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ABSTRACT  

   

Supply chains are increasingly complex as companies branch out into 

newer products and markets. In many cases, multiple products with moderate 

differences in performance and price compete for the same unit of demand. 

Simultaneous occurrences of multiple scenarios (competitive, disruptive, 

regulatory, economic, etc.), coupled with business decisions (pricing, product 

introduction, etc.) can drastically change demand structures within a short period 

of time. Furthermore, product obsolescence and cannibalization are real concerns 

due to short product life cycles. Analytical tools that can handle this complexity 

are important to quantify the impact of business scenarios/decisions on supply 

chain performance.  

Traditional analysis methods struggle in this environment of large, 

complex datasets with hundreds of features becoming the norm in supply chains. 

We present an empirical analysis framework termed Scenario Trees that provides 

a novel representation for impulse and delayed scenario events and a direction for 

modeling multivariate constrained responses. Amongst potential learners, 

supervised learners and feature extraction strategies based on tree-based 

ensembles are employed to extract the most impactful scenarios and predict their 

outcome on metrics at different product hierarchies. These models are able to 

provide accurate predictions in modeling environments characterized by 

incomplete datasets due to product substitution, missing values, outliers, 

redundant features, mixed variables and nonlinear interaction effects. Graphical 

model summaries are generated to aid model understanding. 
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Models in complex environments benefit from feature selection methods 

that extract non-redundant feature subsets from the data. Additional model 

simplification can be achieved by extracting specific levels/values that contribute 

to variable importance. We propose and evaluate new analytical methods to 

address this problem of feature value selection and study their comparative 

performance using simulated datasets. We show that supply chain surveillance 

can be structured as a feature value selection problem. 

For situations such as new product introduction, a bottom-up approach to 

scenario analysis is designed using an agent-based simulation and data mining 

framework. This simulation engine envelopes utility theory, discrete choice 

models and diffusion theory and acts as a test bed for enacting different business 

scenarios. We demonstrate the use of machine learning algorithms to analyze 

scenarios and generate graphical summaries to aid decision making.   
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Chapter 1

INTRODUCTION

Supply chains are increasingly complex as companies branch out into newer prod-

ucts and markets to remain competitive in a global market characterized by volatile

consumer and market behavior. Operations these days require more suppliers, more

parts, more customers to cater to and subsequently more returns to manage. This in

turn has added layers of structural, process and cultural complexities which can

potentially mask problems in the supply chain. At the same time, competitive

pressure coupled with the revolution of digital and process technology have sig-

nificantly reduced product life cycles. In many markets multiple products with

moderate differences in performance and price often compete for the same unit of

demand. As a consequence, business decisions pertaining to a specific product may

have an overreaching and counter productive effect on other internally competing

products. The simultaneous occurrence of competitive (pricing, product introduc-

tion etc.), disruptive (severe weather events, blackouts etc.), economic (recession,

unemployment etc.) scenarios further complicates the decision domain by adding

uncertainties. Effective supply chain management (SCM) has therefore become a

valuable dimension for gaining an advantage over competition. Given the sheer

dimensionality of the problem, improving supply chain performance is in itself a

complex task, one which cannot be achieved using conventional managerial wis-

dom. Consequently, supply chain analytics (SCA) is getting more prominence in

decision support system.

Over the last decade, advancement in tracking and measuring systems have

enabled the collection of vast amounts of data associated with supply chain net-

work. Radio-frequency identification (RFID) and GPS based systems can provide

accurate data regarding the exact location of each shipment thoughout the entire
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supply chain. Sales history can be traced right down to the customer touch point

through point-of-sales systems. Shipment specific data such as its product identifi-

cation number (SKU number), weight, volume and other related characteristics can

be easily traced and recorded. Enhanced tracking also enables us to measure the

performance of the supply chain at individual shipment levels using metrics related

to perfect order, order fulfilment lead time, cycle time, inventory level, supply chain

costs etc. Additionally, network related attributes such as route capacity, as well as

global and local risk factors (power outages, extreme weather events etc.) can often

be layered on top of shipment related data sources. This massive data collection

effort is usually undertaken with the foresight of potentially using the information

hidden in it to drive supply chain network improvements. With such information

rich data sources available, managers are now relying on analytical solutions that

can assimilate the copious amounts of supply chain data, identify patterns in it and

quantify the impact of business decisions and/or business events (such as economic,

political, regulatory, competitor scenarios, amongst other) on supply chain perfor-

mance.

However, non-traditional characteristics of the resultant data sets make it

necessary to choose analytical models that can successfully handle the following

challenges:

• High dimensionality: Real-world networks can involve hundreds of nodes

and can carry millions of shipments per day. Dozens of variables (attributes)

per shipment or node are common. Combined together, this leads to high-

dimensional data sets and hence model over fitting is a strong concern. Meth-

ods are needed that enable the relevance of variables to be statistically quan-

tified, thereby aiding model building.
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• Disparate data types: Scenario events and business decisions are discrete in

nature and are usually represented using categorical variables. These, along

with other discrete attributes related to the product such as life cycle, catego-

rization, features etc. result in data sets that have a large number of categorical

variables in them. Additional information such as prices, sales volumes, ca-

pacities etc. may be present in a continuous data format. A scenario analysis

method needs to have the ability to handle such disparate data types.

• Delayed effects: Business decisions have an inherent inertia built into them.

There may be a delay in when the decision is taken and when its effect is

seen. The analysis framework needs to account for these lagged effects.

• Variable scales: Dramatically different scales (units) might be present for

numerical measurements. Traditional attribute standardization can collapse

true relationships (structure) in the data and hence methods that are invariant

to scale are needed.

• Missing data and outliers: Dirty data with extensive missing values should

be expected when data sources are numerous. Also, measurement system and

tracking errors can lead to outliers in the feature space as well as the output

(response) space. To avoid extensive preprocessing efforts, methods that are

intrinsically robust to missing values and outliers are needed.

• Nonlinear relationships: Due to the multivariate nature of the data, nonlin-

ear interactions between shipment level variables and node variables are ex-

pected. For example, only shipments above a certain weight may have delay

issues at certain nodes. Also, transient effects, such as supply chain prob-

lems that affect nodes during a certain time period are expected to exhibit

themselves in the data set.
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• Variable masking: A large fraction of the variables in the data set are expected

to be highly correlated with each other. It is useful to identify important

variables along with alternatives or replacements with similar information

content.

Traditional modeling techniques for empirical scenario analysis are unable

to handle such high dimensional, messy data sets. The aim of our research is to

explore, extend and improve modeling frameworks that are capable of analyzing

complex scenarios arising in supply chain environments.

In this work, we develop a new empirical scenario analysis framework, la-

beled as Scenario Trees, that is capable of extracting the most impactful scenarios

from hundreds of potential covariates, and predict their outcome at different prod-

uct hierarchies (price point level, product family, stock keeping unit etc.). Chapter

2 provides details on this method along with a case study as applied to product

pricing.

Complex datasets often require complex nonlinear models for analysis. In

such environments, it is important to build elements in the analysis framework that

simplify the final model as much as possible. In Chapter 3 we develop a novel

model simplification strategy called feature value selection (FVS) that extracts im-

portant variables as well as the specific levels/values that have a significant impact

on the response.

Chapter 4 illustrates an application of the FVS solution towards high di-

mensional supply chain surveillance. We demonstrate how FVS can be used to

extract ”corrupt” problematic nodes in complex network (labelled Network Feature

Extraction) and create rich graphical characterizations of the interactions between

covariates (such as time, transactional attributes etc.).
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The Scenario Trees framework is an example of a top-down modeling ap-

proach and it works well for analyzing scenarios where historical data is readily

available. Alternatively, for certain scenarios such as new product introduction,

very little (if any) historical data is available for modeling. For such situations,

a bottom-up approach to scenario analysis is presented using a agent-based simu-

lation model (Chapter 5). Additionally we integrate machine learning algorithms

with the agent-based models to analyze scenarios and provide expressive graphical

summaries for decision making.

1.1 Summary of contributions

A brief synopsis of our contributions are presented in this section.

Scenario Trees: An empirically driven scenario analysis framework

The price-demand relationship for consumer products has received significant focus

over the last few decades. Econometric models that estimate the cross price elas-

ticity of demand have been well researched, studied and adopted in a wide range

of decision support tools. Since these models are essentially built on the regres-

sion framework, they are limited in capability to handle high-dimensional datasets

with missing values, outliers, variable redundancy and complex non-linear relation-

ships. The technology substitution process limits the data available for modeling.

This sparseness of data, coupled with the large number of variables that potentially

affect demand severely challenges these models.

In this study, we view any business decision, whether forced or planned as

a scenario event. We propose a framework to analyze the impact of a scenario on

the market share (or demand) of a particular price group. While the discussion is

limited to that at the price group level, we would like to emphasize that the frame-

work in fact has a multi-resolution property to it. We can use the same method

to analyze scenario impacts at the resolution of price groups, product families or
5



individual stock keeping units (SKUs). One contribution of this work is a method

to represent the scenario information embedded in high dimensional data sets and

integrate it with other information sources. We define indicator variables to capture

impulse scenario events. For example, an indicator variable is defined to represent

the scenario where a product transitions between price points due to a drop in price.

While some business decisions show immediate results, often, others show delayed

effects. Consider the introduction of a new product. It is natural for the demand

to start showing an uptake several days after the actual product has been launched.

Other decisions such as price changes may force a more rapid response from the

market. Existing literature does not provide a direction on how to model delayed

effects. We develop a novel representation for delayed effects by creating lagged in-

dicator variables. This has important practical implications since it allows us to not

only identify high impact scenarios, but also provide insights into when the effect

will be significant.

However, creating lag variables for both continuous and discrete variables

in the model adds to the dimensionality of the input set. To counter this, we de-

termined that feature selection is needed in these high-dimensional supply chain

models. A second contribution is to identify the key scenarios and other variables

in supply chains that have a high business impact. The proposed framework ex-

ploits state of the art tree-based feature selection methods to separate high impact

scenarios (variables) from irrelevant ones. This is of great practical significance

to decision makers as it focuses their decision domain, thereby leading to better

decisions. Also, a reduced subset of features results in a simpler model thereby

improving prediction accuracy and generalization.

