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ABSTRACT  
   

Coarsely grouped counts or frequencies are commonly used in the 

behavioral sciences. Grouped count and grouped frequency (GCGF) that 

are used as outcome variables often violate the assumptions of linear 

regression as well as models designed for categorical outcomes; there is 

no analytic model that is designed specifically to accommodate GCGF 

outcomes. The purpose of this dissertation was to compare the statistical 

performance of four regression models (linear regression, Poisson 

regression, ordinal logistic regression, and beta regression) that can be 

used when the outcome is a GCGF variable.  

A simulation study was used to determine the power, type I error, 

and confidence interval (CI) coverage rates for these models under 

different conditions. Mean structure, variance structure, effect size, 

continuous or binary predictor, and sample size were included in the 

factorial design. Mean structures reflected either a linear relationship or an 

exponential relationship between the predictor and the outcome. Variance 

structures reflected homoscedastic (as in linear regression), 

heteroscedastic (monotonically increasing) or heteroscedastic (increasing 

then decreasing) variance. Small to medium, large, and very large effect 

sizes were examined. Sample sizes were 100, 200, 500, and 1000. 

Results of the simulation study showed that ordinal logistic 

regression produced type I error, statistical power, and CI coverage rates 

that were consistently within acceptable limits. Linear regression produced 
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type I error and statistical power that were within acceptable limits, but CI 

coverage was too low for several conditions important to the analysis of 

counts and frequencies. Poisson regression and beta regression 

displayed inflated type I error, low statistical power, and low CI coverage 

rates for nearly all conditions. All models produced unbiased estimates of 

the regression coefficient. 

Based on the statistical performance of the four models, ordinal 

logistic regression seems to be the preferred method for analyzing GCGF 

outcomes. Linear regression also performed well, but CI coverage was too 

low for conditions with an exponential mean structure and/or 

heteroscedastic variance. Some aspects of model prediction, such as 

model fit, were not assessed here; more research is necessary to 

determine which statistical model best captures the unique properties of 

GCGF outcomes. 
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Chapter 1 

Introduction 

How many days per week do you exercise for 30 minutes or more?  

Never?  Once or twice per week?  About every other day?  Most days?  

Every day?  Questions of this type, with their accompanying response 

scales, are common in many areas of the social sciences. However, 

problems arise when this type of variable is used as an outcome in a 

regression model. Using a grouped count or grouped frequency (GCGF) 

variable such as the one presented above as an outcome leads to 

violations of the assumptions of linear regression. The assumptions of 

models that were designed to be used for categorical outcomes, such as 

Poisson regression and ordinal logistic regression, are also violated. 

Despite the regularity with which GCGF variables are encountered in the 

social sciences, there is currently no single analytic model that is designed 

to accommodate their specific, unique properties. 

The purpose of this dissertation is to compare the statistical 

performance of four regression models that can be used when the 

outcome variable is characterized as a GCGF; specifically, the statistical 

power, type I error, and confidence interval (CI) coverage for these models 

were examined. A simulation study was used to determine the empirical 

power, empirical type I error rates, and empirical CI coverage rates for 

these regression models under several sample size and effect size 

conditions, as well as different outcome mean and variance structures.  
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Grouped counts and grouped frequencies are widely used in 

psychology, particularly in social and clinical psychology. The Monitoring 

the Future scales (Johnston, Bachman, & O’Malley, 2003), the Child 

Report of Parent Behavior Inventory (CRPBI; Schaefer, 1965), and the 

Acculturation Rating Scale for Mexican-American (ARSMA; Cuellar, 

Arnold, & Maldonado, 1995) are examples of scales used in psychology 

that include GCGF variables. GCGF variables are ordered, categorical, 

and typically have a specific potential range of numerical values 

associated with each response option. For example, the item presented is 

scored on a 0 to 4 scale and has the response options of 0 (Never), 1 

(Once or twice per week – 1 to 2 times per week), 2 (About every other 

day – 3 to 4 times per week), 3 (Most days – 5 to 6 times per week), and 4 

(Every day – 7 times per week). There is relatively little methodological 

literature on items of this type (but see Nagin (1997) for examples). 

There are several different statistical models available to analyze a 

GCGF outcome. Each regression model has strengths and weaknesses 

when applied to the analysis of GCGF outcomes, so it is unclear which 

method should be used. The simplest and most commonly used method is 

linear regression. Linear regression (Cohen, Cohen, West, & Aiken, 2003; 

Neter, Kutner, Nachtsheim, & Wasserman, 1996) is familiar and easy to 

interpret when all of its assumptions are met. These assumptions require 

that the outcome variable be continuous and conditionally normally 
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distributed; however, GCGF variables are non-continuous and likely to be 

non-normally distributed. 

Another method of analysis that may be used for GCGF outcomes 

is ordinal logistic regression (Agresti, 2002; Allison, 1999; Fahrmeir & 

Tutz, 2001; Hosmer & Lemeshow, 2000). The outcome options are treated 

as ordered (but not necessarily equally wide or equally spaced) 

categories. For ordinal logistic regression, the predicted outcome is the 

probability of being in a specific category or higher relative to being in a 

lower category. Prediction can also be thought of as the probability of 

crossing the threshold from one category to the next higher category. One 

issue with this method is that, like linear regression, it assumes that 

predictors have a constant effect on the probability of crossing a threshold, 

regardless of which pair of categories is being considered. For the 

example above, that would mean that a predictor has the same effect on 

the transition from zero (0) days of exercise to 1 – 2 days of exercise per 

week as it does on the transition from 5 – 6 days of exercise to 7 days. 

This assumption may not always be appropriate. 

Poisson regression (Cameron & Trivedi, 1998; Gardner, Mulvey, & 

Shaw, 1995; Long, 1997) is typically used for count outcomes, that is, 

when the outcome takes on only discrete, non-negative values. For count 

outcomes, Poisson regression is a superior method to linear regression in 

terms of statistical power and type I error, especially when the mean of the 

outcome is small. It is unclear whether this advantage persists when the 
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outcome counts are grouped into potentially unequally spaced categories. 

Poisson regression assumes that the variance of the outcome increases 

with the mean of the outcome, specifically, that the outcome variance 

equals the outcome mean. The grouping of GCGF variables leads to 

increased variance within each category (relative to the ungrouped counts 

or frequencies) because multiple values of a variable are placed into a 

single category in GCGF, potentially violating this assumption of the 

mean-variance relationship. 

Beta regression (Kieschnick & McCullough, 2003; Paolino, 2001; 

Smithson & Verkuilen, 2008) is a less-commonly used method for 

outcomes that have both upper and lower bounds; it is often used for 

proportion or percentage outcomes. One advantage of beta regression 

over the other methods described is that it is extremely flexible regarding 

the error structure of the outcome. The variance of the outcome can be 

heteroscedastic and is modeled separately from the mean structure, 

offering an advantage over the homoscedasticity assumption of linear 

regression and the stringent variance structure of Poisson regression. A 

weakness of beta regression for GCGF variables is that, like linear 

regression, the model actually assumes a continuous outcome. 

Given that there are several models available for GCGF outcomes 

and the fact that none of them are perfectly matched to the specific 

properties of GCGF outcomes, it is desirable to assess the statistical 

performance of these different models. It is also likely that the properties 
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of the GCGF may vary such that a certain model may be preferable in 

certain circumstances. Factors that are expected to affect the performance 

of the models include the mean structure of the relationship between the 

predictor and the outcome, the conditional variance structure of the 

outcome, the effect size, and sample size. 

Chapter 2 outlines the assumptions of linear regression that are 

relevant to the outcome variables, with particular attention paid to how 

categorical outcome variables (such as GCGF outcomes) can violate 

these assumptions.  

Chapter 3 outlines the three other regression models that are 

proposed for use with GCGF outcomes: ordinal logistic regression, 

Poisson regression, and beta regression. These models are all members 

of the generalized linear model family; generalized linear models are often 

used when the outcome is categorical or otherwise does not meet the 

assumptions of linear regression. The assumptions of each model and 

how GCGF outcomes may meet these assumptions are described. 

Chapter 4 covers the measurement properties of GCGF outcomes, 

particularly with respect to the types of statistical analyses that can be 

performed. This chapter also describes an alternative approach to 

determining the statistical analysis to be performed, based on the degree 

of similarity between the assumptions of a statistical model and the 

properties of the outcome variable. 
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Chapter 5 describes the concepts of statistical power, type I error, 

and CI coverage. This chapter also describes the two commonly used 

tests of regression coefficients for which empirical power will be 

determined: the Wald test and the likelihood-ratio test.  

Chapter 6 describes the details of the statistical simulation study 

that was used to generate data, analyze the data using the four regression 

models, and determine power, type I error, and coverage for each of the 

models. Chapter 7 presents the results of this simulation study. Chapter 8 

discusses the results and implications of the simulation study. 
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Chapter 2 

Linear Regression 

Assumptions 

Multiple regression analysis (Cohen et al., 2003; Neter et al., 1996) 

is a statistical system for relating a set of independent variables to a single 

dependent variable. Fixed effects linear regression using ordinary least 

squares estimation is the most common form of regression analysis. 

Multiple regression predicts a single continuous dependent variable as a 

linear function of any combination of continuous and/or categorical 

independent variables. Assumptions that are directly related to the 

predictors in multiple regression are minimal; we assume only that 

predictors are measured without error and that each predictor is fixed, that 

is, the values of each predictor are specifically chosen by the 

experimenter rather than sampled from all possible values of the predictor. 

However, there are additional assumptions of multiple regression that are 

related to the errors; these assumptions are much more critical.  

 Estimation of linear regression coefficients typically takes place 

using ordinary least-squares estimation. The linear regression model with 

p + 1 terms (including p predictors plus the intercept) and n subjects is of 

the form  Y = XB + e , where Y is the   n × 1 vector of observed outcome 

values, B is the   (p + 1) × 1 vector of estimated regression coefficients, X is 

the  n × p  matrix of observed predictors, and e is the   n × 1 vector of 

unobserved errors. The Gauss-Markov Theorem (Neter et al., 1996) 
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states that, in order for least-squares estimates to be the best linear 

unbiased estimates (BLUE) of the population regression coefficients, three 

assumptions about the errors must be met. First, the conditional expected 

value of the errors must be equal to zero. That is, for any value of the 

predictors X, the expected value of the errors is 0. 

(1)       E(ei | X) = 0 

Second, the errors must have constant and finite conditional variance, 2σ . 

That is, for any value of the predictors X, the variance of the errors is 2σ . 

(2) ∞<= 2)|( σXieVar  

This property of constant variance is known as homoscedasticity. Third, 

errors for individual cases must be uncorrelated: 

(3) 
  
Cov(e

i
,e

j
) = 0 , where ji ≠ . 

These three assumptions are necessary to ensure that the estimates of 

the regression coefficients are unbiased and have the smallest possible 

standard errors (i.e., they are BLUE). 

 In order to make valid statistical inferences about the regression 

coefficients, one final assumption must be made about the errors. Tests of 

statistical significance and the construction of confidence intervals for 

regression coefficients require an assumption to be made about the 

distribution of the errors. For linear regression, the errors are assumed to 

be normally distributed. Together with assumptions (1) and (2) above, this 
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means that the errors are assumed to be conditionally normally distributed 

with a mean of zero and constant variance 2σ : 

(4) ),0(~| 2σNei X  

A consequence of this additional assumption of normally distributed errors 

is that assumption (3) above is replaced with the stronger assumption that 

individual errors (across cases or individuals) are independent (Neter et 

al., 1996). 

Violations of Assumptions 

Categorical variables (including GCGF variables) are common in 

many substantive areas, either variables that are naturally categorical or 

continuous variables that have been classified into two or more discrete 

categories. GCGF outcomes are an example of the latter kind of 

categorical outcome. Common types of categorical variables are binary 

variables, ordered or unordered categories, and counts. An example of a 

naturally categorical variable is biological gender; an individual can belong 

to only the male class or the female class. An example of a continuous 

variable that is categorized is SAT score. An individual’s score on the SAT 

is a continuous variable, but colleges often determine a minimum SAT 

score for admission, such that students scoring below that minimum are 

not accepted. This leads to a categorical variable that indicates qualified 

or not qualified (based on the continuous SAT score). 

Heteroscedasticity. When categorical variables serve as 

dependent variables, the assumptions of ordinary linear regression are 



  10 

typically violated. First, the errors of the linear regression model will be 

heteroscedastic; that is, the variance of the errors is not constant across 

all values of the predicted dependent variable. For example, the error 

variance of binary and count variables is dependent on the predicted 

score. The error variance of a binary variable, �� = ��(1 − ��), is largest at 

a predicted value of �� = 0.5 and decreases as the predicted value 

approaches 0 or 1; the error variance of a count variable often increases 

with increases in the predicted value. A consequence of heteroscedasticity 

is biased standard errors. Conditional standard errors may be larger or 

smaller (depending on the situation) than those in the constant variance 

case; Gardner, Mulvey, and Shaw (1995) state that applying linear 

regression to count data typically results in standard errors that are too 

small. Incorrect standard errors result in biased Wald tests because z-

tests and t-tests of parameter estimates involve dividing the parameter 

estimate by the standard error of the parameter estimate. 

Non-normality. Second, the errors will not be normally distributed, 

attributable to the limited observed values that a discrete outcome variable 

may take on. For example, when the observed criterion is binary, only 

taking on values of 0 or 1, the error value for a predicted value π̂  is also 

binary; the error for that predicted score can only take on values of ( )π̂1−  

or ( )π̂0 − . In this case, the errors are conditionally discrete. A discrete 

variable cannot be normally distributed, so the errors cannot be normally 

distributed. Non-normally distributed errors make the typical statistical 
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tests and confidence intervals on the regression coefficients invalid 

because these tests are based on normal distribution theory.  

Linearity 

 Ordinary linear regression assumes a model that is both linear in 

the parameters and linear in the variables (Cohen et al., 2003, p. 193-

195). Linear in the parameters means that the predicted score is obtained 

by multiplying each predictor by its associated regression coefficient and 

then summing across all predictors. A relationship that is linear in the 

parameters is exemplified by the linear regression equation: 

(5) pp XbXbXbbY ++++= L22110
ˆ . 

Linear in the variables means that the relation between the 

predictor and the outcome is linear. In other words, a plot of the relation 

between the predictor X and the outcome is approximately a straight line. 

Linear regression can also accommodate some types of non-linear 

relations. Non-linear polynomial relations are allowed by including 

predictors raised to a power. A quadratic relation between the predictor X 

and the outcome can be incorporated into a linear regression by including 

2X  as a predictor. If the relation between X and the outcome is quadratic, 

the relation between 2X  and the outcome will be linear, so the model will 

still be linear in the variables. When the relation is in fact quadratic, 

omitting this higher order term in a linear regression model results in 

model misspecification.  
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If the relationship between predictors and the outcome is non-linear 

and is not accommodated by powers of the predictors, estimates of the 

linear regression coefficients and the standard errors will be biased 

(Cohen et al., 2003, p. 118). In this case, linear regression is not the 

appropriate analytic approach. Non-linear relations between predictors 

and the outcome are common for discrete and categorical outcome 

variables. For example, consider predicting a binary outcome, the 

probability of purchasing a new car versus a used car as a function of 

household income. An increase in income of $20,000 will increase the 

likelihood of purchasing a new car a great deal for households with an 

income of $50,000, but probably has little effect on the likelihood of 

purchasing a new car for a household with an income of $500,000. If the 

relationship between the predictors and the dependent variable is not 

linear, the linear regression model will be misspecified for two reasons. 

First, the relation between the predictor and the outcome is non-linear, so 

the form of the relation is misspecified. Second, the linear regression 

model is inappropriate for binary outcomes, so the model itself is 

misspecified. While a non-linear relationship between the predictor and 

the outcome such as the one described above can in some cases be 

resolved by transforming the predictor (e.g., by taking the natural 

logarithm of the income predictor, see Cohen et al., 2003, Chapter 6), the 

combination of a non-linear relationship and the binary outcome leads to 



  13 

the conclusion that linear regression is not the appropriate choice for 

analysis. 

For outcome variables with upper and/or lower bounds, another 

consequence of using a linear model when the relationships between the 

predictors and the outcome are non-linear is that predicted criterion scores 

may fall outside the range of the observed scores. This is a problem 

particular to bounded categorical variables, which are often undefined and 

not interpretable outside their observed limits. For example, when the 

outcome variable is binary, predicted scores are probabilities and can only 

range from 0 to 1. Predicted values that are less than 0 or greater than 1 

cannot be interpreted as probabilities. For a model of count data, 

predicted values less than 0 are not interpretable because an event 

cannot occur a negative number of times. Count variables may also be 

bounded at both ends, for example, the number of days in a week in which 

an event occurs. 
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Chapter 3 

Generalized Linear Models (GLiMs) 

The generalized linear model (GLiM), developed by Nelder & 

Wedderburn (1972) and expanded by McCullagh & Nelder (1983), 

extends linear regression to a broader range of outcome variables. Models 

in the GLiM family can be used for a variety of categorical outcomes, 

including binary outcomes, ordered categories, and counts. For this 

reason, GLiMs are a reasonable solution to the problem of analysis of 

GCGF outcomes.  

The GLiM introduces two major modifications to the linear 

regression framework. First, it allows transformations of the predicted 

outcome, accommodating a potentially non-linear relationship between the 

dependent variable and the predictors via a link function. Second, the 

GLiM allows error structures (i.e., conditional distributions of the outcome) 

in addition to the normal distribution error structure assumed by linear 

regression.  

