1.
1 READ_WORD_1 Read the first 2DW of the Ethernet frame. The FSM

receives and analyzes the first 2DW of the frame, extracts
the destination MAC address and part of the source MAC
address. The FSM transfers to state 2 on the next clock
cycle.

2 READ_WORD_2 Read the second 2DW of the Ethernet frame. The FSM
receives and analyzes the second 2DW of the frame,
extracts part of the source MAC address and the entire
Ethernet length/type field. The FSM also reports “parsing
completed” signal to the upper layer logic. The FSM

71

transfers to state 3 on the next clock cycle.
3 WAIT_LAST Wait for the last data phase. The FSM transfers to state 0

when the “last” signal from the MAC Rx FIFO is asserted.

5.5.2. Address Mapping Table

 The BARs of the adaptors in the switch are configured in the manner stated in

Section 4.5. The last four bits of the BARs is “1100” in binary (“C” in hexadecimal).

Each adaptor requests a minimum of 128-bit memory address storage space. Assume the

OS assigns the BARs in Adaptors 2, 3, and 5 as shown in Figure 23. The BDF numbers

are also assigned during the enumeration process.

As discussed in Section 4.3, the OS creates the address mapping table based on

the source MAC addresses of the received Ethernet packets and the routing addresses/IDs

of the adaptors. The routing addresses can be selected from the range of the Base Address

Registers (BARs) of the adaptors. In this implementation, the routing addresses are set to

be the same as the BARs in the adaptors. Prior to Ethernet switching, Adaptor 3 and

Adaptor 5 receive Ethernet frames with two types of source MAC addresses:

“060504030201h” and “010203040506h”. The two adaptors send the two MAC

addresses with their corresponding BARs and BDF numbers to the OS. The OS then

creates an address mapping table as illustrated in Table 7. The OS must write the

mapping table in the Output Address Lookup logic in each adaptor and update the table

periodically. The address mapping table is stored in the CAM and the array of the lookup

logic.

72

Processor

Root Complex

Adaptor
3

Adaptor
1

Adaptor
2

Adaptor
4

Adaptor
5

DP

DP

DP

DP

DP

UP

Virtual Bus 0 inside

Virtual Bus 1

Virtual Bus 2

Switch Upstream Port
Type 1 Configuration Space
 Dev 0 Pri 1 Sec 2 Sub 7

Virtual Bus 4

Virtual Bus 3

Virtual Bus 5
Virtual Bus 6

Virtual Bus 7

Switch Downstream Port
Type 1 Configuration Space
 Dev 2 Pri 2 Sec 4 Sub 4

Switch Downstream Port
Type 1 Configuration Space
 Dev 5 Pri 2 Sec 7 Sub 7

Endpoint
Bus 4 Dev 0 Func 0

BAR0-1: 64'h 0000 0200 0000
000C

(128 bit range, lower 6 bits
hardcoded)

Endpoint
Bus 7 Dev 0 Func 0

BAR0-1: 64'h 0000 0500 0000
000C

(128 bit range, lower 6 bits
hardcoded)

Endpoint
Bus 5 Dev 0 Func 0

BAR0-1: 64'h 0000 0300 0000
000C

(128 bit range, lower 6 bits
hardcoded)

Figure 23: Address Mapping Illustration

Table 7: An Example of the Address Mapping Table

[134:
131]

[130] [129:1
28]

[127:80] [79:17] [47:16] [15:8] [7:3] [2:0]

Entry
No.

Valid
(1 bit)

Age
(2 bits)

Source
MAC
Address
(48 bits)

Routing
Address
(upper
32 bits)

Routing
Address
(lower
32 bits)

Bus #
(8 bits)

Devic
e #
(5
bits)

Func

(3
bits)

0 1 00 0605040
30201h

0000030
0h

0000000
Ch

5h 0h 0h

1 1 00 0102030
40506h

0000050
0h

0000000
Ch

7h 0h 0h

73

5.5.3. Content-Addressable Memory (CAM)

CAM enables faster data searches by performing content matching rather than

address matching performed by standard memory cores. The adaptor implements a CAM

inside the Output Address Lookup logic based on the block RAM from Xilinx [41]. The

block RAM behaves like a two-dimensional grid with CAM data and addresses as the

axes. All the possible combinations of data/address are stored in the grid. Whether a

particular data is stored in the address or not is marked by “1” or “0” in the CAM. An

example CAM of 4 words deep and 2 bits wide is shown in Table 8. In this example,

CAM data “01”, “11”, and “00” are stored in CAM address “0”, “2”, and “3”,

respectively.

Table 8: Block RAM-based CAM

RAM Data/CAM Address

RAM Address/
CAM Data

 0 1 2 3

00 0 0 0 1
01 1 0 0 0
10 0 0 0 0
11 0 0 1 0

The block RAM-based implementation of CAM has a single clock cycle latency

on the read operation, and two clock cycles latency on the write operation. Table 9 shows

the interface signals of the CAM. In the read operation, the Ethernet Parser logic sends a

destination MAC address to the CAM by the CMP_DIN signals. The CAM asserts the

MATCH signal on the next clock cycle if the MAC address matches the data in the CAM.

The corresponding CAM address is also presented on the MATCH_ADD bus. In the

write operation, the OS sends the source MAC address and the corresponding CAM

address to the CAM through the DIN and WR_ADD buses respectively, with the WE

74

signal asserted. The CAM asserts the BUSY signal when it is writing data. Write

operations must be two clock cycles apart when executing consecutive write operations.

