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ABSTRACT  
   

Often termed the "gold standard" in the differential diagnosis of 

dysarthria, the etiology-based Mayo Clinic classification approach has been used 

nearly exclusively by clinicians since the early 1970s. However, the current 

descriptive method results in a distinct overlap of perceptual features across 

various etiologies, thus limiting the clinical utility of such a system for differential 

diagnosis. Acoustic analysis may provide a more objective measure for 

improvement in overall reliability (Guerra & Lovely, 2003) of classification. The 

following paper investigates the potential use of a taxonomical approach to 

dysarthria. The purpose of this study was to identify a set of acoustic correlates of 

perceptual dimensions used to group similarly sounding speakers with dysarthria, 

irrespective of disease etiology. The present study utilized a free classification 

auditory perceptual task in order to identify a set of salient speech characteristics 

displayed by speakers with varying dysarthria types and perceived by listeners, 

which was then analyzed using multidimensional scaling (MDS), correlation 

analysis, and cluster analysis. In addition, discriminant function analysis (DFA) 

was conducted to establish the feasibility of using the dimensions underlying 

perceptual similarity in dysarthria to classify speakers into both listener-derived 

clusters and etiology-based categories. The following hypothesis was identified: 

Because of the presumed predictive link between the acoustic correlates and 

listener-derived clusters, the DFA classification results should resemble the 

perceptual clusters more closely than the etiology-based (Mayo System) 

classifications. Results of the present investigation's MDS revealed three 
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dimensions, which were significantly correlated with 1) metrics capturing rate and 

rhythm, 2) intelligibility, and 3) all of the long-term average spectrum metrics in 

the 8000 Hz band, which has been linked to degree of phonemic distinctiveness 

(Utianski et al., February 2012). A qualitative examination of listener notes 

supported the MDS and correlation results, with listeners overwhelmingly making 

reference to speaking rate/rhythm, intelligibility, and articulatory precision while 

participating in the free classification task. Additionally, acoustic correlates 

revealed by the MDS and subjected to DFA indeed predicted listener group 

classification. These results beget acoustic measurement as representative of 

listener perception, and represent the first phase in supporting the use of a 

perceptually relevant taxonomy of dysarthria. 
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Free Classification of Dysarthric Speech: A Taxonomical Approach 

Motor Speech Disorders: Dysarthria 

The term dysarthria is used to describe a group of speech disorders 

resulting in abnormalities in the strength, speed, range, steadiness, tone, or 

accuracy of movements, which also affects control of the respiratory muscular 

control, and arise from disorders of neurological processing (Darley, Aronson, & 

Brown, 1975; Duffy, 1995; Duffy, 2005). Dysarthria can be further divided into 

types, which generally share the same underlying disease. Darley, Aronson, and 

Brown (1969a, b) first provided a conceptual framework for the various etiologies 

and perceptual features of speakers with dysarthria with their pivotal 

investigations, which will be referred to as the Mayo Clinic System throughout 

this paper.  

The Mayo Clinic System 

Often termed the “gold standard” in the differential diagnosis of 

dysarthria, the Mayo Clinic classification approach has been used nearly 

exclusively by clinicians since the early 1970s. In the first of two papers, Darley, 

Aronson, and Brown (1969a) based their classification matrix on the notion that 

“…patterns of dysarthria can be differentiated; they sound different” (p. 246). At 

the time of their first investigation, dysarthria was believed to be solely the result 

of poor articulation, and was described using non-descript terminology such as 

“slurred,” “labored,” “explosive,” and “slobbery” (1969a, p. 247). The authors 

sought evidence for the diagnostic value of speech symptomology, and to better 

describe those speech aspects that “…are clinically differentiable” (p.247). Darley 
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et al. posited that accurate differential diagnosis could facilitate the identification 

of neurological lesions and/or dysfunctions, based on the characteristics of 

speech.  In their study, the authors described the perceptual characteristics of 212 

speech samples from patients diagnosed with one of the following neurological 

conditions: pseudobulbar palsy, amyotrophic lateral sclerosis (ALS), bulbar palsy, 

cerebellar lesions, parkinsonism, dystonia, or choreoathetosis. Using a seven-

point scale, authors assigned ratings for each of the previously described 38 

perceptual dimensions that authors considered salient, pertaining to pitch, 

loudness, vocal quality, respiration, prosody, articulation, and overall 

intelligibility or bizarreness. Results ranked speakers by neurologic group as well 

as by rank of each of the 38 dimensions (see Table 1). Based on these results 

authors formed two conclusions: 1) perceived speech differences are a 

consequence of the underlying neurologic etiology, and 2) groups of speech 

deviations correlated with cite of lesion. Additionally, these groups were 

delineated into five types of dysarthria: flaccid, spastic, ataxic, hypokinetic, and 

hyperkinetic, with an additional mixed flaccid-spastic type specific to patients 

with ALS. The fourth and most influential result of this study was the use of these 

dimensions as a diagnostic tool for neurologic disorders (Darley, et al., 1969a, b).  

