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ABSTRACT  

   

A notable feature of advanced eusocial insect groups is a division of labor 

within the sterile worker caste. However, the physiological aspects underlying the 

differentiation of behavioral phenotypes are poorly understood in one of the most 

successful social taxa, the ants. By starting to understand the foundations on 

which social behaviors are built, it also becomes possible to better evaluate 

hypothetical explanations regarding the mechanisms behind the evolution of 

insect eusociality, such as the argument that the reproductive regulatory 

infrastructure of solitary ancestors was co-opted and modified to produce distinct 

castes.  

This dissertation provides new information regarding the internal factors 

that could underlie the division of labor observed in both founding queens and 

workers of Pogonomyrmex californicus ants, and shows that changes in task 

performance are correlated with differences in reproductive physiology in both 

castes. In queens and workers, foraging behavior is linked to elevated levels of the 

reproductively-associated juvenile hormone (JH), and, in workers, this behavioral 

change is accompanied by depressed levels of ecdysteroid hormones. In both 

castes, the transition to foraging is also associated with reduced ovarian activity. 

Further investigation shows that queens remain behaviorally plastic, even after 

worker emergence, but the association between JH and behavioral bias remains 

the same, suggesting that this hormone is an important component of behavioral 

development in these ants. In addition to these reproductive factors, treatment 

with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) 
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also causes queens to become biased towards foraging, suggesting an additional 

sensory component that could play an important role in division of labor. Overall, 

this work provides novel identification of the possible regulators behind ant 

division of labor, and suggests how reproductive physiology could play an 

important role in the evolution and regulation of non-reproductive social 

behaviors. 
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Chapter 1 

INTRODUCTION 

 

Division of Labor in Social Insects 

In most eusocial insects, members of the sterile worker caste respond 

differently to a common group environment, resulting in behavioral heterogeneity 

that builds a superorganism (Hölldobler and Wilson, 2009). This division of labor 

between workers allows social insect colonies to perform many tasks at once, and 

is a major factor in their widespread ecological success (Wilson 1971). For many 

eusocial species, task performance is temporally based, with younger workers 

performing in-nest tasks, such as brood care and nest maintenance, and older 

workers leaving the nest in favor of foraging-related tasks. This behavioral 

transition occurs over the lifespan of an individual worker, so that the majority of 

individuals perform different suites of tasks during their lives (Hölldobler and 

Wilson, 1990; 2009). Although these behaviors are usually age-dependent, 

changes in colony structure and condition can result in behavioral changes outside 

of this basic pattern.  Since this division of labor is so important in the success of 

the social insects, understanding how this system of complex behavioral 

regulation evolved is a major question in the study of social insect biology. 

There are several ultimate explanations for the course of insect evolution 

from solitary to eusocial species (Hamilton, 1964a, 1964b; Wilson and 

Hölldobler, 2005; Hölldobler and Wilson, 2009; Nowak et al., 2010). For the 

most part, however, these arguments do not address how this transition could have 
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occurred at a proximate, or mechanistic, level. Understanding this process is 

difficult, since the best studied social insect groups (honey bees and ants) are 

highly derived and have been eusocial for many millions of years (Moreau, 2006; 

Winston, 1987). However, by looking at how extant eusocial insect behaviors are 

regulated, it is possible to extrapolate how these behaviors may have evolved.  

 

The Ground Plan Hypotheses 

Research into the regulation of how individuals transition across 

behavioral phenotypes has provided insights into genetic, physiological and 

neural affecters of social behavior (e.g., Robinson et al., 1992; Ben-Shahar et al., 

2002; Amdam et al., 2004; Rueppell et al., 2004; Amdam et al., 2006; Hunt et al., 

2007; Amdam and Page, 2010). The data from these studies have been used to 

generate, and increasingly support, arguments referred to as the ground plan 

hypotheses (West-Eberhard, 1987, 1996; Amdam, 2004, 2006; Linksvayer and 

Wade, 2005; Hunt, 2005). These lines of reasoning argue that the building blocks 

of eusocial insect behaviors are derived from the reproductive regulatory 

structures of solitary ancestors: instead of evolving new genetic and physiological 

regulators for non-reproductive phenotypes, such as nurses and foragers, the 

mechanisms that controlled sequential reproductive events in solitary ancestors 

were co-opted via natural selection for social tasks decoupled from reproduction.  

These arguments began with studies exploring how social behavior and 

physiology are linked in Polistes paper wasps that found variation in ovarian 

activation was associated with behavioral differences in wasp workers 
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(references). Similar associations within a variety of eusocial wasps, ants and bees 

support this idea: slight ovarian development is generally interlinked with worker 

activities such as cell initiation, brood-rearing and production of trophic eggs, 

while individuals with undeveloped ovaries perform tasks outside the nest, such 

as foraging (West-Eberhard, 1987).  

In many solitary Aculeate wasps, the source of all eusocial hymenoptera, a 

parent forages for large quantities of food to provide for a group of offspring 

raised in a nest (Wilson and Hölldobler, 2005), and changes in these behaviors 

depend upon reproductive physiology. Therefore, it was argued that female 

worker behaviors are regulated by the same mechanisms that caused solitary 

ancestors to transition between stages of provisioning (foraging) and egg laying 

(nest-tasks). Instead of developing a new regulatory architecture to control worker 

behaviors, ovarian mechanisms were co-opted for regulating parallel behaviors in 

social workers—implying that the ovarian cycle, as a sequence of co-regulated 

physiological and behavioral events, provided a mechanistic basis for insect social 

evolution. This argument is referred to as the ovarian ground plan hypothesis 

(OGPH; West-Eberhard, 1987; 1996). 

How could the ovary, or the reproductive system in general, be used to 

develop the complex, non-reproductive behavioral suites observed in eusocial 

insects? In eusocial Hymenoptera, colonies are predominantly made up of 

females: the reproductive queen and many sterile, female workers. Since the 

female workers represent a source of reproductive conflict (Bourke and Franks, 

1995), which is deleterious to colony efficiency, selective forces have acted upon 
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the worker phenotype to prevent reproductive development and activation through 

a variety of processes (Khila and Abouheif, 2008; Hölldobler and Wilson, 2009). 

Therefore, the traditional view is that selective pressures have pushed towards 

workers with increasingly atrophied reproductive systems (Bourke and Franks, 

1995). However, abolition of reproductive structures, even just the observable 

ovary, is quite rare, having occurred only in a few ant genera (Hölldobler and 

Wilson, 1990), and there are clear correlations between division of labor and the 

status of the reproductive organs in many social insects (Seeley, 1982; West-

Eberhard, 1987; Hölldobler and Wilson, 2009). Therefore, the reproductive 

system could still play a role in functionally sterile workers. 

Investigation of the foraging preferences of honey bee workers led to 

further understanding of the reproductive underpinnings of eusocial insect 

behaviors. Bee colonies naturally vary in their predilection for storing different 

types of food, differentiating between protein (pollen) and carbohydrate (nectar) 

sources. This variation was utilized in bi-directional selection programs to breed 

colony-level phenotypes that predictably differed in the amount of pollen stored 

in the nest. These programs produced two distinct genetic strains of bees: high 

pollen-hoarding strains, which store vast amounts of pollen, and low pollen-

hoarding strains, which store mostly nectar, and very little pollen (Page and 

Fondrk, 1995). In addition to food-related behavior, however, the strains also 

diverged in traits associated with reproductive infrastructure and behavior. 

  In honey bee workers, levels of the yolk precursor protein vitellogenin 

change during adulthood, peaking during the nurse stage and decreasing 
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afterwards, which is followed by the onset of foraging. During the nursing phase, 

vitellogenin is used to produce proteinaceous food for developing larvae, 

implying that a normally reproductive protein, used to build eggs, could be co-

opted for social uses (Amdam et al., 2003).  Furthermore, in the artificially 

selected high- and low-pollen hoarding bees, strain-specific differences in both 

ovariole number and vitellogenin levels were observed. Compared to the low 

strain workers, those of the high strain have larger ovaries (i.e. more ovarioles), 

and vitellogenin expression increases more quickly and to a higher level.  The 

subsequent drop in vitellogenin expression occurs earlier in high strain bees, and 

they also initiate foraging behavior earlier (reviewed in Amdam and Page, 2010), 

suggesting that high levels of vitellogenin predispose workers to become pollen 

foragers while a drop in vitellogenin signals the onset of foraging. In support of 

these ideas, RNA interference-mediated knockdown of vitellogenin gene 

expression in wild-type (unselected) honey bees triggered early foraging onset 

and biased foragers to collect nectar (Nelson et al., 2007). Additional studies 

confirmed that having better developed ovaries correlates with high initial 

vitellogenin expression and subsequent pollen foraging in wild type bees 

(reviewed in Amdam and Page, 2010). Taken together, these results breathed new 

life into the investigation of the reproductive system’s role in social insect 

behavioral regulation.    

By using an evolutionary developmental biology approach and viewing 

honey bee behaviors as modules, it was argued that these results provided 

evidence for a solitary ground plan on which natural selection acted to produce 
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highly derived worker traits. Thus, the associations identified in honey bees were 

compared with the cycle of reproduction and behavior previously studied in 

solitary insects (Finch et al., 1995; Lin and Lee, 1999; Miyatake, 2002). In 

mosquitoes, for instance, young females seek out protein-rich blood meals to fuel 

their reproductive systems. Protein foraging ceases as eggs mature inside the 

female, and once the eggs are laid, the mosquito begins the cycle over again 

(Klowden, 1997). Aspects of these relationships appeared to be paralleled in 

honey bee workers, where reproductive traits such as vitellogenin level and ovary 

size influenced the individuals’ foraging preference for pollen —the major protein 

source of bees (Amdam et al., 2004). From such theoretical comparisons, the 

reproductive ground plan hypothesis (RGPH) was proposed.   

The RGPH hypothesis, like the OGPH, argues that co-regulatory modules 

of reproductive activity and behavior provided a substrate that evolution could act 

upon to produce distinct behavioral phenotypes. But unlike the OGPH, the RGPH 

provides a framework to account for behavioral biases within worker task groups. 

Instead of maturing or cycling through reproductive states and changing behavior 

accordingly (like the mosquito), a worker could express a distinct behavioral bias 

throughout life based on her innate reproductive tuning. Thus, worker honey bees 

tuned for ‘reproduction’, observed with higher vitellogenin levels and ovary size, 

would hoard protein-rich food sources, similar to a reproductively active solitary 

ancestor provisioning her nest. (Amdam et al., 2004; Amdam and Page, 2010).  

The work investigating these selected strains of bees, with their artificially 

extreme behavioral phenotypes, led to a broader evolutionary hypothesis 
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regarding a more generalized pathway to social evolution. However, while the 

strains with these extreme phenotypes are very useful for identifying the genetic 

and physiological links to behavioral differences, such a broad evolutionary 

hypothesis is best understood by investigation in multiple social insect lineages. 

 

Assessing Cross-Taxa Applicability: Pogonomyrmex californicus 

In order to broaden our perspective on how reproductive physiology is 

related to social insect behavioral regulation and evolution, it is necessary to 

investigate these factors in other social species.The most obvious group in which 

to expand this research is the ants. While the behavioral phenotypes in ants and 

bees are very similar, ant sociality evolved independently 115-135 million years 

ago (Brady et al., 2006, Moreau et al., 2006). Despite their widespread phenotypic 

diversity, all ant species exhibit the same temporal division of labor in the worker 

caste as observed in A. mellifera. Thus, the ants provide ideal systems for 

comparative studies with the regulatory systems previously described and 

evaluated in the honey bees. Although numerous evolutionary scenarios have 

been posited for the temporal division of labor between ant workers (reviewed in 

Hölldobler and Wilson, 1990, 2009), there have been few studies testing the 

physiological adaptations necessary to achieve such behavioral changes.    

 This dissertation research attempts to address these questions using the ant 

species Pogonomyrmex californicus. Although many ant species exhibit worker 

temporal polyethism (Hölldobler and Wilson; 1990, 2009), P. californicus was 

chosen for this research because of the behavioral variation observed in their 
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queens. First, the queens have a semiclaustral founding strategy, in which newly 

mated queens must forage for larval provisions before their first workers emerge. 

This is a temporal shift from nest-biased (non-foraging) to field-biased (foraging) 

behavior (Johnson, 2002), which parallels the behavioral transition observed in 

their workers. In addition, P. californicus populations can vary in the number of 

queens that found a nest. In some populations, aggression between founders is 

high, so queens initiate new colonies alone (hapolometrosis). In other populations, 

aggression is low and new colonies are founded by multiqueen associations 

(pleometrosis) (Cahan and Fewell, 2004; Johnson, 2004; R. Overson, unpublished 

data). Under pleometrotic conditions, behavioral biases can emerge between 

queens, so that one primarily performs nest tasks and the other forages (Dolezal et 

al., 2009).  This is similar to the system of division of labor found in many ants, 

including normal P. californicus colonies, where the functionally sterile workers 

divide their labor between nest and foraging tasks based predominantly on age 

(Hölldobler and Wilson, 2009). In addition, this species is easily manipulated in 

the laboratory; even colony demographics can be manipulated, allowing for age to 

be decoupled from behavior. Therefore, this ant species presents an opportunity to 

investigate a social ant whose reproductive caste, during a short period of their 

lives, exhibit a system of division of labor similar to workers. Based on the 

RGPH, the behavioral transitions observed in both castes are predicted to be 

regulated by physiological factors generally linked to reproductive cycling, such 

as ovarian status and reproductive hormones. 
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Reproductive Hormones and Physiology 

Two central classes of hormones that act as insect reproductive regulators 

are the juvenile hormones (JH) and the ecdysteroids. The JH family of 

sesquiterpenoid insect hormones is important in multiple developmental and 

behavioral functions across insect taxa, and has been implicated in reproductive 

maturation and behavior (Truman and Riddiford, 2002; Flatt et al., 2005) and the 

behavioral ontogeny of temporal polyethism (Robinson and Vargo, 1997, 

Hartfelder, 2000, Hartfelder and Emlen, 2005). Ecdysteroid hormones are key in 

developmental regulation of larvae, specifically during molting and 

metamorphosis (Hartfelder and Emlen, 2005, Truman and Riddiford, 2002).  

Ecdysteroids may also act independently or in conjunction with JH to produce 

organizational or activational effects on behavior (Hartfelder and Emlen, 2005) 

and gametogenesis (Klowden, 1997).   

Unfortunately, neither of these hormones has been particularly well-

studied in the majority of social insects. What has been discovered, however, is 

that, although these hormones show similar patterns across taxa, the actual 

relationships between hormones and behaviors can be quite different.  JH 

influences guarding behavior and ovarian development in the primitively eusocial 

wasp Polistes canadensis (Giray et al., 2005), queen maturation and reproduction 

in the fire ant Solenopsis invicta (Brent and Vargo, 2003), and reproductive status 

and dominance in the queenless ants Diacamma sp. (Sommer et al., 1993) and 

Streblognathus peetersi (Brent et al., 2006) and in the bee Bombus terrestris 

(Bloch et al., 2000a). In contrast, there is a wealth of information on the functions 
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of JH in honey bee worker division of labor. JH levels increase as bees shift from 

within-nest tasks to foraging, such that foragers generally have much higher JH 

titers than nest bees (reviewed in Robinson and Vargo, 1997). Treatment of nest 

bees with JH or the JH analog methoprene affects the same suite of traits as well 

as behavior, causing precocious foraging (Jaycox, 1974; Robinson, 1987). These 

results may point to obligatory roles of JH in worker division of labor. However, 

bees that perform sporadic foraging flights during the winter season do not show 

elevated JH titers (Huang and Robinson, 1995), and ablation of the corpora 

allata, the glands that produce JH, does not block foraging onset (Sullivan et al., 

2000). Thus, in honey bee workers, JH is a central integrator of forager-associated 

traits, and likely plays a role in behavioral reinforcement, but is not required for 

successful foraging to occur (Amdam and Omholt, 2003). Obviously, honey bees 

are the best studied social insect in this context; however, honey bees are highly 

derived insects, and much of their biology deviates from that of other insects 

(Winston, 1987). Therefore, there are inherent difficulties in using honey bee data 

to make evolutionary predictions in other insect groups. 

