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ABSTRACT

Quark matter at sufficiently high density and low temperature is expected to

be a color superconductor, and may exist in the interior of neutron stars. The prop-

erties of two simplest possible color-superconducting phases, i.e., the color-flavor

locked (CFL) and two-flavor superconducting (2SC) phases, are reviewed. The ef-

fect of a magnetic field on the pairing dynamics in two-flavor color-superconducting

dense quark matter is investigated. A universal form of the gap equation for an

arbitrary magnetic field is derived in the weakly coupled regime of QCD at asymp-

totically high density, using the framework of Schwinger-Dyson equation in the im-

proved rainbow approximation. The results for the gap in two limiting cases, weak

and strong magnetic fields, are obtained and discussed. It is shown that the su-

perconducting gap function in the weak magnetic field limit develops a directional

dependence in momentum space. This property of the gap parameter is argued to

be a consequence of a long-range interaction in QCD.
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CHAPTER 1

INTRODUCTION

1.1 Dense Quark Matter

Quantum chromodynamics (QCD) is known to be the fundamental theory of strong

interactions, which describes the interactions between quarks and gluons. It is a

quantum field theory with the SU(3) Yang-Mills gauge symmetry [1], consisting of

a system of color-charged fermions (the quarks) mediated by a set of exchange

gauge bosons (the gluons). There are six types of quarks with spin of 1/2 known as

flavors. They are called up, down, strange, charm, bottom, and top, and they carry

fractional electric charges. Up, charm, and top quarks have a charge of +2/3, while

down, strange, and bottom quarks have a charge of -1/3. Each flavor of quark is

assigned to the fundamental representation (denoted 3) of the local SU(3)c color

gauge group, carrying a color charge of red, green or blue. Every quark has an

antiquark, which can take one of three anticolors, called antired, antigreen, and

antiblue, and belongs to the antitriplet representation (denoted 3̄) of SU(3)c. The

gluon, containing an octet of vector gauge fields, belongs to the adjoint represen-

tation (denoted 8) of SU(3)c. The QCD theory is an important part of the Standard

Model of particle physics, which was established by Glashow [2], Weinberg [3] and

Salam [4].

QCD was derived from various remarkable experimental observations and

gained a great successful interpretation for few-body phenomena of hadronic phy-

sics. For example, the evidence for quarks as real constituent elements of hadrons

was obtained in deep inelastic scattering experiments at SLAC [5, 6], the evidence

for gluons in three jet events at PETRA [7], the running of the QCD coupling [8],

heavy-quark (charm, bottom, and top quarks) production in colliders [9, 10, 11, 12,

13], etc.
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It is found that QCD has two important properties. One of them is color con-

finement, which means color charged particles (such as quarks) cannot be isolated

as asymptotic states, and therefore cannot be directly observed. Because of this,

quarks are forever bound into hadrons such as the proton and the neutron. Although

analytically unproven, confinement is widely believed to be true because it explains

the consistent failure of free quark searches in experiments. The other property

of QCD is asymptotic freedom, which means that quarks and gluons interact very

weakly in very high-energy reactions. This prediction of QCD was first discovered

in the early 1970s by Politzer, Wilczek and Gross [14, 15]. It allows physicists to

make precise predictions of the results of many high energy experiments using the

quantum field theory technique of perturbation theory, such as the R ratio in e+e−

annihilation [16].
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Figure 1.1: A schematic version of QCD phase diagram, adapted from Ref. [17].

The use of the QCD theory also allows to study the behavior of many-

body systems of quarks, in the so-called regime of “condensed matter physics” of

quantum chromodynamics [18]. Conventionally, we can explore the corresponding

phase diagram in the plane of the temperature T and the baryon chemical potential
2



µB (see Fig. 1.1), and investigate the properties of different phases. (Note that the

quark chemical potential is three times smaller than the baryon chemical potential,

µ ≡ µB/3.) As we know, when temperatures and densities are both relatively low,

quarks are confined into colorless hadronic degrees of freedom (such as mesons

and baryons, which are bound states of quarks and antiquarks).

However, at sufficiently high temperatures or densities, the structure of the

normal hadronic matter phase is disrupted: the hadrons are crushed into their con-

stituent quarks. When this happens, the constituent quarks become deconfined

and mobile over large distances. Therefore, it is more reasonable to select the

quarks as the basic degrees of freedom instead of hadrons. The corresponding

phase is called quark matter.

When the temperature is sufficiently high, i.e., larger than the QCD energy

scale (ΛQCD ≈ 200 MeV, or of order 1012 K), the phase of matter becomes a kind of

hot quark matter called the quark-gluon plasma (QGP). This was the state of matter

in the Early Universe when the Universe was only a few tens of microseconds old.

Quark-gluon plasma can also be produced in small, short-lived regions of space

by heavy-ion collisions at very powerful accelerators, such as RHIC at Brookhaven

National Laboratory [19, 20] and LHC at the European Organization for Nuclear

Research (CERN) [21].

When the temperature is close to zero and the quark chemical potential

increases, as we can see from Fig. 1.1, there exists a phase transition from low-

density hadronic matter (vacuum at T ≈ 0) to nuclear matter. This occurs at a

critical quark chemical potential µ about 310 MeV. Nuclear matter consists main-

ly of neutrons and some protons, interacting primarily by nuclear interactions (or

residual strong interactions) but also slightly affected by electromagnetic interac-

tions [22, 23]. If we continue increasing the quark density (or quark chemical po-
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tential) and keep the temperature sufficiently low, compressed nuclear matter will

make a transition to a phase of cold and dense quark matter. The critical quark

chemical potential for the transition can be determined by comparing the equations

of state of both nuclear matter and quark matter. However, while such equations of

state are subject of many investigations, they are not fully established yet.

The topic of cold and dense quark matter has gained a lot of interest in phy-

sics because of its astrophysical significance in nature. It has been suggested for

a long time that the interior of neutron stars is the only known place in the Universe

where the baryon density might possibly be high enough and the temperature might

be low enough for dense quark matter to exist. As we know, a typical neutron star

has a mass of about 1.2− 2.0 solar masses [24] with a radius of about 10 km [25],

which is about 1/60,000 of the Sun’s radius. The weight of a neutron star is so large

that it is compressed to an ultrahigh density by its gravity. In fact, the density of a

neutron star varies from less than 1× 109 kg/m3 in the crust [26] and increases with

depth to about 3-12 times the nuclear saturation density (n0 = 0.16 nucleons/fm3,

or ρ0 = 2.8×1017 kg/m3) in the central region [27, 28]. In addition, neutron stars are

born very hot in supernova explosions and their interior temperatures can reach up

to about 1011 K (or 10 MeV). (Note that the surface temperature of neutron starts

may be a few orders of magnitude smaller than the interior temperature.) Howev-

er, the interior temperature drops to about 108 K (or 10 keV) rapidly by neutrino

emission within a few years [25]. After a time of about a million years, the interior

temperature of neutron stars can even cool down to 107 K (or 1 keV) [29].

Based on the above discussion of properties of neutron stars, we may ex-

pect to find quark matter in the cores of neutron stars. Furthermore, the cold and

dense quark matter has been predicted to be a color superconductor [30, 31, 32,

33, 34], which is a degenerate liquid of quarks, with Cooper pairing near the Fermi
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surface that spontaneously breaks the color gauge symmetry. A few seconds after

the birth of neutron stars, when the interior temperature of neutron stars drops to

less than about 10 MeV, it may already be appropriate to discuss the possibility of

cold dense quark matter. At present, we do not know whether neutron stars have

quark matter cores or not. Even assuming that compact stars do contain quark

matter, we do not know whether that quark matter is in a color-superconducting

phase or not. Therefore, in order to resolve this uncertainty, we need to study color

superconductivity and to improve our understanding of how such a quark matter

core could affect the observable behavior of neutron stars. In the next section, we

discuss color superconductivity in more detail.

1.2 Color Superconductivity

It is a good starting point to assume that quarks at sufficiently high density and

low temperature form a degenerate Fermi liquid. Such quarks have a tendency to

form Cooper pairs (explicit reasons will be discussed in the next section). The first

physicists to realize that Cooper pairing could occur in quark matter were Ivanenko

and Kurdgelaidze in 1969 [35, 36], when the theory of the strong interaction was

not even fully established. However, their insight was not pursued until the develop-

ment of QCD in the early 1970s. In 1977 Barrois and Frautschi realized that QCD

predicts Cooper pairing in high-density quark matter [30, 31, 32]. They were the

first to use the term "color superconductivity". At around the same time the problem

was also discussed by Bailin and Love [37], who studied various pairing patterns

in detail. However, except for the papers by Iwaskai and Iwado in 1995 [38, 39],

there was little activity in dense quark matter and color superconductivity until 1998,

when the prediction of large pairing gaps was sparked by the simultaneously pub-

lished work of two groups (Alford et al. [40] and Rapp et al. [41]). This suggested

that the phenomenon of color superconductivity was much more significant than
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it had previously been suggested. From then on, the phenomenology of color-

superconducting quark matter has been widely studied and interest in the topic has

steadily grown (for reviews, see [18, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,

53, 54]). Based on the research in the past decade, we find that quark matter at

the highest densities is the color-flavor-locked (CFL) color superconductor [55]. The

corresponding ground state is such that up, down, and strange quarks participate in

Cooper pairing on equal footing and most of the symmetries of the QCD Lagrangian

remain unbroken. After CFL, in the intermediate density region, the simplest less

symmetrically paired phase of quark matter is the two-flavor color-superconducting

(2SC) phase [32, 40, 41, 42]. It contains quarks of only two flavors (up and down

quarks) participating in Cooper pairing. The properties of both CFL and 2SC pha-

ses at asymptotic densities were rigorously calculated from first principles in the

numerous papers [56, 57, 58, 59, 60, 61, 62, 63, 64]. There are two important

features that guarantee rigorous calculations for both phases. One is the property

of asymptotic freedom in QCD, which ensures that such matter is weakly interact-

ing at asymptotically large densities and, therefore, allows a rigorous truncation of

the Schwinger-Dyson (gap) equation. The other one is that the long-range QCD

interactions are cut off by Landau damping and Debye screening effects in a dense

medium [56, 65], which help to avoid usual infrared problems of QCD associated

with strong coupling and essentially nonperturbative infrared dynamics.

There are many types of less symmetrically paired phases of quark matter in

the intermediate density region between nuclear and CFL matter, where the densi-

ties may not be high enough for the perturbative calculations to be reliable. The only

known alternative is the numerical computational approach of lattice QCD, which

unfortunately has a technical difficulty (the "sign problem") [66]. Thus, it means

that we have to use effective models for the moderate density region, such as the
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Nambu-Jona-Lasinio (NJL) model [67, 68]. We shall discuss the properties of both

CFL and 2SC phases in the following sections, and finally focus on the study of the

2SC phase.

1.3 Quark Cooper Pairing

Why should high-density and low-temperature quark matter be a color-supercon-

ducting phase? This is a straightforward prediction that follows from making an

analogy with conventional superconducting metals. It is well known that at low tem-

peratures many metals become superconductors. Electrons in metals are treated

as a Fermi liquid. When below a critical temperature, the electrons near the Fermi

surface gain an attractive phonon-mediated interaction, which causes them to pair

up and form a condensate of Cooper pairs. This phenomenon is fully explained

by the Bardeen-Cooper-Schrieffer (BCS) mechanism [69]. Interestingly, the same

ingredients are also present in dense and cold quark matter, and they are real-

ized even more straightforwardly. When densities are sufficiently high, the quarks

near the Fermi surface are weakly interacting because of asymptotic freedom. The

dominant strong interaction between quarks is the one-gluon exchange, which is

attractive in its antisymmetric channel. In contrast, the dominant Coulomb interac-

tion of electrons in superconducting metals is repulsive and the effective attractive

interaction that governs superconductivity is mediated by phonons. The attrac-

tion leads to the formation of Cooper pairs. Therefore, it is natural to expect that

color-superconducting phases should occur at sufficiently low temperature and high

density. At asymptotic densities, the properties of color superconductivity can be

rigorously and directly calculated from first principles.

Unlike a conventional superconductor, color-superconducting quark matter

can form many different types of color-superconducting phases. It is because there
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are three different colors (red, green, blue), and in the cores of neutron stars, which

are not dense enough to contain any charm or heavier quarks, there are up to three

different flavors (up, down, strange). Thus, in forming the Cooper pairs, there is a

9× 9 color-flavor matrix of possible pairing patterns. To emphasize this difference,

as well as the fact that quarks carry colors, superconductivity in quark matter is

called color superconductivity. Generally, the quark-pair condensate can be char-

acterized by the expectation value of the one-particle-irreducible diquark two-point

function, also known as the anomalous self-energy,

⟨ψa
iαψ

b
jβ⟩ = P ab

ijαβ∆, (1.1)

where ψ is the quark field operator. Color indices a, b range over red, green, and

blue (r,g,b), flavor indices i, j range over up, down, and strange (u,d,s), and α,β are

the spinor Dirac indices. The matrix P ab
ijαβ specifies a particular color-flavor-Dirac

pairing channel, and ∆ is the gap parameter which gives the strength of the pairing

in this channel. From this definition, in order to understand properties of color

superconductivity, obviously, we need to analyze the color-flavor-Dirac structures for

different patterns of pairing and calculate the gap parameters for different channels.

At present, many different phases of quark matter have been proposed.

There is no certainty that all possibilities have already been exhausted [70]. As

we have mentioned above, in the limit of asymptotically large density, the favored

ground color-superconducting phase is the color-flavor-locked phase (CFL), which

is a kind of three-flavor quark matter. When densities become lower and the mass

of the strange quark cannot be ignored compared with the masses of up and down

quarks, another pattern of pairing, the so-called two-flavor superconducting (2SC)

phase is proposed. Now we begin to discuss what kind of color-flavor-Dirac struc-

ture is favored for the CFL and 2SC phases. For simplicity, other possible phases

of color superconductivity at lower densities will not be discussed here.
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The quark field belongs to the fundamental representation of the SU(3)c

group. Group-theoretically, after pairing two quarks (color triplets), we can find

that there are two inequivalent color structures of diquark states possible, 3 ⊗ 3 =

3̄A ⊕ 6S . The color antisymmetric anti-triplet (3̄A) channel is favored, because it is

the most attractive channel for quarks interacting via single-gluon exchange. This

is the dominant interaction at high densities, where the QCD coupling is weak.