Universal Acceptance  

Research by Darley, Aronson, and Brown (1969a, b) laid the groundwork 

for future investigation of motor speech disorders, providing a novel vocabulary 

in the description of dysarthria (Duffy, 2007) and proposing the notion of a plural 

dysarthrias (Duffy & Kent, 2001). Since that time, researchers have attempted to 
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replicate the original study or its findings (Bunton, Kent, Duffy, Rosenbek, & 

Kent 2007; Southwood & Weismer, 1993), test its applicability with speech-

language pathologists and medical professionals (Fonville, et al., 2008; Van der 

Graaff, et al., 2009; Zyski & Weisiger, 1987), and have used this gold standard as 

a jumping-off point simply because it is so widely used (Dykstra, Hakel, & 

Adams, 2007). Virtually every dysarthria book written since the publication of the 

Mayo work has used their classification system as an organizing feature (e.g. see 

Darley, et al., 1975, Duffy, 2005, etc.). The clinical practice community has also 

embraced the Mayo Clinic System as its foundation, with approaches to treatment 

varying between clinicians (Jones & Lorman, 2002). Currently the Frenchay 

Dysarthria Assessment is the only published test for dysarthria diagnosis; 

however, in practice clinicians rely heavily on descriptive measures (Duffy, 

2007), which stem from those described by Darley, Aronson, and Brown (1969a, 

b).  

Limitations within the Mayo Clinic System 

The study investigating speech deviations by Darley et al. (1969a) was the 

first of its kind and brought significance to the perception of dysarthria; however, 

the results, as can be seen in Table 1, were not distinct enough to allow for a 

unique differentiation between etiology-based dysarthria types. The current 

descriptive method results in a distinct overlap of perceptual features, thus 

limiting the clinical utility of such a system for differential diagnosis. Indeed all 

speakers with a given etiology do not necessarily present with the same speech 

features, particularly at differing levels of severity (Weismer & Kim, 2010). It 
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also does not support etiology-based treatment strategies, with the exception of 

hypokinetic dysarthria (Baumgartner, Sapir, & Ramig, 2001; Fox et al., 2006; 

Spielman et al., 2011; Yorkston, Hakel, Beukelman, & Fager, 2007). 

Furthermore, etiology rarely results in pure dysarthria types (Duffy & Kent, 

2001). Rather, patients, even with similar etiology, present with a mix of 

perceptual characteristics leading to overall degraded, sometimes unintelligible 

speech.  

At the heart of the issue is that Darley, Aronson, and Brown (1969a, b) 

performed perceptual assessments of audiotaped samples of dysarthric speech 

without being blinded to each patient’s medical diagnosis. This was, for their 

purposes, an appropriate design strategy. However, this does not mirror clinical 

practice, in which clinicians frequently do not have diagnostic information upon 

which to bias their listening. Additionally, due to the advancement of imaging 

since the 1960’s, practicing clinicians generally utilize the results of differential 

diagnosis in order to formulate treatment, rather than in the identification of lesion 

cite. Bunton and her colleagues (2007) investigated interrater agreement for the 

Mayo Clinic System’s perceptual indicators and found limitations in the use of 

over-lapping perceptual characteristics of dysarthria. Authors suggested that while 

agreement ratings falling between 32.8% and 100% may indicate the potential 

utility of auditory-perceptual ratings, further research would be necessary to 

account for the differing agreement ratings for each specific perceptual feature, 

and may not support the use of perceptual features as a clinical tool in the 

differential diagnosis of dysarthria. Indeed, Fonville, et al. (2008) demonstrated 
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that among trained neurologists the accuracy in dysarthria classification when 

blinded to diagnosis and case history was a mere 35%. In a similar study, Van der 

Graaff, et al. (2009) found neurologists to correctly differentially diagnose 

dysarthria type only 40% of the time, residents, 41%, and speech-language 

pathologists 37% when blinded to past medical history. Overall interrater 

agreement was only fair among the three groups. Zyski and Weisiger (1987) 

found both experienced speech-language pathologists (SLP) and graduate students 

to perform with overall poor accuracy in the differentiation of dysarthria type 

using perception alone, with accuracy between 19 and 56%. In a survey 

examining the clinical use of the Mayo Clinic System, practicing SLPs reported 

the primary factor contributing to the difficulty of differential diagnosis of 

dysarthria was “lack of ‘clean’ diagnosis (i.e. mixed dysarthrias, multiple 

etiologies, etc.)” (Simmons & Mayo, 1997, p. 125). The results of these studies 

suggest the current dysarthria diagnostic practice is limited by an overlapping 

perceptual classification system that has yet to be replicated since it was first 

described.  

Another limitation, and perhaps the most fundamental problem with the 

Mayo Clinic System, is its poor mapping to the resulting communication disorder, 

which, in turn, prevents informed treatment decisions. In a survey of 100 SLPs, 

Simmons and Mayo (1997) found sixty percent of respondents reported clinical 

use of the Mayo Clinic System. Authors indicated these low rates may have been 

related to the prevalence of mixed perceptual characteristics and etiologies in a 
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clinical setting. Researchers indicate an improvement in the current system is 

warranted (Simmons & Mayo, 1997).  

In addition to limitations in perceptual feature overlap and poor treatment 

relevance, there is lack of evidence supporting a strict tie between underlying 

etiology and resulting speech deficit. Kent, Duffy, Slama, Kent, and Clift (2001) 

reviewed current literature in search of evidence supporting the claim that speech 

deficits illustrate the underlying neurologic lesion. Results of the review indicated 

that while it may be possible to correlate an affected pathway with dysarthria, the 

authors caution that due to the limited availability of speech descriptions along 

with imaging, the results may be inconclusive. Indeed the original intent of 

Darley, Aronson, and Brown (1969a, b) may have been more an effort to focus on 

the diagnosis of disease, rather than the speech production deficit (Weismer & 

Kim, 2010). Additionally, some would caution that the link between etiology and 

speech-motor deficits has actually impeded both research and practice, and has 

led to a focus on oromotor non-speech tasks (Weismer, 2006; Weismer & Kim, 

2010).  