Another important reproductive hormone group, the ecdysteroids, also 

appears to play important roles in dominance and reproductive status in bumble 

bees (Bloch et al., 2000b) and S. peetersi (Brent et al., 2006). However, the 

current role of ecdysteroids in division of labor is not clear. Though ecdysteroid 

titers are very low in adult social insects, changes in titers occur during the first 

days after eclosion, and priming effects on behavior are suspected (Velarde et al., 

2009). Additionally, there is a suggested association between the ecdysone 
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cascade gene HR46 and division of labor in honey bees: when ovariole number 

was artificially increased by ovary grafting, worker behavioral development was 

accelerated with increasing HR46 transcript abundance (Wang et al., 2009).  

While the honey bee ovary is the likely source of ecdysteroids (Lafont, 20050, no 

explicit data support correlation or causation between ecdysteroid titers and 

division of labor in any social species (Hartfelder et al., 2002). 

In addition to the effects of reproductive hormones, ovarian physiology 

can also be an important component of behavior in insects. The ovary produces 

systemic factors that regulate host-seeking behavior in mosquitoes (Klowden, 

1997) and also affects lifespan and sensitivity to behavioral stimuli in Drosophila 

(Flatt et al., 2008). As previously discussed, the size of the ovary is correlated to 

the age of foraging onset in honey bees (reviewed, Amdam and Page, 2010), and 

experimental increases of ovarian mass can predictably change this phenotype, 

showing that the ovary has a causal role in honey bee behavior (Wang et al., 

2010). Its effects can take the form of differential ecdysteroid hormone production 

(Amdam et al., 2010) or changes in gene expression (Velarde et al., 2009; Wang 

et al., 2009; 2010; 2012). Thus, the ovary itself could be a key mediator of 

behavioral development in social insects, even within the functionally sterile 

worker caste.  

Reproductive physiology and behavior can be affected by a variety of 

other factors, including metabolic pathways that are involve in sensing the 

nutritional environment of the organism, such as insulin/insulin-like signaling and 

Target of Rapamycin (TOR; Oldham and Hafen, 2003). These pathways are 
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present in many eukaryotic organisms, and have effects on many different 

components of life history (Oldham and Hafen, 2003). Changes in TOR signaling, 

for example, can also affect JH levels in larval honey bees (Mutti et al., 2011) and 

cockroaches (Maestro et al., 2009); TOR is also a key player in the production of 

yolk proteins (and thus oogenesis) in mosquitoes (Hansen et al., 2004), and 

ovarian activity in Drosophila adults (Thomson and Johnson, 2010).  Despite 

inconclusive results in regards to the role of TOR in honey bee behavior (Ament 

et al., 2008), the fact that both JH and ovarian physiology affect social insect 

behavior (Hölldobler and Wilson, 2009) suggests that the TOR pathway could be 

a component of the regulation of division of labor. Thus, TOR represents another 

possible source of behavioral regulation that could have been used to build social 

phenotypes. 

 

Relationships Between Physiology and Behavior in P. californicus Queens 

and Workers 

 This dissertation research was driven by two main goals: 1) to build a 

better understanding of the proximate factors involved in division of labor in ants 

and 2) use the findings of these investigations to begin to evaluate the 

applicability of the RGPH outside of the honey bee lineage. Here, I describe how 

I investigated correlations between reproductive hormones and ovarian 

physiology in relation to behavioral division of labor in both queens and workers 

of P. californicus. This work provides novel information on the physiological 
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factors linked to behavioral differences in these ants and also provides data to 

better evaluate the RGPH.  

 In Chapter 2, published in 2009 in Animal Behaviour, I use the rare 

phenotypes of P. californicus founding queens to identify differences in JH and 

ecydsteroid levels between queens biased towards different types of tasks. As in 

honey bee workers (Sullivan et al., 2000), JH levels were elevated in queens 

biased towards foraging. Again, like other highly social species (Hartfelder et al., 

2002), ecdysteroid levels were not correlated with behavioral differences. 

 In Chapter 3, published in 2012 in the Journal of Experimental Biology, I 

identify if the same relationships between reproductive hormones and behavior 

observed in queens are found in P. californicus workers. To identify relationships 

between hormones and behavior independent of age, I used colonies of age-

typical workers, which transitioned to foraging as they grew older, as well as 

single-cohort colonies, where manipulations of colony demographics forced 

young workers to precociously forage,. This study showed that, as in queens, 

increased JH levels are associated with foraging, and, unlike in queens, increased 

ecdysteroid levels were associated with nest-biased tasks. In Chapter 4, I 

investigated the behavioral plasticity of P. californicus founding queens, using 

behavioral manipulations to show that established queens are able to respond to 

the loss of workers by reinitiating colony founding behaviors; when this occurs, 

queens divide labor into nest- and foraging-biased phenotypes, and JH patterns 

are similar to those found in Chapter 2. 
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 To identify how other components of reproductive physiology were 

involved in division of labor, I then used the same systems of founding queens 

and single-cohort workers quantify the relationship between ovarian activity and 

behavior in Chapter 5. Here, I show that, independent of age, ovarian activity is 

decreased in foraging-biased ants of both castes, indicating again that 

reproductive physiology may be an important component of division of labor in 

this species. 

 Finally, in Chapter 6, I begin to evaluate how other internal factors are 

involved in regulation of P. californicus behaviors, specifically studying whether 

the nutrient sensing and growth regulation pathway TOR affects queen division of 

labor. This study showed that treatment with a pharmacological inhibitor of this 

pathway heavily biased treated queens towards foraging, suggesting that this 

pathway could be used to regulate behavioral changes in these queens.   

 These studies provide new information showing the linkages between 

reproductive physiology and division of labor in these ants and help to fill in the 

gaps in our understanding of what factors may be involved in these behavioral 

changes. I have also provided raw material with which to better evaluate if the 

ground plan hypotheses are applicable to the ants. In general, P. californicus 

division of labor appears to have multiple links to reproductive physiology, 

consistent with this hypothesis. 
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Chapter 2 

ENDOCRINE PHYSIOLOGY OF DIVISION OF LABOR IN 

POGONOMYRMEX CALIFORNICUS FOUNDING QUEENS 

 

ABSTRACT 

 The proximate controls of a behavior in extant species can inform us about 

the evolutionary route towards that behavioral phenotype. In social insects, 

different behavioral phenotypes often correlate with divergent hormone levels, 

and, in honeybees (Apis mellifera), this insight has lead to the hypothesis that 

behavioral biases, or division of labor, emerged via co-option of endocrine 

regulatory systems that paced behavioral change during the reproductive cycle of 

solitary ancestors. Founding queens of the California harvester ant 

Pogonomyrmex californicus show discrete behavioral changes during colony 

founding, with a dichotomy between nest-biased behavior and field-biased 

behavior. Additionally, a division of labor can develop if queens found nests 

together, with one queen being nest-biased and another being field-biased. To 

determine whether behavioral diphenism can be associated with reproductive 

endocrine regulators in an ant, we measured ecdysteroid and juvenile hormone 

(JH) content in (1) single-founding queens showing normal behavioral 

progression and (2) cofounding queens showing a division of labor. We found 

that ecdysteroid levels did not correlate with behavior. JH titers, on the other 

hand, were elevated during the foraging life stage of single-founding queens as 

well as in the cofounding queens with a behavioral bias towards foraging. Our 
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results suggest that JH affects the propensity for foraging task replication in P. 

californicus, and provide evidence for a common evolutionary route towards 

social behavior in ants and bees. 

 

INTRODUCTION 

 A major factor leading to the ecological success of social insects is the 

evolution of a system of division of labor (Wilson, 1971). Although many studies 

have explored this aspect of social organization, it is unclear how complex labor 

systems evolve or whether the evolutionary route to various levels of social 

complexity is shared across insect taxa. One approach to understanding the 

evolution of division of labor is to study the proximate control of current systems 

of social organization (Robinson et al., 2005; Page et al., 2006). Research in this 

domain has focused primarily on the honeybee (Apis mellifera), a model with 

well-developed toolkits for molecular analyses, which provides insights into 

genetic, physiological and neural affecters of social behavior (e.g. Ben-Shahar et 

al., 2002; Amdam et al., 2004, 2006; Rueppell et al., 2004; Hunt et al., 2007). The 

evolutionary interpretations of the data are not always in agreement (Robinson, 

1992; Robinson and Vargo, 1997; Page and Amdam, 2007), but one idea 

receiving increasing support is that complex social phenotypes emerged through 

co-option of gene networks and endocrine signaling cascades that were regulators 

of reproduction in solitary ancestors (the reproductive ground plan hypothesis) 

(West-Eberhard, 1987, 1996; Amdam et al., 2004). 



  17 

Two endocrine factors shown to have important roles in regulating insect 

reproductive physiology and behavior are ecdysteroids and juvenile hormones 

(JH). In adult females, ecdysteroids are primarily produced in the ovary (Lafont et 

al., 2005). Changes in circulating ecdysteroid titers are correlated with ovarian 

development in the mosquito (Aedes aegypti) (Klowden, 1997). For some social 

insects, there is evidence that ecdysteroids may contribute to reproductive 

division of labor. In the primitively eusocial bumblebee, Bombus terrestris, 

differences in ecdysteroid titer appear to be linked to reproductive and social 

status (Bloch et al., 2000b). A similar positive correlation of reproductive ranking  

with ecdysteroid titer is also found in the queenless ant Streblognathus peetersi 

(Brent et al., 2006). However, this correlation does not hold for all social insects. 

For example, in adult honeybees, ecdysteroid titers remain quite low and have 

few, if any, phenotypic correlates in both queens and workers (Hartfelder et al., 

2002).  

JH appears to be important in determining behavior and reproduction in 

the solitary Drosophila melanogaster (Flatt et al., 2005) and Aedes aegypti 

(Klowden, 1997), as well as in some social insects. JH influences ovarian 

physiology in queens and guarding behavior in workers of a primitive eusocial 

wasp (Polistes canadensis) (Giray et al., 2005). It affects queen maturation and 

reproduction in Solenopsis invicta (Brent and Vargo, 2003), is correlated with 

reproductive status in the queenless ant species Diacamma  sp. (Sommer et al., 

1993) and Streblognathus peetersi (Brent et al., 2006), and JH titer and 

biosynthesis rate are correlated with social hierarchy and reproductive status in 
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bumblebee workers (Bloch et al., 2000a). JH determines ovarian morphology 

during honeybee larval development (Rembold et al., 1974; Schmidt-Capella and 

Hartfelder, 1998), and it is correlated with the onset of foraging behavior in adult 

honeybee workers (Jaycox et al., 1974; Robinson, 1987; Sullivan et al., 2003) and 

Myrmicaria eumenoides ants (Lengyel et al., 2007). 

As is evident from just this small sampling of species, these two systemic 

hormones have a prominent but quite varied role in regulating physiological and 

behavioral processes pertaining to division of labor. To better understand how this 

social complexity might evolve, it is necessary to take a comparative approach, 

examining the proximate mechanisms regulating behavior both within and 

between closely related eusocial species. In this study we are taking the former 

approach, looking at the proximate mechanism underlying the varied behaviors 

shown by queens, the female reproductives in a colony that most often resemble 

their primitive solitary ancestor during their early life stages. Queens of  

the California harvester ant, Pogonomyrmex californicus, display some specific 

life-history traits that make them useful for such studies. First, they have a semi-

claustral founding strategy, in which the newly mated queens are required to 

forage for larval provisions before their first workers emerge. Therefore, during 

the initial founding stage, the queens display a temporal shift from nest-biased 

(non-foraging) to field-biased (foraging) behavior (Johnson, 2002), which mimics 

the behavioral transition observed in their workers. In addition, P. californicus 

populations can vary in the number of queens founding a nest. In some 

populations, aggression between founders is high, so that queens initiate new 
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colonies alone (haplometrosis). In other populations, aggression is low and new 

colonies are founded by multi-queen associations (pleometrosis) (Johnson, 2004; 

R. Overson, unpublished data). Under pleometrotic conditions, behavioral biases 

can emerge between queens, so that one primarily performs nest tasks and the 

other forages. This variation in the behavior of these founding queens may be 

produced by differences in endocrine activity.  

Here, we study changes in titers of ecdysteroids and JH coinciding with 

(1) the behavioral progression of single-founding P. californicus queens and (2) 

the behavioral biases shown by cofounding P. californicus queens. If the 

partitioning of labor within a nest results from the exploitation of these endocrine 

networks, we predicted that in-nest tasks and foraging behaviors would 

correspond to different endocrine states, and that the same hormonal dynamics 

that emerged sequentially in single-founding queens would be mirrored in the 

division of labor between co-foundresses. 

 

METHODS 

Queen Collection and Observations 

 We collected Pogonomyrmex californicus founding queens during and 

directly after their yearly mating flights in July 2006 in San Diego County, 

California. Queens were collected from two behaviorally and geographically 

discrete populations in which new queens founded colonies either by themselves 

(haplometrosis) or with one or more co-founders (pleometrosis). All were kept 

under laboratory conditions for the duration of the experiment (constant 28° C, 
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natural photoperiod). Haplometrotic queens were kept plastic nest boxes 

constructed of two discrete square arenas. One arena was filled with plaster and 

contained a water-filled test tube stoppered with cotton. A plastic tube connected 

this ‘nesting’ arena to a ‘foraging’ arena that was empty save for a small pile of 

grass seed. 

 We introduced a single haplometrotic queen into each nest box, which was 

observed four times daily. ‘Nest-biased’ queens were collected for hormonal 

assays upon the first observation of eggs. ‘Field-biased’ queens were identified by 

observing the first instance of foraging activity, as noted by the movement of 

seeds from the foraging area into the nest area, near the queen’s eggs. Previous 

observations (unpublished, R. Overson) indicate there is approximately a 30 day 

span between egg laying and worker emergence, during which queens will forage. 

To ensure the queens had established a strong pattern of foraging activity prior to 

hormone analysis, individual behavior was monitored daily for 15 days following 

oviposition.   

Although pleometrotic queens are willing to co-found new nests, each is 

still fully capable of individual colony founding, exhibiting the same polyethism 

observed in haplometrotic queens. To determine whether the behavioral biases 

that can occur between co-founding queens are associated with endocrine changes 

similar to those associated with the behavioral shifts in single founding queens, 

we paired two queens, each individually marked on the abdomen with enamel 

paint (Testor’s), and placed them in a soil-filled jar to initiate a colony. 390 

queens were used to create 195 associations. The soil was moistened and a small 
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quantity of seeds was added regularly. Care was taken to limit seed availability, 

ensuring a continued need to forage.  

 We observed the behavior of paired queens for 15 minute intervals, four 

times per day for 15 days. Each observation of a queen outside of the  

nest arena foraging for seeds was noted. Once there were at least 10 observed 

foraging events, the queen pairings were categorized as being either behaviorally 

biased or non-biased. Biased associations, of which there were 44, were those in 

which one of the queens foraged for at least 80% of the recorded events. Queens 

from these pairings were placed into either the ‘nest-biased’ or ‘field-biased’ 

category based on their frequency of foraging. Non-biased associations, of which 

there were 14, were those in which each queen performed approximately 50% of 

the foraging. Any pairing which failed to meet our strict criteria for categorization 

as biased or non-biased were not used for hormonal analysis.   

Sampling and hormone assay 

 Due to limited availability, only one single-founding queen was used for 

each hormone titration. Co-founding queens were available in greater number, 

therefore two individuals from the same behavioral grouping were pooled for 

each sample to ensure a high resolution of the hormonal profiles.  