The color tensor for the quark-quark scattering amplitude in the one-gluon

exchange approximation is given by the following structure:

N2
c−1∑

A=1

TA
aa′T

A
b′b = −Nc + 1

4Nc

(δaa′δbb′ − δab′δa′b) +
Nc − 1

4Nc

(δaa′δbb′ + δab′δa′b). (1.2)

The first antisymmetric term in Eq. (1.2) corresponds to the attractive antitriplet

channel, while the second symmetric term corresponds to the repulsive sextet chan-

nel. It was found that Cooper pairing in the symmetric sextet channel does not break

any additional symmetries and is still induced, but remains much weaker than that in

the antisymmetric antitriplet channel [55, 62, 71, 72]. Therefore, the contribution of

this subdominant pairing is generally neglected in most considerations. It should be

noted that the antisymmetric channel is also the most attractive channel for quarks

interacting via the instanton-induced ’t Hooft interaction, which is important at lower

densities [40, 41].

Next, as we know, a conventional BCS condensate of Cooper pairing is

a spin singlet, with a total zero momentum (two quarks with equal and opposite

momentum). It is the simplest spin structure for the pattern of Cooper pairing,

which is realized in the case of the CFL and 2SC superconducting phases. There-

fore, for these two phases, the Dirac structure ψTCγ5ψ is introduced, which is a

Lorentz scalar and corresponds to parity-even spin-singlet pairing. A scalar con-

densate is favorable because it leaves rotational invariance unbroken and its pair-
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ing is stronger, compared with the channels that break rotational symmetry [39, 55,

73, 74, 75, 76]. As for a similar spin-0 condensate ψTCψ without γ5, it is a pseu-

doscalar with negative parity, which is disfavored in QCD because of the instanton

effects [41, 55, 77].

Since the condensate is required to be antisymmetric in color and in Dirac

indices, it should be antisymmetric in flavor indices to be in agreement with the

Fermi-Dirac statistics and the Pauli exclusion principle. Therefore, the most general

color-flavor-Dirac structure for the CFL and 2SC phases is

⟨ψa
i Cγ

5ψb
j⟩ ∝ γ5ϵabAϵijBϕ

A
B∆, (1.3)

where the Dirac structure is unambiguously fixed by demanding a positive-parity

state. Let us now discuss the color-flavor structure in the following. However, be-

cause of the number of the quark flavors participating in pairing, they have obviously

different pairing patterns and properties. And in the next sections we will discuss

them separately.

In addition to the symmetry properties indicated by color-flavor structures,

another important feature of color superconductivity in dense quark matter is the

appearance of a non-zero energy gap in the quark quasiparticle spectrum. The

corresponding expression for the energy reads

εk =
√

(Ek − µ)2 +∆2, (1.4)

where k and ∆ are the momentum and the gap in the quasiparticle energy, re-

spectively, and Ek =
√
k2 +m2 with k = |k|. The presence of the gap in the

energy spectrum should affect transport and thermodynamic properties. For ex-

ample, conductivities, viscosities, neutrino emissivity and specific heat are sup-

pressed by the exponentially small factor exp(−∆/T ) at small temperature, T ≪

∆ [78, 79, 80, 81, 82, 83].
10



In general, different patterns of color superconductivity have different prop-

erties and lead to different effects in neutron stars. So it is of great phenomenolog-

ical interest to perform a systematic study to sort through all possible phases and

investigate their properties. Then, by comparing with observable astrophysical sig-

natures, we can decide which specific color-superconducting phases are favored or

disfavored empirically.

In the following, the properties of two simplest pairing patterns, the CFL and

2SC phases, will be reviewed in more detail.

1.4 CFL Phase

The CFL pairing pattern [55], corresponding to ϕA
B = δAB in Eq. (1.3), is given by

⟨ψa
i Cγ

5ψb
j⟩ ∝ ∆CFLϵ

abAϵijAγ
5. (1.5)

It is antisymmetric in color and flavor indices, which both run from 1 to 3. This is the

only pattern that pairs all three colors and all three flavors on equal footing to form

conventional zero-momentum spinless Cooper pairs at ultrahigh densities, where

the effects of the strange quark mass can be neglected and thus the up, down, and

strange quarks can be treated equally. Note that the subdominant term from an

induced Cooper pairing, which is symmetric in color and flavor indices, is ignored in

Eq. (1.5). Its inclusion, however, does not affect any qualitative features of the CFL

phase.

To large extent, the symmetry breaking pattern for the CFL phase is deter-

mined by the color and flavor structure of the diquark condensate of Cooper pairs

in Eq. (1.5). We find that the symmetry of QCD Lagrangian density is broken as

follows:

SU(3)c × SU(3)L × SU(3)R × U(1)B → SU(3)c+L+R × Z2. (1.6)

11



With all quarks assumed to be massless, the QCD Lagrangian density possesses

the global SU(3)L × SU(3)R chiral symmetry and the global U(1)B symmetry con-

nected with the baryon number conservation. In the presence of the CFL pairing,

the condensate breaks the SU(3)c color gauge symmetry and SU(3)L × SU(3)R

chiral symmetry, leaving only the diagonal subgroup SU(3)c+L+R unbroken. Be-

cause of the contraction over a common index A in Eq. (1.5), which is connecting

color and flavor indices, the condensate is not invariant under color rotations, nor

under flavor rotations, but only under simultaneous, equal and opposite, color and

flavor rotations. The CFL condensate pairs left-handed quarks with each other

only and right-handed quarks with each other only. The color and chiral symme-

tries are broken by locking of color and flavor rotations to each other for these two

separate condensates. This mechanism is called locking, and the corresponding

phase of matter is called color-flavor-locked (CFL) phase [55]. It is quite different

from the quark-antiquark condensate that breaks chiral symmetry in the vacuum

by pairing left-handed quarks with right-handed antiquarks. The matrix of electric

charges Qf = diag(2/3,−1/3,−1/3) in flavor space is one of the generators of

SU(3)L × SU(3)R group, which generates the U(1)em gauge symmetry. In the CFL

ground state, there is also a gauged generator Q̃, which corresponds to an unbro-

ken Ũ(1)em gauge symmetry. Its transformations consist of simultaneous electro-

magnetic and color rotations. The unbroken rotated photon Ãµ, which is a linear

combination of the original photon Aµ, the 3th gluon A3
µ and the 8th gluon A8

µ, i.e.,

Ãµ =
gAµ−eA3

µ− e√
3
A8

µ√
g2+ 4e2

3

[84, 85], remains massless, and thus experiences no Meiss-

ner effect. Here, e and g are the QED and QCD couplings. The rest of the gluons

and the orthogonal gluon-photon combination become massive as a result of the

color Meissner effect. This is quite different from the conventional superconducting

metals, where photons become massive due to electromagnetic Meissner effect

and are expelled by a superconductor. Since the corresponding generator of the
12



rotated charge Q̃ remains unbroken, every diquark in the condensate should have

Q̃ = 0. The explicit expression for Q̃ in the CFL phase reads

Q̃ = Qf ⊗ Ic − If ⊗ (T3)c − If ⊗ (
T8√
3
)c, (1.7)

where T3 and T8 are the 3th and 8th generators of SU(3)c gauge group in the adjoint

representation. In units of ẽ = eg√
g2+ 4e2

3

, the Q̃ charges of quarks in the CFL phase

are given in Table 1.1.

Table 1.1: Q̃ charges of quarks in the CFL phase.

ur ug ub dr dg db sr sg sb
0 +1 +1 -1 0 0 -1 0 0

By evaluating the color-flavor structure of the condensate explicitly for the

CFL phase, in such a ground state with the SU(3)c+L+R symmetry, the original nine

quark states give rise to a singlet and an octet of quasiparticles. The gap matrix

can be rewritten as follows [55, 62, 63]

∆ij
ab = iγ5

[
1

3
(∆1 +∆2)δ

i
aδ

j
b −∆2δ

i
bδ

j
a

]
, (1.8)

where ∆1 is the gap of the singlet Cooper pair, while ∆2 is the gap of the octet

Cooper pairs. The octet condensates include ug-dr, db-sg, ub-sr pairs, as well as

two linear combinations of the pairs made of the three quarks ur, dg, and sb. The

singlet condensate is the remaining orthogonal combination of ur, dg, and sb. When

a small symmetric diquark condensate is neglected, one finds that ∆1 = 2∆2, i.e.,

the gap of the singlet is twice as large as the gap of the octet. Since all quasi-

particles are gapped in the diquark condensates with zero net Q̃ charge, the CFL

phase is a transparent insulator at sufficiently low temperature [86, 87]. At small

temperatures its electrical conductivity is dominated by thermally excited electrons

and positrons [86].
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It appears that the CFL pairing condensate spontaneously breaks the ex-

act global U(1)B baryon number symmetry, leaving only a discrete Z2 symmetry.

According to the Goldstone theorem, the breaking of baryon number symmetry will

result in the appearance of a massless Goldstone boson that makes the CFL phase

a superfluid [88]. As a consequence, if the CFL quark matter appears in a core of

a rotating compact star, it will be threaded with rotational vortices, which have been

studied in Refs. [89, 90, 91, 92].

After briefly discussing the symmetry breaking and properties associated

with the color-flavor structure, one important feature of the CFL phase left out is the

gap parameter, which can be determined analytically by solving the gap equation at

asymptotic densities. This is discussed in detail in the Appendix A, where explicit

derivation of the gap equation and the calculation of gap parameter in the 2SC

phase are given. Similar results are also valid for the gaps in the CFL phase [62,

63, 64].

1.5 2SC Phase

Now, let us turn to the discussion of the properties of the 2SC phase. This is a

color-superconducting phase with Cooper pairs including only up and down quarks.

By taking ϕA
B = δA3 δ

3
B in Eq. (1.3), the color-flavor-Dirac structure of the 2SC phase

is given by

⟨ψa
i Cγ

5ψb
j⟩ ∝ ∆2SCϵ

ab3ϵij3γ
5. (1.9)

From the structure in Eq. (1.9), we can find that only quarks with two (red and

green) out of three colors participate in the Copper pairing of the 2SC phase, while

quarks with the third (blue) color are unpaired. In other words, the original six

quark states give rise to two doublets of gapped quasiparticles and two unpaired

quasiparticles (singlets with respect to the SU(2)c unbroken gauge group). The

14



Copper pair condensates involve the combinations of ur-dg and ug-dr only. It should

be noted that the color indices in Eq. (1.9) may have an arbitrary orientation in

the color space, since it can be changed by the global color transformations. We

choose the condensate to point to in the third (blue) color direction by convention.

Based on the color-flavor structure for the 2SC phase, the corresponding symmetry

breaking pattern is

SU(3)c × U(1)B → SU(2)c × U(1)B̃. (1.10)

If the masses of up and down quarks are neglected, the global SU(2)L × SU(2)R

chiral symmetry present in two-flavor QCD is not broken in the 2SC phase. As a

consequence of the condensate pointing in the antiblue color direction, see Eq. (1.9),

the color SU(3)c gauge symmetry is broken down to the SU(2)c color gauge sub-

group. Therefore, five out of total eight gluons of SU(3)c gauge group become

massive due to the Meissner effect, while the other three gluons, corresponding to

the unbroken SU(2)c gauge group, remain massless. Although the original U(1)B

baryon number symmetry in vacuum is broken in the 2SC phase, a new rotated

U(1)B̃ baryon number symmetry in medium remains unbroken. This means that

the quark matter in the 2SC phase, unlike the CFL phase, is not superfluid. The

corresponding generator B̃ of the baryon number symmetry, is a linear combination

of the original baryon number B and the broken 8th gluon generator T8 of SU(3)c

color gauge group. Its explicit form reads

B̃ = B − 2√
3
T8. (1.11)

As is easy to check, the red and green quasiparticles participating in Cooper pairing

carry zero baryon number, while the blue unpaired ones carry a non-zero value.

Similar to the CFL phase, there is an unbroken Ũ(1)em gauge symmetry

in 2SC phase too. The corresponding rotated electromagnetic gauge field Ãµ
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is a linear combination of the vacuum photon Aµ and the 8th gluon A8
µ: Ãµ =

cos θ Aµ − sin θ A8
µ, where cos θ = g/

√
g2 + e2/3 [84, 85]. Since e ≪ g, the an-

gle θ is close to zero, meaning that the rotated photon Ãµ is mostly the original

photon Aµ with a small admixture of gluon A8
µ. Although both the vacuum pho-

ton Aµ and the 8th gluons A8
µ become massive via the Meissner effect because of

the Higgs mechanism, the rotated photon Ãµ is not subject to the electromagnetic

Meissner effect and stays massless. The orthogonal gluon-photon combination,

Ã8
µ = sin θ Aµ +cos θ A8

µ, which underlies the color Meissner effect, is still massive.

The unbroken charge generator Q̃ for the 2SC phase is defined as follows:

Q̃ = Qf ⊗ Ic − If ⊗ (
T8√
3
)c, (1.12)

where Qf = diag(2/3,−1/3) is the matrix of electromagnetic charges of u and d

quarks in flavor space. Thus, by using Eq. (1.12), we can easily find the Q̃ charges

for quasiparticles in the 2SC phase (see Table 1.2), in units of ẽ = e cos θ.

Table 1.2: Q̃ charges of quarks in the 2SC phase.

ur ug ub dr dg db
+1

2
+1

2
+1 −1

2
−1

2
0

The situation in 2SC phase is not exactly the same as the CFL phase with

respect to the Ũ(1)em gauge symmetry. Because of the presence of the unpaired

blue quarks with non-zero Q̃ charge, the 2SC phase is a conductor, not an insulator.

In addition, if unpaired massive strange quarks are also included in the 2SC phase,

an additional approximate U(1)S global symmetry can be introduced [54], which is

unbroken by the 2SC pairing.

After investigating the symmetry properties, determined by the color-flavor

structure of the condensate, we turn to the discussion of the properties related to
16



the gap parameter ∆. As we have mentioned in the last section, the magnitude

of the gap can be obtained rigorously from first principles for the 2SC and CFL

phases at asymptotic densities by making use of the self-consistent gap equation.

Conventionally, the gap equation is derived in the framework of the Schwinger-

Dyson equation, and usually the derivation of explicit expressions for the quark and

gluon propagators is needed before solving it. All such derivations are presented in

Appendix A and the solution for the gap parameter is also given.

1.6 Neutrality, β Equilibrium and Mass Effects

In the above sections, we have discussed the main properties of two simplest pos-

sible color-superconducting phases in cold and dense quark matter. It should be

emphasized, that the above arguments for the formation of quark Cooper pairs are

based on one idealized assumption that the pairing quarks have same chemical

potentials. It may be a good assumption at the asymptotically large densities. How-

ever, this is not the real situation that can be realized in the interior of the neutron

stars, where n . 10n0, and the value of the quark chemical potential cannot be

much larger than 500 MeV. At such moderate densities, it is found that the quark

mass, combined with β equilibrium and neutrality requirements, may modify the

quark chemical potentials for different quark colors and flavors. Consequently, an

extra energy cost (“stress”) will be imposed on the formation of Cooper pairs.

