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ABSTRACT  
   

The capability of cocaine-associated stimuli in eliciting craving in human 

addicts, even after extended periods of abstinence, is modeled in animals using 

cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to 

examine brain activation in response to cocaine cues in this model apart from 

activation produced by test novelty using a novel cue control. Rats trained to self-

administer cocaine paired with either an oscillating light or tone cue underwent 

daily extinction training and were then tested for reinstatement of extinguished 

cocaine-seeking behavior elicited by response-contingent presentations of either 

their assigned cocaine-paired cue or the alternate, novel cue. Additional controls 

received saline infusions and cue presentations yoked to a cocaine-trained rat. 

Brains were harvested for Fos immunohistochemistry immediately after the 90-

min reinstatement test. Surprisingly, conditioned and novel cues both reinstated 

responding to a similar degree; however magnitude of reinstatement did vary by 

cue modality with the greatest reinstatement to the light cues. In most brain 

regions, Fos expression was enhanced in rats with a history of cocaine training 

regardless of cue type with the exception of the Cg1 region of the anterior 

cingulate cortex, which was sensitive to test cue modality. Also Fos expression 

within the dorsomedial caudate-putamen was correlated with responding in the 

novel, but not conditioned, cue groups. In subsequent experiments, we observed a 

similar pattern of reinstatement in rats trained and tested for sucrose-seeking 

behavior, whereas rats trained and tested with the cues only reinstated to a novel 

light and tone, but not a familiar cue. The results suggest that novel cues reinstate 
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responding to a similar extent as conditioned cues regardless of whether animals 

have a history of operant-delivered drug or a natural reinforcer. Furthermore, 

similar brain circuits as those involved in cocaine-seeking behavior are activated 

by novel cues, suggesting converging processes exist to drive conditioned and 

novel reinforcement seeking. 
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Chapter 1 

INTRODUCTION 

Since the early 1990s, the drug addiction field has given much attention to 

uncovering the mechanisms of craving and relapse using the 

extinction/reinstatement animal model. This procedure allows researchers to 

examine individual factors known to elicit drug-seeking behavior, thereby 

elucidating potential interventions aimed at attenuating drug craving. The face 

and construct validity of the model, particularly with cue reinstatement, is 

demonstrated by the corresponding increase of craving reported by human addicts 

when presented with cocaine-related stimuli (Childress et al. 1988; Ehrman et al. 

1992; O'Brien et al. 1990) and the return of drug-seeking behavior in animals 

when presented with cues previously paired with cocaine reinforcement (Markou 

et al. 1993; Shaham et al. 2003) as both of these measures are thought to reflect 

incentive motivational effects of the cues acquired through classical conditioning 

(Stewart 1983; Stewart et al. 1984). Further parallels are that neuroimaging 

studies in human addicts and examination of immediate early gene (IEG) 

expression in animals reveal the same brain regions activated by cocaine-paired 

cues (Childress et al. 1999; Grant et al. 1996; Kufahl et al. 2009; Wang et al. 

1999; Zavala et al. 2008), further supporting construct validity of the model. In 

addition, compounds found to decrease self-reports of craving in humans have 

been shown to attenuate cue-elicited drug-seeking behavior in animals 

(Burmeister et al. 2003; Fuchs et al. 1998; Yahyavi-Firouz-Abadi and See 2009), 
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demonstrating predictive validity and overall utility of the cue reinstatement 

model.  

Neural mapping with Fos protein expression is an established method for 

identifying brain circuits associated with cocaine-induced conditioning effects 

(Brown et al. 1992; Crawford et al. 1995; Neisewander et al. 2000). Fos is a 

product of the IEG c-fos, an inducible transcription factor important for the 

initiation of many signal transduction pathways (Curran and Morgan 1995). When 

an animal undergoes physiological and/or pharmacological manipulations, c-fos is 

transiently induced in relevant brain areas, with the resulting Fos protein 

expression yielding a histological marker of stimulus-induced brain activity 

(Chaudhuri 1997; Harlan and Garcia 1998). In response to cocaine or cocaine-

paired cues, Fos is expressed in brain regions commonly associated with reward 

processing, memory, and drug abuse (Ciccocioppo et al. 2001; Hotsenpiller and 

Wolf 2002; Neisewander et al. 2000). More recently, we found that presentation 

of response-contingent cocaine-paired cues during reinstatement testing induced a 

widespread pattern of Fos expression throughout the brain, including several 

prefrontal cortical, limbic, and striatal subregions (Kufahl et al. 2009). Although 

the association between cue presentation and brain activation appears to be reliant 

on previous drug-stimulus pairings (Guo et al. 2008; Miller and Marshall 2004; 

2005), little attention has been given to the contribution of novelty on test day. 

While cue-elicited reinstatement of cocaine-seeking behavior is known to depend 

on the sensory characteristics of the cues (See et al. 1999), the propensity for 

animals to be aroused or motivated by environmental or procedural novelty could 
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also contribute strongly to both behavior and Fos expression (Bardo 2002; Bardo 

et al. 1996; Piazza et al. 1989).  

The purpose of this study was to investigate the specificity of both the 

reinstatement of cocaine-seeking behavior and its associated Fos expression. In 

Experiment 1, rats were trained to self-administer cocaine that was paired with 

presentation of either an oscillating light or tone, followed by extinction training 

where lever presses had no consequences. Half of the rats were then tested for 

reinstatement of cocaine-seeking behavior with conditioned cues and half were 

tested with a novel cue (i.e. a cue not present during training). We hypothesized 

that novel cues would not reinstate cocaine-seeking behavior, but would 

contribute to cue-induced Fos expression in some brain regions. To control for 

non-motivational contributions of cue exposure to the Fos response, control rats 

were given saline infusions paired with cues that were yoked to reinforcement 

delivery in the cocaine-trained rats. In Experiment 2, we examined the specificity 

of the findings for drug seeking by examining rats trained with sucrose or cue 

only reinforcement.



