
A Chemostat Model of Bacteriophage-Bacteria Interaction

with Infinite Distributed Delays

by

Zhun Han

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2012 by the
Graduate Supervisory Committee:

Hal Smith, Chair
Dieter Armbruster
Matthias Kawski

Yang Kuang
Horst Thieme

ARIZONA STATE UNIVERSITY

May 2012



ABSTRACT

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory

experiments show that in a chemostat containing phage and susceptible bacteria

species, a mutant bacteria species will evolve. This mutant species is usually resis-

tant to the phage infection and less competitive compared to the susceptible bac-

teria species. In some experiments, both susceptible and resistant bacteria species,

as well as phage, can coexist at an equilibrium for hundreds of hours. The current

research is inspired by these observations, and the goal is to establish a mathemat-

ical model and explore sufficient and necessary conditions for the coexistence.

In this dissertation a model with infinite distributed delay terms based on

some existing work (e.g. [26] and [34]) is established. A rigorous analysis of the

well-posedness of this model is provided, and it is proved that the susceptible bac-

teria persist. To study the persistence of phage species, a “Phage Reproduction

Number” (P RN ) is defined. The mathematical analysis shows phage persist if

P RN > 1 and vanish if P RN < 1. A sufficient condition and a necessary condi-

tion for persistence of resistant bacteria are given. The persistence of the phage

is essential for the persistence of resistant bacteria. Also, the resistant bacteria

persist if its fitness is the same as the susceptible bacteria and if P RN > 1.

A special case of the general model leads to a system of ordinary differen-

tial equations, for which numerical simulation results are presented.
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CHAPTER 1

INTRODUCTION

The interaction between the virulent bacteriophages (phages) and bacteria has

been an interesting topic in both biological and mathematical fields for decades.

The quantitative study of this interaction dates back to 1930’s (e.g., see Ellis and

Delbrück [13]). Recent work appears in ecology includes [25, 40, 31, 9]. As

far as we know, the first two mathematical models were proposed in 1960’s (see

Campbell [11]) and 1970’s (see Levin, Stewart and Chao [26]). Both are in the

form of systems consisting of differential equations. Since then, numerous math-

ematicians and biologists have devoted considerable attention and effort to related

studies. Based on different assumptions and methodologies, researchers from var-

ious field have developed a series of theories.

In this dissertation we will study a chemostat model of phage-bacteria in-

teraction and mainly focus on the persistence of species. This model is formu-

lated by a system of ordinary differential equations (ODEs) and delay differential

equations (DDEs). To make this model more realistic, we introduced terms with

infinite distributed delays. As a serious study in the mathematical sense, we an-

alyzed some fundamental properties of this system, and studied the persistence

and extinction of bacteria and phages. To better illustrate these results, we also

performed numerical simulations on a special case of this model.

1.1 Pioneering Works

Ellis and Delbrück [13] is one of the earliest papers on the interaction between

phages and bacteria. Their work answered a number of fundamental questions

and led to various succeeding studies. Ellis and Delbrück confirmed that the in-

fection of phages can be divided into 3 stages: adsorption, latent period and ly-
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sis. First, a free phage particle attaches itself to a susceptible bacterium and it

is called “adsorption”. The adsorption is followed by a significant latent period,

after which the infected bacterium will lyse and release a number of new phage

particles. The total number of new phage particles released per bacterium is called

the “burst size”. Besides the division of infection stages, Ellis and Delbrück [13]

also accomplished:

1. An anti-E. Coli phages species is isolated and its behavior was studied.

2. The adsorption rate is proportional to the concentration of phages and to

the concentration of (susceptible) bacteria. The rate was measured.

3. Showed the average latent period varies with the temperature while the

burst size does not. Neither latent period nor burst size is affected by con-

centrations of micro-organisms. Both latent period and burst size were mea-

sured.

These observations are widely accepted by researchers in succeeding works

nowadays. In particular, we would like to emphasize two pioneering mathemati-

cal models proposed by Campbell [11] and Levin, Stewart and Chao [26].

The first mathematical model was established by Campbell in 1961, he

considered an ODE system consists of one bacteria species and one phage species:

dB1

d t
= B1

�

kB1

�

1−
B1

L

�

−α− kAP
�

,

d P

d t
= kAN [B1(t − l )P1(t − l )]− kAPB1− kI P −αP.

(1.1)
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He also extended it into a model with one susceptible bacteria species and one

resistant bacteria species:

dB1

d t
= B1

�

kB1

�

1−
B1+B2

L

�

−α− kAP
�

,

dB2

d t
= B2

�

kB2

�

1−
B1+B2

L

�

−α
�

,

d P

d t
= kAN [B1(t − l )P1(t − l )]− kAPB1− kI P −αP.

(1.2)

In (1.1) and (1.2), B1 and B2 are concentrations of susceptible and resistant

bacteria species, respectively. P represents the concentration of phages. Parameter

α is the flow rate, kA is the adsorption rate, kI is the spontaneous inactivation rate

of phages. The normal growth of bacteria is logistic with the growth rate kBi
for

i = 1,2, and carrying capability L. And the average burst size is N .

Note by assuming bacteria growth is logistic, the nutrient concentration

is not explicitly involved in Campbell’s model (1.1) and (1.2). The author did

not provide any mathematical analysis except for solving steady states. However,

(1.1) is adapted and studied extensively by mathematicians and biologists in the

following decades. For reference, please see [3, 4, 2, 15, 16, 28].

By solving equilibria for (1.1) and (1.2), Campbell commented in [11, Page

158–159] that

Now, in the absence of phages, the faster-growing bacterial species
will always displace the slower. The only case in which the net effect
of the presence of phages is to create a selective disadvantage for its
host is when t he two growth rates are exactly equal. When the host
for the phages has a selective advantage, even a very slight one, the
competitor has no effect on the final density of the host bacterium or
on the stability of the steady state. It merely fills up the space which
the susceptible species leaves vacant, and, indirectly, reduces the level
of phages.
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This comment was concluded only by comparing values of equilibria of

(1.1) and (1.2). But it addresses an important question: what role do phages play

in the presence of resistant bacteria? As pointed out by Campbell, at a steady state,

the faster-growing species always drives the other one to extinction. However, if

phages are introduced into the system and its host is the superior bacteria species,

the coexistence of both bacteria species may be feasible as an equilibrium.

Another pioneering work on modeling this machinery was accomplished

in Levin, Stewart and Chao [26]. In this paper, the authors not only formulated

mathematical models, but also performed a series of experiments. The basic de-

vice used by the authors is called a “chemostat”, it is a laboratory device and is

assumed to be an idealization of some nature environments. According to Smith

and Waltman [35], an abstract chemostat should have three components: the feed

bottle, the culture vessel, and the collection bottle. Some limiting nutrient is

pumped from the feed bottle into the culture vessel. All interactions between

micro-organisms take place in this vessel. Products of culture vessel are pumped

out and collected by the third bottle. In laboratory, the device is generally much

more complicated, for more details, please see Section 2.1 and [35].

In [26], Levin, Stewart and Chao proposed a general model that consists

of multiple nutrients, susceptible bacteria species and phage species. This model

is written as

ṙ j = ρ(C j − r j )−
I
∑

i=i

φi j

 

ni +
K
∑

k=1

mi k

!

,

ṅi = ni

J
∑

j=1

φi j

ei j

−ρni −
K
∑

k=1

γi k ni pk ,

ṁi k = γi k ni pk −ρmi k − e−ρli kγi k ni (t − li k)pk(t − li k),

ṗk =
I
∑

i=1

bi k e−ρli kγ i kni (t − li k)pk(t − li k)−ρpk −
I
∑

i=1

γi k ni pk .

(1.3)
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In (1.3), r j ’s for 1 ≤ j ≤ J are j types of different nutrients, ni ’s for 1 ≤ i ≤ I

are susceptible bacteria species, each mi k for 1 ≤ i ≤ I and 1 ≤ k ≤ K is the i -th

bacteria species infected by the k-th phage species, and pk ’s for 1 ≤ k ≤ K are

phage species. Constant ρ is the flow rate, each C j is the concentration of j -th

nutrient. The i -th bacteria takes up the j -th resource at a rate φi j . Moreover, ei j ’s

are yield constants, γi k ’s are adsorption rates, and li k ’s are corresponding latent

periods.

By assuming the adsorption rate γi k is 0, it is easy to see the i -th bacteria

species can be considered as “resistant” to the k-th phage species. The main differ-

ences between Campbell’s model (1.1) – (1.2) and (1.3) is that the limiting nutrient

was taken into account in (1.3).

Levin, Stewart and Chao also considered two special cases of (1.3). The

first simplification consists of one susceptible bacteria and one phage species:

ṙ = ρ(C − r )−φ(r )(n+m),

ṅ = n
φ(r )

en

−ρn− γn p,

ṁ = γn p −ρm− e−ρlγn(t − l )p(t − l ),

ṗ = b e−ρlγn(t − l )p(t − l )−ρp − γn p.

(1.4)

In the second case, besides susceptible bacteria and phage species, a resistant bac-

teria species was introduced into the system:

ṙ = ρ(C − r )−φ(r )(n1+ n2+m),

ṅ1 = n1

φ(r )

e1

−ρn1− γn1 p,

ṅ2 = n2

φ(r )

e2

−ρn1,

ṁ = γn1 p −ρm− e−ρlγn1(t − l )p(t − l ),

ṗ = b e−ρlγn1(t − l )p(t − l )−ρp − γn1 p.

(1.5)
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The authors also examined equilibria of (1.5) and stated the following para-

graph in [26, Page 9]:

Consider a habitat where a population of primary consumers is
in equilibrium with a predator. Suppose that a second species of con-
sumer is at a relative disadvantage with respect to resource utiliza-
tion but is immune to predation. If the second species can survive
on the resource level which obtains at the two-species equilibrium,
then there is an equilibrium with the predator and both primary con-
sumers present.

Stduies of models and experiments related to[26] include [25, 31, 8, 7, 6,

5, 29, 32, 34]. For more details about models related to [26], please see Section

1.3.

1.2 Motivation and Goal

Though mathematical models in [11] and [26] are different, all authors noticed

that for a system consisting of one susceptible bacteria species, one resistant bac-

teria species and one phage species, the following facts are true at equilibria:

O1. Without the phage species, the bacteria species which is more successful in

the competition of resource will survive and the other will go extinct.

O2. With the presence of phages, it is possible for the resistant bacteria to coexist

with the phage-sensitive bacteria, even if the phage-sensitive bacteria is the

superior competitor.

The first assertion (O1) is often referred as “Competitive Exclusion Prin-

ciple” (CEP). It has been studied extensively in both ecological and mathematical

senses. For example, in a chemostat containing more than one micro-organism

competing for the same nutrient, the one which consumes the nutrient most ef-

ficiently will be the solo survivor and all other species will be eventually washed

6



out. There are numerous experimental results on CEP under different assump-

tions and circumstances, e.g., see Hansen and Hubbell [20]. Mathematical results

are available in different references too, the following is an incomplete list of lit-

erature:

1. If the removal rate of all species are identical and response functions are of

the Michaelis-Menten type, see Hsu, Hubbell and Waltman [23];

2. If the removal rate of all species are identical but response functions are

general monotone functions, see Armstrong and McGehee [1];

3. If removal rates are different but response functions are of the Michaelis-

Menten type, see Hsu [22];

4. If removal rates are different and response functions are of certain types (in-

cluding monotone and non-monotone types), see Wolkowicz and Lu [41];

5. If removal rates are different and response functions are non-monotone

functions, see Li [27].

However, (O2) states that (O1) may fail if a phage species is introduced

into the chemostat and prey on the superior competitor. All authors of [11] and

[26] noticed (O2) is true at equilibria, even if the susceptible bacteria species fits

better. Observation (O2) is confirmed by other laboratory experiments too. For

instance, Chao, Levin and Stewart [12] performed a series of experiments in a

continuous culture (i.e., chemostat) by using E. Coli bacteria and phage T7. The

authors observed two scenarios. In the first one, a mutant strain of E. Coli was

discovered, it is resistant to the phage infection and it evolved within a few hun-

dred hours. And after that, a mutant phage species evolved and it preys both

the original and mutant E. Coli bacteria. In another replicate of the experiment,

7



the author noticed the same mutant strain of E. Coli evolved and was resistant to

both original and mutant phage species. Chao, Levin and Stewart also did a pair-

wise competition experiment in a phage-free chemostat to compare the fitness

of phage-sensitive bacterial strain and phage-resistant (mutant) strains, it turned

out that the resistant mutants were inferior competitors relative to the susceptible

bacteria. Bohannan and Lenski [9] argued that the resistance is closely related to

the fitness of mutant bacteria. They claimed, in general, a bacterium gains the

resistance by losing of modifying the receptor molecule, so that a phage particle

will not be able to bind itself to the bacterium. However, this receptor is often

involved in the bacterial metabolism, thus it can be considered as a trade-off be-

tween the resistance and competitive fitness.

Campbell [11] and Levin, Stewart and Chao [26] only studied the dy-

namics at equilibria, hence it is still not known if (O1)–(O2) is generally true.

Bohannan and Lenski [9] stress that the presence of resistant bacteria will not

drive susceptible bacteria or phage species to extinction provided the following

conditions hold:

L1. The resistant mutant suffers some cost of resistance. To be more precise, the

competitive ability for limiting resource is reduced and inferior compared

to the sensitive strain.

L2. The mutant’s resistance to phages is absolute.

The main purpose of the current research is to study a mathematical model

of the phage-bacteria interaction involving a phage-sensitive bacteria species, a vir-

ulent phage species, and an absolutely phage-resistant bacteria species which is an

inferior competitor for nutrient relative to the phage-sensitive bacteria. We aim

to confirm whether the phage-sensitive bacteria and phages are able to persist pro-

8



vided (L1)–(L2) hold. Moreover, we would like to examine whether (L1)–(L2) are

sufficient for the persistence of the resistant bacteria species (For the mathemati-

cal definition of persistence, please see Appendix A.3). Therefore, the goal of this

research can be summarized as:

1. Establish a mathematical model based on the pioneering work [26] and the

recent work [34].

2. Use proper frameworks to study the well-posedness of this model.

3. Investigate whether the criteria for persistence/extinction of the sensitive

bacteria developed in [34] is affected by introducing the new resistant bac-

terial strain. Similarly, verify if the sharp criteria for persistence/extinction

of phages in [34] still holds.

4. Explore sufficient or necessary conditions for the persistence of resistant

bacteria.

5. Perform numerical simulations based on parameter values suggested by eco-

logical literature.

Besides all goals above, we will also discuss how to apply this new model

to more general cases, for details, please see Chapter 6.

1.3 Recent Works and Review

In this section we will briefly review mathematical models related to Levin, Stew-

art and Chao [26].

9



In 2008, an ODE analogue (1.4) was studied in Qiu [29]:

dC (t )

d t
=D(C 0−C (t ))−

1

α
B(C (t ))S(t ),

d S(t )

d t
=−DS(t )+B(C (t ))S(t )−δS(t )P (t ),

d L(t )

d t
=−DL(t )+δS(t )P (t )− qL(t ),

d P (t )

d t
=−DP (t )+βqL(t )−δS(t )P (t ),

(1.6)

where C (t ), S(t ), L(t ), P (t ) stand for the nutrient, susceptible bacteria, infected

bacteria, and phages, respectively. C 0 is the concentration of the nutrient in the

input flow, B(C ) is the uptake function of susceptible bacteria, α is the yield con-

stant, δ is the adsorption rate, β is average burst size of phages, and 1
q can be

explained as the time delay between infection and lysis.

The author found there are three possible equilibria, E0 = (C 0, 0, 0,0),

E∂ = (C ∂ , S∂ , 0, 0) and E∗ = (C ∗, S∗, L∗, P ∗). E0 always exists, it is globally asymp-

totically stable if B(C 0)< 0 and unstable if B(C 0)>D . To determine the stability

of E∂ , the author defined a “basic reproduction number” R0, and claimed that E∂

exists if B(C 0) > D , it is globally asymptotically stable if R0 < 1 and unstable

if R0 > 1. Equilibrium E∗ exists if R0 > 1, and it may undergo a Hopf bifurca-

tion. The author also proved the system persists uniformly when B(C 0)>D and

R0 > 1.

For DDE model (1.4), partial results were presented in Beretta, Solimano

and Tang [7] and Smith [32, Chapter 8]. In [7], the authors worked on the

10



following model:

d R(t )

d t
=µ(C −R(t ))−α(R)r S(t ),

d S(t )

d t
= α(R)S(t )−µS(t )−δS(t )P (t ),

d I (t )

d t
= δS(t )P (t )−µI (t )− e−µτδS(t −τ)P (t −τ),

d P (t )

d t
=βe−µτδS(t −τ)P (t −τ)−µP (t )−δS(t )P (t ),

(1.7)

where R, S, I , P are concentrations of nutrient, susceptible bacteria, infected bac-

teria, and phages, respectively. C is the nutrient concentration of the input flow,

µ is the flow rate, α(R) is the uptake function of S, r is the yield constant, δ is

the adsorption rate and τ is the latent period.

After rescaling (1.7), Beretta, Solimano and Tang showed there are three

possible equilibria, E1 = (1,0,0,0), E2 = R, 1− R, 0, 0) and E∗ = (R∗, S∗, I∗, P∗).

Existence conditions and local stability of all equilibria are stated in [7]. For

the local stability of E∗, the authors claimed it is stable for small delay τ and

may become unstable as τ increases, and if τ exceeds another critical value, E∗

will become stable again. Beretta, Solimano and Tang [7] also gave a sufficient

condition for the persistence of phages P . This sufficient condition was later

improved in Smith [32]. And it was proved in [34] that this is also a necessary

condition, if one treats (1.7) as a special case of models discussed in [34].

The recent work by Smith and Thieme [34] established two models re-

lated to (1.4). The authors gave a rigorous mathematical analysis on these models

and obtained some interesting results.
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The first model in [34] is a generalization of (1.4), the authors replaced the

single discrete delay by an infinite distributed delay:

R′(t ) =D(R�−R(t ))− f (R(t ))[S(t )+µI (t )],

S ′(t ) = ( f (R(t ))−D)S(t )− kS(t )P (t ),

I ′(t ) = kS(t )P (t )−DI (t )−
∫ ∞

0
e−DτkS(t −τ)P (t −τ)d ν(τ),

P ′(t ) =−DP (t )− k[S(t )+ pI (t )]P (t )

+
∫ ∞

0
b (τ)e−DτkS(t −τ)P (t −τ).

(1.8)

In (1.8), R(t ), S(t ), I (t ), P (t ) stand for nutrient, susceptible bacteria, infected bac-

teria, and phages, respectively. The concentration of the nutrient in the input

flow is R�, and f (R) is the uptake function. Parameter k is the adsorption rate,

D is the flow rate, and the infected bacteria may consume nutrient at a fraction

µ ∈ [0,1] of the rate of healthy cells. Similarly, a phage particle may attempt to

attach itself to an infected bacteria at the rate k p, where p ∈ [0,1]. Moreover,

the authors assumed the fraction of infected bacteria which lyse at time s ∈ [0,τ]

is given by a cumulative distribution function η(τ), and ν(τ) is the probability

measure associated to η. And b (τ) is the average burst size at latent period τ.

The authors introduced a “phage reproduction number”, called R , and

studied the existence of equilibria. It is shown that the (unique) positive coexis-

tence equilibrium exists if and only ifR > 1.

For (1.8), the authors emphasized that if η(τ) =H (τ− eτ) is the Heaviside

function, b (τ) = b is a constant, and p = 0, then (1.8) is reduced to (1.4). Another

special case mentioned in [34] is when η(τ) is a Gamma distribution, we will

investigate this case in the current research as well, please see Chapter 4 for the

details.
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Another model studied in [34] is an infection-age model by substituting

the followings for differential equations of I and P in (1.8):

I (t ) =
∫ ∞

0
u(t ,a)da,

P ′(t ) =−DP (t )− k[S(t )+ pI (t )]P (t )+
∫ ∞

0
b (a)u(t ,a)

−F ′(a)
F (a)

da.
(1.9)

In (1.9), F (a) is the probability that an infected bacterium has not yet lysed a

time units after infection.

u(t ,a) =











kS(t − a)P (t − a)e−DaF (a), t > a ≥ 0,

u(0,a− t )e−D t F (a)
F (a−t ) , 0≤ t < a.

The authors argued that the differential equations of P in (1.8) and (1.9) agree

when

u(0,a) = kS(−a)P (−a)e−DaF (a), a ≥ 0,

According to [34], model (1.9) is “more general, more flexible and also more nat-

ural from a biological point of view”.

The main conclusion of [34] is that for (1.9), the followings hold:

1. Susceptible bacteria S always persists.

2. Phage species P persists ifR > 1 and goes extinct ifR < 1.

This seems to be the first known sharp criteria on the persistence and extinction

of phages on DDEs derived from (1.4). The main model of the current research

will be an elaboration on (1.8).

All models in [29, 7, 32, 34] are considering only one bacteria species in the

chemostat. As we are interested in models containing resistant bacteria species, it

would be convenient to review the study of Beretta, Sakakibara and Takeuchi on

(1.5).
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This study was reported by Beretta, Sakakibara and Takeuchi in two pa-

pers [5] and [6], the authors explored the following model (the differential equa-

tion of infected bacteria species is omitted in [5]):

ṙ (t ) = ρ(C − r (t ))−φ1(n1(t )+m1(t ))−φ2n2(t ),

ṅ1(t ) = n1(t )
φ1

e1

−ρn1(t )− γ1n1(t )p(t ),

ṅ2(t ) = n2(t )
φ2

e2

−ρn2(t ),

ṁ1(t ) = γ1n1(t )p(t )−ρm1(t )− γ1e−ρl1 n1(t − l1)p(t − l1),

ṗ(t ) = b1γ1e−ρl1 n1(t − l1)p(t − l1)−ρp(t )− γ1n1 p(t ).

(1.10)

Here again, r, n1, n2, m1, p represent the nutrient, susceptible bacteria, resistant

bacteria, infected bacteria, and phages, respectively. C is the nutrient concentra-

tion of the input flow, φ1 and φ2 are uptake functions, e1 and e2 are yield con-

stants, ρ is the flow rate, γ1 is the adsorption rate, b1 is the average burst size, and

l1 is the latent period between infection and lysis.