We collected the queens of all groups in 0.5 ml of methanol on ice and 

then stored them at -80° C. Care was still taken to perform the terminal sampling 

as quickly and humanely as reasonably possible. The small body size of the 

queens necessitated whole body extraction of the hormones. A glass tissue grinder 

was used to thoroughly pulverize the bodies in methanol. Hexane was used to 



  22 

extract out the JH , leaving the ecdysteroid in the methanol portion (Brent and 

Vargo, 2003). The methanol layer was lyophilized, resuspended in 250 μl 

methanol and stored at -80° C until analysis. Duplicate 10 μl aliquots of the 

methanol section of each sample were incubated overnight with 100 μl of [3H]-

20-hydroxyecdysone stock (1mg/ml, NEN) in Borate Buffer, and 100 μl of a 

polyclonal ecdysteroid antiserum (H-22 antibody, L. Gilbert, UNC-CH) at 4ºC on 

an orbital shaker. The specific ecdysteroid form is not known for this species, but 

the antibody used cross reacts with ecdysone, ecdysterone, 20-hydroxyecdysone, 

and makisterone A (Warren and Gilbert, 1986). To minimize intra- and inter-

assay variability, new standard competition curves were generated for each set of 

samples run, using 20-hydroxyecdysone Stock (Sigma) in quantities from 15.6-

2,000 pg, a range which was well within the detection limits. After 18 hours, 20 

μl of cleaned Protein A solution (Pansorbin, CalBiochem) was added to each tube 

to precipitate the complex during another hour of incubation at room temperature. 

Samples were then centrifuged at 5000g and the remaining pellet washed twice 

with 100 μl of borate buffer. The incorporation of microlabel was determined by a 

scintillation counter and ecdysteroid concentrations were estimated by nonlinear 

regression (Brent et al., 2006). 

The hexane phase from the same individual samples, which contained JH, 

was then used to titer JH using the GC-MS method of Bergot et al., (1981) as 

modified by Shu et al., (1997) and Brent and Vargo, (2003). The homogenized 

samples were eluted through aluminum oxide columns with hexane, 10% ethyl 

ether-hexane and 30% ethyl ether-hexane. The sample was then suspended and 
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derivatized in a methyl d alcohol and triflouroacetic acid solution. The derivatized 

sample was resuspended in hexane and again eluted through aluminum oxide 

columns; 30%-ethyl ether was used to remove non-derivatized components and 

ethyl-acetate-hexane was used to collect the JH derivative. The sample was then 

dried in a Speedvac and resuspended in hexane. The purified and derivatized JH 

was then analyzed using an HP 6890 Series GC (Hewlett Packard, Palo Alto, CA, 

USA) equipped with a 30 m X 0.25 mm Carbowax Econo-Cap GC column 

(Alltech, Fresno, CA, USA) coupled to a HP 5973N inert MSD/DS. JH form was 

confirmed by first running test samples in SCAN mode for known signatures of 

JH 0, JH I, JH II, JH III, and JH III ethyl; JH III was confirmed as the primary 

endogenous form in this species. Subsequent samples were analyzed using the 

MSD/DS running in SIM mode. Helium was used as a carrier gas. The JH III 

derivative was monitored at m/z 76 and 225 to ensure specificity; total abundance 

was quantified against a standard curve of JH III. The detection limit of the assay 

is approximately 1 picogram. 

Statistical Analysis 

 Due to a general lack of a normally distributed data, Mann-Whitney U 

tests were used to test for ecdysteroid and JH titer differences of the  

single-founding nest-biased queens vs. field-biased queens and co-founding nest-

biased queens vs. field-biased queens. Significance values were adjusted by 

Dunn’s Methods to compensate for the multiple comparisons between the three 

behavioral groups of queens from pleometrotic associations. All analyses were 

performed using Sigmaplot version 11.0 (Systat Software, Inc.). 
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Results 

Single-founding (haplometrotic) queens 

 The comparison of queens in the nest-biased (non-foraging) stage with 

those in the field-biased (foraging) stage showed no differences in ecdysteroid 

titer between the groups (Mann-Whitney U test: U=185, N1=25, N2=15, P=0.94, 

Fig. 2.1a). This finding is similar to results from the honey bee, where ecdysteroid 

titers remain constant in queens and in workers going through the behavioral 

transition from in-nest tasks to foraging in the field (Robinson et al., 1991). 

 In contrast, nest-biased and field-biased P. californicus queens had 

significantly different JH titers. The concentration of JH was three times higher in 

the field-biased queens compared to the nest-biased queens (Mann-Whitney U 

test: U=18, Nnest=16, Nforager=19, P=0.000001, Fig. 2.1b). These data led us to 

predict that co-founding queens that partitioned labor between nest-tasks and 

foraging would have similar ecdysteroid titers but different JH levels, with JH 

being elevated in the foraging queens.  

Co-founding (pleometrotic) queens 

 Our observations of behavior showed that among co-founding queens, 

those with a nest-bias foraged at a very low rate, which persisted throughout the 

observation period. Field-biased queens, however, showed a progressive increase 

in foraging activity during the period between founding and being sampled (Fig. 

2.2a). As predicted from the results for haplometrotically founding queens, nest- 

and field-biased pleometrotic queens did not have divergent ecdysteroid titers 

(Mann-Whitney U test: U=381, N1=N2=22, P=0.85, Fig. 2.3a). However, field-
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biased queens expressed three times the JH (Mann-Whitney U test: U=89, 

N1=N2=22, P=0.004; Fig. 2.3b), which was comparable to the mean titer observed 

in haplometrotic queens of the foraging stage (Mann-Whitney U test: U=89, 

N1=22, N2=21, P=0.330). Because the co-founding queens were of similar age, we 

can discount the possibility that the link between JH titer and behavior emerged 

simply because these traits co-occur independently as a consequence of increasing 

chronological age.   

 Queens from co-founding associations where no behavioral bias occurred 

exhibited decreasing foraging activity over time (Fig. 2.2b) but the frequency of 

activity remained within the same general range observed for the field biased 

queens (Fig. 2.2a). Further, despite a higher  foraging  more frequently than nest-

biased queens,  a post-hoc test showed that the queens in associations that did not 

partition labor (N=14) had JH titers comparable to that of nest-biased queens 

(Mann-Whitney U test: U=106, N1=22, N2=14, P=0.123), and significantly lower 

than field-biased queens (Mann-Whitney U test: U=28, N1=22, N2=14, P<0.001, 

Fig. 2.3b). These results suggest that a high JH titer may bias P. californicus 

behavior toward tasks in the field, it is not required for the onset of foraging 

behavior. 

 

DISCUSSION 

We have shown that the ecdysteroid titer is not significantly correlated 

with foraging behavior in P. californicus founding queens. It has been suggested 

that ecdysteroids lost a reproductive regulatory function in adults of highly social 
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insects in the course of becoming determinates of caste differentiation during 

larval development (Hartfelder et al., 2002). P. californicus biology may support 

this hypothesis, as this ant shows a relatively high degree of reproductive 

dimorphism between the queen and worker castes yet no apparent association 

between ecdysteroids and reproductive development in adults. Furthermore, we 

find a robust association between JH titer and behavioral biases in founding 

queens. Nest-bias is linked to a low JH level and field-bias to a high JH level. 

This association between hormone expression and behavioral bias is independent 

of age, as it occurs during the sequential behavioral development of single-

foundresses (Fig. 2.4a) as well as during the concurrent division of labor of 

similarly-aged co-founding queens (Fig. 2.4b). Yet, when behaviorally biased 

queens were compared to co-founding queens that did not exhibit bias, it became 

clear that JH itself does not cause foraging behavior. Queens without behavioral 

biases showed little within-group variation in JH, and thus, they exhibited no 

discernable differences between individuals both in terms of observed behavior 

and endocrine status (Fig. 2.4c). Our conclusion is that JH is likely one 

component of a regulatory system that can establish a behavioral bias in queens of 

P. californicus, but the hormone is not required for the performance of foraging. 

A very similar conclusion has been reached for the regulation of foraging 

behavior in honey bee workers. Foraging workers have elevated JH titers (Jaycox 

et al., 1974; Robinson, 1987; Sullivan et al., 2003), suggesting that JH may act as 

a releaser. However, workers will initiate foraging even after surgical removal of 

the corpora allata complex, which is the site of JH synthesis (Sullivan et al., 
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2003). Another endocrine component that appears to regulate the pacing of 

foraging onset in honey bees, and possibly in P. californicus, is the expression of 

vitellogenin, a yolk precursor protein. As vitellogenin titers decline in maturing 

honey bee workers (Engels and Fahrenhorst, 1974), both foraging behavior and 

JH synthesis increase (Guidugli et al., 2005; Nelson et al., 2007). JH may 

reinforce the forager behavioral state by a suppressive feedback effect on its own 

regulator, vitellogenin, and by integrating changes in gene transcription and 

metabolism that result in a distinct forager phenotype (Amdam and Omholt, 

2003). P. californicus queens do not begin foraging until after their first clutch of 

eggs have been produced, which would normally coincide with a decline in 

vitellogenin production. They also cease foraging around the time that they begin 

producing a second clutch of oocytes. This suggests that the P. californicus 

queens may rely on the same reproductively-linked double repressor mechanism 

as A. mellifera workers to regulate foraging behavior.  

The results also suggest that it is possible to develop divergent behavioral 

phenotypes by simply varying the expression of endocrine factors normally 

associated with reproductive activity. The reproductive ground plan hypothesis 

suggests that co-option of this regulatory mechanism and its subsequent 

dissociation from gametogenesis may be the common route by which insect 

species have evolved greater social complexity (Amdam et al., 2004). If future 

research shows that the behavior of the effectively sterile workers of P. 

californicus is regulated by the same endocrine mechanism used to control queen 

foraging, then this proposed evolutionary pathway would be strongly supported.  
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Figure 2.1: Ecdysteroid and JH content of singly founding P. californicus queens. 

Mean ± SE titre (pg/ant) of (a) ecdysteroids and (b) juvenile hormone (JH) of 

single-founding (haplometrotic) queens during nest-biased (nonforaging) (N) and 

field-biased (foraging) (F) stages. Letters denote significant differences between 

the groups. Sample sizes are indicated.  
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Figure 2.2: Co-founding P. californicus foraging events over time. Average 

foraging events over time for (a) field-biased (solid black line, black triangles) 

and nest-biased (dotted line, open circles) queens and (b) queens with no observed 

behavioural bias. 
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Figure 2.3: Ecdysteroid and JH content of co-founding P. californicus queens. 

Mean ± SE  titres (pg/ant) of (a) ecdysteroids and (b) juvenile hormone (JH) in 

cofounding (pleometrotic) queens from different behavioural groups: nest-biased 

(nonforaging) (N), field-biased (foraging) (F) and nonbiased (NB). Letters denote 

significant differences between the groups. Sample sizes are indicated. 
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Figure 2.4: The hypothesized relationship between juvenile hormone (JH) and the 

behavioural bias of P. californicus queens. An increased JH titre does not cause 

the onset of foraging behaviour, but biases behaviour towards foraging/outside-

nest activities. (a) Single-founding queen: the newly mated queen (1) has a low 

JH titre and remains in the nest laying eggs that she produced prior to colony 

founding. Subsequently, during the period of nest provisioning, the JH level is 

elevated, new eggs develop in the ovaries, and the queen’s probability of foraging 



  32 

task replication is increased (2). After the first workers emerge from the nest, the 

queen has a reduced JH titre and a low propensity to forage, and she begins to 

oviposit her second clutch of eggs. The presence of foraging workers increases 

the threshold stimulus necessary to induce foraging behaviour, ultimately 

confining her to the nest (3). (b) Cofounding queens that develop a division of 

labour: newly mated queens (1) have low JH titres and both remain in the nest. 

Subsequently, an increase in JH level (2) encourages foraging task replication, 

resulting in a correlation between JH and the behavioural bias towards outside-

nest activities. (c) Cofounding queens that do not divide labour show no 

behavioural bias and no difference in JH level. 
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Chapter 3 

WORKER DIVISION OF LABOR AND ENDOCRINE PHYSIOLOGY ARE  

ASSOCIATED IN THE ANT, POGONOMYRMEX CALIFORNICUS 

 

ABSTRACT 

In Pogonomyrmex californicus harvester ants, an age-associated division 

of labor occurs in the worker caste, in which young workers perform in-nest tasks 

and older workers forage for food. Here, we test whether this behavioral division 

is age-based or age-flexible, and whether it coincides with differential expression 

of systemic hormones with known roles in behavioral regulation. Whole body 

content of juvenile hormone (JH) and ecdysteroids were determined in workers 

from 1) colonies with a typical age structure (age-typical), in which workers 

transition across behaviors naturally, and from 2) single-cohort colonies, which 

are entirely composed of same-aged workers, facilitating the establishment of 

age-independent division of labor. Foragers from both colony types had higher JH 

and lower ecdysteroid content than workers performing in-nest tasks, suggesting 

age does is not the sole determinant of worker behavior. This association between 

hormone content and behavior of P. californicus workers is similar to that 

previously observed in founding queens of this species. Because these hormones 

are key regulators of development and reproductive behavior, our data are 

consistent with the reproductive ground plan hypothesis (RGPH), which posits 

that the reproductive regulatory mechanisms of solitary ancestors were co-opted 

to regulate worker behavior. 
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INTRODUCTION 

The evolution of increasing social complexity in insects culminates in 

colonial species exhibiting a reproductive division of labor (Wilson, 1971). In 

addition, a further division of tasks within the non-reproductive worker caste 

often exists (Hölldobler and Wilson, 2009). The regulatory mechanisms by which 

such complexity are produced have received considerable attention. Much of this 

work has focused on the honey bee (Apis mellifera) (e.g., Robinson, 1992; Ben-

Shahar et al., 2002; Amdam et al., 2004; Rueppell et al., 2004; Amdam et al., 

2006; Hunt et al., 2007; Ihle et al., 2010). Emerging from these studies is support 

for a hypothesis that social behavior evolved through the co-option of regulatory 

factors that originally coordinated the progression of female reproductive 

physiology and behavior in solitary ancestors – the Reproductive Ground Plan 

Hypothesis (RGPH) (West-Eberhard, 1987; West-Eberhard, 1996; Amdam et al., 

2004). Specifically, this hypothesis predicts that several non-reproductive 

behavioral traits that are observed in social insect societies are regulated by 

mechanisms normally associated with reproductive development and activity. 

While there is support for this argument in a few species of bees and wasps, 

testing in other social insect taxa is necessary to assess the broader application of 

the RGPH (Amdam and Page, 2010). Here we present the first such study for 

ants, a major taxon that independently evolved (Brady et al., 2006, Moreau et al., 

2006) a level of social complexity comparable to that of A. mellifera (Hölldobler 

and Wilson, 1990). In addition, our investigations provide basic proximate 

information on how hormones correlate with behavioral transitions in ants.  
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Numerous evolutionary scenarios have been posited for the division of 

labor between ant workers (Hölldobler and Wilson, 2009), but few studies have 

investigated connections between physiology, specifically the reproductive 

system, and the regulation of behavioral differentiation. We recently showed that 

changes in the behavior of nest-founding queens (female reproductives) of the 

California harvester ant, Pogonomyrmex californicus, are coordinated with their 

endocrine state. This finding suggests that divergent behavioral phenotypes could 

be produced by differential expression of endocrine factors normally associated 

with reproduction (Dolezal et al., 2009), and is consistent with the predictions of 

the RPGH. If the RPGH is broadly applicable, then the behavior of P. californicus 

workers should be underpinned by the same reproductive physiology that was 

observed in founding queens. Task performance in these workers is naturally age-

related (Hölldobler and Wilson, 2009; A. Dolezal, personal observation), with 

younger individuals performing in-nest tasks such as brood care and nest 

maintenance, and older individuals leaving the nest to perform foraging-related 

tasks; this temporal polyethism is one of the key factors contributing to the major 

ecological success of social insects (Hölldobler and Wilson, 2009). For many 

species exhibiting these behavioral transitions, it is possible to decouple behavior 

from age by manipulating the environment of the workers (Nelson, 1927; 

Hölldobler and Wilson, 2009), providing a useful tool for verifying the role of 

putative behavioral regulators.   