 The limitations of the current system justify continued research into 

alternative methodology. A method that accounts for severity, considers 

perception, and utilizes the degraded acoustic signal would provide an objective, 

reliable, and relevant system for describing dysarthria.  

What is the Alternative? 

An alternative methodology warranting further investigation is one that 

does not rely on etiology. While etiology may be of prime importance when 
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differentially diagnosing an unknown neurological impairment, it does little in the 

way of describing aspects of degraded speech—two patients with the same 

underlying etiology may present with very different speech characteristics. A 

system that identifies relevant speech characteristics impacting intelligibility and 

which of those characteristics may make the greatest impact on intelligibility 

would, no doubt, be of great clinical use. Additionally, acoustic analysis may 

provide a more objective measure that may improve overall reliability (Guerra & 

Lovely, 2003). Previous work by Liss et al. (2009) revealed the ability of rhythm 

metrics to distinguish among dysarthria subtypes, paving the way for use as an 

objective clinical tool. Work by Kim, Weismer, Kent, and Duffy (2009) as well as 

by Kent and Kim (2008) have revealed evidence in support of the use acoustic 

variables to develop a quantitative method of describing speech motor control 

deficits in individuals with dysarthria. Using acoustic metrics, Kim, Kent, and 

Weismer (2011) found greater than 60% of dysarthric speakers were correctly 

classified by severity versus by etiology (56.1%). 

Taxonomy. Inherent in a classification scheme, and specifically within the 

Mayo Clinic System, is differential diagnosis. Diagnosis describes what is 

different (Balint, Buchanan, & Dequeker, 2006). An alternative to differential 

diagnosis is taxonomy, a “classification according to general laws or principles” 

(IBID, 2006, p.133), or a system that depends on similarities rather than 

differences. A taxonomical approach to dysarthria as described by Weismer and 

Kim (2010), focuses on the overarching commonalities, defining dysarthria as a 

whole rather than 38 perceptual parts. In this system, speakers across 
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classification types present with a shared set of deficits, which represent the motor 

speech dysfunction. A focus on these commonalities could potentially provide a 

well-developed theory of dysarthria, one that may be useful in predictions and in 

selecting relevant treatment targets (IBID, 2010).  

 It is apparent that a taxonomical approach would require the identification 

of groups of dysarthric speakers who sound similar. As has already been 

presented, research into the perceptual groupings of dysarthric speakers does not 

match the groups delineated within the Mayo Clinic System (Bunton, et al., 2007; 

Fonville et al., 2008; Zeplin & Kent, 1996; Zyski & Weisiger, 1987). A functional 

system would identify a set of similar acoustic correlates (Guerra & Lovely, 2003; 

Kim, Kent, & Weismer, 2011; Kim, Weismer, Kent, & Duffy, 2009; Weismer & 

Kim, 2010) representative of degraded speech. This would then allow for the 

reliable detection of acoustic differences in order to distinguish between 

dysarthria types. Indeed acoustic measurements of articulation rate and voiceless 

interval duration have partitioned speakers with hypokinetic dysarthria from other 

types (Kim, Kent, & Weismer, 2011). As perception drives successful 

communication, only when it is addressed can meaningful and effective treatment 

targets be identified.  

Present Study 

The present project addresses the dysarthrias from the perspective that 

they are “communication disorders,” wherein listeners have difficulty recovering 

the speaker’s intended message. As described above, limitations of the Mayo 

Clinic System include overlapping perceptual characteristics, inconsistencies 
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among and between perceptual features and underlying etiology, and the 

disregard of severity when classifying dysarthria. The present project aims to 

overcome these problems by linking groupings based on perceptual similarity to 

acoustic measurement and mapping, thereby outlining challenges encountered by 

listeners in understanding the degraded speech signal. This will lay the 

groundwork for the further development and refinement of a perceptually-relevant 

classification scheme or taxonomical approach that reflects the source(s) of 

communication deficit, and may point directly to intervention targets.  In this 

way, we can begin to develop relevant targets for intervention, whether they may 

be modifications to the acoustic signal or optimizing listener performance.  

The purpose of this study was to identify a set of acoustic correlates of 

perceptual dimensions used to group similarly sounding speakers with dysarthria. 

This first step in the development of a taxonomical approach will uncover the 

perceptual dimensions (and their acoustic correlates) that underlie judgments of 

similarity among speakers with dysarthria. 

Method  

Speakers. Productions from 33 speakers were collected from a larger 

corpus of research in the Arizona State University Motor Speech Disorders lab. 

Speakers were diagnosed with dysarthria by neurologists at the Mayo Clinic 

secondary to one of the following medical etiologies: cerebellar degeneration 

(11), amyotrophic lateral sclerosis (10), Huntington’s disease (4), and Parkinson’s 

disease (8). In order to be representative of previous research (Darley et al., 

1969a, b), speakers were selected based on the presence of hallmark 
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characteristics found within the Mayo Clinic classification system (see Table 1 to 

review characteristics). Dysarthria diagnoses were confirmed by two speech-

language pathologists, and severity was rated to be mild to severe (Table 2). All 

speaker stimuli had been recorded and edited for use in a larger study conducted 

in the Arizona State University Motor Speech Disorders Lab. Each speaker read 

stimuli from visual prompts presented on a computer screen, and was recorded 

saying the phrase “The standards committee met this afternoon in an open 

meeting.” All recordings utilized a head-mounted microphone (Plantronics DSP-

100), and participants were seated in a sound-attenuating booth. Recordings were 

made using a custom script in TF32 (Milenkovic, 2004; 16-bit, 44kHz), and saved 

directly to disc for subsequent editing using commercially available software 

(SoundForge; Sony Corporation, Palo Alto, CA) to remove any noise or 

extraneous articulations before or after target utterances.  