Table 9: CAM Interface Signals

Signal Direction Description
CMP_DIN [47:0] IN Data to look up from the CAM during a read

operation. 48-bit destination MAC addresses are
the input.

DIN [47:0] IN Data to be written to the CAM during write
operation. 48-bit source MAC addresses are the
input.

BUSY OUT Indicating a write operation is currently being
executed.

WE IN Write enable signal, asserted when DIN is valid in
a write operation.

WR_ADDR [3:0] IN Write address, indicating the location to which the
data on DIN is written in CAM.

MATCH OUT Indicating at least one location in the CAM
contains the data on the CMP_DIN bus.

MATCH_ADDR
[3:0]

OUT Indicating the CAM address where matching data
is located.

CLK IN Clock signal. All CAM operations are
synchronous to the rising edge of the clock.

5.6. AXI4-Stream FIFO

First-In First-Out (FIFO) is mainly used in pipeline design for safely passing data

from one clock domain to another asynchronous clock domain. FIFO can also be used in

the same clock domain for buffering data and flow control. The adaptor uses FIFOs for

interfacing the 10G MAC clock domain and the PCI Express user clock domain as well

as buffering data between different logic blocks.

Xilinx provides a customizable FIFO IP with an AXI4-Stream interface [42]. The

FIFO can be implemented by either block RAM or distributed memory. The adaptor uses

the block RAM implementation for larger depth and Error Correction Checking (ECC)

support in the future. The FIFO is divided into a write clock domain and a read clock

75

domain. In the write clock domain, the transmitter is master and the FIFO is slave. In the

read clock domain, the FIFO is master and the receiver is slave. Table 10 shows the

major signals in the write clock domain of the FIFOs implemented in the adaptor. The

signals in the read clock domain are similar to the signals in the write clock domain,

except that the reset signal is global.

Table 10: Major Signals in the Write Clock Domain of the AXI4 FIFO

Signal Direction Description
S_AXIS_TDATA
[63:0]

IN Data bus used for conveying Ethernet frames.

S_AXIS_TVALID IN Indicating the master is sending a valid data
phase.

S_AXIS_TREADY OUT Indicating the slave can accept a transfer in the
current cycle.

S_AXIS_TKEEP
[8:0]

IN Indicating whether the corresponding byte of the
data phase is valid or not.

S_AXIS_TLAST IN Indicating the last data phase.
S_ARESETN IN Active low global reset signal.
S_ACLK IN Slave clock. Write operation occurs at the rising

edge of the clock.

The adaptor contains a 10G MAC Receive FIFO and a 10G MAC Transmit FIFO

for dividing the adaptor logics into three different clock domains as well as buffering data

between the MAC layer and PCIe layers. In the Receive Path, the MAC Rx FIFO stores

Ethernet frames from the 10G MAC core whenever the frames are valid. The Output

Address Lookup logic then reads data from the MAC Rx FIFO while the PCIe Tx

Interface counts the lengths of the frames. In the Transmit Path, the MAC Tx FIFO stores

the Ethernet frames from the PCIe Rx Interface. The FIFO then forwards the Ethernet

frames to the 10G MAC core when the core is ready.

The adaptor uses another AXI4 FIFO, PCIe Tx FIFO, in the PCIe User Clock

Domain of the Receive Path to buffer data between the MAC Rx FIFO and the PCIe Tx

Interface. The PCIe Tx FIFO is used for storing Ethernet frames when the PCIe Tx

76

Interface counts the lengths of the Ethernet frames sent from the MAC Rx FIFO. The

PCIe Tx FIFO buffers these frames for the following transfer of the TLP data payload.

5.7. PCI Express Endpoint Core

The adaptor uses the XpressRich Core [43] provided by PLDA as the PCI

Express Endpoint Core. The XpressRich core supports up to PCI Express Base

Specification Revision 2.0 with x8 lanes. The core consists of PCIe Transaction Layer,

Data Link Layer, and MAC sub-layer of the Physical Layer. The Transaction Layer side

uses a data/descriptor interface (including a transmit interface and a receive interface);

the Physical Layer side uses a PIPE interface. The major signals of the transmit interface

on the Transaction Layer side are listed in Table 11. The signals of the receive interface

on the Transaction Layer side are similar to the signals of the transmit interface.

Table 11: Major Signals of the Transmit Interface on the Transaction Layer Side of the
XpressRich Core

Signal Direction Description
TX_REQ IN Requesting data transmission, asserted until the

TX_ACK signal is asserted.
TX_DESC [127:0] IN Transmit descriptor bus used for transmitting

TLP header. The format of the descriptor
complies with the PCIe specification.

TX_ACK OUT Acknowledgment signal asserted by the core
after receiving the request, indicating the core is
ready to accept descriptor and data.

TX_DFR IN Transmit data phase framing signal, asserted
from the time of request until proceeding to the
last data phase.

TX_DATA [63:0] IN Transmit data bus used for sending data payload
of TLPs.

TX_WS OUT Transmit wait states signal, asserted by the core
to suspend data transmission.

TX_ERR IN Error signal used for discard or nullify a TLP.

When the PCIe Transmit Interface transmits a TLP to the PCIe Endpoint Core,

the Tx Interface must assert the “tx_req” and “tx_dfr” signals with a descriptor presented

77

on the “tx_desc” signal until the Endpoint Core asserts the “tx_ack” signal. TLP data

payload starts to be transferred on the next clock cycle of the asserted “tx_ack” signal.