Three Components of a GLiM 

There are three components to the generalized linear model – the 

random portion, the systematic portion, and the link function. The random 

portion of the model defines the error distribution of the outcome variable. 

The error distribution of the outcome variable refers to the conditional 

distribution of the outcome given the predictors. GLiM allows any discrete 

or continuous distribution in the exponential family; the most common 
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include the normal, exponential, gamma, beta, binomial, multinomial, and 

Poisson distributions. Other distributions exist in the exponential family, 

but are more rarely used in GLiMs. 

The systematic portion of the model defines the relation between η , 

which is some function of the expected value of Y, and the predictors in 

the model. This relationship is defined as linear in the variables, e.g., 

pp XbXbXbb ++++= L
22110

η , so the regression coefficients can be 

interpreted identically to those in linear regression: a 1-unit change in 1X  

results in a 1b  unit change in η , holding all other variables constant.  

The link function relates the conditional mean of Y, also known as 

the expected value of Y, E(Y|X), or µ , to the linear combination of 

predictors (previously stated as equal to η ). The link function allows for 

non-linear relations between the predictors and the predicted outcome. 

Several link functions are possible, but each error distribution has a 

special link function known as its canonical link. The canonical link 

satisfies special properties of the model, makes estimation simpler, and is 

the most commonly used link function. For example, the natural log (ln) 

link function is the canonical link for a conditional Poisson distribution. The 

logit or log-odds is the canonical link for a conditional binomial distribution, 

resulting in logistic regression. The canonical link for the normal error 

distribution is identity (no transformation) resulting in linear regression. In 

this framework, linear regression becomes a special case of the GLiM. For 
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the case of linear regression, the error distribution is a normal distribution 

and the link function is identity. A wide variety of generalized linear models 

are possible, depending on the proposed conditional distribution of the 

outcome variable.  

Ordinal Logistic Regression 

 Ordinal logistic regression is an extension of binary logistic 

regression to 3 or more categorical outcomes. Binary logistic regression 

(Agresti, 2002; Fahrmeir & Tutz, 2001; Hosmer & Lemeshow, 2000) is a 

commonly used and appropriate analysis when the outcome variable is 

binary, meaning that the outcome takes on one of two mutually exclusive 

values, such as alive or dead, diseased or well, pass or fail. Binomial 

logistic regression is a GLiM with binomial distribution error structure and 

logit link function. The probability mass function for the binomial 

distribution,  

(6) yny

yny

n
nyYP −−

−
== )1(

)!(!

!
),|( πππ ,  

gives the probability of observing a given value, y, of variable Y which is 

distributed as a binomial distribution with parameters n and π . For this 

distribution, n represents the number of observations and π  represents 

the probability of an individual observation being a case (i.e., belonging to 

a specifically chosen category of the outcome). The mean of this 

distribution is πn  and the variance is )1( ππ −n . 
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Note that unlike the normal distribution, which has independent 

mean and variance parameters, the variance of the binomial distribution is 

dependent on the mean. Additionally, the variance of the distribution is 

dependent on the probability of a success; this will be important for 

interpretation of this model as well as the ordinal logistic regression model. 

When n is very large and π  is near 0.5, the binomial distribution 

resembles a normal distribution; it is bell-shaped and symmetric, though it 

is still a discrete distribution. 

 The canonical link function for the binomial distribution is the logit. 

The logit is a mathematically convenient function that allows the logistic 

regression model to have a linear form. The logit is defined as the natural 

log of the odds, where the odds is the probability of an event occurring 

divided by the probability of the event not occurring. The formula for the 

logit is  

(7) 








− π

π

ˆ1

ˆ
ln ,  

where π̂  is the predicted probability of an event occurring. As mentioned 

above, an advantage of GLiM is that it allows a non-linear relation 

between predicted values and predictors. Figure 1 illustrates the non-

linear relation between probability and logit.  

For binary logistic regression, observed outcome values are 

typically coded 1 (case or success) or 0 (non-case or failure), but 

predicted values are in the probability metric. Predicted probabilities (��) 
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are continuous but bounded by 0 and 1. Probabilities can also be 

algebraically converted to odds, that is, 
��� =  ��
�����, the probability of an 

event occurring divided by the probability of the event not occurring. For 

example, if the probability of being a case is 0.75, the odds of being a 

case is 0.75/0.25 = 3; an individual is 3 times more likely to be a case than 

a non-case. The logit is the natural log (ln) of the odds, so  

(8) logit = 








− π

π

ˆ1

ˆ
ln ,  

where π̂  is the predicted probability of being a case. 

 The ordinal logistic regression model (also known as the ordered 

logit model or the cumulative logit model; Agresti, 2002; Fahrmeir & Tutz, 

2001; Hosmer & Lemeshow, 2000; Allison, 1999) generalizes binomial 

logistic regression to outcome variables that have 3 or more ordered 

categories. One example of an outcome with ordered categories is 

education, with outcome choices of high school diploma, college diploma, 

and post-graduate degree. These three options for the outcome variable 

are distinct and have an inherent ordering, where a college diploma 

indicates more education than a high school diploma and a post-graduate 

degree indicates more education than a college degree. Researchers in 

the social sciences also use Likert-type scales as outcomes; Likert-type 

scales contain ordered categories, such as strongly disagree, disagree, 

neutral, agree, strongly agree.  
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The ordinal logistic regression model is a GLiM with a multinomial 

error distribution and logit link function that is estimated using   (a − 1)  

binary logistic regression equations, where a is the number of ordered 

categories of the dependent variable. Compared to the multinomial logistic 

regression model (not discussed here), which is a model for unordered 

categories, the ordinal logistic regression model has several important 

properties that make it the preferred model choice for many ordered 

outcomes. Specifically, the ordinal logistic regression model requires that 

the probability of crossing each threshold from a lower category to the 

next higher category (e.g., from strongly disagree to disagree; from 

disagree to neutral) is constant across all category thresholds. Therefore, 

the ordinal logistic regression model does not become more difficult to 

interpret with more predictors. The ordinal logistic regression model gains 

only 1 regression coefficient for each additional predictor because the 

effect of that predictor is the same regardless of which threshold is being 

crossed; in contrast, multinomial logistic regression model gains   (a − 1)  

regression coefficients for each additional predictor because the effect of 

the predictor also depends upon which threshold is being crossed. 

Additionally, if the outcome options are ordered and certain assumptions 

are met, the ordinal logistic regression model has substantially more 

statistical power than the multinomial logistic regression model.  

The ordinal logistic regression model takes into account the fact 

that the outcome has a specific ordering. This ordering is reflected in the 
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predicted outcomes for each of the (a – 1) equations. The ordinal logistic 

regression model characterizes the cumulative probability of an individual 

being in a certain category or a higher category. For example, if the 

outcome has five categories, such as the Likert scale described above, 

there would be four equations estimated. For each equation, the predicted 

outcome would be the natural log of the probability of belonging to a 

specific category or higher divided by the probability of belonging to all 

lower categories. The predicted outcomes for these four equations would 

be: 

(9) �� � ����������	���  
����������	!"����  #��!"����  #��� $����#�����  % 

(10) �� � �����  #����������	���  
����������	!"����  #��!"����  #��� $����% 

(11) �� ���� $����#�����  #����������	���  ����������	!"����  #��!"����  % 

(12) �� ���!"����  #��� $����#�����  #����������	���  ����������	!"����  % 

Each equation compares the probability of being in a certain category or 

higher to the probability of being in all lower categories. Another way of 

thinking about ordinal logistic regression is in terms of thresholds. The 

regression equation corresponding to the predicted outcome in equation 

(9) describes the probability of an individual crossing the threshold from 

the “agree” category up to the “strongly agree” category. Likewise, the 

regression equation corresponding to the predicted outcome in equation 
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(11) describes the probability of an individual crossing the threshold from 

the “disagree” category up to the “neutral” category. 

Proportional odds assumption. The ordinal logistic regression 

model has an additional assumption related to the effect of regression 

coefficients on the transitions between outcome categories that is known 

as the proportional odds or parallel regressions assumption. The 

proportional odds assumption states the all (a – 1) equations have the 

same regression coefficient for the same predictor; intercepts are allowed 

to change as a function of transition between adjacent dependent variable 

categories. Conceptually, this means that a predictor variable has the 

same effect on moving up a category or crossing the threshold to the next 

higher category, regardless of location in the ordering of categories. 

Different intercepts for each equation essentially allows for the fact that 

different proportions of the sample will be in each outcome category. The 

ordinal logistic regression model for an outcome with 3 outcome options 

would be estimated by the following 2 equations: 

(13) ��  ��&
��'#��(� = )*,, + )�.� + )�.� +⋯+ )0.0 

and 

(14) �� ��(#��&��' � = )*,�, + )�.� + )�.� +⋯+ )0.0. 

Note that, except for the intercepts, the regression coefficients are the 

same in both equations. The same regression coefficient, b1, is used to 

specify the effect of 1X  in both equations.  
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Poisson Regression 

 Poisson regression (Cameron & Trivedi, 1998; Gardner, Mulvey, & 

Shaw, 1995; Long,1997) is the appropriate analysis when the outcome 

variable is a count of the number of events in a fixed period of time. The 

probability mass function for the Poisson distribution,  

(15) µµ
µ −== e

y
yYP

y

!
)|( ,  

gives the probability of observing a given value, y, of variable Y that is 

distributed according to a Poisson distribution with parameter µ . For the 

count variable Y, µ is the arithmetic mean number of events that occur in 

a specified time interval; the Poisson distribution would yield the 

probability of 0, 1, 2, …, k events, given the mean µ of the distribution. 

The Poisson distribution differs from the normal distribution (used in linear 

regression) in several ways that make the Poisson more attractive for 

representing the properties of count data. First, the Poisson distribution is 

a discrete distribution which takes on a probability value only for non-

negative integers. In contrast, the normal distribution is continuous and 

takes on all possible values from negative infinity to positive infinity, not 

just positive integers. Second, count outcomes typically display increasing 

variance with increases in the mean. This property is known as 

heteroscedasticity of variance; it is a violation of the previously mentioned 

assumption of linear regression and can result in severely biased standard 

error estimates if linear regression is applied to count data. The Poisson 
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distribution is specified by only one parameter, µ, which defines both the 

mean and the variance of the distribution; that is, the mean and the 

variance of the Poisson distribution are equal. In contrast, the normal 

distribution requires two independent parameters to be identified: the 

mean parameter, µ , and the variance parameter, σ 2. The fact that the 

mean and variance of the Poisson distribution are completely dependent 

on one another can be useful in modeling count outcomes.  

A Poisson distribution with a high expected value (as a rule of 

thumb, greater than 10) begins to roughly resemble a normal distribution 

in shape and symmetry. However, the Poisson distribution is still discrete 

and has identical values for the mean and variance. Figure 2 shows the 

probability of each number of events for several different values of µ . 

Notice how the distributions with very low means are right skewed and 

asymmetric; the distribution with a mean of 10 appears roughly symmetric. 

The variances of distributions with higher means are larger. 

Poisson regression is a GLiM with Poisson distribution error 

structure and the natural log (ln) link function. The Poisson regression 

model can be depicted as: pp XbXbXbb ++++= L22110)ˆln(µ  where 1̂ is 

the predicted count on the outcome variable, given the specific values on 

the predictors pXXX ,,,
21
K . The use of GLiM with the Poisson error 

structure resolves the major problems with applying linear regression to 
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count outcomes, namely non-constant variance of the residuals, non-

normal conditional distribution of residuals, and out-of-range prediction.  

Assuming a conditionally Poisson error distribution also means that 

the residuals of a Poisson regression model are assumed to be 

conditionally Poisson distributed, rather than normally distributed as in 

linear regression. The residuals are conditionally Poisson distributed 

because for any value of the predicted mean (1̂), the residuals are 

distributed according to expression (15). A discrete distribution such as 

the Poisson distribution will represent the discrete nature of the residuals 

that must occur with a discrete outcome. Otherwise stated, since the 

observed values are counts, the residuals may take on only a limited set 

of values. 

Beta Regression 

 Beta regression (Kieschnick & McCullough, 2003; Paolino, 2001; 

Smithson & Verkuilen, 2008) is a type of analysis that expands 

generalized linear models and is discussed in McCullagh & Nelder (1989), 

Chapter 10. Beta regression differs from the previously presented GLiMs 

(ordinal logistic regression and Poisson regression) because it models the 

mean and variance of an outcome using two different regression 

equations: one equation models the mean structure of the outcome, 

whereas the other equation models the variance structure of the outcome. 

These mean and variance models may have different link functions, 

different sets of predictors, and different prediction equations for the 
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conditional mean and variance. The mean and variance models are 

combined into a single error structure based on the beta distribution; this 

combination of mean and variance in the variance structure allows the 

modeling of heteroscedasticity (i.e., prediction of non-constant variance).  

Beta regression is useful for a wide variety of variables that are not 

necessarily discrete but also do not meet some of the assumptions for 

normally distributed outcome variables; these include variables that have 

upper or lower bounds, excessive skew, or excessive heteroscedasticity. 

Unlike the other GLiMs discussed here, the outcomes for which beta 

regression is used are typically not categorical. A common use for beta 

regression is the modeling of proportions (e.g., Brehm & Gates, 1993; 

Kieschnick & McCullough, 2003), but beta regression can also be used to 

model extremely skewed, heteroscedastic, or even U-shaped outcomes. 

The error structure for beta regression is the standard beta 

distribution, with probability density function: 

(16) 
  
f (Y | a,b) =

Γ(a + b)

Γ(a)Γ(b)
y a−1(1− y )b−1 , 

where a and b are both shape parameters for the distribution and     Γ(x) is 

the gamma function of x, which is equal to     (x −1)! or (3 − 1)(3 −
2)⋯ (2)(1). For a standard beta regression, the predicted values range 

from 0 to 1, inclusive, but the beta distribution can be adapted to fit any 

other ranges of predicted values. The beta distribution is an extremely 

versatile distribution that can take on a wide variety of shapes. The beta 
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distribution is U-shaped if both a and b are less than 1, unimodal if both a 

and b are greater than 1, monotonically increasing if a is 1 or greater and 

b is less than or equal to 1, and monotonically decreasing if a if 1 or less 

and b is greater than or equal to 1. The versatile shape of the beta 

distribution means that it can be used to model a variety of error function 

shapes that cannot be adequately modeled by other regression models, 

such as logistic regression. 

The parameterization of the beta distribution shown in equation (16) 

does not easily lend itself to modeling, because both the a and b 

parameters are shape parameters, not location and spread parameters. 

For modeling of proportions, Smithson and Verkuilen (2008) suggest re-

parameterizing the distribution into mean and precision parameters, µ and 

φ , respectively, given by 

(17) 
  
µ =

a

a + b
 

and 

(18)   φ = a+ b, 

where the variance of the distribution is a function of both the mean and 

the precision parameter. The precision parameter is somewhat analogous 

to a variance parameter in that it reflects the spread of the observed 

values around the mean; however, the precision parameter is the inverse 

of a variance parameter (i.e., high variance is associated with low 

precision). Note that, like many other GLiMs, the mean and precision of 
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the beta distribution are not independent; the expressions for the mean (1) 

and the precision (5) both contain the shape parameters, a and b.  

The beta regression model actually has two different prediction 

equations: the mean/location model and the precision/dispersion model. A 

logit link is typically used to model the mean of the outcome, which lies 

between 0 and 1 for a proportion, so the location is modeled as 

(19) ��  6
��6� = 7* + 7�.� +⋯+ 70.0, 

where .�,⋯ , .0 are the p predictors of the mean structure. The link 

function can be inverted (see Cohen et al., 2003, p. 488 for a complete 

explanation) to show the relationship between the predicted mean (here, a 

proportion) and the predictors rather than the relationship between the 

logit of the predicted mean and the predictors that is shown in Equation 

(19). Inverting the link function produces the expression for the predicted 

mean value, which is a proportion: 

(20) 1̂ = 89:;9'<';⋯;9=<=
�#89:;9'<';⋯;9=<=. This is the model for the mean or location 

parameter, 1. 

The precision parameter, 5, is modeled using a separate equation, 

with potentially different predictors. The precision parameter must always 

be positive, so it is typically modeled using a natural log link. The precision 

parameter is modeled as: 

(21) ��>5?@ = A* + A�B� +⋯+ ACBC; 
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note that there are different regression coefficients for this portion of the 

model (A*, ⋯ , AC), as well as potentially different predictors (B*, ⋯BC). The 

precision parameter reflects how accurate or precise estimates are; high 

precision means that values are highly accurate and focused. Variance or 

dispersion is the inverse of precision; high variance or dispersion means 

that values are not focused or accurate. Since we are accustomed to 

thinking in terms of dispersion and variance rather than precision, some 

authors (e.g., Smithson & Verkuilen, 2008) use this fact to ease 

interpretation and model the dispersion (�) as the inverse of the precision 

parameter. Therefore, we can present the dispersion as: 

(22) ��(��) = −(A* + A�B� +⋯+ ACBC). 
(Algebraically, ln(1/x) = -x). Inverting this link function produces the 

expression for the predicted dispersion value, 

(23) �� = D�(E:#E'F'#⋯#EGFG). 
 To be more explicit about the way that both the location and the 

variance are modeled jointly, one can examine the log-likelihood function 

for the beta regression model. The log-likelihood function for beta 

regression for an individual is 

(24)     lnL(a,b | yi ) = lnΓ(a + b) − lnΓ(a) − ln Γ(b) + (a −1)ln(yi ) + (b −1)ln(1− yi ) . 