Here, to explain this effect, we discuss a simplified example: two massless

species of quarks, labeled 1 and 2, have different chemical potentials µ1 and µ2.

Let the gap parameter associated with Cooper pairing be ∆. We define the average

chemical potential and the mismatch parameter as

µ̄ =
µ1 + µ2

2
,

δµ =
µ1 − µ2

2
. (1.13)
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The quasiparticle dispersion relation in the corresponding color-superconducting

phase is given by [93, 94],

εk = |
√
(k − µ̄)2 +∆2 ± δµ|. (1.14)

For δµ < ∆, pairing between species 1 and 2 leads to a gapped energy spectrum.

A qualitative change appears at δµ = ∆, where the spectrum becomes gapless at

momentum k = µ̄. For δµ > ∆, the dispersion relations become gapless at the two

values of momenta

k± = µ̄±
√
δµ2 −∆2. (1.15)

It means that there are quasiparticles with vanishingly small energies on two spheres

in momentum space. In this case, due to the difference of quark chemical potentials

for pairing quarks, the formation of Cooper pairs may be substantially modified, or

even prevented, and thus the properties of quark matter can be influenced. Below,

we discuss in detail how neutrality, β equilibrium and nonequal quark masses affect

the Cooper pairing in the quark matter.

Neutrality Constraints

First, let us discuss the effect of charge neutrality on color superconductivity. From

general considerations, stable matter in the bulk must be neutral under all gauged

charges, whether they are spontaneously broken or not. Otherwise, the net charge

density would create large fields, making the energy grow as a nonextensive quan-

tity. To avoid such a large energy price, the charge neutrality should be satisfied

with a very high precision.

For the electromagnetic gauge field, this simply requires zero electric charge

density (at least, on average), nQ = 0. But how does this condition make any con-

straint on quark matter? We can take a bulk of two-flavor quark matter, such as
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the 2SC phase, as an example. Since the magnitude of the positive charge of the

up quark (Qu =+2/3) is twice as large as that of the negative charge of the down

quark (Qd = -1/3), we can find that the number density of down quarks should

be approximately twice as large as number density of up quarks when consider-

ing no electrons, nd ≈ 2nu. It is derived from charge neutrality straightforwardly,

nQ = Qunu+Qdnd ≈ 0. This then requires that µd ≈ 21/3µu, i.e., µd is considerably

larger than µu. Adding electrons (as required by β equilibrium, see the next sub-

section) changes the relation slightly, but the qualitative result will be approximately

the same.

Similarly, the color charge neutrality should be imposed. The correct for-

mal requirement concerning the color charge of a large lump of matter is that it

should be a color singlet because of the color confinement in the real world. It

means a state invariant under a general color gauge transformation. However, in

phenomenological models, it is sufficient for us to impose color neutrality, meaning

equality in the numbers of red, green, and blue quarks, which is a less stringent

constraint compared with the requirement of a color singlet. Usually, there exist two

mutually commuting color charges Q3 and Q8 for the quark matter, which are relat-

ed to the generators T3 and T8 of the SU(3)c gauge group. So we need to impose

the charge densities of Q3 and Q8 to be zero, n3 = n8 = 0.

Generally speaking, in order to enforce the color and electric neutrality in the

theoretical study of the color-superconducting ground state, for example, in the NJL

model, one could introduce an electron chemical potential µe and two independent

chemical potentials for the corresponding two color charges µ3 and µ8 by hand, and

then find the extremum of the thermodynamic potential Ω (or “free energy”) with

respect to these chemical potentials. This is implemented as follows. The common

quark chemical potential µ in the Lagrangian density is replaced by a chemical

19



potential matrix µ̂ for different quarks in color-flavor space, e.g., see Eq. (2.3) below.

The corresponding neutrality conditions are

nQ =
∂Ω

∂µe

= 0,

n3 = − ∂Ω

∂µ3

= 0,

n8 = − ∂Ω

∂µ8

= 0. (1.16)

Making use of these color and electric charge neutrality conditions, the values of

µe, µ3 and µ8 can be obtained. Different color and flavor quarks will generally have

non-equal chemical potentials.

β Equilibrium

It was mentioned that neutrino emission due to the β processes plays an important

role in the cooling of neutron stars. The matter in the bulk of a neutron star should

also remain in β equilibrium. It means that all β processes, such as d→ u+e−+ ν̄e

and u + e− → d + νe, should go with equal rates in both directions. Note that the

neutrinos are not in equilibrium because they have large mean free path and leave

the star after been produced. Consequently, the chemical potentials of different

quarks must satisfy some relations and give rise to some mismatch. For example,

in the case of two-flavor quark matter, the chemical potentials of the up quark and

the down quark, µu and µd, should satisfy the relation µd = µu + µe, where µe is

the chemical potential of electrons. It is clear that the chemical potential mismatch

for up and down quarks is δµ = µd−µu

2
= µe

2
. As we have discussed above, the

introduction of µe is required for enforcing electric charge neutrality in the color-

superconducting ground state. Therefore, when the charge neutrality and the β

equilibrium in two-flavor quark matter are enforced, a stress on the formation of

Cooper pairs is imposed. In turn, additional complications arise for Cooper pairing.

For example, if δµ > ∆, the ground state of two-flavor quark matter is given by so
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called gapless 2SC phase (g2SC), not 2SC phase, whose properties in the low-

energy region are similar to those in the normal phase. For more details about

g2SC phase, see Refs. [93, 94].

Quark Mass Effects

At intermediate densities, when the mass of strange quark cannot be neglected,

we extend the above arguments to include the leading effects of nonequal quark

masses. It is found that the difference in the masses of the pairing quarks gives

rise to different Fermi momenta even when the chemical potentials are the same.

This, in turn, results in different effective chemical potentials for quarks. Thus,

again a stress on the BCS pairing could arise. As we know, the current masses mu

and md of the light up and down quarks are of the order of about 5 MeV, and the

current mass ms of the strange quark is approximately 90 MeV. In the vacuum, the

constituent quark masses of up and down are about 300 MeV, while the constituent

strange quark mass is of the order of 500 MeV. However, the constituent quark

masses are expected to decrease with increasing quark density. Therefore, most

likely, the actual medium-modified values of quark masses in dense matter should

be in the range between the current masses and the constituent quark masses, i.e.,

between about 5 MeV and 300 MeV for up and down quarks, and between about 90

MeV and 500 MeV for strange quarks. Consequently, the mass of strange quarkMs

at the densities in the neutron stars, where the typical value of the quark chemical

potential, µ ≃ 500 MeV, is not negligible and is much larger than the masses of up

and down quarks, Mu and Md. (Here we denote the density-dependent constituent

masses as Mu, Md and Ms). In application to quark matter, the effect of the strange

quark mass can lead to a reduction of the strange Fermi momentum,

ksF =
√
µ2 −M2

s ≃ µ− M2
s

2µ
. (1.17)
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We see that the strange quark mass leads to a reduction in the quark chemical

potential by a value of M2
s

2µ
. We can write this as µeff

s = µ − M2
s

2µ
, when µe, µ3 and

µ8 are ignored. This quantity plays the role of a mismatch parameter in three flavor

quark matter, which is similar to δµ = µe

2
in two-flavor quark matter. For the same

reason, this mismatch should interfere with Cooper pairing between strange and

non-strange quarks. And it was shown in Ref. [95] that the CFL phase becomes

gapless when δµ = M2
s

2µ
> ∆, which is the so-called gCFL phase. Moreover, the

stress arising from the strange quark mass will become more severe as the quark

density (or the quark chemical potential µ) decreases, since the constituent mass

of the strange quark will increase at the same time.

1.7 Color Superconductivity in Neutron Stars

As we have mentioned in Sec. 1.1, the central regions of a neutron star may be the

only places allowing for color-superconducting quark matter. However, at present

we have not observed anything that unambiguously suggests the existence of the

color-superconducting phases in the cores of neutron stars. We cannot prove or

discard its existence. Therefore, it is of great phenomenological interest to find out

whether color superconductivity exists in the interior of neutron stars or not, and

if it exists, what kind of color-superconducting phases or mixed phases with sever-

al color-superconducting components are favored at realistic neutron star densities.

To this end, we need to explore theoretically all possible color-superconducting pha-

ses and their properties in detail. Then, we also need to understand their possible

effects on the astrophysical observables from neutron stars. Finally, by comparing

with the actual astrophysical observations, we can try to confirm or rule out the

presence of color-superconducting phases in nature.

Before turning to the astrophysical signatures of quark matter in neutron star

cores, we need to know physical properties extracted from experimental observa-
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tions. These include the mass, radius, surface and/or interior temperature, rotation

period and magnetic field. All these quantities of the neutron stars can be deduced

by analyzing the spectra and frequency of the radiation pulses. And these charac-

teristics could impose constraints on the properties of quark-matter phases.

The typical values for mass and radius have been quoted above in Sec. 1.1,

and the measurement of them for many neutron stars has been made for a long

time. The “mass-radius relation” gained from known neutron star data would yield

a strong constraint on the equation of state of dense matter and, therefore, it is a

good starting point to explore the quark-matter equation of state. Currently, model-

parametric representations of the equation of state of dense quark matter are avail-

able for some color-superconducting phases, for example, the CFL phase [96] and

the 2SC phase [97, 79, 98]. Under certain conditions, color superconductivity may

have a large effect on the phase transition from nuclear matter to quark matter [99]

and even on the properties of neutron stars [73]. Besides, such equations of state

are the key input in the Tolman-Oppenheimer-Volkoff equations [100, 101] which de-

termine the interior structure of compact stars. The presence of the gap parameter

∆ arising from color superconductivity in those equations may modify theoretical

predictions for the mass-radius relations. A recent precise measurement for the

neutron star PSR J1614.2230 [102], yielded a mass of 1.97 ± 0.04M⊙ (M⊙, solar

mass). This is known be the highest value of neutron stars so far [24]. Such a high

mass value imposes strong constraints on the properties of quark matter in the inte-

riors of neutron stars, but does not exclude the possibility altogether [103]. General

information about the temperature evolution of the neutron stars has been given in

Sec. 1.1. As suggested by Fig. 1.1, temperatures present in old neutron stars are

certainly lower than the estimated critical temperatures of color superconductors.

But how can one determine whether color-superconduting quark matter is favored
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and which color-superconduting phase is favored in the cores of neutron stars from

the measurement of temperatures? Actually, the cooling process of the neutron

stars is one of observational signatures that has the potential to differentiate var-

ious quark-matter phases. As we know, for neutron stars with ages ranging from

tens of seconds to millions of years, the loss of energy is dominated by neutrino

emission. Of course, generally, there is another factor related to the the decrease

of temperature in the neutron star, the specific heat. Thus, by the measurements

of the temperature and age of neutron stars, neutrino emissivity and specific heat

can be obtained. On the other hand, different patterns of color-superconduting pha-

ses break different symmetries of the underlying theory, leading to different rates

of neutrino emission and the specific heat, which are also different from the normal

quark-matter phase. Consequently, the cooling rate of the neutron stars gives rise

to the possibility to distinguish one phase from another. For example, as we have

mentioned in previous sections, at small temperatures, the gapless quasiparticles

in the 2SC phase, blue up and blue down quarks, give dominant contributions to the

specific heat, as well as to the electrical and heat conductivities. Also, the presence

of these ungapped quasiparticles should result in a large neutrino emissivity due to

the β-processes. As for the gapped quarks with red and green colors, because of

the presence of the gap ∆ in the dispersion relations, the contributions of these

gapped quasiparticles to transport and thermodynamic properties are suppressed

by the exponentially small factor exp(−∆/T ). This means the cooling rate of the

2SC phase is dominated by unpaired quarks. Meanwhile, for the CFL phase, in

which all quark quasiparticles are gapped, their contributions to the cooling pro-

cess are suppressed for the same reason. The Goldstone bosons, arising from the

breaking of the U(1)B baryon number symmetry and the chiral symmetry breaking,

turn out to play an important role in neutrino emissivity and specific heat [104, 105].

And these quantities are many orders of magnitude smaller than those by unpaired
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quarks, for example, the blue up and blue down quarks in the 2SC phases. This

means that if a neutron star has a CFL core, the core holds little heat and emits few

neutrinos, but is a good heat conductor (actually, all forms of dense matter are good

heat conductors [79]) and so stays at the same temperature as the rest of the star.

The rest of the star controls how the star cools. Obviously, this shows a difference

between CFL quark matter and other color-superconducting phases.

Another important applicable astrophysical signature is associated with the

rotation periods of the neutron stars. Neutron stars rotate extremely rapidly after

their creation due to the conservation of angular momentum. Their rotation periods

are between about 1 ms to 10 seconds [29]. Over time, neutron stars slow down

because their rotating magnetic fields radiate energy. It is very interesting that ob-

servations have shown that the spinning-down of the star is interrupted by sudden

spin-ups, called glitches. One possible explanation in Ref. [106] is that it may be

related to the presence of a superfluid matter in some region of the neutron star.

Briefly speaking, if a superfluid appears in a core of a rotating star, it will be thread-

ed with rotational vortices. And then the glitches may be caused by occasional

releasing of the angular momentum of rotational vortices, that remained pinned to

the stellar crust. This may be the case for the CFL phase, as we have discussed in

Sec. 1.4, which is a superfluid because of the breaking of baryon number symmetry.

Finally, we turn to the magnetic field of the neutron stars. From indirect

measurements, the surface magnetic fields can reach up to about B ≃ 1012 G [107,

108, 109]. For magnetars, the corresponding fields can be still a few orders of

magnitude larger, i.e., B ∼ 1014 − 1015 G, and perhaps even as high as 1016 G

[110]. Furthermore, it is possible that the magnetic field in the stellar interiors are

much higher and reach up to about B ∼ 1018 G [107, 108, 109, 111]. Recently,

the study of color superconductivity in the presence of magnetic fields attracted a
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lot of attention [112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. This interest is

primarily driven by potential astrophysical applications, where magnetic fields play

an important role. In the following main text of this thesis, we will concentrate on

study of the properties of color superconductivity in magnetic fields, and especially,

try to investigate how the magnetic fields modify the gap parameter of the 2SC

phase.
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CHAPTER 2

COLOR SUPERCONDUCTIVITY IN MAGNETIC FIELD

2.1 Introduction

In order to understand the properties of two- and three-flavor color-superconducting

phases with spin-zero pairing in a magnetic field, it is important to first recall their

electromagnetic properties. Despite being color superconductors, these phases

can be penetrated by long-range “rotated” magnetic fields, which are not subject

to the Meissner effect [84, 85]. The rotated gauge fields are linear combinations

of the vacuum photon and one of the gluons. While all Cooper pairs are neutral

with respect to the corresponding “rotated” electromagnetism, the individual quark

quasiparticles carry well defined charges. It is not surprising, therefore, that the

diquark pairing dynamics is affected by the presence of a magnetic field. The recent

studies revealed many interesting qualitative features of the magnetic 2SC and CFL

phases [112, 113, 114, 115, 116, 117, 118]. However, all such studies share a

common shortcoming: they are performed in the framework of Nambu-Jona-Lasinio

(NJL) models with contact interactions.