The Tx Interface deasserts the “tx_dfr” signal before the last data phase. If the “tx_ws”

signal is asserted by the Endpoint Core, the Tx Interface suspends the transmission until

the “tx_ws” signal is deasserted. If the Endpoint Core reports an error by the “tx_err”

signal, the Tx Interface cancels the current transmission and removes the remainder of the

packet in the FIFOs. The receiving process is similar to the transmitting process

discussed above.

5.8. PCI Express Transmit Interface

The PCI Express Transmit Interface is responsible for converting Ethernet MAC

layer signals to PCIe transaction layer signals. The interface generates TLP headers

(especially the descriptor fields in the headers) based on TLP type, traffic class, length of

the packet, Ethernet frame “keep” signal, and routing address of the destination PCIe

endpoint. The transmit interface then sends the data payload along with the TLP header

and other control signals to the PCIe Endpoint Core. The implementation adopts a 10-

state FSM as shown in Figure 24. Table 12 is the description of the FSM.

The PCIe Tx Interface has to count the length of each Ethernet frame. TLP

headers have a length field indicating the size of the data payload. The Ethernet frames

cannot be transferred until the length information is collected. On the other hand, the

length/type field in the Ethernet frame indicates the length of the MAC client data if the

value of this field is less than or equal to 1500 decimal. The length/type field in the

Ethernet frame indicates the type of the frame if the value of the field is greater than or

equal to 1536 decimal. Thus the PCIe Tx Interface has to count the lengths of the

Ethernet frames in the case that the length/type field does not contain length information.

78

0
IDLE

1
COUNT_
LENGTH

2
SEND_
DESC

3
DISCARD

4
SEND_
DATA

5
WAIT_
ACK

6
WAIT_
FIFO

7
WAIT_

STATE_1

8
WAIT_

STATE_2

Last Packet

No Match

Packet Valid

Wait State
Asserts

Wait State
Deasserts

Wait State
Asserts

Wait State
Deasserts

ACK
Deasserts

ACK Asserts

Tx FIFO
Valid

Tx FIFO
Invalid

Last Packet

PCIe Ready

Tx FIFO Clear

Wait State
Asserts

Wait State
Asserts

Tx FIFO
Invalid

9
LAST_
DATA

Figure 24: PCIe Tx Interface FSM

Table 12: PCIe Tx Interface FSM Description

No. State Name Description
0 IDLE Waits for valid packets sent from the MAC Rx FIFO. If a

valid signal is sent from the MAC Rx FIFO, the FSM
transfers to state 1. If an invalid signal is sent from the

79

MAC Rx FIFO, the FSM keeps the current state.
1 COUNT_LENGTH Count the number of DWs sent from the MAC Rx FIFO.

The FSM also registers the “keep” signal from the MAC
Rx FIFO. At the end of the packet, if the destination MAC
address matches the address mapping table while the PCIe
core is ready, the FSM transfers to state 2. If no match is
found, the FSM transfers to state 3. If the PCIe Tx FIFO
does not have valid data, the FSM transfers to state 6. If
the “wait state” signal is asserted, the FSM transfers to
state 7. Otherwise, the FSM keeps in the current state.

2 SEND_DESC Send TLP descriptor to the PCIe endpoint core. The
formation of the descriptor is based on the destination
routing address, Ethernet packet length, and the “keep”
signal. If the PCIe core is ready for receiving, the FSM
transfers to state 4 to send data payload. If the ACK signal
of the PCIe core is not asserted, the FSM transfers to state
5. If the “wait state” signal is asserted by the PCIe
endpoint core, the FSM transfers to state 8. If the PCIe Tx
FIFO is not valid or the “last” signal is asserted (indicating
the FSM still remains at the last 2DW of the previous
packet), the FSM transfers to state 6.

3 DISCARD Discard packets in the PCIe Tx FIFO. The interface sends
a reset signal to the Tx FIFO to clear data in the queue.
The FSM transfers to state 0 after the reset signal is sent.

4 SEND_DATA Send Ethernet packets (including headers) to the PCIe
endpoint core from the PCIe Tx FIFO. If the “wait state”
signal is asserted by PCIe core, the FSM transfers to state
8. If the last packet is sent, the FSM transfers to state 0.
Otherwise, the FSM keeps in the current state.

5 WAIT_ACK Wait for the ACK signal to be asserted by the PCIe
endpoint core. If the ACK signal is asserted and the PCIe
Tx FIFO is valid, the FSM transfers to state 4. If the ACK
signal is not asserted, the FSM keeps in the current state.

6 WAIT_FIFO Wait for the PCIe Tx FIFO to send valid data. If the data
from the FIFO is valid and the “wait state” is deasserted,
the FSM transfers to state 2. If the data from the FIFO is
valid and the “wait state” is asserted, the FSM transfers to
state 7. Otherwise, the FSM keeps in the current state.

7 WAIT_STATE_1 Wait for the “wait state” signal to be deasserted by the
PCIe endpoint core. If the “wait state” signal is deasserted
and the PCIe Tx FIFO has valid data, the FSM transfers to
state 2. If the “wait state” signal is deasserted and the PCIe
Tx FIFO has invalid data, the FSM transfers to state 6.
Otherwise, the FSM keeps in the current state.