It can be shown algebraically from equations (17) and (18) that  

(25)  a = µσ  

and 

(26)  b = σ − µσ . 
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Inserting the expected values for µ and σ  from equations (20) and (23) 

into equations (25) and (26) for a and b, and in turn inserting those 

expressions into the log-likelihood function produces the log-likelihood 

function to jointly model the mean and dispersion. Of note in expression 

(23), information about both the relationship between the predictors and 

the mean and the relationship between the predictors and the dispersion 

are involved in the log-likelihood (expression (24) above) and estimation of 

parameters. The fact that separate (though related) information about the 

mean and the dispersion means that the beta regression model should be 

much more flexible than Poisson regression and ordinal logistic regression 

models in correctly capturing the unique properties of some outcome 

variables. 

 A beta regression model will produce two sets of regression 

coefficients: one for the model of the mean and one for the model of the 

dispersion. Each set of regression coefficients can be interpreted 

according to their corresponding link function. For example, the mean 

model uses a logit link function, so the regression coefficients for the 

mean model are interpreted in a manner similar to logistic regression. For 

logistic regression, results are commonly discussed in terms of the odds 

ratio, DH. A 1-unit increase in the predictor X multiplies the odds being a 

case by the odds ratio. Dispersion model regression coefficients are often 

not interpreted (e.g., Ferrari & Cribari-Neto, 2004; Kieschnick & 

McCullough, 2003), but it is important to note the meaning of a significant 
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regression coefficient in the dispersion/precision model. A significant 

regression coefficient implies that that predictor significantly predicts 

variation in the outcome, that is, that the predictor models 

heteroscedasicity. Because of the versatility of the beta distribution, the 

dispersion function can take on a wide variety of forms, including constant 

variance (i.e., homoscedastic like linear regression), increasing variance 

with increases in the predictor, or variance that increases then decreases 

as a function of the predictors. 
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Chapter 4 

Grouped Counts and Grouped Frequencies 

Outcome variables in the social sciences can take on a variety of 

forms. Common outcomes include binary variables, counts, ordered 

categories, and proportions and other bounded variables. Additionally, 

some variables may not fit clearly into a single group for the purposes of 

choosing an appropriate analysis method. One type of outcome variable 

that fits this description is grouped counts or grouped frequencies 

(GCGF). This type of variable may be used when an exact count or 

frequency is unknown or difficult for an individual to estimate or remember. 

An example of a GCGF variable is the number of cigarettes that an 

individual smokes per day; options may include 0, 1-3, 4-10, 11-20, and 

more than 20. Another example is a variable reflecting how many minutes 

per day an individual exercises; in this case, options may be less than 15 

minutes, 15 to 30 minutes, 30 minutes to 60 minutes, and more than 60 

minutes. In both situations, a true count or frequency exists, but responses 

are categorized into pre-determined (and sometimes arbitrary) ranges. 

Measurement Properties 

For GCGF outcome variables, the choice of an appropriate analysis 

technique is unclear. One reason for this confusion is that, historically, 

statisticians have recommended choosing an analysis technique based on 

the “level of measurement” of the outcome. The levels of measurement 

suggested by Stevens (1946) are based on the mathematical operations 



  32 

that can be meaningfully performed on a set of numbers. These four levels 

of measurement are known as (a) nominal, (b) ordinal, (c) interval, and (d) 

ratio, with nominal allowing the fewest and most limited mathematical 

operations and ratio allowing the most. Nominal variables are simply 

named categories with no inherent order, such as religions or political 

parties. Ordinal variables are named categories with some innate 

ordering, such as rankings. For ordinal variables, the order reflects 

position but a difference of one rank is not necessarily consistent across 

the range of rankings. Interval variables are ordered and have consistent 

difference between values across the range of the variable, but they do 

not have a meaningful zero-point, so ratios of scale values cannot be 

compared. A common interval level variable is the Fahrenheit temperature 

scale: a difference of 15 degrees means the same thing whether that 

difference is between 10 and 25 degrees or between 70 and 85 degrees, 

but the zero-point is arbitrary, so ratios of temperatures are not 

meaningful. Ratio level variables have all of the properties of interval 

variables with the added property of a meaningful zero point, allowing 

meaningful ratios of values. The Kelvin temperature scale is a ratio level 

variable: zero degrees K represents zero molecular activity, so ratios of 

temperatures can be meaningfully compared. For example, 40 degrees K 

represents twice the molecular activity of 20 degrees K, just as 20 degrees 

K represents twice the molecular activity of 10 degrees K.  
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Since the publication of Stevens (1946), these four levels of 

measurement have been viewed as strong guidelines for determining the 

allowable mathematical operations, and therefore the allowable statistical 

calculations, that can be performed on a variable. For example, calculating 

the mean of a variable requires that the variable be measured at an 

interval level of measurement or higher. Linear regression is generally 

held to be appropriate for continuous, interval-level or ratio-level outcome 

variables. However, many cases of the application of linear regression to 

lower-than-interval-level variables exist: for example, the linear probability 

model is the application of linear regression to a binary outcome. This 

often occurs because correct analysis methods are unknown (such as for 

GCGF outcomes), under-studied (in psychology, this includes many 

GLiMs besides logistic regression), or difficult to implement (such as beta 

regression for proportions, which requires writing separate programs or 

“tricking” existing, complex procedures in SAS). 

Researchers in psychology and other areas have discussed the 

true utility of Stevens’ four levels of measurement. Many have found them 

to be limited and inadequate for classifying many types of variables (for 

example, Chrisman, 1998; Velleman & Wilkinson, 1993). For example, 

counts are often used as outcomes in psychological studies. Count 

variables are ordered, categorical, and have a meaningful zero value. 

Therefore, they share properties with both ordinal variables (ordered and 

categorical) and ratio variables (meaningful zero), while not having some 
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properties that are typical of ratio variables, such as being continuous. 

Stevens (1946) considered counts to be ratio level variables. 

The choice of a level of measurement is further confused when 

“natural” variable types are manipulated in some way, as is the case with 

GCGF outcomes. The standard method for choosing an appropriate 

statistical analysis relies heavily on a somewhat arbitrary number of 

measurement levels that may or may not be appropriate for all types of 

variables. In contrast, the choice of an appropriate statistical analysis may 

also be based on the degree of match between the outcome variable and 

the analysis (Velleman & Wilkinson, 1993). This latter method of choosing 

an analysis method may prove to be more useful when analyzing outcome 

variables that do not fit cleanly into the four standard measurement levels; 

among these scale formats are grouped counts and grouped frequencies. 

Analysis Approaches 

 Choosing an appropriate statistical analysis based on the degree of 

match between the outcome variable and the analysis requires a careful 

examination of each method. Specifically, one must determine what the 

model underlying the analysis assumes concerning the outcome variable. 

Along the same lines, one must determine how any potential mismatch 

between outcome properties and analysis requirements will affect the 

model results. For GCGF outcomes, four analysis methods are 

considered: (a) linear regression, (b) ordinal logistic regression, (c) 

Poisson regression, and (d) beta regression. This section presents the 
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properties of each method that make it a desirable choice for use with 

GCGF outcomes, as well as any potential problems that may be 

encountered. 

Linear regression. As described in detail above, linear regression 

assumes that the outcome being analyzed is unbounded and conditionally 

normally distributed, with errors having a conditional mean of zero and 

constant variance of 2σ . The advantage of linear regression for GCGF 

outcomes is that it is easy to use and interpret and is the standard method 

of analysis in many areas of psychology. The disadvantage of using linear 

regression for GCGF outcomes is that counts and frequencies (and 

therefore their grouped counterparts) are likely to have non-normal 

conditional distributions and be heteroscedastic. Additionally, using linear 

regression for these types of outcomes can easily result in out-of-bounds 

predicted values, since counts and frequencies have a lower bound of 

zero. Residuals for a linear regression model for grouped counts and 

grouped frequencies will also not be normally distributed due to the 

discrete nature of the outcome. 

Ordinal logistic regression. Logistic regression and ordinal 

logistic regression can be interpreted in a latent variable framework that is 

conceptually very similar to that of linear regression. For ordinal logistic 

regression, the ordered categories are described as being based on an 

underlying continuous latent variable; the observed categories are defined 

by thresholds or cut points. The latent variable is assumed to be 
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conditionally distributed according to the logistic distribution (which is bell-

shaped, symmetric, and similar in shape to the normal distribution) and 

homoscedastic. GCGF outcomes are typically skewed and 

heteroscedastic like the counts and frequencies underlying them, so the 

assumption of homoscedasticity in the ordinal logistic regression model 

poses the same problems as linear regression. 

Poisson regression. Poisson regression assumes that an 

outcome is non-negative, conditionally Poisson-distributed, and 

heteroscedastic in a strict manner, such that the conditional mean of the 

outcome is equal to the conditional variance of the outcome. Poisson 

regression is the preferred method of analysis for count outcomes 

because the Poisson distribution can model the skew, heteroscedasticity, 

and lower bound that are commonly seen in counts. One potential 

drawback of using Poisson regression for GCGF outcomes is that the 

grouping of the outcome will cause distortion of the multiplicative effect 

seen in Poisson regression. To clarify, Poisson regression assumes a 

multiplicative effect of predictors, that is, that E(Y|X=x+1) = eb ×  

E(Y|X=x), where eb is the exponentiation of the regression coefficient for 

X. This multiplicative relation seen in raw counts may be distorted when 

the outcome is coarsely grouped into categories of different sizes (e.g., 0, 

1-2, 3-5, 6-10). Specifically, this distortion may manifest as unobserved 

heterogeneity of the outcome variance because the variability of the 

outcome represents variability of different values of the underlying count 
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or frequency; for example, the variability of the “3-5” category is a 

combination of the variance for the values of 3, 4, and 5. 

Beta regression. Beta regression assumes an outcome that is 

continuous with both upper and lower bounds. Heteroscedasticity of error 

is allowed by this model, but not required. One advantage of beta 

regression compared to the others is that it is much more flexible about 

the error structure. Since beta regression models the variance structure 

separately from the mean structure, the errors may be homoscedastic (as 

in linear regression) or heteroscedastic (as in Poisson regression); the 

errors need not follow a strict pattern of heteroscedasticity such as that 

seen in Poisson regression. However, since the beta distribution is a 

continuous distribution and GCGF outcomes are discrete, beta regression 

faces many of the same problems as linear regression; namely, the 

residuals are not able to closely follow the continuous beta distribution. 
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Chapter 5 

Statistical Power 

This study examines the statistical power of the four previously 

described regression models to detect the effect of a predictor on a GCGF 

outcome. Two related concepts, type I error and confidence interval 

coverage, are also examined. Statistical power refers to the probability of 

detecting an effect in a sample given that the effect does in fact exist in 

the population (Cohen, 1988; Maxwell, 2000; Maxwell, Kelley & Rausch, 

2008). Type 2 error rate is the probability that a true effect in the 

population is not detected in the sample; statistical power is 1 minus the 

type 2 error rate,   1− β . Adequate power (typically taken as   1− β ≥ .80) 

reflects the ability to detect true effects.  

Statistical power is determined by three factors: sample size, effect 

size, and type I error rate (Cohen et al., 2003). Statistical power can be 

increased by increasing sample size or by increasing the standardized 

effect size; for example, the addition of covariates, refined measurement 

that reduces error variance, and optimal design approaches that sample a 

wide range of values on the predictor are common methods used to 

increase the effect size of interest. 

Type I error has an obvious relationship to statistical power. While 

statistical power indicates how likely one is to detect an effect in a sample 

that actually exists in the population, type I error indicates how likely one is 

to detect an effect in a sample when that effect does not actually exist in 
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the population. A type I error rate that is close to the nominal value (e.g., 

alpha = 0.05 in most studies) indicates that the likelihood of finding a 

significant result in error is appropriately low.  

In regression models, the regression coefficient is a “point estimate” 

of the regression coefficient parameter in the population; the regression 

coefficient is a single number that is supposed to reflect the population 

value. An alternative or complementary estimate of the population effect is 

a confidence interval. A confidence interval provides a range of values 

which should contain the population parameter with some degree of 

confidence. If a very large number of samples of the same size were taken 

from the same population, a 95% confidence interval should capture the 

population parameter in 95% of the time. The 95% is known as the 

“confidence level;” confidence interval coverage refers to how closely the 

empirical confidence level (for example, the proportion of replications in a 

simulation study in which the population value is contained in each 

confidence interval) matched the nominal confidence level (typically 95% 

or 90%).  

Statistical Power in Linear Regression  

In linear regression, there are two types of significance tests for 

which one might want to determine power. The first is an omnibus test of 

the prediction by the entire model with the null hypothesis, 
  
H

0
: ρ

multiple

2 = 0 . 

The second is a test of an individual regression coefficient with the null 

hypothesis, 
  
H

0
: β

j
= 0 . The present research focuses on the single 
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predictor test; for completeness, the omnibus test is also presented here. 

Both the omnibus test and regression coefficient tests in linear regression 

are Wald-type tests, that is, the estimate of the parameter is divided by its 

standard error, with the result being compared to a t-distribution to 

determine statistical significance. Effect size, 2f , for the omnibus test in 

linear regression is based on the 2
multipleR  of the model (Cohen, 1988), 

using the relation: 

(27) I� = JK$��"=� (
��JK$��"=� ( . 

The effect size, 2f , ranges from 0 to infinity. For a test of a single 

parameter such as a single regression coefficient, the effect size is based 

on the 2
multipleR  and the 2

multipleR  for a model with the predictor of interest 

removed, using the relation: 

(28) I� = JK$��"=� ( �JK$��"=� (LM)(
��JK$��"=� ( , 

where ( )
2

jmultipleR −  is the 2
multipleR  for a model in which the predictor of 

interest, predictor j, has been excluded. Nominal type I error rate is 

typically fixed before the study, usually at 0.05 (two-tailed) for studies in 

the behavioral sciences. Equations and tables (for example, in Cohen, 

1988, and Cohen et al., 2003) as well as statistical software (e.g., 

G*Power, Faul, Erdfelder, Lang & Buchner, 2007) exist to determine the 

power of a study with a given type I error rate, sample size, and effect 

size.  
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 Two distinct F-distributions are employed to determine statistical 

power for linear regression. The first represents the null hypothesis of no 

variance accounted for (i.e., no effect) and the second represents the 

alternative hypothesis of some non-zero variance accounted for (i.e., 

some non-zero effect). The null hypothesis is represented by a central or 

standard F-distribution that is familiar from statistical testing. This is the 

distribution that supplies the critical F-value for statistical tests. The 

alternative hypothesis is represented by the non-central F-distribution. The 

non-central F-distribution is shifted to the right of the standard F-

distribution by an amount determined by the non-centrality parameter. The 

non-centrality parameter, λ, is determined by effect size and sample size 

using the relation 

(29)   λ = n × f 2 . 

The area of the central F-distribution that is to the right of the critical F-

value is the alpha (α) value or the type I error rate. The area of the non-

central F-distribution that is to the right of the critical F-value is the 

statistical power for the test. Larger effect sizes and larger sample sizes 

will push the non-central F-distribution for the alternative hypothesis 

farther to the right of the central F-distribution, meaning that more of the 

non-central F-distribution is beyond the critical F-value and the test has 

more power. 
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Statistical Power for GLiMs 

Statistical power for generalized linear models cannot be calculated 

in the same way as linear regression for several important reasons. First, 

standardized effect size measures for GLiMs are not as well defined as 

those for linear regression. An examination of the multiple pseudo- 2R  

measures for GLiMs (e.g., see West, Aiken, & Kwok, 2003; DeMaris, 

2002; Menard, 2001) shows that there is not a single measure of effect 

size that is appropriate, interpretable, and unbiased across all GLiMs. 

Second, Wald tests are generally not considered the most appropriate 

statistical tests for GLiMs. Many software programs (e.g., SAS and SPSS) 

produce Wald tests for regression coefficients in GLiMs. However, Hauck 

and Donner (1977), Vaeth (1985), and others have shown that Wald tests 

behave in a peculiar manner in GLiMs, especially in small samples and in 

tests of individual parameters (i.e., tests of regression coefficients). 

Likelihood ratio (LR) and Score tests are often preferred to Wald tests for 

testing both individual parameters and omnibus hypotheses in GLiMs. Due 

to the difficulty of easily implementing the appropriate Score test, this 

study focuses on only the LR test as an alternative to the Wald test. 

Much of the research on power for GLiMs occurs in areas outside 

of psychology. GLiMs, especially logistic regression and count or rate 

models, are often used in medicine and epidemiology; this is reflected in 

the large number of articles on power for GLiMs that are found in journals 

that focus on biological and medical research methods (e.g., Biometrics, 
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Biometrika, and Statistics in Medicine). Much of this research on power for 

GLiMs has focused on tests of individual regression coefficients, rather 

than on tests of overall model fit. Many areas of medical research are 

concerned with the effect of an individual predictor, such as a treatment 

group, rather than the overall predictive power of a set of predictors. 