Listeners. Twenty-six graduate students in Communication Disorders 

were recruited for this project. Participants were enrolled in the Motor Speech 

Disorders class and had received basic training in both dysarthria and the use of 

the Mayo Clinic System. Listeners were native English speakers, passed a 

threshold hearing screening, and self-reported normal cognitive skills. Data 

collected from three participants were not analyzed due to failure to meet 

inclusionary criteria.  

Stimuli. The 33 speaker phrases were randomly assigned a two-letter 

code, and a static image of these initials was placed on a black background. Based 

on methodology outlined by Clopper (2008), this static image was paired with a 
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corresponding sound file to aid listeners in completion of the free classification 

task. Stimuli were between 2.60 seconds and 13.544 seconds in duration with a 

mean duration of 6.486 seconds. Images were placed neatly and randomly in 3 

rows next to a 16x16 cell grid using PowerPoint (see Figure 1). Each static image 

was sized to fit into one cell of the grid. 

Acoustic measurements. A series of segmental and suprasegmental 

acoustic metrics were calculated to allow for the assessment of a relationship with 

perceptual characteristics. Toward that end, sixteen rhythm metrics were used to 

quantify the rate and rhythmic structure of dysarthric speech (Liss et al., 2009). 

Fundamental frequency mean, standard deviation, and range were calculated for 

each speaker (IBID, 2009). Long-term average spectra (LTAS) (Utianski et al., 

February 2012), and a series of metrics that capture vowel identity and 

distinctiveness, as described by Lansford et al. (May 2011; 2012) were also 

calculated. Sound files were analyzed using Praat software (Boersma & Weenik, 

2006, available from http://www.fon.hum.uva.nl/praat/) and followed 

methodology as described by Liss et al., 2009. Table 3 lists the most significant 

metrics with descriptions. Inter- and intra-rater reliability for these measures were 

conducted and deemed to be high and acceptable (Liss et al., 2009). 

Procedure  

An auditory free classification task, as described by Clopper (2008), was 

used for collecting the similarity data. Free classification allows for the 

examination of perceptual similarity while avoiding experimenter-imposed 

categories, and without naming distinctive perceptual characteristics. Free 
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classification is a perceptual sorting task, in which listeners are asked to group 

stimuli according to similarity, and is described by Gygi, Kidd, and Watson 

(2007) in the investigation of auditory similarity. Gygi et al. (2007) compared a 

free classification methodology to a paired comparisons method (wherein every 

sound is paired with all possible sounds and listeners rate similarity using a scale 

of one, not similar, to seven, very similar). Significantly, while authors noted 

similarity was more directly gauged using the paired comparisons method with 

the free classification method measuring similarity indirectly via categorization of 

stimuli, results of the two methodologies were similar (Gygi, Kidd, & Watson, 

2007). The free classification method was also used by Guastavino (2007) to 

investigate classification of environmental sounds. Clopper and Pisoni (2007) 

found that in using free classification, listeners were able to make finer 

distinctions between dialectal speech patterns when specific labels were not 

experimenter-imposed. Clopper, Levi, and Pisoni (2006) found that a paired 

comparison similarity-rating task required approximately 50-60 minutes to 

complete. In comparison, the free classification task required 10-15 minutes to 

complete (Clopper and Pisoni’s 2007, as cited in Clopper, 2008). In the present 

study, the use of free classification offered a faster, more concise listener task.  

In the present project, listeners were seated in cubicles in a quiet 

environment using Dell Optiplex GX620 computers outfitted with Sennheiser HD 

280 Silver headphones. All computers were calibrated using a Radio Shack digital 

sound level meter and a flat plate coupler. Volume was set individually on each 

computer and participants did not adjust the volume. While listeners were told all 
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speakers were men and women with dysarthria, listeners were blind to etiology 

and classification type. Listeners were instructed to listen to the sound files and to 

group the files by dragging them into the grid depending on how similar they 

sounded. They were told that the icons speakers perceived as sounding similar 

were to be placed next to (touching) one another. They were permitted to make as 

many groups as needed with as many speakers in each group as needed (see 

Figure 2). There was no time limit imposed on either task and listeners were 

permitted to listen to and re-arrange the speaker files as many times as necessary. 

Results of a five-participant pilot study to assess methodology led to the inclusion 

of informal descriptive opportunities for listeners, wherein they were permitted to 

take notes below the PowerPoint slide. 

Analyses. The similarity data were treated both quantitatively and 

qualitatively. First, descriptive statistics were calculated to determine the mean 

number of listener-derived groups and the mean number of speakers per group. 

Second, the similarity data were subjected to an additive similarity tree cluster 

analysis as described by Corter (1998) and used by Clopper (2008), in order to 

determine the number and composition of clusters of perceptually-similar 

speakers. Next, multidimensional scaling (MDS) of the similarity data was 

conducted in order to determine the salient perceptual dimensions underlying 

speaker similarity. Correlation analyses were conducted to facilitate interpretation 

of the perceptual dimensions revealed by the MDS analysis, by relating the 

dimensions to the acoustic and perceptual measurements described above. Finally, 

discriminant function analyses (DFA) were conducted to establish the feasibility 
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of using the dimensions salient to perceptual similarity to reliably classify 

dysarthric speakers into both listener-derived clusters and etiology-based 

categories. In a qualitative analysis, listener notes were examined to determine if 

the results of the quantitative analyses described above tracked to the acoustic and 

perceptual characteristics reported by the listeners to underlie speaker similarity in 

dysarthria.  