The primary regulators of both behavior and ovarian activity in insects are 

the systemic endocrine factors juvenile hormone (JH) and ecdysteroids. Both have 
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organizational, priming and/or coordinating effects (reviewed by Raikhel et al., 

2005). JH has been associated with division of labor among workers of the honey 

bee (reviewed by Robinson and Vargo, 1997), the bumble bee (Bloch et al., 

2000a), the queenless ant Streblognathus peetersi (Brent et al., 2006), and 

Polistes wasp (Giray et al., 2005). Although no causal route from ecdysteroid 

content to division of labor has been demonstrated (Hartfelder et al., 2002), this 

group of hormones is suspected of having priming effects on honey bee worker 

behavior (Velarde et al., 2009; Wang et al., 2009; Amdam and Page, 2010), and 

has links to adult reproductive activity (Robinson et al., 1991). Ecdysteroids act 

via effects on the axis of brain/fat body/ovaries (Wang et al., 2010; Yamazaki et 

al., 2011), and ecdysteroid production is often linked to insect ovarian activation 

(Raikhel et al., 2005; Dong et al., 2009). These hormones are also implicated as a 

behavioral regulator in S. peetersi (Brent et al., 2006), paper wasps (Röseler et al., 

1985) and bumble bees (Bloch et al., 2000b). In P. californicus founding queens, 

we found more JH in foragers compared to those performing in-nest tasks, while 

ecdysteroids had no apparent behavioral association (Dolezal et al., 2009). Queen 

ovarian activity (egg production) co-varies with JH and behavior, while the 

ovaries, a major source of ecdysteroids in insects (Raikhel et al., 2005), are 

invariably intact and presumably functional (A. Dolezal, unpublished data). Nurse 

workers of P. californicus, have functional ovaries that produce nutritional eggs; 

in contrast, foragers usually have degraded and presumably nonfunctional ovaries 

(Hölldobler and Wilson, 2009; A. Dolezal, unpublished data).  
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The genus Pogonomyrmex is a very suitable model species for studying 

the endocrinological parameters involved in the division of labor between nurse 

workers and foragers in ants. P. californicus is, in particular, relatively easy to 

culture in the laboratory under controlled conditions. In the current study, we 

anticipated that P. californicus worker division of labor would be associated with 

endocrine content, and that associations could be predicted from the physiology of 

queens, as suggested by the RGPH. Accordingly, we expected JH to be elevated 

in foragers, while ecdysteroids should be influenced by worker ovarian integrity, 

and therefore be reduced in foragers. To test these predictions, we examine the 

behavior and corresponding endocrine patterns in the monomorphic workers and 

foragers from both single-cohort colonies and age-typical colonies (those 

possessing a normal distribution of workers at all ages and stages of 

development). The similarly aged workers of the single-cohort colonies must 

divide labor between nest tasks and foraging, removing the influence of any age-

based behavioral biases. Although this robust approach has been widely used in 

honey bee research (Nelson, 1927; Robinson et al., 1989; Huang et al., 1995), 

single-cohort experiments are rare in ant research (Gronenberg et al., 1996; 

Haight, 2006, 2008).  

 Our analysis, which provides one of the most complete investigations 

between ant division of labor and hormone physiology, reveals significant 

associations between ant reproductive endocrine physiology and social task 

performance independent of chronological age effects. The results highlight the 

behavioral and endocrine plasticity of worker ants and provide support for the 



  38 

RPGH in a non-Apis eusocial insect species with an independent evolutionary 

origin of sociality.  

 

METHODS 

Division of labor among workers from colonies with a typical age structure 

 Mature colonies of P. californicus were maintained in the laboratory at the 

School of Life Sciences, Arizona State University, Tempe, Arizona, USA. Four 

colonies were chosen for the experiment, each reared under laboratory conditions 

(natural light cycle, ~25º C) for at least 3 years and stably exhibiting normal 

social structure. Late stage pupae from those, and five other laboratory-

maintained colonies were carefully observed. When callow (young, light-colored) 

workers emerged, all individuals that eclosed on the same day were marked by 

tying a small colored wire around the petiole (modified from Tschinkel, 2006). 

Approximately 350 newly emerged workers were identified, marked, and 

introduced in several pulses to the four experimental colonies between July 15, 

2007 and October 28, 2007. The new workers were readily accepted, and because 

they were marked with colors corresponding to their day of emergence, it was 

possible to determine their age at the point which their behavior transitioned.    

 Between July 15, 2007 and May 13, 2008, the colonies were observed one 

to three times per week, for 15-30 minutes per observation. After 15 days, we 

collected marked workers that had performed nursing behaviors; these were 

individuals that had not been observed outside of the inner nest and were 

collected from the vicinity of the brood pile. No marked workers had begun 
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foraging at this time. Colony observation continued and the day on which marked 

individuals were first observed to forage was noted. Ants handling food items or 

water outside the nest were defined as foraging. New foragers were marked with a 

small amount of colored fluorescent powder, to allow for repeated identification. 

The powder is normally observable for several days. When an individual worker 

had been observed foraging three times, it was designated as a confirmed forager. 

Although the marking powder may have been groomed off prior to confirmation 

of forager status, this would only result in some workers being observed foraging 

more than three times. For both identified nest workers and foragers, 89 

individuals were surveyed for age and collected to determine hormone content.   

Division of labor among workers from single-cohort colonies 

Local field colonies of P. californicus were partially excavated in the 

summer and fall of 2008, and as many callow workers as possible were collected 

from each nest. Cuticle pigmentation was used as a marker to identify workers of 

close to identical adult age. Only the lightest colored, and thus youngest, workers 

were collected. The workers were brought back to the laboratory, and 

approximately 200 were added to each of six experimental colonies where they 

were readily accepted. The host colonies were 1.5-2.5 years of age, with 

approximately 300 workers each. After two days, all of the original members of  

the colony were removed, leaving only the queen, eggs, larvae, and 200 young, 

same-aged workers. Four out of the six colonies recovered successfully from the 

disturbance while the remaining two failed and were excluded from the 

experiment. 
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 The four single-cohort colonies were observed 3-7 days per week, 2-3 

times per day, for 5-10 minutes per observation. Foraging individuals were 

marked as described above, with fluorescent powder. Once a worker had been 

observed foraging on three occasions, she and an in-nest worker from the same 

colony were collected. These collections continued for the duration of the 

experiment, with all workers collected between the ages of 13 and 50 days. The 

experiment was ended after 50 days, at which point the population of each colony 

had dropped below approximately 25 workers, and foraging events were rare. 

Sampling and hormone assays 

 The measurement of whole body hormone content was necessitated by the 

small size of the ants, but facilitated by the monomorphic (Johnson, 2000) bodies 

of these workers. Five workers from within the same behavioral group (ie: 

foraging or nursing) and colony type (i.e.: age-typical or single-cohort) were 

pooled to form each biological sample for hormone analysis. Workers were 

pooled between the four replicate colonies of each type, so each biological sample 

provided a representative cross-section of the sample material. Animals were 

collected directly into 0.5 mL of cold methanol (Sigma-Aldrich, St. Louis, MO, 

USA) to minimize the effect of handling stress on their endocrine state.  

Hormone extraction and purification then followed the same processes 

utilized in P. californicus queens (Dolezal et al., 2009), as modified from Shu et 

al. (1997). JH was extracted from the homogenate using hexane and was then 

purified via elution through aluminum oxide columns with hexane, 10% ethyl 

ether–hexane and 30% ethyl ether–hexane (Sigma-Aldrich). The JH was 
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derivatized using a solution of methyl-d alcohol and trifuoroacetic acid, which 

was then resuspended and eluted through aluminum oxide columns with 30%  

ethyl ether and ethyl-acetate–hexane. JH was then quantified using an  

Agilent 6890 Series GC (Hewlett Packard, Palo Alto, CA, U.S.A.) equipped with 

a 30 m x 0.25 mm Carbowax Econo-Cap GC column (Alltech, Fresno, CA, 

U.S.A.) coupled to an Agilent 5973N inert mass selective detector/detection 

software (MSD/DS).     

After JH had been extracted, the remaining homogenate in methanol was 

analyzed using a radioimmunoassay to determine ecdysteroid content. Standard 

competition curves were generated for each sample set using 20-hydroxyecdysone 

stock (Sigma-Aldrich). Duplicates of each sample were incubated overnight at 4º 

C on an orbital shaker with 100 µl of (3H)-20-hydroxyecdysone stock (1 mg/ml, 

NEN) in borate buffer, and 100 µl of a polyclonal ecdysteroid antiserum (H-22 

antibody, L. Gilbert, UNC-CH). Subsequently, samples received 20 µL of cleaned 

protein-A solution (Pansorbin; CalBiochem, San Diego, CA, USA) and were 

incubated for 1 hour at room temperature. Samples were then centrifuged and 

washed with borate buffer. Microlabel incorporation was determined by a 2450 

MicroBeta2 scintillation counter (Perkin-Elmer, Waltham, MA, U.S.A.) and 

ecdysteroid concentrations were estimated via nonlinear regression (Brent et al., 

2006). 

Statistics  

 The data for initiation of foraging, JH content, and ecdysteroid content in 

the single-cohort workers showed a general lack of normality, and did not pass the 
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assumption of homogeneity of variances (Levene’s test; p<0.05). Therefore, non-

parametric Mann-Whitney U tests were used to determine if there were significant 

differences in foraging age, JH content, and single-cohort ecdysteroid content 

between nest workers and foragers. The ecdysteroid content of the age-typical 

group met the homogeneity assumption (Levene’s test, p>0.05), but did not fit a 

normal distribution as determined by a normality plot on the residuals. The data 

conformed to the assumption of normality after log-transformation and were 

subsequently analyzed with the parametric Student’s t-test. A nonparametric 

Kruskal-Wallis one-way ANOVA was performed to identify any intercolonial 

differences in hormone levels. Spearman rank tests were used to determine if 

there were correlations between age and hormone levels under each colony 

condition. An alpha value of 0.05 was used for acceptable significance in all tests. 

The analyses were performed using Statistica 7.0 (StatSoft, Tulsa, OK, USA). 

 

RESULTS 

i) Timing and age of behavioral transitions  

 The observations of confirmed foraging by age-typical and single-cohort 

workers showed significant differences in age at foraging onset. On average, 

single-cohort workers initiated foraging five times earlier than the marked 

workers in age-typical colonies (Mann-Whitney U test: U=0.0, Num=88, Nsc=115, 

P<0.001, Fig. 3.1). In addition, the variance in age at foraging initiation was 

reduced in single-cohort colonies (Varum=4600.506, Varsc=141.75; Levene’s test, 
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F=164.76, p<0.001), reflecting the compressed timescale for the transition to 

foraging behavior. 

ii) Age-typical colonies: hormone activity 

Significant differences were observed in JH content between nest workers 

and foragers. Relative to nest workers, foragers from age-typical colonies 

contained six times the JH (Mann-Whitney U test: U=18, Nnest=16, Nforager=19, 

p<0.001, Fig. 3.2a) and half the ecdysteroids (Student’s t-test: Nnest=16, 

Nforager=19, F=1.363, p=0.043; log transformed for normalization; Fig. 3.2a). 

There were no significant differences in JH (Kruskal-Wallis ANOVA: N=35, 

H=0.299 p=0.96) or ecdysteroid (Kruskal-Wallis ANOVA: N=35, H=3.938, 

p=0.268) content between the colonies. While each replicate colony had a sample 

size that was too small for reliable statistics, the data trend of each colony was the 

same as the overall result (Fig. 3.2c). Analysis also showed that there was no 

significantcorrelation between JH and ecdysteroid content (Spearman Rank 

Correlation: Nnest=16, Nforager=19 ρ = -0.19, p>0.05). In the age-typical colonies, 

however, there was a significant correlation between hormone content and age 

when all individuals were considered together. Increased age was correlated with 

increased JH (Spearman Rank Correlation: Nnest=16, Nforager=19, ρ= 0.84, p<0.05, 

Fig. 3.3a), and decreased ecdysteroids (Spearman Rank Correlation: Nnest=16, 

Nforager=19, ρ = -0.387, p<0.05, Fig. 3.3b). 

iii) Single-cohort colonies: hormone activity 

Relative to nest workers, same-aged foragers from the single-cohort 

colonies contained ten times more JH (Mann-Whitney U test: U=3, Nnest=17, 
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Nforager=18, p<0.001, Fig. 3.2b), and 50% less ecdysteroids (Mann-Whitney U test: 

U=74, Nnest=18, Nforager=18, p=0.005, Fig. 3.2b). There were no significant 

differences in JH (Kruskal-Wallis ANOVA: N=35, H=0.313 p=0.9576) or 

ecdysteroid levels (Kruskal-Wallis ANOVA: N=35, H=3.814 p=0.2822) between 

the colonies. While statistics were not calculated for each replicate colony, the 

data trends were consistent with the overall result (Fig. 3.2d). Unlike the age-

typical colonies, single-cohort colonies exhibited a significant negative 

correlation between JH and ecdysteroid content (Spearman Rank Correlation: 

Nnest=17, Nforager=18, ρ = -0.569, p<0.05), and no correlation between age and JH 

content (Spearman Rank Correlation: Nnest=17, Nforager=18,  ρ = -0.18, p>0.05, 

Fig. 3.3c) or ecdysteroid (Spearman Rank Correlation: Nnest=17, Nforager=18, ρ = 

0.03, p>0.05, Fig. 3.3d) content. In addition, the JH content of foragers from 

single-cohort colonies was significantly higher than that of foragers from the age-

typical colonies (Mann-Whitney U test: U=48, Ntypical forager=18, NSC forager=18, 

p<0.005). 

 

DISCUSSION 

 Our observations of foraging onset times in age-typical and single-cohort 

colonies show that P. californicus worker behavior is very flexible, and can be 

accelerated substantially by modified colony demography (Fig. 3.1). This 

acceleration is well described in honey bees (Nelson, 1927; Robinson et al., 1989;  

Huang et al., 1995), and similar experiments in ants have shown that worker 

behavior can change quickly as task requirements change (Ehrhardt, 1931). 
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However, our manipulation of P. californicus worker age demography provides 

new evidence that extensive behavioral plasticity is possible in these ants. 

Workers in single-cohort colonies exhibited remarkably accelerated behavioral 

maturation and initiated foraging an average of one hundred days earlier than 

those in age-typical colonies (Fig. 3.1).  

Regardless of whether the workers were raised in age-typical or single-

cohort colonies, there was an association between endocrine patterns and 

behavioral phenotypes. JH content was consistently higher in foragers from both 

groups relative to content in the in-nest workers (Fig. 3.2a, b). Although age was 

correlated with JH content in the age-typical colonies (Fig. 3.3a), there was no 

correlation in the single-cohort colonies (Fig. 3.3c). This suggests that, while age 

may influence endocrine state to indirectly affect behavior, JH is the principal 

correlate of foraging activity. Another notable difference between these colony 

types was that JH was higher in single-cohort foragers than in age-typical foragers 

(Fig. 3.2a vs. 3.2b). Perhaps the very young workers of the single-cohort colonies 

have a higher threshold for foraging (Beshers and Fewell, 2001), and 

correspondingly, more circulating JH may be required for foraging onset to occur.  

The finding that JH was elevated in foraging workers is similar to results for P. 

californicus founding queens (Dolezal et al., 2009) and parallels information on 

the behavioral physiology of honey bees, where elevated JH  corresponds to 

foraging activity in workers (e.g.: Jaycox, 1974; Robinson, 1987; Sullivan et al., 

2000). While there is evidence that JH is not required for foraging activity in 

honey bees (Huang and Robinson, 1995; Sullivan et al., 2000) and P. californicus 
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queens (Dolezal et al., 2009), collectively, the data support the hypothesized role 

of JH as a behavioral reinforcer during and following the transition from nest 

tasks to field tasks (Amdam and Omholt, 2003), changing its role as a regulator of 

reproductive status and behavioral dominance in more primitive groups 

(Hartfelder, 2000).   