The authors showed there are five possible equilibria: E0 = (C , 0, 0, 0,0),

E1 = (r 1, n1, 0, 0, 0), E2(r 2, 0, n2, 0, 0), E3 = (br , bn1, 0, bm1, bp), and the last one is

E4 = (r
∗, n∗1 , n∗2 , m∗1 , p∗). Existence conditions of equilibria are stated. Instead of

introducing phage reproduction number, the authors gave a critical value of delay,

called l ∗1 (r 1) and proved the stability of E2 is determined by the sign of l1− l ∗1 (r 1).

In [5, 6], sufficient conditions for global stability of boundary equilibria E0 and

E1 are given. And more interestingly, the authors proved E4 is globally asymp-

totically stable for l1 = 0 provided E4 exists. It is also mentioned that the global

stability of E4 may not hold for all 0 < l1 < l ∗1 (r
∗). The authors performed a nu-

merical simulation to support these arguments. However, no persistence results

were discussed in these papers. It appears that [5, 6] are the only known papers

analyzing (1.5) from the mathematical point of view.
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The current dissertation is organized as follows: Chapter 2 will focus on

the formulation of the main model (2.7), some elementary but fundamental math-

ematical results are discussed in this chapter. Chapter 3 is the kernel of this re-

search, we will present persistence and extinction results on bacteria and phage

species. Chapter 4 and Chapter 5 study a special case of (2.7). All analytical re-

sults are represented in Chapter 4 and numerical simulations and comments are

summarized in Chapter 5. Chapter 6 will discuss a few ways to generalize this

model; some interesting analytical outcomes are stated in the first section of this

chapter. And lastly, Chapter 7 summarizes all important conclusions of this re-

search.
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CHAPTER 2

THE MODEL WITH INFINITE DISTRIBUTED DELAYS

In this chapter we will model the phage-bacteria interaction by a DDE system

involving infinite distributed delay terms.

The formulation of this model is straight-forward. The chemostat model

of bacteria competition has been well studied in both mathematical and biological

fields. Based on facts observed and confirmed as in [13, 25, 26] and many other

papers, we adopt similar assumptions as in [35, 34]. With these assumptions,

we can introduce the phage species into the classical phage-free chemostat model.

And it leads to a differential equation system consisting of infinite delays.

We will have to justify the well-posedness of this model due to the follow-

ing reasons:

Firstly, a DDE systems contains infinite distributed delay terms are gener-

ally difficult to analyze. In particular, some important mathematical properties

such as the existence, uniqueness, and continuation of solutions are not obvious.

A careful choice of the state space is crucial and necessary.

Secondly, it is well known that a mathematically valid model may not

necessarily lead to a biologically reasonable solution. For example, all variables in

our model represent concentration of differential strains, one should expect that

a non-negative initial data will lead to a non-negative solution and this solution

should be bounded for all future times.

2.1 Formulation of the Model

In a chemostat, the input flow containing nutrient for bacteria is pumped into

the vessel continuously, and in the meantime, the output flow carrying utilized

resources and micro-organisms (both bacteria and phages) are pumped out.
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As mentioned in [26], there are three trophic levels in the chemostat: 1)

primary resources, 2) first-order consumers or prey (bacteria), and 3) predators

(phages).

Two species of bacteria compete with each other for nutrient. One of

them is susceptible (sensitive) to the phages and the other is resistant.

Free phage particles attack susceptible bacteria by attaching themselves to

the surface of bacteria, phage inject their genetic material (DNA or RNA) into

the bacterial cell and turn it into an infected bacterium. The infection process can

be considered as instantaneous.

In an infected bacterium, phage’s nucleic acid is reproduced. For example,

when virulent phage T4 infects E. Coli, the injected DNA transcribes itself into

mRNA. After the enzyme synthesis phase, the DNA is replicated. Structural

proteins used for the head and the tail are produced when the replication of DNA

is done. As soon as all components are ready in the infected bacterium, they are

assembled into complete phage. The new phage produces an enzyme to break

down the bacteria cell wall and release themselves to the chemostat solution. The

infected bacteria cell is destroyed and lyses.

The progress from the infection to the lysis is usually called the lytic cycle

of virulent phage. For virulent phage T4, it takes about 30 minutes at 37◦C [13].

All these biological facts are summarized as below:

H1. The chemostat consists of three tropic levels: the nutrient (resources R),

the prey (susceptible bacteria S and resistant bacteria M ) and the predator

(phages P ).

H2. The input flow containing water and nutrient is supplied continuously at a

constant rate. The washout flow carrying nutrient and all microorganisms
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is pumped out at the same rate. The concentration of nutrient in the input

flow is a constant.

H3. The input flow mixes with the culture instantaneously. Only susceptible

and resistant bacteria consume the nutrient.

H4. The infected bacteria I will lyse and release new phage after a latent period

(the length of the lytic cycle). The fraction of infected bacteria which lyse at

time s ∈ [0,τ] after infection is given by a cumulative distribution function

η(τ). And the new phage particles released from a single infected bacterium

(average burst size) at an infection age τ is b (τ).

Now we proceed to the formulation of the model. First we adapt the

classical chemostat model as studied in [35] by adding an adsorption term:

R′(t ) =−DR(t )
︸ ︷︷ ︸

dilution

+DR0
︸︷︷︸

input

−γS fS(R(t ))S(t )
︸ ︷︷ ︸

consumption of S

−γM fM (R(t ))M (t )
︸ ︷︷ ︸

consumption of M

,

S ′(t ) =−DS(t )
︸ ︷︷ ︸

dilution

+ fS(R(t ))S(t )
︸ ︷︷ ︸

growth

−kS(t )P (t )
︸ ︷︷ ︸

adsorption

,

M ′(t ) =−DM (t )
︸ ︷︷ ︸

dilution

+ fM (R(t ))M (t )
︸ ︷︷ ︸

growth

.

(2.1)

Here R is the incoming nutrient carried by the input flow, S represents the phage-

sensitive bacteria and M is resistant to phage infection. Thus the only adsorption

term appears in the differential equation of S.

In (2.1), γS and γM are yield constants, R0 is the nutrient concentration of

the input flow, D is the dilution rate, and k is the adsorption rate of phage. Func-

tions fS and fM are nutrient uptake functions for microbes S and M , respectively.

Both functions should be continuously differentiable, increasing functions van-

ishing at zero. This is a reasonable assumption, as according to [26, Page 7], “it
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is biologically plausible and experimentally verifiable” that the uptake function is

an increasing function which equals 0 at 0 and has a finite limit as R→∞. The

assumption on the continuity and differentiability is merely for the mathematical

convenience. We also make the following hypotheses:

F1. fi (R0)>D , i = S, M .

F2. fS(R)> fM (R), 0< R≤ R0.

Hypothesis (F1) ensures that each bacterium can survive in the chemostat

with nutrient concentration R0 and dilution rate D in the absence of competition

and phage. To be more precise, f −1
S (D) and f −1

M (D) are called break-even values

of susceptible and resistant bacteria, respectively. This is the minimum nutrient

concentration at which a bacteria species can survive in the chemostat with dilu-

tion rate D , if there is neither competition for resource nor phage infection. It can

be shown that when the input nutrient level is less then the break-even value (or

fi (R)< D for all R≥ 0, where i ∈ {S, M}), this particular bacteria species will be

eventually washed out regardless of its phage-sensitivity. For more details, please

see Lemma 6.1.1.

And more importantly, (F2) indicates that resistant bacteria is less compet-

itive compared to susceptible bacteria S. In other words, to be resistant to phage

infection, the resistant bacteria suffers a cost in the form of a reduced growth

rate. This is observed and studied by Bohannan and Lenski in [9], as discussed in

Section 1.2.

Besides representing the biological facts, (F2) also indicates that susceptible

bacteria S are the superior competitor in the chemostat (i.e., the species with least

break-even value). In classical chemostat models, such as those in [35, 27, 41], the

"competitive exclusion principle" always holds, and thus the superior competitor
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will be the solo survivor in the chemostat, all other species which are inferior to

the superior competitor will be washed out. Suppose M is the superior competi-

tor, S will be driven to extinction even without phage infection, and the coexis-

tence of S and M is impossible if S is inferior to M . We also studied alternative

set-ups on (F2) in Section 6.1.

A popular choice of fS and fM is Michaelis-Menten type functions given

by fi (R) =
vi R

ui+R where ui , vi > 0 for i = S, M . According to Bohannan and

Lenski [9], it is plausible to assume uS < uM or vM < vS or both. However, it

is not necessary to assume fS and fM are Michaelis-Menten type functions in this

research except for the simulation part.

To formulate differential equations of infected bacteria I and phage P , we

must take lysis into account. It is observed in the laboratory that this latent period

varies from a few minutes to hours. Following [34], we describe variation in the

latent period by a cumulative probability distribution η(τ). More precisely, for

τ > 0 fixed, the probability of an infected bacterium lyses during the time period

[0,τ] following infection is η(τ). Mathematically, let η(τ) = ν([0,τ]), where ν is

a probability measure on [0,∞) and

∫ ∞

0
d ν(τ) = 1.

and assume the probability measure associated to this distribution is ν, namely,

η(τ) = ν([0,τ]).

The adsorption term in (2.1) is −kS(t )P (t ), which is the infection at time

t . Nevertheless, the new phage will only be released after certain latent period,

by considering the dilution, we conclude that the lysis of infected bacteria I at

time t is

k
∫ ∞

0
e−DτS(t −τ)P (t −τ)d ν(τ),
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and for new born phage, the integrand is multiplied by burst size b (τ), the average

burst size at latent period τ. As observed in [13], b (τ) is usually more than 50.

However, for simplicity, here we assume b (τ)< b0 for some b0 > 1. The average

number of new phage eventually released by an infected bacterium is denoted by

B , it is given by the Laplace transform of the measure b ν evaluated at D , that is,

B =
∫ ∞

0
e−Dτb (τ)d ν(τ),

Consequently, the differential equations of I and P are

I ′(t ) =−DI (t )
︸ ︷︷ ︸

dilution

+kS(t )P (t )
︸ ︷︷ ︸

infection

−k
∫ ∞

0
e−DτS(t −τ)P (t −τ)d ν(τ)

︸ ︷︷ ︸

lysis

,

P ′(t ) =−DP (t )
︸ ︷︷ ︸

dilution

−kS(t )P (t )
︸ ︷︷ ︸

infection

+k
∫ ∞

0
b (τ)e−DτS(t −τ)P (t −τ)d ν(τ)

︸ ︷︷ ︸

lysis

.
(2.2)

We combine (2.1) and (2.2) to obtain the model with infinite distributed

delays. Before stating the whole model, we can scale out yield constant γS and γM

by using auxiliary variables and parameter

eS = γS S, eM = γM M , eI = γS I , eP = γS P, ek =
k

γS

.

Thus we may always assume yield constant are 1 and write the model as

R′(t ) =D(R0−R(t ))− fS(R(t ))S(t )− fM (R(t ))M (t ),

S ′(t ) = ( fS(R(t ))−D)S(t )− kS(t )P (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ),

I ′(t ) =−DI (t )+ kS(t )P (t )− k
∫ ∞

0
e−DτS(t −τ)P (t −τ)d ν(τ),

P ′(t ) =−DP (t )− kS(t )P (t )+ k
∫ ∞

0
b (τ)e−DτS(t −τ)P (t −τ)d ν(τ).

(2.3)

This is the main model of our study. Table 1 summarizes all parameters and

variables used in (2.7).
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Table 1.Variables and parameters of DDE model (2.7)

R mg/ml nutrient concentration in the chemostat
S cells/ml susceptible bacteria
M cells/ml resistant bacteria
I cells/ml infected bacteria
P particles/ml phage
R0 mg/ml Nutrient concentration of the input flow
D h−1 dilution rate
k ml/h adsorption rate

b (τ) particles average burst size at latent period τ

In the special case that the latent period distribution function is Heaviside

function H (τ−τ)where τ > 0 is a fixed number, (2.3) is reduced to a DDE model

with one single discrete delay.

Generally speaking, since (2.3) contains infinite distributed delay terms,

its phase space and initial data must be chosen very carefully. The discussion is

deferred to the following section.

2.2 Well-posedness and Phase Space of DDE Model

As pointed out by Busenberg and Cooke [10], a mathematical valid initial value

may not guarantee a biological reasonable solution. A simple counterexample can

be constructed by the following way: let P (t ), S(t ) > 0 for t < 0, I (0) = S(0) =

P (0) = 0, and η(τ) be normal distribution, then

I ′(0) =−k
∫ ∞

0
e−DτS(−τ)P (−τ)d ν(τ)< 0,

and consequently I (t ) < 0 for t > 0 but small. Since I represents the population

of infected bacteria, clearly it should remain non-negative at all the time.
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Here we follow the idea in [34] and many other papers, calculate the for-

mal solution of I (t ) and obtain

I (t ) = k
∫ ∞

0

�
∫ t

t−τ
e−D(t−r )S(r )P (r )d r

�

d ν(τ). (2.4)

Let s = t − r and interchange the order of integration,

I (t ) = k
∫ ∞

0
F (s)e−D s S(t − s)P (t − s)d s , (2.5)

where

F (s) =
∫ ∞

s
d ν(τ) = 1−η(s).

is the sojourn function (see [37]), i.e., the probability that an infected bacterium

survives from lysis s time units after infection. In (2.5), kS(t − s)P (t − s) is the

infection at time t− s , andF (s)e−D s is the probability that infected bacteria have

not yet lysed or been washed out.

To make sure (2.5) is indeed a solution of (2.3), it must extend to t = 0 and

consequently

I (0) = k
∫ ∞

0
e−D sF (s)S(−s)P (−s)d s . (2.6)

Note I (t ) is not involved in any differential equation other than itself, and

it can be explicitly solved by (2.5) provided the history of S and P are known,

thus we can consider a subsystem of (2.3) without I :

R′(t ) =D(R0−R(t ))− fS(R(t ))S(t )− fM (R(t ))M (t ),

S ′(t ) = ( fS(R(t ))−D)S(t )− kS(t )P (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ),

P ′(t ) =−DP (t )− kS(t )P (t )+ k
∫ ∞

0
b (τ)e−DτS(t −τ)P (t −τ)d ν(τ).

(2.7)

Though sometimes it is convenient to include I in the argument (for example, in

the proof Lemma 2.3.4), we will use model (2.7) as the main model of this research

hereafter.
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Now we turn to phase space and initial data of (2.7). We follow the frame-

work stated in Appendix A.1, first define two subspaces of C ((−∞, 0],R): C 0 and

Cγ .

Function space C 0 is the collection of all constant functions on (−∞, 0].

For every function ϕ ∈ C 0, the norm of ϕ is simply |ϕ(0)|. To simplify the

notation, we may omit the difference between C 0 and R.

The second subspace Cγ is defined as

Cγ = {ϕ ∈C ((−∞, 0],R)) : | lim
s→−∞

eγ sϕ(s)| exists and is finite},

where γ > 0 is a fixed number. Define a norm on Cγ as

‖ϕ‖γ = sup
−∞<s≤0

eγ s |ϕ(s)|

for all ϕ ∈Cγ .

Now defineBD =C 0×Cγ×C 0×Cγ , let it be equipped with the maximum

norm ‖·‖D . Then it is easy to checkBD satisfies axiom (B1) – (B2) if H = 1, K = 1,

N (s) = e−γ s and R4 takes the maximum norm.

Since we are mostly interested in non-negative initial data and solutions,

we define the positive cone ofBD asB+
D . Each component of an element ofB+

D

is a function in C ((−∞, 0],R+), where R+ = [0,∞).

As we will show in Lemma 2.3.3, B+
D is forward invariant, thus we take

B+
D as the phase space hereafter. And the initial data of (2.7) is given by x =

(R(0), S(·), M (0), P (·)) ∈ B+
D . By omitting the difference between C 0 and R, we

can write

R(0)≥ 0, M (0)≥ 0, S ∈C+
γ

, P ∈C+
γ

,

where C+
γ

is the positive cone of Cγ .
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Also, though theoretically γ > 0 can be arbitrary, to ensure two integrals

in (2.7) are convergent, we assume that

γ <
D

2
.

2.3 Fundamental Properties of Solutions

Since (2.7) involves some infinite delay terms, fundamental properties of its solu-

tions, such as existence, uniqueness, continuation, and continuous dependence on

parameters and initial values are not trivial. Here we apply the theory developed

by Hale and Kato as stated in Appendix A.1 to (2.7) and obtain these properties.

Since the existence and uniqueness theorem apply to abstract FDE A.1

with admissible phase space B . they apply to (2.7) with BD as well. Thus the

following theorem is a direct corollary of Theorem A.1.1.

Theorem 2.3.1. For any (σ ,ϕ) ∈ R×BD , there exists a solution of (2.7) through

(σ ,ϕ).

To apply the uniqueness result Theorem A.1.2, we have to verify the vec-

tor field of (2.7) is locally Lipschitz. It suffices to verify the integral term in differ-

ential equation of P is locally Lipschitz. Suppose ϕ = (Rϕ, Sϕ(·), M ϕ, Pϕ(·)) ∈BD ,

and for anyφ= (Rφ, Sφ(·), Mφ, Pφ(·)) ∈BD in theδ-neighborhood of ϕ, we have
�

�

�

�

k
∫ ∞

0
e−Dτb (τ)

�

Sϕ(t −τ)Pϕ(t −τ)− Sφ(t −τ)Pφ(t −τ)
�

dµ(τ)
�

�

�

�

≤ k b0

∫ ∞

0
e−Dτ|Sϕ(t −τ)||Pϕ(t −τ)− Pφ(t −τ)|d ν(τ)

+ k b0

∫ ∞

0
e−Dτ|Pφ(t −τ)||Sϕ(t −τ)− Sφ(t −τ)|d ν(τ)

≤ k b0

�

‖Sϕ‖γ‖P
ϕ − Pφ‖γ + ‖P

φ‖γ‖S
ϕ − Sφ‖γ

�

∫ ∞

0
e−(D−2γ )τdµ(τ)

≤
�

(2‖ϕ‖D +δ)k b0

∫ ∞

0
e−(D−2γ )τdµ(τ)

�

‖ϕ−φ‖D .
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Note the term in the parentheses is a finite number (because D > 2γ as assumed),

this integral term is locally Lipschitz and so is the vector field. Thus we can apply

Theorem A.1.2 to (2.7).

Theorem 2.3.2. For any (σ ,ϕ) ∈ R×BD , there exists a unique solution of (A.1)

through (σ ,ϕ).

Moreover, Theorem A.1.3 and Theorem A.1.4 apply to (2.7) too. So so-

lutions of (2.7) depends on parameters and initial data continuously. For more

details, please see Appendix A.1.

Now we would like to show non-negativity and boundedness of solutions

of (2.7). Thereby, we can show the existence of a compact global attractor KD ,

which is the maximal compact invariant set KD ⊂ BD such that kD attracts all

bounded sets inB .

Lemma 2.3.3 (Positivity of solutions). Suppose x is the locally unique solution of

(2.7) with x0 = φ ∈ B+
D on [0,A], where A is a positive constant or infinity, then

x(t )≥ 0 for all t ∈ [0,A].

Proof. We consider the R component first. If R(0) = 0, then R′(0) =DR0 > 0 and

R(t )> 0 for t > 0 small. If R(0)> 0, by the continuity of R(t ), R(t )> 0 for small

t as well. Thus if R(t )< 0 for some t > 0, there exists a smallest t0 > 0 such that

R(t0) = 0 and R(t )> 0 on (0, t0). However, since R′(t0) =DR0 > 0 and R(t0) = 0,

we can find an ε > 0 such that R(t )< 0 on (t0− ε, t0), which contradicts that fact

that R(t ) is strictly positive on (0, t0). Therefore, R(t )> 0 for all t > 0.

Note S(t ) and M (t ) are always non-negative because for all t ≥ t0,

S(t ) = S(t0)exp

 

∫ t

t0

f1(R(s))−D − kP (s)d s

!

, (2.8)
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and

M (t ) =M (t0)exp

 

∫ t

t0

f2(R(s))−Dd s

!

. (2.9)

In particular, (2.8) and (2.9) hold for t0 = 0. And ϕ(0) ≥ 0 implies that both

S(0), M (0)≥ 0, thus S(t ), M (t )≥ 0 for all t ≥ 0.

For P (t ), consider an auxiliary system ẋ(t ) = F (xt ) +µe , where F is the

vector field of (2.7) and e = (0,0,0,0,1)T is a vector. Let eP (t ) be the corresponding

component of the solution of this system, by the same argument as in the proof

of positivity of R(t ), we can prove bP (t ) > 0 for all t > 0. Letting µ→ 0 implies

P (t )≥ 0 for all t ≥ 0.

The positivity of I (t ) is guaranteed by its formal solution (2.4), I (t ) ≥ 0

provided both S and P are non-negative on (−∞, t].

It is also worth to mention that the formal solution of P can be written as

P (t ) = exp

 

−
∫ t

t0

D + kS(s)d s

! 

∫ t

t0

J (s)e
∫ s

t0
D+kS(r )d r d s + P (t0)

!

, (2.10)

where J (s) is the integral term in the differential equation of P .

In Lemma 2.3.3, note x(t ) ≥ 0 for all t ∈ [0,A] is equivalent to xt (s) ≥ 0

for any given t ∈ [0,A] and all s ∈ (−∞, 0]. Therefore,B+
D is forward invariant

and can be considered as the phase space.

Lemma 2.3.4 (Boundedness of solutions). Under the same assumption as in the

previous lemma, assume φ≥ 0 on (−∞, 0], define

L0 = R(0)+ S(0)+M (0)+
P (0)

b0

+
k

D − 2γ
‖φ‖2

D .

Then for all t ∈ [0,A],

‖xt‖D ≤ L := b0 max{L0, R0}+ ‖φ‖D .

And this constant is independent from A.
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Proof. The infected bacteria species is not included byB+
D or φ, but I (0) is given

by (2.6), thus we have the following estimate on I (0):

I (0)≤
∫ ∞

0
e−D s kS(−s)P (−s)d s ≤ k

∫ ∞

0
e−(D−2γ )s‖S‖γ‖P‖γd s ≤

α

D − 2γ
‖φ‖2

D ,

becauseB+
D takes the maximum norm and D − 2γ > 0.