Likelihood Ratio Test 

The likelihood ratio test (Chernoff, 1954; Wilks, 1938) is a nested 

model test that compares the deviance (or “lack of fit”) of a model in which 

the parameter of interest (for example, a regression coefficient) is 

estimated to a model in which the parameter of interest is fixed to oθ . A 

significant test indicates that the parameter is significantly different from 

oθ ; for example, to test whether a regression coefficient is significantly 

different from 0, the value of oθ  is set equal to 0. The likelihood ratio test 

statistic is given by 

(33) 
  
LR = D(M

0
) − D(M

β
) , 

where )( βMD  is the deviance of the model with the parameter estimated 

and )( 0MD  is the deviance of the model in which the parameter is fixed to 

oθ . For a test of a single regression coefficient, the test statistic has an 

asymptotic chi-square distribution with 1 degree of freedom. If the LR test 

statistic exceeds the critical value of the chi-square distribution, the 

regression coefficient is statistically different from oθ . 
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 Statistical power for test statistics with a chi-square distribution is 

conceptually similar to that described above for test statistics with an F-

distribution: the power of the test is the area of the non-central chi-square 

distribution that exceeds the critical chi-square value on the central chi-

square distribution. The primary area of research on power and the LR 

test focuses on proper estimation of the non-centrality parameter. The LR 

test is an asymptotic method, so proper estimation of the non-centrality 

parameter in non-infinite samples is extremely important.  

Snapinn and Small (1986) examined very small sample estimation 

of the non-centrality parameter for the LR test for ordinal logistic 

regression. In small samples (n < 50), this method had more appropriate 

type I error rates than the standard LR test, though type I error was slightly 

higher than the nominal value. Self, Mauritsen, & Ohara (1992) examined 

adjustments to the non-centrality parameter for the LR tests for several 

different GLiMs, focusing on the special situation of case-control models. 

Because the Self et al. (1992) method focuses on the case-control model, 

it makes very specific assumptions about the predictors and is essentially 

limited to categorical predictors with few response options. Shieh (2000b) 

expanded the Self et al. (1992) method to allow for continuous as well as 

categorical predictors. Both methods give more accurate sample size 

estimates than the standard LR test.  

Much of the research on LR test adjustment for the purposes of 

calculating power and sample size focuses on special case uses of the 
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GLiM, either in type of outcome (such as ordinal logistic regression) or in 

study design (such as very small samples or case-control studies). This 

results in limited generalization of results to other outcome types or study 

designs. General, practical guidelines for required sample size in GLiMs 

are therefore unavailable. Additionally, the fact that research focuses on 

special cases means that the conclusions are often incongruent across 

methods.  

Wald Test 

Despite admonitions that the Wald test for regression coefficients is 

biased and underpowered compared to the LR test (e.g., Hauck & 

Donner,1977; Vaeth, 1985), a great deal of the research on power and 

sample size determination for generalized linear models focuses on the 

Wald test. The Wald test is widely used in many areas including 

psychology and is readily available from statistical software packages. 

Some researchers approach the problem of power for the Wald test via 

specific models within the GLiM family, such as logistic regression; others 

seek a more unified solution based on the shared properties of all GLiMs. 

The classic source for power and sample size in logistic regression 

is Whittemore (1981); Whittemore (1981) assumed a small proportion of 

“cases” on the outcome in order to simplify calculation of a covariance 

matrix of the regression coefficients, providing estimates of the variance of 

the regression coefficient for Wald tests. Hsieh (1989) used the methods 

developed by Whittemore (1981) to produce extensive tables of sample 
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sizes for logistic regression that are widely used in psychology and other 

areas. Signorini (1991) expanded on Whittemore’s (1981) methods to 

determine sample sizes required for Poisson regression. Shieh (2000a) 

showed via simulation that the LR test methods developed by Self et al. 

(1992) provide better estimates of the sample size required for logistic 

regression than the Wald test methods of Whittemore (1981). Shieh 

(2001) later provided refinements to the Wald test methods of Whittemore 

and Signorini for both logistic regression and Poisson regression. 

Strickland and Lu (2003) and Tsonaka, Rizopoulos, and Lesaffre 

(2006) focus on important special cases of GLiMs; specifically, both 

studies focus on randomized treatment-control studies with binary or 

bounded (i.e., proportion) outcomes. These studies use the odds ratio 

from logistic regression as a measure of effect size; the odds ratio 

measure of effect size makes these methods somewhat less attractive 

because they cannot be easily generalized to models besides logistic 

regression. In simulations, the Strickland and Lu (2003) method 

overestimated the sample size required for specified power, as compared 

to empirical power levels, particularly when the effect size was moderate 

to large (i.e., an odds ratio greater than or equal to 1.5 by their definition). 

Newson (2004) describes a “generalized power method” that allows 

for estimation of power and sample size with any outcome type that can 

be analyzed with a GLiM. Newson’s (2004) method uses the raw mean 

difference (as opposed to a standardized mean difference) as a measure 
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of effect size; the “influence function” for an outcome type (for example, a 

binary outcome for logistic regression) depends on this mean difference 

and the sample size. The generalized power method described in Newson 

(2004) has been implemented as the POWERCAL command in Stata 

software.  

Statistical Power for GCGF outcomes 

 It was unclear how information on statistical power for GLiMs might 

translate to statistical power for grouped count and grouped frequency 

outcomes. The research presented above on statistical power for GLiMs 

generally employed simulated data that satisfies the distributional 

assumptions of the model. For example, Self et al. (1992) simulated a 

binary outcome to determine the performance of their method for logistic 

regression and a count outcome to determine the performance of their 

method for Poisson regression. GCGF outcomes do not satisfy the 

assumptions of any of the four analysis models tested here; for each of 

the analysis models (linear regression, ordinal logistic regression, Poisson 

regression, and beta regression), the model is actually deliberately 

misspecified when using a GCGF outcome.  
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Chapter 6 

Method 

The purpose of this dissertation was to compare several regression 

models used for outcome variables that are characterized as grouped 

counts or frequencies. Specifically, the statistical power, type I error rates, 

and CI coverage for these models were examined. This study used a 

statistical simulation to determine empirical (observed) power, type I error, 

and coverage for each regression model in several different conditions. 

Factors that may affect the performance of the models include the 

(1) the mean structure of the relationship between the predictor and the 

outcome, (2) the conditional variance structure of the outcome, (3) the 

magnitude of the relationship between the predictor and the outcome, (4) 

sample size, and (5) the type of predictor (either continuous or binary). 

Each of these factors was varied in this simulation study; the factors were 

crossed in a fully factorial design.  

Data Generation 

 All data were generated using SAS 9.2 software (SAS Institute, 

2008). For each condition, 1000 replications were conducted. A single 

predictor X was generated as a normally distributed variable with a mean 

of 0 and variance of 1. These values of X were used for the continuous 

predictor conditions; for the binary X conditions, X was dichotomized using 

a median split following generation of the Y outcome variable. The 

outcome Y was created as a function of X and the magnitude of the 
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relationship between X and Y (the effect size), using either a (1a) linear or 

(1b) exponential mean structure and either a (2a) homoscedastic, (2b) 

heteroscedastic and increasing, or (2c) heteroscedastic and football-

shaped variance, as described in detail below. 

Effect size. In order to compare effects in both linear models and 

non-linear models, a measure of effect size was determined that is 

measured in the same units for both linear and non-linear models. A 

common measure of effect size is Cohen’s d (Cohen, 1988), which is the 

standardized difference between two group means. Cohen’s d is 

calculated as 

(34) 
  

x
1

− x
2

s
. 

Cohen never explicitly defined the value of s when the groups have 

different standard deviations; Hedges (1991) further defined the 

standardized effect size to use the pooled standard deviation for the two 

groups as the denominator. When the two groups have equal standard 

deviations, Cohen’s d and Hedges’ g are equal. A similar measure of 

effect size can be constructed to compare a linear mean structure (as 

seen in linear regression) and a non-linear, exponential mean structure 

(as seen in Poisson regression), but several modifications need to be 

made to make the measure comparable across models. Note that in order 

to compare linear and nonlinear models, this method differs from the 

typical effect size used for nonlinear models. For example, the effect size 
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for logistic regression is typically defined in terms of the odds ratio 

(Hosmer & Lemeshow, 2000); the effect size for Poisson regression is 

sometimes defined as the multiplicative effect for a 1-unit change in the 

predictor (eb; Long, 1997) or as the response rate ratio (eb/eb
0; PASS 

software; Hintze, 2011). 

 First, to make the measure have a common metric for models that 

have different transformations of the predicted score, the predicted score 

for each model must be in the original metric of the outcome. For example, 

the predicted value for the standard form of Poisson regression is the 

natural log of the predicted count, ��>N?@. A predicted score in the original 

outcome metric can be obtained by raising the transformed value to a 

power of e, such that 

(35) DOP	(Q?) = N?. 
Predicted scores for the non-linear (Poisson regression-like) mean 

structure can be transformed back into the original outcome metric; 

predicted scores for the linear (OLS-like) mean structure are already in the 

original outcome metric. 

 Second, for conditions in which the predictor in the regression 

model is continuous, the numerator cannot be simply defined as the 

difference between two group means. In keeping with a standardized 

measure of effect size, we can examine the change in the predicted score 

for a 1 standard deviation change in the predictor, at the mean of the 

predictor. That is, the numerator of the measure is defined as  
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(36) N?RS#*.UVW − N?RS�*.UVW, 

where the first term is the predicted outcome (in the original outcome 

metric) for a value of the predictor that is ½ standard deviation above the 

predictor mean and the second term is the predicted outcome for a value 

of the predictor that is ½ standard deviation below the predictor mean. For 

the binary predictor conditions, the binary predictor variable is coded as  

-0.5 and +0.5. 

 The denominator of Hedges g, given by s, is an estimate of the 

variability of the outcome variable, taking into account that two different 

groups with potentially different amounts of variability are being observed. 

In Hedges’ g, s is the pooled estimate of the standard deviation for both 

groups and is defined as 

(37) � = X(Y'��)Z'(#(Y(��)Z((
Y'#Y(�� , 

where 
 
n

i
 and 

 
s

i
 represent the sample size and standard deviation, 

respectively, of group i. Again, for conditions in which the predictor is 

continuous, the standard deviation for a group is not appropriate. 

Additionally, a continuous predictor does not allow for a weighted average 

of multiple variability estimates (for example, the average of the variability 

of the outcome at 1 SD below the mean and the variability of the outcome 

at 1 SD above the mean). For all conditions in this study, the denominator 

of the effect size measure is defined as the standard deviation of the 

outcome at the mean of the predictor, that is �Q|RS. The effect size measure 
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used for this study, which represents the number of standard deviation 

units change in the outcome for the 1 SD span about the mean of the 

predictor, is given by 

(38) 
Q?<\;:.]^_�Q?<\L:.]^_

Z`|<\ . 

Multiple effect sizes were generated to evaluate the effect of the 

magnitude of the effect size on the power of these regression models. 

Effect sizes examined in this study corresponded to (3a) a 0 standard 

deviation unit change in the outcome, (3b) a 0.35 standard deviation unit 

change in the outcome, (3c) a 0.87 standard deviation unit change in the 

outcome, and (3d) a 1.39 standard deviation unit change in the outcome.1 

The 0 effect size conditions were used to assess type I error rates; the 

other three effect size conditions were used to assess statistical power. CI 

coverage was assessed under all effect size conditions. 

Mean structure of the outcome. Recall that the predictor was 

generated to have a mean of 0 and a standard deviation of 1. The 

outcome variable was generated as a function of the predictor with either 

a (1a) linear or (1b) exponential mean structure. In order to maintain the 

previously described effect size equivalence (i.e., the standardized 

difference between the original-metric mean 0.5 SD below the mean of X 

and the original-metric mean 0.5 SD above the mean of X), the linear and 

exponential mean structures used different regression coefficients. 

The linear mean structure was created using the expression 

(39) N = 3)bcY. + 3, 
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where Y is the outcome variable, X is the predictor, and blin is the intended 

magnitude of the relationship between X and Y. In this study, blin was not 

identical to the measure of effect size; blin took on values of 0, 0.2, 0.5, 

and 0.8 while the effect sizes were 0, 0.35, 0.87, and 1.39 (see Footnote 

1). The exponential mean structure was created using the relation  

(40) N = D(H d=R#H:), 
where bexp is a regression coefficient reflecting the exponential relationship 

between X and Y, based on the effect size equivalence and b0 is an 

intercept value used to equate the means of the linear and exponential 

mean structure models. In this study, bexp and b0 took on different values 

depending on the effect size. The value of bexp was 0, 0.199668, 

0.494933, and 0.780071 for effect sizes of 0, 0.35, 0.87, and 1.39, 

respectively. The value of b0 was 0 for an effect size of 0 and 1.09861229 

for all other effect sizes. 

Variance structure of the outcome. The variance structure of the 

outcome was constructed following the creation of the mean structure. 

The variance structure of the outcome Y was either (2a) normally 

distributed and homoscedastic (i.e., constant variance for all values of the 

predictor), (2b) right skewed and heteroscedastic (i.e., non-constant 

variance across values of the predictor) following the equidispersion (i.e., 

conditional variance is equal to the conditional mean) assumption of 

Poisson regression, or (2c) heteroscedastic “football-shaped” variance 

structure. Specific variance values were created to maintain equivalent 
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effect sizes for all mean and variance structure combinations. The 

measure of effect size used here is defined as the mean difference in Y for 

a 1 SD change about the mean of the predictor divided by the conditional 

variance of Y at the mean of the predictor; therefore, the mean structures 

maintain a constant mean difference in Y for both linear and non-linear 

mean structures, while the variance structures maintain a constant 

conditional variance at the mean of the predictor, regardless of whether 

the variance structure is homoscedastic, Poisson-like, or football-shaped.  

Intercepts were included in both mean structures for development 

of the linear and nonlinear mean structures. The Poisson variance 

structure requires the conditional variance to be equal to the conditional 

mean. The intercept forced the conditional mean of the outcome to be 

equal to 3 when the predictor was at its mean value of 0. Therefore, the 

conditional variance of the Poisson variance structure when the predictor 

was equal to 0 was also equal to 3. For conditions with Poisson variance 

structure, the conditional variance was equal to the conditional mean; the 

conditional mean was set equal to 3 at the mean of the predictor. 

For the football-shaped variance conditions, the conditional 

variance was largest at the mean of the predictor and decreased linearly 

as the value of the predictor became more extreme. When the predictor 

was equal to 0, a random residual was drawn from a normal distribution 

with a mean of 0 and a variance of 3; when the predictor was equal to +3 
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or -3, a random residual was drawn from a normal distribution with a mean 

of 0 and a variance of 1.5.  

For the homoscedastic variance conditions, the constant variance 

of the outcome was 3. Regardless of the value of the predictor, a random 

residual from a normal distribution with a mean of 0 and a variance of 3 

was added to the mean value of the outcome. Figures 3 and 4 show the 

mean structure and variance structure combinations used in this study. 

Figures 5 and 6 show representative samples (n = 250, d = 0.87) for the 6 

mean and variance combinations used in this study 

Sample size. Finally, sample size is known to have an impact on 

statistical power, with increases in sample size corresponding to increases 

in statistical power. The sample sizes evaluated here were (4a) 100, (4b) 

250, (4c) 500, and (4d) 1000.  

Predictor type. The predictor X either remained in its original 

continuous format or was dichotomized into a binary variable following 

generation of the outcome variable. For the binary predictor conditions, 

the predictor was dichotomized using a median split; the lowest 50% of 

the observations were assigned to have a value of -0.5 for the predictor 

and the highest 50% of the observations were assigned to have a value of 

0.5 for the predictor. The binary predictor case parallels a treatment-

control experimental study with equal-size groups. 

Coarse categorization of the outcome. Following data 

generation, outcome values were coarsely grouped into 5 categories. 
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These categories roughly correspond to groupings appropriate to the 

types of substantive areas in which GCGF outcomes are often used. A 

common frame for these items is time, such as the past month. For this 

study, it was assumed that the counts or frequencies had an upper bound 

of 30, representing a 1-month timeframe. (Other timeframes, such as the 

past week or the past 2 weeks are also frequently used; for this study, it 

was decided to use the single timeframe of 30 days.)  

For outcomes created using the homoscedastic or football-shaped 

variance structures, the raw outcome values are continuous; for outcomes 

created using a Poisson variance structure, the raw outcome values are 

counts. For the continuous raw outcomes, a categorical integer value was 

assigned such that values less than or equal to 0.4999999999 were 

assigned a value of 0, values greater than or equal to 0.5 and less than or 

equal to 1.4999999999 were assigned a value of 1, etc. Finally, raw 

outcome values were grouped into the following categories: 0, 1 – 3, 4 – 8, 

9 – 15, and 16 – 30. Each individual case was assigned the midpoint for 

its respective category as its new outcome value; that is, a case with an 

outcome score of 3 (in the 1 – 3 category) was assigned a new outcome 

value of 2 and a case with an outcome score of 10 (in the 9 – 15 category) 

was assigned a new outcome value of 12. 

Analysis 

The grouped outcome data for the 1000 replications in each 

condition were analyzed using each of the four modeling techniques 
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described above: linear regression, ordinal logistic regression, Poisson 

regression and beta regression. Empirical power for each condition was 

calculated by determining the proportion of non-zero effect size condition 

replications in which a significant result was obtained, using the Wald test 

and the likelihood ratio test. Empirical type I error rates for each condition 

were calculated by determining the proportion of zero effect size condition 

replications in which a significant result was found. 