  4 

Chapter 2 

MATERIALS AND METHODS 

Animals 

Male Sprague-Dawley rats weighing 225-250 g were housed individually 

in a temperature-controlled colony room with a 12- (Experiment 1) or a 14-h 

(Experiment 2/3) reversed light/dark cycle. Animal care and housing conditions 

were consistent with the Guide for Care and Use of Laboratory Animals (National 

Research Council, 1996). Surgical and experimental procedures were approved by 

the Institutional Animal Care and Use Committee at Arizona State University. 

Rats were acclimated to handling for 7 days and weighed 250-325 g prior to 

surgery or training. 

Surgery 

Rats were administered an analgesic (buprenorphine, 0.05 mg/kg, s.c.) 

prior to induction of isoflurane anesthesia (2-3%; Abbott Laboratories, North 

Chicago, IL) vaporized in oxygen and delivered through a plastic nose cone. 

Catheters were constructed from Silastic tubing (10 cm length, 0.012 in inner 

diameter, 0.025 in outer diameter, Dow Corning, Midland, MI) connected to a 22-

gauge nonferrous metal cannula encased within a plastic screw connector (Plastics 

One, Roanoke, VA). A miniature ball of aquarium sealant was affixed 2.7 cm 

from the free end of the catheter. A burrow was made subcutaneously from an 

incision on the neck to an incision across the skull, and the catheter was pulled 

through the burrow. A small incision was made in the jugular vein, where the 

catheter was inserted and secured with sutures on both sides of the ball. The 
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cannula end of the catheter was then anchored to the skull using dental acrylic 

cement and four small anchor screws. The head and neck incisions were sutured 

and treated with a topical antibiotic and the rats were administered an anti-

inflammatory (meloxicam; 1 mg/kg, s.c.). A flexible obturator made from Tygon 

tubing was fitted over the cannula to protect the catheter. Patency of the catheters 

was maintained throughout the experiment by daily flushing with 0.1 ml timentin 

(66.67 mg/mL; bioWORLD, Dublin, OH) in saline solution containing 70 

units/mL heparin sodium. Catheter patency was tested periodically with 0.8 g 

methohexital sodium (Brevital, Sigma), a dose that produces rapid loss of muscle 

tone only when administered i.v. Following surgery, rats were left to recover for 7 

days in their home cages and were handled and weighed daily. 

Apparatus 

Training and testing were conducted in Plexiglas operant conditioning 

chambers (20 × 28 × 20 cm) equipped with a food pellet dispenser and a food 

well located between two levers mounted on the front panel (Med Associates, St. 

Albans, VT). A cue light was mounted above one lever, a tone generator (500 Hz, 

10 dB above background noise) was mounted on the side wall and a house light 

was mounted on the rear wall opposite the levers. The lever below the cue light 

and nearest to the tone generator was designated as the active lever. Each 

conditioning chamber was housed within its own ventilated, sound-attenuating 

cabinet. An infusion pump containing a 10-ml syringe was located outside of the 

cabinet. Tygon tubing connected to the syringe was attached to a liquid swivel 

(Instech, Plymouth Meeting, PA) suspended above the operant conditioning 
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chamber. The outlet of the swivel was fastened to the catheter via Tygon tubing 

that ran through a metal spring leash (Plastics One). The leash fastened onto the 

plastic screw of the cannula that was anchored on the animal’s head. 

Experiment 1: Reinstatement and Fos expression elicited by conditioned 

versus novel cues 

Self-administration training 

Following recovery from surgery, self-administration (SA) training was 

conducted during daily 2-h sessions where rats were trained to press the active 

lever to receive cocaine reinforcement (0.75 mg/kg/0.1 ml, i.v.). Upon completing 

a schedule of reinforcement, either the blinking cue light or the pulsed tone were 

activated, followed one second later by activation of the infusion pump for six 

seconds. Following infusion, the cue light or tone was inactivated. After a 20-s 

timeout period, responses on the active lever were accumulated toward the next 

reinforcement schedule.  Note that rats receiving the tone versus light cues were 

trained in separate rooms so that the tone would be completely novel to animals 

that were trained with the light cue. 

For the first 5 days of training, all animals began on a fixed ratio (FR) 1 

schedule of reinforcement with the capability to progress to a variable ratio (VR) 

2, VR3, and finally VR5 schedule. After ending the session on a VR5 schedule 

for two consecutive days, animals then began the remaining sessions on a VR5 

schedule. In this experiment, all animals were on a VR5 schedule exclusively for 

at least the last 5 days of self administration, which was considered our 

acquisition criteria. All animals were restricted to 16 g/day of food to facilitate 
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acquisition of self-administration (Carroll et al. 1981) and remained food-

restricted until they ended on a VR5 schedule for three consecutive sessions. 

Animals were then given food ad libitum for the rest of the experiment. The total 

number of training days ranged from 13 to 21, depending on the rate of 

acquisition.  

Extinction training 

Extinction training began the day after SA training was completed. Rats 

were exposed to the SA environment for a 90-min session each day across 14-15 

consecutive days. During these sessions, lever presses had no scheduled 

consequences; the rats were connected to the swivel but no infusions or light/tone 

cues were delivered. Responses on the active and inactive lever were recorded. 

Since the rats were exposed to the SA environment but not the discrete cocaine-

paired cues, the incentive motivational effects of these stimuli presumably 

remained intact. At the end of extinction training, all rats exhibited a decrease in 

response rates on the active lever to less than 20 responses during a session or to 

20% of the peak response rate that occurred during extinction training. 

Responding during the terminal extinction session was used as a baseline for 

statistical comparison to responding on the test day. 

Test for reinstatement of cocaine-seeking behavior 

Cocaine-seeking behavior was operationally defined as responses on the 

active lever in the absence of cocaine reinforcement. On the day after the final 

extinction session, rats were placed into their conditioning chambers for 90 min, 

during which responses on the active and inactive levers were recorded. The test 
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session length was chosen for optimal expression of stimulus-induced Fos protein 

expression (Moratalla et al. 1993). 