Let Y (t ) = R(t )+ S(t )+M (t )+ I (t )+ 1
b0

P (t ), then

Y ′(t )≤D(R0−Y (t )),

and Y (0)≤ L0. Therefore, Y (t )≤max{L0, R0}.

By (c) in (B1),

‖xt‖D ≤ sup
0<s≤t

|x(s)|+ e−γ t‖φ‖D ≤ b0 max{L0, R0}+ ‖φ‖D ,

and the proof is complete.

These positivity and boundedness results allow us to apply Theorem A.1.5

to (2.7), the following one is a direct application of this theorem.

Corollary 2.3.5. Suppose ϕ ∈ B+
D and ϕ ≥ 0 on (−∞, 0], then the locally unique

solution x of (2.7) extends to R+ = [0,∞) uniquely.

Now we can introduce a semiflow associated with (2.7), let

Φ : [0,∞)×B+
D →B

+
D .

For each ϕ ∈B+
D , let x be the solution of (2.7) through (0,ϕ), define Φ(t ,ϕ) = xt

for every t ∈ [0,∞). Then it satisfies the following properties:

1. Φ(0, x) = x for all x ∈B+
D ;

2. Φ(s ,Φ(t , x)) = Φ(s + t , x) for all x ∈B+
D and t , s ≥ 0.
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Thus we can show the following existence theorem of the compact global

attractor.

Theorem 2.3.6. System (2.7) has a compact global attractor KD . That is, there exists

a maximal compact invariant set KD ⊂B+
D such that KD attracts all bounded sets in

B+
D .

Proof. In our context, phase space B+
D satisfies all (B1) – (B4) and K(t ) = 1,

N (t ) = e−γ t .

By Lemma 2.3.4, positive orbits of bounded sets are bounded. And lastly,

to show Φ is point dissipative, it suffices to show there exists a bounded set V in

B+
D such that for any φ ∈BD , Φ(t ,φ) is attracted by V .

For any φ ∈BD , let Y (t ) be defined as in the proof of Lemma 2.3.4, then

limsup
t→∞

Y (t )≤ R0. That is, there exists some t0 > 0 such that Y (t )≤ R0+1 for all

t ≥ t0.

Note if t > t0, by (c) in (B1),

‖Φ(t ,φ)‖D = ‖Φ(t − t0,Φ(t0,φ))‖D

≤ sup
0≤s≤t−t0

|Φ(t − t0,Φ(t0,φ))(s)|+ e−γ (t−t0)‖Φ(t0,φ)‖D

≤ sup
0≤s≤t−t0

b0|Y (s)|+ e−γ (t−t0)‖Φ(t0,φ)‖D

≤ b0(R0+ 1)+ e−γ (t−t0)‖Φ(t0,φ)‖D .

For t large enough, e−γ (t−t0)‖Φ(t0,φ)‖D ≤ 1.

Define V = {ϕ ∈ B+
D : 0 ≤ ‖ϕ‖D ≤ b0(R0 + 1) + 1}, then Φ(t ,φ) → V

as t →∞. Since ϕ ∈B+
D is arbitrary, V attracts all points inB+

D and Φ is point

dissipative.

Therefore, by Theorem A.1.6, (2.7) has a compact global attractor KD .
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Since KD attracts all bounded sets in BD , it contains the asymptotic be-

havior of every solution of (2.7). Now we show another boundedness result of

trajectories in KD :

Theorem 2.3.7. For any φ ∈KD , there exists a unique total trajectory xt defined for

all t ∈R with x0 =φ. Moreover, x(t ) = xt (0) :R→R4 is bounded.

Proof. By Proposition 3.23 in [33], KD consits of points in B+
D such that there

exists a bounded total trajectory through this point.

Therefore, {‖xt‖D : t ∈R} is bounded, in particular, xt (0)≤ ‖xt‖D implies

x :R→R4 is bounded.

In this chapter we formulated a DDE model with infinite distributed delay

(2.3) and later reduced it into (2.7). For (2.7), we defined a phase space B+
D and

proved some fundamental properties of solutions. We also proved there exists a

compact global attractor which attracts all bounded sets.
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CHAPTER 3

PERSISTENCE ON DDE MODEL

Persistence is always an interesting question in mathematical models of biological

processes, population sciences, and the epidemiology field. Roughly speaking, the

persistence means for a given species, the population will remain a positive value

after a long-term evolution. In other words, persistence measures if a species is

capable to survive in the natural environment or a proper closed system.

And sometimes, if a species fails to persist, it may go extinct. There are a

number of factors may lead to the extinction of a species, e.g., lack of necessary

nutrient or resources, less competitive comparing to other species, an aggressive

predator, and etc. However, showing the persistence is usually more complicated

and difficult.

The persistence or extinction may be conditional, that is, different param-

eter values or different initial data may result in significantly different scenarios.

Finding out the threshold value of parameters and initial states is also an interest-

ing topic and sometimes requires advanced techniques and theories.

In this chapter, we will focus on (2.7), again, as assumed, we consider only

the phase spaceB+
D , which does not contain the infected bacteria I (t ). The main

result of this chapter, as well as this study, is the persistence of the susceptible bac-

teria S, the conditional persistence of phage P and the resistant bacteria M . To

perform this analysis, we need a precise definition of persistence (uniformly weak

persistence and uniform persistence in our context), as well as different theorems

leading to the persistence results as studied in [33]. All notations, terminology,

and key results regarding the general persistence theory are summarized in Ap-

pendix A.3.
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This chapter is organized in the following way. In the first section we will

investigate equilibria and their local stability of (2.7). Due to the complicated

nature of DDEs with infinite dealy terms, we will use theories developed in Ruess

and Summers [30] to study the linearized stability of equilibria. We will introduce

two important quantitative values called “Phage Reproduction Number” (P RN )

and “Resistant Bacteria Reproduction Number” (M RN ) and show that they are

linked to the existence and local stability of corresponding equilibria.

The remaining part of this chapter is devoted to persistence results. We

show the unconditional persistence of susceptible bacteria S and give an upper

bound of total bacteria population in the chemostat. For the conditional persis-

tence of phage P , we discover that the persistence or extinction of both P and I

are associated with threshold value P RN . This result is similar to the conclusion

of [34].

And by the end of this chapter, we will give a sufficient condition for the

persistence of resistant bacteria M .

3.1 Equilibria and Local Stability

As the infected cell density is determined by the other densities via its formal so-

lution (2.4), the phase space is taken asB+
D and the state vector is (R, S(·), M , P (·)).

As a direct consequence of (F1) – (F2), there are three non-negative equi-

libria that always exist:

E0 = (R0, 0, 0, 0), ES = (RS , S, 0, 0), EM = (RM , 0, M , 0).

where fi (Ri ) =D , i = S, M , S = R0−RS , and M = R0−RM . Recall Ri for i = S, M

are break-even values for susceptible bacteria and resistant bacteria, respectively.

Note that phage P is absent from all equilibria above.
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Moreover, E0 and EM are unstable. E0 is unstable to colonization by either

S or M . And EM is unstable because by (F2), the break-even value of S is less than

RM .

As noted in [34], the local stability of ES is determined by the “Phage

Reproduction Number”, or RRN for short. We define the “Phage Reproduction

Number at bacteria density S” by:

P RN (S) =
BkS

D + kS
. (3.1)

The “Phage Reproduction Number” is defined as P RN = P RN (S), namely, the

evaluation of P RN (S) at S = S.

We claim that ES is locally asymptotically stable if P RN < 1 and unstable

if P RN > 1. This is proved in Theorem 3.1.1, which is deferred to the end of this

section.

The calculation shows that there are two more possible equilibria of (2.7)

which include phage:

ESP = (R
∗, S∗, 0, P ∗), ESM P = (RM , S∗, M #, P #).

Note ESP and ESM P share the same S component, which is solved by P RN (S∗) = 1

and R∗ ∈ (0, R0) is the unique root of DR∗+ fS(R
∗)S∗ =DR0 with in this interval.

And P ∗ = 1
k ( fS(R

∗)−D) and P # = 1
k ( fS(RM )−D). And M # satisfies D(RM+M #)+

fS(RM )S
∗ =DR0.

We summarize necessary and sufficient conditions for existence and posi-

tivity of equilibria by Table 2.

The resistant bacteria M can survive only when phage P presents. There-

fore, it is natural to consider if M can invade ESP . And this is the case if and only

if

M RN =
fM (R

∗)

D
> 1, (3.2)
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Table 2.Equilibria and local stability of DDE model (2.7)

Equilibrium existence conditions stability
ER = (R0, 0, 0, 0) none unstable by (F1)
ES = (RS , S, 0, 0) fS (R0)

D > 1 see Theorem 3.1.1
EM = (RM , 0, M , 0) fM (R0)

D > 1 unstable by (F2)
ESP = (R

∗, S∗, 0, P ∗) P RN = BkS/(D + kS)> 1 see Theorem 3.1.2
ESM P = (RM , S∗, bM , bP ) M RN = fM (R

∗)/D > 1 unknown

where the nutrient level R∗ is determined by ESP . Actually it can be easily proved

that ESM P exists and is a positive equilibrium if and only if M RN > 1. Similar

to P RN , M RN is called the reproductive number of resistant bacteria in the ESP

environment.

The local stability of ESP and ESM P is very difficult to analyze. However,

the stability of ESP is linked to the existence of ESM P . To be more precise, ESP

will be unstable if ESM P is a positive equilibrium. It is very difficult to give criteria

for stability and instability of ESP , and even more difficult for ESM P . However, if

ESM P does not exist, or equivalently M RN < 1, the local stability of ESP is still

not completely clear.

The following part of this section is devoted to the local stability of ES and

ESP . Here we use framework developed in Ruess and Summers [30] to conduct

this discussion. For more details, please see Appendix A.2

By using notations as in Appendix A.2, first we assume cX = R4
+, cB =

B+
D , let ϕ = (R, S(·), M , P (·)) and rewrite the (2.7) as

dϕT (t )

d t
=−Dϕ+ F (ϕT

t ),
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where F :B+
D →R

4
+ is defined as

F





















R

St

M

Pt





















=





















DR0− fS(R(t ))S(t )− fM (R(t ))M (t )

fS(R(t ))S(t )− kS(t )P (t )

fM (R(t ))M (t )

−kS(t )P (t )+ k
∫∞

0 b (τ)e−DτS(t −τ)P (t −τ)d ν(τ)





















.

Note now A is 0 operator hence it is clearly accretive. Then (a) – (d) in (R1) are

automatically satisfied. Now we show (e) in (R1) is true, note the solution of (A.3)

is

ϕx(s) = e
s
λ x + e

s
λ

∫ 0

s
ψ(r )e−

r
λ d r ≥ 0

for all s ∈ (−∞, 0], thus

0≤ eγ sϕx(s) = e(
1
λ
+γ)s

�

x +
∫ 0

s
ψ(r )eγ r e−(

1
λ
+γ)r d r

�

≤ e(
1
λ
+γ)s

�

ψ(0)+ ‖ψ‖γ
∫ 0

s
e−(

1
λ
+γ)r d r

�

≤max{x,‖ψ‖γ}e(
1
λ
+γ)s



1+
1

1
λ
+ γ

e−(
1
λ
+γ)s −

1
1
λ
+ γ





≤max{x,‖ψ‖γ}


e(
1
λ
+γ)s +

1
1
λ
+ γ





≤max{x,‖ψ‖γ}


1+
1

1
λ
+ γ



<∞,

because s ∈ (−∞, 0]. Thus (R2) is satisfied. And since operator A in A.2 is 0, (R3)

is trivial.

Therefore, we are able to use Theorem A.2.1 to analyze the local stability

of ES and ESP .

Theorem 3.1.1. The boundary equilibrium ES is locally asymptotically stable if

P RN < 1 and is unstable if P RN > 1.
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Proof. The linearization of (2.7) about ES is given by

R′(t ) =−(D + S f ′S (RS))R(t )−DS(t )− fM (RS)M (t )

S ′(t ) = f ′S (RS)SR(t )− kSP (t )

M ′(t ) = ( fM (RS)−D)M (t )

P ′(t ) =−DP (t )− kSP (t )+ kS
∫ ∞

0
b (τ)e−DτP (t −τ)d ν(τ).

(3.3)

Setting (R, S, M , P ) = xeλt we find that λ and x must satisfy A(λ)x = 0 where

A(λ) is given by




















−D − f ′S (RS)S −λ −D − fM (RS) 0

S f ′S (RS) −λ 0 −kS

0 0 fM (RS)−D −λ 0

0 0 0 −D − kS −λ+ kS eB





















and eB =cb ν(λ+D) is the Laplace transform of b ν.

Because (RS , S) is asymptotically stable in the linear approximation for the

subsystem with M , P = 0 and because

fM (RS)−D < fS(RS)−D = 0,

it is easily seen that the stability analysis is reducible to the following scalar “phage

invasion equation":

P ′(t ) =−(D + kS)P (t )+ kS
∫ ∞

0
b (τ)e−DτP (t −τ)d ν(τ). (3.4)

By inserting the ansatz P = eλt , we can obtain the characteristic equation associ-

ated with (3.4). The equation for λ is

λ+D + kS = kS
∫ ∞

0
b (τ)e−(D+λ)τd ν(τ). (3.5)
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It has a positive real root if P RN > 1. To see this simply plot both sides of (3.5)

and note that they intersect for positive λ precisely when P RN > 1 holds. On

the other hand, if there is a root λ of (3.5) with ℜλ ≥ 0 then it is easy to see that

P RN ≥ 1. Indeed, if ℜλ≥ 0 then

D + kS ≤ |λ+D + kS |= |kS
∫ ∞

0
b (τ)e−Dτe−λτd ν(τ)| ≤ BkS

Therefore, ℜλ < 0 for all roots of 3.5) if P RN < 1. And by Theorem A.2.1, ES is

linearly asymptotically stable for (2.7).

The stability of ESP is complicated. We propose only a partial result here.

Theorem 3.1.2. ESP is linearly asymptotically stable for (2.7) if it is linearly asymp-

totically stable for the system without M and if M RN < 1. It is linearly unstable for

(2.7) if it is linearly unstable for the system without M or if M RN > 1.

Proof. We again calculate the linearization of (2.7) about ESP .

Set (R, S, M , P ) = xeλt , then λ and x satisfy A(λ)x = 0, where A(λ) is




















−D − f ′S (R
∗)S∗−λ − fS(R

∗) − fM (R
∗) 0

S∗ f ′S (R
∗) −λ 0 −kS∗

0 0 fM (R
∗)−D −λ 0

0 −kP ∗(1− eB) 0 −D − kS∗(1− eB)−λ





















and eB =cb ν(λ+D).

If ESP is asymptotically stable for the system without M , then the lin-

earized stability of ESP with M is determined by the characteristic root fM (R
∗)−

D . In this case, M RN < 1 is equivalent to fM (R
∗)− D < 0 and all roots have

negative real parts.
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If M RN > 1 or if ESP is unstable for the system without M , then there

must be at least one characteristic root λ such that ℜλ > 0 so ESP is unstable for

the system with M .

It is well-known that ESP can lose stability through a supercritical Hopf

bifurcation for the system without M (see [7, 32]) for the special case of fixed

latent period duration. However, a rigorous analysis on the bifurcation scenario

is still left open. Numerical results on local stability and bifurcation when η is a

Gamma distribution is presented in Section 5.3.

3.2 Persistence of Susceptible Bacteria

As proved in [23, 1, 22, 41, 35, 42, 27], without the phage infection, the bacteria

species with lowest break-even value will be the only survivor in the chemostat.

In our model, by (F2), susceptible bacteria S will drive resistant bacteria M to

extinction if P ≡ 0. However, by introducing phage P , the dynamics become

more complicated. On one hand, S is still superior to M while on the other hand,

phage infection may reduce the density of S significantly. A natural question

arising here is, will S still be able to persist? The main result of this section gives

a positive answer to this question.

One can also imagine that, since phage P consumes susceptible S, there

may be spare nutrient available to M , hence the density of M may increase. Will

the total concentration of all bacteria species ((including susceptible, resistant, and

infected ones) exceed the maximal density of bacteria in the phage-free system?

Since M consumes the nutrient less efficiently, it seems reasonable to expect that

total bacteria density will be eventually bounded by S. And the second result of

this section is to confirm this conjecture.
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In this section and following sections, we will use concepts such as uni-

form persistence, uniformly weak persistence along with a number of results in

general persistence results. For details of terminology, notations and concepts,

please see Appendix A.3 and A.4. To simplify the writing, we also induce the fol-

lowing projection map fromB+
D to its subspaces. By omitting the difference be-

tween C0 and R, we can write an arbitrary point x ∈B+
D as x = (R, S(·), M , P (·)).

Projection maps πR(x) := R and πM (x) := M . For the other two components,

πS(x) := S(·) ∈Cγ and πP (x) := P (·) ∈Cγ .

The first lemma states that if P vanishes, then ES is globally asymptotically

stable.

Lemma 3.2.1. If πP (Φ(t , x))(0)→ 0 and S(0)> 0, then Φ(t , x)→ ES .

Proof. By the definition of projection map πP , it is easy to see πP (Φ(t , x))(0)→ 0

is equivalent to P (t )→ 0.

Consider the following 3-dimensional non-autonomous ODE system by

taking P (t ) as a time-dependent function:

R′(t ) =D(R0−R(t ))− fS(R(t ))S(t )− fM (R(t ))M (t ),

S ′(t ) = ( fS(R(t ))−D)S(t )− kS(t )P (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ).

(3.6)

Since P (t )→ 0, (3.6) is an asymptotically autonomous system with a limit equa-

tion:

R′(t ) =D(R0−R(t ))− fS(R(t ))S(t )− fM (R(t ))M (t ),

S ′(t ) = ( fS(R(t ))−D)S(t ),

M ′(t ) = ( fM (R(t ))−D)M (t ).

(3.7)

By Theorem 3.2 in [35], all trajectories of (3.7) are attracted by one of its equi-

libria: E0 = (R0, 0, 0), ES = (RS , S, 0) or EM = (RM , 0, M ). Note the acyclicity
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and isolation property are satisfied. By Theorem A.4.2, every solution of (3.6) is

attracted by an equilibrium of (3.7).

On the other hand, the formal solution of S(t ) is given by (2.8). Suppose

R(t )→ RM > RS = f −1
S (D), i.e., the solution is attracted by EM , then S(t )→ 0.

Since P (t )→ 0, we can find a δ > 0 and T > 0 such that fS(R(t ))−D−kP (t )>δ

when t > T . Also, S(T )> 0 because S(0)> 0, hence

S(t )> S(T )eδ(t−T )→∞

as t →∞, which contradicts that S(t )→ 0. Thus the solution cannot be attracted

by EM . Similarly, it cannot converge to E0 either. Therefore, ES attracts the solu-

tion.

The following theorem gives the uniformly weak persistence of S. A pos-

sible way of showing the weak persistence of S is to use “topological approach”

and apply Theorem A.3.1. Nevertheless, similar to the argument in [33], we can

show the uniformly weak persistence by a more direct way.

Lemma 3.2.2. Susceptible bacteria S persists uniformly weakly. To be more precise,

limsup
t→∞

S(t )≥min{S,
D

Bk
}.

Proof. Suppose S(0) > 0 but S∞ < D
Bk . Fix ε > 0. By suitably translating the

solution, we may assume that S(t )< S∞+ ε and P (t )< P∞+ ε for all t ≥ 0.
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By the fluctuation argument, we can choose {t j }∞j=1 in R+ such that t j →

∞, P ′(t j )→ 0, and P (t j )→ P∞. Then

P ′(t j )≤−DP (t j )+ k
∫ ∞

0
e−Dτb (τ)S(t j −τ)P (t j −τ)d ν(τ)

=−DP (t j )+ k
∫ t j

0
e−Dτb (τ)(S∞+ ε)(P∞+ ε)d ν(τ)

+ k
∫ ∞

t j

e−Dτb (τ)S(t j −τ)P (t j −τ)d ν(τ)

≤−DP (t j )+ k
∫ t j

0
e−Dτb (τ)(S∞+ ε)(P∞+ ε)d ν(τ)

+ k
∫ ∞

t j

e−(D−2γ )τb0‖S0‖γ‖P0‖γd ν(τ)

≤−DP (t j )+ k
∫ t j

0
e−Dτb (τ)(S∞+ ε)(P∞+ ε)d ν(τ)

+ e−(D−2γ )t j b0‖S0‖γ‖P0‖γ ,

(3.8)

where S0(s) = S(0+ s) for all s ∈ (−∞, 0] is the initial data for S and P0 is read in

the same way.

Therefore, by taking j →∞,

0≤−DP∞+Bk(S∞+ ε)(P∞+ ε).

Because ε > 0 is arbitrary,

0≤−DP∞+BkS∞P∞.

Since S∞ < D
Bk as assumed, we assert P∞ = 0. By Lemma 3.2.1, S(t )→ S.

Therefore, either S∞ ≥ D
Bk or S(t )→ S, and S∞ ≥min{S, D

Bk } follows.

As we have proved the uniformly weak persistence of S, it is only one step

away from the uniform persistence of S. Note that attractor KD will serve the

role of U in Theorem A.3.2, and (2.8) implies that there exists no x ∈ B+
D such

that πS(x)(0) > 0 and πS(Φ(t , x))(0) = 0 for some t > 0, therefore, the following

theorem becomes a direct corollary of Theorem A.3.2.
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Theorem 3.2.3. Susceptible bacteria S persists. To be more precise, there exists an

ε > 0 such that

liminf
t→∞

S(t )> ε,

for all solutions with S(0)> 0.

And the second main result of this section is stated below.

Lemma 3.2.4. The total density of all bacteria species in the chemostat satisfies

(S +M + I )∞ ≤ S.

Proof. Define Y = (S +M + I ), note

Y ′(t ) = fS(R(t ))S(t )+ fM (R(t ))M (t )−DY (t )

− k
∫ ∞

0
e−Dτb (τ)S(t −τ)P (t −τ)d ν(τ)

≤ fS(R(t ))(S(t )+M (t ))−DY (t )≤ ( fS(R(t ))−D)Y (t ).

By the same argument as in Lemma 2.3.4, if we let Z = R+ S +M + I + P
b0

, then

Y (0)≤ Z(0) and Y ′(t )≤ Z ′(t ). Moreover,

Z ′(t )≤D(R0−Z(t )),

thus (Y + R)∞ ≤ Z∞ ≤ R0, hence by a fluctuation method applied to the Y

equation,

0≤ ( fS((R+Y )∞−Y∞)−D)Y∞ ≤ ( fS(R0−Y∞)−D)Y∞.