Unlike JH, ecdysteroid content did not follow the same pattern as found in 

P. californicus queens, in which no clear differences were observed in foragers 

and non-foragers (Dolezal et al. 2009). Under age-typical (Fig. 3.4a) and single-

cohort (Fig. 3.4b) circumstances, the onset of worker foraging behavior 

corresponded with both increased JH and, unlike in P. californicus queens, 

ecdysteroid content. As we speculated, ecdysteroid content was associated with 

the general trend in ovarian integrity and was thereby consistently elevated in nest 

workers compared to foragers (Fig. 3.2a, b). Active ovaries are the primary source 

of ecdysteroids in adult insects (Raikhel et al., 2005), and although P. californicus 

nest workers do not reproduce directly, their ovaries produce sterile nutritive eggs 

that are fed to developing larvae (Dolezal, personal observation). Because ovarian 

activation is often linked to ecdysteroid changes (Raikhel et al., 2005; Dong et al., 

2009), we suggest that this activity elevates the workers’ ecdysteroid level. As 

workers transition to foraging, they no longer produce nutritive eggs and their 

ovaries gradually degenerate (A. Dolezal, unpublished data; Hölldobler and 

Wilson, 2009). We suggest that these changes reduce the ovaries’ production and 

release of ecdysteroids. Unlike workers, queens forage for only a short period 

before returning to large scale egg production in the nest, and during foraging, the 
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functionality of queen ovaries is maintained (A. Dolezal, unpublished data). 

These factors can explain why ecdysteroid levels remain steady in queens instead 

of declining, as they do in workers.   

Despite a body of evidence that suggests that ecdysteroids may have lost 

their behavioral role in adults during the evolution of eusocial insect taxa 

(Hartfelder et al., 2002), there are examples of divergent ecdysteroid titers being 

associated with behavioral castes (Roseler et al., 1985; Bloch et al., 2000b, Brent 

et al., 2006), and there is emerging evidence of a link between ecdysteroids and 

foraging onset in worker honey bees (Velarde et al., 2009; Wang et al., 2010). 

Whether ecdysteroids impact the behavior of P. californicus workers remains to 

be determined. Lower levels in foragers might only reflect changes in ovarian  

physiology, and not be robustly tied to JH — the primary endocrine correlate of 

behavior. This lack of association is supported by our results; although JH and 

ecdysteroid levels were significantly correlated in single-cohort colonies, they 

were not in age-typical colonies (Fig. 3.3). Correlation in single-cohort colonies 

could be a consequence of the compressed transition that is taking place. 

Ecdysteroid-related processes are being downregulated at the same time that JH-

related processes are being upregulated, when they would otherwise be on 

different schedules. While ecdysteroids may not directly influence the expression 

of foraging behavior in P. californicus workers, their role in ovarian activity 

makes them likely endocrine facilitators of nurse behavior. Ovarian ecdysteroids 

can stimulate the production of egg yolk precursors (vitellogenins) from the insect 

fat body — a tissue that is functionally homologous to the vertebrate liver and 
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white adipose tissue (Raikhel et al., 2005). This stimulatory effect on yolk 

production implies that ecdysteroids are not only markers of ovarian activity, but 

also a functional requirement for nutritive egg production, a nurse-specific trait in 

many ants, including other Pogonomyrmex species (Wilson and Eisner, 1957; 

Hölldobler and Wilson, 1990). Whether ecdysteroids influence the rate of 

nutritive egg production in workers of P. californicus can be addressed in future 

experiments.  

Interestingly, the function and makeup of nutritive eggs in these ants bears 

a striking resemblance to secretions by the hypopharyngeal head glands of honey 

bees (Wilson and Eisner, 1957; Amdam et al., 2003). During the nest stage, these 

glands produce royal jelly that can be mixed with other secretions, nectar and 

pollen as a general food source for worker honey bee larvae and adult colony 

members, including foragers (Crailsheim and Stolberg, 1989). The 

hypopharyngeal glands use and store vitellogenin, the yolk protein that is essential 

for egg production. Metabolic consumption of vitellogenin by the bees’ 

hypopharyngeal glands has been causally linked to their production of  

proteinaceous food secretions (Amdam et al., 2003). Thereby, both ants with  

nutritive eggs and honey bees have evolved mechanisms for exploiting 

vitellogenin in social nourishment. Such nourishment is crucial to colony integrity 

and development and is much-studied in honey bees (Engels and Imperatriz-

Fonseca, 1990; Naiem et al., 1999; Amdam et al., 2003), while less work is done 

in ants (Hölldobler and Wilson, 1990; Gobin and Ito, 2000; Khila and Abouheif, 

2008).  Thus, to further understand the role of non-reproductive worker egg 
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production in P. californicus can allow for richer comparisons into how the 

reproductive infrastructure is exploited to evolve and sustain eusocial societies. 

Although much remains to be clarified, our findings can be interpreted to 

support the view that the mechanisms underlying the worker division of labor 

may have been derived from regulatory networks of reproductive development. 

The RGPH suggests that the co-option of such networks may be a common route 

from which insect societies evolved complex social behaviors (Amdam et al., 

2004). The finding that JH in P. californicus correlates with the foraging behavior 

of sterile workers in a manner similar to that of reproductive, colony-founding 

queens is consistent with this hypothesis. The inference that presumably ovarian-

produced ecdysteroids may facilitate nurse behavior also is in line with the model 

of social co-option of solitary reproductive mechanisms. While neither of these 

associations has been causally linked to behavior, the correlations described here 

provide important additional information for understanding relationships between 

reproductive physiology and complex social behavior. A more robust evaluation 

of the RGPH would be made possible by future development of protocols for  

endocrine and functional genetic manipulation of ants. The ability to push forward 

with these investigations becomes more feasible due to the increasing number of 

tools available for ant researchers (Smith et al., 2009). For example, the growing 

number of annotated ant genomes (Bonasio et al., 2010; Smith et al.,  

2011; Suen et al., 2011, Wurm et al., 2011), including a closely related 

Pogonomyrmex species (Smith et al., 2011), opens up more ant systems to studies 

of the molecular genetics of behavioral regulation. 
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Figure 3.1: Age (days) of foraging confirmation of age-typical and single-cohort 

colonies. Single-cohort workers initiated foraging significantly earlier, denoted by 

asterisks (MWU test, p<0.05). Sample sizes are indicated. 
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Figure 3.2: Mean +/- SE content (pg/ant) of juvenile hormone (JH; solid bars) and 

ecdysteroids (open bars) of (a) age-typical workers transitioning naturally from 

nest (N) to foraging (F) stages, and (b) single-cohort workers performing nest (N) 

or foraging (F) tasks in P. californicus colonies. Asterisks denote significant 

differences between compared groups. (Age-typical ecdysteroids: Student’s t-test, 

p<0.05; all others: MWU test, p<0.05) between groups. In addition, JH content of 

single-cohort foragers is significantly higher than JH content of age-typical 

foragers (MWU test, p<0.05). For both the age-typical (c) and single-cohort (d) 

colonies, each component colony has too low a sample size for significant 

statistical analyses, however, the general trend in each colony is the same as the 

overall, result (a and b, respectively). Sample sizes are indicated. 
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Figure 3.3: Distribution of hormone content in relation to age in age-typical and 

single-cohort P. californicus colonies. There is a significant positive association 

between JH (closed dots) content and age in age-typical colonies (a), but no such 

correlation exists for single-cohort colonies (b). Similarly, a significant negative 

correlation is observed between ecdysteroid (open dots) content and age in age-

typical colonies (c), but not in single-cohort colonies (d). This relationship 

illustrates that the association between hormone content and behavior is not 

necessarily age associated, as the relationship disappears in single-cohort 

colonies. Asterisks denote significant correlations, and Spearman coefficients (ρ) 

are listed (Spearman Rank Correlation, p<0.05).  
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Figure 3.4: Hypothesized relationship between JH, ecdysteroids, age, and division 

of labor in P. californicus workers. Age is defined as the age of any given worker 

cohort, from adult emergence until death. That is, as a group of workers age (X-

axis), the proportion performing different tasks changes (Y-axis). High JH content 

corresponds to foraging activities, and a high ecdysteroid content with nest tasks; 

the bisecting line represents the proportion of workers performing nurse (blue) or 

foraging (yellow), and demarks the different hormone levels. a) In age-typical 
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colonies, the vast majority of young workers has low JH levels, high ecdysteroid 

levels, and is inside the nest performing nursing tasks. As they age, more workers 

initiate foraging, which is a behavioral transition that is associated with high JH 

and low ecdysteroids. b) In single-cohort colonies, foraging onset begins at a 

much earlier age, and proceeds faster, until the colony has achieved the necessary 

balance between nurses and foragers. In both colony types, the onset of foraging 

coincides with increased JH and decreased ecdysteroid levels.  
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Chapter 4 

DIVISION OF LABOR IS ASSOCIATED WITH AGE-INDEPENDENT 

CHANGES IN OVARIAN ACTIVITY IN POGONOMYRMEX CALIFORNICUS 

HARVESTER ANTS 

 

ABSTRACT 

 An age-independent division of labor can develop in both the reproductive 

(queen) and non-reproductive (worker) castes of Pogonomyrmex californicus 

harvester ants, and individuals develop biases for in-nest activities or external 

foraging. These behavioral biases correlate with hormones that normally pace 

reproductive physiology and ovarian development. Additionally, ant ovaries 

normally atrophy in foragers compared to nest-biased workers (nurses). However, 

it is not clear whether these ovarian changes are in some way causal or due to 

changes in behavior or age, since foragers are typically older individuals. Here, 

we clarify this relationship in P. californicus queens and workers by comparing 

ovarian activity in same-aged ants that exhibit divergent behavioral biases. We 

found that foraging individuals had significantly reduced ovarian activity 

compared to their nest-biased counterparts, thereby linking changes in the ants’ 

reproductive system to social task performance rather than to age. The general 

finding that ovarian physiology is associated with social insect behaviors is 

consistent with the hypothesis that the reproductive system of solitary ancestors 

provided building blocks for the evolution of insect societies.  
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INTRODUCTION 

 In most eusocial insect species, the success of the colony hinges on the 

completion of a variety of tasks, including food acquisition, brood care, and nest 

maintenance. These tasks are completed by a cooperative division of labor within 

the predominantly sterile worker caste. This division in task performance is age-

based, with younger workers performing mostly in-nest tasks, like brood care, and 

older workers foraging for food or defending the nest (Hölldobler and Wilson, 

2009). Since the ability of workers to switch between different tasks is an 

important component of the widespread ecological success of eusocial insects 

(Wilson, 1971), investigating the underlying physiology behind behavior may 

help us understand both how insect societies are regulated and how they evolved.  

The proximate basis of temporal polyethism has been most heavily 

investigated in the honey bee, Apis mellifera (Ben-Shahar et al., 2002; Amdam et 

al., 2004, 2006; Rueppell et al., 2004; Hunt et al., 2007; Wang et al., 2010). 

Despite the fact that honey bee workers do not normally reproduce, behavioral 

transitions are affected by regulators that are normally associated with 

reproduction, including hormones (Robinson et al., 1987; Sullivan et al., 2000), 

yolk proteins (Amdam et al. 2004, Ihle et al., 2010), and even the whole ovary 

(Wang et al., 2010; reviewed by Amdam and Page, 2010). Thus, it has been 

hypothesized that these worker behaviors evolved from reproductive traits 

exhibited by a solitary ancestor. The reproductive ground plan hypothesis 

(RGPH) (West-Eberhard, 1987, 1996; Amdam et al., 2004; Amdam and Page, 

2010) argues that, instead of evolving a new regulatory infrastructure, regulators 
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of development and behavior were co-opted from the solitary ancestral state, 

decoupled from reproduction, and then utilized to control social behavior in 

functionally sterile individuals.  

 Some of the major components likely co-opted in this transition are the 

endocrine regulators of reproductive processes. Juvenile hormone (JH) and 

ecdysteroids are the primary hormonal drivers of reproduction in most insects. JH 

is a key factor in the regulation of ovarian development, oogenesis, and 

reproductive behavior in many insects, including Drosophila melanogaster (Flatt 

et al., 2005) and Aedes aegypti (Knowlden, 1997). Ecdysteroids are produced by 

the insect ovary (Hagedorn et al., 1975; Lafont et al., 2005), and are involved in 

regulating the reproductive cycle, sometimes through interactions with JH 

(Raikhel et al, 2005; Bernardi et al., 2009). There is mounting evidence that these 

hormones also play an important role in regulating social behaviors. For example, 

elevated JH levels can signal foraging onset in honey bees (Robinson, 1987; 

Sullivan et al., 2000), and, in the fire ant, Solenopsis invicta, JH mediates the 

effect of queen primer pheromones that inhibit reproductive behaviors and 

development in nestmates (Brent and Vargo, 2003). Similarly, ecdysteroid levels 

are linked to dominance status in both bumble bees (Bloch et al., 2000) and 

queenless ants (Brent et al., 2006), where they likely affect the behavioral and 

physiological changes associated with the fluid reproductive roles in these 

species.  

 In addition to these systemic hormones, the ovary itself can be an 

important regulator of insect behavior. In mosquitoes, ovarian factors help control 
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host-seeking behaviors (Klowden, 1997), while in Drosophila, the ovaries 

modulate sensitivity to stimuli that influence behavior (Flatt et al., 2008). 

Similarly, in honey bees, worker ovarian development is robustly linked to age of 

foraging onset (Page et al., 1995; Amdam et al., 2006; Rueppell et al., 2008; 

Wang et al., 2009; Amdam and Page, 2010), and has a causal role in behavioral 

development (Wang et al., 2010). The ovaries may influence worker behavior 

through differential production of ecdysteroids (Amdam et al., 2010) and 

expression of genes coding for hormone receptors and sensory perception 

(Velarde et al., 2009; Wang et al., 2009, 2010, 2012).  

In Pogonomyrmex californicus harvester ants, behavioral biases occur in 

both queens and workers. Individuals showing a bias towards foraging behavior 

exhibit elevated levels of JH relative to those that stay within the nest (Dolezal et 

al., 2009; 2012). Foraging-biased workers also have decreased levels of 

ecdysteroids (Dolezal et al., 2012). However, the hormonal association appears to 

be more correlative than directly causal, suggesting that other factors may be 

involved. While a direct link between behavior and ovarian activity has not been 

addressed in the ants, it has long been known that ovarian morphology differs 

drastically between workers in different task groups in many species. The ovaries 

of young, nurse workers are typically well-developed and active, while those of 

old foragers are heavily atrophied. However, it remains unclear whether these 

differences are due to the large age differences normally found between nurses 

and foragers in most colonies, or if these differences are linked to behavior per se 

(Hölldobler and Wilson, 1990). Based on the putative relationship between 
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reproductive physiology, reproductive hormones and behavioral preference in P. 

californicus, we hypothesize that ovarian activity is linked to non-reproductive 

behavioral preferences, independent of age. Since ovarian atrophy is associated 

with age-based foraging activity in ants (Hölldobler and Wilson, 1990), and  P. 

californicus workers show decreasing levels of the ovarian-produced ecdysteroids 

after foraging initiation, we predict that decreased ovarian activity is linked to a 

preference for foraging, even when foraging is precociously stimulated via colony 

manipulation. 

 

METHODS 

P. californicus worker observation and collection 

P. californicus single cohort colonies were formed and observed as 

described in Dolezal et al. (2012). P. californicus colonies were partially 

excavated from field sites in Maricopa County, Arizona in early November of 

2010, and the light-colored callow workers were collected. Cuticle pigmentation 

was used as a marker for worker age, and the lightest colored, and thus youngest, 

workers were collected. Workers were brought back to the laboratory, and 

approximately 200 were added to each of four experimental colonies. Host 

colonies were 1.5-2.5 years of age, and had approximately 300 workers each. 