Since our focus is on modeling market shares for multiple price groups, we

need to ensure that the predictions for all price groups taken together sum upto
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one. To address the problem of multivariate, constrained responses, we consider a

multivariate logistic model within the tree-based framework. Decision tree-based

ensemble methods have been shown to handle numerical and categorical inputs with

complex, non-linear interactions. These methods have also proven to be robust to

input-space outliers and missing data and are therefore well suited for our problem.

Therefore, we promote the use of these methods as the core modeling engine.

Models of high fidelity such as the empirical tree-based ensemble approach

necessitate a strategy to analyze and interpret the possible non-linear relationships

amongst the various inputs to the model. Increased fidelity in the model is atten-

uated if the quantitative summaries used for decision making are not sufficiently

expressive. One important task is to identify inputs that are important contributors

to the model results and another task is to graphically summarize the effects of such

contributors. We employ modern decision tree based feature selection methods to

identify contributors and apply partial dependency plots to the scenario indicators

for graphical summaries.

Feature value selection and its application to supply chain surveillance

Models such as those presented in the Scenario Trees framework can benefit from

feature selection methods to extract compact, non-redundant feature subsets from

the data. The importance of feature selection methods in complex modeling envi-

ronments cannot be overstated. Not only does feature selection help in reducing the

dimensionality of the data, but also improves the predictive performance of the su-

pervised learners. However, in many situations, additional model simplification can

be achieved by extracting specific levels/values that contribute to variable impor-

tance. This problems, of identifying the specific levels of covariates that contribute

to its importance score can be referred to as feature value selection (FVS).
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While feature selection has been a well researched area, there is currently

no literature that addresses feature value selection. We contribute to this field by de-

veloping new analytical methods to address this problem of feature value selection.

Our first approach leverages well researched feature selection methods by convert-

ing the original data set into a binary incidence matrix. A second strategy, one that

does not require generation of the indicator incidence matrix was also developed.

Here we integrated a measure of feature value importance within the decision tree

induction algorithm. Yet another method is proposed that measures the influence

of a feature value through its deletion influence on the prediction error. These three

methods are evaluated and compared using simulated data sets and were found to

produce promising results.

While the primary motivation for FVS is to simplify models, we show that

supply chain surveillance can be structured as a feature value selection problem. A

primary contribution in this area is the development of a novel approach to represent

a supply chain as a series of transactions using case-event data, which allows us to

collect a rich set of attributes related to the network and transactions (shipments).

Furthermore, this lets us convert the surveillance problem into a supervised learning

problem. Using a simulated data set, we provide illustrative cases of how feature

value selection can be used to identify problem nodes in the network. Addition-

ally, we combine FVS with partial dependency plots to create rich graphical views

of interactions effects (of time and other transactional attributes) at these problem

nodes

Scenario analysis of technology products with an agent-based simulation models

and data mining framework

The weaknesses of classical models to simulate and predict simultaneous inter-

actions of adaptive components in complex systems has led to a great interest in
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agent-based simulation approaches. Complex adaptive systems provide another av-

enue for studying emergent phenomenon such as product diffusion. Agent-based

simulation (ABM) is a method to model complex adaptive systems. Emergent phe-

nomena, non-linear dynamics, and path-dependent behavior are some illustrations

in which ABM is used to study and analyze systems instead of traditional model-

ing methods. ABMs enable us study interrelationships among autonomous agents

and interactions between agents and their environments in evolutionary settings. In

ABM we can show interaction of agents systematically by defining decision-makers

(agents), set of interaction rules and processes of changing states.

In this research, we develop an agent-based model to simulate and study

technology markets. In our agent-based model, agents represent potential adopters

of a technology. The agents form an artificial society in which they are connected

to and interact with other agents. The definitions, characteristics and attributes of

the agents are in-line with those described in the theory of diffusion literature. To

operationalize the agents in the model, we give a simple set of rules that they use

for evaluating products. Each agent evaluates the set of available products based on

a certain pre-defined preference structure. When the need for buying a new product

arises, agents score the products using additive utility functions. The probability of

an agent buying a product is therefore proportional to its utility score in comparison

with the other products. In addition to simple discrete choice rules, agents are also

allowed to communicate with each other, thereby influencing their neighbors to

either buy or not buy a particular product.

Simulation models provide the users with an excellent platform for explor-

ing business scenarios. Users can observe changes to the output(s) by changing

a few parameters of the model in a real-time setting. This same process - that of

changing parameter settings and observing their impact on the output(s) - can also

9



be carried out off-line. We collect vast amounts of data by systematically changing

the parameter settings in a designed experimental mode and then representing the

relationships between the input variables and the model outputs using supervised

learning methods. In our prototype study, we used tree-based ensemble methods

and partial dependency plots for summarizing the data generated using the simula-

tion model.
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Chapter 2

MARKET SHARE CHARACTERIZATION OF TECHNOLOGY PRODUCTS

USING SCENARIO TREES

2.1 Introduction

The revolution of digital technology has been propelling the processor market to

support the demand for high performance, low cost computers. In keeping up with

Moore’s law, the number of transistors on a chip keep doubling about every two

years. Processing power, measured in millions of instructions per second (MIPS),

has steadily risen because of increased transistor counts. The pursuit of Moore’s law

has resulted in considerable advances in silicon-based technology. Simultaneous

advances in process technology have resulted in higher yields, thus making it possi-

ble to produce less expensive, more powerful processors. With each technological

breakthrough, chip manufacturers are able to introduce newer, better processors at

a faster rate. Consequently, product life cycles have been considerably shortened as

companies engage in a constant strife for pushing technological benchmarks.

In this highly competitive market, multiple products with moderate differ-

ences in performance and price often compete for a unit of demand. As a conse-

quence, business decisions pertaining to specific products can have overreaching

and often counter productive effects on the other internally competing products.

Consider product pricing for example. Price is used as a knob to boost sales for

certain products. When a higher technology product is made available to the con-

sumers at a lower price, it has the potential to cannibalize the market demand for

the products already competing at that lower price group. New product introduc-

tion and termination decisions can have similar consequences. Since product life

cycles are short, changes in demand structure for products can have serious im-

plications on scheduling of supply, manufacturing and distribution capacity. The
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occurrence of multiple business scenarios along with simultaneous price change

decisions makes it very difficult to predict the their effect using simple intuition.

As a result, models are required to capture the interaction effects of scenarios, thus

aiding in quantifying their impact on the market share of certain price groups.

The complexities of the technology substitution and diffusion mechanism

requires models to substantially extend traditional approaches. Data sets are sparse

due to short life cycles, a problem further aggravated as the substitution of products

at different points in time results in considerable missing data. It is important to

include a large set of scenario type of information that is available in discrete (event

data such as promotions, product introductions etc.) as well as continuous (point-

of-sales, CPI index etc.) form into modern models. This input set of scenarios

can often show strongly correlation with each other and can also form non-linear

relationships with the product demand. Additionally, it is also important to reorga-

nize the scenario information using lag variables to account for delayed effects (i.e.

scenarios exhibiting an effect after a period of time). This can further add to the di-

mensionality of the input set. From a decision making point of view, it is important

to extract, summarize and subsequently focus on the most relevant scenarios from a

set of possibly thousands of model inputs. The combination of sparse data sets with

missing values and large number of non-linear, correlated input variables severely

restricts the regression based approaches to modeling.

In this study, we present an approach which can elegantly capture scenario

information that is embedded in mixed and high dimensional data sets. We propose

the use of modern supervised learners to learn the relationships in the data. Vari-

able importance scores from a modern tree based data mining models are exploited

to select a subset of relevant predictors. In addition to dimensionality reduction

and feature selection, our modeling framework address the issue of delayed effects.
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Finally, we present a realistic case study that demonstrates the ability of this frame-

work to model changes in market shares for a group of products in response to

business scenarios such as new product introduction, product discontinuation and

price changes. The models and other tools developed here are envisioned to be a

part of a recommender system that provides insights into the effects various pricing

and other business scenarios play on shaping market shares of different price groups

at the macro level as well as those of individual CPUs.

2.2 Existing Modeling Options

Different analytical and empirical models have been proposed to address specific

business scenarios that impact product demand. Empirical models such as the Cross

Price Elasticity (CPE) models have been incorporated in many tactical decision

support systems [Deaton and Muellbauer (1980); Green and Alston (1990)]. CPE

models provide a means to estimate the percentage change in quantity demanded

for the first product that occurs in response to a percentage change in price of the

second product. Given a group of products, CPE is a measure of the responsiveness

of the demand of one product to a change in the price of another product.

CPE =
% Change in quantity demanded for product 1

% Change in price of product 2
(2.1)

There are several traditional approaches to estimate CPE. One model known as the

almost Ideal Demand System model has been widely used in econometric literature.

The parameters of the model are obtained using constrained Iterated Seemingly

Unrelated Regression as the estimation method.

The Bass (1969) diffusion model and its variants have been used for market

analysis and demand forecasting of new products [Bass et al. (1994)]. The model

assumes that potential adopters of an innovation are influenced by two means of

communication - mass media and word-of-mouth. This model describes the process
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of how a new product gets adopted as an interaction between users and potential

users. Fisher and Pry (1972) extended this single product model to a two product

framework that represents the process by which a new technology product replaces

or substitutes an older one in the market.

Diffusion models have also been integrated with other learning algorithms

to capture and analyze scenario information. For example, Yelland et al. (2010)

used a combination of the Fisher and Pry and Dynamic Linear models [West and

Harrison (1997)] to capture the diffusion process as well as time series and sea-

sonal components of product demand. Meixell and Wu (2002)and Wu et al. (2006)

proposed an approach to analyze demand scenarios in technology-driven markets

where product demands are volatile, but follow a few identifiable life-cycle patterns.