Results  

Descriptive analysis. Descriptive statistics revealed a mean number of 

listener-derived groups as 7.7 (SD 2.85), with the mean number of speakers in 

each group equal to five (SD 2.1).  

Cluster analysis. A dendogram output of the data (see Figure 3) 

suggested either a six or eight cluster solution, with one speaker not fitting into 

either solution. Due to the relatively small number of speakers belonging to 

groups within the eight-cluster solution, a six-cluster solution was selected. 

Crucially, the composition of the clusters was not limited to a single etiology-

based category (see Table 4 for cluster member distribution). This finding 

suggests the perceptual and acoustic dimensions underlying similarity in 

dysarthria transcend underlying medical etiology. 

Multi-dimensional scaling and correlation analysis. The similarity data 

from the cluster analysis were subjected to multidimensional scaling analysis in 

order to visualize the clusters of similar-sounding speakers in n-dimensions. 

Evaluation of two- to five-dimensional solutions led to the decision to analyze the 

results from the three-dimensional solution. This solution was selected, in part, 
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due to the low stress of the model (.067; R2 = .98181) and the ease of visualizing 

the clusters of similar-sounding speakers in three-dimensional space. In order to 

interpret the abstract dimensions derived by the MDS, a series of correlation 

analyses were conducted. Table 5 provides results from the correlation analysis 

for the acoustic metrics and three dimensions revealed by the MDS. As can be 

seen in Table 5, the first dimension was significantly correlated with many 

segmental and LTAS metrics capturing rate and rhythm, with the highest 

correlation with speaking rate (r = -.919). This dimension was also significantly 

correlated with a single vowel metric capturing mean dispersion (r = .419). Of 

interest, Cluster 1 speakers were separated from the remaining five clusters along 

this dimension (see Figure 4). The second dimension also was correlated with a 

number of metrics capturing speaking rhythm, albeit a different subset than those 

correlated with the first dimension (see Table 5), but was most highly correlated 

with intelligibility (r = -.792). Clusters 2-5 were delimited along this dimension 

(see Figure 4). The third dimension correlated significantly with all of the LTAS 

(RMS, SD, Range, and PV; see Table 5) metrics in the 8000 Hz band (r ranges 

from -.543 to -.605). Metrics in this high frequency band have been linked to 

degree of phonemic distinctiveness (Utianski et al., February 2012). While the 

third dimension was significantly correlated with a number of acoustic metrics, it 

does not appear to be as important a dimension to delineating the clusters as the 

first two dimensions (see Figures 5 and 6).  

Discriminant function analysis. Discriminant function analysis (DFA) 

was conducted in order to verify the validity of the dimensions derived by the 
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MDS analysis as predictors of cluster group membership. Thus, the scores (i.e., 

spatial distances) associated with each speaker along the dimensions derived by 

the MDS were used to classify the speakers into one of the six listener-derived 

cluster groups. Cluster classification accuracy was 87.5% (See Table 6). An 

additional DFA was completed to assess whether cluster-based classification 

exceeded that of etiology-based. As can be seen in Table 7, the dimension scores 

classified the dysarthric speakers into one of the four etiology-based categories 

with 75.8% accuracy. Thus, cluster-based classification exceeded that of etiology-

based.  

Qualitative analysis. Because listeners were provided the opportunity to 

take notes during the free classification task, we were able to collect qualitative 

data regarding listener strategies and salient perceptual features. In examining the 

notes of the 21 listeners who elected to take them, we found that 100% of listeners 

mentioned the perceptual features of rate and rhythm of speech. This qualitative 

finding corresponds with the quantitative results that demonstrated metrics 

capturing rate and rhythm were significantly correlated with a primary dimension 

underlying similarity in dysarthria. Greater than 66% of listeners noted 

intelligibility within their speaker notations. Again, this qualitative finding 

supports the results of our quantitative approach that revealed intelligibility as 

being salient to similarity judgments. The third dimension revealed by MDS was 

correlated with all of the LTAS metrics in the 8000 Hz band, which has been 

linked to degree of phonemic distinctiveness (Utianski et al., February 2012). 

Therefore, it was not surprising to discover that 62% of listeners referenced 
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articulatory precision within their notes. Additional perceptual features noted by 

listeners included severity (23.8%), resonance (23.8%), prosody (23.8%), 

respiratory differences (19%), variable loudness (14.3%), pitch breaks (9%), word 

boundary errors (4.7%), and overall oddness (4.7%). Of interest was the high 

frequency of vocal quality characteristics mentioned by this group of listeners 

(85.7%). 

Discussion 

 The above results provide evidence to support the use of acoustic 

correlates of perceptually salient speech characteristics in describing and 

classifying speakers with dysarthria. The three dimensions revealed by MDS 

support the notion that there are similarities among speakers with dysarthria, 

which differentially influence listener perception. In fact, correlations between 

these dimensions and acoustic features offer insights as to what listeners perceive 

as the most salient and discriminant aspects of speech: rhythm and rate of speech, 

overall intelligibility, and phonemic distinctiveness. Vocal quality was the second 

most frequently mentioned perceptual characteristic within the listener notes. This 

motivates future investigation into how acoustic measurements can best capture 

this characteristic of the speech signal.  