The cocaine-trained rats were assigned to either a Novel or a CS test cue 

condition, with n = 17 in each group. For rats in the CS test cue condition, the 

cocaine-paired stimulus-complex (i.e. blinking cue light or pulsed tone and pump 

motor) was delivered on a FR1 schedule of reinforcement. For rats in the Novel 

test cue condition, the stimulus was a novel cue (i.e. the blinking cue light for rats 

trained with the tone, and the oscillating tone for rats trained with the cue light), 

also delivered on a FR1 schedule. Saline-yoked rats were exposed to the same 

cues as their cocaine-trained partners, but responses on the active lever from these 

rats had no consequences.  

Tissue preparation 

Immediately following reinstatement testing, rats were deeply anesthetized 

with sodium pentobarbital (100 mg/kg, i.p.). Their circulatory system was 

perfused with 200 ml ice-cold saline followed by 250 ml ice-cold 

paraformaldehyde in 0.1 M phosphate-buffered saline (PBS, pH 7.4). Brains were 

removed and post-fixed in paraformaldehyde for 24 h, cryoprotected by 

submersion in 15% sucrose for 24 h and then submerged in 30% sucrose for at 

least 24 h. The brains were then sectioned using a sliding microtome (Microm 

International, Walldorf, Germany) connected to a freezing stage (Physitemp, 

Clifton, NJ). Serial coronal 40 µm sections were collected, separated by 120 µm, 

centered at anatomical locations corresponding to bregma +3.2, +1.6, -2.56, and -

5.6 mm (Paxinos and Watson 1998). The tissue sections were then frozen and 
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stored at 4º C in a cryoprotectant solution comprised of 0.1 M PB (pH 7.2), 30% 

ethylene glycol, and 25% glycerol. 

Fos protein immunohistochemistry 

 Free floating tissue sections were washed in 0.1 M PB (pH 7.2, nine times 

for 10 min each), incubated for 30 min in 1% H2O2 diluted 3:100 in 0.1 M PB, 

incubated  for 30 min in 3% Normal Goat Serum (NGS; Vector Laboratories, 

Burlingame, CA), and then incubated for 72 h at 4ºC with rabbit polyclonal anti-

Fos serum (sc-52, Santa Cruz Biotechnology, Santa Cruz, CA), diluted 1:5,000 in 

0.1 M PB containing 0.1% bovine serum albumin (Fisher Scientific, Fail Lawn, 

NJ), 0.2% Triton X-100 (Fisher Scientific), and 2 % NGS. Following incubation, 

the sections were washed in 0.1 M PB (three times for 10 min each) and then 

incubated for 1 h at room temperature in biotinylated goat anti-rabbit IgG 

antibody (Vector Laboratories), diluted 1:500 in 0.1 M PB containing 0.1% 

bovine serum albumin, 0.2% Triton X-100, and 2 % NGS. The tissue was then 

washed in 0.1 M PB (three times for 10 min each) and then incubated for 90 min 

in Extravidin Peroxidase (Sigma-Aldrich, St. Louis, MO), diluted 1:1000 in 0.1 M 

PB containing 0.1% bovine serum albumin, 0.2% Triton X-100, and 2 % NGS. 

The tissue was washed in 0.1 M PB (nine times for 10 min each) and then in 

solution containing 0.02% 3,3’-diaminobenzidine (DAB; Sigma-Aldrich) for 20 

min. The sections were then incubated in glucose oxidase (Sigma-Aldrich) for 10 

min. The DAB reaction was terminated by rinsing the tissue six times for 10 min 

in 0.1 M PB. All of the washes and incubations described above were performed 

on an orbital shaker (Cole-Parmer, Vernon Hills, IL) operating at 90 rpm. The 
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sections were mounted onto gelatin chromium-coated slides, air-dried, dehydrated 

and protected with a coverslip for light-microscopic inspection. 

Fos immunoreactivity analysis 

Fos immunoreactivity was examined using a Nikon Eclipse E600 (Nikon 

Instruments, Melville, NY) microscope set at 20× magnification and counted by 

an observer blind to treatment conditions using the ImageJ software package 

(Version 1.45, National Institutes of Health, USA). The anatomical locations and 

boundaries of each region were determined using a rat brain atlas (Paxinos and 

Watson 1998) and are illustrated in Figure 1A. Sections taken at +3.2 mm from 

bregma contained the Cg1 region of the anterior cingulate cortex (Cg1). Sections 

taken at +1.6 mm from bregma contained the Cg2 region of the anterior cingulate 

cortex (Cg2), dorsomedial caudate/putamen (dmCPu), dorsolateral 

caudate/putamen (dlCPu), nucleus accumbens shell (NAcS), and nucleus 

accumbens core (NAcC). Sections taken at -2.56 mm from bregma included the 

basolateral amygdala (BlA). Sections taken at -5.6 mm from bregma included the 

ventral tegmental area (VTA). The sections were taken such that the rostral-

caudal extent of each region of interest was sampled (340 µm). Fos 

immunoreactivity was counted and identified by black oval-shaped nuclei (Figs. 

1C-D). Each region of interest was analyzed using both hemispheres from three 

tissue sections from each animal. The area of each sample measure was 0.26 mm2 

and the counts from all the sample areas from a given region were averaged and 

scaled to provide a mean number of Fos-positive cells per mm2.  
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Experiments 2 & 3: Reinstatement after training with sucrose or cue 

reinforcement only 

 Rats in Experiment 2 received response-contingent cue presentations 

(either the light or tone) paired with delivery of a sucrose pellet (45 mg, Bio-Serv, 

Frenchtown, NJ, USA) whereas rats in Experiment 3 received response-

contingent cue presentations with no other reinforcer during training.  The latter 

served to examine the reinforcing effects of the cues themselves. The procedures 

used in these experiments were identical to those used in Experiment 1 with the 

following exceptions: 1) rats in Experiment 2 received approximately 30 sucrose 

pellets in their home cage prior to sucrose reinforcement training in order to 

familiarize them with the pellets, 2) no surgery was performed on the animals 

from either experiment, 3) the training, extinction, and test sessions in both 

experiments were only 30 min in duration to avoid satiation found with longer 

training sessions (Bizo et al. 1998) and to attain a comparable number of cue 

presentations per session as Experiment 1.  