After two days, all of the original workers were removed, leaving only the queen, 

eggs, larvae, and 200 young, same-aged workers. Colonies were then observed 3-

7 days per week, 2-3 times per day, for 5-10 minutes per observation. Foraging 

individuals were marked on the abdomen with small dots from a Sharpie® paint 
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pen. Once a worker had been observed foraging on three occasions, she and an in-

nest worker from the same colony were collected together. These collections 

continued for the duration of the experiment, and all workers were collected 

between the ages of 23 and 33 days. The experiment was ended at this time, as the 

populations of all colonies had dropped below approximately 25 workers. 

To verify that any patterns found in single cohort colonies reflected 

natural phenotypes, workers from unmanipulated field colonies were also 

collected. Age of these workers was unknown, but P. californicus workers exhibit 

age polyethism and typically transition to foraging as they age (Dolezal et al., 

2012), so foragers were presumably older than nest workers. Foragers were 

collected at bait traps near mature nests, and in-nest workers were collected from 

the brood chambers of 4 nearby colonies. 

P. californicus queen collection and observation 

P. californicus queens were collected immediately after mating flights in 

San Diego County, CA, USA in July 2008. Queens were collected from a 

population where queens readily form multiqueen associations. After collection, 

they were housed and observed as described in Dolezal et al. (2009). They were 

marked on the abdomen and thorax with one of two colors of enamel paint 

(Testor’s: Rockford, IL, USA) one queen of each color was then introduced into a 

soil-filled nest jar. The soil was watered in small quantities when it became 

observably dry, and the colonies were fed a restricted quantity of Kentucky blue 

grass seeds. Associations were observed for 15 minute intervals 4 times per day 

for 15 days to identify behavioral biases. Queens were recorded as foraging when 
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observed outside of the nest entrance searching for or handling seeds. 

Associations were classified as having a division of labor if 10 or more foraging 

events were observed and more than 80% of those events were performed by one 

queen. The queen performing the majority of the foraging was categorized as 

foraging-biased, while the one performing the minority of foraging was 

categorized as nest-biased.  

Ovarian Dissection, Fixation, and Staining 

A total of 36 P. californicus queens and 44 workers were collected after 

observations, kept on ice, and dissected in PTW (1 X PBS; 0.05% Tween-20) 

using a dissection microscope. The entire ovary of each individual was fixed in a 

solution of dimethylsulfoxide (DMSO, 20 µl), 4% paraformaldehyde (200 µl) and 

heptane (600 µl) for 20 minutes. After fixation, ovaries were washed three times 

in PBT (1 X PBS; 0.3% Triton). For long-term storage, ovaries were then washed 

in increasingly concentrated methanol:PTW solutions (30:70, 50:50, 70:30), 

culminating in pure methanol. After completing sample collection, ovaries were 

rehydrated with 3 washes of decreasingly concentrated methanol:PTW solutions 

(70:30, 50:50, 30:70) culminating in pure PTW (Khila and Abouheif, 2008). 

Samples were then incubated in 1:1000 dilution of the DNA stain DAPI (4',6-

diamidino-2-phenylindole) (Invitrogen, Carlsbad, CA, USA) for 10 minutes, 

washed three times in PTW to remove excess stain, and mounted on microscope 

slides using Vectashield (Vector Labs, Burlingame, CA, USA). The stained and 

mounted samples were imaged using a Leica SP2 multiphoton scanning laser 
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microscope (Leica Microsystems, Buffalo, IL, USA) and a Nikon Fluphot 

inverted fluorescent microscope (Nikon Instruments, Melville, NY, USA). 

Ovarian activity scoring    

The insect ovary is made up of multiple tube-like filaments, called 

ovarioles, where egg development occurs. As the eggs mature, they increase in 

size and move towards the anterior of the animal. After the oocytes reach a certain 

size and maturity, the eggs uptake large quantities of yolk proteins and thus 

become vitellogenic (reviewed in Raikhel and Dhadialla, 1992). Therefore, we 

classified developing oocytes into one of several types (described below) based 

on their number, vitellogenic status, and location in each ovariole in queens and 

workers. The number of ovarioles comprising each ovary was also noted. 

In workers, vitellogenic oocytes were identified by their large size and 

opacity, since vitellogenic oocytes are opaque and pre-vitellogenic oocytes are 

translucent (Raikhel and Dhadialla, 1992). In queens, vitellogenic oocytes were 

further classified based on their size and the status of their accompanying nurse 

cells. Large, vitellogenic (V) oocytes with completely degraded nurse cells were 

categorized as “V3”.  Smaller, vitellogenic oocytes with nurse cell clusters of 

approximately the same size were categorized as “V2”. The smallest vitellogenic 

oocytes, with nurse cell clusters larger than the oocyte, were categorized at “V1”. 

Pre-vitellogenic (PV) oocytes were categorized sequentially; the most posterior 

pre-vitellogenic oocyte was categorized as “PV1”, and each subsequent (newer) 

oocyte was labeled “PV2”, “PV3”, etc (Fig. 4.1). This approach provides a metric 

for ovarian activity, as it shows how many eggs the ovary is producing and the 
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relative ages of each egg, with V3 being the oldest, and PV3 being the youngest. 

Workers, however, produce many fewer eggs than queens, so this more specific 

technique was abandoned in favor of simplified categories.  In workers, oocytes 

were categorized simply as vitellogenic (V) or pre-vitellogenic (PV).  

Statistical analyses 

 The data for all oocyte counts from P. californicus  queens showed a 

general lack of normality and did not pass the assumption of homogeneity of 

variances (Levene’s test; P<0.05). The oocyte counts for the workers also failed to 

meet parametric assumptions of normality. This required the non-parametric 

Mann-Whitney U-tests to compare behavioral groups. A Spearman rank test was 

used to determine if correlations existed between worker age and oocyte number. 

An alpha value of 0.05 was used for significance in all tests. Analyses were 

performed using Statistica 7.0 (Statsoft, Tulsa, OK, USA).  

 

RESULTS 

Ovarian activity in P. californicus workers 

 In workers, there were no significant differences between the numbers of 

ovarioles in nest-biased (non-foraging) and foraging-biased individuals from 

single cohort colonies (Mann-Whitney U Test; Nn=20, Nf=24; p>0.05; 

Meannest=7.85, Meanforager=7.58). However, nest-biased workers had a 

significantly higher number of total oocytes (Nn=20, Nf=24; p<0.001); with the 

numbers of both pre-vitellogenic (Nn=20, Nf=24; p<0.0001) and vitellogenic 

(Nn=20, Nf=24; p<0.0001; Fig. 4.1F-G, Fig. 4.2) oocytes elevated. In fact, ovaries 
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of foragers were highly atrophied, and showed both a lack of oocytes and high 

number of apoptotic nuclei (Fig. 4.1 G). In addition, there was no correlation 

between the worker age and total oocyte number (Spearman rank correlation: 

Nn=20, Nf=24; ρ= -0.138;  p>0.05, Fig. 4.3). 

 Workers from field colonies showed a similar pattern, with significantly 

more pre-vitellogenic (Mann-Whitney U Test; Nn=20, Nf=21; p<0.0001), 

vitellogenic (Nn=20, Nf=21; p<0.0001), and total (Nn=20, Nf=21; p<0.0001) 

oocytes in nest workers. In fact, no developing oocytes were found in any 

foraging workers. While this pattern is the same as that found in single cohort 

colonies, nest-biased single cohort workers had significantly more total oocytes 

than nest-biased workers from field colonies (Nsc=20, Nfield=20; p<0.0001, Fig. 

4.4). 

Ovarian activity in co-founding P. californicus queens 

 Similarly to workers, there were no significant differences between the 

number of ovarioles in nest-biased (non-foraging) and foraging-biased queens 

(Mann-Whitney U Test; Nn=18, Nf=18; p=0.56; Meannest=29.6, 

Meanforager=29.27). However, as we found in workers, nest-biased queens had 

more total oocytes in their ovaries than did foraging-biased queens (Nn=18, 

Nf=18; p<0.001).   

Further analysis of the types of categorized oocytes in queen ovaries 

shows what types of oocytes drive these differences in queens. There were no 

significant differences in the numbers of the largest, best developed oocytes types: 

V3 (Nn=18, Nf=18; p=0.29) or V2 (Nn=18, Nf=18; p=0.18). However, nest-biased 
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queens had significantly more small V1 oocytes (Nn=18, Nf=18; p<0.001), as well 

as PV1 (Nn=18, Nf=18; p<0.001), PV2 (Nn=18, Nf=18; p<0.001), and PV3 

(Nn=18, Nf=18; p<0.001; Fig. 4.1 B-E, Fig. 4.5) pre-vitellogenic oocytes.   

 

DISCUSSION 

 Our results show that ovarian activity, denoted by the number and 

developmental stage of their oocytes, is highly correlated with task performance 

and is independent of age and reproductive caste in Pogonomyrmex californicus 

ants. In single cohort colonies, the ovary of nest-biased workers was well-

developed and had many oocytes (Fig. 4.1F), while the ovary of foraging-biased 

workers was atrophied and supported few or no oocytes (Fig. 4.1G, 4.2). Workers 

collected from field colonies showed the same pattern, verifying that these 

differences are not an artifact of laboratory manipulation. This pattern is in 

agreement with the well-known relationship between ovarian status and foraging 

in many ant species, where young nurses have more developed ovaries than old 

foragers (reviewed by Hölldobler and Wilson, 1990). In our study, however, the 

use of single cohort colonies removed age as a significant factor (Fig. 4.3). 

Additional evidence that chronological age is not the driving force behind the 

ovarian atrophy observed in foragers is that  all the workers sampled were 

relatively young, approximately 30 days post-emergence, compared to their 

potential lifespan in the laboratory (>300 days; Dolezal et al., 2012). 

It is notable that, while workers collected in the field showed the same 

pattern of elevated ovarian activity in nest workers compared to foragers, nest 
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workers from the field had, on average, fewer total oocytes than those from single 

cohort colonies (Fig. 4.4). This discrepancy may be due to differences in sampling 

technique. Collection is much more precise in laboratory colonies; nest workers 

were sampled as they tended brood in observable laboratory nests. In field 

colonies, however, nests were excavated, and nest workers were collected from 

inside brood chambers; in the disorder of excavation, workers in the transition 

from nest to foraging tasks may have also been collected. It is also possible that 

the ants collected from the field were much older that than the single cohort ants, 

and that age may still cause some impairment of ovarian function regardless of 

behavioral phenotype. Lastly, field colonies are much larger, and likely have 

many more resource demands on the workers compared to the laboratory colonies 

that were fed ad libitum. Thus, field workers may have fewer resources to devote 

to oocyte production.   

Part of the resource demands on P. californicus workers, is that, like many 

other ant species, the young nurses produce non-viable eggs to feed to developing 

brood (Wilson and Eisner, 1957; Hölldobler and Wilson, 1990; Gobin et al., 

1998). In contrast, old foragers, who have ceased nurse tasks, show ovarian 

atrophy (Hölldobler and Wilson, 1990) and no longer produce nutritive eggs. This 

association between oocyte production and behavior appears similar to the 

‘social-exploitation’ of vitellogenin by honey bee workers (Amdam and Omholt, 

2003). While reproductively active individuals normally use the protein to 

produce eggs (Raikhel and Dhadialla, 1992), honey bee nurses have repurposed 

the protein to supply the hypopharyngeal gland with nutrients necessary to 
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produce food secretions for feeding brood (Crailsheim and Stolberg, 1989; 

Amdam et al., 2003; Seehus et al., 2007). The ovaries of P. californicus workers 

likely operate in a very similar manner to accomplish resource-sharing.  

 The same relationship between task performance and oocyte quantity 

found in workers was also observed in behaviorally-biased founding queens (Fig. 

4.5). However, unlike workers, the ovary of foraging-biased queens is not 

atrophied and has some oocytes. This may be because, unlike workers, queen 

foraging behavior does not represent a terminal life stage. After the emergence of 

the first workers, queens cease foraging and then remain inside the nest as viable, 

reproductive queens for the remainder of their lives (Johnson et al., 2004; 

personal observation). While the ovaries of foraging queens do not atrophy, they 

do appear to become less active (Figs. 4.1E and 4.5) than those of non-foraging 

queens. The differences in total oocyte number between nest- and foraging-biased 

queens are driven by differences in the earlier stages of egg development, 

implying that, while both groups have some oocytes in their ovary, foraging-

biased queens are producing significantly fewer new oocytes. Nest-biased queens 

have many oocytes at all levels of development: from large, vitellogenic to very 

small, pre-vitellogenic oocytes (Fig. 4.1 B-D). However, foraging-biased queens 

appear to have significantly slower oocyte production, as they have very few, 

young, pre-vitellogenic oocytes (Fig. 4.1E). The only oocyte quantities that are 

not different between nest- and foraging-biased queens are the most highly 

developed (V1 and V2). It is most likely that no differences exist between these 
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oocyte types, as these represent the oldest oocytes, which probably began 

developing before behavioral biases emerged.    

The differences in apparent oocyte production between the cooperative 

queens beg the question of whether these differences result in some degree of 

reproductive skew; that is, whether the nest-biased queen is gaining greater 

reproductive advantage by staying in the nest and laying more eggs. While nest-

biased queens do appear to produce more eggs, any skew between the queens is 

unlikely during this stage of colony development. The first workers are produced 

from eggs laid by both queens (Johnson et al., 2004), and then, most, if not all, of 

the subsequent eggs laid prior to worker emergence are used as a nutritional 

source for feeding this first group of developing larvae (personal observation). 

This behavior is not particularly surprising, as founding queens in other species 

produce large numbers of non-viable nutritive eggs (Gobin and Ito, 2000). 

Therefore, any egg production during this time is probably used only for food 

sharing. Furthermore, even if the eggs were viable, they would certainly be raised 

into workers; since these are sterile, they would represent no reproductive benefit. 

As in most ant species, reproductive gains are only made after the colony matures 

and produces new queens and males (Hölldobler and Wilson, 1990). In the case of 

P. californicus, this occurs long after the queens have ceased participating in 

foraging and brood care. Therefore, while it is possible that reproductive skew 

may occur between the queens at some point in their life cycle, there is no 

evidence that their behavioral role during founding affects this. 
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 We also found that nest-biased queens (Fig. 4.5) had fewer total oocytes 

than workers (Fig. 4.2) despite the fact that queens have over three times more 

ovarioles. This is likely because queens are nutritionally-limited during this phase 

of their lives, and are not able to produce eggs at their highest rate. However, 

nest-biased workers are likely not as nutritionally limited, as they emerge into a 

colony buffered by stored food resources. Furthermore, queens and workers face 

very different demands for their nutritive eggs. Founding queens need to nourish a 

limited number of brood (Johnson, 2004), whereas workers must supply eggs to 

feed more brood, other workers, and the queen (Hölldobler and Wilson, 1990; 

Gobin et al., 1998). Therefore, despite the fact that workers have smaller ovaries 

than queens, they probably face a higher demand to produce nutritive oocytes 

than do founding queens.  

In conclusion, our finding that ovarian activity is linked to age-

independent behavioral changes in P. californicus workers and queens suggests 

that the ovary may play a role in the regulation of division of labor in this species. 

This finding is consistent with the RGPH, which argues that the regulatory 

infrastructure used by solitary ancestors to control reproductive behaviors may 

have been co-opted for use as the building blocks for regulating social behaviors, 

and that non-reproductive social behaviors are therefore regulated by reproductive 

factors. Despite this supporting evidence, additional work will be necessary to 

clarify the relationship between ovarian activity and behavioral development,  and 

to identify other possible regulatory roles of this reproductive organ. 
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Figure 4.1: Scoring regime and examples ovaries of P. californicus  queens and 

workers. A) Diagram of a single ovariole, showing the categorization regime for 

queen oocytes. The black triangle on the left represents the germarium, where 

new oocytes are produced; the right side is the posterior end of the ovariole. 