Linear regression, ordinal logistic regression, and Poisson 

regression analyses were conducted using SAS PROC GENMOD. Beta 

regression was conducted using SAS PROC NLMIXED. PROC NLMIXED 

does not provide LR tests. For beta regression, the type I error and 

statistical power rates were obtained by re-analyzing all data with a “null” 

beta regression model (i.e., a model with no predictors); the LR test was 

conducted by comparing the -2LL from the single-predictor model to the -

2LL from the null model. Confidence intervals for the LR tests could not be 

calculated, so confidence interval coverage is not included for the LR test 

with beta regression. 

Confidence interval coverage rates were calculated as the 

proportion of the 1000 replications in which the 95% CI around the 

regression coefficient contained the true population value of the 

regression coefficient. The population values of the regression coefficients 

are not equal to the regression coefficients used to generate the data 

because the outcome variable was coarsely categorized following data 
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generation. For each condition, a single replication with a sample size of 

1,000,000 was generated. The estimate of the regression coefficient from 

this single, very large replication (7e�,***,***) converges in probability to the 

population value of the regression coefficient (7f), or 7e�,***,*** 0→ 7f; 7f is the 

probability limit or plim. The estimate 7e�,***,*** serves as the population 

value for the purposes of calculating bias and confidence interval 

coverage.   
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Chapter 7 

Results 

 Table 1 shows the type I error, statistical power, confidence interval 

coverage, and relative bias for OLS linear regression analysis conducted 

on the ungrouped outcome for the conditions in which the mean structure 

was linear and the variance was homoscedastic. These conditions match 

the assumptions of OLS linear regression (i.e., continuous outcome, linear 

mean structure, and homoscedastic variance), so these values can be 

used for comparison to results on the grouped outcome. In the ungrouped 

data, the regression coefficients were unbiased; type I error, statistical 

power, and CI coverage were within the expected ranges.  

Relative Bias 

 Relative bias of the estimated regression coefficients was assessed 

for all models in all non-zero effect size conditions. Tables 2 and 3 show 

the relative bias of the regression coefficient for each model, given by 

(41) 
hi�hi',:::,:::
hi',:::,::: , 

for continuous and binary predictors, respectively. Recall that 7e�,***,*** is 

the estimate of the regression coefficient obtained using a single 

replication with 1,000,000 observations and that this estimate converges 

in probability to a population value of 7f. 
 Shaded cells indicate relative bias of greater than ±5%. Positive 

numbers indicate that the estimate is larger than the population value; 
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negative values indicate that the estimate is smaller than the population 

value. Only the beta regression model showed substantial relative bias in 

estimating regression coefficients. Specifically, beta regression showed 

high positive bias (i.e., the estimated regression coefficient was smaller 

than the population value) for linear mean structure and Poisson-like 

variance (relative bias ranged from -0.056 to -0.275) and for exponential 

mean structure and very large effect size (relative bias ranged from -0.072 

to -0.217). OLS linear regression, Poisson regression, and ordinal logistic 

coefficients did not show substantial bias in estimating regression. 

Type I Error 

 Tables 4 and 5 show the type I error rates for the Wald test for 

continuous and binary predictor conditions, respectively. Bradley’s (1978) 

stringent (type I error rate = [0.045, 0.055]) and liberal (type I error rate = 

[0.025, 0.075]) criteria for type I error rates were used to assess whether 

the rates were sufficiently close to nominal levels (i.e., α = 0.05). For the 

Wald test, the linear regression model had appropriate type I error rates 

for all predictor type, mean structure, variance structure, and sample size 

conditions. The ordinal logistic regression model also had appropriate type 

I error rates for all conditions. Type I error rates were appropriate for the 

Poisson regression model only for conditions in which the mean structure 

was exponential and the variance structure was Poisson; in other words, 

the type I error rate was correct for the Poisson regression model when 

the raw outcome variable closely followed the assumptions of the Poisson 
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regression model. Type I error rates were appropriate for a few conditions 

of the beta regression model; there was no obvious pattern to the results.  

Tables 6 and 7 show the type I error rates for the likelihood ratio 

test for continuous and binary predictor conditions, respectively. The 

pattern of results for the LR test was nearly identical to the pattern of 

results for the Wald test. The linear regression model had appropriate type 

I error rates for all conditions except when the sample size was 1000, the 

mean structure was exponential, and the variance structure was football-

shaped. The ordinal logistic regression model had appropriate type I error 

rates for all conditions. The Poisson regression model had appropriate 

type I error rates only for conditions with an exponential mean structure 

and Poisson variance structure. The beta regression model had 

appropriate type I error rates for some conditions with exponential mean 

structure and a sample size of 100. 

Statistical Power 

 Tables 8 and 9 show the statistical power rates for the Wald test for 

continuous and binary predictor conditions, respectively. Shaded cells 

indicate conditions for which type I error rates were unacceptably larger or 

smaller than the nominal value, per the liberal criteria set forth by Bradley 

(1978); power rates for these conditions are not readily interpretable. 

 For the continuous predictor conditions, the linear regression model 

had adequate statistical power (i.e., ≥0.80) for all conditions except when 

the effect size was small to medium (0.35), the sample size was 100, and 
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the variance structure was football-shaped; statistical power 0.592 and 

0.597 for those conditions. The pattern of statistical power rates for ordinal 

logistic regression was very similar to that of linear regression; the 

conditions in which n was equal to 100, the effect size was small to 

medium, and the variance structure was football-shaped showed statistical 

power rates of 0.604 and 0.584. Power was also adequate for the Poisson 

regression model for the conditions which parallel the assumptions of 

Poisson regression. 

For the binary predictor conditions, statistical power was somewhat 

lower, as expected for a dichotomized predictor. The linear regression 

model had adequate statistical power for all conditions except when the 

effect size was small to medium (0.35) and the sample size was 100; and 

when the effect size was small to medium (0.35), the sample size was 

250, and the variance structure was football-shaped. Ordinal logistic 

regression showed a pattern of statistical power that was very similar to 

that of linear regression. Power was also adequate for the Poisson 

regression model for the conditions which parallel the assumptions of 

Poisson regression, except with a sample size of 100 and a small to 

medium (0.35) effect size. 

 Tables 10 and 11 show the statistical power rates for the likelihood 

ratio test for continuous and binary predictor conditions, respectively. The 

pattern of results for the LR test was virtually identical to the pattern of 

results for the Wald test. The linear regression model and the ordinal 
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logistic regression model had adequate power in nearly all conditions with 

a continuous predictor and in most conditions with a binary predictor. The 

Poisson regression model exhibited adequate power for the conditions in 

which the raw outcome was generated following the assumptions of 

Poisson regression (i.e., exponential mean structure and conditionally 

Poisson distributed variance structure). 

Confidence Interval Coverage 

 Tables 12 and 13 show the coverage rates for the Wald test for 

continuous and binary predictor conditions, respectively. Bradley’s (1978) 

stringent ([0.045, 0.055]) and liberal ([0.025, 0.075]) criteria were used to 

assess adherence to the nominal (α = .05) type I error rate. To determine 

acceptable CI coverage, the inverse of Bradley’s (1978) type I error 

criteria were used; for example, the stringent criterion has a lower 

confidence limit of 0.045 for type I error, so the upper confidence limit for 

coverage was 1 – 0.045 = 0.955. A stringent criterion of coverage = 

[0.945, 0.955] and a liberal criterion of coverage = [0.925, 0.975] were 

used to assess whether coverage was near the nominal value of 0.95.  

For the linear regression model, CI coverage values were very 

close to the nominal 0.95 confidence level for most conditions. For a 

continuous predictor, low CI coverage rates (ranging from 0.765 to 0.915) 

were observed for linear regression for conditions with large or very large 

effect sizes and heteroscedastic variance structures, particularly when the 

mean structure was exponential; for a binary predictor, CI coverage for 
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linear regression was improved and was close to the nominal value for 

nearly all conditions. For the ordinal logistic regression model, CI 

coverage values were very close to the nominal 0.95 confidence level for 

all but one condition with a continuous predictor; the empirical CI coverage 

rates ranged from 0.915 to 0.975 for a continuous predictor and from 

0.939 to 0.971 for a binary predictor. Systematic patterns of adequate 

coverage were not observed for any other models.  

 Tables 14 and 15 show the coverage rates for the likelihood ratio 

test for continuous and binary predictor conditions, respectively. The 

pattern of results for the LR test was very similar to the pattern of results 

for the Wald test. The CI coverage rates for the linear regression model 

followed the same pattern as the CI coverage for the Wald test; several 

conditions with large or very large effect sizes, exponential mean 

structures, and heteroscedastic variance structures showed CI coverage 

rates notably lower than the nominal value. The CI coverage rates for the 

ordinal logistic regression model were very close to the nominal 

confidence level, ranging from 0.913 to 0.976 for a continuous predictor 

and from 0.938 to 0.968 for a binary predictor. For the binary predictor 

conditions, CI coverage rates for both linear regression and ordinal logistic 

regression were closer to the nominal values. No systematic pattern of 

adequate coverage rates were observed for the other models. The SAS 

NLMIXED procedure does not automatically produce a likelihood ratio test 
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of the regression coefficient, so the LR test was manually computed for 

beta regression; CI coverage rates for beta regression were not available. 
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Chapter 8 

Discussion 

 This study examined the statistical performance of four regression 

models that may be used to analyze grouped count or grouped frequency 

outcomes: linear regression, ordinal logistic regression, Poisson 

regression, and beta regression. Of the four models evaluated, linear 

regression performed well in terms of relative bias, type I error, and 

statistical power, but did not provide adequate CI coverage for several 

conditions that are highly relevant to the analysis of count and frequency 

outcomes (i.e., exponential mean structure and heteroscedastic variance). 

Ordinal logistic regression performed well in terms of relative bias, type I 

error, statistical power, and confidence interval coverage, regardless of 

the type of predictor, sample size, effect size, mean structure, or variance 

structure. Poisson regression produced type I error rates, statistical power 

rates and confidence interval coverage rates that were appropriate, but 

only for conditions in which the ungrouped outcome followed the 

assumptions of Poisson regression (i.e., exponential mean structure and 

Poisson variance).  

Model fit 

One aspect of statistical performance that was not addressed here 

was model fit. Model fit refers to how closely the predicted outcome values 

match the observed outcome values, or in terms of a statistical model, 

how well the model is able to reproduce the observed values. Model fit is 
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assessed by comparing the observed and predicted outcome scores. For 

example, the chi-square test of model fit uses the squared difference 

between the observed and expected scores, divided by the expected 

score (Daniel, 1990). Other measures of model fit that are commonly used 

in structural equation modeling (such as the CFI, RMSEA, AIC, and BIC) 

are functions of the chi-square statistic. Ryan (1997) suggests using the 

correlation between the observed scores and the predicted scores as a 

measure of model fit; for GLiMs such as Poisson regression which involve 

transformations of the predicted score, the predicted score should be 

converted back into the original units of the observed score.  

The difficulty in applying these methods of model fit lies in 

producing predicted scores. Linear regression, Poisson regression, and 

beta regression can easily produce a single predicted score for each 

observation. However, ordinal logistic regression does not produce a 

single predicted score for each observation; ordinal logistic regression 

produces several predicted probabilities that each indicate the probability 

of crossing the threshold to the next higher outcome category. For 

example, if there are 4 outcome categories, an individual observation will 

have 3 predicted probabilities: the first predicted probability is the 

probability of crossing the threshold from the first category to the second, 

the second predicted probability is the probability of crossing the threshold 

from the second category to the third, and the third predicted probability is 

the probability of crossing the threshold from the third category to the 
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fourth. It may not always be possible to use these several predicted 

probabilities to assign a single predicted outcome category. It may also be 

possible to assess model fit by invoking the latent variable interpretation of 

the outcome; ordinal logistic regression can also be conceptualized in 

terms of a single latent variable, the intercepts reflecting latent thresholds 

in the outcome variable. 

Accuracy of prediction is an important aspect of modeling in many 

areas of the social sciences. Since ordinal logistic regression was clearly 

the best model choice in terms of the statistical measures assessed here, 

it would be extremely useful to assess model fit as well. It may be the case 

that model fit analysis would reveal weaknesses of the ordinal logistic 

regression model that are not apparent in the type I error rates, power 

rates, and confidence interval coverage. However, given that the multiple 

predicted scores produced by ordinal logistic regression are not conducive 

to assessing model fit, it seemed less valuable to compare only the three 

poorly performing regression models in terms of model fit. 

Effect sizes 

 The effect sizes examined here are not identical to the small 

medium, and large Cohen’s d effect sizes commonly used in psychology. 

Table 1 shows the results for linear regressions performed on the 

ungrouped outcome variable. The non-zero effect sizes used here are 

approximately a small/medium (0.35), large (0.87), and very large (1.39) 

Cohen’s d. Linear regression and ordinal logistic regression had low 
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statistical power for a sample size of 100 and a Cohen’s d of 0.35; it is 

likely that the trend toward low statistical power continues and that small 

and very small effect sizes also have low statistical power. Linear 

regression had low CI coverage for large and very large Cohen’s d; effects 

of this size are uncommon in some areas of psychology (e.g., clinical, 

developmental, social, and personality), but are much more common in 

other areas such as cognitive psychology, behavioral neuroscience, and 

medicine. For example, in the journal Statistics in Medicine, Strickland & 

Lu (2003) use an odds ratio of 1.5 to represent a moderate to large effect; 

an odds ratio of 1.5 is approximately equal to a Cohen’s d of 0.83 (Chinn, 

2001). 

Variance Structures and Effect Size 

 In this study, a measure of effect size was used that is roughly 

analogous to standard Cohen’s d and Hedges’ g measures of effect size. 

Specifically, effect size was defined as the difference in (original metric) Y 

for a 1 SD change around the mean of X, divided by the standard 

deviation of Y at the mean of X. For the homoscedastic variance structure, 

the variance of Y is constant across the range of X, meaning that the 

effect size measure used here is equivalent to Cohen’s d and Hedges’ g. 

However, two of the three variance structures used in this study (Poisson-

like and football-shaped) were heteroscedastic, meaning that the 

conditional variance of Y varied as a function of X.  
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The Poisson-like variance structure increases with increasing 

values of X; however, the variance at the mean of X should roughly 

approximate the average variance across the range of X. The variance in 

the football-shaped variance conditions reaches its maximum value at the 

mean of X; therefore, the variance at the mean of X does not approximate 

the average variance across the range of X for this variance structure. For 

the football-shaped variance structure, the variance at the mean of X is 

actually larger than the average variance. This discrepancy between the 

average variance and the variance at the mean of X results in standard 

errors that are inappropriately large and decreased statistical power for 

conditions with football-shaped variance structures. While the measure of 

effect size was useful given the linear and non-linear mean structures, it 

shows weaknesses related to unusual non-constant variance conditions.   

Proportional Odds Assumption 

It was suggested that the good performance of the ordinal logistic 

regression model may be due to the fact that the data were actually 

generated to follow the proportional odds assumption of ordinal logistic 

regression. Recall that the proportional odds assumption states that a 

predictor variable has the same effect on moving up a category or 

crossing the threshold to the next category, regardless of the location in 

the ordering of the categories; that is, a single regression coefficient 

governs the transition between all pairs of adjacent thresholds across the 

ordered continuum of categories of the dependent variable. The 
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proportional odds assumption would translate to the presence of a linear 

effect, where a change in the predictor always results in the same amount 

of change in the outcome.  

If the good performance of ordinal logistic regression model were 

due solely to proportional odds effects, both linear regression and ordinal 

logistic regression should perform worse for the nonlinear exponential 

mean structure conditions. In particular, one would expect to observe 

poorer performance of both linear regression and ordinal logistic 

regression in the largest effect size conditions with an exponential mean 

structure; in these conditions, the nonlinear effect would be most 

pronounced. However, the ordinal logistic regression model showed good 

statistical performance in both linear and exponential mean structure 

conditions while linear regression produced low CI coverage for 

exponential mean conditions.  

It is likely that coarse categorization of the outcome leads to the 

loss of some information about the relationship between the predictor and 

the outcome. In other words, the nonlinear effects may be absorbed by the 

coarse categorization. For example, the exponential relationship may by 

somewhat flattened and linearized by grouping, resulting in a grouped 

outcome that somewhat approximates the proportional odds assumption, 

even though the raw outcome does not. As with tests of model fit, an 

assessment of the proportional odds assumption may reveal weaknesses 
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in the performance of the ordinal logistic regression model related to the 

proportional odds assumption. 

Linear Regression Underperformance 

 The performance of the linear regression model was generally 

good, but CI coverage was unacceptable in a number of conditions that 

are highly relevant for count and frequency outcomes. When the mean 

structure was exponential, linear regression produced CI coverage rates 

that were lower than the nominal values; this effect was enhanced when 

the effect was large or very large (i.e., the exponential effect was more 

pronounced) and the variance structure was Poisson-like (i.e., 

monotonically increasing). These points of weakness are important to the 

analysis of counts and frequencies because counts tend to have an 

exponential relationship with predictors and also tend to have 

monotonically increasing heteroscedasticity. Despite the general good 

performance of linear regression in terms of type I error and statistical 

power, the fact that the specific weak points of linear regression align so 

closely with the properties of counts and frequencies makes linear 

regression a less appealing option for analyzing grouped counts and 

frequencies.  