So either Y∞ = 0 or fS(R0 − Y∞) ≥ D ; the latter case is equivalent to Y∞ ≤

R0−RS = S. Therefore, in both cases we obtain Y∞ ≤ S.

So far we have proved susceptible bacteria S persists uniformly. That

means, even though Phage P are attacking S, the density of S in the chemostat
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cannot drop below some certain value. As we will see later in Section 5.3, the

simulation suggests: when P persists, the concentration of S decreases dramati-

cally compared to the phage-free case, however, susceptible bacteria S is always

bounded away from 0, at least in the mathematical sense.

3.3 Persistence and Extinction of Phage

The persistence of phage P and infected bacteria I is conditional. In [34], the

authors claim that the persistence of Phage and infected bacteria is determined by

P RN . Here we apply a similar argument to (2.7) and proved that P and I persists

uniformly when P RN > 1 and both go extinct if P RN < 1.

The essential tool we employ in this section is Laplace transform. It is

well-known that Laplace transform can be used to solve some differential equa-

tions. And in the field of mathematical models of biology and population studies,

Laplace transform can be applied to (partial and ordinary) differential equations

to show the persistence or extinction of a species. For instance, Laplace transform

was used in [37, Section 22.3] and [38, 34].

In this section, we will apply Laplace transform to the differential equation

of P . Since this differential equation contains an integral term of infinite delay,

we will have to justify the existence of the Laplace transform.

Before stating these results, we first recall the definition of Laplace trans-

form. For a bounded and continuously differentiable function f (t ), its Laplace

transform is defined as

bf (λ) =
∫ ∞

0
e−λt f (t )d t ,

for all λ ≥ 0. And bf ′(λ) = λ bf (λ)− f (0). If f (t ) is a non-negative function, its

Laplace transform bf (λ) is non-negative too.
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In (2.7), we calculate the Laplace transform of P ′(t ) and it gives

(λ+D)bP (λ) = P (0)− kÓSP (λ)

+ k
∫ ∞

0
e−λt

∫ ∞

0
b (τ)e−DτS(t −τ)P (t −τ)d ν(τ)d t .

(3.9)

Since bP (λ) and ÓSP (λ) both exist, so does the integral term. And by the

Fubini-Tonelli Theorem (Theorem 2.37 in [14]), we can interchange the order of

the iterated integral. Thus

(λ+D)bP (λ) = P (0)− kÓSP (λ)

+ k
∫ ∞

0
b (τ)e−Dτ

∫ ∞

0
e−λt S(t −τ)P (t −τ)d t d ν(τ)

= P (0)− kÓSP (λ)

+ k
∫ ∞

0
b (τ)e−Dτ

∫ ∞

−τ
e−λ(r+τ)S(r )P (r )d r d ν(τ)

= P (0)− kÓSP (λ)+ kC0+ kÓSP (λ)
∫ ∞

0
b (τ)e−(λ+D)τd ν(τ),

(3.10)

where, as 2γ <D ,

C0 =
∫ ∞

0
b (τ)e−(λ+D)τ

�
∫ 0

−τ
e−λr S(r )P (r )d r

�

d ν(τ)

≤
∫ ∞

0
b (τ)e−(λ+D)τ

�

τe (λ+2γ )τ‖S0‖γ‖P0‖γ
�

d ν(τ)

≤ b0‖S0‖γ‖P0‖γ
∫ ∞

0
τe−(D−2γ )τd ν(τ)<∞.

Again, S0(·) and P0(·) are initial values.

The following theorem shows that P persists uniformly when P RN > 1

and S(0) > 0. Note this is slightly different from the uniform persistence defini-

tion in Appendix A.3, besides the assumption that P (0) > 0, here we also need

S(0)> 0 because otherwise S(t )≡ 0 by (2.8) and P will go extinct due to the lack

of prey.
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This theorem is a direct application of Theorem A.3.1 and A.3.2.

Theorem 3.3.1. The phage species P persists uniformly if P RN > 1. That is, there

exists ε > 0 such that

liminf
t→∞

P (t )> ε,

for all solutions with P (0)> 0 and S(0)> 0.

Proof. Define the state space as X = {x ∈ B+
D : πS(x)(0) > 0}. Note that X

is positively invariant for Φ. Because S persists uniformly and semiflow Φ has a

compact attractor of bounded sets inB+
D , the restriction of Φ to X has a compact

attractor of points in X , hence assumption (C) is satisfied.

Let ρ : X → [0,∞), defined as ρ(x) = πP (x)(0), be the persistence func-

tion. Notice that for a given solution (R(t ), St (·), M (t ), Pt (·)), πP (x)(0) = Pt (0) =

P (t ). Define X0 = {x ∈ X : ρ(Φ(t , x)) = 0, ∀t ≥ 0}. It is easy to see X0 6= ∅

because C 0×Cγ ×C 0×{0} ⊂X0, where 0 represents 0 function in Cγ .

In X0, since P (t )≡ 0 for all t ≥ 0, system (2.7) becomes (3.7) for all positive

times. Since S(0)> 0, by Theorem 3.2 in [35] and P (t )≡ 0,

(R(t ), S(t ), M (t ), P (t ))→ ES = (RS , S, 0, 0)

as t → ∞. This implies that ES , viewed as an element of X , attracts all orbits

starting in X0.

We also need to show {ES} is compact, invariant, uniformly weakly ρ-

repelling, isolated in X and acyclic. The proof of first two properties is trivial.

Suppose {ES} is not a uniformly weak ρ-repeller, that is, for any ε > 0

there exists some x0 ∈ X and T0 > 0 such that ρ(x0)> 0 and ‖Φ(t , x0)− ES‖D < ε
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when t > T0. In particular, since P RN > 1, we can define

ε0 =
1

2
min







kBS − (D + kS)

k(1+B)
, S







> 0,

and assume this assertion holds for ε0.

Since |S(t )− S | = |St (0)− S | ≤ ‖St − S‖γ ≤ ‖Φ(t , x0)− ES‖D , we claim

|S(t )− S |< ε0 when t > T0. Without loss of generality, after a time-shift, we can

assume this inequality holds for all t > 0. And consequently,

(S − ε0)bP (λ)<ÓSP (λ)< (S + ε0)bP (λ).

Now we apply these inequalities to (3.10) and obtain

(D +λ)bP (λ)≥
�

−k(S + ε0)+ k(S − ε0)
∫ ∞

0
b (τ)e−(λ+D)τd ν(τ)

�

bP (λ).

Since P (t )> 0 for t > 0, bP (λ) is positive and finite for λ > 0 so we conclude that

(D +λ)≥−k(S + ε0)+ k(S − ε0)
∫ ∞

0
b (τ)e−(λ+D)τd ν(τ).

Letting λ→ 0 we find that

D + kS − kBS ≥−k(1+B)ε0 > kBS − (D + kS),

which is clearly a contradiction. Therefore, {ES} is a uniformly weak ρ-repeller.

Now we show {ES} is isolated in X and acyclic in X0. It is easy to see in

X0, (2.7) reduces to the ODEs (3.7) and ES is asymptotically stable for (3.7). Thus

{ES} is acyclic in X0 and isolated in X0. By Lemma 8.18 in [33], since {ES} is a

uniformly weak repeller and is isolated in X0, it is isolated in X .

By Theorem A.3.1, Φ is uniformly weakly ρ-persistent. To show the uni-

form persistence, we apply Theorem A.3.2. Note KD is a compact attractor which

attacts all bounded sets, so the first two conditions of Theorem A.3.2 are satisfied.
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For the last condition, by formal solution (2.10), P (0) > 0 implies P (t ) > 0 for

all positive t , thus ρ(Φ(t , x)) cannot be 0 provided ρ(x)> 0. Hence by Theorem

A.3.2, Φ is uniformly ρ-persistent.

Since phage P persists, it is reasonable to expect that infected bacteria

species I persists. Though I is not considered as a component of the phase space

B+
D , we can still use (2.5) to show its persistence.

Corollary 3.3.2. Infected bacteria I persists uniformly if P RN > 1 and S(0), P (0)>

0.

Proof. Note S∞ > 0 and P∞ > 0, we can assume S(t ) > 1
2 S∞ and P (t ) > 1

2 P∞ for

all t ≥ 0 after a possible time-shift. Thus by (2.5),

I (t )≥
1

4

∫ ∞

0
F(s)e−D s S∞P∞d s > 0,

it hence persists uniformly.

As shown in [34], if P RN < 1, Phage go extinct. The following theorem

shows a similar result for (2.7).

Theorem 3.3.3. If P RN < 1, P (t )→ 0 as t →∞ and all trajectories with S(0)> 0

are attracted by {ES}.

Proof. By Lemma 3.2.4, S∞ ≤ S. So for any ε > 0, there exists a T0 > 0 such that

for all t > T0, S(t )< S + ε. Thus we can assume S(t )< S + ε for all t ≥ 0 after a

time-shift.

Note λ≥ 0 and bP (λ)≥ 0 imply that e−(λ+D)τ ≤ e−Dτ and thus by (3.10),

D bP (λ)≤ (λ+D)bP (λ)≤ P (0)+ kC0+ k(B − 1)ÓSP (λ).

We divide this proof into 2 cases: k(B − 1)≤ 0 and k(B − 1)> 0.
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If k(B − 1)≤ 0, D bP (λ)≤ P (0)+ kC0 so bP (λ) is bounded for λ≥ 0.

If k(B − 1)> 0,ÓSP (λ)≤ (S + ε)bP (λ) and consequently,

�

D − k(B − 1)(S + ε)
�

bP (λ)≤ P (0)+ kC0

Since P RN < 1, we can pick ε small enough to make D − k(B − 1)(S + ε)> 0.

Therefore, in both cases, bP (λ) is uniformly bounded by a positive constant

for λ ≥ 0. Let λ → 0 and applying the monotone convergence theorem to get

bP (0) =
∫∞

0 P (t )d t < ∞. Since P ′(t ) is bounded, P (t ) is uniformly continuous

and P (t )→ 0 as t →∞.

The last assertion is a direct consequence of Lemma 3.2.1.

We can get an extinction result of I in this case.

Corollary 3.3.4. Infected bacteria I goes extinct if P RN < 1.

Proof. Consider the differential equation of I an apply the fluctuation method to

it to obtain

0≤−DI∞+ kS∞P∞ =−DI∞,

because P∞ = 0, by the non-negativity of I , I∞ = 0.

All results regarding the persistence and extinction of Phage P and infected

bacteria I are presented above. For (2.7), P RN = 1 is still a sharp threshold for

the persistence and extinction of Phage P . Smith and Thieme [34] proved the

similar statement for the model without resistant species M , and in [34] for the

infection-age model (1.9).

It is not difficult to see that the persistence and extinction of P is irreverent

to resistant bacteria M , the persistence theorem 3.3.1 holds as long as Lemma 3.2.1

is true, which is guaranteed by assumption (F2). And the extinction result, i.e.
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Theorem 3.3.3 is valid provided Lemma 3.2.4 holds. Note that the upper bound

in Lemma 3.2.4 is S, which is exactly the bacteria density in the definition of

P RN = P RN (S). And one can imagine that if S does not persist, e.g. when the

inequality in assumption (F2) is reversed, P will be eventually washed out because

Phage cannot reproduce enough baby Phage without a host. For more details and

discussion on (F2), please see Section 6.1.

3.4 Persistence of Resistant Bacteria

In this section we will show the conditional persistence of M . It is very clear from

[35] that in a chemostat where phage species P is absent, the bacteria species with

the lowest break-even value will be the solo survivor, all other species will vanish.

This result has been generalized in different manners, e.g. non-monotone uptake

functions and different removal rates for each bacteria species, for more details,

please see Section 1.2.

Nevertheless, experimental observations such as in Levin, Stewart and

Chao [26] have confirmed that the coexistence of different bacteria species is pos-

sible when a phage species specialized on attacking the superior bacteria is intro-

duced into the chemostat. As the persistence of S is always true, the coexistence

of both bacteria species is equivalent to the persistence of M .

The first statement of this section is a sufficient condition for the persis-

tence of M . This is again an application of the topological approach Theorem

A.3.1, with uniformly weak persistence proved, the uniform persistence follows

almost automatically by Thoeorem A.3.2.

Theorem 3.4.1. The resistant bacteria M persists uniformly if one of the following

holds:

1. The initial value of susceptible bacteria S(0) = 0, or
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2. P RN > 1, M RN > 1, S(0)> 0, P (0)> 0 and ESP is asymptotically stable and

attracts all solutions with S(0)> 0, P (0)> 0 for system (2.7) with M (0) = 0.

Proof. If S(0) = 0, S(t ) = 0 for all t ≥ 0 and P (t )→ 0, thus system (2.7) reduces

to

R′(t ) =D(R0−R(t ))− fM (R(t ))M (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ),

By Theorem 3.2 in [35], all trajectories with M (0)> 0 converge to (RM , M ). Thus

M persists uniformly.

Now we assume S(0) > 0, P (0) > 0, P RN > 1, M RN > 1, and that ESP

attracts all solutions with S(0) > 0, P (0) > 0 and M (0) = 0. Then, by (2.8) and

(2.10), it is easy to see S(t ), P (t )> 0 for all t > 0.

Let X = {x ∈ B+
D : πS(x)(0) > 0,πP (x)(0) > 0}. By Theorem 3.2.3 and

Theorem 3.3.1, S and P persist uniformly, and by Theorem 2.3.6, Φ has a compact

attractor of bounded sets inB+
D , it indicates assumption (C) in Theorem A.3.1 is

satisfied.

Define ρ : X → [0,∞) as ρ(x) = πM (x) = M (0). Let X0 = {x ∈ X :

ρ(Φ(t , x)) = 0,∀t ≥ 0}= {x ∈X : M (t ) = 0, t ≥ 0}.

By assumption, ESP attracts all solutions in X0. {ESP} is clearly compact,

invariant and acyclic in X0.

Moreover, {ESP} is uniformly weakly ρ-repelling. Assume {ESP} is not

uniformly ρ-repelling, for any ε > 0 fixed, there exists some x0 ∈ X such that

ρ(x)> 0 and

limsup
t→∞

‖Φ(t , x0)− ESP‖D < ε.

Therefore, it is possible to find T0 > 0 such that for all t > T0, |πR(Φ(t , x))−R∗| ≤

‖Φ(t , x))− ESP‖D < ε. However, note M RN > 1 implies fM (R
∗)> D and choose
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ε as

ε= R∗− f −1
M

�

fM (R
∗)+D

2

�

,

then for all t > T0, πR(Φ(t , x)) > R∗− ε = f −1
M

�

fM (R
∗)+D
2

�

, thus the formal solu-

tion of M , i.e. (2.9), yields

M (t ) =M (T0)exp

 

∫ t

T0

fM (R(s))−Dd s

!

>M (T0)e
fM (R

∗)−D
2 ,

which goes to∞ when t →∞.

This is a contradiction because M (t ) = ρ(Φ(t , x0))≤ ‖Φ(t , x0)−ESP‖D < ε

for all t > T0.

Therefore, {ESP} is a uniformly weak ρ-repeller. As ESP is asymptotically

stable in X0, it is isolated in X0. Thus by Lemma 8.18 in [33], {ESP} is isolated in

X .

And hence Theorem A.3.1 implies Φ is uniformly weak ρ-persistent. By

the existence of compact attractor KD and formal solution (2.9), all assumption of

Theorem A.3.2 are satisfied and M is hence uniformly persistent.

Despite the assumption of Theorem 3.4.1 may be difficult to verify, there

are a few results on the asymptotic stability of ESP on similar models. For in-

stance, in [32, Chapter 8] and [7], the authors studied model (1.7), the resistant

bacteria M is absent and the delay term in differential equations of I and P con-

tain only one single discrete delay (equivalent to (2.7) when M (t )≡ 0 and η(τ) is

a Dirac δ distribution). In [32], the author introduced the same concept P RN

(involving delay parameter τ), which is similar to (3.1) but not identical. Then

there exists a τc > 0 such that P RN = 1 at τ = τc and there exists τ0,τ1 such that

0< τ0 < τ1 < τc , ESP and ESP is asymptotically stable if P RN > 1 and 0≤ τ < τ0

or τ1 < τ < τc .

51



For (2.7), since the differential equations of I and P involve infinite dis-

tributed delay terms, it seems impossible to solve it and prove a similar result with-

out knowing the distribution function. However, as we will see later in Chapter

5, for a special case of (2.7), we are able to simulate and show the parameter range

in which ESP is locally asymptotically stable and M persists.

On the other hand, assume M persists, it is natural to expect P persists,

because otherwise by Lemma 3.2.1, all trajectories with S(0) > 0 are attracted

by ES . Actually, the persistence of phage P will counter the fitness disadvantage

of resistant bacteria M relative to susceptible bacteria S. This observation was

phased in mathematical language by the following theorem.

Theorem 3.4.2. Let (R(t ), St (·), M (t ), Pt (·)) be a solution of (2.7) with S(0), M (0)>

0 and suppose there exists some ε > 0 and T0 > 0 such that M (t ) > ε for all t > T0.

Then

lim
t→∞

1

t

∫ t

0
fS(R(s))− fM (R(s))− kP (s)d s = 0.

Proof. Let Y = S
M , then

Y ′(t ) = ( fS(R(t ))− fM (R(t ))− kP (t ))Y (t ),

Since S∞ > 0 and M > ε when t > T0, Y (t ) is bounded and Y∞ > 0. Thus

(lnY (t ))′ =
Y ′(t )

Y (t )
= fS(R(t ))− fM (R(t ))− kP (t ).

And

lim
t→∞

1

t

∫ t

0
(lnY (s))′d s = lim

t→∞

1

t
(lnY (t )− lnY (0)) = 0,

because | lnY (t )| is bounded. Consequently,

lim
t→∞

1

t

∫ t

0
fS(R(s))− fM (R(s))− kP (s)d s = 0

as claimed.
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Note Theorem 3.4.2 holds for each given trajectory with liminf
t→∞

M (t )> 0.

Though it does not require the uniform persistence of M , it should be very clear

that Theorem 3.4.2 applies to every trajectory with S(0), M (0) > 0 if M persists

uniformly.

In this section we present a sufficient condition yet with a necessary con-

dition for the persistence of M . For the sufficient condition, i.e. Theorem 3.4.1,

the main assumption is that ESP is locally asymptotically stable and attracts all tra-

jectories in {M (t )≡ 0}, it is independent from the formulation of the differential

equation of P , hence it should apply to models in [34] and [7] if a resistant bacte-

ria species were considered in their systems. Similarly, Theorem 3.4.2 should be

able to be adapted for other models as well.

This chapter and the previous chapter contain analytic results on DDE

model (2.7). So far we have proved the persistence of susceptible bacteria S, the

persistence/extinction of phage P , we also give a sufficient condition for the per-

sistence of M . A few analytic results on (2.7) are deferred to Chapter 6.
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CHAPTER 4

GAMMA DISTRIBUTED DELAY AND THE ODE MODEL

In this chapter we will consider a special case of (2.7). By assuming the latent

period of lysis obeys a Gamma distribution, we can reduce (2.7) into an ODE

system.

Throughout this chapter the following one, we assume

b (τ) = b

is a constant independent from the latent period and the distribution of latent

period is

η(τ) =
∫ τ

0
gm(s ,a)d s =

∫ τ

0

am s m−1

(m− 1)!
e−as d s , (4.1)

where m ∈ N is the shape and 1
a is the scale of this Gamma distribution. Note

when m = 1, the Gamma distribution is degenerate and coincide with exponential

distribution. That is, the major part of infected bacteria are lysing immediately

at the time of infection, and the number of lysis is an exponentially decreasing

function of τ. However, as we see in experiments, there is an observable “average”

latent time of lysis, and most infected bacteria lyse shortly before or after this

average latent period. For instance, Ellis and Delbrück [13] claimed that at 37◦C,

the average latent time is about 30 minutes. Therefore, it is reasonable to assume

m ≥ 2. In this case, the mean of Gamma distribution is m
a , which also represents

the average latent period.

Since this ODE model is a special case of (2.7), clearly all local stability and

persistent result should still hold. But it is convenient to discuss a ODE version

of these theorems briefly.
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4.1 Formulation of the ODE Model

The main technique we used here is called the “linear chain trick” as discussed in

[24, 32]. This procedure allows us to rewrite a DDE system consists of distributed

delays into an ODE system, provided that the latent period obeys a Gamma dis-

tribution.

To perform this transformation, we introduce some new variables I j for

1≤ j ≤ m,

I j (t ) =
k

a

∫ ∞

0
e−Dτ g j (τ,a)S(t −τ)P (t −τ)dτ, (4.2)

note (4.2) also gives the initial values of I j ’s.

It is easy to see

I j (t ) = k
a j−1

( j − 1)!

∫ ∞

0
e−(a+D)ττ j−1S(t −τ)P (t −τ)dτ (letting u = t −τ)

= k
a j−1

( j − 1)!
e−(a+D)t

∫ t

−∞
e (a+D)u(t − u) j−1S(u)P (u)d u.

Therefore, we have

I ′1(t ) =
d

d t

�

ke−(a+D)t
∫ t

−∞
e (a+D)u S(u)P (u)d u

�

= kS(t )P (t )− (a+D)I1(t )

And for 2≤ j ≤ m, we have

I ′j t (t ) =
d

d t

 

k
a j−1e−(a+D)t

( j − 1)!

∫ t

−∞
e (a+D)u(t − u) j−1S(u)P (u)d u

!

= k
a j−1e−(a+D)t

( j − 1)!

�

d

d t

∫ t

−∞
e (a+D)u(t − u) j−1S(u)P (u)d u

�

− (a+D)I j (t )

= k
a j−1e−(a+D)t

( j − 2)!

∫ t

−∞
e (a+D)u(t − u) j−2S(u)P (u)d u − (a+D)I j (t )

= aI j−1(t )− (a+D)I j (t ).