Statistical Analysis 

ANOVAs were performed to analyze reinforcement rates during training 

where training cue (light, tone) was a between-subjects factor and session was a 

within-subjects factor. Separate ANOVAs were used to analyze responses on the 

active and inactive lever during extinction, where training cue (light, tone) was a 

between-subjects factors and session was a within-subjects factor. Separate 

ANOVAs were also used to analyze responses on the active and inactive lever 

during reinstatement, where test cue condition (novel, CS) and test cue modality 
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(light, tone) were between-subjects factors and day (baseline, test) was a within-

subjects factor. Separate ANOVAs, with drug history (cocaine, saline-yoked), test 

cue condition, and test cue modality as between-subjects factors, were used to 

analyze Fos protein expression for all brain regions studied. Significant 

interactions and main effects were followed by smaller ANOVAs, tests for simple 

effects, and post hoc tests (Tukey, Bonferroni), where appropriate. Additionally, 

the correlation between test-day responses on the active lever and Fos expression 

separated by test cue condition (novel, CS) was calculated using the Pearson 

product-moment correlation (r) for Experiment 1.
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Chapter 3 

RESULTS 

All descriptive statistics are reported as mean ± standard error of the 

mean. 

Experiment 1 

Cocaine self-administration 

The 16 light-trained cocaine rats received a total of 504 ± 46 cocaine 

infusions and the 18 tone-trained cocaine rats received a total of 413 ± 32 cocaine 

infusions during self-administration training. This difference in infusion rates was 

due to the rapid acquisition of operant responding in the light-trained rats (Fig. 

2A). A significant interaction between session and training cue was found (F3.7, 

116.9 = 2.56, p < 0. 05), where tests of simple effects revealed that on the first four 

days of self-administration, the light-trained groups achieved more infusions than 

the tone-trained groups (ANOVAs, ps > 0.05). However, analysis of total 

infusions across all sessions (i.e., number of sessions ranged between 13 and 21 

depending on acquisition rate) did not differ between the two training cue groups 

(Fig. 2B; t-test, t32 = 1.66, p = 0.11).  

Extinction and reinstatement of cocaine-seeking behavior 

 Following cocaine self-administration, extinction training significantly 

reduced responding across sessions (Fig. 3A), where a main effect of session was 

found on the active (F2.6, 82.4 = 33.3, p < 0. 001) and inactive (F4.2, 135.6 = 3.38, p < 

0.05) levers and there were no group differences in response rates. Post hoc 

analyses revealed that last-day extinction responses on both levers were 
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significantly reduced from first-day responses (Bonferroni correction, ps < 0.025).  

No significant changes in responses on the active or inactive lever were found in 

the saline-yoked groups (data not shown). 

 To assess reinstatement of cocaine-seeking behavior, we compared 

responses on the active lever during testing to responses on the active lever during 

the last extinction session (i.e., baseline), with day as a within-subjects factor and 

test cue condition and test cue modality as between-subjects factors. In contrast to 

our predictions, no day × test cue condition interaction was found (F1, 30 = 0.82, p 

= 0.37), indicating that rats responded similarly to conditioned and novel stimuli 

during testing.  An interaction between day and test cue modality was found (F1, 30 

= 10.0, p < 0.01), where tests for simple effects of day revealed that rats tested 

with both cue modalities reinstated lever pressing compared to their extinction 

baseline (Fig. 3B; ANOVAs, ps < 0.001), but analysis of group effects on the test 

day (F1, 32 = 10.4, p < 0.01) revealed differences in the magnitude of reinstatement 

where rats tested with a light had higher response rates than tone-tested rats (test 

for simple effects; Fig. 3B).  No group differences were found during baseline (F1, 

32 = 0.12, p = 0.73). 

Although no interactions were found in responses on the inactive lever, 

there was a main effect of test cue condition for the cocaine (F1, 30 = 4.49, p < 

0.05) and saline-yoked (F1, 12 = 6.81, p < 0.05) rats, where the novel cue groups 

had higher response rates on the inactive lever than the CS groups, regardless of 

day or test cue modality (Table 1). No interactions or main effects of responding 

on the active lever were observed for saline-yoked groups (data not shown). 
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Fos Immunoreactivity 

 Rats in the cocaine groups exhibited significantly more Fos-

immunoreactive nuclei than rats in the saline-yoked groups in all of the brain 

regions analyzed, with the exception of the VTA. This enhancement was evident 

as a significant main effect of drug history in the dmCPu, dlCPu, NAcC, NAcS, 

and BlA (Fig. 4; ranged from F1, 45 = 7.1 to 18.1, ps < 0.05). No other significant 

main effects or interactions were found in these regions, implying that Fos 

expression was enhanced in the cocaine-trained animals, regardless of cue 

conditioning or modality. In the Cg1 region of the anterior cingulate cortex, a 

significant main effect of drug history was also found (F1, 40 = 9.45, p < 0.01), as 

well as a significant drug history × test cue modality interaction (F1, 40 = 4.32, p < 

0.05). Subsequent ANOVAs for the two drug conditions revealed that saline-

yoked control rats tested with a light cue expressed significantly more Fos-

positive nuclei than the rats tested with a tone (Fig. 5; F1, 16 = 6.84, p < 0.05). No 

such difference was found in the cocaine-trained groups (F1, 32 = 1.05, p = 0.31). 

In the Cg2 region of the anterior cingulate cortex, a significant main effect of drug 

history was also found (Fig. 3A; F1, 40 = 9.33, p < 0.01), as well as a significant 

drug history × test cue condition × test cue modality interaction (F1, 40 = 4.32, p < 

0.05).  Subsequent ANOVAs for the two drug conditions revealed a test cue 

condition × test cue modality interaction in the cocaine-exposed rats (F1, 28 = 7.14, 

p < 0.05), where post hoc analyses revealed a trend toward a higher number of 

Fos-positive nuclei in the novel light compared to the CS light group (Tukey, p = 
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0.09), which likely contributed to the interaction. No interactions or main effects 

were found in the Cg2 of the saline-yoked animals.  