In this work we extend the analysis of two-flavor color superconductivity in

a magnetic field by taking into account the long-range interaction in quark mat-

ter [122]. In particular, we perform the study in the framework of the Schwinger-

Dyson equation for the gap function in the weakly-coupled regime of QCD at large

densities. The long-range interaction is provided by the one-gluon exchange, in

which the dominant screening and Landau damping effects are included. Our study

reveals a qualitatively new feature of the magnetic 2SC phase, a directional depen-

dence of the gap function, which is a consequence of the nonlocal interaction in the

quark matter.
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In the weak magnetic field limit, we find that the effect of a nonzero field can

be mimicked by an effective increase of the strong coupling constant that governs

the Cooper pairing dynamics: g2 → g2(1 + ϵ sin2 θBk), where θBk is the angle be-

tween the quasiparticle momentum and the direction of the magnetic field, and the

dimensionless quantity ϵ is a measure of ellipticity of the gap function. The latter

is given by the dimensionless ratio ϵ = 27π(eB)2/(2g2µ̄4), where B is the magnet-

ic field and µ̄ is the quark chemical potential. As one can easily check, this ratio

is much less than 1 even for the strongest possible fields in stars and, therefore,

the use of the weak magnetic field limit is justified for all stellar applications. For

completeness, we extend our analysis to the case of superstrong magnetic fields

and find that the value of the gap increases with the field also in this regime. As

expected on general grounds, the effects of non-locality of the interaction become

negligible in superstrong fields and the directional dependence of the gap disap-

pears. It should be remarked, however, that our analysis in the case of strong fields

is performed with less rigor because the gluon screening effects in this case are not

well known.

2.2 Model

As stated in Introduction, the analysis in this study is done in the framework of

weakly-interacting two-flavor QCD at large densities. The quadratic part of the cor-

responding Lagrangian density of quarks in an external rotated magnetic field is

given by

Lem
quarks = ψ̄

(
iγµ∂µ −m+ µ̂γ0 + ẽγµÃµQ̃

)
ψ, (2.1)

where Ãµ is the rotated massless Ũ(1)em gauge field. This field is a linear combi-

nation of the vacuum photon Aµ and the 8th gluon A8
µ as we discussed in Sec. 1.5.

The quarks carry flavor and color indices ψia, where i ∈ (u, d) = (1, 2) is the flavor
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index and a ∈ (r, g, b) = (1, 2, 3) is the color index. The multi-component quark

spinor field ψ is assumed to have the following explicit form:

ψ =



ψur

ψug

ψub

ψdr

ψdg

ψdb


. (2.2)

Here we assume that up and down quarks have the same masses (mu = md = m).

In the 2SC phase, the matrix of chemical potentials µ̂ can have a nontrivial color-

flavor structure. When β-equilibrium and neutrality of quark matter is imposed [93,

94], the matrix elements of µ̂ read

µij,ab = [µ δij − µe(Qf )ij] δab +
2√
3
µ8δij(T8)ab, (2.3)

where only one out of three parameters (µ, µe and µ8) is truly independent, while the

other two must be adjusted to achieve color and electric neutrality. For subtleties

regarding the color neutrality, see Ref. [123].

The explicit form of the quasiparticle charge operator Q̃, that corresponds to

Ũ(1)em gauge group, has been discussed in Sec. 1.5 and given by Eq. (1.12). In

units of ẽ = eg/
√
g2 + e2/3, the Q̃ charges of quarks are given in Table 1.2 (p.16).

In order to simplify the explicit form of the quark propagators in the magnetic

2SC phase, it is convenient to introduce the following set of projectors onto the

subspaces of quasiparticles with different values of rotated-charges [117, 118]:

Ω+ 1
2
= diag(1, 1, 0, 0, 0, 0), (2.4)

Ω+1 = diag(0, 0, 1, 0, 0, 0), (2.5)

Ω− 1
2
= diag(0, 0, 0, 1, 1, 0), (2.6)

Ω0 = diag(0, 0, 0, 0, 0, 1). (2.7)
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This is a complete set of projectors, satisfying the following relations:

ΩQ̃ΩQ̃′ = δQ̃Q̃′ΩQ̃, Q̃, Q̃′ = ±1/2,+1, 0. (2.8)

Ω+ 1
2
+ Ω+1 + Ω− 1

2
+ Ω0 = 1. (2.9)

By making use of these projectors, we can decompose the multi-component quark

spinor field into separate pieces, describing groups of quasiparticles with different

rotated charges:

ψ = ψ(+ 1
2
) + ψ(+1) + ψ(− 1

2
) + ψ(0), (2.10)

where, by definition,

ψ(+ 1
2
) = Ω+ 1

2
ψ, ψ(+1) = Ω+1ψ, ψ(− 1

2
) = Ω− 1

2
ψ, ψ(0) = Ω0ψ. (2.11)

In the new notation, the quadratic part of the quark Lagrangian density can be

rewritten as follows:

Lem
quarks =

∑
Q̃=±1/2,+1,0

ψ̄(Q̃)(iγ
µ∂µ −m+ µQ̃γ

0 + ẽQ̃γµÃµ)ψ(Q̃). (2.12)

As follows from Eq. (2.3), the chemical potentials µQ̃ for quasiparticles with different

Q̃-charges, when projected onto the relevant color-flavor subspaces, are given by

µ(+ 1
2
) = µur = µug = µ− 2

3
µe +

1

3
µ8, (2.13)

µ(− 1
2
) = µdr = µdg = µ+

1

3
µe +

1

3
µ8, (2.14)

µ(+1) = µub = µ− 2

3
µe −

2

3
µ8, (2.15)

µ(0) = µdb = µ+
1

3
µe −

2

3
µ8. (2.16)

In this study, in order to simplify the analysis of the gap equation we will eventually

neglect the effects due to nonzero µe and µ8. This is certainly justified in the study

of QCD at asymptotically large densities. On the other hand, if the analysis is to

be extrapolated to moderately large densities, relevant for compact stars, nonvan-

ishing µe and µ8 may become important [93, 94, 95, 124, 125, 126, 127, 128, 129,
30



130, 131]. One should keep in mind, however, that the study of such a moderate-

density quark matter from first principles will be still quantitatively unreliable within

the framework of the Schwinger-Dyson equation because of the strong-coupling

regime. As for the main purpose of this study, it aims only at a better understanding

of the qualitative role of long-range forces.

2.3 Quasiparticle Propagators

In the 2SC color-superconducting phase, only the quasiparticles with the charges

Q̃ = ±1
2

participate in Cooper pairing, while the remaining two quasiparticles (with

charges Q̃ = 0, 1) play the role of passive spectators. Therefore, in the rest of the

analysis, we will concentrate exclusively on the two pairs of quasiparticles partici-

pating in Cooper pairing and ignore the others.

As usual in studies of color-superconducting phases, it is convenient to in-

troduce the Nambu-Gorkov spinors,

Ψ̄(Q̃) = (ψ̄(Q̃), ψ̄
C
(−Q̃)

), Ψ(Q̃) =

 ψ(Q̃)

ψC
(−Q̃)

 , (2.17)

for quasiparticles with the charges Q̃ = ±1
2
. Here ψC

(Q̃)
= Cψ̄T

(Q̃)
and ψ̄C

(Q̃)
= ψT

(Q̃)
C

are the charge-conjugate spinors, and C = iγ2γ0 is the charge-conjugation matrix

satisfying the relations: C−1γµC = −(γµ)T and C = −CT . In terms of the Nambu-

Gorkov spinors, Lagrangian density (2.12) takes the form

Lem
quarks =

1

2

∑
Q̃=±1/2

Ψ̄(Q̃)S
−1

(Q̃),0
Ψ(Q̃) +

∑
Q̃=+1,0

ψ̄(Q̃)[G
+

(Q̃),0
]−1ψ(Q̃), (2.18)

where the inverse free propagator S−1

(Q̃),0
for each sector with a fixed value of Q̃-

charge has a block-diagonal form,

S−1

(Q̃),0
= diag

(
[G+

(Q̃),0
]−1, [G−

(Q̃),0
]−1
)
, (2.19)
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and the explicit form of the diagonal elements reads

[
G±

(Q̃),0

]−1

= γµ
(
i∂µ + Q̃ẽÃµ

)
± µ(Q̃)γ

0 −m. (2.20)

For quasiparticles participating in Cooper pairing, the full propagators also

have nonzero off-diagonal Nambu-Gorkov components, determined by the color-

superconducting gap function, i.e.,

S−1

(Q̃)
=

 [G+

(Q̃),0
]−1 ∆−

(Q̃)

∆+

(Q̃)
[G−

(Q̃),0
]−1

 . (2.21)

The color-flavor structures of ∆−
(Q̃)

and ∆+

(Q̃)
are given by

∆−
(+ 1

2
)

= −∆−
(− 1

2
)
=

 0 −iγ5∆

iγ5∆ 0

 , (2.22)

∆+
(+ 1

2
)

= −∆+
(− 1

2
)
=

 0 iγ5∆∗

−iγ5∆∗ 0

 . (2.23)

Note that the explicit forms of the two relevant Nambu-Gorkov spinors (A.1) read

Ψ(+ 1
2
) =


ψur

ψug

ψC
dr

ψC
dg

 , Ψ(− 1
2
) =


ψdr

ψdg

ψC
ur

ψC
ug

 . (2.24)

It appears that one can partially diagonalize the inverse full propagators S−1

(Q̃)
by

simply reordering the components of the spinors as follows:

Ψnew
(+ 1

2
)
=


ψur

ψC
dg

ψug

ψC
dr

 , Ψnew
(− 1

2
)
=


ψdr

ψC
ug

ψdg

ψC
ur

 . (2.25)
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From physics viewpoint, the possibility of such a partial diagonalization reflects the

fact that there are two different types of Cooper pairs: one made of red up and

green down quarks and the other made of green up and red down quarks.

In the new basis, the inverse full propagator S−1

(Q̃)
has the following block-

diagonal form:

S−1

(Q̃)
= diag

(
[SX

(Q̃)
]−1, [SY

(Q̃)
]−1
)
, (2.26)

where

[SX
(+ 1

2
)
]−1 =

 γµ(i∂µ +
1
2
ẽÃµ) + µurγ

0 −m −iγ5∆

−iγ5∆∗ γµ(i∂µ +
1
2
ẽÃµ)− µdgγ

0 −m

 ,

(2.27)

[SY
(+ 1

2
)
]−1 =

 γµ(i∂µ +
1
2
ẽÃµ) + µugγ

0 −m iγ5∆

iγ5∆∗ γµ(i∂µ +
1
2
ẽÃµ)− µdrγ

0 −m

 ,

(2.28)

and

[SX
(− 1

2
)
]−1 =

 γµ(i∂µ − 1
2
ẽÃµ) + µdrγ

0 −m iγ5∆

iγ5∆∗ γµ(i∂µ − 1
2
ẽÃµ)− µugγ

0 −m

 ,

(2.29)

[SY
(− 1

2
)
]−1 =

 γµ(i∂µ − 1
2
ẽÃµ) + µdgγ

0 −m −iγ5∆

−iγ5∆∗ γµ(i∂µ − 1
2
ẽÃµ)− µurγ

0 −m

 .

(2.30)

Using the representation for the inverse quasiparticle propagator in Eq. (2.26), we

find the propagator itself,

S(Q̃) = diag
(
SX
(Q̃)
, SY

(Q̃)

)
. (2.31)

The calculation of the corresponding diagonal blocks SX,Y

(Q̃)
is tedious, but straight-

forward. The details of derivation are presented in Appendix B.
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2.4 Gap Equation

In the coordinate space, the gap equation (i.e., the off-diagonal component of the

Schwinger-Dyson equation for the full propagator) reads

[
SX
(Q̃)

]−1

21
(u, u′) = ig2γµ

(
−TA

)T [
SX
(Q̃)

]
21
(u, u′)γνTBDAB

µν (u, u′), (2.32)

where Dµν(u, u
′) is the gluon propagator, and u ≡ (t, z, r⊥) is a four-vector of

space-time position. We will assume that the gluon propagator is diagonal in adjoint

color indices. Note that the off-diagonal component of the propagator SY
(Q̃)

satisfies

a similar equation. While Eq. (2.32) describes Cooper pairing of red up and green

down quarks, the equation for SY
(Q̃)

describes Cooper pairing of green up and red

down quarks.

In this study of Cooper pairing in a magnetized color-superconducting phase,

it is convenient to start from the coordinate-space representation of the gap equa-

tion, see Eq. (2.32), and then switch to the Landau-level representation. This is in

contrast to the usual momentum-space representation, often utilized in the case of

vanishing external fields.

In this connection, a short remark is in order regarding the general structure

of a quasiparticle propagator. Because of the interaction of charged quasiparticles

with the magnetic field, their momenta in the two spatial directions perpendicular to

the field are not well defined quantum numbers. This is reflected in the structure

of the propagator (as well as its inverse), which is not a translationally invariant

function in coordinate space. Instead, the quasiparticle propagator has the form of a

product of the universal Schwinger phase (which spoils the translational invariance)

and a translationally invariant part [132] (for details, see Appendix B.)
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After factoring out the same Schwinger phase on both sides of the gap e-

quation and projecting the resulting equation onto subspaces of different Landau

levels, one obtains an infinite set of coupled equations, see Eq. (C.6) in Appendix

C. For both charges Q̃ = ±1/2, the gap equations are similar. Here we show only

the final set of equations for Q̃ = +1/2:

∆mP− +∆m+1P+ = −i2g
2

3

∞∑
n=0

∫
dω′dk′3

(2π)2

∫
d2q⊥

(2π)2
γµ

∆nEn
Cn

[
L(0)

n,m

(
q2⊥l

2

2

)
P−

+L(0)
n−1,m

(
q2⊥l

2

2

)
P+

]
γνDµν(ω − ω′, k3 − k′3, q⊥), (2.33)

where m,n = 0, 1, 2, . . . are Landau-level indices, and functions Cn and En are

defined in Appendix B, see Eq. (B.16) and (B.20), respectively. These functions

depend on the parameters of the model (e.g., masses and chemical potentials of

quarks) as well as on the color-superconducting gap parameters ∆n. Note that the

gaps associated with different Landau levels are not necessarily equal. This fact is

emphasized by the Landau-level subscript n in the notation. Here and below, we

assume that all gaps ∆n are real functions.