Probability Limit vs. Theoretical Population Values 

 In this study, data were generated according to a specific 

population effect size relationship between X and Y, but following data 

generation, the outcome was coarsely grouped into several categories. 
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This coarse categorization means that the effect sizes used to generate 

the raw data may not reflect the true relationship between X and the 

coarsely categorized outcome. A probability limit (plim) estimate of the 

“true” relationship between X and the coarsely categorized outcome was 

determined for each condition by generating a single replication with a 

sample size of 1,000,000. The value of the regression coefficient for this 

single, very large sample was used as the population value when 

calculating relative bias of regression coefficients and confidence interval 

coverage. However, the effect size used during data generation, not the 

plim estimate, was used to determine which conditions were used to 

assess type I error rates (effect size = 0) and which were used to assess 

statistical power (effect size > 0).  

 A comparison of the population effect sizes and their corresponding 

plim values for linear regression revealed that there were some systematic 

differences between the population effect sizes used to generate the data 

and the probability estimates of the population relationship following 

coarse categorization of the outcome. (Only population and plim values for 

the linear regression model were compared due to the addition 

complication of comparing linear and non-linear effects.) Of particular 

note, the plim estimate was typically larger than the corresponding 

population value for linear mean structure conditions, but smaller than the 

population value for exponential mean structure condition. In addition, 
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binary predictor conditions had plim values that far exceeded the 

population values, for both mean structures.   

 Relative bias estimates (based on the plim values) revealed very 

little bias in sample estimates. The lack of bias in comparing the plim 

values to the individual samples’ estimates suggests two possible 

alternatives. First, the plim estimate is a valid measure of the population 

regression coefficient for data that are generated with a particular 

population value and subsequently manipulated in some way (such as 

coarse categorization). Second, both the plim measure and the individual 

samples’ estimates are biased in a similar way, resulting in agreement 

between the two numbers. If the first alternative is true, the results of this 

study and others like it can be accepted in their current state; if the second 

alternative is true, it would be of interest to compare both plim value and 

the population regression coefficients to the individual samples’ estimates.   

Conclusions 

 Based on the results from this simulation study, the analysis of 

choice for GCGF outcome variables is ordinal logistic regression. In 

addition to the statistical performance observed in this study, ordinal 

logistic regression has several advantages that make it a good analysis 

choice. It is easily to implement in common statistical packages and is 

relatively easy to interpret. When the proportional odds assumption is 

satisfied, there are other properties of the ordinal logistic regression model 

that make it particularly appealing for GCGF outcomes. According to 
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Agresti (1996), “When the proportional odds model holds for a given 

response scale, it also holds with the same effects for any collapsing of 

the response categories” (p. 215). For GCGF outcomes, this means that 

slightly different groupings of the outcome count or frequency should not 

result in substantively different results and conclusions. Given that the 

specific grouping of counts and frequencies is often arbitrary and a matter 

of convenience rather than directed planning, this property of ordinal 

logistic regression is encouraging. 

 The statistical findings for the four analysis models were very 

consistent, with ordinal logistic regression consistently performing within 

the desired ranges for type I error, statistical power, and CI coverage 

rates. Linear regression performed well in terms of type I error and 

statistical power, but the low CI coverage in conditions which parallel the 

properties of counts and frequencies makes linear regression less 

appealing. More work is needed to assess model fit and accuracy of 

prediction for all four analysis models; this information would certainly 

complement the type I error, statistical power, and CI coverage results. 

Additionally, much of the current research on statistical power in GLiMs 

focuses on determining the minimum sample size required to obtain 0.80 

power. It would be worthwhile to determine the minimum sample size 

required to have adequate power to detect effects in GCGF outcome 

variables. These sample size estimates can be compared to established 

estimates of required sample size for linear regression, Poisson 
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regression, ordinal logistic regression, and beta regression in order to find 

the penalty involved in coarsely categorizing counts and frequencies. 



 

  

7
7 

Table 1. Linear regression on ungrouped counts for linear mean and homoscedastic variance conditions 
 

 n = 100 n = 250 n = 500 n = 1000 
Cohen’s d 0 0.35 0.87 1.39 0 0.35 0.87 1.39 0 0.35 0.87 1.39 0 0.35 0.87 1.39 
Type I error 0.050    0.056    0.048    0.062    
Power  0.919 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 
Coverage 0.950 0.942 0.953 0.949 0.944 0.956 0.950 0.954 0.952 0.941 0.951 0.957 0.938 0.948 0.959 0.954 
Relative Bias  0.000 -0.002 -0.001  -0.001 -0.001 0.002  0.005 -0.001 0.001  0.001 -0.001 0.001 
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Table 2. Relative bias in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

  Effect Size 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 

Beta Linear Homoscedastic -0.016 -0.041 -0.065 -0.010 -0.026 -0.064 0.002 -0.018 -0.058 0.005 -0.009 -0.056 

  Poisson-like -0.056 -0.108 -0.275 -0.025 -0.088 -0.232 -0.010 -0.067 -0.169 -0.007 -0.048 -0.099 

  Football-shape 0.014 -0.007 -0.001 0.005 0.000 -0.006 0.012 0.002 -0.003 0.005 0.000 -0.002 

 Exponential Homoscedastic -0.043 -0.217 -0.045 -0.019 -0.157 -0.007 -0.004 -0.130 -0.002 -0.007 -0.075 0.001 

  Poisson-like -0.036 -0.205 -0.024 -0.021 -0.141 -0.003 -0.005 -0.079 -0.004 -0.002 -0.041 -0.002 

  Football-shape 0.000 -0.171 -0.031 -0.008 -0.142 -0.011 -0.002 -0.101 -0.003 -0.001 -0.072 -0.002 

Linear Linear Homoscedastic 0.007 -0.001 -0.001 0.002 -0.002 0.000 0.011 -0.002 0.000 0.011 -0.004 -0.001 

  Poisson-like 0.004 -0.003 0.006 -0.003 -0.005 0.000 0.002 0.000 0.004 0.000 0.002 0.001 

  Football-shape 0.020 0.005 0.001 0.007 0.006 0.001 0.008 0.004 -0.001 0.004 0.001 -0.002 

 Exponential Homoscedastic -0.001 -0.001 -0.002 -0.011 0.002 0.000 -0.003 0.001 0.000 -0.006 0.002 0.003 

  Poisson-like -0.003 0.003 0.003 -0.009 0.007 0.001 0.000 0.006 -0.003 -0.002 0.003 0.000 

  Football-shape 0.006 -0.009 -0.004 -0.010 -0.006 -0.007 -0.002 0.001 -0.003 -0.001 -0.002 -0.002 

Ordinal Linear Homoscedastic 0.036 0.032 0.040 0.014 0.010 0.020 0.017 0.006 0.011 0.013 -0.001 0.008 

  Poisson-like 0.037 0.030 0.047 0.006 0.006 0.021 0.005 0.007 0.010 0.003 0.006 0.005 

  Football-shape 0.048 0.026 0.030 0.015 0.017 0.010 0.016 0.009 0.007 0.008 0.002 0.002 

 Exponential Homoscedastic 0.030 0.037 0.047 0.003 0.011 0.016 0.005 0.005 0.008 -0.003 -0.001 0.006 

  Poisson-like 0.034 0.027 0.038 0.003 0.022 0.016 0.005 0.009 0.008 -0.001 0.005 0.003 

  Football-shape 0.034 0.017 0.019 0.000 0.004 0.005 0.003 0.008 0.004 0.001 0.000 0.003 

Poisson Linear Homoscedastic 0.013 0.008 0.020 0.005 0.004 0.005 0.010 -0.001 0.003 0.009 -0.002 0.002 

  Poisson-like 0.004 0.008 0.021 -0.005 0.001 0.013 0.000 0.002 0.008 0.000 0.003 0.005 

  Football-shape 0.025 0.011 0.022 0.009 0.010 0.006 0.007 0.007 0.003 0.003 0.002 0.001 

 Exponential Homoscedastic 0.000 0.003 0.006 -0.009 0.000 0.004 -0.002 0.000 0.001 -0.006 0.001 0.002 

  Poisson-like -0.004 0.001 0.012 -0.006 0.008 0.006 0.001 0.002 0.003 -0.001 0.002 0.003 

  Football-shape 0.013 -0.002 0.007 -0.007 -0.005 -0.002 -0.002 0.002 0.000 0.000 -0.002 -0.001 

Shaded cells are conditions in which the relative bias was greater than ±5%.  
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Table 3. Relative bias in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

   0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.002 -0.005 -0.004 -0.002 0.006 0.000 0.010 -0.004 0.001 0.006 -0.002 -0.001 

  Poisson-like 0.019 0.003 -0.015 0.004 -0.008 -0.014 0.003 -0.003 -0.005 -0.007 -0.001 -0.002 

  Football-shape 0.034 0.009 0.007 -0.001 0.011 0.004 0.001 0.001 0.003 0.001 0.006 0.002 

 Exponential Homoscedastic -0.021 -0.042 -0.059 0.018 -0.021 -0.014 -0.007 -0.010 -0.010 -0.010 -0.001 -0.007 

  Poisson-like -0.010 -0.067 -0.040 -0.004 -0.045 -0.010 -0.017 -0.021 -0.005 0.002 -0.005 -0.001 

  Football-shape 0.013 -0.020 -0.042 -0.028 -0.009 -0.013 0.006 -0.008 -0.008 -0.011 -0.004 0.000 

Linear Linear Homoscedastic -0.013 -0.018 -0.014 -0.003 0.003 -0.003 0.009 -0.006 0.000 0.009 0.000 -0.003 

  Poisson-like 0.009 0.001 -0.003 -0.001 -0.004 -0.003 0.001 -0.003 -0.002 -0.005 0.002 -0.001 

  Football-shape 0.005 -0.011 -0.014 -0.017 0.006 -0.001 0.001 0.000 -0.002 -0.008 0.002 0.002 

 Exponential Homoscedastic -0.030 -0.007 -0.014 0.005 -0.008 0.001 -0.012 0.002 -0.001 -0.009 0.001 -0.002 

  Poisson-like -0.018 0.003 -0.008 -0.007 -0.003 0.000 -0.016 0.005 0.000 0.001 0.004 0.002 

  Football-shape 0.001 -0.001 -0.011 -0.026 0.005 -0.002 0.004 0.005 -0.004 -0.010 0.001 0.000 

Ordinal Linear Homoscedastic 0.012 0.010 0.014 0.006 0.012 0.006 0.011 -0.001 0.006 0.011 0.001 -0.001 

  Poisson-like 0.040 0.035 0.050 0.008 0.008 0.010 0.007 0.004 0.007 -0.003 0.006 0.004 

  Football-shape 0.027 0.013 0.018 -0.008 0.015 0.007 0.002 0.004 0.002 -0.006 0.007 0.002 

 Exponential Homoscedastic -0.006 0.025 0.024 0.017 0.003 0.013 -0.007 0.009 0.002 -0.008 0.005 0.002 

  Poisson-like 0.007 0.021 0.033 0.002 0.004 0.006 -0.014 0.010 0.004 0.005 0.006 0.004 

  Football-shape 0.028 0.024 0.013 -0.018 0.009 0.005 0.008 0.009 0.003 -0.008 0.005 0.003 

Poisson Linear Homoscedastic -0.003 -0.011 -0.004 0.000 0.004 0.003 0.010 -0.004 0.002 0.009 0.000 -0.002 

  Poisson-like 0.016 0.006 0.009 0.000 -0.003 0.002 0.001 -0.001 0.001 -0.005 0.002 0.000 

  Football-shape 0.018 0.001 0.002 -0.011 0.016 0.004 0.006 0.003 0.003 -0.007 0.004 0.003 

 Exponential Homoscedastic -0.022 0.002 -0.011 0.009 -0.005 0.001 -0.010 0.004 -0.002 -0.009 0.001 -0.003 

  Poisson-like -0.013 -0.001 -0.007 -0.007 -0.002 0.000 -0.016 0.004 0.000 0.002 0.004 0.001 

  Football-shape 0.006 0.010 -0.005 -0.025 0.003 0.000 0.005 0.006 0.000 -0.011 0.002 0.003 

Shaded cells are conditions in which the relative bias was greater than ±5%.  
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Table 4. Type I error for Wald test in continuous predictor conditions 
 

Analysis Type Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

Beta Linear Homoscedastic 0.008 0.004 0.015 0.013 

  Poisson-like 0.033** 0.013 0.009 0.015 

  Football-shape 0.005 0.003 0.015 0.013 

 Exponential Homoscedastic 0.000 0.000 0.000 0.001 

  Poisson-like 0.000 0.000 0.000 0.000 

  Football-shape 0.000 0.001 0.004 0.006 

Linear Linear Homoscedastic 0.062** 0.055* 0.053* 0.058** 

  Poisson-like 0.052* 0.061** 0.056** 0.059** 

  Football-shape 0.031** 0.043** 0.028** 0.032** 

 Exponential Homoscedastic 0.052* 0.044** 0.056** 0.057** 

  Poisson-like 0.052* 0.055* 0.056** 0.065** 

  Football-shape 0.040** 0.026** 0.031** 0.025** 

Ordinal Linear Homoscedastic 0.050* 0.055* 0.052* 0.056** 

  Poisson-like 0.042** 0.055* 0.062** 0.057** 

  Football-shape 0.033** 0.040** 0.028** 0.029** 

 Exponential Homoscedastic 0.039** 0.045* 0.045* 0.043** 

  Poisson-like 0.044** 0.052* 0.054* 0.059** 

  Football-shape 0.041** 0.036** 0.031** 0.029** 

Poisson Linear Homoscedastic 0.102 0.096 0.102 0.106 

  Poisson-like 0.084 0.097 0.112 0.098 

  Football-shape 0.114 0.115 0.116 0.127 

 Exponential Homoscedastic 0.104 0.112 0.12 0.123 

  Poisson-like 0.043** 0.053* 0.057** 0.066** 

  Football-shape 0.169 0.170 0.16 0.153 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
Nominal α = .05 
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Table 5. Type I error for Wald test in binary predictor conditions 
 

Analysis Type Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

Beta Linear Homoscedastic 0.002 0.008 0.043 0.080 

  Poisson-like 0.008 0.016 0.177 0.388 

  Football-shape 0.004 0.028** 0.087 0.091 

 Exponential Homoscedastic 0.001 0.033** 0.092 0.161 

  Poisson-like 0.000 0.019 0.051* 0.069** 

  Football-shape 0.003 0.030** 0.007 0.001 

Linear Linear Homoscedastic 0.058** 0.043** 0.046* 0.047* 

  Poisson-like 0.051* 0.057** 0.061** 0.050* 

  Football-shape 0.056** 0.045* 0.050* 0.045* 

 Exponential Homoscedastic 0.047* 0.060** 0.045* 0.048* 

  Poisson-like 0.058** 0.045* 0.047* 0.048* 

  Football-shape 0.064** 0.057** 0.035** 0.046* 

Ordinal Linear Homoscedastic 0.055* 0.042** 0.048* 0.048* 

  Poisson-like 0.049* 0.049* 0.061** 0.052* 

  Football-shape 0.051*  0.050* 0.048* 0.042** 

 Exponential Homoscedastic 0.052* 0.044** 0.039** 0.051* 

  Poisson-like 0.054* 0.050* 0.044** 0.050* 

  Football-shape 0.054* 0.060** 0.045* 0.041** 

Poisson Linear Homoscedastic 0.094 0.093 0.096 0.085 

  Poisson-like 0.084 0.093 0.100 0.085 

  Football-shape 0.150 0.187 0.156 0.151 

 Exponential Homoscedastic 0.125 0.126 0.130 0.135 

  Poisson-like 0.053* 0.042** 0.046* 0.046* 

  Football-shape 0.222 0.233 0.227 0.202 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
Nominal α = .05 
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Table 6. Type I error for LR test in continuous predictor conditions 
 

Analysis Type Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

Beta Linear Homoscedastic 0.356 0.457 0.502 0.497 

  Poisson-like 0.449 0.487 0.502 0.488 

  Football-shape 0.185 0.280 0.466 0.481 

 Exponential Homoscedastic 0.032** 0.376 0.336 0.165 

  Poisson-like 0.029** 0.531 0.416 0.414 

  Football-shape 0.025** 0.033** 0.345 0.477 

Linear Linear Homoscedastic 0.062** 0.054* 0.052* 0.057** 

  Poisson-like 0.050* 0.061** 0.056** 0.059** 

  Football-shape 0.030** 0.042** 0.025** 0.032** 

 Exponential Homoscedastic 0.050* 0.044** 0.056** 0.057** 

  Poisson-like 0.050* 0.055* 0.055* 0.063** 

  Football-shape 0.040** 0.025** 0.030** 0.024 

Ordinal Linear Homoscedastic 0.055* 0.055* 0.053* 0.056** 

  Poisson-like 0.044** 0.057** 0.063** 0.057** 

  Football-shape 0.038** 0.040** 0.029** 0.030** 

 Exponential Homoscedastic 0.045* 0.047* 0.046* 0.043** 

  Poisson-like 0.047* 0.054* 0.054* 0.061** 

  Football-shape 0.045* 0.036** 0.031** 0.029** 

Poisson Linear Homoscedastic 0.102 0.097 0.101 0.106 

  Poisson-like 0.083 0.097 0.114 0.097 

  Football-shape 0.114 0.115 0.115 0.127 

 Exponential Homoscedastic 0.104 0.112 0.120 0.123 

  Poisson-like 0.046* 0.052* 0.057** 0.066** 

  Football-shape 0.172 0.169 0.160 0.153 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
Nominal α = .05 
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Table 7. Type I error for LR test in binary predictor conditions 
 