 Correlations were also conducted within the cocaine groups separately for 

the novel versus CS test cue conditions to determine whether Fos expression in 

certain regions was related to the magnitude of responses on the active lever 

during testing. Interestingly, a positive correlation was found in the dmCPu for 

the novel (Fig. 6A; r = 0.70, p < 0.01), but not the CS (Fig. 6B; r = 0.12, p = 0.67) 

test cue condition, indicating that the higher responding on the active lever when 

tested with a novel cue the higher the expression of Fos in the dmCPu. No other 

significant correlations were found in the remaining brain regions.  

Experiment 2 

Sucrose Reinforcement Training 

The 15 light-trained sucrose rats received a total of 382 ± 33 sucrose 

pellets and the 18 tone-trained sucrose rats received a total of 412 ± 22 sucrose 

pellets during training. A significant interaction between session and training cue 

was found (F4.89, 154.3 = 2.38, p < 0.05), where tests for simple effects of group 

revealed that the tone-trained rats exhibited higher reinforcement rates relative to 

light-trained rats during the transition from mild food restriction to ad libitum 

access, specifically on days 7 and 8 (Fig. 7; ANOVAs, p < 0.05). Overall, there 

was no group difference in the total number of pellets received across all training 

sessions (Fig. 7 inset; F1, 31 = 2.48, p = 0.13).  
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Extinction and reinstatement of sucrose-seeking behavior 

Responses on the active lever reduced across extinction training (Fig. 8A), 

where a main effect of session was found (F1.8, 56.4 = 92.1, p < 0. 001), and there 

were no group differences in response rates. Post hoc analyses revealed that last-

day extinction lever presses were significantly reduced from first-day extinction 

lever presses (Bonferroni correction, p < 0.05). No significant changes were found 

during extinction for responding on the inactive lever (Fig. 8A). 

To assess reinstatement of sucrose-seeking behavior, we compared 

responses on the active lever during testing to responses on the active lever during 

the last extinction session, with day as a within-subjects factor and test cue 

condition and test cue modality as between-subjects factors. Only a main effect 

for day was found (F1, 29 = 91.5, p < 0.001), indicating that test day responding 

increased compared to extinction baseline regardless of other factors (Fig. 8B). 

An interaction was found for inactive lever responding between day and test cue 

modality (F1, 29 = 4.62, p < 0.05), but tests for simple effects of day or group 

failed to reveal differences in responding compared to extinction baseline nor 

group differences during baseline or test day between test cue modalities. There 

was also a test cue condition × test cue modality interaction (F1, 29 = 4.61, p < 

0.05), but post hoc analyses failed to reveal any group differences (Tukey, ps > 

0.05). The novel light group appeared to have a higher response rate than all other 

groups on test day (Fig. 8B), which may have contributed to these effects.  
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Experiment 3 

Cue reinforcement training 

Across training, the 18 light cue-trained rats received a total of 65 ± 7 light 

presentations and the 18 tone cue-trained sucrose rats received a total of 46 ± 3 

tone presentations.  No interaction between session and training cue was found 

(Fig. 9; F14, 448 = 0.94, p = 0.52), but the light cue group received more cue 

presentations than the tone cue group overall (Fig. 9 inset; F1, 32 = 5.73, p < 0.05). 

We also examined responding on the inactive lever and observed no interaction or 

group differences, although there was a main effect of session (F5.4, 172.5 = 3.06, p 

< 0.01) due to nonsystematic variation across sessions regardless of training cue 

(data not shown). 

Extinction and test day responding for the Cue-Only condition 

A significant interaction between session and training cue was found (F6.0, 

192.8 = 3.16, p < 0. 01), where tests of simple effects of group revealed that the 

light-trained group had higher responding on the active lever than the tone-trained 

group on several days throughout extinction (Fig. 10A; ANOVAs, ps < 0.05). In 

terms of extinction behavior, post hoc analyses revealed that last-day extinction 

lever presses were significantly reduced from first-day extinction lever presses in 

the light-trained group (Fig. 10A; Bonferroni correction; p < 0.025), but not in the 

tone-trained group. No significant changes were observed during extinction for 

responses on the inactive lever (Fig. 10A).   

Surprisingly, analysis of the cue-only condition reinstatement data 

revealed a significant interaction between day, test cue condition, and test cue 
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modality (F1, 30 = 4.55, p < 0.05), indicating that test day behavior was under the 

influence of both test cue familiarity and cue modality. Tests for simple effects of 

day revealed that both the novel light and novel tone groups increased responding 

compared to extinction baseline, although in the latter case the effect was 

marginally significant (p = 0.05; Fig. 10B). Subsequent two-way ANOVAs 

during baseline and test day with test cue condition and test cue modality as 

between-subjects factors revealed no interactions or main effects during baseline, 

but main effects of test cue condition and test cue modality during test day (F1, 30 

= 5.09-9.22, ps < 0.05) where rats tested with a novel cue and a light cue had 

higher response rates than CS- and tone-tested rats, respectively (Table 2). On the 

inactive lever, interactions between day and both test cue condition (F1, 30 = 5.81, 

p < 0.05) and test cue modality (F1, 30 = 5.55, p < 0.05) were found, where tests 

for simple effects of day revealed that rats tested with a tone decreased 

responding compared to their baseline (Fig. 10B; F1, 16 = 5.31, p < 0.05), while 

rats tested with their CS+ cue exhibited only a trend toward a decrease in 

responding (F1, 17 = 3.83, p = 0.07). Tests for simple effects of group revealed no 

differences during baseline, but on test day rats tested with a light responded 

higher than tone-tested rats (Table 2; F1, 32 = 8.42, p < 0.01) and rats tested with a 

novel stimulus responded higher than CS-tested rats (Table 2; F1, 32 = 4.61, p < 

0.05). Again, these effects appeared to be influenced by the relatively high rate of 

responding on test day in the novel light group compared to all other groups (Fig. 

10B).
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Chapter 4 

DISCUSSION 

The aim of our study was to use a novel cue control group in order to 

parse out the contribution of experiencing novelty during cue reinstatement 

testing to Fos expression. On test days of typical extinction/reinstatement 

procedures, the animal experiences novelty in receiving a response-contingent 

stimulus (e.g. CS+) following a prolonged period of non-reinforced responding. 