They demonstrated that products could be clustered by life-cycle patterns, and sub-

sequently, within each cluster, identified leading indicator products that provided

advanced indication of changes in demand trends. Using the Bass growth model

and a Bayesian update structure, their proposed method provided a framework for

scenario analysis by focusing on parametric changes of the demand growth model

over time.

Kincaid and Darling (1963) first studied single-product dynamic pricing

models [Gallego and Van Ryzin (1994); Zhao and Zheng (2000)]. They formulated

a continuous-time stochastic dynamic program and developed properties of the rev-

enue function. Gallego and Van Ryzin (1997) extended their single-product model

to the multiple product case and demonstrated its application to network yield man-

agement. All of these continuous-time stochastic dynamic programming models

assumed that the demand uncertainty was characterized by a Poisson process with a

price-dependent intensity. While retaining the same assumption of Poisson demand,

Bitran and Mondschein (1997) developed a discrete-time pricing model for a retail
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setting . Monahan et al. (2004) also approached the problem using a a discrete-time

model in which demand uncertainty could be characterized by a generic distribu-

tion.

2.3 Modeling Framework

Empirical models have traditionally focused on price-demand relationships. While

price is an important driver of demand, it needs to be considered within a broader

context of information. For example, economic, regulatory and socio-economic

scenarios can affect the demand for the entire technology market. At the same time,

competitors actions can certainly change the dynamics of the demand for the price

group. Information on such scenarios is usually available in mixed (categorical and

continuous) data sources. As the list of potential impact factors keeps growing, the

technology substitution process and the short product life cycles keeps shrinking

the data available for modeling. Traditional models such as the CPE model have

limited capability in handling high-dimensional, mixed data sets with missing val-

ues. More flexible models are required that allow us to assimilate a wide range of

information sources. Casting the problem within a supervised learning structure

requires an alternate representation of the model inputs. We introduce one such

representation in Section 2.3. Analysts are usually interested in quantifying the im-

pact of scenarios on multiple response units (for example, different price groups).

If the response of interest is market shares, we need to ensure that the predictions

for each response sum upto one. In Section 2.3, we present a strategy to address

multivariate, constrained responses.

Models of high fidelity necessitate a strategy to analyze and interpret the

possible non-linear relationships amongst the various inputs to the model. An im-

portant requirement from the analytical model is to identify inputs that are important

contributors to the model results. We employ modern decision tree based feature
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selection methods to identify contributors. Such methods have been shown to han-

dle numerical and categorical inputs, complex, interactive, and non-linear models,

as well as provide robustness to input-space outliers [Tuv et al. (2009)]. Increased

fidelity in the model is attenuated if the quantitative summaries used for decision

making are not sufficiently expressive. Consequently, another focus of this work

is to use modern methods to summarize models outputs in order to quantitatively

evaluate the effects of scenario decisions. We accomplish this by using an array of

dependency plots [Friedman (2001)].

Representation of Model Inputs

Let D j(t) be the total demand for all products belonging to a price group j at time

t ( j = 1,...,K). In order to build a supervised learning model that relates scenario

events to price group demand, we need to create a framework to represent the sce-

nario events. We denote a scenario event of type i occurring in price group j at time

t as xi j(t).

For each scenario, we define an indicator function

xi j(t) = 1, if scenario i occurs in PG j at time t

= 0,otherwise.

(2.2)

The above representation is sufficient to capture impulse events i.e. events

that affect the demand for the price group only in the period in which they occur.

However, many events exhibit delayed effects. As an example of such an effect,

consider the introduction of a new product in a price group. Depending on market

conditions and other business decisions, this new product may not show an immedi-

ate uptake in sales. Also, many such events affect demand over a longer, sustained
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period. To account for these unique characteristics of the problems, we modify

equation 2.2 by introducing a time window of length (t−m).

xi j
m(t) = 1, if scenario i in PG j occurs in time t−m

= 0, otherwise.

(2.3)

Supervised Learning

When dealing with multiple response (product or price group demands in our case),

it is common to build a separate model for each response variable. However, in

modeling market shares (MS), we need to ensure that the sum of all price groups

taken together sum to 100%. To impose this constraint in our modeling framework,

we use the following approach. For a total of K price groups, we build K−1 models

of the following form

ln(
MSPG1 |X = x
MSPGK |X = x

) = Model1

ln(
MSPG2 |X = x
MSPGK |X = x

) = Model2

:

:

ln(
MSPGK−1 |X = x
MSPGK |X = x

) = ModelK−1

(2.4)
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The choice of the denominator price group is arbitrary. By using a simple

transformation, it is evident that the sum of predicted market shares for all price

groups is 100%.

(MSPGi|X = x) =
1

1+∑
K−1
i exp(Modeli)

, if i = K

=
exp(Modeli)

1+∑
K−1
i exp(Modeli)

,otherwise

(2.5)

Notice that this framework is similar in form to the one used in multi-class

logistic regression modeling [Hosmer and Lemeshow (2000)]. This setup is ex-

tremely flexible as it lets the user choose or define the actual nature of the model.

For example, in a logistic regression model, Modeli is a linear regression model of

the form

y = β0 +β1x1 +β2x2 + ...+βpxp (2.6)

where y is the response variable (dependent variable), and xi are the regressor (in-

dependent) variables (for i = 0,1, ..., p). Depending on the expected form of the

relationship between the input variables and the dependent variable, this model can

be substituted with other models that are more appropriate to the modeling situa-

tion. For example, in our case, we expect the input variables to be in the form of

categorical as well as continuous variables. Also, with the introduction of the lag

variables, the dimensions of the data set can get very large compared to the number

of data points available for modeling. Hence, for this situation, we chose to use

random forest (RF) [Breiman (2001)] as the model.

Random Forests is a method used for predictive modeling. A single decision

trees partition rows of data successfully based on the predictor variables to achieve

a consistent response value in each partition. RF combines the predictions made by
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multiple, fully grown decision trees [Breiman et al. (1984)]. Each decision tree in

the forest depends on the values of a random vector sampled independently and with

the same distribution. To classify a new object from an input vector, put the input

vector down each of the trees in the forest. Each tree gives a classification, and we

say the tree ”votes” for that class. The forest chooses the classification having the

most votes. In a random forest each tree is grown as follows: Let N and P represent

the number of cases and number of predictors, respectively, in the training data

set. A random sample of size N is drawn with replacement from the original data.

This is also referred to as bootstrap sample and forms the training set for growing

the tree. Each decision tree is built on a separate bootstrap sample. The cases not

selected in the bootstrap sample are referred to as out of bag (OOB) data. Bootstrap

samples lead to correlation between trees, which, in turn, inflates the variance of

the RF model. To compensate for this, RF injects additional randomness in the

model-building process by randomly selecting from a smaller subset (p < P) of

input variables at each partition, in each tree. Each tree partitions the data to a

maximum depth, but the prediction is smoothed by averaging over all trees. The

OOB samples can serve as a test set for the tree grown on the non-OOB data. This

can be used to get an unbiased estimate of the test set classification error.

Feature Extraction and Interpretation

Predictive models benefit from a compact, non-redundant subset of features that

improves interpretability and generalization. Not only do the subset of irrelevant

predictors add to the computational complexity of the modeling process but also

degrade the predictive capabilities of the models [Friedman and Meulman (2003)].

Modern data mining learners such as Support Vector Machines [Guyon et al. (2002)]

and tree based ensemble methods [Tuv et al. (2009); Breiman (2001)] have proven

to be very successful in filtering out irrelevant predictors from the input set to gen-
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erate a compact subset of non-redundant features. In addition to being effective

at the feature selection, support vector machines and tree based methods are very

competitive at the prediction stage.

An important aspect of a successful decision support systems is the ability

to provide expressive summaries of the analytical models. Model summaries help

us understand the nature of the dependence of your response on the joint values of

the relevant covariates [Friedman et al. (2001)]. Here, we try to identify the range or

level(s) in the important predictors that drive the most significant changes in the re-

sponse. For example, we may be interested in identifying the specific region in the

feature space that is associated with higher adoption for a particular product. One

way to accomplish this is to create a visual graph of the predicted function f (X)

over the entire covariate space. This provides a comprehensive summary of the the

dependency of the response on the joint values of the input variables. However, such

visualization is only possible for up to four dimensional views. Friedman developed

a graphical summary referred to as partial dependence plots to add interpretability

to any ”black box” learning methods [Friedman (2001)]. Partial dependence func-

tions represent the effect of the variable subset on the predicted response ( f (X))

after accounting for the average effects of the other variables. Plotting the partial

dependence of f (X) on its most relevant covariates can reveal how the response

behaves in different regions of the covariates. We will use such plots to interpret

the results from the Random Forest model.

2.4 Application
Dataset Description and Visual Analysis

To demonstrate the application of the proposed modeling framework, we simu-

lated a data set that represents a CPU market. The data set consists of price and

demand information for approximately thirty seven products across five different
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price groups for a period of sixty five weeks. In this time frame, three different

business scenarios were embedded in the data set. Specifically, we are interested in

quantifying the effect of a new product introduction, a product discontinuation and

a price drop event occurring in a target or neighbouring price groups on the market

share structure of the target price group. As a result of this inherent technology sub-

stitution process, the data set contains a large number of missing rows. A snapshot

of the price and demand data is shown in Figures 2.1 and 2.2 respectively.

Figure 2.1: Example Price data

A time based graphical summary of the data helps visualize the impact that

different scenarios have on the market share for a particular price group. Figure

2.3 shows the changes in market share for PG2. Time is represented on the vertical

axis while changes in market share are displayed on the horizontal axis. One week,

two week and four week changes are plotted on for each week. Horizontal bands

indicate the presence of a scenario. This demonstrates one of the challenges with

analyzing this data set. While some of the changes in market share coincide with
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Figure 2.2: Example Demand data

the occurrence of scenarios, most of the changes appear to exhibit after a lag and

tend to persist for a certain time window after the scenario has occurred.