The present investigation offers both quantitative and qualitative evidence 

that supports the use of acoustic measurement in the classification of dysarthria. 

The above listener descriptors are particularly impressive given that no 

parameters other than to make judgments of similarity were placed upon the task. 

The perceptual features most frequently mentioned were also those that correlated 
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to our acoustic measurements, suggesting the robustness of the relationship 

between the acoustic correlates to these perceptual features.  

Most importantly, the above results suggest that the use of acoustic 

correlates may actually be a better, more useful system in describing dysarthria, 

offering an increase of 10% accuracy in classification. As can be seen in Table 4, 

many speakers with the same underlying etiologies (e.g. PD, HD, etc.) were 

grouped similarly. For example, Cluster 2 contained speakers with cerebellar 

degeneration (A) as well as ALS. More significantly however, is that not a single 

cluster was exclusive to etiology. This is even more powerful given the fact that 

only speakers displaying the hallmark characteristics of the Mayo Clinic System 

were selected as speakers in the current study, and that etiology-based 

classification was based on four groups, whereas cluster-based classification was 

based on six. This gives credence to the impact of overlapping perceptual 

features, which jeopardizes the efficacy of etiology-based models. This also 

supports the findings of previous research and clinical data stating that pure 

dysarthria classification, as described in the Mayo Clinic System, rarely exists 

(Duffy & Kent, 2001), as well as the notion that the speech mechanism can be 

affected in a constrained number of ways, thereby degrading the acoustic signal in 

similar ways (Kim, Kent, & Weismer, 2011). 

Support for Taxonomy  

As discussed above, a taxonomical approach to motor speech disorders, 

and specifically to dysarthria, would describe the most salient perceptual features 

that may be similar across dysarthria (Weismer & Kim, 2010). The above 
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research results represent the first phase of exploration supporting the use of 

taxonomy rather than classification. Weismer and Kim (2010) outlined the need 

for the identification of core speech characteristics for those individuals with 

different disease and dysarthria types to facilitate effective intervention. Indeed 

the above results revealed a set of common perceptual features, regardless of 

underlying etiology. What is perhaps most significant is the ability of the acoustic 

metrics described above to correctly classify dysarthria (via DFA) in the same 

way as listeners (via free classification task), with 87.5% accuracy. Evenso, by 

examining listeners’ perceptual groupings, it can be seen that acoustic metrics 

demonstrated superior skill over etiology in capturing perceived similarities and 

differences leading to listener classification. 

Clinical Significance  

The discipline-wide push for evidence-based practice (EBP) asserts that 

speech-language pathologists must pair clinical expertise with past and present 

research evidence. While it is important to consider the etiology-based Mayo 

Clinic System in enhancing diagnosis of underlying disease, its use as a “gold 

standard” stymies differential diagnostics of dysarthria, and does not map to a set 

of relevant treatment targets for the rehabilitation of degraded speech. Instead, 

treatment has taken a common sense approach, wherein behavioral management 

focuses on improving speech intelligibility and providing compensation strategies 

to patients. While clinical judgment is one piece of evidence, it is not sufficient to 

effectively direct treatment. Alternatively, by providing an objective measure of 

speech degradation (acoustic measurement), clinicians may be better informed as 
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to the effect of certain perceptual characteristics on the overall speaker message. 

Behavioral interventions which are already being implemented, such as increased 

loudness (Baumgartner, Sapir, & Ramig, 2001; Spencer, Yorkston, & Duffy, 

2003; Spielman et al., 2011), pacing (McHenry, 2003), rate control (Blanchet & 

Snyder, 2010), voice therapy (Baumgartner et al., 2001), strengthening of 

articulators (Kamhi, 2008), and speech supplementation strategies (Hustad, Jones, 

& Dailey, 2003), may be objectively measured through investigation of changes 

in the speech signal.  

Future Directions  

The above results support the plausibility of therapeutic intervention that 

targets the perceptual challenges posed by different patterns of acoustic 

degradation (Lansford, Liss, Caviness, & Utianski, 2011). As this work represents 

only trained graduate students, the investigation into the perceptions of 

experienced listeners is warranted. Moving forward, perceptual data from a larger 

corpus of speakers will be collected from experienced speech-language 

pathologists to test the validity of these preliminary data.  

Additionally, ratings of perceived breathiness, hypernasality, vocal quality, and 

severity (as mentioned in graduate student listener notes) will be collected from 

SLPs to be considered by subsequent analyses of perceptual similarity.  

Conclusion 

 While the classification method outlined by Darley, Aronson, and Brown 

(1969a, b) and referred to as the Mayo Clinic System provides a basis for the 

understanding of motor speech disorders, there is not adequate support for its use 
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as a gold standard in dysarthria classification. Instead, the above results provide 

evidence for a proposed taxonomical approach to dysarthria, exploiting the use of 

acoustic metrics for quantifying and qualifying the perceptual similarities of 

speech degradation patterns. More importantly, by identifying the subset of 

acoustic and perceptual variables salient to speaker similarity judgments, we may 

begin to investigate how such similarities extend to the nature of the perceptual 

challenge. 
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Table 1 

Ranked Speaker Results 

TABLE 16. Number of deviant patients (mean scale value above 1.00) on each of 38 di- 
mensions of speech and voice by neurologic group. Abbreviations: B U L - - b u l b a r  palsy; 
PBP : pseudobulbar palsy; ALS -- amyotrophic lateral sclerosis; CLR : cerebellar disor- 
ders; PKN : parkinsonism; DTN : dystonia; CHO "- chorea. * "- data omitted because not 
available for total samples. 