Gluon Propagator

In dense quark matter, unlike in vacuum, the gluon exchange interaction is par-

tially screened. Therefore, when analyzing the Cooper pairing dynamics between

quarks, it is very important to take the relevant screening effects due to nonzero

density into consideration [56]. In the problem at hand, in addition, one should

account for the external magnetic field, which can further modify the screening of

the one-gluon interaction through quark loops. The latter can be quite important in

strong magnetic fields [133]. To simplify the analysis in this study, we will assume

that the magnetic field is weak (|eB| ≪ µ2). At the end, we shall see that this

happens to be a very good approximation for most stellar applications.
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In the case of a weak external field, the screening of the one-gluon interac-

tion in dense medium can be described well by the usual hard-dense loop approx-

imation [134, 135, 136]. In the Coulomb gauge, the Lorentz structure of the gluon

propagator is given by [137, 138]

Dµν(Q) = −Q
2

q2
δµ0δν0
Q2 − F

−
P T
µν

Q2 −G
, (2.34)

where functions F and G define the spectra of the longitudinal and transverse glu-

ons, respectively. Both functions depend on the energy q0 and the absolute value

of the three-momentum |q⃗|. By definition, Q = (q0, q⃗) is a momentum four-vector.

The transverse Lorentz projector P T
µν is defined as follows:

P T
00 = P T

0i = 0, P T
ij = δij − q̂iq̂j. (2.35)

In the most important regime for Cooper pairing dynamics, q0 ≪ |q⃗| ≪ mD, the

approximate expressions for these screening functions read [134, 135, 136]

F ≃ m2
D, G ≃ π

4
m2

D

q0

|q⃗|
, (2.36)

where m2
D = (gµ/π)2 is the Debye screening mass in two-flavor quark matter.

At large densities, the exchange interaction by electric gluon modes is strongly

suppressed due to Debye screening and, to leading order, plays no role. Magnetic

gluon modes, on the other hand, are subject only to a mild dynamical screening

(Landau damping) at nonzero frequencies and play the dominant role in Cooper

pairing [56].

Gap Equation: Weak Magnetic Field Limit

In order to obtain the gap equation in the weak magnetic field limit, we expand the

translationally invariant part of the full fermion propagator in powers of the magnetic

field and keep the leading terms up to second order, (ẽQ̃B̃)2 (for details, see Ap-

pendix D and E. Omitting the technical details, here we present the final form of the
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gap equation,

∆(ω) = T (0)(ω) + T (1)(ω) + T (2)(ω), (2.37)

where

T (i)(ω) = −i2g
2

3

∫
dω′

2π

∫
d3k′

(2π)3
∆(ω′)γµK(i)(ω′,k′)γνDµν(ω − ω′,k− k′) (2.38)

is the contribution of the ith order in powers of the magnetic field. The explicit form

of the kernels K(i)(ω,k) for the three leading-order terms in the gap equation are

presented in Eqs. (D.22), (D.23) and (D.24) in Appendix D.

At zero magnetic field, Eq. (2.37) reduces to the well known gap equation in

the 2SC phase without a magnetic field [56, 57, 58, 59, 60, 61, 62, 63, 64, 139, 140].

After switching to Euclidean space and performing the traces on both sides of the

gap equation, we rederive the following 0th order (i.e., vanishing magnetic field)

equation:

∆(0)(ωE) =
g2

3

∫
dω′

E

(2π)

∫
d3k′

(2π)3
∆(0)(ω′

E)

(ω′
E)

2 + (k′ − µ̄)2 + [∆(0)(ω′
E)]

2

×
[

1

(ωE − ω′
E)

2 + |k − k′|2 +m2
D

+
2|k − k′|

|k − k′|3 + ω3
l

]
, (2.39)

where k = |k|, k′ = |k′|, ωE = iω, ω′
E = iω′ and ω3

l = (π/4)m2
D|ω′

E − ωE|. For

simplicity, here we assumed that m = 0 and that the chemical potentials of all

quarks are identical and equal to µ̄.

After performing the integration over k′ and keeping only the leading-order

contributions from the dynamically-screened magnetic gluon exchange, we arrive

at

∆(0)(ωE) =
g2

36π2

∫ ∞

−∞
dω′

E

∆(0)(ω′
E)√

(ω′
E)

2 + (∆(0))2
ln

Λ

|ω′
E − ωE|

, (2.40)

where Λ = 4(2µ)3/(πm2
D). The approximate solution to this equation reads [56,

57, 58, 59, 60, 61, 62, 63, 64, 139, 140]

∆(0) ≃ Λexp(− 3π2

√
2g

+ 1). (2.41)
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For completeness of the presentation, the derivation of this result is reviewed in

Appendix A. Using this result as a benchmark, let us proceed to the case of a weak

but nonzero magnetic field.

It is easy to check (and might have been expected from the symmetry ar-

guments) that the first order term, i.e., T (1)(ω) in Eq. (2.38), which is linear in a

magnetic field, vanishes after the Dirac traces are performed. Thus, the leading

correction to the gap equation in a weak magnetic field comes from the second

order term, i.e., T (2)(ω) in Eq. (2.38).

To the same leading order in coupling, which includes only the exchange

interaction due to dynamically-screened magnetic gluons, we derive the following

explicit form of the gap equation (for the details of derivation, see Appendix E) :

∆(B)(ωE) =
g2

36π2

∫ ∞

−∞
dω′

E∆
(B)(ω′

E)

[
1√

(ω′
E)

2 + (∆(B))2
ln

Λ

|ω′
E − ωE|

+

+
9ω15

l (ẽQ̃B̃)2 sin2 θBk

4µ̄2
(
ω6
l + [(ω′

E)
2 + (∆(B))2]

3
)3 ln ωl

|ω′
E − ωE|

]
. (2.42)

The detailed analysis of this equation may not be very easy. However, several of its

qualitative properties are obvious right away. First of all, the positive sign of the sub-

leading order correction, proportional to (ẽQ̃B̃)2, indicates that the gap increases

with the magnetic field. This is in qualitative agreement with the intuitive expectation

that the external magnetic field should enhance the binding energy of Cooper pairs

made of quasiparticles with opposite charges [112, 113, 114, 115, 116, 117, 118].

From the fact that this correction to the gap equation is also proportional to sin2 θBk,

where θBk is the angle between the quasiparticle momentum and the magnetic

field, we conclude that the gap function acquires a directional dependence. More-

over, we see that the largest value of the gap will be for quasiparticles with the

momenta perpendicular to the magnetic field. On the other hand, for quasiparticles

with the momenta parallel to the field, there is no enhancement of the gap at all.
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In order to understand the qualitative effect of the subleading term quadratic

in magnetic field, we can perform the following semi-rigorous analysis of Eq. (2.42).

To this end, let us cut the infrared region of integration off at ω′
E = ∆(B) and sub-

stitute ∆(B) = 0 in the denominators of both terms on the right-hand side of the

equation. We then arrive at

∆(B) ≃ g2

18π2

(
1 +

54π(ẽQ̃B̃)2

g2µ̄4
sin2 θBk

)∫ Λ

∆(B)

dω′
E

∆(B)

ω′
E

ln
Λ

ω′
E

. (2.43)

While this approximation cannot be used to get a reliable estimate for the gap, it is

very helpful to understand the qualitative effect of the magnetic field on the pairing

dynamics in color-superconducting dense quark matter. It shows that the effective

coupling constant in the presence of a magnetic field becomes larger, i.e.,

g2 → g2eff = g2

(
1 +

27π(ẽB̃)2

2g2µ̄4
sin2 θBk

)
, (2.44)

where we substituted Q̃ = ±1
2
. The validity of the weak-field approximation requires

that the subleading correction is small compared to the leading result. This trans-

lates into the requirement |ẽB̃|2 . g2µ̄4. As we shall see below, this condition is

always satisfied in stellar applications.

Without rigorously solving the gap equation (2.42), now we can claim that

the solution for the gap function in the magnetic 2SC phase is approximately given

by the same expression as in the absence of the field, but with the coupling constant

g replaced by geff , i.e.,

∆(B) ≃ Λexp(− 3π2

√
2geff

+ 1) ≃ ∆(0)eβBk , (2.45)

where the explicit expression for βBk follows from Eq. (2.44),

βBk =
81π3(ẽB̃)2

4
√
2g3µ̄4

sin2 θBk. (2.46)
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This is a nonnegative function, which depends on the angle between the quasiparti-

cle momentum k and the magnetic field B̃. The maximum value β(max)
Bk is obtained

θBk = 90◦

The final result in Eq. (2.45) is interesting for several reasons. Most im-

portantly, it shows that the gap is non-isotropic, taking its largest values when the

quasiparticle momenta are perpendicular to the direction of the magnetic field, and

taking its smallest value when the quasiparticle momenta are along/against the

field. We also find that, compared to the case without the magnetic field, the gap

is subject to an increase in all directions of quasiparticle momenta, except for the

directions exactly along or against the magnetic field.

Gap Equation: Strong Magnetic Field Limit

To get a qualitative insight about the pairing dynamics in the case of a strong mag-

netic field, ẽB̃ & µ2, it seems sufficient to consider the gap equation in the lowest

Landau-level approximation. The choice of a simple approximation for the gluon ex-

change interaction is much harder to justify. Here we will use the gluon propagator

with the screening effects at zero magnetic field. Obviously, such an approximation

is not very reliable. A naive justification for such an approximation is the obser-

vation that gluons couple not only to the charged quasiparticles (with Q̃ = ±1/2

and Q̃ = 1), which are strongly affected by the magnetic field, but also to neutral

quasiparticles (with Q̃ = 0), which are not affected by the magnetic field at all. If

the zero-density (µ = 0) and strong-magnetic field limit in gauge theories is used

as a guide for intuition, one may suggest that those gluons, which are coupled only

to charged quasiparticles, will be subject to an additional Debye screening with an

effective mass meff
D ∝ g

√
|ẽB̃| [133]. The other gluons will be still providing the

same dominant interaction with dynamical screening as in absence of the exter-
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nal field. Then, the usual hard-dense-loop approximation may be still qualitatively

reasonable. Besides, to the best of our knowledge, the explicit result for the polar-

ization tensor (screening) in dense QCD matter (µ ̸= 0) in a magnetic field (B ̸= 0)

is not available in the literature. Thus, the main purpose of our exercise in this sub-

section, which is based on the simplest possible approximation, will be to roughly

estimate the color-superconducting gap due to long-range interaction in the regime

of a strong external magnetic field.

By making use of Eq. (2.33), we easily derive the gap equation in the lowest

Landau-level approximation,

∆(B)(ωE) =
g2

3

∫
dω′

Edk
′3

(2π)2

∫
d2q⊥

(2π)2
exp

(
−q

2
⊥l

2

2

)
∆(B)(ω′

E)

(ω′
E)

2 + (k′3 − µ)2 + (∆(B))2

× q2⊥
(k′3 − k3)2 + q2⊥

[(k′3 − k3)2 + q2⊥]
1
2

[(k′3 − k3)2 + q2⊥]
3
2 + ω3

l

. (2.47)

Because of the exponential suppression in the integration over the transverse mo-

mentum q⊥, the dominant contribution comes from the region of small momenta,

q⊥l . 1. Therefore, an approximate result can be obtained by simply making a

sharp ultraviolet cutoff at q⊥ =
√
2/l and dropping altogether the exponential factor

exp(−q2⊥l2/2) in the integrand. After performing the integration also over the longi-

tudinal momentum k′3, we will arrive at the following approximate gap equation:

∆(B)(ωE) ≈
g2

72π2

∫ +∞

−∞
dω′

E

∆(B)(ω′
E)√

(ω′
E)

2 + (∆(B))2
ln

ΛB

|ω′
E − ωE|

, (2.48)

where ΛB = 8
√
2

πm2
Dl3

= 8π
√
2|ẽQ̃B̃|3/2
g2µ̄2 . As we see, this equation has the same structure

as Eq. (2.40), but with a smaller effective coupling and a different expression for

ΛB. Making use of this fact, we can get an approximate solution for the gap in the

limit of strong magnetic field by properly modifying the result in Eq. (2.41), i.e.,

∆(B) =
4π|ẽB̃|3/2

g2µ̄2
exp(−3π2

g
+ 1). (2.49)
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Here we substituted Q̃ = ±1
2
. This result shows that the strong magnetic field

strengthens the diquark pair formation. This is in qualitative agreement with the

findings in models with local interaction [112, 113, 114, 115, 116, 117, 118].

In contrast to the result in the weak-magnetic field limit, there is no direction-

al dependence in the gap function when the field is strong. This suggests that the

corresponding pairing dynamics is essentially local. While the result may appear

surprising at first sight, this finding in fact agrees with the intuitive picture that the

motion of charged particles is restricted over distances of the order of the magnet-

ic length, l = 1/
√

|ẽQ̃B̃|, in the plane perpendicular to the magnetic field. When

Cooper pairs form, the additional spatial restriction on particles’ motion (partial lo-

calization) can strongly enhance the binding energy and substantially reduce the

size of bound states.
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CHAPTER 3

SUMMARY & OUTLOOK

In Chapter 1, we reviewed a schematic phase diagram for QCD. It has been ar-

gued that cold and dense quark matter is expected to be a color superconductor.

Such matter may exist in the interiors of neutron stars. The two simplest spin-zero

color superconductors, the CFL and 2SC phases, can be realized by applying the

BCS mechanism to a many-quark system at sufficiently low temperatures and high

densities. The symmetry properties of the CFL and 2SC phases are discussed in

detail by analyzing the color-flavor structure of the Cooper pairing patterns in these

two phases. For both phases, the magnitude of the gap parameters can be investi-

gated perturbatively by making use of the Schwinger-Dyson equation in the weak-

coupling limit of QCD. These are the examples of very few reliable calculations of

non-perturbative quantities in QCD, which are obtained from first principles. In addi-

tion, some other features, including charge neutrality, beta equilibrium and strange

quark mass, are also discussed in general. Note that a mismatch of the Fermi mo-

menta of different quark flavors arises because of them and could complicate the

formation of diquark Cooper pairs. It is of great significance to make a theoretical

analysis of color superconductivity. Starting from the derivations and calculations

of the properties (e.g., equation of state, neutrino emissivity and conductivities) for

different color superconductors by using QCD theory or other effective models, we

can find how they affect the physical phenomena and observables of neutron stars.