8 WAIT_STATE_2 Wait for the “wait state” signal to be deasserted by the
PCIe endpoint core. If the “wait state” signal is deasserted,
the FSM transfers to state 4. Otherwise, the FSM keeps in
the current state.

9 LAST_DATA Send the last data phase. The FSM asserts the “last” signal

80

at the same time. The FSM transfers to state 0 on the next
clock cycle.

5.9. PCI Express Receive Interface

The PCI Express Receive Interface logic is responsible for converting PCIe

transaction layer signals to Ethernet MAC layer signals. The logic analyzes the TLP

headers (especially the descriptor field) of the received TLPs and decides whether the

TLPs are the supported type or not. The interface logic receives and decapsulates the

supported TLPs and then sends them to the MAC Tx FIFO. The logic aborts transmission

when the TLP is not supported. The implementation adopts a 9-state FSM as shown in

Figure 25. Table 13 describes the state diagram in detail.

81

0
IDLE 3

WAIT_
ABORT

6
ABORT

1
ACK

2
WAIT_
FIFO_1

5
WAIT_
FIFO_2

4
RX_DATA

7
LAST_
DATA

8
ERROR

Req Asserted &&
Descriptor Valid &&

MAC FIFO Ready

Req Asserted
&& Descriptor

Invalid

Req Asserted &&
Descriptor
Valid && MAC
FIFO Not Ready

Data Valid
&& MAC

FIFO Ready

Last
Approaching

MAC FIFO
Ready

MAC FIFO
Not Ready

MAC FIFO
Not Ready

Error
Asserted

Error
Deasserted

MAC FIFO
Ready

Figure 25: PCIe Rx Interface FSM

Table 13: PCIe Rx Interface FSM Description

No. State Description
0 IDLE Wait for the request signal from the PCIe endpoint core to be

asserted. If the core requests a TLP transmission, the
descriptor field is valid, and the MAC TX FIFO is ready to
receive data, then the FSM transfers to state 1. If the PCIe
core requests a TLP transmission but the descriptor is

82

invalid, the FSM transfers to state 3. If the PCIe core
requests a TLP transmission but the MAC Tx FIFO is not
ready, the FSM transfers to state 2. Otherwise, the FSM
keeps in the current state.

1 ACK Send an ACK signal to the PCIe endpoint core and receive
the first DW of data if the data is valid. If the TLP data is
valid and the MAC Tx FIFO is ready, the FSM transfers to
state 4. If the MAC Tx FIFO is not ready, the FSM transfers
to state 5.

2 WAIT_FIFO_1 Wait for the MAC Tx FIFO to be ready for receiving data.
The FSM sends an ACK signal and asserts the “wait state”
signal to the PCIe core as well. If the MAC Tx FIFO is
ready, the FSM transfers to state 1. Otherwise, the FSM
keeps in the current state.

3 WAIT_ABORT Prepare the “abort” signal to be asserted in the next clock
cycle. The FSM asserts the “wait state” signal to the PCIe
core to throttle data transmission. The FSM transfers to state
6 on the next clock cycle.

4 RX_DATA Receive data frames from the PCIe endpoint core and send
the frames to the MAC Tx FIFO. If the “data frame” signal is
deasserted, which indicates the last data phase is
approaching, the FSM transfers to state 7. If the MAC Tx
FIFO is not ready to receive data during the transmission, the
FSM transfers to state 5. If the “error” signal is asserted
during the transmission, the FSM transfers to state 8.
Otherwise, the FSM keeps in the current state.

5 WAIT_FIFO_2 Wait the MAC Tx FIFO to be ready for receiving data. The
FSM asserts the “wait state” signal to the PCIe core to
throttle transmission. If the MAC Tx FIFO is ready, the FSM
transfers to state 4. Otherwise, the FSM keeps in the current
state.

6 ABORT Abort transmission. The FSM sends the “abort” signal to the
PCIe core to report unsupported TLP. The FSM transfers to
state 0 on the next clock cycle.

7 LAST_DATA Transmit the last data phase. The FSM receives the last data
phase and sends the data to the MAC Tx FIFO. The interface
also sends a “keep” signal to the MAC Tx FIFO based on the
“byte enable” signal from the PCIe core to indicate which
byte(s) of the data is valid. The FSM transfers to state 0 on
the next clock cycle.

8 ERROR Report error. The interface stops transmitting the current data
frame and reports error to PCIe system. The FSM transfers to
state 0 when the “error” signal is deasserted. Otherwise, the
FSM keeps in the current state.

83

CHAPTER 6

EXPERIMENTAL RESULTS AND DESIGN EVALUATION

6.1. Simulation and Testbench Setup

The simulation is set up as a loopback mode as shown in Figure 26. In the

Receive Path, four Ethernet frames are sent to the receive port of the 10G MAC core

through the XGMII signals as stimuli. The 10G MAC Core converts the stimuli to

Ethernet MAC frames; the MAC Rx FIFO buffers the MAC frames. The signal monitor

probes the MAC frames from the MAC Rx FIFO interface. The MAC frames then pass

through the Output Address Lookup logic and are probed by the signal monitor. The

routing information and MAC frames are handed to the PCIe Tx Interface and are

converted to the PCIe data/descriptor interface signals. The signal monitor probes the

data/descriptor signals. The signals are then looped back to the PCIe Rx Interface as if

they were sent from the PCIe Endpoint Core.