Analysis Type Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

Beta Linear Homoscedastic 0.323 0.486 0.517 0.520 

  Poisson-like 0.373 0.493 0.502 0.557 

  Football-shape 0.158 0.490 0.529 0.515 

 Exponential Homoscedastic 0.405 0.481 0.492 0.548 

  Poisson-like 0.032** 0.499 0.468 0.393 

  Football-shape 0.347 0.469 0.452 0.304 

Linear Linear Homoscedastic 0.057** 0.042** 0.046* 0.047* 

  Poisson-like 0.051* 0.054* 0.059** 0.050* 

  Football-shape 0.054* 0.045* 0.049* 0.045* 

 Exponential Homoscedastic 0.047* 0.060** 0.044** 0.048* 

  Poisson-like 0.055* 0.043** 0.047* 0.048* 

  Football-shape 0.060** 0.056** 0.035** 0.045* 

Ordinal Linear Homoscedastic 0.057** 0.043** 0.048* 0.048* 

  Poisson-like 0.053* 0.051* 0.061** 0.052* 

  Football-shape 0.051* 0.050* 0.048* 0.042* 

 Exponential Homoscedastic 0.052* 0.045* 0.041** 0.051* 

  Poisson-like 0.058** 0.050* 0.044** 0.051* 

  Football-shape 0.057** 0.060** 0.047* 0.041** 

Poisson Linear Homoscedastic 0.094 0.093 0.096 0.085 

  Poisson-like 0.084 0.093 0.101 0.085 

  Football-shape 0.150 0.187 0.156 0.151 

 Exponential Homoscedastic 0.126 0.126 0.131 0.135 

  Poisson-like 0.056** 0.042** 0.047* 0.046* 

  Football-shape 0.227 0.234 0.227 0.202 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
Nominal α = .05 
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Table 8. Power for Wald test in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

   0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.406 0.997 0.999 0.894 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.463 0.989 0.999 0.916 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.107 0.920 1.000 0.432 1.000 1.000 0.911 1.000 1.000 1.000 1.000 1.000 

 Exponential Homoscedastic 0.466 0.999 1.000 0.914 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.524 1.000 1.000 0.910 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.119 0.969 1.000 0.469 1.000 1.000 0.926 1.000 1.000 1.000 1.000 1.000 

Linear Linear Homoscedastic 0.840 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.859 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.592 1.000 1.000 0.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 Exponential Homoscedastic 0.844 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.847 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.597 1.000 1.000 0.943 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Ordinal Linear Homoscedastic 0.837 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.830 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.604 1.000 1.000 0.946 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 Exponential Homoscedastic 0.828 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.828 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.584 0.999 1.000 0.948 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

Poisson Linear Homoscedastic 0.891 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.901 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.807 1.000 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 Exponential Homoscedastic 0.893 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.888 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.802 1.000 1.000 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Shaded cells have unacceptably large type I error rates. 
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Table 9. Power for Wald test in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

   0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.189 0.957 1.000 0.632 1.000 1.000 0.974 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.284 0.985 1.000 0.722 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.028 0.592 0.985 0.200 0.995 1.000 0.552 1.000 1.000 0.952 1.000 1.000 
 Exponential Homoscedastic 0.200 0.973 1.000 0.685 1.000 1.000 0.970 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.270 0.991 1.000 0.721 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.039 0.713 0.996 0.197 0.998 1.000 0.615 1.000 1.000 0.952 1.000 1.000 

Linear Linear Homoscedastic 0.630 1.000 1.000 0.947 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.674 1.000 1.000 0.966 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.409 0.967 1.000 0.749 1.000 1.000 0.957 1.000 1.000 0.999 1.000 1.000 

 Exponential Homoscedastic 0.627 1.000 1.000 0.966 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

  Poisson-like 0.626 1.000 1.000 0.951 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 

  Football-shape 0.425 0.982 1.000 0.756 1.000 1.000 0.972 1.000 1.000 0.999 1.000 1.000 

Ordinal Linear Homoscedastic 0.625 1.000 1.000 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.650 1.000 1.000 0.963 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.403 0.975 1.000 0.756 1.000 1.000 0.966 1.000 1.000 0.999 1.000 1.000 
 Exponential Homoscedastic 0.617 1.000 1.000 0.969 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.604 1.000 1.000 0.945 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.421 0.971 1.000 0.769 1.000 1.000 0.975 1.000 1.000 1.000 1.000 1.000 

Poisson Linear Homoscedastic 0.721 1.000 1.000 0.972 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.754 1.000 1.000 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.628 0.995 1.000 0.888 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000 
 Exponential Homoscedastic 0.729 1.000 1.000 0.987 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.729 1.000 1.000 0.974 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.621 0.999 1.000 0.905 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 

Shaded cells have unacceptably large type I error rates. 
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Table 10. Power for LR test in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

   0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.841 1.000 1.000 0.734 1.000 0.873 0.692 0.865 0.955 0.788 0.957 0.976 

  Poisson-like 0.449 0.795 1.000 0.622 0.834 0.850 0.808 0.915 0.910 0.764 0.972 0.978 

  Football-shape 0.581 0.996 1.000 0.633 0.678 0.807 0.522 0.791 0.841 0.539 0.930 1.000 

 Exponential Homoscedastic 0.817 0.999 1.000 0.736 0.803 0.838 0.683 0.939 0.944 0.727 0.944 0.987 

  Poisson-like 0.783 1.000 1.000 0.653 0.845 0.903 0.721 0.898 0.952 0.746 0.955 0.992 

  Football-shape 0.561 0.985 0.686 0.540 0.631 0.728 0.533 0.666 0.823 0.539 0.711 0.888 

Linear Linear Homoscedastic 0.838 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.851 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.587 1.000 1.000 0.936 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 Exponential Homoscedastic 0.841 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.846 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.590 1.000 1.000 0.941 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Ordinal Linear Homoscedastic 0.843 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.845 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.610 1.000 1.000 0.948 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 Exponential Homoscedastic 0.838 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.839 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.592 0.999 1.000 0.952 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

Poisson Linear Homoscedastic 0.891 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.901 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.807 1.000 1.000 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 Exponential Homoscedastic 0.893 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.890 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.801 1.000 1.000 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Shaded cells have unacceptably large type I error rates. 
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Table 11. Statistical power for LR test in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 n = 500 n = 1000 

   0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.709 0.996 0.962 0.772 0.749 0.770 0.610 0.783 0.849 0.656 0.851 0.943 

  Poisson-like 0.664 0.999 0.759 0.668 0.719 0.801 0.571 0.749 0.842 0.681 0.872 0.906 

  Football-shape 0.420 0.911 0.632 0.516 0.553 0.619 0.512 0.617 0.654 0.556 0.689 0.759 

 Exponential Homoscedastic 0.674 0.989 0.691 0.608 0.743 0.681 0.600 0.748 0.729 0.659 0.804 0.809 

  Poisson-like 0.616 0.991 1.000 0.592 0.685 0.691 0.623 0.783 0.742 0.700 0.810 0.840 

  Football-shape 0.415 0.901 0.632 0.526 0.592 0.593 0.534 0.642 0.634 0.541 0.698 0.692 

Linear Linear Homoscedastic 0.625 1.000 1.000 0.947 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.665 1.000 1.000 0.964 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.401 0.967 1.000 0.743 1.000 1.000 0.957 1.000 1.000 0.999 1.000 1.000 
 Exponential Homoscedastic 0.618 1.000 1.000 0.966 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.620 1.000 1.000 0.950 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.415 0.980 1.000 0.753 1.000 1.000 0.969 1.000 1.000 0.999 1.000 1.000 

Ordinal Linear Homoscedastic 0.634 1.000 1.000 0.950 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.664 1.000 1.000 0.965 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.415 0.976 1.000 0.757 1.000 1.000 0.966 1.000 1.000 0.999 1.000 1.000 
 Exponential Homoscedastic 0.625 1.000 1.000 0.970 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.621 1.000 1.000 0.945 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.429 0.971 1.000 0.770 1.000 1.000 0.975 1.000 1.000 1.000 1.000 1.000 

Poisson Linear Homoscedastic 0.721 1.000 1.000 0.973 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.754 1.000 1.000 0.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.628 0.995 1.000 0.889 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000 
 Exponential Homoscedastic 0.729 1.000 1.000 0.987 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 
  Poisson-like 0.729 1.000 1.000 0.974 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 
  Football-shape 0.621 0.999 1.000 0.905 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 

Shaded cells have unacceptably large type I error rates. 
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Table 12. CI coverage for Wald test in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.992 0.991 0.898 0.900 0.996 0.997 0.925** 0.870 

  Poisson-like 0.967** 0.970** 0.845 0.288 0.987 0.991 0.860 0.041 

  Football-shape 0.994 0.999 0.997 0.995 0.997 0.995 0.997 0.999 

 Exponential Homoscedastic 1.000 0.991 0.575 0.747 1.000 0.995 0.158 0.855 

  Poisson-like 1.000 0.972** 0.334 0.808 1.000 0.985 0.181 0.844 

  Football-shape 1.000 0.999 0.932** 0.811 0.999 0.997 0.769 0.855 

Linear Linear Homoscedastic 0.937** 0.958** 0.976 0.953* 0.946* 0.961** 0.971** 0.943** 

  Poisson-like 0.949* 0.947* 0.953* 0.900 0.939** 0.952* 0.947* 0.899 

  Football-shape 0.968** 0.959** 0.971** 0.951* 0.955* 0.965** 0.977 0.966** 

 Exponential Homoscedastic 0.948* 0.945* 0.897 0.749 0.955* 0.959** 0.887 0.778 

  Poisson-like 0.948* 0.952* 0.877 0.779 0.945* 0.941** 0.882 0.768 

  Football-shape 0.959** 0.962** 0.919 0.837 0.974** 0.970** 0.902 0.821 

Ordinal Linear Homoscedastic 0.950* 0.952* 0.953* 0.968** 0.945* 0.953* 0.958** 0.962** 

  Poisson-like 0.958** 0.955* 0.955* 0.952* 0.944** 0.953* 0.949* 0.959** 

  Football-shape 0.966** 0.966** 0.970** 0.958** 0.960** 0.965** 0.969** 0.968** 

 Exponential Homoscedastic 0.960** 0.944** 0.942** 0.931** 0.955* 0.950* 0.937** 0.923 

  Poisson-like 0.954* 0.954* 0.953* 0.945* 0.949* 0.944** 0.947* 0.953* 

  Football-shape 0.957** 0.968** 0.960** 0.930** 0.964** 0.975** 0.955* 0.945* 

Poisson Linear Homoscedastic 0.898 0.912 0.929** 0.911 0.904 0.918 0.939** 0.883 

  Poisson-like 0.918 0.923 0.917 0.846 0.904 0.930** 0.914 0.851 

  Football-shape 0.883 0.868 0.873 0.860 0.886 0.874 0.889 0.867 

 Exponential Homoscedastic 0.896 0.923 0.929** 0.880 0.888 0.924 0.917 0.888 

  Poisson-like 0.953* 0.916 0.905 0.891 0.947* 0.897 0.919 0.851 

  Football-shape 0.830 0.881 0.874 0.848 0.830 0.879 0.875 0.840 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
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Table 12 continued. CI coverage for Wald test in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 500 n = 1000 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.985 0.992 0.940** 0.824 0.987 0.998 0.952* 0.760 

  Poisson-like 0.990 0.997 0.826 0.038 0.985 0.983 0.735 0.227 

  Football-shape 0.985 0.965 0.998 0.996 0.988 0.937** 0.999 0.993 

 Exponential Homoscedastic 1.000 0.996 0.078 0.838 0.999 0.990 0.265 0.847 

  Poisson-like 1.000 0.984 0.424 0.848 1.000 0.961** 0.529 0.836 

  Football-shape 0.996 0.968* 0.483 0.854 0.994 0.954* 0.376 0.867 

Linear Linear Homoscedastic 0.947* 0.951* 0.968** 0.936** 0.942** 0.960** 0.963** 0.940** 

  Poisson-like 0.941** 0.955** 0.948* 0.924 0.945* 0.960** 0.944** 0.910 

  Football-shape 0.972** 0.969** 0.975** 0.965** 0.968** 0.975** 0.975** 0.965** 

 Exponential Homoscedastic 0.943** 0.960** 0.888 0.754 0.942** 0.967** 0.891 0.776 

  Poisson-like 0.944** 0.949* 0.858 0.763 0.938** 0.949* 0.860 0.806 

  Football-shape 0.970** 0.958** 0.933** 0.833 0.975** 0.976 0.912 0.833 

Ordinal Linear Homoscedastic 0.948* 0.939** 0.954* 0.956** 0.944** 0.951* 0.957** 0.952* 

  Poisson-like 0.938** 0.958** 0.947* 0.955* 0.941** 0.953* 0.961** 0.956** 

  Football-shape 0.971** 0.966** 0.970** 0.972** 0.970** 0.973** 0.974** 0.964** 

 Exponential Homoscedastic 0.955* 0.957** 0.932** 0.915 0.959** 0.968** 0.954* 0.927** 

  Poisson-like 0.944** 0.946* 0.946* 0.955* 0.938** 0.953* 0.958** 0.950* 

  Football-shape 0.970** 0.964** 0.947* 0.934** 0.971** 0.960** 0.963** 0.927** 

Poisson Linear Homoscedastic 0.900 0.913 0.923 0.887 0.894 0.921 0.931** 0.892 

  Poisson-like 0.886 0.926** 0.919 0.834 0.903 0.933** 0.912 0.834 

  Football-shape 0.883 0.885 0.901 0.832 0.863 0.910 0.878 0.861 

 Exponential Homoscedastic 0.880 0.922 0.925** 0.854 0.876 0.945* 0.914 0.853 

  Poisson-like 0.944** 0.932** 0.902 0.855 0.933** 0.927** 0.914 0.858 

  Football-shape 0.840 0.879 0.880 0.835 0.847 0.865 0.874 0.837 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
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Table 13. CI coverage for Wald test in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.998 0.999 0.999 0.997 0.992 0.994 0.985 0.981 

  Poisson-like 0.992 0.999 0.993 0.977 0.984 0.988 0.972** 0.960** 

  Football-shape 0.996 0.999 1.000 1.000 0.972** 0.981 0.953* 0.939** 

 Exponential Homoscedastic 0.999 0.996 0.967** 0.847 0.967** 0.991 0.941** 0.908 

  Poisson-like 1.000 0.993 0.878 0.883 0.981 0.988 0.838 0.909 

  Football-shape 0.997 0.999 0.974** 0.892 0.970** 0.972** 0.911 0.919 

Linear Linear Homoscedastic 0.942** 0.948* 0.940** 0.944** 0.957** 0.944** 0.949* 0.945* 

  Poisson-like 0.947* 0.946* 0.928** 0.949* 0.937** 0.956** 0.951* 0.951* 

  Football-shape 0.944** 0.958** 0.942** 0.936** 0.954* 0.948* 0.951* 0.940** 

 Exponential Homoscedastic 0.953* 0.943** 0.949* 0.909 0.940** 0.963** 0.942** 0.935** 

  Poisson-like 0.944** 0.931** 0.936** 0.922 0.957** 0.941** 0.946* 0.921 

  Football-shape 0.936** 0.943* 0.945* 0.920 0.942** 0.946* 0.948* 0.944** 

Ordinal Linear Homoscedastic 0.945* 0.958** 0.955* 0.966** 0.959** 0.946* 0.960** 0.963** 

  Poisson-like 0.951* 0.961** 0.956** 0.971** 0.949* 0.954* 0.955* 0.951* 

  Football-shape 0.949* 0.962** 0.949* 0.940** 0.950* 0.959** 0.944** 0.949* 

 Exponential Homoscedastic 0.949* 0.946* 0.955* 0.960** 0.955* 0.968** 0.949* 0.948* 

  Poisson-like 0.945* 0.946* 0.960** 0.959** 0.950* 0.946* 0.962** 0.945* 

  Football-shape 0.946* 0.944** 0.946* 0.952* 0.940** 0.951* 0.952* 0.958** 

Poisson Linear Homoscedastic 0.905 0.905 0.865 0.841 0.908 0.899 0.894 0.826 

  Poisson-like 0.917 0.921 0.868 0.807 0.911 0.920 0.869 0.810 

  Football-shape 0.850 0.856 0.796 0.752 0.815 0.837 0.798 0.764 

 Exponential Homoscedastic 0.877 0.901 0.904 0.828 0.878 0.923 0.882 0.847 

  Poisson-like 0.947*   0.899 0.900 0.849 0.959** 0.909 0.890 0.829 

  Football-shape 0.780 0.831 0.813 0.756 0.768 0.848 0.813 0.767 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
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Table 13 continued. CI coverage for Wald test in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 500 n = 1000 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic 0.956** 0.975** 0.972** 0.950* 0.920 0.957** 0.966** 0.933** 