Figure 2.3: Time based summary of scenarios and market shares

Similar to the time based graphical summary, a scenario map can help track

the occurrence of certain scenario events in and around a target price group. This
22



simple tool is a time based representation of the different scenarios that play out

every week across different price groups.Figure 2.4 demonstrates the scenario map.

It can be hypothesized that the impact of a particular scenario may depend largely

on the popularity of the product at the time of occurrence of the the scenario. The

popularity of the product can in turn be gauged by the amount of market share it

captures in its current price group at the time of occurrence of the scenario. To

capture this information we categorize the entering and leaving scenarios with an

impact category. For example, if the product carries a market share of between

0− 25%, we categorize it with an impact factor of 1 (Figure 2.4). To account for

delayed effects as well as sustained effects, we create additional lagged features

for the scenarios. In this application, we use 5 lagged variables per scenario (m =

5). These discrete lag variables behave similar to the autoregressive variables in

ARIMA models.

Input variables and supervised learning

While the scenarios discussed thus far have been limited to those occurring in and

around a price group, we can easily expand their scope. For example, we may con-

sider economic, political or regulatory scenarios that have a more global affect on

the business environment. At the same time, we could consider scenarios that have

a more direct impact on the processor market for a particular segment (desktop,

mobile or server). The current framework allows us to consider a hierarchy of in-

put scenarios. For this current case study, we consider the gross domestic product

(GDP) and the unemployment rate as an indicators of the overall economic envi-

ronment and the stock price as an indicator of the company’s business health. Time

based effects are modelled using the month and quarter in which historic sales were

realised. Thus, a rich assortment of variables can be constructed by adding more

scenario variables and their indicators in this framework.
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Figure 2.4: Scenario Map

Table 2.1: Error rates for RF models.

Model Base Error Training Error OOB Error Error reduction

ln(MS−PG2
MS−PG1

) 0.638 0.143 0.309 52 %

ln(MS−PG3
MS−PG1

) 0.950 0.189 0.378 60 %

ln(MS−PG4
MS−PG1

) 2.003 0.466 0.975 51 %

ln(MS−PG5
MS−PG1

) 0.906 0.248 0.528 42 %

The feature selection algorithm proposed by [Tuv et al. (2009)] was used to

select a subset of input scenarios that are significantly help in predicting the market

shares. The feature selection algorithm was run for all K−1 models and the results

were summarized in a scenario impact matrix Figure 2.5. Table 2.1 summarizes the

predictive capability of the models.
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Figure 2.5: Scenario impact matrix. ”X” indicates that the corresponding scenario
is important for that model

Arranging the dependency plots for all the important scenarios and variables

in a matrix such as Figure 2.6 will help us assess possible conflicting scenarios

i.e. scenarios that have a positive effect on one price group and a negative impact

on some other. In each dependency plot, we have highlighted the case where no

scenario occurs with a box. Consider the scenario where we drop the price of a

product currently in PG4. As a consequence of this business decision, this product

will leave PG4 and enter PG3. We can see from the dependency plots that whenever

such a price drop occurs, there is a positive impact on PG3 but a negative impact on

PG4.

2.5 Conclusion

Technology products are characterized by short life cycles with rapid obsolescence,

decreasing prices, and a continuous progression of competing products both from

competitors and from within the same organization. We outlined the characteristics

of the technology market that make it difficult for us to model market data using

traditional approaches. We demonstrated a method to shape or reorganize the sce-
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Figure 2.6: Dependency plot matrix

nario information in a manner that is amenable to use with modern data mining

models. This allowed us to integrate multiple scenarios (both discrete and continu-

ous) and accommodate for the practical issue of lagged effects in the modeling step.

In markets that can potentially react to hundreds of scenarios, we provide an ele-

gant method to extract the most relevant scenarios using variable importance scores

from the tree models. Additionally, we leveraged dependency plots to characterize

the nature of the impact of this reduced set of scenarios. This modeling framework

is envisioned to be part of a recommender system that allows the analyst to focus

and track critical scenarios and predict their outcome on more than one group of

products.
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Chapter 3

FEATURE VALUE SELECTION : STRATEGIES AND COMPARATIVE

ANALYSIS

3.1 Introduction

In the last decade, a considerable amount of research has been focused on devel-

oping new techniques for feature selection. Good feature selection methods aim

to create a compact, non-redundant subset of features that improves interpretability

and generalization of models. However, in many situations, identifying important

variables is not always sufficient. Often times, it is necessary to investigate each

variable and identify which specific values or levels of the variable contribute to

its importance. For instance, in public health surveillance, feature selection can

be used to identify whether there are any disease clusters in the data. However,

it is equally important to identify the specific geographical regions and/or sub-

populations where these clusters may be occuring. Similarly, in complex supply

chains, a model which indicates that a majority of product defects occur during the

manufacturing stage is probably not going to help us solve the problem. It would

be far more meaningful to localize the problem to the exact manufacturing location

(node in the network). The same can be said for manufacturing processes, where

it is critical to pin point which machine/tool is contributing to higher defect rates.

This problems, of identifying the specific levels of covariates that contribute to its

importance score can be referred to as feature value selection and is the focus of

investigation here.

Not only is feature value selection important from a response localization

point of view, it also helps reduce the complexity of the final predictive model. Take

discrete Bayesian networks for instance. There are two components that add to the

complexity of Bayesian networks : The number of parent variables and the number
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of levels for each parent. The first problem, that of reducing the number of variables

in the model is a classic subset selection problem. This can be addressed using a

variety of feature selection algorithms such as the tree based ensemble methods

proposed by Breiman (2001) or by Tuv et al. (2009) or the support vector based

methods proposed by Guyon et al. (2002). Feature selection methods reduce the

complexity of a Bayesian network by creating a compact, non-redundant subset of

variables. Once this subset of important features is selected, we can further reduce

the complexity of the Bayesian Network by identifying the specific levels of the

features that significantly influence the response variable. Other levels that do not

influence the response variable can then be grouped together in one category. This

will reduce the number of parameters that need to be defined for each child node,

thereby, reducing the networks complexity.

In this paper, our objective is to propose methods to address the feature value

selection problem. We develop three different strategies to extract feature values

and compare their performance using a simulation study. The first two strategies

exploit traditional feature selection algorithms by using an appropriate data trans-

formation. The third strategy extends the ensemble-based feature selection method

proposed by Tuv et al. (2006, 2009) to allow for feature values to be scored.

In Section 3.2 we briefly describe some of the methods that we investigated

in the simulation studies. Section 3.3 describe the three feature value selection

methods and Section 3.4 describes the simulation study and performance compari-

son for the three methods.

3.2 Background
Chi-Square based Feature Selection

The statistical significance of the relationship between two categorical variables can

be tested using the χ2 text of independence. The test essentially finds out whether
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the observed frequencies in a distribution differ significantly from the frequencies

that might be expected according to the hypothesis of statistical independence be-

tween the two variables (Null hypothesis). The test statistic for testing this hypoth-

esis is called the Chi-square statistic and is computed as -

χ
2 = ∑

i
∑

j

(Ei j−Oi j)

Ei j
(3.1)

where, Oi j is the observed number of instances from Class Yi having the jth value

of a given covariate (input variable), and Ei j is the expected number of instances if

the null hypothesis (of no association between the two variables) is true.

From a feature selection point of view, we can view the value of the χ2 as a

measure of variable importance. Given that it is a statistical hypothesis test, we can

also measure its statistical significance by computing its p-value.

Correlation-based Feature Selection

Correlation-based Feature Selection (CFS) (Hall (1999)) is a subset evaluation heuris-

tic that takes into account the usefulness of individual features for predicting the

class along with the level of inter-correlation among the subset. The underlying

premise is that a good feature subset is one that contains features that have a high

degree of correlation with the response variable, yet are uncorrelated with each

other. The importance of merit of a feature subset S consisting of k features is given

by

MeritS =
k ¯rc f√

k+ k(k−1) ¯r f f
(3.2)

where ¯rc f is the average class-feature correlation, ¯r f f is the feature-feature correla-

tion. The degree of association between two discrete features (X and Y) is estimated

using the symmetrical uncertainty (SU) equation

SU = 2∗ [H(X)+H(Y )−H(X ,Y )
H(X)+H(Y )

] (3.3)
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where H(X) and H(Y ) is the entropy of features X and Y. The symmetrical uncer-

tainty coefficient lies between 0 and 1. A value of 0 indicates that variables X and

Y have no association between them; the value of 1 indicates that knowledge of

one variable completely predicts the other. A search heuristic (hill climbing or Best

First) is then applied to search the feature subset space.

The Best First strategy (Rich and Knight (1991)) starts with an empty fea-

ture set and then generates all possible single feature expansions. The subset that

provides the maximum merit score is then added to the feature set. One subsequent

iterations, this feature set is expanded by adding single features. If the expanding a

subset does not result in an improvement in the merit score, the search drops back to

the next best unexpanded subset and continues from there. To prevent the method

from exploring the entire search space,it is typical to terminate the search after a

certain number (say, 5) of subsets expanded result in no improvements. The best

subset found is then returned when the search terminates.

Feature Selection using tree-based ensembles and artificial contrasts

Efficient mechanisms to handle mixed categorical and numerical missing-valued

data make tree-based models popular for real-world applications. Ensembles of

trees such as random forest (Breiman (2001)) and gradient boosted trees (Friedman

(2001)) are not only accurate for supervised learning, but also provide intrinsic

mechanisms to produce variable importance scores.

The random forest model constructs a set of simple decision trees, and uses

their weighted outcome to predict new data. The measure of variable importance

for a single decision tree (T) is given by

V I(Xi,T ) = ∑
n∈NT

4I(Xi,n) (3.4)
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where4I(Xi,n) = I(n)− pLI(nL)− pRI(nR) is the decrease in impurity because of

an actual (or potential) split on variable Xi at a node n of the optimally pruned tree

T . For an ensemble of M trees, Random forests simply averages the importance

score in equation 4.1 over all M trees.