In the Transmit Path, the PCIe Rx Interface converts the data/descriptor interface

signals into MAC frames; the MAC frames are probed by the signal monitor. The MAC

frames are then buffered by the MAC Tx FIFO; the signal monitor probes the signals at

the MAC Tx Client side. The MAC frames are finally passed through the 10G MAC core

and converted to the XGMII signals. The signal monitor probes the signals transmitted

from the MAC core.

The testbench generates clock signals of 156.25 MHz for the MAC Clock

Domains (both the MAC Rx Clock Domain and MAC Tx Clock Domain) and clock

signals of 125 MHz for the PCIe User Clock Domain. The testbench also writes the

Address Mapping Table to the CAM and array after the system is reset.

84

The testbench generates the stimuli of XGMII frames as shown in Table 14 and

Table 15. Frame 0 is a minimum length frame. Frame 1 is a regular frame with longer

length. Frame 2 is a frame with error asserted. Frame 3 is less than the minimum length

and is padded up to the minimum length. The bits in the control frames indicate whether

the corresponding octets in the data frames are valid or not. Note that the control frame is

different from the “txc” and “rxc” signals in the XGMII interface.

85

PCIe Tx Interface

PCIe
Tx FIFO

Output
Address
Lookup

MAC Rx FIFO

10G MAC Core

MAC Tx FIFO

PCIe Rx Interface

Transmit Path Receive Path

Signal Monitor:
PCIe Tx Interface

Stimulus:
RX XGMII Interface

Signal Monitor:
Tx XGMII Interface

XGMII Interface

Signal Monitor:
MAC Rx FIFO Interface

Signal Monitor:
Output Address Lookup

Signal Monitor:
PCIe Rx

Interface

Signal
Monitor:

MAC Tx Client
Interface

Figure 26: Simulation Setup Block Diagram

Table 14: Stimuli: XGMII Data Frames

 Frame 0 Frame 1 Frame 2 Frame 3
preamble 0 555555FB 555555FB 555555FB 555555FB
preamble 1 D5555555 D5555555 D5555555 D5555555

86

data 0 04030201 03040506 04030201 03040506
data 1 02020605 05060102 02020605 05060102
data 2 06050403 02020304 06050403 02020304
data 3 55AA2E00 EE110080 55AA2E80 EE111500
data 4 AA55AA55 11EE11EE AA55AA55 11EE11EE
data 5 55AA55AA EE11EE11 55AA55AA EE11EE11
data 6 AA55AA55 11EE11EE AA55AA55 11EE11EE
data 7 55AA55AA EE11EE11 55AA55AA EE11EE11
data 8 AA55AA55 11EE11EE AA55AA55 00EE11EE
data 9 55AA55AA EE11EE11 55AA55AA 00000000
data 10 AA55AA55 11EE11EE AA55AA55 00000000
data 11 55AA55AA EE11EE11 55AA55AA 00000000
data 12 AA55AA55 11EE11EE AA55AA55 00000000
data 13 55AA55AA EE11EE11 55AA55AA 00000000
data 14 AA55AA55 11EE11EE AA55AA55 00000000
data 15 00000000 EE11EE11 55AA55AA 00000000
data 16 00000000 11EE11EE AA55AA55 00000000
data 17 00000000 EE11EE11 55AA55AA 00000000
data 18 00000000 11EE11EE AA55AA55 00000000
data 19 00000000 EE11EE11 55AA55AA 00000000
data 20 00000000 11EE11EE 00000000 00000000
data 21 00000000 0000EE11 00000000 00000000

Table 15: Stimuli: XGMII Control Frames

 Frame 0 Frame 1 Frame 2 Frame 3
ctrl 0 1111 1111 1111 1111
ctrl 1 1111 1111 1111 1111
ctrl 2 1111 1111 1111 1111
ctrl 3 1111 1111 1111 1111
ctrl 4 1111 1111 1111 1111
ctrl 5 1111 1111 1111 1111
ctrl 6 1111 1111 1111 1111
ctrl 7 1111 1111 1111 1111
ctrl 8 1111 1111 1111 1111
ctrl 9 1111 1111 1111 0000
ctrl 10 1111 1111 1111 0000
ctrl 11 1111 1111 1111 0000
ctrl 12 1111 1111 1111 0000

87

ctrl 13 1111 1111 1111 0000
ctrl 14 1111 1111 1111 0000
ctrl 15 0000 1111 1111 0000
ctrl 16 0000 1111 1111 0000
ctrl 17 0000 1111 1111 0000
ctrl 18 0000 1111 1111 0000
ctrl 19 0000 1111 1111 0000
ctrl 20 0000 1111 0000 0000
ctrl 21 0000 0011 0000 0000

6.2. Functional Simulation of the Receive Path

The simulation results of the Receive Path are shown from Figure 27 to Figure 30.

Three Ethernet frames are received by the MAC core, passed through FIFOs and Output

Address Lookup logic, and finally transmitted by the PCIe Transmit Interface. Signal

monitors probe different groups of signals from different logic blocks (refer to Figure 26).