Fos expression is sensitive to environmental and procedural novelty effects 

(Badiani et al. 1998; Handa et al. 1993; Papa et al. 1993) and we wanted to 

compare expression when the animal is exposed to drug-paired versus novel 

stimuli to further elucidate the neural circuitry specific to drug-conditioning. 

Surprisingly, we found that novel cues elicited similar reinstatement behavior as 

conditioned stimuli (Fig. 3B) and Fos analysis in the examined brain regions 

revealed parallel patterns of expression between the two test cue conditions. 

These unexpected results led us to hypothesize that cocaine self-administration 

may have cross-sensitized reinforcement circuits to novelty, which acts on 

converging reward pathways (Besheer et al. 1999; Bevins and Bardo 1999; 

Bevins et al. 2002). To address this question, we subsequently used a natural 

reinforcer, sucrose, to examine whether novel cues reinstated sucrose-seeking 

behavior. Non-drug reinforcers cross-sensitize behavior only under more limited 

circumstances than cocaine (for review, see Avena et al. 2008) and we chose 

parameters that are not consistent with sensitizing effects from sucrose 

reinforcement (Avena et al. 2005). Nevertheless, a similar outcome occurred 
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where all sucrose groups reinstated regardless of whether they received CS+ or 

novel cues (Fig. 8B), suggesting that drug-specific sensitization was not a likely 

explanation, and instead novel cues had similar effects on drug and non-drug 

reinforcement-seeking behavior.  

The rewarding properties of novelty have been well documented in 

humans and animals (Bardo et al. 1996; Bardo et al. 1989; Besheer et al. 1999; 

Bevins and Bardo 1999; Bevins et al. 2002; Fagan 1970), and the degree of 

motivation for novelty has been a well recognized factor in predicting individual 

sensitivity to drug reward and reinforcement (Belin et al. 2011; Pelloux et al. 

2006; Piazza et al. 1989). We therefore suggest that novel stimuli in our 

procedure may activate similar reinforcing processes as those involved in 

conditioned reinforcement-seeking behavior, which may be driving heightened 

responding on test day. In particular, brain regions engaged by novel cues show 

highly similar patterns of Fos expression as those found during CS+ re-exposure 

(Kufahl et al. 2009; Neisewander et al. 2000) and these regions are known to play 

a role in conditioning and expression of cocaine-seeking behavior (Fuchs et al. 

2006; Fuchs et al. 2004; Fuchs et al. 2002; Ito et al. 2004; Kalivas and McFarland 

2003; Kruzich and See 2001; McLaughlin and See 2003). Our test-day behavior 

of the cue-only condition further supports the reinforcing properties of response-

contingent novel stimuli (Baron and Kish 1962), where the novel light and tone 

produced reinstatement-like behavior.  

In contrast to reward, the stress-provoking effects of novel stimuli and 

procedures have also been examined in rodents (Kabbaj et al. 2000; Piazza et al. 
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1991; Rozin and Kalat 1971). Stress is known to facilitate both drug 

reinforcement and incentive motivation, where various stressors have the ability 

to reinstate drug seeking (Bossert et al. 2005; Shaham et al. 2003), but less 

consistently sucrose seeking (Buczek et al. 1999; Simms et al. 2011). The task of 

interpreting the bio-behavioral effects of novelty-induced stress is known to be 

complex (Beerling et al. 2011). Novel stimuli have the tendency to induce both 

approach and avoidance in animals, and it is the balance between these two 

conflicting motivations that drive subsequent behavior (Montgomery and 

Monkman 1955).  Although exposure to discrete novel cues in our study may 

have induced an initial stress response, the animals appeared to approach, rather 

than avoid, making responses to receive novel cue presentations. This suggests 

that potential stress effects of the novel cues likely facilitated, rather than 

inhibited, the animal’s motivation to seek reinforcement.  

Although the stimulating effects of novel stimuli may have directed the 

animal to the active lever, it cannot alone account for the total motivating force 

behind the animal’s behavior. The degree of novel cue reinstatement was robust 

in the cocaine and sucrose conditions, but relatively weak in the cue-only 

condition. Perhaps a previous history of reinforcement paired with response-

contingent stimuli may have induced a strong action-outcome habit that a 

response-contingent novel cue re-engages during testing. Prolonged appetitive 

training is known to initially show goal-directed behavior and then transition to 

habitual responding (Belin et al. 2009; Jog et al. 1999), and contingent reinforcers 

likely facilitated this transition in our study, as well as initial acquisition 
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(Deroche-Gamonet et al. 2002). Furthermore, in a previous study a novel 

light/tone combination failed to produce reinstatement in animals that were not 

exposed to cocaine-paired cues during training (Kruzich et al. 2001), suggesting 

that reinforcement exposure alone during training does not produce sensitized 

responding to novel stimuli. Therefore, novel cues are able to reinforce 

responding reliably when they are presented similarly to conditioned stimuli, 

possibly by initiating habits that are resistant to stimulus modality changes.  

While novel and conditioned cues elicited similar seeking behavior and 

brain activation, response magnitude and Fos effects in some cases varied 

depending on the stimulus modality. Several other studies have reported an 

impact of cue modality on responding, where a light cue was capable of eliciting 

greater responding than a tone cue (Baron and Kish 1962; Di Ciano and Everitt 

2003; Panlilio and Schindler 1997; Reed et al. 1996; See et al. 1999). We found 

that a light was more effective than a tone during cocaine self-administration (Fig. 

2A) and reinstatement, as well as during training sessions when only a cue served 

as the reinforcer (i.e. cue-only condition; Fig. 9). A light cue also induced greater 

Fos expression in the Cg1 of the saline-yoked control groups compared to the 

tone (Fig. 5). Although this might not be related to operant behavior per se, the 

effect may be due to attention because this region is engaged in the presence of 

salient stimuli (Downar et al. 2002). In contrast, the tone cue appeared to elicit 

slightly greater responding during sucrose training (Fig. 7). These findings are 

curious, but could be due to the ability of psychostimulants to amplify sensitivity 

to stimuli (Davis 1985; Davis et al. 1975), where the initial reinforcing and 
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aversive properties of response-contingent light and tone cues, respectively, may 

be more pronounced (Baron and Kish 1962). Regardless, our cue modality effects 

appear to be consistent with the sensory reinforcement literature. 