V I(Xi) =
M

∑
m=1

V I(Xi,Tm)/M (3.5)

A problem with the variables importance scores generated through tree-

based methods is that there is no obvious threshold to segregate important variables

from irrelevant (noise) variables. Setting this cut-off threshold based on intuition

can either lead to false alarms (if set too leniently) or missed signals if the threshold

is too aggressive. Tuv et al. (2006, 2009) addressed this problem by using artifi-

cially created noise variables, also referred to as contrasts to set the noise threshold

in the system. Only a variable with a significant difference (as measured with a

p-value) from the kth percentile (say, 90th) of artificial variables is considered to be

an important feature. Therefore, this approach eliminates guess work by provid-

ing an objective measure based on p-values for defining significant variables and

segregating them from irrelevant noisy ones.

A similar method is used to identify and remove redundant variables. A

modified surrogate score, called a masking score, is computed between all pairs

of variables (including contrast variables) using a gradient boosted tree (Friedman

and Meulman (2003)). For a single replicate, an upper percentile (say, 75th) of the

masking score between the original variables and contrast variables is computed.

After several replicates, a mean is calculated, which defines the threshold against

which all masking scores between original variables is compared using a t-test. If

the masking score between two original variables is statistically greater than the

mean of the 75th percentile, then the masking score is kept. To remove redundancy,
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Table 3.1: Toy data set with categorical variables

Row X1 X2 Class
1 A1 B1 0
2 A2 B1 1
3 A3 B2 1
4 A1 B3 1

the variable with the highest importance score is retained, and every other variable

with a significant making score with it is eliminated.

Thus in summary, the ACE method generates p-values for : (a) identify-

ing relevant subsets of variables that have a statistically significant impact on the

response and (b) identify correlated or masked variables, thereby eliminating re-

dundant variables.

3.3 Methodology
Indicator variables with feature selection

We are interested in identifying feature levels/values that potentially have a signif-

icant impact on the response variables. We can easily convert the feature selec-

tion problem into a feature value selection problem using a straight forward data

transformation. We begin by transforming the original categorical input variables

into indicator variables, one for each level of the original variable. Each covariate

range and/or level in the input set becomes a column (or item) in the binary indi-

cator/incidence matrix. Values of one in the binary incidence matrix relate to items

that were included in the original row vector, while values of zero relate to the lack

of items in the original row vector.A simple toy data set illustrates this procedure.

The original and transformed data sets are shown in Tables 3.1 and 3.2 respectively.

For example, the first row in Table 3.1 becomes [X1 : A1] = 1, [X2 : B1] = 1 and zero

elsewhere in Table 3.2. The remaining rows in the incidence matrix are calculated

in the same manner.

32



Table 3.2: Transformed toy data set with indicator variables

Row X1 : A1 X1 : A2 X1 : A3 X2 : B1 X2 : B2 X2 : B3 Class
1 1 0 0 1 0 0 0
2 0 1 0 1 0 0 1
3 0 0 1 0 1 0 1
4 1 0 0 0 0 1 1

Each column of the incidence matrix corresponds to a distinct level of the

original covariates. Therefore, we can use standard feature selection algorithms,

such as those mentioned in 3.2, to identify important feature values.

Feature value selection using tree-based ensembles

The ACE algorithm can be easily extended to identify important feature values.

To do this, we need to modify the learning algorithm to extract importance scores

for individual levels within the categorical covariates. Consider a single decision

tree. At each node of the tree, the splitting algorithm selects the variable (Xi) that

provides the highest decrease in impurity as the variable to split the node on. Once a

variable (say Xi with Ji category levels) has been chosen, we can then iterate through

each category level (j, j = 1 to Ji) and compute its importance score, denoted as

variable-value importance (VVI) as follows

VV I(Xi j,T ) = ∑
n∈NT

Split weightn ∗4I(Xi j,n) (3.6)

where: Split weightn = 1 if the split is made on variable i, category level j at node

n. Since individual category levels are evaluated sequentially, we enforce a one-

versus-rest splitting rule at each node. This means that a split such as {a},{b,c,d}

will be allowed, while, a split such as {a,b},{c,d} will not be allowed.
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For an ensemble of M trees, we would simply average the importance score

in equation 4.3 over all M trees.

VV I(Xi j) =
M

∑
m=1

V I(Xi j,Tm)/M (3.7)

Since the feature value selection algorithm is based on the ACE algorithm,

it inherits all the desirable properties that tree-based ensemble methods possess -

from being robust to noise and outliers, to being able to handle strong non-linear

interactions. Additionally, the artificial contrasts used in the ACE algorithm allow

us to test the statistical significance of each feature value using p-values.

Feature value selection using model prediction error

We may also investigate the influence of a feature value Xi j by measuring its dele-

tion influence on the prediction (test) error. First, we split the dataset into a separate

training and test set and use an appropriate supervised learner on the training set

and compute the baseline prediction (test) error on the test set (T Eb). Then, we

force variable level Xi j to missing by deleting the cells of the dataset (training and

testing) that contain variable Xi j. Note that we only delete the cells of the data set

that contain Xi j and not the entire row of data. We build the model again on this

revised training set and again compute the test error (T Ei j). If variable Xi j is not

influential in predicting the response, then the new test error T Ei j should be close

to the baseline test error T Eb. On the other hand, if Xi j is an important predictor,

then we should see a deterioration in the predictive performance. By this logic, we

define the change in prediction error (T Ei j−T Eb) as a measure of variable value

importance. For the next iteration, we again start with the original dataset and delete

the next variable level. Since, we delete one variable at a time, we abbreviate this

method using OFAT (One Factor and A Time).
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1. Split the base dataset into a training and test set

2. Build a supervised model using the training set

3. Compute the baseline Test Error (T Eb) = Number of records misclassified
Total no. of records

4. For i = 1 to I

For j = 1 to Ji

Delete Xi j from the base dataset

Rebuild the supervised model using this transformed dataset

Compute the Test Error (T Ei j)

Compute the variable value importance VV I(Xi j) = T Ei j−T Eb

Next j

Next i

3.4 Simulation Study and Results

In this section, we present a detailed simulation study to demonstrate and compare

the performance of the different feature value selection strategies suggested in Sec-

tion 3.3. Our basic simulation is conducted using a framework of four categorical

factors (factor A with 64 levels, factor B with 32 levels, C with 16 and D with 8 lev-

els). Hence, in all there are 120 categorical levels from which to choose from. The

following parameters were varied during the simulation runs to create scenarios of

varying difficulty on which to test the suggested methods:

Simulation setup

• Response model - We wanted to generate data sets that exhibit nonlinear in-

teraction effects between the covariates and the response variable. To do

this, we used three interaction operators, OR, XOR and a combined (OR,
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AND) to define our covariate-response relationship. Given two binary vari-

ables (X1,X2), the OR logical disjunction results in true whenever one or more

of its operands (X1, X2) are true. The XOR operator on the other hand returns

a value of true if exactly one of the operands has a value of true (one or the

other but not both). For the AND response to be true, both its operands must

be true. The truth tables of (X1 OR X2) and (X1 XOR X2) are shown in Table

3.3.

The combined (OR, AND) condition is used to create a more complex in-

teraction between the input variable levels with the response variable and

can be best explained using the toy data set in Table 3.4. Here, the OR

function allows us to choose different levels from within a variable, say

{X1 : A1 OR X1 : A2} from variable X1 and just one level X2 : B2 from variable

X2. Now, the AND condition can be used to create an interaction between the

chosen variables. Hence, the final condition that defines the response variable

is {{X1 : A1 AND X2 : B1} OR {X1 : A2 AND X2 : B1}}

• Number of active levels k - A feature level that has a defined relationship

with the response variable is deemed as being active. At each replicate of

our simulation, we choose a total of k active levels out of the 120 possible

variable levels. For the OR and XOR cases, the simulation setup uses three

different choices for the number of active levels k: 5, 15 and 25. For the

combined OR, AND case, defining a three or four variable interaction results

in a highly unbalanced data set. Hence, we chose to draw k active levels ( 5

and 10) only from variables C and D. Variables A and B were still retained as

inputs and acted as noise variables. The average proportion of Class 1 records

in out simulations is shown in Table 3.5
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Table 3.3: Truth tables for OR, XOR and AND operators

Input1 Input2 OR Output XOR Output
X1 X2 y1 y2
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

Table 3.4: An example demonstrating the (OR, AND) response function

Row X1 : A1 X1 : A2 X1 : A3 X2 : B1 X2 : B2 X2 : B3 (OR,AND)
1 1 0 0 1 0 0 1
2 0 1 0 1 0 0 1
3 0 0 1 0 1 0 0
4 1 0 0 0 0 1 0

• Noise level - To analyze the effect of noise on the performance of the feature

value selection problem, we allowed the bits of the response variable to flip

with varying levels of probability denoted by p f . For the baseline case, we

set this probability to zero. For the OR and AND, we set p f = 0.1 for the

noisy case. However, for the OR, AND function , at k = 5, the proportion of

Class 1 records in the data set is as low as 4.6 %. Setting p f = 0.1 therefore

will result in a very low signal to noise ratio (roughly 50%). Hence, to keep

noise leves proportional to signal, we set the maximum p f = 0.05

Experiment Simulation

For each of 10 iterations, the following steps were carried out

1. Assign k active factor at random. Randomly assigning the active factors helps

reduce selection bias.

2. Using the k active factors and the response function (OR/XOR/ (OR,AND)),

define the response variables y.
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Table 3.5: Summary of simulation setup and resulting data sets

Response condition Number of active levels
k

Avg. proportion of
Class 1

5 0.133
XOR 15 0.337

25 0.436
5 0.141

OR 15 0.397
25 0.589

(OR, AND) 5 0.046
10 0.163

3. After the data is generated, each row of the binary response function is al-

lowed to flip with probability p(f).

Metrics for measuring accuracy

We used the following metrics to gage the performance of the feature value selection

method.