Figure 27 shows the overview of the receiving process of the three frames in the

Receive Path. In the System Signals group, the “xgmii_rx_clk” signal is the clock signal

for the MAC Rx Clock Domain. The “uclk” signal is the clock signal for the PCIe User

Clock Domain. In the Rx XGMII Interface group, the “xgmii_rxd” signal only shows the

last frame of Ethernet data due to the range of the figure. In the MAC Rx FIFO Interface

group, three Ethernet frames are received during 1252000ps to 1324000ps, 1340000ps to

1500000ps, and 1516000ps to 1644000ps respectively. The three data frames are

conveyed by the “rx_axis_tdata” signal. The “rx_asix_tvalid” signal indicates which

phases of the data frames are valid. In the Output Address Lookup group, the

“rd_dst_mac” signal represents the destination MAC addresses which are parsed from the

three Ethernet frames. The “rd_tlp_addr” signal represents the TLP routing addresses that

are looked up from the address mapping table. The addresses of the second and third

frames are the same, so there are no transitions between the second and third addresses.

88

The “rd_match” signal is asserted when the destination MAC address matches the entry

in the lookup table. In the PCIe Tx Interface group, the three TLP headers are transmitted

by the “tx_desc” signal. The three data payloads are transmitted by the “tx_data” signal.

The TLP data is valid from the next clock cycle of the asserted “tx_ack” signal pulse to

the next clock cycle of the negative edge of the “tx_dfr” signal.

Figure 28 shows the waveform of Frame 0 at the Rx XGMII Interface. The

“xgmii_rxd” and “xgmii_rxc” buses convey the data and control signals as set in Table

14 and Table 15. The delimiters and interframe idle characters on the “xgmii_rxd” bus

are indicated by the assertion of the “xgmii_rxc” signal. An additional CRC field is

appended after the last data phase. Figure 29 shows the waveform of Frame 0 at the MAC

Rx FIFO Interface. Frame 0 is buffered by the FIFO and sent to the upper logic. The

FIFO waits for one clock cycle after presenting the first data phase since the upper logic

is not yet ready. Figure 30 shows the waveform of Frame 0 at the PCIe Tx Interface.

Frame 0 is converted to the TLP header, data payload and control signals which can

potentially be sent to the PCIe Endpoint Core. The TLP header is transmitted during State

2; the TLP payload is transmitted during State 4 and State 9.

Figure 27: Waveforms of the Receive Path Signals (3 Frames)

89

Figure 28: Waveforms of the Rx XGMII Interface Signals (Frame 0)

Figure 29: Waveforms of the MAC Rx FIFO Interface Signals (Frame 0)

Figure 30: Waveforms of the PCIe Tx Interface Signals (Frame 0)

90

91

6.3. Functional Simulation of the Transmit Path

The simulation results of the Transmit Path are shown from Figure 31 to Figure

34. Three PCIe TLPs are received by the PCIe Receive Interface, converted to Ethernet

frames, and transmitted out from the MAC core by the XGMII interface. Signal monitors

probe different groups of signals from different logic blocks (refer to Figure 26 as well).

Figure 31 shows the overview of the transmitting process of the three frames in

the Transmit Path. In the System Signals group, the “gtx_clk” signal is the transmit clock

signal inputted from the testbench. The “xgmii_tx_clk” signal is derived from the

“gtx_clk” signal and is used for transmitting the XGMII signals. In the PCIe Rx Interface

group, three PCIe TLPs (with separate headers and data payloads) are received by the

“rx_desc” and “rx_data” signals. The Ethernet data is conveyed by the “tx_mac_data”

signal. In the MAC Tx Client Interface group, three Ethernet frames are sent from the

MAC Tx FIFO to the 10G MAC core. The frame data is conveyed by the “tx_axis_tdata”

signal. In the Tx XGMII Interface group, three Ethernet frames are transmitted from the

MAC core through the XGMII interface. Only the first two frames are shown in the

figure.

Figure 32 shows the waveform of Frame 0 at the PCIe Rx Interface. The signals

with “rx_” prefix are looped back from the PCIe Tx Interface. The first TLP (with

separate header and data payload) is converted to MAC Frame 0, which is represented by

the signals with “tx_mac_” prefix. The frame is transmitted during State 4 and State 7.

Figure 33 shows the waveform of Frame 0 at the MAC Tx Client Interface. The frame is

buffered by the MAC Tx FIFO. The first data phase is repeated for two clock cycles since

the MAC Core is not ready at the first data phase. Figure 34 shows the waveform of

Frame 0 at the Tx XGMII Interface. The octets in frame at the Tx XGMII Interface are

the same with the octets in the stimuli at the Rx XGMII Interface. The adaptor logics

92

implement the encapsulation and decapsulation of Ethernet frames and PCIe TLPs. The

simulation results show that the adaptation logics are functionally correct.

Figure 31: Waveforms of the Transmit Path Signals (3 Frames)

93

Figure 32: Waveforms of the PCIe Rx Interface Signals (Frame 0)

Figure 33: Waveforms of the MAC Tx Client Interface Signals (Frame 0)

Figure 34: Waveforms of the Tx XGMII Interface Signals (Frame 0)

94

95

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The PCI Express-based Ethernet switch is conceived as a new approach of

designing a low-cost and high-throughput terabit Ethernet switch. The switch leverages

PCIe peer-to-peer communication protocols and off-the-shelf PCIe switch ICs to

implement Ethernet switching functionality with Quality of Service (QoS).