D i m e n s i o n  N e u r o l o g i c  G r o u p  

BUL PBP ALS CLR PKN DTN CHO 
No .  A b b r e v i a t i o n  N : 30 N = 30 N = 30 N : 30 N = 32 N : 30 N = 30 

1 Pitch Level 18 26 24 14 26 21 16 
2 Pitch Breaks 5 9 8 7 0 6 3 
3 Monopitch 24 29 29 20 31 25 19 
4 Voice Tremor 0 9 5 5 0 10 7 
5 Monoloudness 18 27 28 18 32 21 16 
6 Excess Loudness Variation 0 10 10 10 0 9 20 
7 Loudness Decay 4 0 5 0 13 0 0 
8 Alternating Loudness 6 0 0 0 11 7 0 
9 Loudness (Overall) * * * * * * * 

10 Harsh Voice 23 29 28 21 21 27 25 
11 Hoarse (Wet)  Voice 4 0 6 0 0 0 0 
12 Breathy Voice (Continuous) 27 14 14 0 19 4 0 
13 Breathy Voice (Transient) 0 9 0 0 8 4 7 
14 Strained-Strangled Voice 0 20 18 8 0 17 13 
15 Voice Stoppages 0 5 0 0 0 11 5 
16 Hypernasality 25 20 22 10 8 11 13 
17 Hyponasality 0 0 0 0 0 0 0 
18 Nasal Emission 16 9 15 2 0 0 1 
19 Forced Inspiration-Expiration 0 0 0 0 0 0 6 
20 Audible Inspiration 20 14 23 0 0 14 10 
21 Grunt at End of Expiration 0 3 1 0 0 1 0 
22 Rate 18 25 25 24 28 23 27 
23 Phrases Short 17 23 22 0 16 11 12 
24 Increase of Rate in Segments 0 0 0 0 4 0 0 
25 Increase of Rate Overall 0 0 0 0 4 0 0 
26 Reduced Stress 0 28 24 0 32 16 15 
27 Variable Rate 0 0 0 7 16 8 16 
28 Intervals Prolonged 0 0 20 15 0 16 23 
29 Inappropriate Silences 0 0 7 8 25 15 24 
30 Short Rushes of Speech 0 0 0 0 19 0 8 
31 Excess and Equal Stress 0 15 17 22 0 15 17 
32 Imprecise Consonants 28 30 30 28 32 30 27 
33 Phonemes Prolonged 0 18 21 24 8 20 17 
34 Phonemes Repeated 0 0 0 0 14 5 0 
35 Irregular Articulatory 

Breakdown 0 13 0 28 0 24 19 
36 Vowels Distorted 11 17 24 25 0 24 23 
37 Intelligibility (Overall) 25 27 25 24 25 28 26 
38 Bizarreness (Overall) 30 30 30 30 32 30 30 

mos t  d e v i a n t  to leas t  d e v i a n t )  of the  n e u r o l o g i c  g roups  w i t h  r e g a r d  to e a c h  of 
t he  38 d imens ions .  F o r  t h e  33 d i m e n s i o n s  in  w h i c h  a t  l eas t  3 g roup  m e a n s  w e r e  
r e p r e s e n t e d ,  ana lys i s  of v a r i a n c e  was  a p p l i e d  to d e t e r m i n e  w h e t h e r  the  differ- 
ences  b e t w e e n  the  m e a n s  w e r e  s t a t i s t i ca l ly  s ignif icant .  I n  the  case  of 13 d i m e n -  
s ions t he  d i f fe rences  w e r e  s ign i f i can t  b e y o n d  t h e  1 %  level  of conf idence ;  in  3 
d imens ions ,  a t  t he  1 %  level;  in  4 d imens ions ,  b e t w e e n  the  1 %  a n d  5 %  levels;  
in  1 d i m e n s i o n ,  a t  t h e  5 %  level ;  a n d  in  12 d i m e n s i o n s  t he  d i f fe rences  w e r e  n o t  
s igni f icant .  
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Note. Darley, Aronson, & Brown, (1969a) 
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Table 2   

Speaker Information 

 
Speaker 

Code 
Gender Age Etiology Severity 

AF1 F 72 Cerebellar ataxia Moderate 
Af2 F 57 Multiple sclerosis / ataxia Severe 
Af6 F 57 Friedrich’s ataxia Moderate 
AF7 F 48 Cerebellar ataxia Moderate 
AF8 F 65 Cerebellar ataxia Moderate 
AF9 F 86 Amyotrophic lateral sclerosis Severe 
AM1 M 73 Cerebellar ataxia Severe 
AM3 M 79 Cerebellar ataxia Moderate - 