Vitellogenic oocytes (V) are shown in tan, and are numbered with increasing size 

(V1, V2, V3) relative to their accessory nurse cells (grey boxes). Pre-vitellogenic 

oocytes (PV1, PV2,PV3) are shown in white, and were counted sequentially. B-

G) Oocytes and ovarioles with DAPI-stained DNA. Representative oocytes 
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categories are indicated. Nurse cells (NC) and sections of the ovariole where no 

oocytes are produced (X) are also labeled. B) Collection of connected nest-biased 

queen ovarioles. C) Single nest-biased queen ovariole. D) Enhanced 

magnification of ovariole in C, better showing early stage (PV) oocytes. E) 

Ovariole of a foraging-biased queen. The ovariole is still healthy and intact, but 

lacks any early-stage (PV) oocytes. F) Ovariole of a nest-biased worker, with 

many well-developed oocytes. G) Several ovarioles of a foraging-biased worker, 

with large quantities of apoptotic nuclei and no oocytes (X). Scale bars are shown. 
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Figure 4.2: Oocyte numbers found in foraging- and nest-biased P. californicus  

workers. Mean +/- SE pre-vitellogenic (PV), vitellogenic (V), and total (T) 

oocytes found in nest-biased (white bars) and foraging-biased (black bars) single 

cohort workers. Asterisks denote significant differences (p<0.05).  
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Figure 4.3: Oocyte number as a function of age in single-cohort P. californicus 

workers that were nest- (N) or foraging-biased (F). 
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Figure 4.4: Oocyte numbers of field collected and single-cohort nest-biased 

workers. Mean +/- SE total oocytes found in field collected nest workers (FN) and 

single cohort nest workers (SCN). The groups differed significantly (P<0.05). 
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Figure 4.5: Oocyte numbers found in foraging- and nest-biased P. californicus  

founding queens. Mean +/- SE pre-vitellogenic 3, 2, 1 (PV3, PV2, PV1), 

vitellogenic 1, 2, 3 (V1, V2, V3), and total oocytes (T) found in nest-biased 

(white bars) and foraging-biased (black bars) P. californicus founding queens. 

Asterisks denote significant differences between the number of oocytes in nest-

biased and foraging-biased queens (p<0.05).  

 

 

 

 

 

 

 



  76 

Chapter 5 

POGONOMYRMEX CALIFORNICUS QUEENS REMAIN BEHAVIORALLY 

PLASTIC AFTER COLONY FOUNDING 

 

ABSTRACT 

Advanced eusocial societies are typically defined by castes with a fixed 

range of behaviors. In some species, behaviors can change as individuals 

transition between life stages, usually in a fixed pattern. In Pognomyrmex 

californicus ants, queens in their colony founding stage spend their time foraging 

and caring for their brood. They exhibit some plasticity, in that cofounding queens 

can develop a division of labor in which one queen performs all the foraging 

tasks, and the other remains in the nest caring for brood. However, after the first 

workers emerge, both queens cease these tasks, and dedicate themselves solely to 

egg-laying. Whether or not the queens retain some behavioral plasticity at this 

“permanent” egg-laying stage and can return to earlier behaviors was previously 

unknown. Here, we disrupt the nests of established queen associations in which 

foraging has already ceased, effectively re-establishing the founding stage. We 

find that queens are capable of responding to changes in the social environment 

by resetting their behavioral development and returning to founding behaviors. 

Furthermore, we find that juvenile hormone (JH) content is elevated in foraging-

biased queens compared to nest-biased queens, fitting the same pattern found in 

normal founding queens. We also observe that JH content is highly elevated in 

these reset foragers compared to previously reported levels in normal founding 
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queens. These results support a role for JH in regulating the behavioral 

development of queens, and suggest that behavioral castes may, in part, be 

maintained by changes to endocrine activational thresholds. 

 

INTRODUCTION 

 Eusocial insect societies are defined by a dichotomy between reproductive 

and sterile castes. The existence of these castes allows individuals to specialize on 

subsets of tasks, helping to optimize colony efficiency. Within the sterile worker 

caste, which performs the majority of non-reproductive behaviors, individuals 

progress on a trajectory of behavioral development in which task performance 

changes with age (Hölldobler and Wilson, 2009). Changes in behavior usually 

follow this pattern, but some degree of plasticity is maintained throughout much 

of their behavioral development, as selective advantage is likely gained by the 

ability to respond to changes in the social environment (Nelson, 1927; Hölldobler 

and Wilson, 1990). While behavioral plasticity is relatively well-studied in 

workers, this type of behavioral plasticity could also be important in the 

reproductive queen caste, which likely encounters high levels of environmental 

variation during colony founding. 

In most of the “advanced” ant subfamilies, a new colony is founded by a 

queen that uses her internal tissue resources to fuel the production of a first cohort 

of workers; during this time, she lays eggs and cares for her brood, but does not 

leave the nest. External resources are not brought into the nest until her workers 

emerge and begin foraging (Johnson, 2002; Hölldobler and Wilson, 1990).  
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However, in semi-claustral ants, like Pogonomyrmex californicus, founding 

queens lack the internal resources necessary to rear their first group of workers 

and must forage for provisions to successfully found a colony (Johnson, 2002; 

Hahn et al., 2004). In some populations of P. californicus, unrelated queens will 

cooperatively found nests. Often, queens in such groups will take equal 

responsibility for both brood care and foraging, but sometimes a strong division 

of labor develops between the founding queens. One queen may become biased 

towards leaving the nest on foraging trips while the other preferentially stays 

inside the nest, presumably caring for brood (Cahan and Fewell, 2004; Johnson, 

2004; Dolezal et al., 2009). After the first group of workers emerges, queens enter 

a new behavioral stage, dedicate their resources solely to producing eggs, and 

never leave the nest again (Johnson, 2002; personal observation).   

The emergence of workers, and their subsequent takeover of foraging and 

brood care tasks, has been hypothesized to play a role in ending queen foraging, 

possibly by increasing the threshold stimulus necessary to induce queens to leave 

the nest (Dolezal et al., 2009). In these colonies, unnecessary queen foraging is 

likely under strong negative selection, since mitigating risk to the queen is 

important for colony survival (Hölldobler and Wilson, 2009). However, there is 

probably a selective advantage for queens able to respond to environmental 

changes and reverse the normal trajectory of queen development if necessary. If 

the first clutch of workers is lost or greatly diminished, it would be beneficial for 

queens to ‘reset’ to an earlier behavioral stage and exhibit colony founding 

behaviors again. If this is the case, mechanisms would evolve to prevent the 
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queen from performing risky foraging trips after workers have taken over these 

tasks, but also to allow for a level of behavioral plasticity that lets queens respond 

to the loss of worker help.  

To build a mechanism for the regulation of queen behavioral development, 

natural selection could have acted on proximate mechanisms already present as 

behavioral regulators. One possible regulator that could have been used to affect 

these queen phenotypes is juvenile hormone (JH), a systemic hormone that has 

effects on reproductive behavioral cycling in many insects (Raikhel et al., 2005), 

including ants (Sommer et al., 1993; Brent and Vargo, 2003; Brent et al., 2006). 

In addition, foraging bias, in both solitary queens and multiqueen associations of 

P. californicus, is associated with elevated JH levels (Dolezal et al., 2009), 

suggesting that JH signaling plays an important role in the development of 

foraging biases. Similar patterns have been observed in honey bees (Giray et al., 

1999; Sullivan et al., 2000). However, in associations where no biases emerge 

(i.e., both queens forage equally), JH levels remain low, suggesting that elevated 

JH titers are not required for foraging behaviors to occur per se, but may instead 

be involved in  reinforcing foraging behavior (Dolezal et al., 2009). If queens can 

respond to worker loss by resetting to the behaviors at colony founding, and JH 

plays an important role in regulating this plasticity, JH levels should differ in a 

pattern similar to that found in normal founding queens. Specifically, if reset 

queens are able to reinitiate colony founding and develop a subsequent division of 

labor, we expect JH levels to be elevated in foraging-biased queens, but remain 

low in nest-biased and unbiased queens. 



  80 

Here, we show that queen behavior remains flexible even after a switch to 

a new life history stage. After worker emergence and cessation of queen foraging 

in multiqueen associations, removal of the workers and destruction of the nest 

resulted in a reinitiation of colony founding behaviors, showing that queens 

maintain a degree of behavioral plasticity that allows them to respond to changes 

in their social environment. In addition, these queens responded similarly to 

normal founding queens, with some associations forming a division of labor 

between nest-biased and foraging-biased individuals that was correlated with 

differences in JH titer. These data support the role of JH as a behavioral regulator 

in P. californicus.  

 

METHODS 

Behavioral observations and colony reset 

P. californicus founding queens were collected during mating flights in 

July, 2010, in San Diego County, CA, USA. Queens were brought into the 

laboratory at Arizona State University, Tempe, Arizona, USA (natural light cycle, 

~25º C) 1-2 days post-collection. Queens were marked on the abdomen and 

thorax with one of two colors of enamel paint (Testor’s: Rockford, IL, USA); one 

queen of each color was then introduced into a soil-filled nest jar. From 520 

collected queens, 260 associations were formed. The soil was watered in small 

quantities when it became observably dry, and the colonies were fed with 

restricted quantities of Kentucky blue grass seeds. Associations were observed for 

15 min. intervals, four times per day, for 15 days to identify behavioral biases 
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towards nest tasks or foraging (Dolezal et al., 2009). Subsequently, colonies were 

maintained (fed and watered) and observed several times per week until worker 

emergence.   

After approximately 80 days, a small number of workers were observed 

foraging in the 17 surviving nests. In addition, queens had not been observed 

outside for at least 15 days. At this point, the incipient colonies were disrupted: 

workers and brood were removed, and tunnels were destroyed. Queens were then 

introduced to new soil-filled jars with the same partner queens – “resetting” them 

to a founding stage with no nest or brood. They were then observed as above to 

identify whether a behaviorally biased association emerged. After 5 foraging 

bouts, queen behavior was identified as biased if 80% of the bouts were 

conducted by a single queen. If each queen performed 40-60% of the foraging 

observations, the association was identified as nonbiased.   

 

JH measurements  

Queen sampling, JH extraction, purification, and analysis were performed 

as described in Dolezal et al. (2009). Using samples from pooled whole body 

extracts of 5 queens, JH methoxyhydrin derivatives were created and quantified 

using an Agilent 6890 Series GC (Hewlett Packard, Palo Alto, CA, U.S.A.) 

equipped with a 30 m x 0.25 mm Carbowax Econo-Cap GC column (Alltech, 

Fresno, CA, U.S.A.) coupled to an Agilent 5973N inert mass selective 

detector/detection software (MSD/DS).     

 



  82 

Statistics  

Foraging-biased, nest-biased, and non-biased queen JH content was 

compared using a Kruskal-Wallis ANOVA; post-hoc analysis was conducted 

using the Mann-Whitney U test. To allow for comparisons of previous findings, 

JH content was normalized into fold differences; the mean JH content for nest-

biased queens was equated to 1, and the mean content of foragers was then scaled 

to this value. These fold differences were then compared to the fold differences 

found in a previous study (Dolezal et al., 2009). 

 

RESULTS 

 In the time between colony founding and worker emergence, colony 

mortality was very high, with only 17 associations surviving. Of these 

associations, 12 exhibited distinct behavioral biases, and 5 associations showed no 

bias. None of these associations were clearly biased before colony reset. 

JH levels were significantly different between the groups (Kruskal-Wallis 

ANOVA, p<0.001), with JH elevated in foraging-biased compared to both nest-

biased (Mann-Whitney U test, Nforager=12, Nnest=12, p<0.001) and unbiased 

(Mann-Whitney U test, Nforager=12, Nunbiased=10, p<0.001; Fig. 5.1) queens. The 

JH content of foraging-biased queens was 21.8 fold higher than their nest-biased 

counterparts. There were no significant differences in JH content between nest-

biased and unbiased queens (Mann-Whitney U test, Nnest=12, Nunbiased=12, p>0.05, 

Fig. 5.1). 
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DISCUSSION 

Removal of the workers and destruction of the nest was successful in 

‘resetting’ P. californicus queens from the established stage back to the founding 

stage. For at least some time after worker emergence, queens are able to respond 

to changes in colony environment and reinitiate founding behaviors. This type of 

regressive behavioral plasticity is well-described in the worker caste of many ant 

species, but has not been previously described in queens. In general, ant workers 

change their task performance with age, switching from nest tasks to foraging as 

they get older. However, changes in the social environment can force workers to 

deviate from this pattern (reviewed in Hölldobler and Wilson, 1990, 2009). In P. 

californicus workers, for example, colonies with made up exclusively of young, 

same-aged individuals still develop a division of labor, even though many 

workers initiate foraging much earlier than they would under normal colony 

circumstances (Dolezal et al., 2012). This level of plasticity gives workers the 

ability to change their behaviors in response to the changing needs of the colony, 

in a dynamic environment (Hölldobler and Wilson, 2009). The ability to respond 

flexibly to changes in colony caste composition likely has a similar selective 

benefit for queens. The small number of workers produced in the initial clutch 

(Johnson, 2004) puts the colony at risk for losing a significant portion of the labor 

force to environmental hazards. Queens may not be able to afford to lose their 

capacity to contribute towards securing colony resources, although their ability to 

revert may diminish as they continue to age and become increasingly reliant on 

the help of their offspring.  
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Consistent with our previous findings that JH content is correlated with 

the division of labor in both founding queens (Dolezal et al., 2009) and workers 

(Dolezal et al., 2012), a foraging bias was found to be linked to elevated JH. 

However, nonbiased queens also foraged, even in the absence of this hormonal 

stimulus, indicating that high JH levels are not required for foraging behaviors to 

occur. A similar association is found in honey bees, where elevated JH levels are 

not required for foraging onset (Huang and Robinson, 1995; Sullivan et al., 2000), 

but may reinforce behavior to increase foraging propensity (Amdam and Omholt, 

2003).. 

Comparison of the reset queens with previously described normal 

founding queens (Dolezal et al., 2009) showed substantial fold differences in JH 

content between foraging- and nest-biased queens. In normal founding 

associations, foraging queens exhibited mean JH levels 3.37 fold higher than nest-

biased queens (Dolezal et al., 2009); in reset associations, however, forager mean 

JH content was 21.8 fold higher than that of nest-biased queens. This finding may 

suggest a mechanism by which JH could regulate the transition of queens from 

the behaviors associated with a colony’s founding stage to those of the established 

stage. One possibility is that changes in JH sensitivity occur after worker 

emergence, possibly due to changes in JH receptor levels.  JH sensitivity can 

differ based on genotypic differences in honey bees (Giray et al., 1999).  

Furthermore, fire ant queens go through dramatic changes in how JH effects them 

during different life stages (Brent and Vargo, 2003), showing that the role of JH 

can differ within the life of a single individual. 
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If elevated JH levels are important in biasing P. californicus queens 

towards foraging, then it is plausible that changes in JH sensitivity could have 

been selected upon as part of a mechanism that prevents queens from leaving the 

nest after worker emergence. One means by which changes in JH sensitivity may 

be achieved is the downregulation of a JH receptor, such as the candidate JH 

receptor ultraspiracle (Riddiford, 2008). In honey bee workers, inducing such a 

reduction can, under some circumstances, result in dramatically increased JH 

levels during the transition from nursing to foraging behavior compared to 

unmanipulated workers (Y. Wang, unpublished data). This is similar to the 

disproportionate increase we observed in reset foraging queens. As queens 

develop from founding to a stage where workers are available to forage, JH 

receptor levels in queens, and thus JH sensitivity, could decrease, reducing the 

queens’ susceptibility to a JH stimulus that could cause foraging behavior. This 

change would protect queens during the established stage, when enhanced rates of 

egg production may be driven by elevated JH titers (Raikhel et al., 2005), from 

leaving the nest to forage. When worker removal occurs, acting as a stimulus for 

queens to reinitiate founding behaviors, JH sensitivity would still be low, 

necessitating an increase in JH that greatly exceeds the level needed during the 

original founding phase to induce a strong bias towards foraging.  