And then comparing with astrophysical data from experimental measurement, we

can clarify the occurrence of different forms of quark matter in the central region of

neutron stars and deepen our understanding of the behavior of dense quark matter.

In the main part of this thesis, we studied the effect of a “rotated” magnetic

field on the Cooper pairing dynamics in the two-flavor color-superconducting phase
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of dense quark matter with a long-range interaction provided by the one-gluon ex-

change with dynamical screening. Using the Landau-level representation, we de-

rived a set of gap equations valid for an arbitrary magnetic filed. These equations

show that, in general, the gaps are functions of the Landau-level index n. Therefore,

solving the corresponding set of equations may be rather involved and require the

use of sophisticated numerical methods. Instead, here we used analytical methods

to investigate the limiting cases of weak and strong magnetic fields [122].

In the weak-magnetic field limit, the energy separation between the Landau

levels is vanishingly small and there is no reason to expect a strong dependence

of the gaps on the corresponding discrete index n. This justifies the use of an ap-

proximation in which the gaps are the same in all Landau levels near the Fermi

surface. Additionally, in this case the quasiparticle propagator allows a simple ex-

pansion in powers of the magnetic field that greatly simplifies the structure of the

resulting gap equation, see Eq. (2.37). We find that the leading-order term affect-

ing the gap, is quadratic in the magnetic field. The corresponding correction to the

vanishing magnetic field result for the gap is determined by the value of param-

eter β(max)
Bk = 81π3(ẽB̃)2/(4

√
2g3µ̄4), where B̃ is the magnetic field and µ̄ is the

quark chemical potential, see Eq. (2.46). The numerical value of this parameter

appears to be quite small even for strongest possible magnetic fields in compact

stars, B̃ . 1018 G. Indeed, the corresponding numerical estimate reads

β
(max)
Bk ≈ 1.3× 10−2

(
400 MeV

µ̄

)4
(

B̃

1018 G

)2

. (3.1)

(Here, for the strong coupling constant, we used g =
√
4π, which corresponds to

αs = 1.)

The most interesting feature of the pairing dynamics in the presence of a

magnetic field is a directional dependence of the gap function in momentum space.
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The magnetic field correction to the gap is proportional to sin2 θBk, where θBk is the

angle between the quasiparticle momentum k and the magnetic field B̃. From a

physics viewpoint, this means that quasiparticles with momenta pointing perpendic-

ular to the direction of the magnetic field have the largest gaps, while quasiparticles

with momenta along/against the field have the smallest gaps. Clearly, such a direc-

tional dependence is a qualitative outcome of a long-range interaction in the model

used. This contrasts with the studies based on models with point-like interactions

in Refs. [112, 113, 114, 115, 116, 117, 118], where the gaps are always isotropic.

Our analysis in the case of a strong magnetic field is admittedly less rigor-

ous. We use the lowest Landau-level approximation and utilize the simplest ap-

proximation for the gluon exchange interaction without modifying the screening ef-

fects due to a nonzero magnetic field. The resulting estimate for the gap is given

in Eq. (2.49). Our result shows that strong magnetic fields enhance the diquark

Cooper pairing and lead to larger color-superconducting gaps. This is in qualitative

agreement with the findings in Refs. [112, 113, 114, 115, 116, 117, 118], where

models with short-range interactions were used. We also find that, because of the

partial localization of quasiparticles in a strong magnetic field, the corresponding

dynamics is essentially local and there is no directional dependence of the gap.

To go beyond the two limiting cases analyzed in this thesis, one will need

to properly truncate an infinite set of gap equations and use numerical methods

to solve it. In such an approach, it may be also possible to include the effects of

different quark masses and chemical potentials. The corresponding study, when

extrapolated to the regime of realistic densities, may further extend our understand-

ing of dense quark matter by clarifying (i) possible directional dependences of the

gap function, (ii) the evolution of such a dependence between the two limiting cases
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studied here, and (iii) the effect of β-equilibrium and neutrality of quark matter on the

gap function in magnetic fields. All of these topics are left for future investigations.

Additionally, it is of great interest to address how external magnetic fields

affect the properties of the neutron stars, such as the equation of state, neutrino

emissivity, specific heat, thermal conductivities, and viscosities, which have been

discussed in Sec. 1.7. The possible astrophysical consequences can help to search

for observational signatures, to shed some light on the existence of color super-

conductivity, and perhaps, to distinguish between different color-superconducting

phases.
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In this appendix, we present the derivation of the gap equation and present

its solution in the 2SC phase in the absence of a magnetic field. To simplify the

study of color-superconducting phases, it is more convenient to introduce Nambu-

Gorkov spinors:

Ψ̄ = (ψ̄, ψ̄C), Ψ =

 ψ

ψC

 , (A.1)

where ψ is the Dirac spinor for the quark field, and ψC = Cψ̄T is the charge-

conjugate spinor. C = iγ2γ0 is the charge-conjugation matrix. In this basis, the

inverse free-quark propagator S−1
0 reads

S−1
0 =

 [G+
0 ]

−1 0

0 [G−
0 ]

−1

 , (A.2)

where the inverse Dirac propagators for quarks ([G+
0 ]

−1) and charge-conjugate

quarks ([G−
0 ]

−1) are given by

[G±
0 ]

−1 = iγµ∂µ ± µγ0 −m. (A.3)

When the Cooper pairing is considered for quark quasiparticles in the color-super-

conducting phases, the full inverse quark propagator S−1 in the Nambu-Gorkov

basis also has nonzero off-diagonal components and it reads

S−1 =

 [G+
0 ]

−1 ∆−

∆+ [G−
0 ]

−1

 , (A.4)

where ∆− = −iϵab3ϵij3γ5∆ and ∆+ = γ0(∆−)†γ0 = −iϵab3ϵij3γ5∆∗ are the gap ma-

trices in the 2SC phase, determined by the color-flavor-Dirac structure in Eq. (1.9).

Note also that ∆− and ∆+ are off-diagonal elements of the quark self-energy. For

simplicity, we neglect the diagonal parts of the quark self-energy, since they are not

so important in the gap equation. They just give rise to an overall wave function

renormalization factor (for details, see Refs. [141, 142]).
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Starting from the inverse propagator in Eq. (A.4), one can invert it to obtain

the full quark propagator

S =

 G+ Ξ−

Ξ+ G−

 , (A.5)

where

G± = [(G±
0 )

−1 −∆∓G∓
0 ∆

±]−1, (A.6)

Ξ± = −G∓
0 ∆

±G±. (A.7)

The 21-component Ξ+ (12-component Ξ−) of the full quark propagator can be

thought of as describing the propagation of a charge-conjugate quark (a quark)

with propagator G−
0 (G+

0 ) that is converted to a particle (a charge-conjugate quark)

with propagator G+ (G−), via the condensate ∆+ (∆−). Either of the off-diagonal

components can be used to calculate the value of the gap parameter.

In the case of quark matter at asymptotic densities, the standard method for

studying the gap parameter is the method of the Schwinger-Dyson equation. It is

given by

S−1 = S−1
0 + Σ, (A.8)

where Σ is the self energy of the quark, defined in terms of the full quark and gluon

propagators. In general, the complete calculation of the self energy Σ contains an

infinite number of coupled equations for Green’s functions and thus it is unsolvable

exactly. However, since the dominant one-gluon interaction is weak at asymptotic

densities, the leading-order contribution can be well described by the so-called im-

proved rainbow approximation (one-loop approximation). In this approximation of

the Schwinger-Dyson equation, one uses the bare quark-gluon vertices. Why do

we call the rainbow approximation “improved”? This is because it goes beyond the

simple rainbow approximation, in which the free gluon propagator is used and the
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screening effects of the dense medium is usually neglected. Here, since the gluon

interaction is partially screened by surrounding dense quark matter, the modifica-

tion of the gluon propagator should be taken into consideration. It can be described

in terms of the gluon self-energy Π, which is defined by the following relation:

D−1 = D−1
0 +Π, (A.9)

where D−1 and D−1
0 are the full and free inverse gluon propagators, respectively,

and Π is the gluon self-energy, or the polarization tensor. The Lorentz and color

indices are suppressed in Eq. (A.9).

The main contribution to the polarization tensor comes from the quark loop

with hard internal momenta near Fermi surface (of order µ). In other words, the

gluons with soft momenta, less than gµ, are most important in the formation of the

diquark condensates. Compared to the other contributions, i.e., the ghost and the

gluon loops, the contribution of the quark loops is large because it is proportional

to the density of quark states around the Fermi surface (as well as to the coupling

constant g2), i.e., Π ∼ g2µ2. This approximation is called the hard dense loop (HDL)

approximation [134, 135, 136] for the gluon propagator in the dense medium and

it is further discussed in Sec. 2.4. The corresponding modified gluon propagator is

given by Eq. (2.34) and it is used for the calculation of the gap parameter here.

In the improved rainbow approximation, the Schwinger-Dyson equation for

quark propagator in momentum space reads

S−1(K) = S−1
0 (K) + ig2

∫
d4p

(2π)4
ΓA
µS(P )Γ

B
ν D

µν
AB(K − P ), (A.10)

where the bare quark-gluon vertices in the Nambu-Gorkov basis are given by

ΓA
µ = γµ

 TA 0

0 −(TA)T

 . (A.11)
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By using the expressions in Eqs. (A.2) and (A.4), we see that the 21-component

of Σ(K) is the gap matrix ∆+(K). Now, we concentrate on the study of 21-

components of Eq. (A.10). It reduces to the well known gap equation in the 2SC

phase [56, 57, 58, 59, 60, 61],

∆+(K) = ig2
∫

d4p

(2π)4
γµ(−TA)TΞ+γνT

BDµν
AB(K − P ). (A.12)

After performing the explicit calculation on the matrix Ξ+ and momentum integra-

tion, we obtain the following approximate form of the gap equation in Euclidean

space (the dependence of the gap on the three-momentum is conventionally ne-

glected) [56, 57, 58, 59, 60, 61, 62, 63, 64, 139, 140],

∆(k4) ≃ g2

36π2

∫ ∞

−∞
dp4

∆(p4)√
(p4)2 + (∆)2

ln
Λ

|k4 − p4|
, (A.13)

where k4 = ik0, p4 = ip0, and Λ = 4(2µ)3/(πm2
D).

In order to solve the integral equation Eq. (A.13) rigorously, we can use

the method in Ref. [57]. In the leading logarithm approximation, we can rewrite

Eq. (A.13) as follows:

∆(y) ≈ ḡ2
∫ y

0

dx∆(x)√
x2 + |∆|2

ln
Λ

y
+ ḡ2

∫ Λ

y

dx∆(x)√
x2 + |∆|2

ln
Λ

x
(A.14)

where, by definition, y ≡ k4, x ≡ p4, |∆| ≡ ∆(0), and ḡ2 = g2/18π2. And Λ is used

as an ultraviolet cutoff for the integration. We can easily find that this equation is

equivalent to the differential equation,

y∆′′(y) + ∆(x) + ḡ2
∆(y)√
y2 + |∆|2

= 0, (A.15)

with the following infrared and ultraviolet boundary conditions:

y∆′(y)|y=0 = 0 (IR), ∆(Λ) = 0 (UV ). (A.16)

Then we solve the differential equation in two regions y ≪ |∆| and y ≫ |∆|.
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In the infrared region y ≪ |∆|, the solution is given by the following Bessel

function,

∆(y) = |∆|J0

(
2ḡ

√
y

|∆|

)
. (A.17)

And in the ultraviolet region, the solution reads

∆(y) = C sin

(
ḡ ln

Λ

y

)
. (A.18)

Finally, matching the solutions and their derivatives ate the point y = |∆|, we arrive

at the analytical expression for the gap parameter,

|∆| = Λexp

[
− 1

ḡ
arctan

(
J0(2ḡ)

J1(2ḡ)

)]
, (A.19)

and determine the value of the constant C:

C = |∆|
√
J2
0 (2ḡ) + J2

1 (2ḡ). (A.20)

If the couping constant is very small, ḡ ≪ 1, we find that

|∆| ≈ Λexp

(
1− π

2ḡ

)
= Λexp

(
1− π

2ḡ

)
. (A.21)

Thus, the approximate solution to Eq. (A.13) reads

∆(0) ≃ Λexp(− 3π2

√
2g

+ 1). (A.22)
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In this appendix we calculate the explicit forms of the full propagators for

quasiparticles with Q̃ = +1
2

charge. (The result can be also easily generalized to

quasiparticles with Q̃ = −1
2

charge.) We present the details of the analysis for 11-

and 21-components of the propagator SX
(+ 1

2
)
.

The starting point of the derivation is the definition of the inverse propagator

in Eq. (2.27). By making use of Eqs. (A.5) – (A.7), the explicit forms of the 11- and

21-components of the propagator SX
(+ 1

2
)

read

SX
(+ 1

2
)11

=
(
γµπ

(+ 1
2
)

µ − µdgγ
0 +m

)[(
γµπ

(+ 1
2
)

µ + µurγ
0 −m

)
×
(
γµπ

(+ 1
2
)

µ − µdgγ
0 +m

)
−∆2

]−1

, (B.1)

SX
(+ 1

2
)21

= −iγ5∆∗
[(
γµπ

(+ 1
2
)

µ + µurγ
0 −m

)(
γµπ

(+ 1
2
)

µ − µdgγ
0 +m

)
−∆2

]−1

,

(B.2)

where, by definition, π(Q̃)
µ ≡ i∂µ + ẽQ̃Ãµ and the gauge field is Ãµ = (0, 0, xB̃, 0)

with the strength of the external (rotated) magnetic field denoted by B̃.

The inverse of the operator in the square brackets of Eqs. (B.1) and (B.2),

which is the same for all components of the propagator, can be calculated by em-

ploying the usual trick of “quadrating" the operator. In this case, however, we end

up “bi-quadrating" it because the corresponding operator is already quadratic in

energy. For this purpose, let us introduce the following shorthand notation:

X̂± =
[
(i∂t − δµ)2 − π2

⊥ − iẽQ̃B̃γ1γ2 − (π3)2 −m2 − µ̄2 −∆2
]

± 2γ0µ̄
(
γ⊥ · π⊥ + γ3π3 −m

)
, (B.3)

where δµ =
µdg−µur

2
, µ̄ =

µur+µdg

2
, π⊥ = (π1, π2) and γ⊥ = (γ1, γ2). Note that X̂−

is the same operator that appears in the square brackets of Eqs. (B.1) and (B.2).