Sensitivity =
Number of correctly detected problem nodes

Total number of nodes
(3.8)

Specificity = 1− Number of nodes detected in excess
Total number of nodes

(3.9)

We expect successful methods to have large sensitivity and specificity. However,

these two metrics often counteract i.e. increasing the sensitivity of a method often

leads to a loss of specificity and vice-versa. Therefore, we define a derived metric

that will be reported in addition to the above two metrics :

d =
√

(1−Specificity)2 +(1−Sensitivity)2 (3.10)

The values for sensitivity and specificity are computed for each replicate

separately and are then averaged over the five replicates.
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Tuning Constants

Random forest and Gradient boosted tree provide an intrinsic measure of variable

importance that can be used to rank variables. However, with only variable impor-

tance scores, there is no obvious threshold to segregate important variables from a

potentially large subset of covariates. The list of importance values does not come

with an associated indication of which variables to include and which ones to ig-

nore. Hence, setting the tuning constant for these methods equates to selecting a

user-specified cut-off threshold for the variable importance scores. If we are too

lenient in setting this threshold, we might be fitting the model to noise and thereby

increase the rate of false alarms. If we are too strict with this threshold, we then run

the risk of missing relevant variables. Setting the threshold value is often an ad-hoc

process and the rule of thumb is to set the cut-off value between 5 % and 10 %.

For our experiments, we set a 5 % threshold and results are reported at this setting.

Additionally, performance curves (d v/s cut-off) are presented to better characterize

the performance of these approaches over a range of cut-off values.

In comparison, the ACE method provides a sound statistical basis for pick-

ing the cut-off threshold. In addition to providing variable importance scores, the

ACE method also generates p-values by comparing the variable importance scores

of original variables and artificially generated noise (contrast) variables. The p-

value is commonly used in statistical analysis and hence is well understood. As is

typical, we set the level of significance at 0.05. Any variable whose p-value is less

than 0.05 is retained while the others are discarded. However, note that the usual

rejection rule of (p≤ 0.05) often leads to a higher false positive rate when multiple

hypotheses are compared.
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To counter this problem of multiple hypothesis testing, we use a simple

Bonferroni adjustment (pad j = p/I), where I is the number of variables) for the

p-value threshold in the ACE method (Hochberg and Tamhane (1987)).

Each feature selection method has one or more tuning constants that bal-

ance the trade-off between model sensitivity and specificity. Since the χ2 method

of feature selection is based on a statistical hypothesis test, we can use a p-value ap-

proach to identify statistically significant features. We used the Bonferroni adjusted

p-value of 0.05/I as the level of significance. For the CFS method, the best first

search strategy was used to select feature subsets. We used the default settings and

stopped the search algorithm when sequentially expanding 5 search nodes (subsets)

did not yield an improvement in the merit score.

Simulation Results

Results for the XOR response simulations are shown in Table 3.6. Consider the no

noise case. Here, we see that the tree-based methods (I-ACE, I-RF, I-GBT and E-

ACE) perform very well. At the low (5) setting for active factors, all four methods

exhibit optimal performance (sensitivity = 1 and specificity = 1). The I-χ2 filter,

which evaluates each attribute individually, yields a perfect sensitivity score with a

slightly smaller but still acceptable specificity score (0.946). The CFS filter on the

other hand performs poorly with a sensitivity score of only 0.66.

At the medium setting for active levels (15), all four tree-based approaches

yield optimal (I-GBT, E-ACE) or near optimal performance (I-ACE, I-RF). These

models still retain a perfect sensitivity score and show very little deterioration in

the specificity scores, the lowest being 0.994 for I-RF. The CFS filter shows further

deterioration in sensitivity (0.54). Although the I-χ2 shows deterioration over the

previous setting, it still returns respectable performance. However, at the highest
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setting for active levels (25), both filters miss a lot of true positives and this can

be seen in very low sensitivity scores. The tree methods on the other hand show

excellent performance even at this setting with I-ACE and I-Rf still yielding perfect

sensitivity scores, while E-ACE and I-GBT show slight deterioration. In general,

the tree-based methods perform really well, even with high levels of active factors in

the system. Although performance difference between the tree-based methods may

not statistically significant, the E-ACE method ranks the best amongst its competi-

tors, resulting in the lowest d scores in for all three settings of active factors.

When noise is added to the system (p f = 0.1), at low to medium active

factor levels the tree-based approaches report perfect sensitivity scores with optimal

(I-GBT, E-ACE) / near optimal (I-ACE, I-RF) specificity scores. Both filters show

a similar pattern to the zero noise case. The CFS method still shows poor sensitivity

, while the I-χ2 method has acceptable performance. The sensitivity measure for

both filters shows deterioration at the 15 active factors setting due to noise. At

the most difficult setting for the simulation (15 active levels and p f = 0.1), the

performance of both filters deteriorates considerably, with sensitivity scores of less

than 46 %.The tree methods on the other hand continue to yield high sensitivity and

specificity.

The OFAT approach performs quite poorly even with a gradient boosted

tree model as the supervised learner. This however, is to be expected since we only

evaluate one variable at a time. Since we are experimenting on the XOR function,

there is a lot of variable redundancy built into the system. In other words, there

are other variable levels in the data that have the same/similar information content

as the one under investigation. Thus, the prediction error does not deteriorate even

though we delete one of the active factors from the data.
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Figures 3.1 and 3.2 show the performance curves for I-RF and I-GBT re-

spectively for the XOR response function. The value of the cut-off threshold (shown

between 0 to 0.15) is represented on the x-axis while the corresponding perfor-

mance metric (d) is plotted on the y-axis. Both figures show that low cut-off values

result in a high value for d (lower is better). As we increase the cut-off thresh-

old, the value of d decreases initially, reaches a minimum and subsequently starts

to increase again. This is so because, low cut-off values result in high sensitivity

and low specificity. As we increase the threshold, the sensitivity drops while the

specificity improves. These figures highlight a drawback of using RF or GBT or

any other variable ranking method for feature selection. While thumb rules may be

simple to implement, they do not always result in optimal feature subsets. Since in

practise, we would never know what the true performance curve looks like, there

is a real possibility of either missing an important feature or including insignificant

ones by setting a wrong (sub-optimal) threshold.

Results for the OR response variable are summarized in Table 3.7. Similar

to the XOR case, tree-based methods exhibit high sensitivity and specificity scores

across all simulation settings. In fact, all tree-based approaches result in perfect

performance scores when the number of active levels is held at 5 and 15, with

zero noise. At the 25 active levels and zero noise setting, the I-ACE and E-ACE

approaches slightly outperform the I-RF and I-GBT approaches. The I-χ2 method

yields a perfect sensitivity score at all three settings for active levels. However,

this sensitivity performance comes at the price of poor specificity. The specificity

score drops to as low as 0.772 at the highest active level setting. The CFS filter

performs very poorly compared to any of the other approaches. A similar behavior

is observed when noise is added to the system. For the low and medium active

levels setting, the tree-based methods show perfect sensitivity scores whilst still
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Table 3.6: Simulation results for the XOR response function

Noise Active
Lev-
els

Metrics Ind
ACE

Ind
RF

Ind
GBT

Ind
CFS

Ind
χ2

Embed
ACE

Deleting
OFAT
GBT

I-
ACE

I-RF I-
GBT

I-
CFS

I-χ2 E-
ACE

0 5 Sensitivity 1 1 1 0.66 1 1 1
0 5 Specificity 1 1 1 1 0.946 1 1
0 5 d 0 0 0 0.34 0.054 0 0
0 15 Sensitivity 1 1 1 0.54 0.973 1 0.247
0 15 Specificity 0.996 0.994 1 1 0.923 1 1
0 15 d 0.004 0.006 0 0.46 0.098 0 0.753
0 25 Sensitivity 1 1 0.956 0.488 0.572 0.992 0.08
0 25 Specificity 0.988 0.973 1 1 0.974 1 0.994
0 25 d 0.012 0.027 0.044 0.512 0.433 0.008 0.92
0.1 5 Sensitivity 1 1 1 0.66 1 1 0.98
0.1 5 Specificity 0.967 1 1 1 0.98 1 0.999
0.1 5 d 0.033 0 0 0.34 0.02 0 0.021
0.1 15 Sensitivity 1 1 1 0.533 0.927 1 0.262
0.1 15 Specificity 0.971 0.992 1 1 0.968 1 1
0.1 15 d 0.029 0.008 0 0.467 0.1 0 0.738
0.1 25 Sensitivity 0.944 1 0.988 0.432 0.452 0.96 0.084
0.1 25 Specificity 0.957 0.903 0.993 0.997 0.993 0.998 0.995
0.1 25 d 0.079 0.097 0.019 0.568 0.548 0.042 0.916

retaining high specificity. At 25 active levels, these methods continue to provide

high levels of performance, with the lowest sensitivity being 0.944 for the I-RF

model. Corresponding performance curves for the I-RF and I-GBT approaches are

shown in Figure 3.3 and Figure 3.4 respectively.

Results for the combined (OR,AND) response function are presented in Ta-

ble 3.8. As is evident, the I-ACE, I-GBT and E-ACE methods perform exceedingly

well for the no noise case at 5 and 10 active levels respectively. The I-RF approach

performs well when there are only 5 active factors in the simulation. However, at

10 active factors, this method suffers in specificity. The perfect sensitivity score of

the approach is misleading since it classifies nearly all levels of factors C and D

as important. By doing this, it gives us no information about which levels are in

fact important. The I-χ2 method performs even worse and is not able to distinguish
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Figure 3.1: Performance curves for I-RF and XOR response. The usual threshold
band between 0.05 and 0.1 is highlighted.

between the feature levels for either factors C or D. The I-CFS approach, as in the

OR and XOR case continues to perform poorly with low sensitivity and specificity

scores. With noise added to the system, the I-ACE, I-GBT and E-ACE approaches

continue to perform very well. Similar to the no noise case, the I-RF performs well

when there are only 5 active factors in the model. However, at a higher setting this

approach breaks down and produces a very low sensitivity score. At the low active

levels setting, the I-χ2 approach performs poorly and is unable to distinguish be-

tween variable levels. The I-CFS again performs poorly in terms of both sensitivity

and specificity.