In summary, P. californicus queens appear to exhibit a system of 

behavioral development not unlike social insect workers. Their behavioral 

ontogeny follows a trajectory that starts with colony founding, followed by 

foraging and brood care, and terminating in a behavioral stage where they 
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dedicate their resources solely to egg-laying. However, like workers, the queens 

can respond to changes in their environment, returning to earlier task stages when 

necessary. The ability to react to a dynamic environment is likely adaptive for 

queens, since the loss of the first clutch of workers is always a possibility. 

Furthermore, we show that JH content is related to the behavioral differences 

observed in queens after colony reset, reinforcing the argument that this hormone 

is involved in the development of foraging biases. While it remains unclear 

whether JH plays a direct causal role in queen behavioral development, our results 

suggest that changes in JH sensitivity may have a modulatory role.  
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Figure 5.1: JH content of P. californicus queens after colony reset. Mean +/- SE  

JH content (pg/ant) of cofounding P. californicus queens from different 

behavioral groups after being reset to the nest-founding stage: nest-biased (RN), 

foraging-biased (RF) and nonbiased (RNB). Letters denote significant (Mann-

Whitney U test, p<0.05) differences between the groups. Sample sizes are 

indicated. 
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Chapter 6 

EFFECTS OF RAPAMYCIN TREATMENT ON TASK PREFERENCE IN 

POGONOMYRMEX CALIFORNICUS 

 

ABSTRACT 

Nutrient-sensing pathways like Target of Rapamycin (TOR) have an array 

of important effects on eukaryotic life history regulation. In eusocial insects, 

many life history traits are regulated by social interactions between colony 

members. This suggests that changes in TOR signaling could be involved in the 

regulation of social phenotypes, including the behavioral division of labor. Since 

one effect of TOR signaling is on reproductive physiology, we focus on a system 

where individuals have an active reproductive system and exhibit discrete division 

of labor: associations of Pogonomyrmex californicus queens that can develop a 

division of labor between nest- and foraging-bias during colony founding. When 

queens are treated with the pharmacological TOR inhibitor rapamycin before 

colony founding, they develop a foraging bias significantly more often than 

expected, indicating that the TOR pathway may be involved in the development 

of behavioral biases in these queens. This result supports the hypothesis that 

nutrient-sensing may be important in regulating the division of labor among social 

insects. 
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INTRODUCTION 

Some nutrient-sensing pathways, like Target of Rapamycin (TOR) 

signaling, are conserved throughout eukaryotes and contribute to essential 

patterns of life histories, including growth, development and reproduction 

(Oldham and Hafen, 2003). In most social insect species, many of these processes 

are under some level of social control; that is, they are regulated by interactions 

between colony members (Hölldobler and Wilson, 2009). This suggests that 

pathways like TOR signaling could be adapted to sculpt social phenotypes, 

including behaviors. One of the major behavioral features in social species is 

some form of division of labor. This is most notable in the eusocial insects, 

including honey bees and ants. In these groups, behavior differs among the 

members of the worker caste, which allows groups of individuals to increase 

efficiency via task specialization (e.g.: larval care vs. foraging), thereby 

enhancing their ecological success. However, the regulatory mechanisms 

underlying this division of labor are not fully understood (Wilson, 1971; 

Hölldobler and Wilson, 2009).  

TOR signaling regulates many important physiological effects in insects, 

including reproductive activity. In the German cockroach, downregulation of 

TOR signaling results in decreased production of the gonadotropic juvenile 

hormone (JH), leading to downregulation of yolk protein synthesis and 

inactivation of the ovary (Maestro et al., 2009), and TOR signaling is a key 

component of yolk protein synthesis is mosquitoes (Hansen et al., 2004). In fruit 

flies, TOR inhibition leads to egg destruction within the adult ovary (Thomson 
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and Johnson, 2010). Both JH and ovarian physiology also play important roles in 

social insect behavior, with effects on foraging onset and collection preferences 

(Hölldobler and Wilson, 2009; Amdam and Page, 2010). While the role of TOR 

has been studied in regard to honey bee division of labor, the results are 

inconclusive so far (Ament et al., 2008). If TOR signaling predominantly affects 

adult ovarian activity, as it appears to in cockroach and fruit fly adults, it may be 

difficult to ascertain its function in honey bee workers which have comparatively 

undeveloped ovaries. While differences in reproductive physiology do affect 

honey bee behavioral preferences, these are predominantly based on differences 

between individual bees’ physiology at adult emergence (e.g., ovariole number, a 

static physiological component) (Amdam and Page, 2010). As adults, changes in 

reproductive activity are small (Winston, 1987), which may make TOR-mediated 

behavioral changes difficult to observe. 

Therefore, it is desirable to study the role of TOR in modulating social 

behavior using a species that exhibits both reproductive activity and behavioral 

division of labor in the same individual, unlike in honey bees in which these are 

functions are performed separately by queens and workers, respectively (Winston, 

1987). One such species is Pogonomyrmex californicus, which exhibits 

behavioral division of labor in the sterile worker caste as well as in reproductive 

founding queens (Johnson, 2002; 2004). Unlike honey bees and many ant species, 

newly-mated P. californicus queens must both forage for provisions and care for 

larvae prior to the emergence of their first brood. Furthermore, in some 

populations, queens can found colonies cooperatively (Johnson, 2002;, 2004; 
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Dolezal et al., 2009), and within these multiqueen groups, behavioral biases can 

emerge where one queen performs nest tasks and the other forages (Dolezal et al., 

2009). These behavioral partitioning parallels that observed in workers 

(Hölldobler and Wilson, 2009; Dolezal et al., 2009; 2012), and thus provides an 

opportunity to compare behavioral physiology in both reproductives (queens) and 

non-reproductives (workers) within the same species. In both castes, the transition 

from nest tasks to foraging appears to be associated with reproductive hormones 

and ovarian physiology (Dolezal et al., 2009; 2012; unpublished data), suggesting 

a shared underlying regulatory network adapted fro multiple purposes.  

Because of these unique colony and caste dynamics, these queens 

represent a rare opportunity to study the relationship between division of labor 

and TOR signaling in a context where such relationships should be more readily 

defined and differentiated. If TOR signaling affects task performance, then 

artificial downregulation of this pathway will result in predictable behavioral 

changes. Since blocking the TOR pathway prevents oocyte maturation in 

cockroaches (Maestro et al., 2009) and Drosophila (Thomson and Johnson, 2010), 

and lower oocyte production is associated with foraging bias in queens (see 

Chapter 5), we predict that perturbation of this pathway will make queens more 

likely to specialize on foraging.   

Here, we use rapamycin/FK506 pharmacology to examine this 

relationship. Rapamycin (RAP) and FK506 are structural analogs that compete for 

the same binding protein; however, only the RAP-protein complex blocks the 

TOR pathway. Therefore, RAP action can be antagonized by the presence of 
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FK506 as a competitive inhibitor (Hansen et al., 2004). Our use of RAP/FK506 

shows that RAP treatment strongly biases queens towards both developing a 

division of labor and becoming a foraging specialist. This suggests that the TOR 

pathway may be an important regulator of queen division of labor, possibly via 

interactions with the reproductive system and brain.  

 

METHODS 

Queen collections 

P. californicus founding queens were collected in San Diego County, CA, 

USA in July 2010 and brought to the laboratory (constant 28° C, natural 

photoperiod). They were then housed in glass test tubes filled with 2mL of water 

that was stopped up with a clean cotton ball.  The queens were enclosed inside the 

tubes with another cotton ball at the end of the chamber. One of the five 

treatments described below was dissolved in the water. Queens were housed with 

access to this water for 3 days, after which they were marked using a paint pen 

(Sharpie: Oak Brook, IL, USA), with colors coded to their treatment. 

Pharmacology 

 RAP and FK506 (L.C. Laboratories, Woburn, MA, USA) were both 

dissolved in 95% ethanol and then diluted in water to 2% ethanol vehicle. This 

resulted in a final RAP concentration of 200μg/ml. To ensure effective 

competitive inhibition, FK506 final concentration was 1000μg/ml. Queens were 

treated with one of five treatments, presented as 2ml of solution inside their test 
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tube chamber: untreated water control, 2% ethanol sham, FK506, FK506+RAP 

(competitive inhibitor control of RAP), or RAP.   

Queen pairings and observations 

Next, queens were paired such that each queen that had received water 

(untreated control) was co-housed with a queen that received one of the four 

pharmacological treatments. Pairs (Sham; N=57, FK506; N=65, FK506+RAP; 

n=67, RAP; N=77) were introduced into soil-filled glass jars, where they could be 

easily observed for foraging biases (Dolezal et al., 2009). Data collection was 

performed blind to prevent observer bias; i.e., the observer was unaware of what 

treatments the color markings represented. The soil substrate was watered as 

needed, and the queen associations were fed a restricted quantity of Kentucky 

blue grass seeds. Queens were observed for 15 minute intervals four times per day 

for 15 days to identify behavioral bias; foraging was recorded when queens were 

observed outside of the nest entrance searching for or handling seeds. 

Associations were classified as having a division of labor if 10 or more foraging 

events were observed and more than 80% of those events were performed by one 

queen. The queen performing the majority of the foraging tasks was categorized 

as foraging-biased, while the one performing the minority was categorized as 

nest-biased.  

 

RESULTS 

 In P. californicus queen associations where one queen was treated with 

FK506 (N=65) or FK506+RAP (N=70), a division of labor occurred as often as 
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expected, using the sham control (N=67) as an expected value (Chi-squared test ,  

p>0.05). In associations where the treated queen received RAP (N=77), a division 

of labor occurred significantly more often that would be expected (Chi-squared 

test, p<0.05; Fig. 6.1). When associations did exhibit a division of labor, the 

incidences of foraging bias in queens treated with sham (N=16), FK506 (N=15), 

or FK506+RAP (N=13) did not differ from a 50/50 expected distribution (Chi-

squared test, p>0.05). However, RAP (N=35) treated queens became foragers 

significantly more often than expected (Chi-squared test, p<0.05; Fig. 6.2) 

 

DISCUSSION 

 The TOR pathway has an array of effects on growth, development, and 

reproduction (Oldham and Hafen, 2003), but its role in adult social insect 

behavior is poorly understood (Ament et al., 2008). Our findings show that 

exposure to RAP, a pharmacological agent that inhibits TOR signaling, results in 

P. californicus queens developing a foraging bias more often than expected.  

While we did not quantify TOR expression, the strong bias caused by RAP but not 

by RAP mixed with a competitive inhibitor (FK506), suggests that RAP affected 

the TOR pathway as it does in other insect species (Hansen et al., 2004; Patel et 

al., 2007). This finding also suggests that the TOR pathway may play an 

important role in the development of behavioral biases in these queens.   

 In adult Drosophila, perturbation of the TOR pathway causes mid-stage 

oocytes to be destroyed (Thomson and Johnson, 2010), and decreased ovarian 

activity is also linked to foraging bias in P. californicus queens (Dolezal, 
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unpublished data). Since ovarian activity affects a host of systemic factors in 

insects (Klowden, 1997; Raikhel, et al., 2005; Flatt et al., 2008), a relationship 

between TOR signaling and reproductive physiology could contribute to the effect 

of RAP treatment on P. californicus queen behavior. If a decrease in ovarian 

activity is involved in biasing queens towards foraging, it is possible that RAP 

treatment could negatively affect ovarian activity, changing signals produced 

there, and lead to the high incidences of foraging bias observed in this study. 

 These behavioral changes could also be linked to differences in how 

individual queens sense and respond to resource scarcity. In Drosophila, adults 

respond to starvation by downregulating ovarian activity (Pritchett et al., 2009) 

and entering a stage of hyperactivity where they are more active in searching for 

food (Lee and Park, 2004). Perturbation of the TOR pathway causes starvation-

like responses in Drosophila (Oldham and Hafen, 2003; Pritchett and McCall, 

2012) and larval honey bees (Patel et al., 2007; Kamakura, 2011; Mutti et al., 

2011) even in the presence of high quality food, implying that TOR is important 

in the ability to correctly sense the nutritional environment. Therefore, if queen 

foraging bias is stimulated by their sensation of nutritional resource scarcity, then 

RAP treatment could prevent them from sensing nutritional signals, mimicking 

starvation, and stimulating the development of a foraging bias. When P. 

californicus queens first establish a nest, the internal resource used in producing 

the initial clutch of eggs may delete the queens reserves to a threshold level that 

triggers the cessation of oogeneis and promotes foraging. In an association of 

foundresses, one queen may deplete her reserves sooner or have a different 
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activational threshold causing her to forager sooner. By doing so, the forager 

brings food in, preventing the other queen from sensing resource scarcity and 

keeping her nest-biased, leading to the division of labor we observe.   

These types of changes could also be linked to TOR effects on the brain.  

In mammals, TOR may regulate brain control of energy balance (Cota, 2009), and 

there is also evidence for nutrient-sensing effects on the brain in Drosophila 

(Jacinto and Hall, 2003). Nutrient-sensing can also act via the brain in mosquitoes 

to regulate reproductive physiology (Gulia-Nuss et al., 2011). Both ants and bees 

show quantifiable changes in brain anatomy that correlate with complex behavior 

(Whitfield et al., 2003; Gronenberg et al., 1996;1999; Zube and Rössler, 2008), 

though causal connections with TOR have not been investigated. Thereby, 

sensation of the nutritional environment could signal changes in the brain via the 

TOR pathway, likely through interactions with other components in the ovary and 

fat body, resulting in a cascade of effects that can lead to P. californicus queen 

behavioral biases. 

It is also important to note that the P. californicus queens in our study 

were not receiving pharmacological treatments throughout the behavioral 

observations, but only in the 3 days prior to colony foundation. In rats, the half-

life of RAP after administration to the organism is approximately 24 hours 

(Crowe et al., 1999), so it is unlikely that significant levels of RAP were 

persisting inside founding queens for long after the cessation of treatment (15 

days). Therefore, early RAP treatment is sufficient to cause a foraging bias to 
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develop, pushing queens into a foraging-biased behavioral trajectory that 

continues long after the RAP stimulus has diminished or ceased entirely. 

In conclusion, treatment of P. californicus queens with RAP has clear 

behavioral effects, causing queens to develop a foraging bias significantly more 

often than would normally be expected. While this suggests that TOR signaling 

may be an important factor in the behavioral development of these ants, it is 

unclear how changes in this pathway interact with other physiological systems 

involved in the division of labor. Further research can investigate how 

perturbation of the TOR pathway affects these systems, and how these effects 

compare with the patterns found in queens that develop behavioral biases under 

control conditions, allowing for a better understanding of how nutrient-sensing 

could play a role in social organization and behavior.  
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Figure 6.1: Incidence of division of labor in pharmacologically treated P. 

californicus founding queens.  Asterisks denote significant differences from an 

expected distribution (Chi-squared test, p<0.05) and sample sizes are indicated. 

Associations with a sham-treated individual are treated as the expected proportion 

of associations in which a division of labor developed, and bars show proportional 

difference from this expected proportion; positive values indicate a division of 

labor is more common, negative values less common. Within paired associations, 

RAP-treated queens were involved in a division of labor more often than sham 

treated queens. 
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Figure 6.2: Incidence of foraging biases in pharmacologically treated P. 

californicus founding queens. Asterisks denote significant differences from an 

expected distribution (Chi-squared test, p<0.05) and sample sizes are indicated. 

The expected proportion of foraging bias was 50/50: either queen equally likely to 

become a forager. Bars show proportional difference from this expected 

proportion; positive values indicate a division of labor is more common, negative 

values less common. Within colonies with a clear division of labor, RAP treated 

queens become foraging-biased more often than expected from a 50/50 behavioral 

distribution. 
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