For simplicity of notation, we dropped index Q̃ here.
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Let us first concentrate on the 11-component of the propagator. It can be

rewritten as follows:

SX
(+ 1

2
)11

=
(
γµπ

(+ 1
2
)

µ − µdgγ
0 +m

)
X̂+

(
X̂−X̂+

)−1

≡
(
Â− γ⊥ · π⊥B̂

)
Ĉ−1. (B.4)

The three new operator functions introduced here are defined by

Â =
[
(i∂t)γ

0 − π3γ3 − µdgγ
0 +m

][
(i∂t − δµ)2 − µ̄2 − 2µ̄(γ3π3 +m)γ0 − (π3)2

−m2 −∆2
]
−
[
(i∂t)γ

0 − π3γ3 + µurγ
0 +m

](
π2

⊥ + iẽQ̃B̃γ1γ2
)
, (B.5)

B̂ = (i∂t − µdg)
2 − π2

⊥ − iẽQ̃B̃γ1γ2 − (π3)2 −m2 −∆2, (B.6)

Ĉ =
[
(i∂t − δµ)2 − π2

⊥ − iẽQ̃B̃γ1γ2 − (π3)2 −m2 + µ̄2 −∆2
]2

−4µ̄2
[
(i∂t − δµ)2 −∆2

]
. (B.7)

In the coordinate space, the corresponding propagator is formally given by

SX
(+ 1

2
)11

(u, u′) =
⟨
u
∣∣∣ (Â− γ⊥ · π⊥B̂

)
Ĉ−1

∣∣∣u′⟩, (B.8)

where u = (t, z, r⊥) and r⊥ = (x, y). It is easy to perform a Fourier transform in

time and z-coordinate,

SX
(+ 1

2
)11

(ω, k3; r⊥, r
′
⊥) =

∫
dt dz eiωt−ik3z S1

(+ 1
2
)11

(u, u′). (B.9)

In essence, this transform results in a simple replacement of i∂t → ω and π3 → k3

in all of the earlier expressions.

To proceed further, we should find a basis of suitable eigenstates in which

the propagator has the simplest possible form. To this end, we note that the func-

tions Â, B̂ and Ĉ depend on the operator π2
⊥ + iẽQ̃B̃γ1γ2. Its eigenvalues are well

known: 2n|ẽQ̃B̃|, where n = 0, 1, 2, . . . is the Landau-level index. Note that the inte-

ger quantum number n has both orbital and spin contributions, i.e., n = k+(1+s)/2,
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where k = 0, 1, 2, . . . labels a specific orbital state, while s = ±1 corresponds to a

given (up or down) spin state. The explicit form of the corresponding eigenstates

⟨r⊥|k py s⟩ is also well known (e.g., see Ref. [143], where similar method and nota-

tions are used).

Following closely the approach of Ref. [143], we use the complete set of

eigenstates to simplify the expression for the propagator (B.9). The final result will

have the form

SX
(+ 1

2
)21

(ω, k3; r⊥, r
′
⊥) = eiΦ(r⊥,r′

⊥)S̄X
(+ 1

2
)21

(ω, k3; r⊥ − r′
⊥), (B.10)

where Φ(r⊥, r
′
⊥) is the Schwinger phase. In the Landau gauge used, the explicit

form of the phase is

Φ(r⊥, r
′
⊥) = −(x+ x′)(y − y′)

2l2
sign(ẽQ̃B̃), (B.11)

where l = 1/
√
|ẽQ̃B̃| is the magnetic length. (Note that this phase is responsible for

breaking the translational invariance of the propagator.) The translationally invariant

part of the propagator is given by

S̄X
(+ 1

2
)11

(ω, k3; r⊥) =
e−ξ/2

2πl2

∞∑
n=0

{
An

Cn

[
Ln(ξ)P− + Ln−1(ξ)P+

]
− i

γ⊥ · r⊥
l2

×Bn

Cn
L1
n−1(ξ)

}
, (B.12)

where ξ ≡ r2
⊥/(2l

2), Lα
n(ξ) are the generalized Laguerre polynomials (by definition,

Ln ≡ L0
n and Lα

−1 = 0), and

P± =
1

2

(
1± iγ1γ2sign(ẽQ̃B̃)

)
(B.13)

are the spin projection operators.

Functions An, Bn and Cn in Eq. (B.12) replace the corresponding operators

Â, B̂ and Ĉ, when projected onto the nth Landau-level state. Their explicit forms
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are obtained from Â, B̂ and Ĉ by replacing π2
⊥ + iẽQ̃B̃γ1γ2 → 2n|ẽQ̃B̃|, i.e.,

An =
[
ωγ0 − k3γ3 − µdgγ

0 +m
][(

ω − δµ
)2 − µ̄2 − 2µ̄(γ3k3 +m)γ0

−(k3)2 −m2 −∆2
n

]
− 2n|ẽQ̃B̃|

[
ωγ0 − k3γ3 + µurγ

0 +m
]
, (B.14)

Bn = (ω − µdg)
2 − 2n|ẽQ̃B̃| − (k3)2 −m2 −∆2

n, (B.15)

Cn =
[(
ω − δµ

)2 − 2n|ẽQ̃B̃| − (k3)2 −m2 + µ̄2 −∆2
n

]2
−4µ̄2

[(
ω − δµ

)2 −∆2
n

]
. (B.16)

Here we consider a general case when the dynamically generated gap function ∆n

depends not only on the energy ω and k3, but also on the Landau-level index n.

(In operator form, it means that ∆ depends on π2
⊥ + iẽQ̃B̃γ1γ2.) Therefore, we

replaced the operator ∆ with the corresponding value ∆n that it takes in the nth

Landau-level state.

At this point, it may be appropriate to note that the zeros of Cn determine

the spectrum of quasiparticles in color-superconducting quark matter in a magnetic

field, i.e.,

En,±,± = δµ±

√[√
2n|ẽQ̃B̃|+ (k3)2 +m2 ± µ̄

]2
+∆2

n. (B.17)

Note that all four different sign combinations are possible. The choice of the sign in

front of the chemical potential µ̄ corresponds to the choice of either particle states

(allowing small energies of order ∆n) or antiparticle states (generally having large

energies of order µ̄). The sign in front of the overall square root corresponds to

particle/hole type quasiparticles (i.e., positive/negative energy states). One should

note, however, that an additional complication in this classification appears in the

case of gapless superconducting phases when δµ > ∆n [93, 94, 95, 125, 126].

Following the same approach, we can derive explicit expressions for all com-

ponents of the propagator SX
(+ 1

2
)
. For example, the final expression for the off-
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diagonal 21-component, which is used in the gap equation in the main text, reads

SX
(+ 1

2
)21

(ω, k3; r⊥, r
′
⊥) = eiΦ(r⊥,r′

⊥)S̄X
(+ 1

2
)21

(ω, k3; r⊥ − r′
⊥), (B.18)

with the translationally invariant part given by

S̄X
(+ 1

2
)21

(ω, k3; r⊥) = −iγ5 e
−ξ/2

2πl2

∞∑
n=0

∆∗
n

{
En
Cn

[Ln(ξ)P− + Ln−1(ξ)P+]

−iγ⊥ · r⊥
l2

2µ̄γ0

Cn
L1
n−1(ξ)

}
. (B.19)

Here we introduced yet another function,

En = (ω − δµ)2 − 2n|ẽQ̃B̃| − (k3)2 −m2 − µ̄2 −∆2
n − 2µ̄(k3γ3 +m)γ0. (B.20)

Before concluding this appendix, let us add that similar representations can be also

derived for the components of the inverse propagator. As an example, let us present

the corresponding result for
[
SX
(+ 1

2
)

]−1

21
(u, u′), which is used in the gap equation. It

has the same general structure as the above expressions for the components of

SX
(+ 1

2
)
, i.e.,

[
SX
(+ 1

2
)

]−1

21
(ω, k3; r⊥, r

′
⊥) = eiΦ(r⊥,r′

⊥)
[
SX

(+ 1
2
)

]−1

21
(ω, k3; r⊥ − r′

⊥). (B.21)

It is important that the inverse propagator has exactly the same phase as the prop-

agator itself, see Eqs. (B.10) and (B.11). The explicit form of its translationally

invariant part reads

[
SX

(+ 1
2
)

]−1

21
(ω, k3; r⊥) = −iγ5 e

−ξ/2

2πl2

∞∑
n=0

∆∗
n [Ln(ξ)P− + Ln−1(ξ)P+] . (B.22)
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The gap equation (i.e., the off-diagonal component of the Schwinger-Dyson

equation for the full propagator) in the coordinate space reads

[
SX
(Q̃)

]−1

21
(u, u′) = −ig2γµ

(
TA
)T [

SX
(Q̃)

]
21
(u, u′)γνTBDAB

µν (u− u′), (C.1)

where DAB
µν (u, u′) is the gluon propagator, which is assumed to be diagonal in ad-

joint color indices (A,B = 1, 2, ..., 8), i.e., DAB
µν (u − u′) = δABDµν(u − u′). By

making use of the identity

8∑
A=1

TA
a′aT

A
b′b =

1

2
δa′bδab′ −

1

6
δaa′δbb′ , (C.2)

we derive the following form of the gap equation:

[
SX
(Q̃)

]−1

21
(u, u′) = i

2

3
g2γµ

[
SX
(Q̃)

]
21
(u, u′)γνDµν(u− u′). (C.3)

Taking into account that all components of the quasiparticle propagator as well as

its inverse have the same nonzero Schwinger phase, we can derive the equation

for the translationally invariant parts simply by dropping the common phase factor

on both side of the gap equation,

[
SX

(+ 1
2
)

]−1

21
(ω, k3; r⊥) = i

2g2

3

∫
dω′dk′3

(2π)2
γµS̄X

(+ 1
2
)21

(ω, k3; r⊥)γ
ν

×
∫

d2q⊥

(2π)2
eiq⊥·r⊥Dµν(ω − ω′, k3 − k′3, q⊥), (C.4)

where we additionally performed a Fourier transform in time and z-coordinate on

both sides of the equation, and used a momentum representation for the gluon

propagator.

By making use of the explicit form of the relevant translationally invariant

parts of the propagators in Eqs. (B.19) and (B.22), we rewrite the last form of the
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gap equation as follows:

e−ξ/2

2πl2

∞∑
n=0

∆n[Ln(ξ)P− + Ln−1(ξ)P+]

= −i2g
2

3

e−ξ/2

2πl2

∞∑
n=0

∫
dω′dk′3

(2π)2
γµ

∆n

Cn

{
En
[
Ln(ξ)P− + Ln−1(ξ)P+

]
− 2µ̄i

γ⊥ · r⊥
l2

×γ0L1
n−1(ξ)

}
γν
∫

d2q⊥

(2π)2
eiq⊥·r⊥Dµν(ω − ω′, k3 − k′3, q⊥). (C.5)

The last equation can now be easily projected onto different orbital eigenstates.

This is formally done by multiplying both sides of the equation by e−ξ/2Lm(ξ) (where

m = 0, 1, 2, . . .) and integrating over the perpendicular spatial coordinates r⊥. After

performing such projections, we arrive at the following (infinite) set of gap equations

in the Landau-level representation:

∆mP− +∆m+1P+ = −i2g
2

3

∞∑
n=0

∫
dω′dk′3

(2π)2

∫
d2q⊥

(2π)2
γµ

∆nEn
Cn

[
L(0)

n,m

(
q2⊥l

2

2

)
P−

+L(0)
n−1,m

(
q2⊥l

2

2

)
P+

]
γνDµν(ω − ω′, k3 − k′3, q⊥), (C.6)

where, by definition,

L(0)
n,m (x) = (−1)n+me−xLm−n

n (x)Ln−m
m (x) . (C.7)

In the derivation, we used the following table integrals (see formulas 7.414 3 and

7.422 2 in Ref. [144]):∫ ∞

0

dxe−xxαLα
m(x)L

α
n(x) =

Γ(n+ α + 1)

n!
δnm, (C.8)

and ∫ ∞

0

dxx2σ+1e−αx2

Lσ
m(αx

2)Lσ
n(αx

2)J0(xy)

=
(−1)m+n

2ασ+1

(m+ σ)!

m!
e−y2/4αLn−m

m+σ

(
y2

4α

)
Lm−n
n

(
y2

4α

)
. (C.9)
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APPENDIX D

PROPAGATOR IN WEAK MAGNETIC FIELD LIMIT
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In this appendix, we consider the quasiparticle propagator in the limit of

weak magnetic field.

We begin by performing a Fourier transform of the translation-invariant part

of the propagator,

S̄X
(+ 1

2
)21

(ω, k3,k⊥) =

∫
d2r⊥e

−ik⊥·r⊥S̄X
(+ 1

2
)21

(ω, k3; r⊥)

= −2iγ5e−k2⊥l2
∞∑
n=0

(−1)n
∆n

Cn

{
En
[
Ln

(
2k2⊥l

2
)
P−

−Ln−1

(
2k2⊥l

2
)
P+

]
+ 4µ̄(γ⊥ · k⊥)γ

0L1
n−1

(
2k2⊥l

2
)}
.(D.1)

In the weak field limit, the difference between the neighboring levels is vanishingly

small in energy and the properties of the corresponding states become almost in-

distinguishable. In application to the gap function ∆n, this means that it will become

almost independent of the Landau-level index in a wide range of n near the (would-

be) Fermi surface. (Strictly speaking, the true Fermi surface is not well defined in a

superconductor, but if the gap is small, ∆ ≪ µ̄, one could map the corresponding

phase space onto the phase space in the free quark matter.)