The thesis identified the major challenges of the PCIe-based Ethernet switch

solution. The issues of buffer speed, arbitration, address mapping, Quality of Service,

power consumption, testing, and debugging were discussed. The thesis reviewed the

basic structure of peer-to-peer communication protocols in PCI Express. Peer-to-peer

communication is an efficient approach to implement high-speed packet switching within

PCI Express infrastructure. Quality of service protocols and QoS-related protocols were

discussed. These protocols are critical for the switch to provide guaranteed bandwidth

and latency with reliable transmission. The thesis also presented possible methods of

implementing Ethernet over PCI Express adaptation. The adaptor uses a layered structure

to encapsulate and decapsulate Ethernet frames and PCIe packets. The Output Address

Lookup logic converts the destination MAC addresses of Ethernet packets to the routing

addresses/IDs of the PCIe switch. The Quality of Service in the adaptor provides

differentiated services outside the Ethernet switch while coordinating with the QoS inside

the PCIe switching fabric. The thesis finally presented a possible implementation of the

PCIe-based Ethernet switch adaptor, which was built based on FPGA logics. The

implementation enables the basic encapsulation and decapsulation of Ethernet frames and

PCIe packets on the adaptor without QoS features. The interfaces and functions of the

logic cores were discussed in detail.

96

The thesis demonstrated the functional simulation results of the adaptor using

ModelSim. The results imply that the Receive Path of the adaptor is able to convert the

Ethernet frames in the XGMII signals from the Ethernet Physical Layer to the PCIe

headers, data payloads, and control signals to the PCIe Transaction Layer. The Receive

Path is also able to create and maintain an address mapping table by the control signals

from the OS (testbench). The Output Address Lookup logic is able to map the destination

MAC addresses to the target PCIe routing addresses/IDs. The Transmit Path of the

adaptor is able to convert the PCIe headers, data payloads, and control signals from the

PCIe Transaction Layer to the Ethernet frames in the XGMII signals.

In the future, the Quality of Service features can be implemented in the adaptor.

The feathers should be parameterized for the specific application and particular network

condition. An embedded processor may be used in the FPGA for better memory control

and data processing. When testing the adaptor logics with the PCIe Endpoint Core, the

developer could write a Bus Functional Model (BFM) to simulate the adaptation logics

with the PCIe bus. Furthermore, specific drivers can to be developed for the adaptor in

the OS. The adaptor logics can be downloaded to the FPGA development board and

plugged into a motherboard or PCIe expansion plane. Actual Ethernet traffic can be

tested and evaluated in the PCIe switching system.

97

REFERENCES

[1] IEEE Std 802.3ba™-2010: Part 3 Carrier Sense Multiple Access with Carrier
Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE
Computer Society, June 22, 2010.

[2] “Huawei E2E 100G Solution,” Huawei Technologies Co. Ltd., 2010.

[3] Nick McKeown, “White Paper: A Fast Switch Backplane for a Gigabit Switched
Router,” Business Communications Review, December, 1997.

[4] Ori Aruj, “Evolution: 20 Years of Switching Fabric,” Dune Networks, last
modified September 29, 2008, [Online]. Available:
http://www.eetimes.com/design/communications-design/4009432/Evolution-20-
years-of-switching-fabric

[5] “Performance Optimized Ethernet Switching,” Cajun White Paper #1, Lucent
Technologies.

[6] PCI Express Base Specification Revision 3.0, PCI-SIG, November 10, 2010.

[7] “PCI-SIG Announces PCI Express 4.0 Evolution to 16GT/s, Twice the Throughput
of PCI Express 3.0 Technology,” PCI-SIG News Release, November 29, 2011.

[8] PCI Express Base Specification Revision 2.1, PCI-SIG, March 4, 2009.

[9] “PCIe 2.0 Expansion for Low Cost GPU Acceleration, HPC and High Speed
Storage,” One Stop Systems (OSS).

[10] H. Jonathan Chao, “Next Generation Routers,” Proceedings of the IEEE, vol. 90,
no. 9, September, 2002.

[11] “Engineers’ Guide to PCI Express Solutions,” EECatalog, 2012.

[12] Ravi Budruk, Don Anderson, and Tom Shanley, PCI Express System Architecture,
Mindshare, 2004.

[13] Intel® X58 Express Chipset Datasheet, Intel, November, 2009.

[14] Gigabyte™ GA-X58A-UD9 User's Manual, Gigabyte, 2010.

[15] Min-An Song, “System Level Assertion-Based Verification Environment for
PCIPCI-X and PCIe,” International Conference on Computational Intelligence and
Security, pp. 1035-1038, December 15-19, 2007.

[16] 802.1D™-2004 IEEE Standard for Local and Metropolitan Area Networks Media
Access Control (MAC) Bridges, IEEE Computer Society, June 9, 2004.

98

[17] E. Filippi , V. Innocenti , and V. Vercellone, “Address Lookup Solutions For
Gigabit Switch/Router,” CSELT Technical Reports, 1998.

[18] H. Jonathan Chao and Bin Liu, High Performance Switches and Routers, John
Wiley & Sons, Inc., 2007.

[19] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, vol. 3,
2nd edition. Addison-Wesley, Don Mills, Ontario, 1998, pp. 513-558.

[20] C. Huntley, G. Antonova, and P. Guinand, “Effect of Hash Collisions on the
Performance of LAN Switching Devices and Networks,” Proceedings 31st IEEE
Conference on Local Computer Networks, 2006.

[21] P. Gupta, “Routing Lookups and Packet Classifications: Theory and Practice,”
Proceedings HOT Interconnects 8, Stanford, California, August, 2000.