The performance curves for the I-RF approach, shown in Figure 3.5 shows

an interesting pattern. The value of d decreases rapidly between 0.01 and 0.05,
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Figure 3.2: Performance curves for I-GBT and XOR response. The usual threshold
band between 0.05 and 0.1 is highlighted.

stabilizes between 0.05 and 0.1 and then again decreases between 0.1 and 0.15.

Thus, in theory, the I-RF results in Table 3.8 can be further improved by setting a

higher value for the cut-off threshold. However, in practise, we would never know

the true nature of the performance curve and therefore, for this experiment, we end

up with a subset of features that contain many false positives.

3.5 Conclusion

Models in these complex environments can benefit from feature selection methods

to extract compact, non-redundant feature subsets from the data. In many situa-

tions, additional model simplification can be achieved by extracting specific lev-

els/values that contribute to variable importance. In this research, we proposed
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Table 3.7: Simulation results for the OR response function

Noise Active
Lev-
els

Metrics Ind
ACE

Ind
RF

Ind
GBT

Ind
CFS

Ind
χ2

Embed
ACE

Deleting
OFAT
GBT

I-
ACE

I-RF I-
GBT

I-
CFS

I-χ2 E-
ACE

0 5 Sensitivity 1 1 1 0.66 0.94 1 0.94
0 5 Specificity 1 1 1 1 1 1 1
0 5 d 0 0 0 0.34 0.06 0 0.06
0 15 Sensitivity 1 1 1 0.573 0.967 1 0.497
0 15 Specificity 1 1 1 1 1 1 1
0 15 d 0 0 0 0.427 0.033 0 0.503
0 25 Sensitivity 1 0.936 0.956 0.344 0.928 1 0.181
0 25 Specificity 0.995 0.994 1 1 1 1 1
0 25 d 0.005 0.067 0.044 0.656 0.072 0 0.819
0.1 5 Sensitivity 1 1 1 0.7 1 1 0.94
0.1 5 Specificity 0.983 1 1 1 0.99 0.997 0.999
0.1 5 d 0.017 0 0 0.3 0.01 0.003 0.061
0.1 15 Sensitivity 1 1 1 0.52 1 1 0.422
0.1 15 Specificity 0.942 0.995 1 1 0.968 1 1
0.1 15 d 0.058 0.005 0 0.48 0.032 0 0.578
0.1 25 Sensitivity 1 0.944 0.98 0.476 0.968 0.96 0.14
0.1 25 Specificity 0.953 0.987 1 1 0.962 0.985 1
0.1 25 d 0.047 0.062 0.02 0.524 0.061 0.043 0.86

Table 3.8: Simulation results for the (OR,AND) response function

Noise Active
Lev-
els

Metrics Ind
ACE

Ind
RF

Ind
GBT

Ind
CFS

Ind
χ2

Embed
ACE

Deleting
OFAT
GBT

I-
ACE

I-RF I-
GBT

I-
CFS

I-χ2 E-
ACE

0 5 Sensitivity 1 1 1 0.92 1 1 0.6
0 5 Specificity 1 0.986 1 0.984 0.835 1 1
0 5 d 0 0.014 0 0.089 0.165 0 0.4
0 10 Sensitivity 1 1 1 0.59 1 1 0.731
0 10 Specificity 1 0.888 1 0.911 0.873 1 1
0 10 d 0 0.112 0 0.42 0.127 0 0.269
0.05 5 Sensitivity 1 1 1 0.92 1 1 0.88
0.05 5 Specificity 0.994 0.962 1 0.99 0.931 1 1
0.05 5 d 0.006 0.038 0 0.086 0.069 0 0.12
0.05 10 Sensitivity 1 1 1 0.59 1 1 0.69
0.05 10 Specificity 0.99 0.877 1 0.926 0.873 1 1
0.05 10 d 0.01 0.123 0 0.417 0.127 0 0.31
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Figure 3.3: Performance curves for I-RF and OR response. The usual threshold
band between 0.05 and 0.1 is highlighted.

different strategies to address this problem of Feature Value Selection and studied

their comparative performance using simulated datasets.

Our first strategy used a simple data transformation to convert all categori-

cal variables into a binary indicator variables. This allowed us to use standard, well

researched feature selection methods on the binary incidence matrix to extract im-

portant feature levels/ values. Through simulated experiments, we showed how this

approach works well, especially when used with tree-based feature selection meth-

ods. Amongst the tree-based methods, the I-ACE approach performs very well and

has the added advantage since it uses a statistical hypothesis based approach to se-

lect significant feature levels. While the I-RF and I-GBT methods are competitive,

their performance is sensitive to the cut-off threshold value, which often times is set
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Figure 3.4: Performance curves for I-GBT and OR response. The usual threshold
band between 0.05 and 0.1 is highlighted.

based on user preference. In general, this strategy is easy to implement since it can

leverage existing feature selection methods and is compatible with future research

as well. However, one of its drawbacks is that it needs extra storage space for the

transformed incidence matrix.

To alleviate this problem, we proposed a strategy, labelled as E-ACE, that

builds upon the ACE approach. A new measure for feature value importance was

defined and computed as a part of the tree induction algorithm. In experimental

comparisons, this method performed exceedingly well with very high sensitivity

and low false alarms. Since this approach is based on the ACE algorithm, it inherits

all the desirable properties that tree-based ensemble methods possess - from being

robust to noise and outliers, to being able to handle strong non-linear interactions.
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Figure 3.5: Performance curves for I-RF and AND response. The usual threshold
band between 0.05 and 0.1 is highlighted.

Additionally, the artificial contrasts used in the ACE algorithm allow us to test the

statistical significance of each feature value using p-values.
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Figure 3.6: Performance curves for I-GBT and AND response. The usual threshold
band between 0.05 and 0.1 is highlighted.
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Chapter 4

HIGH DIMENSIONAL SUPPLY CHAIN SURVEILLANCE THROUGH

NETWORK FEATURE SELECTION

4.1 Introduction

In a global market place, an effective and efficient supply chain network often pro-

vides a significant cost advantage over the competition. Rapid technological de-

velopments in product technology have significantly shortened the life cycles of

products and have necessitated the need for highly agile supply chains; thus adding

complexity to the entire supply chain network. This is an ever increasing problem

as companies branch out into newer products and newer markets. As supply chains

expand to envelope other organizations spread across the globe, there is a marked

increase in the variety of risk factors they are exposed to. At the same time, the sheer

number of nodes (processing / holding locations) and routes involved in catering to

a wider audience has significantly reduced the ability to detect and localize elements

of the network that may be contributing to poor supply chain performance.

Over the last decade, advancement in tracking and measuring systems have

enabled the collection of vast amounts of data associated with supply chain network.

Radio-frequency identification (RFID) and GPS based systems can provide accu-

rate data regarding the exact location of each shipment thoughout the entire sup-

ply chain. Shipment specific data such as its product identification number (SKU

number), weight, volume and other related characteristics can be easily traced and

recorded. Enhanced tracking also enables us to measure the performance of the

supply chain at individual shipment levels using metrics related to perfect order,

order fulfilment lead time, cycle time, inventory level, supply chain costs etc. Ad-

ditionally, network related attributes such as route capacity, as well as global and

local risk factors (power outages, extreme weather events etc.) can often be layered

51



on top of shipment related data sources. With such information rich data sources,

it is valuable to look for patterns in them that can help make more targeted and

better-informed network improvement decisions.

Given a complex supply chain network with hundreds (even thousands) of

nodes, the aim of a surveillance system is to aid in detecting problems (say, de-

terioration in performance metrics) and then localizing the source nodes that may

be contributing to it. This is a nontrivial task given the sheer dimensionality of

real-world networks, and the messy data they generate. Data sets collected from

disparate sources are often riddled with outliers and missing values, exhibit strong

non-linear relationships, and contain data in the form of continuous as well as cate-

gorical variables with significant redundancy. The aim of this research is to develop

robust tools that aid in localizing supply chain problems to a subset of network

nodes or routes while confronting the disparate, complex information associated

with the network.

To accomplish these tasks, we propose to start with a transformation of the

monitoring issue to a supervised learning problem and then employ robust, scal-

able learners and feature extraction strategies to identify and extract nodes(features)

from the network - a solution we call network feature extraction (NFE). The so-

lution generated here is envisioned to be a component of a surveillance systems

which aims to improve supply chain visibility. The unique aspects of the proposed

method are 1) capability to detect anomalies, not only in the graph structure, but

within localized regions of this high-dimensional space of network attributes. 2)

the capability to integrate disparate data from multiple sources which exhibit all

the nuances of ”messy” datasets such as missing values, non-linear structures, and

mixed variable types.
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Although supply chain networks are a primary focus of this research and

our discussion therein, we believe that the same set of tools and methodologies can

be applied to a wide variety of applications. For example, air traffic networks could

use these tools to identify which multi-stop routes or airports lead to high rates of

lost baggages.While not a network in the traditional sense, manufacturing processes

could use these methods to identify which tool combinations lead to poor yield.

4.2 Literature review

One approach for problem localization in large networks relies on determining the

importance of an individual node or route within the overall chain by using node

specific indices. In transportation networks, critical highway segments are identi-

fied and monitored using indices such as the volume / capacity (V/C) ratio (Dheena-

dayalu et al. (2004)) or the network robustness index (Scott et al. (2006)). While

this detection and monitoring approach is simple to implement, creating separate

monitors for hundred to thousands of nodes / routes can potentially increase false

alarms.