55



Thus any solution of (2.7) gives rise, via (4.2), to a solution of

R′(t ) =D(R0−R(t ))− fS(R(t ))S(t )− fM (R(t ))M (t ),

S ′(t ) = ( fS(R(t ))−D)S(t )− kS(t )P (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ),

I ′1(t ) = kS(t )P (t )− (a+D)I1(t ),

I ′j (t ) = aI j−1(t )− (a+D)I j (t ), 2≤ j ≤ m,

P ′(t ) =−DP (t )− kS(t )P (t )+ ab Im(t ),

(4.3)

and

I ′(t ) =−DI (t )+ kS(t )P (t )− aIm(t ). (4.4)

Since I (t ) is not involved by any equation in (4.3) and can be solved by an integra-

tion, we consider only (4.3) hereafter.

To be more precise, suppose x = (R(0), S0(·), M (0), P0(·)) ∈ B+
D is the ini-

tial data of (2.7) and let Φ(t , x) = (R(t ), St (·), M (t ), P (t )) be the solution through

x, then (R(t ), St (0), M (t ), I1(t ), . . . , Im(t ), Pt (0)) is a solution of (4.3) with the ini-

tial condition (R(0), S0(0), M (0), I1(0), . . . , Im(0), P0(0)), where each I j (0) is given

by (4.2).

And by Proposition 7.3 of [32], if (R(t ), S(t ), M (t ), I1(t ), . . . , Im(t ), P (t ))

is a bounded solution of (4.3) on R, then (R(t ), St (·), M (t ), Pt (·)) is a bounded

solution of (2.7) provided the distribution of η(τ) is given by (4.1) and b (τ) = b

is a constant.

As direct corollaries of theorems in Section 2.3, all basic properties such

as positivity and boundedness still hold for (4.3). We simply make the following

assertions.

Theorem 4.1.1. All solutions of (4.3) remain non-negative provided non-negative

initial values.
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Theorem 4.1.2. System (4.3) is dissipative.

Proof. Let

Y = R+ S +M +
b

(b − 1)

m
∑

j=1

I j +
1

b − 1
P,

then Y ′ =−D(R0−Y ), thus (4.3) is dissipative.

Since b is now a constant, Theorem 4.1.2 not only shows the dissipativity,

but also proves that Y (t )→ R0 as t →∞.

4.2 Compact Attractor and Equivalency

In this section we will investigate the compact attractor of (4.3). Similar to (2.7),

ODE system (4.3) has a compact attractor which attracts all bounded sets in the

state space. And by considering each total trajectory in this attactor, we can estab-

lish a connection between compact attractors of (4.3) and (2.7).

Since (4.3) is an ODE system, we choose Rm+4
+ as the state space and let

Ψ be the semiflow induced by (4.3). We also assume Rm+4
+ is equipped with the

maximum norm and we use | · | to represent this norm. To show the existence of

the compact global attractor, we employ the following theorem:

Theorem 4.2.1 (Theorem 2.30 in [33]). If a semiflow is point-dissipative, asymp-

totically smooth, and eventually bounded on every bounded set in its state space, then

there exists a compact attractor of bounded sets (compact global attractor).

Thus as a consequence, we have

Corollary 4.2.2. The semiflow Ψ induced by (4.3) has a compact global attractor

KO , it attracts all bounded sets in Rm+4
+ .

Proof. The point-dissipativity follows from Theorem 4.1.2.
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To show Ψ is asymptotically smooth, let W be an arbitrary forward in-

variant bounded closed set in Rm+4
+ , then it is compact and sequentially compact.

Hence for any {t j }∞j=1 ⊂ R+ with t j →∞ as t →∞, and any {y j }∞j=1 ⊂W , by

the forward invariance of W , Ψ(t j , y j ) ∈W for all j ∈ N. Therefore, the sequen-

tial compactness implies {Ψ(t j , y j )}∞j=1 has a convergent subsequence andΨ is thus

asymptotically smooth.

And lastly, the eventual boundedness of Ψ on bounded sets is a direct

corollary of Theorem 4.1.2.

Therefore, Ψ has a compact attractor KO which attracts all bounded sets

in Rm+4
+ .

The following theorem is taken from [33]:

Theorem 4.2.3 (Proposition 3.24 in [33]). The compact global attractor consists of

points such that there exists a bounded total trajectory through this point.

Now let’s explore the connection between KO and KD . We defined projec-

tion maps πi for i ∈ {R, S, M , P} fromB+
D to each of its components in Section

3.2. Now we define eπ j : Rm+4
+ → R+ for j ∈ {R, S, M , I1, . . . , Im, P} as the projec-

tion map from Rm+4
+ to the corresponding subspace.

We define a map ι : KO → KD . For each y = (R, S, M , I1, . . . , Im, P ) ∈

KO , let ψ(t ) be the total trajectory through y, then by Theorem 4.2.3, ψ(t ) is

bounded in Rm+4
+ . Write S−(s) = eπS(ψ(s)) and P−(s) = eπP (ψ(s)) for all s ≤ 0,

then S−(·), P−(·) ∈Cγ because ψ is bounded in Rm+4
+ . Define

ι(y) = (R, S−(·), M , P−(·)) ∈B+
D .

Then we have the following lemma:
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Lemma 4.2.4. The map ι defined above is a one-to-one and onto map from KO to

KD .

Proof. To show ι(y) ∈ KD , by Theorem 4.2.3, it suffices to show there exists a

bounded total trajectory through ι(y). Letφ(t ) = ι(ψ(t )), then by Proposition 7.3

in [32], φ(t ) is a total trajectory of (2.7) through ι(y). Moreover, φ(t ) is bounded

inB+
D because ψ(t ) is bounded in Rm+4

+ . Therefore, ι(y) ∈KD for y ∈KO .

And ι is injective, let y1, y2 be distinct points in KO , then at least one com-

ponent of y1 and y2 are different. If eπi (y1) 6= eπi (y2) for i ∈ {R, S, M , P}, then

clearly ι(y1) 6= ι(y2). Otherwise, if eπI j
(y1) 6= eπI j

(y2) for some 1 ≤ j ≤ m, by

(2.6), either S−1 (·) 6= S−2 (·) or P−1 (·) 6= P−2 (·) or both. Therefore, y1 6= y2 implies

ι(y1) 6= ι(y2).

ι is also an onto map. For each x = (R, S(·), M , P (·)) ∈ KD , let φ(t ) be the

total trajectory through x, then it gives rise to a solution of (4.3) via (4.2). Let

y = (R, S(0), M , I1(0), . . . , Im(0), P (0)) ∈ Rm+4
+ where I j (0) are calculated by (4.2).

Also let ψ(t ) be the total trajectory through y, then ψ(t ) is bounded by Theorem

2.3.7. Thus ψ(t )⊂KO and y ∈KO . By the definition of ι, ι(y) = x.

Note from the last paragraph in the proof of Lemma 4.2.4, we can define

an inverse map of ι, call it ι−1. The inverse map ι−1 : KD →KO is defined as

ι−1(x) = (πR(x),πS(x)(0),πM (x), I1(0), . . . , Im(0),πP (x)(0)),

where I j (0)’s are obtained by (4.2).

Theorem 4.2.5. The map ι : KO →KD is a homeomorphism.

Proof. It suffices to that ι−1 is continuous and Lipschitz.

The continuity of ι−1 is easier to prove. Since KD is bounded inB+
D , we

can choose L> 0 such that ‖KD‖D < L. For any ε > 0, letδ =min{ ε
2kL , 1

2ε}. Then
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for x1 = (R1, S1(·), M1, P1(·)) and x2 = (R2, S2(·), M2, P2(·)) in KD with ‖x1 − x2‖D

we have

max{|R1−R2|, |S1(0)− S2(0)|, |M1−M2|, |P1(0)− P2(0)|} ≤ δ < ε.

And for I j ’s, we write I j ,i as the I j calculated by (4.2) for xi (i = 1,2), then

|I j ,1(0)− I j ,2(0)| ≤ k
∫ ∞

0
e−Dτ g j (τ,a)|S1(−τ)P1(−τ)− S2(−τ)P2(−τ)|dτ

≤ k
∫ ∞

0
e−(D−2γ ) g j (τ,a)

�

‖S1‖γ‖P1− P2‖γ + ‖P2‖γ‖S1− S2‖γ
�

dτ

≤ 2kδL
∫ ∞

0
e−D−2γ g j (τ,a)dτ < 2kδL≤ ε.

Therefore, since Rm+4
+ takes the maximum norm, we have |ι−1(x1)− ι−1(x2)|< ε if

‖x1− x2‖D <δ.

Note the argument above also implies that

|ι−1(x1)− ι
−1(x2)|<max{2kL, 2}‖x1− x2‖D ,

therefore ι−1 is Lipschitz.

4.3 Equilibria and their Local Stability

As a special case of (2.7), ODE system (4.3) always has the following trivial, phage-

free equilibria:

E0 = (R0, 0, . . . , 0), ES = (RS , S, 0, . . . , 0), EM = (RM , 0, M , 0, . . . , 0).

And not surprisingly, both E0 and EM are unstable.

Similar to (2.7), the local stability of ES is again determined by the Phage

Reproduction Number (P RN ). Since b (τ) = b is a constant, the average num-

ber of new phage eventually released by an infected bacterium B is given by the
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following formula:

B =
∫ ∞

0
e−Dτb d ν(τ) = b

∫ ∞

0
e−Dτ gm(τ,a)dτ

= b

 

−
1

a+D
e−(a+D)τ amτm−1

(m− 1)!

�

�

�

�

�

∞

τ=0

+
a

a+D

∫ ∞

0
e−(a+D)τ am−1τm−2

(m− 2)!
dτ

!

= b
� a

a+D

∫ ∞

0
e−Dτ gm−1(τ,a)dτ

�

= · · ·=
am−1b

(a+D)m−1

∫ ∞

0
e−Dτ g1(τ,a)dτ

=
am−1b

(a+D)m−1

∫ ∞

0
ae−(a+D)τdτ =

am b

(a+D)m
.

So P RN can be written as

P RN = P RN (S) =
am b kS

(a+D)m(D + kS)
. (4.5)

Similar to Lemma 3.2.1, we have the following assertion on the local sta-

bility of ES . Since (4.3) is an ODE system, we can analyze the polynomial charac-

teristic equation as treating usual ODE systems.

Theorem 4.3.1. The boundary equilibrium ES of (4.3) is locally asymptotically sta-

ble if P RN < 1 and is unstable if P RN > 1.

Proof. Computing the Jacobian matrix at ES gives that

J =









J1 ∗

0 J2









,

where J1 is a 3× 3 matrix:

J1 =















−D − f ′S (RS)S −D − fM (RS)

f ′S (RS)S 0 0

0 0 fM (RS)−D















,
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and J2 is a (m+ 1)× (m+ 1)matrix:

J2 =



































−(a+D) 0 0 . . . 0 kS

a −(a+D) 0 . . . 0 0

0 a −(a+D) . . . 0 0
... 0 ... . . . 0

...

0 . . . 0 a −(a+D) 0

0 . . . . . . 0 ab −D − kS



































.

Eigenvalues of J1 are λ=−D , λ= f2(R1)−D < 0 and λ=− f ′1 (R1)S < 0.

Thus the characteristic equation of ES is θS(λ) = 0, where

θS(λ) = (λ+D)(λ− fM (RS)+D)(λ+ f ′S (RS)S)
�

(λ+ a+D)m(λ+D + kS)− am b kS
�

.
(4.6)

The constant term is (a + D)m(D + kS)− am b kS, which has the same sign as

P RN − 1.

Note that if P RN > 1, θS(0)< 0 because the constant term is negative and

θS(λ)→∞ as λ→∞, hence θS(λ) = 0 has a positive real root, and consequently

ES is unstable.

If P RN < 1, J2 is an irreducible matrix with non-negative off-diagonal

entries, so by theorem A.5 in [35], s(J2) := max{ℜλ : θS(λ) = 0} is a root of

θS(λ) = 0. However, by Descarte’s rule of signs, as the constant term is now

positive, θS(λ) = 0 has no positive real roots and 0 is not a root, thus s(J2)< 0 and

real parts of all eigenvalues of J2 are less than or equal to s(J2), hence ES is locally

asymptotically stable when P RN < 1.

Besides phage-free equilibria shown above, (4.3) has another two equilib-

ria, namely,

ESP = (R
∗, S∗, 0, I ∗1 , . . . , I ∗m) and ESM P = (RM , S∗, M #, I #

1 , . . . , I #
m, P #).
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The susceptible bacteria concentration at ESP is the level at which P RN (S∗) = 1,

which can be interpreted as the lowest S concentration to support the phage at

a steady state. 0 < R∗ < R0 is the unique solution of DR∗ + fS(R
∗)S∗ = DR0,

and kP ∗ = fS(R
∗)−D . Each I ∗j for 1 ≤ j ≤ m can be solved accordingly. The

uniqueness of R∗ is proved in Theorem 4.3.2. For (4.3), we have

S∗ =
D

k

(a+D)m

am b − (a+D)m
, I ∗j =

a j−1

(a+D) j
kS∗P ∗, P ∗ =

fS(R
∗)−D

k
.

For ESM P , the S remains the same, while the R component is exactly the break-

even value of M . P # and I #
j ’s have similar formulas as in ESP except for R∗ is

replaced by RM . To be more precise, we have

M # =M −
fS(RM )

D
S∗, I #

j =
a j−1

(a+D) j
kS∗P #, P # =

fS(RM )−D

k
.

Similar to corresponding equilibria of (2.7), the existence of these equilib-

ria are conditional.

Theorem 4.3.2. ESP is a non-negative equilibrium of (4.3) if and only if P RN ≥ 1.

ESM P is a non-negative equilibrium if and only if M RN ≥ 1.

Proof. Let’s consider ESP first. Assume P RN ≥ 1, then

am b ≥ (a+D)m
�

1+
D

kS

�

> (a+D)m,

hence S∗ > 0. And recall D(R0 − R∗) = fS(R
∗)S∗. Let hL(R) = D(R0 − R) and

hR(R) = fS(R)S
∗. Obviously both functions are continuous. Moreover, hL(R) is

a strictly decreasing function with hL(0) = DR0 and hL(R0) = 0. And hR(R) is a

strictly increasing function, we have hR(0) = 0 by (F1) and hR(R0) = fS(R0)S
∗ > 0.

Therefore, there exists a unique R∗ ∈ (0, R0). In particular, if P RN ≥ 1,

hR(RS) =DS∗ =
D2S(a+D)m

am b kS − (a+D)mkS
=

D2S

P RN (D + kS)− kS
≤DS = hL(RS),
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thus R∗ ∈ (RS , R0) and consequently P ∗ ≥ 0. The non-negativity of I ∗j hence

follows.

On the other hand, note hR(RS) ≤ hL(RS) only if P RN ≥ 1, so P RN ≥ 1

is a necessary condition for P ∗ ≥ 0.

For ESM P , assume M RN ≥ 1. Then fM (R
∗)≥ D = fM (RM ). By the mono-

tonicity of fM , it is equivalent to R∗ ≥ RM . Clearly it implies R∗ > RS and hence

P # > 0. Also in this case, by using the same hL(R) and hR(R), it is easy to conclude

P RN > 1, so S∗ > 0 and

M # ≥ R0−R∗−
fS(R

∗)

D
S∗ = 0.

The non-negativity of I #
j ’s are trivial.

Conversely, suppose ESM P is non-negative, then M # ≥ 0 implies hL(RM )≥

fS(RM )S
∗, thus R∗ ≥ RM follows and consequently M RN ≥ 1 is a necessary con-

dition.

We can summarize the existence conditions and local stabilities of equilib-

ria of (4.3) by the Table 3.

Table 3.Equilibria and local stability of ODE model (4.3)

Equilibrium Existence Condition Stability
ER = (R0, 0, . . . , 0) always exists unstable by (F1)

ES = (RS , S, 0, . . . , 0) always exists see Theorem 4.3.1
EM = (RM , 0, M , 0, . . . , 0) always exists unstable by (F2)

ESP = (R
∗, S∗, 0, I ∗1 , . . . , I ∗m, P ∗) P RN ≥ 1 Corollary 4.4.4

ESM P = (RM , S∗, M #, I #
1 , . . . , I #

m, P #) M RN ≥ 1 unknown
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4.4 Bifurcation Analysis

In this section we choose b as a bifurcation parameter and assume all other pa-

rameter values are fixed. By varying b , we can investigate local stability changes

of ESP and ESM P .

Note P RN for system (4.3) is given by (4.5), hence it is an increasing func-

tion on b . When b > 1 is small, P RN < 1 and ESP does not exists. There exists a

unique b ∗ such that P RN = 1 and ESP appears at b = b ∗.

The following theorem states that ES undergoes a transcritical bifurcation

and loses its stability to ESP at this critical value b ∗.

Theorem 4.4.1. Let

b ∗ =
(a+D)m(D + kS)

am b kS
,

then ES undergoes a transcritical bifurcation at b = b ∗. As b increases and exceeds

b ∗, ES becomes unstable and ESP becomes a non-negative equilibrium and gains the

stability.

Proof. Let F (b ,x) : R+ ×Rm+4
+ denote the vector field of (4.3) with bifurcation

parameter b .

When b = b ∗, ES and ESP coincide and 0 is a simple root of characteristic

equation (4.6). The right and left eigenvectors associated with the 0 eigenvalue are

vR = (
k

f ′S (RS)
,−

k(D + f ′S (RS))

f ′S (RS)
, 0,

kS

a+D
,

akS

(a+D)2
, . . . ,

am−1kS

(a+D)m
, 1)T ,

vL = (0,0,0,
� a

a+D

�m

b ∗,
� a

a+D

�m−1

b ∗, . . . ,
a

a+D
b ∗, 1),

respectively.

A calculation shows that

∂ 2F

∂ b∂ x

�

�

�

�

�

(ES ,b ∗)

=









0 0

0 ∂ J2
∂ b









,
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the (m+ 1, m) entry of ∂ J2
∂ b is 1 and all others vanish. Thus

vL







∂ 2F

∂ b∂ x

�

�

�

�

�

(ES ,b ∗)






vR =

am b ∗kS

(a+D)m
=D + kS 6= 0.

Write vR = (η1,η2,η3,ξ1,ξ2, . . . ,ξm, 1), the second derivative of the vector

field at (ES , b ∗) with respect to the direction (vR,vR) is

D2
x F (ES , b ∗)(vR,vR) =

d

d s

















































∗

∗

∗

−(a+D)η1+ k(S + sη2)

aξ1− (a+D)ξ2

...

aξm−1− (a+D)ξm

ab ∗ξm − (D + k(S + sη2))

















































=

















































∗

∗

∗

kη2

0
...

0

−kη2

















































.

So vL[D
2
x F (ES , b ∗)(vR,vR)] =−

D
S

k(D+ f ′S (RS ))
f ′S (RS )

6= 0.

According to Theorem 4.3.1 in Guckenheimer and Holmes [17], (4.3) un-

dergoes a transcritical bifurcation when b = b ∗.

Now let’s turn to the stability analysis of ES . Since λ = 0 is a simple root

of (4.6), the implicit function theorem applies. There exists a function ξ (b ) such

that θS(ξ (b ), b ) = 0 when b is close enough to b ∗.

The calculation shows that

∂ θS

∂ λ

�

�

�

�

�

(0,b ∗)

=D f ′S (RS)S(D − fM (RS))
�

(m(D + kS)+ a+D)(a+D)m−1
�

> 0,

∂ θS

∂ b

�

�

�

�

�

(0,b ∗)

=−amkS < 0,

hence ξ ′(b1) = −
�

∂ θS
∂ λ

�

�

�

(0,b ∗)

��

∂ θS
∂ b

�

�

�

(0,b ∗)

�

> 0. That is, θS(λ) has a positive real

root when b > b ∗ but close enough, and ES loses the stability at b = b ∗.
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A similar argument shows that ESP gains the stability. The characteristic

equation of ESP is

θSP (λ) = (λ+D)(λ− fM (R
∗)+D)

�

(λ+ a+D)mθSP,1(λ)− am b kS∗θSP,2(λ)
�

,

(4.7)

where

θSP,1(λ) = λ
2+(D + f ′S (R

∗)S∗+ kS∗)λ+ f ′S (R
∗)S∗( fS(R

∗)+ kS∗)− k2S∗P ∗,

θSP,2(λ) = λ− kP ∗+ f ′S (R
∗)S∗.

Taking the partial derivatives shows that

∂ θSP

∂ λ

�

�

�

�

�

(0,b ∗)

=D(D − fM (RS))(a+D)m−1((m(D + kS)+ (a+D) f ′S (RS)S))> 0,

∂ θSP

∂ b

�

�

�

�

�

(0,b ∗)

=D(D − fM (RS))(a+D)m
 

D
d P ∗

d b

�

�

�

�

�

b=b ∗

!

> 0.

Therefore, there exists a function η(b ) such that θSP (η(b ), b ) = 0 for b close

enough to b ∗ and η′(b ∗) < 0. Namely, θSP (λ) has a negative real root if b −

b ∗ > 0 but small. And all other roots have negative real parts by the continuous

dependence. Thus ESP gains the stability after this transcritical bifurcation.

The bifurcation analysis for ESP is more complicated. From the character-

istic equation (4.7), it is easy to see when R∗ > RM , or equivalently, M RN > 1,

ESP is unstable because λ = fM (R
∗)− D > 0 is a positive real root. However,

when M RN < 1, the local stability of ESP is determined by the bracket factor in

θSP (λ). We will investigate roots of this factor by using Rouché’s theorem. To

apply this theorem, we first introduce a new polynomial θ∞SP (λ), it is obtained by

letting b →∞ in the bracket term of θSP (λ). Then we show θ∞SP (λ) has roots with

positive real parts, thus Rouché’s theorem implies at least one root of θSP (λ) has

positive real parts when b is large enough. And by the continuous dependence of
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roots on parameters, θSP (λ) has a pair of purely imaginary root at some critical

value b = bh . This idea is carried out rigorously by the following theorems.

Lemma 4.4.2. Let θ∞SP (λ) be defined as

θ∞SP (λ) = (λ+ a+D)m(λ2+Dλ)+D(a+D)m( f1(R0)−D −λ),

then it has a pair of conjugate complex roots with positive real parts and all other roots

have negative real parts.

Proof. We first show that θ∞SP (λ) = 0 has at least one pair of complex roots with

positive real parts.