An interesting finding regarding differences in Fos expression in response 

to novel versus CS+ cues is that in the dmCPu, where high responding during test 

day was positively correlated with the degree of Fos in the novel, but not 

conditioned, cue groups. Although the cause of this relationship is unclear, several 

features and functions of the dmCPu suggest possible explanations. In terms of 

brain connectivity, projections from the visual/auditory cortices to the dmCPu 

may contribute to the relationship (Faull et al. 1986; McGeorge and Faull 1989), 

where a greater number of cue presentations may recruit greater input from 

sensory regions for novel versus familiar cues. Our reinstatement data support this 

claim, where cue modality had a greater effect on responding in the novel versus 

conditioned cue groups. In relation to cognitive-behavioral measures, the dmCPu 

has been implicated in behavioral flexibility and attention (for review, see Devan 

et al., 2011), where regional inactivation has been shown to disrupt dimensional 

shifting in a discrimination task and impair performance of a visually signaled 

time-dependent response task, respectively (Christakou et al. 2005; Ragozzino et 

al. 2002). Animals exhibiting low novel cue responding may lack the sensory 

dimensional shift and pay less attention to the stimuli, whereas the higher 

responding animals may show greater modality flexibility and attention to the 

novel stimulus. In addition, animals displaying greater novelty-seeking behavior 

exhibit greater c-fos mRNA in the dmCPu than low novelty-seekers, further 
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supporting our novelty-specific effects in this region (Kabbaj and Akil 2001). 

While the conditioned cues in our procedure may have recruited previously 

established habits where cognitive input is less essential, the dmCPu appears to 

participate in the processing and magnitude of behavioral output in response to 

the novel cue. 

Beyond the differential contributions of the discrete cue characteristics, 

our procedure of testing in the original training context may also contribute to 

responding for novel stimuli during the test session because it is possible that any 

response-contingent consequence may reignite the incentive motivational value of 

the reinforcement context. It is well established that contextual manipulations 

exert control over operant responding, where reinforcement seeking and other 

conditioned responses are reinstated by exposure to the training context following 

a period of prolonged abstinence or extinction in a different context (Crombag et 

al. 2008; Crombag and Shaham 2002; Bouton and Peck 1989; Neisewander et al. 

2000). In contrast, exposing rats to a novel context during testing (i.e. an AAB 

procedure) does not reinstate drug-seeking (Bossert et al. 2004; Crombag and 

Shaham 2002; Fuchs et al. 2005), or conditioned responses (Bouton and King 

1983), highlighting the unique impact of the original training context on 

responding. The incentive motivational value of the context may be necessary to 

achieve heightened novel cue responding, perhaps through the training 

environment acting as discriminative stimuli or an ‘occasion setter’ (Alleweireldt 

et al. 2001; Holland 1992; Swartzentruber 1991). The importance of contextual 
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contributions to novel cue reinstatement of drug-seeking behavior will require 

further attention. 

In order to integrate our proposed mechanisms of novel cue reinstatement, 

it may be worth relating our work to Robinson and Berridge’s (1993) theory of 

incentive sensitization. According to the researchers, two dissociable processes in 

the form of ‘liking’ and ‘wanting’ changes over the course of addiction. While the 

hedonistic value of the drug-taking experience (i.e. ‘liking’) appears to decrease 

or remain stable over time, the motivation to seek out drug (i.e. ‘wanting’) 

increases and can persist even after extended periods of discontinued drug use 

(Lamb et al. 1991; Robinson and Berridge 1993; Robinson and Berridge 2008). 

The development of incentive sensitization is presumably due to the associative 

processes occurring over repeated drug-taking sessions, where the organism 

attributes incentive salience to drug-associated stimuli and this effect increases 

over time. In our experiment, we believe prior training with a reinforcer may have 

induced incentive sensitization where subsequent testing with a conditioned cue 

easily triggers the sensitized motivational circuits through associative learning 

processes. However, when a novel cue is presented during testing, the lack of 

direct association with previous reinforcement is superseded by other associative 

processes involving contextual stimuli and lever-contingent cue presentations, as 

well as greater modulation by the intrinsic salience of the novel stimuli, as we 

demonstrated with the cue-only condition. Although different, the novel and 

conditioned stimuli may be activating the same sensitized motivational circuit that 

developed during training, thus resulting in similar reinstatement effects.  
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Although we were unable to delineate the unique drug-conditioning 

contribution of stimulus presentation to Fos protein expression during 

reinstatement testing in our procedure, we have uncovered novel information that 

calls for additional thought about how reinstatement of reinforcement-seeking 

behavior is mediated. It appears that novelty can trigger incentive motivation and 

activate brain reinforcement circuits similarly to that of conditioned stimuli.  We 

have suggested potential mechanisms that may mediate or contribute at least in 

part to novel cue reinstatement. These include: 1) novel stimulus-elicited 

activation of brain reinforcement mechanisms that in turn drive reinforcement-

seeking behavior similar to CS+ stimuli; 2) response-contingent events re-

engaging action-outcome processes that have become habitual; and 3) the ability 

of novelty or CS+ reinforcement to reinstate the incentive motivational effects of 

the reward-associated context. In terms of drug abuse and other addictive 

behaviors, the present findings suggest novel potential mechanisms by which 

environmental stimuli may disrupt abstinence as effectively as stimuli known to 

be associated with reinforcement. Further understanding of how novelty relates to 

craving for drugs of abuse or natural reinforcers is important for understanding 

relapse and for future therapeutic interventions.
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Table 1. Experiment 1 average inactive lever presses (± SEM) for cocaine and 
saline-yoked groups during last day extinction and reinstatement test sessions. 