In order to derive a weak-field expression for the propagator, one needs

to first perform the sum over the Landau-level index n. A straightforward way of

achieving this is to employ the usual proper-time representation, i.e.,

1

(a+ 2n|b|)2 + c2
=

∫ ∞

0

ds

c
sin(sc)e−s(a+2n|b|), (D.2)

a+ 2n|b|
(a+ 2n|b|)2 + c2

=

∫ ∞

0

ds cos(sc)e−s(a+2n|b|), (D.3)

for the two types of structures appearing in the Euclidian propagator, and then use

the well known summation formula for Laguerre polynomials,

∞∑
n=0

Lα
n(x)z

n = (1− z)−(α+1) exp

(
xz

z − 1

)
. (D.4)
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Before using these identities, it is convenient to rewrite propagator (D.1) in the fol-

lowing form:

S̄X
(+ 1

2
)21

(iωE, k
3,k⊥) = iγ5∆

[
I1 + 2µ̄(k3γ3 +m+ µ̄γ0)γ0I2 + 2µ̄(γ⊥ · k⊥)γ

0I3
]
,

(D.5)

where, by definition, the sums Ii (i = 1, 2, 3) are

I1 = 2e−
k2⊥
|b|

∞∑
n=0

(−1)nLn

(
2k2⊥
|b|

)[
a+ 2n|b|

(a+ 2n|b|)2 + c2
P−

+
a+ 2(n+ 1)|b|

[a+ 2(n+ 1)|b|]2 + c2
P+

]
, (D.6)

I2 = 2e−
k2⊥
|b|

∞∑
n=0

(−1)nLn

(
2k2⊥
|b|

)[
1

(a+ 2n|b|)2 + c2
P−

+
1

[a+ 2(n+ 1)|b|]2 + c2
P+

]
, (D.7)

I3 = 4e−
k2⊥
|b|

∞∑
n=0

(−1)nL1
n

(
2k2⊥
|b|

)
1

[a+ 2(n+ 1)|b|]2 + c2
. (D.8)

Here we used the following notation:

a = (ωE + iδµ)2 + (k3)2 +m2 +∆2 − µ̄2, (D.9)

b = ẽQ̃B̃, (D.10)

c = 2µ̄
√

(ωE + iδµ)2 +∆2. (D.11)

It is appropriate to mention that the use of the proper-time representations, as given

by Eqs. (D.2) and (D.3), may not be completely justified in the presence of a nonzero

density. Indeed, when the chemical potential is sufficiently large, the above expres-

sion for the parameter a may become negative. When this occurs, the proper-time

integrals become divergent and the validity of the derivation seemingly fails. The

way around this problem is to assume that the chemical potential is sufficiently small

at all intermediate stages of derivation. In the end, after magnetic field expansion is

done and all proper-time integrations are performed, one can extend the validity of

the propagators to large values of the chemical potential.
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With the above remark kept in mind, we use the proper-time representations

to rewrite the expressions for the sums Ii as follows:

I1 = 2e−k2⊥/|b|
∞∑
n=0

(−1)nLn

(
2k2⊥
|b|

)∫ ∞

0

ds cos(sc)e−s(a+2n|b|) (P− + e−2|b|sP+

)
,

(D.12)

I2 = 2e−k2⊥/|b|
∞∑
n=0

(−1)nLn

(
2k2⊥
|b|

)∫ ∞

0

ds

c
sin(sc)e−s(a+2n|b|) (P− + e−2|b|sP+

)
,

(D.13)

I3 = 4e−k2⊥/|b|
∞∑
n=0

(−1)nL1
n

(
2k2⊥
|b|

)∫ ∞

0

ds

c
sin(sc)e−s(a+2n|b|+2|b|). (D.14)

Then, after using the summation formula (D.4), we derive

I1 =

∫ ∞

0

ds cos(sc)e−sa−(k2⊥/b) tanh(sb)
[
1− iγ1γ2 tanh(sb)

]
, (D.15)

I2 =

∫ ∞

0

ds

c
sin(sc)e−sa−(k2⊥/b) tanh(sb)

[
1− iγ1γ2 tanh(sb)

]
, (D.16)

I3 =

∫ ∞

0

ds

c
sin(sc)e−sa−(k2⊥/b) tanh(sb) 1

cosh2(sb)
. (D.17)

Finally, expanding the integrands in powers of the magnetic field b and integrating

over the proper time, we obtain

I1 ≃
∫ ∞

0

ds cos(sc)e−s(a+k2⊥)

(
1− iγ1γ2sb+

s3

3
k2⊥b

2 +O(b3)

)
=

a+ k2⊥
(a+ k2⊥)

2 + c2

−iγ1γ2 (a+ k2⊥)
2 − c2

[(a+ k2⊥)
2 + c2]2

b+
2[(a+ k2⊥)

4 − 6(a+ k2⊥)
2c2 + c4]k2⊥

[(a+ k2⊥)
2 + c2]4

b2 +O(b3),

(D.18)

I2 ≃
∫ ∞

0

ds

c
sin(sc)e−s(a+k2⊥)

(
1− iγ1γ2sb+

s3

3
k2⊥b

2 +O(b3)

)
=

1

(a+ k2⊥)
2 + c2

−iγ1γ2 2(a+ k2⊥)

[(a+ k2⊥)
2 + c2]2

b+
8(a+ k2⊥)[(a+ k2⊥)

2 − c2]k2⊥
[(a+ k2⊥)

2 + c2]4
b2 +O(b3), (D.19)

I3 ≃
∫ ∞

0

ds

c
sin(sc)e−s(a+k2⊥)

(
1− s2b2 +

s3

3
k2⊥b

2 +O(b3)

)
=

1

(a+ k2⊥)
2 + c2

−2[3(a+ k2⊥)
2 − c2]

[(a+ k2⊥)
2 + c2]3

b2 +
8(a+ k2⊥)[(a+ k2⊥)

2 − c2]k2⊥
[(a+ k2⊥)

2 + c2]4
b2 +O(b3). (D.20)

Now, combining the same-order terms in powers of the magnetic field, we rewrite
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propagator (D.5) as follows:

S̄X
(+ 1

2
)21

(iωE, k
3,k⊥) = iγ5∆

[
K(0) +K(1) +K(2)

]
, (D.21)

where

K(0) =
a+k + a−k + 4µ̄(γ · k +m)γ0

2a+k a
−
k

, (D.22)

K(1) = −iγ1γ2 (a
+
k )

2 + (a−k )
2 − 4µ̄2(a+k + a−k ) + 8µ̄ak(k

3γ3 +m)γ0

2(a+k a
−
k )

2
b, (D.23)

K(2) =
a+k (a

+
k − 4µ̄2)3 + a−k (a

−
k − 4µ̄2)3 + 4µ̄2a+k a

−
k

[
16µ̄2 − 3(a+k + a−k )

]
(a+k a

−
k )

4
k2⊥b

2

−4µ̄(γ⊥ · k⊥)γ
04a

2
k − a+k a

−
k

(a+k a
−
k )

3
b2 + 16µ̄ak(γ · k +m)γ0

2a2k − a+k a
−
k

(a+k a
−
k )

4
k2⊥b

2.

(D.24)

Note the shorthand notation used,

γ · k ≡ γ⊥ · k⊥ + k3γ3, (D.25)

a±k ≡ (ωE + iδµ)2 + (Ek ± µ̄)2 +∆2, (D.26)

ak ≡ a+ k2⊥ = (ωE + iδµ)2 + k2 +m2 +∆2 − µ̄2, (D.27)

as well as Ek ≡
√
k2 +m2 and k2 ≡ k2⊥ + (k3)2.
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APPENDIX E

GAP EQUATION IN WEAK MAGNETIC FIELD LIMIT
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To leading order (i.e., the limit of vanishing magnetic field), the gap equation

reads

∆(0)(ωE) =
g2

6

∫
dω′

E

2π

∫
d3k′

(2π)3
∆(0)(ω′

E)tr
[
γµK(0)(ω′,k′)γν

]
Dµν(ω − ω′,k − k′).

(E.1)

Here we assumed that the gap function is an explicit function of the energy, but not

of the momentum. The result for the trace in the integrand is given by

tr
[
γµK(0)(ω′,k′)γν

]
= 2gµν

a+k′ + a−k′

a+k′a
−
k′

+ . . . , (E.2)

where the ellipsis stands for antisymmetric terms, which do not affect the form of

the gap equation. Indeed, when contracted with the gluon propagator, which is

symmetric in Lorentz indices, all antisymmetric terms will vanish.

At asymptotic densities, we can also neglect all corrections due to nonzero

m and δµ. By taking into account that the main contribution to the momentum

integral on the right hand side of the gap equation comes from the vicinity of the

Fermi surface (k′ ≃ kF =
√
µ̄2 −m2), we can make the following approximation

for the trace:

tr
[
γµK(0)(ω′,k′)γν

]
≃ 2gµν

a−k′
. (E.3)

Note that, in the vicinity of the Fermi surface, one has

a−k′ = (ω′
E)

2 + ξ2k′ +∆2 ≪ µ̄2, (E.4)

a+k′ = 4µ̄2 + 4µ̄ξk′ + a−k′ ≃ 4µ̄(µ̄+ ξk′), (E.5)

where ξk′ ≡ Ek′ − µ ≃ k′ − kF .

The resulting equation coincides with the known form of the gap equation in

the case of zero magnetic field studied in Refs. [56, 57, 58, 59, 60, 61, 62, 63, 64,

139, 140]. In our notation, the corresponding solution for the gap function reads

|∆(0)| ≃ Λexp(− 3π2

√
2g

+ 1). (E.6)
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In order to find the correction to the gap function due to nonzero magnetic

field, let us include the approximate kernel up to second order in the magnetic field.

After taking traces on the both sides of the equation, we obtain

∆(B)(ωE) =
g2

6

∫
dω′

E

2π

∫
d3k′

(2π)3
∆(B)(ω′

E)tr
[
γµK(0)(ω′,k′)γν

]
×Dµν(ω − ω′,k − k′) +

g2

6

∫
dω′

E

2π

∫
d3k′

(2π)3
∆(B)(ω′

E)

×tr
[
γµK(2)(ω′,k′)γν

]
Dµν(ω − ω′,k − k′). (E.7)

In addition to the result in Eq. (E.2), this equation also contains the trace of the

second-order correction to the kernel. The corresponding approximate expression

in the vicinity of the Fermi surface reads

tr
[
γµK(2)(ω′,k′)γν

]
≃ gµν

Nk′(k
′
⊥)

2

2µ̄4(a−k′)
4
(ẽQ̃B̃)2 + . . . , (E.8)

where Nk′ ≃ 4µ̄ξk′(2ξ
2
k′ − a−k′) − 24ξ4k′ + 16a−k′ξ

2
k′ − (a−k′)

2 and the ellipsis denotes

antisymmetric terms. Let us point that the only directional dependence of this trace

comes through the overall factor (k′⊥)
2 ≡ (k′)2(1 − cos2 θBk′), where θBk′ denotes

the angle between the direction of the magnetic B and the momentum k′. (Strictly

speaking, in a self-consistent analysis, the gap function on the right hand side will

also have a directional dependence and will affect the angular integration. The

corresponding effects are expected to be very small and will be neglected in the

simplified analysis here.) The integrand on the right hand side of Eq. (E.7) has an

additional directional dependence in the gluon propagator, see Eq. (2.34), which is

a function of the polar angle θ ≡ θkk′ (i.e., the polar angular coordinate of vector

k′ measured from the direction of the external vector k). With this convention for

angular coordinates, it is convenient to use the following relation:

cos θBk′ = sin θ sin θBk cos(ϕ− ϕBk) + cos θ cos θBk, (E.9)
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in order to rewrite the expression for (k′⊥)
2 in terms of the angular integration vari-

ables θ (polar angle) and ϕ (azimuthal angle). Now we can easily perform the

angular integration on the right-hand side of the gap equation. The results for the

two types of angular integrations, namely with the electric and magnetic part of the

gluon propagator, read

Ael =

∫
(1− cos2 θBk′) sin θ dθdϕ

M2 − 2k′k cos θ
=

π

8(k′)3k3

[
2k′kM2 [1 + 3 cos(2θBk)]

+
1

2

(
4(k′)2k2 [3 + cos(2θBk)]−M4 [1 + 3 cos(2θBk)]

)
ln
M2 + 2k′k

M2 − 2k′k

]
,

(E.10)

Amag =

∫
(1− cos2 θBk′) sin θ dθdϕ

2 [(k′)2 + k2 − 2k′k cos θ]
1/2

[(k′)2 + k2 − 2k′k cos θ]3/2 + ω3
l

=
2π

3k′k

[
1 + cos2 θBk +

(
(k′)2 + k2

2k′k

)2(
1− 3 cos2 θBk

)]
ln

(k′ + k)3 + ω3
l

|k′ − k|3 + ω3
l

+
πω2

l

2(k′k)3
(
1− 3 cos2 θBk

)[
ω2
l

∫ xmax

xmin

x6dx

x3 + 1

−2
[
(k′)2 + k2

] ∫ xmax

xmin

x4dx

x3 + 1

]
, (E.11)

where M2 = (ω′
E − ωE)

2 + (k′)2 + k2 +m2
D. In order to simplify the calculation of

Amag, it is convenient to change the integration variable θ to the new dimensionless

variable x = (1/ωl)
√
(k′)2 + k2 − 2k′k cos θ. Note that sin θdθ = ω2

l xdx/(k
′k) and

the new range of integration is from xmin = |k′ − k|/ωl to xmax = (k′ + k)/ωl.

In the vicinity of the Fermi surface, the approximate results for this integrals

read

Ael ≃ π sin2 θBk

µ̄2
ln

(2µ̄)2

(ω′
E − ωE)2 + (k′ − k)2 +m2

D

+ . . . , (E.12)

Amag ≃ 4π sin2 θBk

3µ̄2
ln

(2µ̄)3

|k′ − k|3 + ω3
l

+ . . . , (E.13)

where the ellipses denote the subleading terms.
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By making use of the above intermediate results, we arrive at the following

form of the gap equation,

∆(B)(ωE) =
2g2

9

∫ ∞

−∞

dω′
E

(2π)

∫
dξk′

(2π)2
∆(B)(ω′

E)

a−k′
ln

(2µ̄)3

|k′ − k|3 + ω3
l

×

(
1 +

[
−24ξ4k′ + 16a−k′ξ

2
k′ − (a−k′)

2
]
(ẽQ̃B̃)2

(2µ̄)2(a−k′)
3

sin2 θBk

)
.(E.14)

Recall that ω3
l = (π/4)m2

D|ω′
E − ωE|. Integrating over the momentum, we arrive at

∆(B)(ωE) =
g2

36π2

∫ ∞

−∞
dω′

E∆
(B)(ω′

E)

[
1√

(ω′
E)

2 + (∆(B))2
ln

Λ

|ω′
E − ωE|

+
9ω15

l (ẽQ̃B̃)2 sin2 θBk

4µ̄2
(
ω6
l + [(ω′

E)
2 + (∆(B))2]

3
)3 ln ωl

|ω′
E − ωE|

]
. (E.15)

To get a rough estimate, let us take an infrared cutoff in the energy integration at

ω′
IR ≃ ∆(B) and drop the dependence on ∆(B) in the denominator of the integrand.

Then, we have

∆(B) ≃ g2

18π2

∫ Λ

∆(B)

dω′
E

∆(B)

|ω′
E|

(
1 +

54(ẽQ̃B̃)2 sin2 θBk

πµ̄2m2
D

)
ln

Λ

|ω′
E|
. (E.16)

This means that the magnetic field correction is equivalent to an effective increase

of the coupling constant, i.e.,

g2 → g2eff = g2

(
1 +

54π(ẽQ̃B̃)2

g2µ̄4
sin2 θBk

)
, (E.17)

where we used the definition of the Debye mass m2
D = (gµ̄/π)2.
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