A simple calculation shows that the linear term of θ∞SP (λ) vanishes, that is,

the coefficient of λ is 0. And the constant term is not 0, hence 0 is a not a root of

θ∞SP (λ). Note all other coefficients are strictly positive, by Descartes’ rule of signs,

since there is no sign changes between coefficients, θ∞SP (λ) = 0 has no positive real

roots. And it is easy to verify 0 is not a root.

Since every real coefficient polynomial can be written as a product of irre-

ducible quadratic terms and linear terms, we can formally factorize θ∞SP as

θ∞SP (λ) =
p
∏

i=1

(λ+ ai )
q
∏

j=1

(λ2+ b jλ+ c j ), (4.8)

where p, q ∈Z+ and ai , b j , c j ∈R. Note if any ai = 0 or c j = 0, 0 will be a root of

θ∞SP (λ), hence all ai ’s and c j ’ are non-zero.

Suppose any ai < 0, λ = −ai > 0 is a positive real root of θ∞SP (λ), which

contradicts the conclusion of Descartes’ rule of signs.

Thus hereafter we assume ai > 0 for all 1≤ i ≤ p.

If any c j < 0, the discriminant of the corresponding quadratic term is

b 2
j − 4c j > 0,
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thus this term can be further factorized as the product of two real linear terms,

which contradiction the irreducibility of quadratic terms. Hence all c j ’s must be

positive.

In (4.8), we can calculate the coefficient of λ and it gives






q
∏

j=1

c j













p
∑

i=1

∏p
l=1

al

ai

+
q
∑

j=1

b j

c j






,

and it equals 0 because the coefficient of λ in θ∞SP (λ) vanishes.

Since all ai ’s are positive, the first term in the bracket is strictly positive.

And consequently, the second term is strictly negative. Since all c j ’s are positive,

there exists at least one j0 such that b j0
< 0, and two roots of the corresponding

quadratic term λ2+ b j0
λ+ c j0

are

λ1,2 =
−b j0

±
q

b 2
j0
− 4c j0

2
,

since this is an irreducible quadratic term, the discriminant is strict negative and

real part of λ1,2 is −
b j0
2 > 0.

Thus θ∞SP (λ) has at least one pair of complex roots with positive real parts.

Now we show that θ∞SP (λ) has at most one two roots with positive real

parts. Let’s start from

eθ∞SP (λ) = (λ+ a+D)m(λ+D) = am+1λ
m+1+ amλ

m + . . .a1λ+ a0,
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then its Routh-Hurwitz table can be written as

am+1 am−1 am−3 . . . a5 a3 a1

am am−2 am−4 . . . a4 a2 a0

ξ3,1 ξ3,2 ξ3,3 . . . ξ3, m
2 −1 ξ3, m

2

ξ4,1 ξ4,2 ξ4,3 . . . ξ4, m
2 −1 ξ4, m

2

...
...

... . . .

ξm−2,1 ξm−2,2 0

ξm−1,1 ξm−1,2 0

ξm,1 0

ξm+1,1 0

Since all roots of eθ∞SP (λ) are real and strictly negative, there is no sign change in

the first column of this table.

Similarly, note θ∞SP (λ) can be written as

θ∞SP (λ) = am+1λ
m+2+ amλ

m+1+ · · ·+ a1λ
2+ a−1.
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Its Routh-Hurwitz table is (the star superscript means this entry is different from

the above table for eθ∞SP (λ)):

am+1 am−1 am−3 . . . a5 a3 a1 a−1

am am−2 am−4 . . . a4 a2 0 0

ξ3,1 ξ3,2 ξ3,3 . . . ξ3, m
2 −1 ξ ∗3, m

2
a−1

ξ4,1 ξ4,2 ξ4,3 . . . ξ4, m
2 −1 ξ ∗4, m

2
0

...
...

... . . .

ξm−2,1 ξ ∗m−2,2 a−1

ξm−1,1 ξ ∗m−1,2 0

ξ ∗m,1 a−1

ξ ∗m+1,1 0

a−1

Note the only changes in the first column are ξ ∗m,1, ξ
∗
m+1,1, and adding a−1, hence

there are at most three sign changes. Namely, θ∞SP (λ) has at most three roots with

positive real parts. Similarly, if assume m is odd, we can deduce that θ∞SP (λ) has at

most two roots with positive real parts.

However, as shown above, θ∞SP (λ) has no positive real roots and at least one

pair of complex roots with positive real parts, so the only possibility is θ∞SP (λ) has

exactly one pair of complex roots with positive real parts.

And now we can apply Rouché’s theorem and conclude that θSP (λ) has

purely imaginary roots at some critical value b = bh .

Theorem 4.4.3. There exists a unique bh > b ∗ such that the bracket term in θSP (λ),

i.e.,

θ0
SP (λ) = (λ+ a+D)mθSP,1(λ)− am b kS∗θSP,2(λ) (4.9)

has a pair of purely imaginary roots at b = bh .
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Proof. We first show (4.9) has at least one root lies in the open right half-plane for

large b .

By the previous lemma, we know that there exists z0 with ℜz0 > 0 such

that θ∞SP (z0) = 0. Pick δ > 0 small enough such that K = {z ∈ C : |z − z0| < δ}

lies in the open right half-plane and θ∞SP (z) 6= 0 on ∂ K . By the compactness of

∂ K , there exists zmin ∈ ∂ K such that |θ∞SP (zmin )|=min{|θ∞SP (z)| : z ∈ ∂ K}> 0.

Define the difference between θ∞SP (λ) and θ0
SP (λ) as

θ#
SP (λ) = (λ+ a+D)m(( f ′S (R

∗)S∗+ kS∗)λ+ f ′S (R
∗)S∗( fS(R

∗)+ kS∗))

− (a+D)m D f ′S (R
∗)S∗− (a+D)mkS∗(λ− kP ∗+ f ′S (R

∗)S∗),

then θ0
SP (λ) = θ

∞
SP (λ)+θ

#
SP (λ).

As b →∞, S∗→ 0, R∗→ R0 and every term is bounded, hence for every

ε > 0, we can choose bε > b ∗ such that for all b > bε,

f ′S (R
∗)S∗+ kS∗ < ε,

| f ′S (R
∗)S∗( fS(R

∗)+ kS∗)|< ε,

(a+D)mD f ′S (R
∗)S∗ < ε,

(a+D)mkS∗ < ε,

|(a+D)mkS∗(−kP ∗+ f ′S (R
∗)S∗)|< ε.

Thus

|θ#
SP (z)|< ε|(z + a+D)m|(|z |+ 1)+ ε(|z |+ 2).

And there exists zε ∈ ∂ K such that

|θ#
SP (z)| ≤ ε|(zε+ a+D)m|(|zε|+ 1)+ ε(|zε|+ 2),

for all z ∈ ∂ K .

By choosing ε small enough, we can obtain that

|θ#
SP (z)|< |θ

∞
SP (zmin )|< |θ

∞
SP (z)|
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on ∂ K . Therefore, by applying Rouché’s theorem, θ0
SP (λ) and θ∞SP (λ) have the

same number of roots in K . That is, for b > b #, θSP (λ) has at least one root with

positive part.

Note for any b > b ∗, 0 is not a root of θ0
SP (λ) because its constant term is

f ′S (R
∗)S∗P ∗+DkP ∗ > 0.

Therefore, by the continuous dependence on b , at some b in (b ∗, b #), θ0
SP (λ) has

a root with 0 real part. And its imaginary part is non-zero because 0 is not a root

for θ0
SP (λ) when b > b ∗. Namely, it is a purely imaginary root.

Define

bh =min{b > b ∗ : θ0
SP )(λ) = 0 has a pair of purely imaginary roots},

then all roots of θ0
SP (λ) have negative real parts and the proof is complete.

Note Theorem 4.4.3 studies only θ0
SP (λ), i.e., the bracket factor of θSP (λ).

If we define

bM =
�

a+D

a

�m� 1

k

fS(RM )

M
+ 1

�

,

when b increases and exceeds bM , ESP will have a positive real root λ= fM (R
∗)−

D , hence it is no longer stable. By taking this factor into account, we have the

following corollary:

Corollary 4.4.4. ESP is locally asymptotically stable for all b ∈ (b ∗,min{bh , bM}).

Proof. Note

θSP (λ) = (λ+D)(λ− fM (R
∗)+D)θ0

SP (λ),

and by Theorem 4.4.3 and the definition of bM , all roots of θSP (λ) have negative

real parts when b ∈ (b ∗,min{bh , bM}).
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Ideally, we want to show that ESP undergoes a Hopf bifurcation at b = bh

if bh < bM , nevertheless, due the computational difficulty, whether ESP undergoes

a supercritical Hopf bifurcation is still left open. But we can brieftly illustrate the

outline of this idea here. As it has been proved above, θSP (λ) has purely imaginary

roots λ=±iω0 at b = bh , assume λ=µ+ iω, then

ℜθSP (µ+ iω, 0)|(0,ω0,bh )
= 0,

ℑθSP (µ+ iω, 0)|(0,ω0,bh )
= 0,

Since θSP (λ) is an analytic function, its derivatives satisfy Cauchy-Riemann equa-

tion, hence

�

�

�

�

�

∂ θSP

∂ λ

�

�

�

�

�

(0,ω0,bh )

=

�

�

�

�

�

�

�

∂ ℜθSP
∂ µ

∂ ℜθSP
∂ ω

− ∂ ℜθSP
∂ ω

∂ ℜθSP
∂ µ

�

�

�

�

�

�

�

=
�

∂ ℜθSP

∂ µ

�2

+
�

∂ ℜθSP

∂ ω

�2

> 0,

and the implicit function theorem applies. And consequently,
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.

Therefore, if we can show

∂ ℜθSP

∂ µ

∂ ℜθSP

∂ b
−
∂ ℜθSP

∂ ω

∂ ℑθSP

∂ b

�

�

�

�

�

(0,ω0,bh )

< 0, (4.10)

then ESP undergoes a supercritical Hopf bifurcation at b = bh . And if (4.10) is

true for every b > b ∗ such that θ0
SP (λ) has a pair of purely imaginary roots, then
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geometrically, every pair of purely imaginary roots cross the imaginary axis from

left to right. As θ∞SP (λ) has only one pair of complex roots with positive real parts,

we claim that bh is the unique critical value such that θ0
SP (λ) has a pair of purely

imaginary roots.

Note that in (4.10), to study ∂ ℜθSP
∂ b and ∂ ℑθSP

∂ b , we also need more assump-

tions on fS(R). To be more precise, since f ′S (R
∗) varies as b increases, we need

to know the sign of f ′′S (R
∗). Apparently letting fS be a concave function is a rea-

sonable choice, however, it seems showing (4.10) is still very difficult with this

additional assumption.

In section 5.3, we are able to perform a numerical simulation and observe

the local stability of ESP . By choosing different parameter values, we can see that

ESP may undergo a Hopf bifurcation at some bh < bM or loses its stability to ESM P

if bh > bM . For more details, please see Figure 3 and Figure 4.

4.5 Persistence Results

Due to the nature that (4.3) is a special case of (2.7), all persistence and extinction

results proved in Chapter 3 should apply to (4.3) without any difficulties.

However, since (4.3) is an ODE system and b (τ) is assumed to be a con-

stant b , there are a few remarks that worth to be emphasize here.

The first fact is that since b (τ) is a constant, the conclusion of Theorem

2.3.4 can be improved:

Theorem 4.5.1. Let

Y := R+ S +M +
b

b − 1

m
∑

j=1

I j +
1

b − 1
P,

then Y → R0 as t →∞.

Theorem 4.5.1 together with Corollary 4.2.2 imply that KO is a subset of

the the hyperplane {y ∈Rm+4
+ : Y = R0}.
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For persistence results, we can apply the corresponding theorem to this

special case. Or by using the same argument and the following remarks, we can

prove it directly.

For susceptible bacteria S, note Lemma 3.2.1 still holds for (4.3) because

it is independent from the differential equation of P and I . And Lemma 3.2.2 is

true by replacing D
Bk with D

(b−1)k , it is because by replacing (3.8) with

 

b

b − 1

m
∑

i=1

I j +
1

b − 1
P

!′

(t ) =−D

 

b

b − 1

m
∑

i=1

I j +
1

b − 1
P

!

(t )+ kS(t )P (t ),

we can obtain that

0≤ ((b − 1)kS∞−D)

 

b

b − 1

m
∑

i=1

I j +
1

b − 1
P

!∞

by using the fluctuation argument (and possibly after a time-shift). So the argu-

ment of Lemma 3.2.2 will work for (4.3) after this treatment.

The persistence and extinction of phages P as well as I j ’s are determined

by P RN . However, (3.10) should be updated accordingly. Notice

(λ+ a+D)bI1(λ) = I1(0)+ kÓSP (λ),

(λ+ a+D)bI j (λ) = I j (0)+ abI j−1(λ), 2≤ j ≤ m,

(λ+D)bP (λ) = P (0)− kÓSP (λ)+ ab bIm(λ).

Since λ≥ 0,

bIm(λ) =
Im(0)+ abIm−1(λ)

λ+ a+D
≤

a

a+D
bIm−1+

Im(0)

a+D

≤ · · · ≤
am−1

(a+D)m
ÓSP (λ)+

m
∑

j=1

am− j

(a+D)m− j+1
I j (0).

Thus by replacing (3.10) with

(λ+D)bP ≤ P (0)+
�� a

a+D

�m

b − 1
�

kÓSP (λ)+
m
∑

j=1

am− j

(a+D)m− j+1
I j (0),
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Theorem 3.3.1 and 3.3.3 can be proved for (4.3) by using the same idea (the phase

space is Rm+4
+ instead ofB+

D ).

And for the persistence of M , the same argument can be used for (4.3) with

slight modification on phase space. However, sufficient conditions for the locally

asymptotic stability of ESP seem to be easier to verify.

In this chapter we introduced a new model (4.3) as a special case of (2.7).

By using “linear chain trick”, we can reduce a system involving infinite distributed

delay terms (Gamma distribution) into a system consists of ordinary differential

equations. Solutions of (2.7) give rise to solutions of (4.3) and vice versa. Not sur-

prisingly, all standard results, such as positivity and boundedness of solutions, ap-

ply to (4.3). In particular, we also proved the equivalency between compact global

attractors of (2.7) and (4.3). Since all asymptotic behaviors of trajectories are re-

flected by the attractor, this equivalency serves an essential role in this research.

And lastly, it is not difficult to give similar proofs of persistence and extinction of

species for (4.3) as in Chapter 3.

In the following chapter we will take the advantage of (4.3) being an ODE

system, so that we can run numerical simulations with a bunch of ODE software

to analyze local stabilities of equilibria as well as compact global attractors.
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CHAPTER 5

SIMULATION

In this chapter we will present some simulation results and observations. Since

(2.7) is a complicated model which involves infinite delay terms, it is very difficult

to simulate and plot bifurcation diagrams for (2.7). Thus in this chapter we will

mainly focus on (4.3).

For ODE system (4.3), we investigate local stability of ESP and ESM P . As

mentioned before, stability of these two equilibria are still not clearly known yet

due to the computational difficulty, however, since characteristic equations of ESP

and ESM P are polynomials hence it is much easier to locate purely imaginary roots

as well as roots with positive real parts.

And later we will show bifurcation diagrams in two different scenarios, as

well as trajectories for each parameter value set. For both parameter value sets, ESP

are unstable and there exist periodic orbits bifurcated from ESP in the subspace

{M ≡ 0}. However, one example showed that this periodic orbit is attracting all

orbits starting with M (0) > 0, and the other one is more interesting because we

observe that there exists another stable period orbit in {M > 0} and attracts all

orbit with positive M (0).

To perform the simulation, we further simplify (4.3) by adopting the fol-

lowing assumption:

F3. fM (R) = (1− ε) fS(R) and both functions are of Michaelis-Menten type.

The parameter ε can be consider as the cost of a bacteria to become resis-

tant to the phage infection.
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The main tool we used for simulation is Mathematica and XPP-AUTO,

some figures are enhanced by Inkscape (adding labels and legends). The detailed

technique and algorithm will be explained in the corresponding sections.

5.1 Parameter Evaluation

Though the abstract chemostat has a simple structure, the practical device in the

laboratory is still very complicated and consists of numerous subsystems. How-

ever, biologists and technicians are able to measure different types of quantitative

values during the experiment and determine parameter values.

For example, Bohannan and Lenski [8] studied the bacteria-phage inter-

action with different concentration of glucose in the input flows. Not only did

they performed a series of experiments, they also presented different mathemat-

ical models inherited from Levin, Stewart and Chao [26] and other research

projects. For the simulation purpose, [8] also listed important parameter val-

ues either from the authors’ observation or previous studies. Those parameters

are experimental data so we will adopt them and run a simulation on (4.3) accord-

ingly.

In [8], the authors took the yield constant of bacteria species into account,

as mentioned before, we can assume yields constants are 1 by rescaling parameters

and variables. The following table is a quick summary of parameter values we

adopt from [8] and other references:

Since models studied in [8] involve a single discrete delay, τ = 0.5h is

assumed to be a constant. However, for (4.3), the mean of Gamma distribution

gm(s ,a) is m
a and it represents the average latent period, we assume m = 5 and

a = 10, so that the average delay is 0.5h for (4.3) too.
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Table 4.List of Parameter Values and Response Functions for Simulation

Parameter Unit Value Scaled Value Source
R0 mg/L 0.178212 0.178212 [29]
D h−1 0.2 0.2 [8]
k ml/h 3× 10−7 0.15 [8, 25]
τ h 0.5 0.5 [13]

fS(R)
0.7726

0.0727+R
0.7726

0.0727+R [8, 39]

5.2 Equilibria and Local Stability

In this section we will investigate local stability of ESP and ESM P . We use numer-

ical methods to locate purely imaginary roots for characteristic equations of ESP

and ESM P .

We take b and ε as two varying parameters and assume all others are fixed.

Recall that fM (R) = (1− ε) fS(R) as assumed in (F3).

To investigate stability of ESP and ESM P , as well as existence and stability

of periodic solutions, we present Figure 1 and Figure 2 below. Both Figures are

plotted in the ε-b parameter space, ESP is shown by a pentagram and ESM P is

represented by a triangle. A solid symbol (pentagram or triangle) means a locally

asymptotically stable equilibrium while a hollow symbol stands for an unstable

equilibrium. Circles are periodic orbits, a solid circle represents a stable period

orbit and the dashed line indicates an unstable period orbit.

Notice that Figure 2 is a continuation of Figure 1 for large ε but their

scales are different. In order to display the dynamics for large ε more clearly, the

horizontal scale is expanded.

Now let’s turn to details of Figure 1 and Figure 2.

The horizontal line T1 at the very bottom of both figures is where P RN =

1. Since P RN is independent from fM (R) hence independent from ε, T1 is hor-
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Figure 1.Equilibria, periodic orbits, and their stability in ε-b parameter space
(small ε).
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Figure 2.Equilibria, periodic orbits, and their stability in ε-b parameter space
(blow-up of large ε).
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izontal. T1 is solved explicitly from the equation P RN = 1. If b is below T1,

neither ESP nor ESM P is a non-negative equilibrium, by Theorem 3.3.3 and Theo-

rem 3.2.1, ES attracts all orbits with S(0)> 0. For b beyond T1, ESP exists and is

stable in the region immediately above it.

The other horizontal line above P RN = 1 is H1, it is the line along which

a periodic orbit bifurcates from ESP in the {M ≡ 0} subspace, since the only factor

in the characteristic equation (4.7) which contains fM is λ− fM (R
∗)+D , varying ε

may affect the stability of ESP but no purely imaginary roots are associated to this

factor. Thus H1 is again horizontal. H1 is computed numerically by Mathematica

by searching a smallest bh such that (4.7) has a pair of purely imaginary root. The

existence of such bh is guaranteed by Theorem 4.4.3.

The vertical line V in Figure 2 is the maximal value of ε, which is solved

analytically by setting (1− ε) fS(R0) = D , if ε exceeds this value, fM (R0)< D and

consequently M goes extinct.

The increasing curve T2 represents M RN = 1, since ε matters, this is no

longer a horizontal line. T2 is determined analytically by setting M RN = 1, to be

more precise, by solving
(1− ε) fS(R

∗)

D
= 1.

In Figure 1, when b is increasing and crosses T2 at any fixed ε, the system un-

dergoes a transcritical bifurcation, ESP loses stability and ESM P becomes stable.

However, in Figure 2, the dynamics become more complicated. T2 intersects H1

at a critical point Q= (εc , bc ), at which ESM P becomes non-negative and a periodic

orbit appears in {M ≡ 0} spaces as a result of Hopf bifurcation. Note at Q, char-

acteristic equation of ESP and ESP coincide, it has a pair of purely imaginary roots

and a zero root. This is an apparent fold-Hopf bifurcation, however, the normal

form is degenerated so we cannot analyze the dynamics near Q rigorously.
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ESM P may undergo a Hopf bifurcation as well. This curve is shown in Fig-

ure 1 as H2, and remarkably, it meets H1 and T2 at Q in Figure 2. This line is

obtained numerically by using Mathematica. We find out the characteristic equa-

tion associated with ESM P and try to find the smallest b such that this equation

has a pair of purely imaginary roots.

If ε ∈ (0,εc ) is fixed and b is increased, according to Figure 1 and the

left half of Figure 2, bifurcation and exchanges of stability occurs as follows:

ES → ESP → ESM P → POM , where POM denotes a stable periodic orbit with

positive M component bifurcating from ESM P . Note the unstable periodic orbit

from unstable ESP is ignored.

If ε > εc but less than the maximal value, suppose ε is fixed and b is increas-

ing, bifurcations and stability exchanges occur as ES → ESP → ESM P → PO →

POM , where PO is a stable periodic orbit with M = 0 bifurcating from ESP . The

stability switch PO → POM leads us to the last curve, i.e. T3, in Figure 2, it

is where PO becomes unstable to the “invasion of M ” and a periodic orbit with

(possible very small) M -component bifurcates from PO. This bifurcation occurs

as the Floquet exponent of PO,

1

T

∫ T

0
(1− ε) fS(R(t ))−Dd t ,

changes sign. This “lift-off” bifurcation is studied for a food chain model in [35,

Section 3.6]. T3 itself is solved numerically by studying the sign of the integral

above using Mathematica. Interestingly, this curve in parameter space also meets

other curves (except for P RN = 1) at Q.