[22] Idriss Diouri, Jean-Philippe Georges, and Eric Rondeau, “Accommodation of
Delays for Networked Control Systems Using Classification of Service,” IEEE
International Conference on Networking, Sensing and Control, Apirl 15-17, 2007.

[23] 802.1Q™-2011: IEEE Standard for Local and metropolitan area networks--Media
Access Control (MAC) Bridges and Virtual Bridged Local Area Networks, IEEE
Computer Society, 2011.

[24] “IEEE 802.1p: LAN Layer 2 QoS/CoS Protocol for Traffic Prioritization,” [Online].
Available: http://www.javvin.com/protocol8021P.html

[25] IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997: Specification for 802.3 Full
Duplex Operation and Physical Layer Specification for 100 Mb/s Operation on
Two Pairs of Category 3 or Better Balanced Twisted Pair Cable (100BASE-T2),
IEEE Computer Society, 1997.

[26] M. Hayasaka, T. Sekiyama, S. Oshima, and T. Sakuraba, “Dynamic Pause Time
Calculation Method in MAC Layer Flow Control,” IEEE International Symposium
on Broadband Multimedia Systems and Broadcasting (BMSB), 2010.

[27] 802.1Qbb™-2011: IEEE Standard for Local and metropolitan area networks--
Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks
Amendment 17: Priority-based Flow Control, IEEE Computer Society, 2011.

[28] “Priority Flow Control: Build Reliable Layer 2 Infrastructure,” White Paper, Cisco,
2009.

[29] IEEE 802.3an™-2006: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications, IEEE Computer
Society, 2006.

99

[30] “10_100_1000 Mbps Tri-mode Ethernet MAC: Overview,” OpenCores, [Online].
Available: http://opencores.org/project,ethernet_tri_mode

[31] LogiCORE IP 10-Gigabit Ethernet MAC v11.1 User Guide, Xilinx, March 1, 2011.

[32] “10-Gbps Ethernet MAC MegaCore Function,” [Online]. Available:
http://www.altera.com/products/ip/iup/ethernet/m-alt-10gbps-ethernet-mac.html

[33] Avalon Interface Specifications, Altera, May, 2011.

[34] “PCIe all-in-one (XpressRICH),” [Online]. Available:
http://www.plda.com/prodetail.php?pid=202

[35] 7 Series FPGAs Integrated Block for PCI Express User Guide, Xilinx, November
17, 2011.

[36] IP Compiler for PCI Express User Guide, Altera, May, 2011.

[37] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo, “NetFPGA - An Open Platform
for Gigabit-rate Network Switching and Routing,” IEEE International Conference
on Microelectronic Systems Education, 2007.

[38] Michele Petracca, Robert Birke, and Andrea Bianco, “HERO High-speed Enhanced
Routing Operation in Software Routers NICs,” IT-NEWS, 2008.

[39] Jeffrey Shafer and Scott Rixner, “A Reconfigurable and Programmable Gigabit
Ethernet Network Interface Card,” Rice University Technical Report, 2006.

[40] AXI Reference Guide, Xilinx, March 7, 2011.

[41] Kyle Locke, Parameterizable Content-Addressable Memory, Application Note,
Xilinx, March 1, 2011.

[42] LogiCORE IP FIFO Generator v8.2 User Guide, Xilinx, June 22, 2011.

[43] PCI Express XpressRich Core Reference Manual, PLDA, June 2010.

http://opencores.org/project,ethernet_tri_mode�

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	Types and Issues of Ethernet Switches
	A New Approach: PCI Express Switching for Ethernet
	Challenges of PCI Express Switching
	Thesis Overview
	Thesis Outline

	CHAPTER 2
	BACKGROUND
	PCI Express Architecture
	Motherboard and PCI Express Expansion Backplane

	CHAPTER 3
	PCI EXPRESS SWITCHING BY PEER-TO-PEER COMMUNICATION PROTOCOLS
	Overview
	Overview of the Proposed PCI Express-based Ethernet Switch
	Overview of Peer-to-Peer Communication

	Packet Routing Procedure
	Enumeration and Initialization
	Routing Scheme

	Quality of Service (QoS) and QoS-related Protocols
	Reliable and Efficient Switching
	Classification
	Scheduling
	Flow Control
	Error Detection
	Device Synchronization

	CHAPTER 4
	ETHERNET OVER PCI EXPRESS ADAPTATION
	Overview of the Ethernet over PCI Express Adaptor Card
	Encapsulation and Decapsulation
	Address Mapping Table
	Output Address Lookup
	Packets Routing
	QoS and QoS-related Protocols
	Classification
	Flow Control
	Conventional Flow Control
	Priority-based Dynamic Flow Control with Memory (PDFC)

	Error Detection

	CHAPTER 5
	IMPLEMENTATION OF THE PCIE-BASED ETHERNET SWITCH ADAPTOR
	Overview of the PCIe-based Ethernet Switch Adaptor Implementation
	Available Resources and Platform Selection
	AXI4 Interface
	10G MAC Core
	Output Address Lookup
	Ethernet Parser
	Address Mapping Table
	Content-Addressable Memory (CAM)

	AXI4-Stream FIFO
	PCI Express Endpoint Core
	PCI Express Transmit Interface
	PCI Express Receive Interface

	CHAPTER 6
	EXPERIMENTAL RESULTS AND DESIGN EVALUATION
	Simulation and Testbench Setup
	Functional Simulation of the Receive Path
	Functional Simulation of the Transmit Path

	CHAPTER 7
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