Group Inactive Lever Presses / 90 min 

Drug History 
Test Cue 
Condition 

Baseline Test Day 

Cocaine CS 3.6 ± 1.5 4.0 ± 1.4 

 Novel* 13.8 ± 5.8 22.4 ± 8.7 

Saline-yoked CS 2.8 ± 1.1 2.5 ± 1.3 

 Novel* 7.6 ± 2.2 5.6 ± 3.1 
 

*Different from respective CS groups (p < 0.05) 
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Table 2. Experiment 3 average test day response rates (± SEM) for cue-only 
groups. 

Group 
Test Day  

Response Rates 

Reinforcement 
Test Cue 
Modality 

Test Cue 
Condition 

Active Lever 
Presses /  
30 min 

Inactive Lever 
Presses /  
30 min 

Cue Only Light-tested CS 7.0 ± 2.5* 4.1 ± 1.3* 

  Novel 30.4 ± 9.6*† 10.0 ± 2.2*† 

 Tone-tested CS 4.1 ± 1.0 2.1 ± 0.5 

  Novel 10.9 ± 3.3† 3.0 ± 1.1† 
 

*Different from respective tone-tested groups (p < 0.05) 
†Different from respective CS-tested groups (p < 0.05) 
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Figure 1. Schematic representations (A) illustrating the regions analyzed in brain 

sections taken at +3.2, +1.6, -2.56, and -5.8 mm from bregma (Paxinos and 

Watson, 1998), and representative photomicrographs of Fos protein expression in 

the NAcC with a dashed rectangle indicating sample region at 10× magnification 

(B), a sample of the NAcC from a saline-yoked novel tone rat (C) and cocaine 

novel-tone rat (D) with arrows indicating Fos-positive nuclei. The numbered 

regions are as follows: (1) Cg1 region of the anterior cingulate cortex (Cg1); (2) 

Cg2 region of the anterior cingulate cortex (Cg2); (3) dorsomedial 

caudate/putamen (dmCPu); (4) dorsolateral caudate/putamen (dlCPu); (5) nucleus 

accumbens core (NAcC); (6) nucleus accumbens shell (NAcS); (7) basolateral 

amygdala (BlA); (8) ventral tegmental area (VTA). All sample areas were 0.26 

mm2 and all photomicrographs were taken at 20× magnification with the scale bar 

is equal to 100 µm. Abbreviation: ac, anterior commissure. 

A +3.2 mm +1.6 mm -2.56 mm -5.8 mm 

B C D 

ac 
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Figure 2. Daily cocaine reinforcement rates (infusions ± SEM) across sessions 1-

13 (A), total number of infusions earned during self-administration (B). ^ 

Represents a significant difference from tone-trained group (tests of simple 

effects, p < 0.05). 
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Figure 3. Active (top) and inactive (bottom) lever presses (± SEM) during 

extinction (A) in rats receiving light (circles) or tone (squares) cues during self-

administration training. Active (i.e., cocaine-seeking behavior; top) and inactive 

A 

B 
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(bottom) lever presses/90 min ± SEM during the final extinction session 

(baseline) and the test day shown for groups tested with novel (open symbols) or 

conditioned (closed symbols) light (circles) or tone (squares) cues (B). * 

Represents an increase from baseline responding (ANOVA, p < 0.05). + 

Represents a difference between test cue modalities (light vs. tone; ANOVA, p < 

0.05).  
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Figure 4. Number of Fos-positive nuclei/mm2 (± SEM) in brain regions that 

exhibited enhanced Fos expression in rats with a history of cocaine self-

administration in Experiment 1. Data is grouped by drug history. * Represents a 

difference from Saline-yoked groups (p < 0.05).  
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Figure 5. Fos expression in the Cg1 grouped by drug history and test cue 

modality. * Represents a difference from Saline-yoked groups (p < 0.05). † 

Represents a difference from the saline tone-tested group (ANOVA, p < 0.05).  
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Figure 6. Scatter plot of dmCPu for the cocaine novel (A) and CS (B) groups with 

Fos expression vs. test session cocaine-seeking behavior in Experiment 1. Fos-

positive nuclei/mm2 and test session responding on the active lever were centered 
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to where ‘0’ represents the mean of each test cue modality in order to remove 

group differences. The line represents a best-fit linear relationship between the 

two variables. ** Represents a positive linear correlation among responding on 

the active lever and Fos-labeled cells (p < 0.01).  
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Figure 7. Daily reinforcement rates for rats trained to lever press for sucrose 

pellets (± SEM) that were paired with a light (circles) or tone (squares). Inset 

graph shows the total number of sucrose pellets attained across all training 

sessions. Dashed vertical lines represent the transition period from food restriction 

(~16-22 g chow/day) to food ab libitium. ^ Represents a difference from the light-

trained group (tests of simple effects, p < 0.05). 
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Figure 8. Active (top) and inactive (bottom) lever presses (± SEM) during 

extinction (A) in rats receiving light (circles) or tone (squares) cues during 
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sucrose training. Active (i.e., sucrose-seeking behavior; top) and inactive (bottom) 

lever presses/30 min ± SEM during the final extinction session (baseline) and the 

test day shown for groups tested with novel (open symbols) or conditioned 

(closed symbols) light (circles) or tone (squares) cues (B). * Represents a 

difference from baseline responding (p < 0.05). 
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Figure 9. Daily reinforcement rates for rats trained to lever press for either a light 

(circles) or tone (squares) cue presentation (± SEM). Inset graph shows the total 

number of cue presentations earned across all training sessions. * Represents a 

difference from the tone-trained group in total number of cue presentations (p < 

0.05). 
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Figure 10. Active (top) and inactive (bottom) lever presses (± SEM) during 

extinction (A) in rats receiving light (circles) or tone (squares) cues during cue 

reinforcement training. Active (i.e., cue-seeking behavior; top) and inactive 

A 

B 
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(bottom) lever presses/30 min ± SEM during the final extinction session 

(baseline) and the test day shown for groups tested with novel (open symbols) or 

conditioned (closed symbols) light (circles) or tone (squares) cues. * Represents 

an increase from baseline responding (p ≤ 0.05). @ Represents a decrease from 

baseline responding in the tone-tested groups (ANOVA, p < 0.05).  