All curves and lines described above partition ε-b parameter space into

open regions. In each region, numerical simulations suggest that there exists a
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unique attrator of positive initial data. This attractor may be ESP (solid penta-

gram), ESM P (solid triangle), or stable periodic orbits.

Notable among these regions is the very large one in Figure 1 and the left

half of Figure 2 where ESM P is stable. Above it, for large values of b , a stable pe-

riodic orbit with M > 0 exists. For this oscillatory region, the boundary consists

of two curves: Hopf bifurcation curve H2 of ESM P and the “lift-off” bifurcation

curve T3 where the stable periodic orbit merges with the periodic orbit in the

{M ≡ 0} subspace.

As one expects, when the cost of resistance is large, namely, ε is close to

the vertical line V, the region where ESP is stable is larger. And for b beyond the

Hopf bifurcation line H1 of ESP , there is a large region in which a periodic orbit

is stable in {M ≡ 0}.

As we will see in the next section, the oscillatory solutions may oscillate

quite strongly. In other words, the absolute value of S or P can be extremely

small in parts of the cycle. Technically S and P can persist in the mathematical

sense as proved in Theorem 3.2.3 and Theorem 3.3.1. However, in laboratory

experiments, there is a large chance that one of them or both will be completely

washed out over long periods due to demographic stochasticity.

But for the region in which ESM P is stable, we may regard it as the most

stable region of existence of susceptible bacteria S, resistant bacteria M and phages

P . A notable fact is that this region reaches maximum height (for b ) at an inter-

mediate cost of resistance.

5.3 Bifurcation Diagrams and Attractors

As we have seen in the previous section, the local stability of ESP and ESM P , as well

as existence and stability of periodic orbits, can be significantly different depend-

ing on the choice of (ε, b ) in the parameter space. In this section we will fix two ε
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values as “samples” and vary b to explore the stability switch between equilibria

and periodic orbits. In particular, we will illustrate two possible paths of stability

exchanges: ES → ESP → ESM P → POM and ES → ESP → PO→ POM .

All bifurcation diagrams and trajectories are solved by XPP-AUTO and

enhanced by Inkscape.

Our first “sample” is when ε = 0.2, the bifurcation diagram is shown by

Figure 3. Four diagrams shown in Figure 3 are bifurcation diagram of R, S, M ,

and P , respectively. Burst size b is plotted on the horizontal axis. It is worth to

point out that the vertical scale of P diagram is different from the other three.

In Figure 3, thick lines are locally asymptotically stable equilibria, thin lines are

unstable equilibria. For periodic orbits, hollow circles are unstable ones and solid

circles represent stable periodic orbits.

Figure 3.Bifurcation diagram with cost of resistance fixed at ε= 0.2.
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Let’s start from the left (b = 0) in Figure 3 where b is small, then P RN < 1

and ES is (globally) stable. The available nutrient level is low because without

phage P , S is superior to M and it consumes as much resource as possible. From

the diagram of R in Figure 3, we can observe that ESP is stable when b is ap-

proximately between 10 and 14. This coincides with what we see from Figure 1,

the vertical length of the stable window of ESP is short at ε = 0.2. For larger

b , ESM P becomes a positive equilibrium and it is stable. However ESP and ESM P

are not distinguishable from the S diagram because ESP and ESM P share the same

S-component, namely S∗. Another bifurcation occurs at b ≈ 80 in the {M ≡ 0}

subspace, an unstable periodic orbit bifurcates from ESP and lies entirely in this

subspace. The only diagram in which this periodic orbit is not significantly ob-

servable is the M diagram (shown as hollow circle on the horizontal axis). At

about b ≈ 190, ESM P undergoes a Hopf bifurcation resulting a stable periodic or-

bit. This periodic orbit is represented by solid circles in all four diagram. It should

be noted that although in S and P diagram it seems this periodic orbit is touching

the horizontal axis, it is actually bounded away from the axis. Recall that the uni-

form persistence means there exists a lower bound such that for all positive initial

values, the limit inferior is bounded away from 0 by a fixed constant. However,

this constant could be extremely small.

We infer from Figure 3 that if the cost of resistance is low, the chemostat

is dominated by bacteria. Approximately, for b bigger than 14, the majority of

bacteria is resistant species M and the minority is susceptible species S. The com-

bined density of two species is essentially at the same level of bacteria as in the

phage-free system. The total bacterial densities are controlled by nutrient levels.

In this case, the nutrient is reduced to a very low level and phages are scarce.
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The second “sample” is more interesting. Now we pick ε = 0.61 and ob-

tain Figure 4. Besides all notations used in Figure 3, in Figure 4 we use dashed line

to indicate an equilibrium with some negative components and dot-dashed line

for periodic orbits with negative components. Actually the only negative com-

ponent we take into account is the M component, hence the bottom half of M

diagram illustrates the dynamics for M < 0.

Figure 4.Bifurcation diagram with cost of resistance fixed at ε= 0.61.

In Figure 4, we again start from the left. For small b , since P RN < 1, ES is

(globally) asymptotically stable. As b increases, ESP becomes a stable equilibrium.

At b ≈ 80, ESP undergoes a Hopf bifurcation and a stable periodic orbit occurs

in the {M ≡ 0} subspace, this orbit is not only stable in {M ≡ 0}, it is also stable

to the “invasion” of M . The R diagram is the best one to observe this stability

switch because ESP and ESM P share the same S component and M ≡ 0 for both
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ESP and the periodic orbit. And at b ≈ 110, ESM P becomes a positive equilibrium

(represented by the rising curve in the M diagram). An interesting observation is

at b ≈ 170, this periodic orbit in {M ≡ 0} loses stability and a new periodic orbit

arises from it with positive M component becomes stable. This is similar to the

“lift-off” bifurcation as discussed in [35, Section 3.6]. It is not a small amplitude

orbit. It occurs as the Floquet multiplier associated with the differential equation

of M becomes unity as b is varied. For super-threshold values of b > 170, this

periodic orbit has small but positive M values, while for sub-threshold b < 170,

the periodic orbit has negative M values.

To trace this negative M -value periodic orbit, we first locate ESM P with

negative M -values, it is represented by the dashed line in Figure 4 and find a Hopf

bifurcation point at b ≈ 60, then run the simulation along the periodic orbit

(shown as dot-dash lines). It is easy to observe that this negative M -value periodic

orbit coincides with the one in {M ≡ 0} hyperplane when b ≈ 170, hence it

shrinks into a point in the M diagram.

In order to clarify this lift-off bifurcation phenomena, we did another two

simulations at the sub-threshold value b = 150 and super-threshold value b = 200,

respectively. Both simulations assume the following initial data:

R(0) = 0.1, S(0) = 0.1, M (0) = 0.005, I1(0) = · · ·= I5(0) = 0.001, P (0) = 1.

At sub-threshold b = 150, the simulation is shown by Figure 5, the only

non-negative periodic orbit lies in the {M ≡ 0} hyperplane. Also the last figure

in Figure 5 depicts M (t ) converging to 0 as the solution approaches the periodic

orbit in the M = 0 hyperplane.

At super-threshold b = 200, there are two periodic orbits, one lies in

{M ≡ 0} and the other one has small but positive M -component. These are shown
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Figure 5.Numerical simulation at (ε, b ) = (0.61,150).

in Figure 6. The one with positive M -component is stable and the other one is

unstable (though stable in {M ≡ 0}). The simulation shows the solution with

M (0)> 0 is attracted by the stable periodic orbit.

We infer from Figure 4 that at high cost of resistance, bacteria are con-

trolled by a much more numerous phage population, resistant bacteria M are

non-existent or rare depending on virulence, namely b , resource is high and goes

unused, and strong predator-prey oscillations may be present.

In this chapter we have shown some simulation results. As we can see,

there are mainly two scenarios depending on the cost of resistance ε. For small ε,

stability exchanges follow the path ES → ESP → ESM P → POM and there is large

region in which ESM P is locally asymptotically stable.
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Figure 6.Numerical simulation at (ε, b ) = (0.61,200).

And the more interesting case is when ε > εc , i.e., to the right of critical

point Q, the stability switch is much more complicated, a “lift-off” bifurcation is

involved. The periodic orbit POM is stable only if the the Floquet exponent of

PO becomes positive.

It is clear that the appearance of ESM P as a positive equilibrium is associ-

ated with M RN > 1. However, as we can see in the right half of Figure 4, the

simulation suggests M does not persist even if M RN > 1. This is further con-

firmed by Figure 5 at sub-threshold value b = 150, ESM P is a positive equilibrium

but trajectories with M (0) > 0 is attracted by a periodic orbit in the {M ≡ 0} hy-

perplane. Hence M RN > 1 is not a sufficient condition for M persistence but a

positive Floquet exponent might be.
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CHAPTER 6

GENERALIZATION AND DISCUSSION

In system (2.7), there are one susceptible bacteria species, one resistant bacteria

species, and one phage species. The key assumption (F2) guarantees that suscepti-

ble bacteria S is the superior competitor for the nutrient. In this chapter we will

explore what if (F2) fails to hold.

By comparing persistence results on S and P in Chapter 3 to those claimed

in [34], we noted the persistence of S and P is not affected by the resistant bacteria

species. Therefore, it appears that the conclusion of Section 3.2 and 3.3 may still

hold after introducing more inferior resistant bacteria species.

6.1 Alternative Assumptions on Response Functions

In this section we will exam alternative assumptions on response functions. In

Chapter 2, we assumed respones functions fS(R) and fM (R) satisfy (F1)–(F2). As-

sumption (F1) is essential for our model, because it can be easily shown that if

the break-even value of a bacteria species is greater than the concentration of the

nutrient in the input flow, this particular species will be eventually washed out.

We present a short mathematical proof here:

Lemma 6.1.1. If fi (R0)<D, for i ∈ {S, M}, this bacteria species vanishes.

Proof. We use simple differential inequalities to prove this assertion. Without loss

of generality, we assume fS(R0)<D .

Note

R′(t )≤−DR(t )+DR0,

hence R∞ ≤ R0. And since fS(R0) < D , by the continuity and monotonicity of

fS , there exists ε > 0 such that fS(R) < D for all R ∈ [0, R0 + ε). In particular,
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there exists T > 0 such that for all t > T , R(t )< R0+ ε, therefore,

S ′(t )≤ ( fS(R0+ ε)−D)S(t ),

for all t > T . And consequently S(t )→ 0 in this case.

As for (F2), it is observed in Bohannan and Lenski [9] that the resistant

bacteria is usually a mutant species of susceptible ones. This mutation generally

reduces the fitness. Thus we choose (F2) in Chapter 2 as a basic assumption for

system (2.7). Nevertheless, if M does not loss any fitness due to the mutation,

or more generally, if M is a completely different species which is resistant to this

particular phage P and is superior to S, we may consider the following alternative

assumptions on the relation between fS(R) and fM (R):

F2a. fM (R) = fS(R), 0≤ R≤ R0.

F2b. fS(R)< fM (R), 0< R≤ R0.

The second case is easier to analyze. Intuitively, if M is superior to S and

phage P attacks only S, the only possibility is the extinction of both S and P . As

the solo survivor in the chemostat, M consumes as much nutrient as it could and

the system is attracted by a steady state. This intuitive observation is confirmed

by the following theorem.

Theorem 6.1.2. In (2.7), suppose (F2b) is true, all trajectories with M (0) > 0 is

attracted by EM .
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Proof. First we introduce a new variable Y = S + I + 1
b0

P , then

Y ′(t ) = fS(R(t ))S(t )−DY (t )−
1

b0

kS(t )P (t )+

∫ ∞

0

�

b (τ)

b0

− 1

�

e−DτS(t −τ)P (t −τ)dτ

≤ ( fS(R(t ))−D)Y (t ),

so
�Y

M

�′

(t )≤
�

fS(R(t ))− fM (R(t ))
�

�Y

M

�

(t ),

and consequently,
�Y

M

�

(t ) =
�Y

M

�

(t0)exp

 

∫ t

t0

fS(R(s))− fM (R(s))d s

!

,

for all t > t0 ≥ 0.

On the other hand, note by the fluctuation argument,

0≥DR0−DR∞− fS(R∞)S
∞− fM (R∞)M

∞.

Suppose R∞ = 0, then 0 ≥ DR0 leads to a contradiction. Therefore, R∞ > 0.

As we have proved in Lemma 6.1.1, R∞ ≤ R0, thus there exists t0 > 0 such that

for all t ≥ t0, R(t ) ∈ [ 1
2 R∞, R0 + 1], since fS(R)− fM (R) is strictly negative and

continuous on [ 1
2 R∞, R0 + 1], it attains its maximum on this interval, which is

again strictly negative. Thus there existsδ > 0 such that fS(R(t ))− fM (R(t ))<−δ

for all t ≥ t0. Hence
�Y

M

�

(t )≤
�Y

M

�

(t0)e
−δ(t−t0)→ 0.

By Lemma 2.3.3, all components are non-negative provided non-negative initial

data, thus S, I , and P vanish.

In the ODE system consisting of R and M :

R′(t ) =−DR(t )+DR0− fS(R(t ))S(t )− fM (R(t ))M (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ),
(6.1)
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by considering S(t ) as a function depending on time, we can treat this system as a

non-autonomous system with the following limit equation:

R′(t ) =−DR(t )+DR0− fM (R(t ))M (t ),

M ′(t ) = ( fM (R(t ))−D)M (t ),
(6.2)

By abusing the notation, clearly all trajectories are attracted by E0 or EM , however,

since M (0)> 0, no trajectories of (6.1) can be attracted by E0, thus every trajectory

with M (0)> 0 converges to EM .

The theorem above solves the problem when (F2b) is true. Now let’s pro-

ceed to (F2a), it turns out this is a more interesting case. Since this is a degenerated

case, there is a line of equilibria, we prove that every trajectory is attracted by a

point on this line, and the uniform persistence of M is obtained provided that

P RN > 1. However, a counterexamples shows the uniform persistence of S does

not hold.

To simplify the proof, we state an auxiliary lemma first.

Lemma 6.1.3. Suppose h(t ) is a non-negative and continuously differentiable func-

tion on [0,∞) and |h ′(t )| is bounded, then h∞ > 0 implies
∫∞

0 h(s)d s =∞.

Proof. Since h∞ > 0, there exists some δ > 0 such that h∞ > δ. Also, by the

boundedness of |h ′(t )|, we can choose L> 0 such that |h ′(t )|< L. Let d = δ
L .

Pick a sequence {tk}∞k=1 such that t1 > d , h(tk) > δ, and tk − tk−1 > 2d .

For each tk , define t L
k = tk − d and t R

k = tk + d , then

∫ ∞

0
h(t )d t ≥

∞
∑

k=1

∫ t R
k

t L
k

h(t )d t ≥
∞
∑

k=1

dδ =∞,

and the proof is complete.

Now we state the following theorem:
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Theorem 6.1.4. Suppose (F2a) is true, then (2.7) has a line of equilibria:

L= {(R, S, M , 0) : S +M = R0−R, S ≥ 0, M ≥ 0},

where R= f −1
S (D) = f −1

M (D).

Every trajectory with S(0) +M (0) > 0 is attracted by an equilibrium point

on L. In particular,

lim
t→∞

P (t ) = 0

for every trajectory.

Moreover, if P RN > 1 and P (0) > 0, M (0) > 0, then M persists uniformly,

that is, we have M (∞) := lim
t→∞

M (t ) exists and

M (∞)≥ R0−R− S∗ > 0.

Proof. Since fS(R) and fM (R) are identical, write f (R) as the uptake function.

Now let Y = I + 1
b0

P . We divide the proof into a few steps below.

Step 1: Both I and P converge to 0.

Suppose that P∞ > 0, so
∫∞

0 P (s)d s =∞ by Lemma 6.1.3. Formal solu-

tions of S(t ) and M (t ), i.e. (2.8) and (2.9), imply that

S(t ) =
S(0)

M (0)
M (t )exp

�

−k
∫ t

0
P (s)d s

�

. (6.3)

By the boundedness of M (t ), we have S(t )→ 0. Note

Y ′(t ) =−DY (t )+
b0− 1

b0

kS(t )P (t )

+ k
∫ ∞

0
e−Dτ

�

b (τ)

b0

− 1

�

S(t −τ)P (t −τ)d ν(τ)

≤−DY (t )+
b0− 1

b0

kS(t )P (t ).

By an application of fluctuation argument, we have 0 ≤ −DY∞, and by non-

negativity of solutions, Y∞ = 0. This contradiction shows that P∞ = 0 and

consequently, I∞ = 0.
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Step 2: Every solution with S(0), M (0)> 0 converges to a point on L.

We consider the following 2-dimensional non-autonomous system by tak-

ing P (t ) as a time-dependent function:

R′(t ) =D(R0−R(t ))− f (R(t ))(S +M )(t ),

(S +M )′(t ) = ( f (R(t ))−D)(S +M )(t )− kS(t )P (t ).
(6.4)

It is asymptotically autonomous and its limit equation is

R′(t ) =D(R0−R(t ))− f (R(t ))(S +M )(t ),

(S +M )′(t ) = ( f (R(t ))−D)(S +M )(t ).
(6.5)

This is a classical chemostat model, every solution of (6.5) converges to E0 =

(R0, 0) or E∗ = (R, R0 − R). In particular, E∗ attracts all solutions with S(0) >

0, M (0) > 0. By Theorem A.4.2, every solution of (6.4) converges to an equilib-

rium of (6.5). However, no trajectory with (S +M )(0) > 0 converges to (R0, 0)

because if so, there exists T0 > 0 such that for all t ≥ T0, R(t ) > 1
2 (R0 + R) > R

and thus

(S +M )(t ) = (S +M )(t0)exp

 

∫ t

t0

f (R(t ))−Dd s

!

> (S +M )(t0)exp

 

∫ t

t0

f
�1

2
(R0+R)

�

−Dd s

!

→∞

as t →∞, which contradicts (S +M )(t )→ 0. So all solutions of (6.4) with (S +

M )(0)> 0 are attracted by (R, R0−R).

Note
S(t )

M (t )
=

S(0)

M (0)
exp

�

−k
∫ t

0
P (s)d s

�

,

the integral is an increasing function of t , thus it either diverges to∞ or converges

to a finite limit. In both cases,

lim
t→∞

S(t )

M (t )
=

S(0)

M (0)
lim
t→∞

exp

�

−k
∫ t

0
P (s)d s

�
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exists. Together with lim
t→∞
(S+M )(t ) = R0−R, both lim

t→∞
S(t ) and lim

t→∞
M (t ) exist.

Therefore, every solution of (2.7) with S(0)> 0, M (0)> 0 is attracted by a

point on L.

Step 3: S� := lim
t→∞

S(t )> 0 and M � := lim
t→∞

M (t )> 0.

Suppose M � = 0, then S� = R0 − R. By (6.3) and non-negativity of P (t ),

we have S� ≤ S(0)
M (0)M

� = 0, which forms a contradiction. Thus M � > 0.

Now suppose S� = 0, note 1
b0

P (t )≤ Y (t ), thus

Y ′(t )≤−DY (t )+
b0− 1

b0

kS(t )P (t )≤−DY (t )+ (b0− 1)kS(t )Y (t ).

Since S(t ) → 0, we can assume S(t ) < D
2(b0−1)k after a time-shift, thus Y ′(t ) ≤

−D
2 Y (t ), and consequently,

∫ ∞

0
P (s)d s ≤ b0

∫ ∞

0
Y (s)d s ≤ b0

∫ ∞

0
Y (0)e−

D
2 s d s =

2b0

D
Y (0).

Since the integral of P is a finite number, by taking the limit of both sides of (6.3),

S� > S(0)
M (0)M

� exp(− 2k
D b0

Y (0))> 0, which contradicts the assumption that S◦ = 0.

Step 4: S does not persist uniformly. If P RN > 1 and P (0), M (0) > 0, M

persists uniformly.

For any ε > 0, without loss of generality, assume ε < R0−R. Let S(0) = ε

and M (0) = R0−R− ε, P (0) > 0, then by (6.3), since the integral of P is strictly

positive, S�

M � <
S(0)
M (0) . However, S�+M � = S(0)+M (0) = R0−R, so S� < S(0) = ε.

Therefore, for any ε > 0, we can always find a trajectory such that S� < ε.

By Laplace transform (3.10),

(λ+D)bP (λ)≥−kÓSP (λ)+ kÓSP (λ)
∫ ∞

0
b (τ)e−(λ+D)τd ν(τ).

Since S(t ) → S�, for any ε > 0, we can assume S(t ) > S� − ε after a possible

time-shift. Therefore,

(λ+D)bP (λ)≥ k(S�− ε)bP (λ)
�∫ ∞

0
b (τ)e−(λ+D)τd ν(τ)− 1

�

.
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By taking λ→ 0, and dividing both sides by bP (0)> 0, we have D ≥ k(B−1)(S�−

ε). Since this inequality holds for any ε > 0, we let ε→ 0 and get

D ≥ k(B − 1)S�. (6.6)

And (6.6) is exactly S� ≤ S∗. Therefore, M � ≥ R0−R− S∗. Note R0−R− S∗ > 0

if and only if P RN > 1 and the proof is complete.

In this section we considered two possible alternates of (F2). The latter

case (F2b) seems to be trivial, it is not difficult to imagine that an inferior com-

petitor suffering from a disease will eventually be washed out.

However, the first case leads to an interesting conclusion. It is usually

difficult to analyze local stability of a line of equilibira. But fortunately, we are

able to show some definite results on trajectories with positive initial data. As

proved in Theorem 6.1.4, every such trajectory is attracted by a unique equilib-

rium point on L, no trajectory will wander between two or more points on L. Yet

another observation is that, though phage P will eventually be washed out, the

phage reproduction number P RN still plays an important role. With P RN > 1

and P (0) > 0, we have shown that M (∞) is bounded away from 0 uniformly by

a constant. Nevertheless, the uniform persistence of S is no longer true. For any

small ε, we can always find a trajectory such that the limit of its S component is

less than ε (but strictly positive).

6.2 Generalizations

In this section we will discuss some possible generalizations on the current model.