  Poisson-like 0.823 0.935** 0.943** 0.909 0.612 0.827 0.940** 0.883 

  Football-shape 0.913 0.967** 0.924 0.866 0.909 0.979 0.952* 0.810 

 Exponential Homoscedastic 0.908 0.972** 0.893 0.903 0.839 0.954* 0.894 0.920 

  Poisson-like 0.949* 0.929** 0.773 0.931** 0.931** 0.850 0.732 0.938** 

  Football-shape 0.993 0.923 0.830 0.933** 0.999 0.970** 0.821 0.942** 

Linear Linear Homoscedastic 0.953* 0.941* 0.950* 0.953* 0.949* 0.952* 0.949* 0.950* 

  Poisson-like 0.942** 0.944** 0.955* 0.953* 0.949* 0.955* 0.956** 0.958** 

  Football-shape 0.951* 0.937** 0.959** 0.948* 0.956** 0.948* 0.951* 0.930** 

 Exponential Homoscedastic 0.956** 0.953* 0.947* 0.943** 0.950* 0.949* 0.956** 0.930** 

  Poisson-like 0.952* 0.952* 0.949* 0.950* 0.952* 0.941** 0.939** 0.930** 

  Football-shape 0.966** 0.959** 0.951* 0.938** 0.955* 0.963** 0.954* 0.943** 

Ordinal Linear Homoscedastic 0.953* 0.946* 0.947* 0.969** 0.954* 0.951* 0.940** 0.966** 

  Poisson-like 0.941** 0.946* 0.953* 0.954* 0.947* 0.956** 0.955* 0.955* 

  Football-shape 0.951* 0.939** 0.952* 0.953* 0.959** 0.956** 0.953* 0.943** 

 Exponential Homoscedastic 0.960** 0.950* 0.952* 0.963** 0.952* 0.949* 0.960** 0.955* 

  Poisson-like 0.956** 0.948* 0.955* 0.952* 0.949* 0.946* 0.953* 0.951* 

  Football-shape 0.955* 0.948* 0.955* 0.951* 0.962** 0.959** 0.952* 0.945* 

Poisson Linear Homoscedastic 0.905 0.882 0.885 0.822 0.915 0.898 0.882 0.828 

  Poisson-like 0.897 0.911 0.867 0.812 0.915 0.924 0.881 0.809 

  Football-shape 0.844 0.825 0.814 0.780 0.852 0.824 0.828 0.775 

 Exponential Homoscedastic 0.869 0.900 0.879 0.845 0.864 0.908 0.892 0.832 

  Poisson-like 0.955* 0.906 0.892 0.842 0.954* 0.908 0.869 0.838 

  Football-shape 0.774 0.825 0.823 0.757 0.803 0.851 0.820 0.754 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
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Table 14. CI coverage for LR test in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 
 Exponential Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 

Linear Linear Homoscedastic 0.939** 0.959** 0.980 0.957** 0.946* 0.961** 0.972** 0.943** 

  Poisson-like 0.950* 0.952* 0.955* 0.903 0.939** 0.955* 0.947* 0.900 

  Football-shape 0.969** 0.965** 0.972** 0.955* 0.956** 0.965** 0.978 0.968** 

 Exponential Homoscedastic 0.950* 0.946* 0.899 0.754 0.956** 0.960** 0.889 0.780 

  Poisson-like 0.949* 0.952* 0.878 0.781 0.947* 0.941** 0.883 0.769 

  Football-shape 0.960** 0.964** 0.923 0.840 0.974** 0.970** 0.903 0.822 

Ordinal Linear Homoscedastic 0.945* 0.949* 0.939** 0.960** 0.945* 0.949* 0.960** 0.956** 

  Poisson-like 0.956** 0.945* 0.949* 0.939** 0.944** 0.949* 0.947* 0.950* 

  Football-shape 0.963** 0.967** 0.969** 0.951* 0.960** 0.964** 0.969** 0.964** 

 Exponential Homoscedastic 0.955* 0.938** 0.933** 0.913 0.954* 0.951* 0.939** 0.918 

  Poisson-like 0.950* 0.948* 0.952* 0.937** 0.947* 0.941** 0.946* 0.941** 

  Football-shape 0.955* 0.964** 0.957** 0.919 0.964** 0.976 0.951* 0.942** 

Poisson Linear Homoscedastic 0.898 0.912 0.928** 0.909 0.904 0.918 0.938** 0.883 

  Poisson-like 0.917 0.923 0.917 0.844 0.904 0.929** 0.914 0.851 

  Football-shape 0.884 0.868 0.872 0.858 0.886 0.874 0.889 0.867 

 Exponential Homoscedastic 0.895 0.923 0.929** 0.879 0.888 0.924 0.917 0.888 

  Poisson-like 0.953* 0.918 0.906 0.891 0.947* 0.897 0.921 0.851 

  Football-shape 0.830 0.881 0.874 0.848 0.829 0.881 0.875 0.840 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
N/A indicates that the LR confidence interval was not available for beta regression. 
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Table 14 continued. CI coverage for LR test in continuous predictor conditions 
 

Analysis  Mean Type Variance Type n = 500 n = 1000 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 
 Exponential Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 

Linear Linear Homoscedastic 0.948* 0.951* 0.970** 0.938** 0.942** 0.960** 0.963** 0.941** 

  Poisson-like 0.941** 0.956** 0.950* 0.926** 0.945* 0.960** 0.944** 0.910 

  Football-shape 0.972** 0.969** 0.975** 0.965** 0.968** 0.975** 0.975** 0.965** 

 Exponential Homoscedastic 0.944** 0.961** 0.888 0.755 0.943** 0.967** 0.891 0.776 

  Poisson-like 0.945* 0.950* 0.859 0.764 0.938** 0.949* 0.860 0.806 

  Football-shape 0.970** 0.958** 0.934** 0.834 0.975** 0.976 0.912 0.833 

Ordinal Linear Homoscedastic 0.947* 0.938** 0.956** 0.952* 0.944** 0.950* 0.956** 0.950* 

  Poisson-like 0.937** 0.953* 0.945* 0.956** 0.941** 0.952* 0.955* 0.954* 

  Football-shape 0.971** 0.965** 0.971** 0.973** 0.970** 0.974** 0.975** 0.962** 

 Exponential Homoscedastic 0.955* 0.956** 0.934** 0.913 0.959** 0.968** 0.950* 0.926** 

  Poisson-like 0.941** 0.947* 0.948* 0.953* 0.938** 0.954* 0.960** 0.949* 

  Football-shape 0.969** 0.964** 0.947* 0.932** 0.971** 0.960** 0.960** 0.926** 

Poisson Linear Homoscedastic 0.900 0.913 0.923 0.886 0.895 0.920 0.931** 0.892 

  Poisson-like 0.887 0.926** 0.919 0.833 0.903 0.933** 0.912 0.834 

  Football-shape 0.883 0.885 0.901 0.832 0.863 0.911 0.878 0.861 

 Exponential Homoscedastic 0.880 0.922 0.924 0.854 0.877 0.945* 0.914 0.852 

  Poisson-like 0.944** 0.933** 0.902 0.855 0.933** 0.927** 0.914 0.858 

  Football-shape 0.840 0.879 0.880 0.834 0.847 0.865 0.874 0.837 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
N/A indicates that the LR confidence interval was not available for beta regression.  
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Table 15. CI coverage for LR test in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 100 n = 250 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 
 Exponential Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 

Linear Linear Homoscedastic 0.943** 0.954* 0.942** 0.948* 0.957** 0.947* 0.950* 0.946* 

  Poisson-like 0.950* 0.948* 0.933** 0.953* 0.942** 0.958** 0.951* 0.952* 

  Football-shape 0.946* 0.959** 0.944** 0.940** 0.955* 0.948* 0.952* 0.940** 

 Exponential Homoscedastic 0.953* 0.945* 0.952* 0.910 0.942** 0.963** 0.943** 0.936** 

  Poisson-like 0.945* 0.936** 0.938** 0.926** 0.957** 0.944** 0.948* 0.922 

  Football-shape 0.940** 0.948* 0.947* 0.923 0.944** 0.950* 0.951* 0.945* 

Ordinal Linear Homoscedastic 0.945* 0.952* 0.954* 0.953* 0.958** 0.945* 0.959** 0.960** 

  Poisson-like 0.945* 0.956** 0.941** 0.948* 0.946* 0.952* 0.952* 0.949* 

  Football-shape 0.949* 0.961** 0.949* 0.938** 0.950* 0.957** 0.946* 0.947* 

 Exponential Homoscedastic 0.948* 0.943** 0.949* 0.949* 0.955* 0.966** 0.949* 0.949* 

  Poisson-like 0.942** 0.943** 0.953* 0.958** 0.950* 0.945* 0.963** 0.941** 

  Football-shape 0.943** 0.943** 0.938** 0.948* 0.940** 0.951* 0.951* 0.960** 

Poisson Linear Homoscedastic 0.905 0.905 0.862 0.838 0.908 0.898 0.894 0.827 

  Poisson-like 0.915 0.921 0.866 0.812 0.910 0.920 0.868 0.812 

  Football-shape 0.850 0.858 0.792 0.757 0.815 0.838 0.799 0.766 

 Exponential Homoscedastic 0.873 0.902 0.903 0.824 0.876 0.922 0.882 0.846 

  Poisson-like 0.945* 0.899 0.900 0.851 0.958** 0.910 0.888 0.827 

  Football-shape 0.777 0.831 0.810 0.756 0.766 0.847 0.815 0.769 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
N/A indicates that the LR confidence interval was not available for beta regression.  
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Table 15 continued. CI coverage for LR test in binary predictor conditions 
 

Analysis  Mean Type Variance Type n = 500 n = 1000 

   0 0.35 0.87 1.39 0 0.35 0.87 1.39 

Beta Linear Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 
 Exponential Homoscedastic N/A N/A N/A N/A N/A N/A N/A N/A 
  Poisson-like N/A N/A N/A N/A N/A N/A N/A N/A 
  Football-shape N/A N/A N/A N/A N/A N/A N/A N/A 

Linear Linear Homoscedastic 0.953* 0.943** 0.950* 0.953* 0.950* 0.952* 0.950* 0.950* 

  Poisson-like 0.942** 0.944** 0.956** 0.953* 0.949* 0.956** 0.956** 0.958** 

  Football-shape 0.951* 0.937** 0.959** 0.949* 0.956** 0.948* 0.951* 0.930** 

 Exponential Homoscedastic 0.957** 0.955* 0.947* 0.943** 0.950* 0.949* 0.956** 0.930** 

  Poisson-like 0.952* 0.952* 0.950* 0.951* 0.952* 0.941** 0.939** 0.930** 

  Football-shape 0.966** 0.959** 0.952* 0.939** 0.956** 0.963** 0.954* 0.943** 

Ordinal Linear Homoscedastic 0.953* 0.946* 0.946* 0.968** 0.954* 0.950* 0.942** 0.967** 

  Poisson-like 0.939** 0.947* 0.952* 0.951* 0.946* 0.956** 0.955* 0.955* 

  Football-shape 0.951* 0.939** 0.954* 0.951* 0.959** 0.956** 0.954* 0.944** 

 Exponential Homoscedastic 0.960** 0.949* 0.953* 0.962** 0.952* 0.950* 0.959** 0.956** 

  Poisson-like 0.956** 0.950* 0.957** 0.953* 0.948* 0.947* 0.951* 0.950* 

  Football-shape 0.954* 0.948* 0.955* 0.949* 0.962** 0.959** 0.950* 0.943** 

Poisson Linear Homoscedastic 0.905 0.881 0.885 0.823 0.915 0.898 0.881 0.827 

  Poisson-like 0.897 0.910 0.867 0.810 0.915 0.924 0.881 0.807 

  Football-shape 0.844 0.826 0.814 0.778 0.851 0.824 0.829 0.774 

 Exponential Homoscedastic 0.869 0.900 0.878 0.842 0.864 0.909 0.892 0.831 

  Poisson-like 0.954* 0.907 0.892 0.837 0.953* 0.908 0.869 0.838 

  Football-shape 0.774 0.825 0.824 0.756 0.803 0.851 0.820 0.753 

* Meets Bradley’s (1978) stringent criterion 
** Meets Bradley’s (1978) liberal criterion 
N/A indicates that the LR confidence interval was not available for beta regression. 
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Figure 1. Relationship between probability and logit. 
 

  



 

  97 

Figure 2. Poisson distributions with means of 1, 5, and 10. 
 

 
 
Note: Poisson distributions with mean = 1 (solid bars), mean = 5 
(horizontally striped bars), and mean = 10 (diagonally striped bars) are 
shown.  
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Figure 3. Linear mean structure with variance structures. 
 
Homoscedastic variance 

 
Heteroscedastic, Poisson-like variance 

 
Heteroscedastic, football-shaped variance 

 
Bold line = mean structure. Dashed lines = 2 standard deviations above 
and below the mean, based on the variance structure indicated. 
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Figure 4. Exponential mean structure with variance structures. 
 
Homoscedastic variance 

 
Heteroscedastic, Poisson-like variance 

 
Heteroscedastic, football-shaped variance 

 
Bold line = mean structure. Dashed lines = 2 standard deviations above 
and below the mean, based on the variance structure indicated. 
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Figure 5. Representative samples for linear conditions (n=250). 
 
Homoscedastic variance 

 
Heteroscedastic, Poisson-like variance 

 
Heteroscedastic, football-shaped variance 
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Figure 6. Representative samples for exponential conditions (n=250). 
 
Homoscedastic variance 

 
Heteroscedastic, Poisson-like variance 

 
Heteroscedastic, football-shaped variance 
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Footnotes 

 1 A programming error led to effect sizes that were different from the intended 

effect sizes. The intended effect sizes were 0, 0.2, 0.5, and 0.8, corresponding to the 

standard zero, small, medium, and large Cohen’s d effect sizes. The actual effect sizes 

in this study were 0, 0.35, 0.87, and 1.39, corresponding to zero, small/medium, large, 

and very large Cohen’s d effect sizes. 
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APPENDIX A 

DATA GENERATION SYNTAX 
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/************************************************/ 

/* 2 types of predictor - continuous/binary */ 

/* 2 mean structures - linear/exponential  */ 

/* 4 variance structures - OLS/Poisson/football */ 

/* 4 effect sizes - 0/0.2/0.5/0.8   */ 

/* 4 sample sizes - 100/250/500/1000  */ 

/************************************************/ 

 

/************************************************/ 

/* Values for macro variables    */ 

/* xtype = 1 for continuous, 2 for binary  */ 

/* meantype = 1 for linear, 2 for exponential */ 

/* vartype = 1 for OLS, 2 for Poisson,  */ 

/*  3 for football     */ 

/* effsize = 0 for 0, 0.2 for 0.2, 0.5 for 0.5, */ 

/*  0.8 for 0.8     */ 

/* sampsize = 100, 250, 500, 1000   */ 

/************************************************/ 

 

options symbolgen; 

 

%macro gcgf(reps, xtype, meantype, vartype, effsize, sampsize); 

 

%do i = 1 %to &reps; 

 

data one; 

keep reps xtype meantype vartype effsize sampsize i absx x mu_x y x_star 

y_star; 

i = &i; 

reps = &reps; 

xtype = &xtype; 

meantype = &meantype; 

vartype = &vartype; 

effsize = &effsize; 

sampsize = &sampsize; 

/* generate x as a normal variate */ 

do j = 1 to &sampsize; 

x_star = rannor(0); 

/* generate mean structure of y */ 

if meantype = 1 then 

mu_x = (3 * &effsize * x_star) + 3; 

if meantype = 2 and effsize = 0 then 

mu_x = exp(0 * x_star); 

if meantype = 2 and effsize = 0.2 then 

mu_x = exp((0.199668 * x_star) + 1.09861229); 

if meantype = 2 and effsize = 0.5 then 

mu_x = exp((0.494933 * x_star) + 1.09861229); 

else if meantype = 2 and effsize = 0.8 then 

mu_x = exp((0.780071 * x_star) + 1.09861229); 

if vartype = 2 and mu_x < 0 then mu_x = 0; 

/* add variance structure to y */ 

absx = abs(x_star-0); 

if vartype = 1 then 

y_star = mu_x + sqrt(3) * rannor(0); 
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if vartype = 2 then  

y_star = ranpoi(0, mu_x); 

else if vartype = 3 then  

y_star = mu_x + (((-0.5 * absx) + 3) * rannor(0)); 

/* chop up y according to these categories: */ 

/* 0, 1-3, 4-8, 9-15, 16-30     */ 

if y_star le 0.4999999999 then y = 0; 

if 0.5 le y_star le 3.4999999999 then y = 2; 

if 3.5 le y_star le 8.4999999999 then y = 6; 

if 8.5 le y_star le 15.4999999999 then y = 12; 

if y_star ge 15.5 then y = 23; 

output; 

end; 

run; 

 

/* for the binary x condition, do a median split of x */ 

%if &xtype = 1 %then 

%do; 

data one; 

set one; 

x= x_star; 

run; 

%end; 

%else %if &xtype = 2 %then 

%do; 

proc sort data = one; 

by x_star; 

run; 

data one; 

set one; 

if _n_ le &sampsize/2 then x = -0.5; 

else x = 0.5; 

run; 

%end; 

 

/* Output all data to a file */ 

data write; 

set one; 

file "C:\Users\psyripl\Desktop\Dissertation programs\Conditions 1 through 

48\estimates.txt" mod; 

put reps xtype meantype vartype effsize sampsize i x y absx mu_x x_star 

y_star; 

run; 

 

%end; 

%mend gcgf; 