severe 
AM4 M 46 Cerebellar ataxia Moderate 
AM5 M 84 Cerebellar ataxia Moderate 
AM6 M 46 Cerebellar ataxia Moderate 
AM8 M 63 Cerebellar ataxia Moderate 
ALSf2 F 75 Amyotrophic lateral sclerosis Severe 
ALSf5 F 73 Amyotrophic lateral sclerosis Severe 
ALSf6 F  Amyotrophic lateral sclerosis Severe 
ALSf7 F 54 Amyotrophic lateral sclerosis Moderate 
ALSf8 F 63 Amyotrophic lateral sclerosis Moderate 
ALSf9 F 86 Amyotrophic lateral sclerosis Severe 
ALSm1 M 56 Amyotrophic lateral sclerosis Moderate 
ALSm4 M 64 Amyotrophic lateral sclerosis Moderate 
ALSm7 M 60 Amyotrophic lateral sclerosis Severe 
ALSm8 M 46 Amyotrophic lateral sclerosis Moderate 
HDm8 M 43 Huntington’s disease Severe 
HDm10 M 50 Huntington’s disease Severe 
HDm11 M 56 Huntington’s disease Moderate 
HDm12 M 76 Huntington’s disease Moderate 
PDf5 F 54 Parkinson disease Moderate 
PDf7 F 58 Parkinson disease Moderate 
PDm8 M 77 Parkinson disease Moderate 
PDm9 M 76 Parkinson disease Moderate 
PDm10 M 80 Parkinson disease Moderate 
PDm12 M 66 Parkinson disease Severe 
PDm13 M 81 Parkinson disease Moderate 
PDm15 M 57 Parkinson disease Moderate 
Note. Ataxia (A), amyotrophic lateral sclerosis (ALS), Parkinson’s Disease (PD), 
Huntington’s Disease (HD). M = Male F = Female 
 



 

 30 

Table 3  

Acoustic and Perceptual Metrics Descriptions 

Metrics  Description  

Perceptual Measures  

Intelligibility Percent words correct; may represent severity 
Rhythm Metrics (Liss et al., 
2009) 

 

SD Vocalic Standard deviation of vocalic intervals 

SD Consonantal Standard deviation of consonantal intervals 

Proportion Vocalic 
Percent of utterance duration composed of vocalic 
intervals 

nPVI- V 

Normalized pairwise variability index for vocalic 
intervals. Mean of the differences between successive 
vocalic intervals divided by their sum. 

rPVI- C 

Pairwise variability index for consonantal intervals. 
Mean of the differences between successive consonantal 
intervals. 

Speaking Rate (sp. rate) 
Number of (orthographic) syllables produced per second, 
excluding pauses. 

rPVI- VC 

Pairwise variability index for vocalic and consonantal 
intervals. Mean of the differences between successive 
vocalic and consonantal intervals. 

nPVI VC 

Normalized pairwise variability index for vocalic + 
consonantal intervals. Mean of differences between 
successive vocalic + consonantal intervals divided by 
their sum. 

SD VC 
Standard deviation of successive vocalic and consonantal 
segments 

LTAS Metrics (Utianski et al., 
February 2012) 

* All normalized to Root Mean Square (RMS) energy of 
entire signal 

All derived for 7 octave bands 
with center frequencies ranging 
from 125Hz- 8000 Hz 

 

RMS energy  RMS Energy 

St. Dev. RMS energy  Standard deviation RMS energy (for 20ms windows) 

Range RMS energy Range RMS energy (for 20ms windows) 

PVI RMS energy 
Pairwise variability of RMS energy: mean difference 
between successive 20ms windows Range RMS energy 

Vowel Metrics (Lansford, 
2012)  

 

Disp_Mean 

This metric captures the overall dispersion (or distance) 
of each pair of the ten vowels, as indexed by the 
Euclidean distance between each pair in the F1 X F2 
space. 

 



 

 31 

Table 4 

Listener Derived Clusters with Members  

Cluster Speakers 

Cluster 
1 

PDF5, PDF7, PDM8, PDM9, PDM10, PDM12, PDM13, 
PDM15, HDM11 

Cluster 
2 

AF8, AM5, AM8, ALSF8, ALSM4, ALSM8,  

Cluster 
3 

AF1, AF7, AM4, AM6, HDM12 

Cluster 
4 

AF2, HDM8, HDM10 

Cluster 
5 

ALSF6, ALSF7, ALSF9, ALSM1, AM1 

Cluster 
6 

AF9, ALSF2, ALSF5, ALSM7 

Note. Ataxia (A), amyotrophic lateral sclerosis (ALS), Parkinson’s Disease (PD), 
Huntington’s Disease (HD). M = Male F = Female 
 



 

 32 

Table 5  

Correlation Matrix: MDS and Acoustic Metrics r Values 

Metrics Dimension1 Dimension2 Dimension3 
Perceptual 
Measures    
Intelligibility  -.790**  
Rhythm Metrics    
SD Vocalic .595**   
SD Consonantal .467**   
Proportion 
Vocalic  .516**  
nPVI V  -.552**  
rPVI C    
Speaking Rate -.921**   
rPVI VC .503**   
nPVI VC  -.472**  
SD VC .462**   
LTAS Metrics    
RMS 1000 .476**   
RMS 8000   .523** 
St. Dev.1000 .491**   
St. Dev. 8000   .519** 
Range 1000 .488**   
Range 4000 -.469**   
Range 8000   .494** 
PVI 8000   .554** 

Note. See Table 3 for metric descriptions. Above metrics included in table due to 
significance level. Original data set included 89 metrics of rhythm, vowel space, 
fundamental frequency, LTAS, etc. 
**Pearson’s Correlation < .01 
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Table 6   

DFA Results -- Cluster Classification 
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Table 7  

DFA Results -- Etiology-Based Classification 
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Figure 1 

PowerPoint Stimulus 

 

Note. Static image of stimuli for free classification task. Actual stimuli contained sound 
file of recorded speakers. 
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Figure 2  

Listener Derived Clusters example in Free Classification Task 
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Figure 3  

Dendogram Derived from Cluster Analysis 
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Figure 4  

MDS Scatterplot Dimension 1 x 2 
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Figure 5  

MDS Scatterplot Dimension 1 x 3 
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Figure 6   

MDS Scatterplot Dimension 2 x 3 
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APPENDIX B 

IRB APPROVAL 
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