The first possible generalization is to consider more resistant species. If we con-

sider the following system:
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R′(t ) =D(R0−R(t ))− fS(R(t ))S(t )−
n
∑

j=1

fM j
(R(t ))M j (t ),

S ′(t ) = ( fS(R(t ))−D)S(t )− kS(t )P (t ),

M ′
j (t ) = ( fM j

(R(t ))−D)M j (t ), 1≤ j ≤ n,

I ′(t ) =−DI (t )+ kS(t )P (t )− k
∫ ∞

0
e−DτS(t −τ)P (t −τ)d ν(τ),

P ′(t ) =−DP (t )− kS(t )P (t )+ k
∫ ∞

0
b (τ)e−DτS(t −τ)P (t −τ)d ν(τ).

(6.7)

And assume all fS(R) and fM j
(R)’s are continuously differentiable increasing func-

tions, together with the following hypothesis:

F1∗. fM j
(R) = fS(R), 0≤ R≤ R0 and 1≤ j ≤ n.

F2∗. fM1
(R)< fM2

(R)< · · ·< fMn
(R)< fS(R), 0< R≤ R0 and 1≤ j ≤ n.

Note (F2∗) is a very strong assumption, it actually implies that Mn is the

only possible resistant species which could persist provided positive initial data.

This is easy to see from formal solutions of M j ’s, we have
 

Mi

M j

!

(t ) =

 

Mi

M j

!

(0)exp

�
∫ t

0
fMi
(R(s))− fM j

(R(s))d s
�

, (6.8)

as before, we can show that all solutions are eventually bounded. To be more

precise, it is possible to prove similar results as stated in Lemma 2.3.4 and The-

orem 2.3.7. Moreover, it is not difficult to show R(t ) is attracted by an interval

[ 1
2 R∞, R0+ 1], which is bounded away from 0. Therefore, if i < j , (6.8) implies

Mi
M j
(t ) → 0 as t → ∞, and by the boundedness each M j , obviously Mi (t ) → 0

follows. That is, all M j ’s for 1≤ j ≤ n− 1 will be washed out.

Therefore, with a careful analysis, system (6.7) should be able to be han-

dled by the same framework as presented in previous chapters of this dissertation.

All persistence and extinction results should still be valid.
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In Levin, Stewart and Chao [26], the authors formulated a general model

(1.3), we generalize their idea here by using distributed delay to replace the discrete

delay used in [26].

We assume there are n bacteria species and l phage species together with

n× l infected bacteria species.

Besides assuming each normal bacterium utilize the nutrient, we also allow

infected bacteria to consume nutrient. And phages not only binding themselves

to healthy bacteria, they also try to attack infected bacteria.

To simplify the notation, we assume the bacteria species are

S(t ) = (S1(t ), S2(t ), . . . , Sn(t ))
T ,

and uptake functions forms a vector f (R(t )) = ( fSi
(R(t )))1≤i≤n. Phage species is

P (t ) = (P1(t ), P2(t ), . . . , Pl (t ))
T .

The adsorption rate is given by the matrix k = (ki j )n×l . Note ki j = 0 means Si is

resistant to P j .

All infected bacteria is given by a matrix

I (t ) =
�

Ii j (t )
�

n×l
,

where Ii j represents the concentration of Si infected by P j . Since infected bacteria

now consume nutrients, their uptake functions are g (R(t )) = (gI j i
(R(t )))l×n. We

also allow phage to bind themselves to infected bacteria, thus the second adsorp-

tion rate matrix is ek = (eki j )n×l .

Since this system now involves multiple bacteria species and phage, the

average number of baby phage from an infected bacterium cell vary. We use

b (τ) = (bi j (τ))n×l to represent the average phage particles released from Ii j at

an infection age τ. Also, the lysis distribution ν(τ) = (νi j (τ))n×l .
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Moreover, for a matrix A(t ,τ) = (Ai j (t ,τ))n×l , we introduce a new nota-

tion here as

〈A, ν〉 :=
�

∫∞
0 Ai j (t ,τ)d νi j

�

n×l
.

Last but not least, let diag : Rn →M (n, n), whereM (n, n) is the space of real

n × n matrices, be the map mapping a vector to a diagonal matrix such that for

any V ∈ Rn, diag(V )i i = Vi . Conversely, let diag−1 :M (n, n)→M (n, 1) ∼= Rn

be defined as diag−1(W )i =Wi i for all W ∈M (n× n).

Now we are ready to present the general model as in [26].

R′(t ) =D(R0−R(t ))− f (R(t )) · S(t )− tr(g (R(t )) · I (t )),

S ′(t ) =−DS(t )+ diag( f (R(t ))) · S(t )− diag(S(t )) · k · P,

I ′(t ) =−DI (t )+ diag(S(t )) · k · diag(P (t ))

−
¬

e−Dτ diag(S(t −τ)) · k · diag(P (t −τ)), ν
¶

,

P ′(t ) =−DP (t )− diag(P (t )) · kT · S(t )− diag−1
�

I T (t ) · ek · diag(P (t ))
�

+ diag−1
¬

e−Dτb T · diag(S(t −τ)) · k · diag(P (t −τ)), ν
¶

.

(6.9)

Clearly, system (6.9) models a more realistic scenario because in natural

environments, there are usually more than one bacteria species and more than

one phage species, and they may coexist by sharing the same resources. But un-

fortunately, due to the complicated nature of this system, it is impossible for us to

give a rigorous analysis at this moment.
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CHAPTER 7

CONCLUSIONS

In this research we studied a chemostat model (2.7) with infinite distributed delay

terms. The model formulates the phage-bacteria interaction in a chemostat. This

model is inspired by (1.5) in [26] and is an elaboration on the model (1.8) in [34].

The main difference between this model and previous models such as (1.4),

(1.6), (1.7), and (1.8) is that (2.7) contains a resistant bacteria species. Therefore

we can study whether assertion (O1)–(O2) are true and investigate the persistence

condition for resist bacteria species M . A similar model (1.10) was previously

studied by Beretta, Sakakibara and Takeuchi in [6, 5]. The difference between

(2.7) and (1.10) is that the latter was formulated by DDEs with a single discrete

delay. And the conclusion of [6, 5] does not include persistence analysis.

Therefore, to the best of our knowledge, (2.7) is the first DDE model for-

mulating interaction between a susceptible bacteria species, a resistant bacteria

species, and phage with infinite distributed delay terms. The main conclusions of

this dissertation can be summarized as below:

First we formulated a DDE model (2.7). And by using abstract results

developed in [18, 21], we proved the existence, uniqueness, and continuous de-

pendence on parameters and initial data for solutions of (2.7). We also proved

positivity and boundedness of its solutions. By introducing the phage spaceB+
D ,

we are able to define the semiflow induced by (2.7). And it also allows us to

show the existence of a compact global attractor (the compact attractor attracts

all bounded sets).

We defined a Phage Reproduction Number P RN and found that ES is

globally asymptotically stable if P RN < 1 (Theorem 3.3.3 and Lemma 3.2.1).
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Moreover, P goes extinct if P RN < 1 (Theorem 3.3.3). For P RN > 1, we showed

P persists uniformly by Theorem 3.3.1. These results confirms that the sharp

criteria for the persistence/extinction of phage P obtained in Smith and Thieme

[34] is not affected by the resistant bacteria M .

And for persistence of M , a necessary condition is given by Theorem 3.4.2.

And a sufficient condition is proved in Theorem 3.4.1. It is not optimal and may

be difficult to verify, however, the numerical simulation suggests the persistence

of M is true for a large set of parameter values.

Other analytical results on (2.7) are shown in Chapter 6, by changing (F2),

we have another two cases in which the resistant bacteria persists. In particular,

Theorem 6.1.4 shows that if M is as good as S in the competition of nutrient, it

persists provided P RN > 1.

We also investigated a special case of (2.7), i.e., when η(τ) is a Gamma

distribution. An ODE model (4.3) was obtained. We proved (4.3) has a compact

global attractor and there is a homeomorphism between attractors of (2.7) and

(4.3). Some analytical bifurcation analysis of (4.3) was presented in Section 4.4.

Numerical simulations were reported in Chapter 5. We studied the local

stability of ESP and ESM P in the (ε, b ) parameter space. It shows that there is a

large region in which ESM P is stable. And for all large b , there exists a stable period

orbit with positive M component. This is later confirmed by bifurcation diagrams

Figure 3 and Figure 4. In particular, two simulations Figure 5 and Figure 6 suggest

M RN > 1 is not a sufficient condition for the persistence of M , but a positive

Floquet exponent might be.
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In this appendix we will state some tools and technique used in this disser-
tation.

All theorems, statements or assertions in this appendix are adopted from
other books and papers. These results include:

1. The fundamental framework of phase space of functional differential equa-
tions (FDEs) developed by Hale and Kato [18] and Hino, Murakami and
Naito [21].

2. The linerized stability framework for FDEs with delays studied by Ruess
and Summers [30].

3. General persistence theory studied by Smith and Thieme [33].

4. Asymptotically autonomous ODE studied by Thieme [36].

Since different author prefers different notations and terminology, in this
appendix we may change some symbols or restate their theorems in a proper
sense. However, all credits should go to the original authors. For details, proofs,
and comments, please refer to the corresponding book or paper.

A.1 Phase space of FDEs with infinite delays
All following definitions and theorems are adopted from [18, 21, 19].

For an abstract FDE
ẋ(t ) = F (xt ), (A.1)

where xt (s) = x(t + s) for all s ∈ (−∞, 0], a phase spaceB is a Banach space with
a semi-norm ‖ ·‖B consisting of functions mapping (−∞, 0] into Rn. Phase space
B should satisfy the following admissible axioms:

B1. There exists a positive constant H and functions K ,N : R+ → R+ with K
continuous and N locally bounded, such that for any σ ∈ R and A> 0, if
ϕ : (−∞,σ +A)→Rn, ϕσ ∈B and ϕ is continuous on [σ ,σ + a), then for
every t ∈ [σ ,σ + a), the following conditions hold:

a) ϕt ∈B .

b) |ϕ(t )| ≤H‖ϕt‖B .

c) ‖ϕt‖B ≤K(t −σ) sup{|ϕ(s)| : σ ≤ s ≤ t}+N (t −σ)‖ϕσ‖B .

B2. For the exact function ϕ in (B1), ϕt is aB -valued continuous function for
t ∈ [σ ,σ +A).
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Suppose Ω ⊂ R×B is an open set, F : Ω→ Rn is a continuous function.
By [18], a solution of (A.1) on an interval I ⊂R is a function

x :
⋃

t∈I

(−∞, t]→Rn

such that (t , xt ) ∈ Ω for all t ∈ I , x(t ) is continuously differentiable and satisfies
(A.1), where x(t ) = xt (0). For any given (σ ,φ) ∈ Ω, say x is a solution of (A.1)
through (σ ,φ) if there exists some A>σ such that x is solution of (A.1) on [σ ,A]
and xσ =φ.

The following theorems are adopted from [18]:

Theorem A.1.1 (Theorem 2.1 in [18]). For any (σ ,φ) ∈ Ω, there exists a solution
of (A.1) through (σ ,φ).

Theorem A.1.2 (Theorem 2.2 in [18]). If F is locally Lipschitz, i.e., there exists a
constant eL> 0 such that |F (ϕ1)−F (ϕ2)| ≤ eL‖ϕ1−ϕ2‖B in a neighborhood of (σ ,ϕ),
then there exists a unique solution of (A.1) through (σ ,ϕ).

Theorem A.1.3 (Theorem 2.5 in [18]). Suppose x is the locally unique solution of
(A.1) through (σ ,ϕ) defined on [σ ,σ + A] for some A > 0. For any ε > 0, there
exists a δ > 0 such that if (σ ′,ϕ′) ∈ Ω, |σ ′ − σ | < δ , and ‖ϕ′ − ϕ‖B < δ , then
‖ext (σ

′,ϕ′)− xt (σ ,ϕ)‖B < ε for all t ∈ [max{σ ,σ ′},σ+A], where ex is the solution
of (A.1) through (σ ′,ϕ′).

Theorem A.1.4 (Theorem 2.6 in [18]). Suppose x is the locally unique solution
of (A.1) through (σ ,ϕ) defined on [σ ,σ + A], where A > 0 is a constant or A =
∞. Consider functional differential equation ẋ(t ) = eF (µ, xt ), where eF (µ, xt ) : R×
BD → R5 is continuously differentiable and eF (0, xt ) = F (xt ), let the locally unique
solution through (µ,σ ,ϕ) be ex(µ;σ ,ϕ). Then for each ε > 0, there exists δ > 0 such
that |ex(µ;σ ,ϕ)− x|B < ε if |µ|<δ .

And solutions extend to the maximal interval of existence:

Theorem A.1.5 (Theorem 2.4 in [18]). Suppose x is a non-continuable solution of
(A.1) on [0,A), if F takes closed bounded sets of Ω =R×B into bounded sets, then
for any closed bounded set W in Ω, there exists some tW > 0 such that (t , xt ) 6∈W for
tW ≤ t <A.

And for the existence of compact global attractor, the authors claimed
another two admissible conditions are needed:

B3. B is complete.
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B4. If {ϕn} ⊂ B converges to some ϕ uniformly on any compact subset of
(−∞, 0] and {ϕn} is Cauchy inB with respect the to seminorm ‖·‖B , then
ϕ ∈B and ‖ϕn −ϕ‖B → 0 as n→∞.

And the following theorem is true:

Theorem A.1.6 (Theorem 9.1 in [19, Chap 12]). Suppose that B satisfies (B1) –
(B4) and K(t ) is bounded for t ≥ 0 and N (t )→ 0 as t →∞. IfΦD is point dissipative
and positive orbits of bounded sets are bounded, then there is a (non-empty) compact
global attractor for (A.1).

A.2 Linearized Stability Framework for FDEs with delays
Ruess and Summers [30] studied the relation between the local stability of an
equilibrium of a non-linear FDE and its linearized reduction. The authors de-
veloped a framework and proposed a few assumptions, under which their main
results Theorem A.2.1 will hold.

The authors considered a fairly general FDE:

x ′(t ) =−αx(t )−Ax(t )+ F (xt ), t ≥ 0,
x|t = ϕ ∈B ,

(A.2)

where α is a real constant, A : D(A)⊂X →X is an accretive operator in a Banach
spaceX . AndB is an admissible function space of initial data ϕ : (−∞, 0]→X .
And F : cB →X is a Lipschitz continuous mapping from a subset cB ofB toX .

The phase spaceB should satisfy all admissible axioms (B1)–(B4) and the
following additional assumptions:

R1. The followings are true:

a) cX is a closed subset of X ;

b) cB is a closed and convex subset ofB ;

c) A : D(A)⊂X →X is an accretive operator.

d) F : cB →X is Lipschitz continuous with Lipschitz constant LF ≥ 0.

e) α ∈R and assume ζ =max{0, LF −α}.

R2. If x ∈ cX , ψ ∈ cB , λ > 0 with ζ λ < 1 and ϕx is the solution to

ϕ = λϕ′+ψ,
ϕ(0) = x,

(A.3)

then ϕx ∈ cB .
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R3. If x ∈ cX , ψ ∈ cB , and λ > 0 with ζ λ < 1, then

1

1+λα
(ψ(0)+λF (ϕx)) ∈ (Id+

λ

1+λα
A)(D(A)∩ cX ),

for every x ∈ X̂ .

Suppose ϕe is an equilibrium for (A.2), consider the following linearized
system:

x ′(t ) =−αx(t )−Ax(t )+ F ′
ϕe
(xt ), t ≥ 0,

x|t = ϕ ∈B ,
(A.4)

where F ′
ϕe

is the Fréchet derivative of F at ϕe . The the following theorem is true.

Theorem A.2.1 (Corollary 2.5 in [30]). If the zero equilibrium of (A.4) is ex-
ponentially asymptotically stable, then ϕe is an exponentially asymptotically stable
equilibrium of (A.2).

A.3 General Persistence Theory
Most definitions and results in this section are adopted from [33].

Let Θ :R+×X →X be a semiflow and ρ : X →R+ be a function, then Θ
is called “uniformly ρ-persistent” if there exists some ε > 0 such that

liminf
t→∞

ρ(Θ(t , x))> ε,

for all x ∈ X such that ρ(x) > 0. Similarly, Θ is called “uniformly weakly ρ-
persistent” if there exists some ε′ > 0 such that

limsup
t→∞

ρ(Θ(t , x))> ε′,

for all x ∈X such that ρ(x)> 0.
Usually a persistent function ρ is taken as the projection from a point

x ∈X to one of its components. For instance, in (2.7), the phase space is X =B+
D

and and semiflow induced by this equation is Φ. We define ρ : B+
D → R+ as

ρ(x) = S(0) for every x(R, S(·), M , P (·)) ∈ B+
D , then we say S persists uniformly

if Φ is uniformly ρ-persistent. Similarly, we can define uniform persistence and
uniformly weak persistence for each variable in (2.7).

The following theorem is usually called the “topological approach of uni-
formly weak persistence” or “acyclic theorem”, it gives the sufficient and neces-
sary conditions for the uniformly weak persistence.
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Theorem A.3.1 (Theorem 8.20 in [33]). Let Ω ⊂ ∪k
i=1Mi where each Mi ⊂ X0 is

compact, invariant, and isolated in X0, Mi ∩M j =∅ if i 6= j , and {M1, M2, . . . , Mk}
is acyclic. ThenΘ is uniformly weakly ρ-persistent if and only if each Mi is uniformly
weakly ρ-repelling.

To apply Theorem A.3.1, the phase space X should satisfy the following
hypothesis:

C. There exists a set U ⊂X and some c > 0 such that Φt (x)→U as t →∞ for
all x ∈X and U ∩{ρ≤ c} has compact closure in X .

In Theorem A.3.1, X0 = {x ∈ X : ρ(Θ(t , x)) = 0, ∀t ≥ 0} and Ω =
∪x∈X0

ω(x), where ω(x) is the ω-limit set of x. For sets V1,V2 ⊂ X0, write
V1 7→ V2 if there exists some total trajectory φ in X0 such that φ(0) 6∈ V1 ∪V2
but φ(−t )→ V1 and φ(t )→ V2 as t →∞. {V1,V2, . . . ,Vk} is call cyclic if, after
possibly renumbering, V1 7→V2, V2 7→V3, . . . , V j 7→V1 for some j ∈ {2,3, . . . , k}.
It is called acyclic if it is not cyclic.

Moreover, a set V0 is called isolated if there exists a neighborhood W0 of V0
such that every compact invariant set in W0 is a subset of V0. V is said to be weakly
ρ-repelling in X if there exists no x ∈ X such that ρ(x) > 0 but Θ(t , x)→ V as
t →∞. And it is called uniformly weakly ρ-repelling if there exists some ε > 0
such that

limsup
t→∞

d (Θ(t , x),V )> ε,

whenever x ∈X and ρ(x)> 0.
From the uniformly weak persistence, we can show the uniform persis-

tence by the following theorem:

Theorem A.3.2 (Theorem 4.13 in [33]). LetΘ be a semiflow with time-setR+ such
that there exists a non-empty subset U of X with the following properties:

1. For every x ∈X , ρ(x)> 0, Θ(t , x)→U as t →∞.

2. If 0< ε1 < ε2 <∞, then U ∪{ε1 ≤ ρ≤ ε2} is compact.

3. There are no x ∈ U , r, s > 0 such that ρ(x) > 0, ρ(Φ(t , x)) = 0 and ρ(Φ(t +
s , x))> 0.

Then Θ is uniformly ρ-persistent if it is uniformly weakly ρ-persistent.

In most times, showing the uniformly weak persistence is more difficult
then applying theorem A.3.2.
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And the last but not least, a very handy tool regarding the limsup and
liminf is called “fluctuation method”. For a bounded function f on R, we write

f ∞ := limsup
t→∞

f (t ) and f∞ := liminf
t→∞

f (t ).

With these notations, for a bounded and continuously differentiable function f ,
we have:

Lemma A.3.3 (Fluctuation Lemma, Proposition A.33 in [37]). There are two se-
quences sn, tn→∞ with the following properties:

f (sn)→ f∞, f ′(sn)→ 0, f (tn)→ f ∞, f ′(tn)→ 0,

for n→∞.
A.4 Asymptotically Autonomous Systems

The following results are adopted from Thieme [36].
For two ordinary differential equations in Rn:

ẋ = F1(t , x), (A.5)
ẏ = F2(y), (A.6)

where F1 and F2 are continuous functions and locally Lipschitz in x. We say (A.5)
is “asymptotically autonomous” with limit equation (A.6) if F1(t , x) → F2(x) as
t →∞, locally uniformly in x ∈Rn.

The similar concept applies to semiflows too. Assume (X , d ) is a metric
space, Θ1 : ∆ × X → X , ∆ = {(t , s); 0 ≤ s ≤ t < ∞} is a non-autonomous
continuous semiflow. Assume more that Θ2 : [0,∞)×X → X is an autonomous
continuous semiflow. Then Θ1 is said to be “asymptotically autonomous” with
limit-semiflow Θ2 if and only if

Θ1(t j + s j , s j , x j )→Θ2(t , x), j →∞

for any three sequences t j → t , s j → ∞, x j → x as j → ∞, with x, x j ∈ X ,
0≤ t , t j <∞ and s j ≥ 0.

The author claimed in [36] that if Θ1 and Θ2 are semiflows induced by
(A.5) and (A.6), respectively, then Θ1 is asymptotically autonomous with limit
system Θ2 if (A.5) is asymptotically autonomous with limit equation (A.6).

The following result on the asymptotic behavior of solutions of (A.5) is
also proved in [36]:

Theorem A.4.1 (Theorem 2.5 in [36]). ω-Θ1-limit sets of points (s , x) with pre-
compact (forward) orbits are non-empty, compact, and connected. Further they attract
the orbits, i.e., d (Θ1(t , s , x),ωΘ1

(s , x))→ 0 as t →∞.
Finally they are invariant under the limit-semiflow Θ2, in particular any

point y of ωΘ1
(s , x) lies on an entire Θ2-orbit in ωΘ1

(s , x).
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And a stronger result, i.e. Theorem A.4.2, was proved if the following
hypothesis is satisfied:

E. The equilibria ofΘ2 are isolated compactΘ-invariant subsets of X . Further
theω-Θ2-limit set of any pre-compactΘ2-orbit consists of aΘ2-equilibrium.

Theorem A.4.2 (Corollary 4.3 in [36]). Let (E) hold and assume that there is no
Θ2-cyclical chain of Θ2-equilibria. Then any pre-compact forward Φ-orbit converges
towards a Θ-equilibrium for t →∞.

For the definition of cyclicity, please see APPENDIX A.3.
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