Another widely used approach is to determine the importance of the node

based on its location in the network. Measures based on node degree have pre-

viously been used by Bavelas (1948) and Freeman (1979). Borgatti (2006) and

Arulselvan et al. (2009) proposed measuring node importance by computing the

maximum network fragmentation that occurs as a result of deleting those nodes

from the network. These approaches rely entirely on the structure of the network

and are therefore, more useful for comparing and determining the robustness of dif-

ferent network during the planning stage. However, they are unable to assimilate

the rich sources of data that are often found in real-world networks. Not only is

it important to identify critical nodes in the network, but also to determine which

covariates are involved in the failure at these nodes.
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4.3 Background

Given a complex supply chain network with potentially thousands of nodes and

routes, our goal in using a feature selection strategy is to find a compact, non-

redundant subset of the network nodes for further investigation. Complex network

designs, along with detailed information regarding the state of each shipment and

node in the network can lead to information rich data sets. However, non-traditional

characteristics of the resultant data sets make it necessary to choose a feature selec-

tion algorithm that can successfully handle the following challenges:

• High dimensionality: Real-world networks involve hundreds (even thousands)

of nodes and can carry millions of shipments per day. Dozens of variables

(attributes) per shipment or node are common. Combined together, this leads

to really high dimensions for the data set and hence model over fitting is a

strong concern. Methods are needed that enable the relevance of variables to

be statistically quantified, thereby aiding model building.

• Disparate data types: Categorical variables, such as node and route identi-

fiers, as well as continuous variables such as shipment weight, volume etc. are

expected in such data. Dramatically different scales (units) might be present

for numerical measurements. Traditional attribute standardization can col-

lapse true relationships (structure) in the data (Friedman et al. (2001)) and

hence methods that are invariant to scale are needed.

• Missing data and outliers: Dirty data with extensive missing values should

be expected when data sources are numerous. Also, measurement system and

tracking errors can lead to outliers in the feature space as well as the output
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(response) space. To avoid extensive preprocessing efforts, methods that are

intrinsically robust to missing values and outliers are needed.

• Nonlinear relationships: Due to the multivariate nature of the data, nonlin-

ear interactions between shipment level variables and node variables are ex-

pected. For example, only shipments above a certain weight may have delay

issues at certain nodes. Also, transient effects, such as supply chain prob-

lems that affect nodes during a certain time period are expected to exhibit

themselves in the data set.

• Variable masking: A large fraction of the variables in the data set are expected

to be highly correlated with each other. It is useful to identify important

variables along with alternatives or replacements with similar information

content.

The artificial contrasts with tree-based ensembles (ACE) method suggested

by Tuv et al. (2006, 2009) has been successfully used in a wide range of applications

to extract compact, non-redundant sets of variables from complex data sets. This

feature selection method is based on ensembles of decision trees which can easily

deal with thousands of variables (predictors) and can be applied to mixed variable

types. Since these methods are invariant to scale, it is not necessary to extensively

preprocess (standardize) the data. This also makes these methods robust to outliers

[Breiman (2001)]. Additionally, tree models can intrinsically handle missing values

through mechanisms such as surrogate splits [Breiman et al. (1984)]. More impor-

tantly, tree-based ensembles provide an embedded measure of variable importance

that aids in selecting the most relevant features.
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Since our proposed method - network feature extraction - is based on the

ACE algorithm, we begin by providing an overview of the ACE algorithm (Section

4.3), followed by details of how it can be extended to extract feature values/levels

(Section 4.3).

Feature selection using artificial contrasts

Tree based ensemble models, especially the random forest model used in our pro-

posed method construct a set of simple decision trees, and use their weighted out-

come to predict new data. The measure of variable importance for a single decision

tree (T) is given by

V I(Xi,T ) = ∑
n∈NT

4I(Xi,n) (4.1)

where4I(Xi,n) = I(n)− pLI(nL)− pRI(nR) is the decrease in impurity because of

an actual (or potential) split on variable Xi at a node n of the optimally pruned tree

T . For an ensemble of M trees, Random forests simply averages the importance

score in equation 4.1 over all M trees.

V I(Xi) =
M

∑
m=1

V I(Xi,Tm)/M (4.2)

However, this only solves a part of the problem. With only variable impor-

tance scores, there is no obvious threshold to segregate important variables from a

potentially large subset of covariates. The list of importance values does not come

with an associated indication of which variables to include and which ones to ig-

nore. Randomly setting this noise threshold often carries two types of risks with it.

If we are too lenient in setting this threshold, we might be fitting the model to noise

and thereby increase the rate of false alarms. If we are too strict with this threshold,

we then run the risk of missing relevant signals.

To remedy this, the ACE method uses artificially created noise variables,

also referred to as contrasts to set the noise threshold in the system. The logic be-
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hind their method is quite elegant : The variable importance score from the ensem-

bles is based on the relevance of the variable with regards to the target or response

variables. For the variable to be relevant or significant, this score should be higher

than the score for an artificially created variable (that is generated to be irrelevant

to the target). That is, a higher variable importance score is expected out of a true

relevant variable than from an artificially created noise (contrast) variable. Only

a variable with a significant difference (as measured with a p-value) from the kth

percentile (say, 90th) of artificial variables is considered to be an important feature.

Therefore, this approach eliminates guess work by providing an objective measure

based on p-values for defining significant variables and segregating them from ir-

relevant noisy ones.

A similar method is used to identify and remove redundant variables. A

modified surrogate score, called a masking score, is computed between all pairs

of variables (including contrast variables) using a gradient boosted tree (Friedman

and Meulman (2003)). For a single replicate, an upper percentile (say, 75th) of the

masking score between the original variables and contrast variables is computed.

After several replicates, a mean is calculated, which defines the threshold against

which all masking scores between original variables is compared using a t-test. If

the masking score between two original variables is statistically greater than the

mean of the 75th percentile, then the masking score is kept. To remove redundancy,

the variable with the highest importance score is retained, and every other variable

with a significant making score with it is eliminated.

Thus in summary, the ACE method generates p-values for : (a) identify-

ing relevant subsets of variables that have a statistically significant impact on the

response and (b) identify correlated or masked variables, thereby eliminating re-

dundant variables.
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Feature Value Extraction

Feature selection techniques such as the one described above enable us to identify

the most important set of variables that impact the response. However, in many

situations, identifying important variables is not always sufficient. Often times, it

is necessary to investigate each variable and identify which specific values or levels

of the variable contribute to its importance. For instance, identifying that shipment

weight contributes to delays is not very informative. It is far more productive to fig-

ure out the exact weight values (say, heavy items > 50 pounds) that result in delays.

Similarly, a model which indicates that a bulk of product defects occur during the

manufacturing stage is probably not going to help us solve the problem. It would

be far more meaningful to localize the problem to the exact manufacturing location

(node in the network). This problem can be referred to as feature value selection,

where one identifies the specific levels and/or ranges of the important covariates

that are leading to relevant changes in the data. Dávila (2010) applied feature value

selection using rule-based methods for public health surveillance. Subsequently,

Shinde et al. (2012), expanded on this work and compared the performance of dif-

ferent implementation strategies for feature value selection.

The ACE algorithm can be easily extended to identify important feature

values. To do this, we need to modify the learning algorithm to extract importance

scores for individual levels within the categorical covariates. Consider a single

decision tree. At each node of the tree, the splitting algorithm selects the variable

(Xi) that provides the highest decrease in impurity as the variable to split the node

on. Once a variable (say Xi with Ji category levels) has been chosen, we can then

iterate through each category level (j, j = 1 to Ji) and compute its importance score,

denoted as variable-value importance (VVI) as follows
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VV I(Xi j,T ) = ∑
n∈NT

Split weightn ∗4I(Xi j,n) (4.3)

where: Split weightn = 1 if the split is made on variable i, category level j at node

n. Since individual category levels are evaluated sequentially, we enforce a one-

versus-rest splitting rule at each node. This means that a split such as {a},{b,c,d}

will be allowed, while, a split such as {a,b},{c,d} will not be allowed.

For an ensemble of M trees, we would simply average the importance score

in equation 4.3 over all M trees.

VV I(Xi j) =
M

∑
m=1

V I(Xi j,Tm)/M (4.4)

Since the feature value selection algorithm is based on the ACE algorithm,

it inherits all the desirable properties that tree-based ensemble methods possess -

from being robust to noise and outliers, to being able to handle strong non-linear

interactions. Additionally, the artificial contrasts used in the ACE algorithm allow

us to test the statistical significance of each feature value using p-values.

4.4 Methodology
Network transformation for supervised learning

From a graph-theoretic perspective, a supply chain network can be viewed as a di-

rected acyclic attributed graph G = (V,E) with nodes V = {v1, v2, ... , vV} and

directed links E. A node in the network denotes a candidate location for holding

inventory for the stock keeping unit (SKU) and the arcs represent transportation

routes between the nodes. The nodes in the network are assumed to follow a struc-

ture defined in terms of functional/processing stages such as part procurement, man-

ufacturing or assembly, transportation, distribution and retail. Thus each stage i (i =

1 to I), denoted using variable Xi, represents a processing activity of a stock keeping

unit (SKU) while each node j (j = 1 to Ji) belonging to stage i and denoted using
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variable Xi j represent the actual location at which the processing is carried out. A

representative network is shown in Figure 4.1.

Using case-event data, a supply chain network can be transformed into a

supervised learning problems in a simple, yet effective manner. To do this, the

network is characterized as a series of transactions. We view each transaction Tn

(n = 1 to N) that traverses through the network as being attributed. Each transac-

tion can encode information that is abstracted from the network, the path traversed

over the network, or from the transaction itself. For each transaction, we record the

stages Xi as well as the actual nodes (Xi j’s) through which the shipment traversed

across the network. This transaction framework allows for a flexible collection of

disparate attributes (transaction, time or network related) to be combined from mul-

tiple sources. For example, we could record transactional attributes such as product

price, package size, weight, life cycle stage etc. Additionally, macro-economic vari-

ables around the time of the shipment may also be included. Attributes associated

with the network itself can be appended to the data. Examples of network related at-

tributes could include the presence or absence of a variety of disruptive events (such

as extreme weather or power outages etc.). Note that attributes associated with in-

dividual nodes in the network can also be added to the data set. However, a split

based on a stage variable (Xi) will inherently consider all partitions of the nodes. In

other words, this partition implicitly detects if node attributes are important to the

target or not.

Let Ua (a = 1 to A) denote the ath attribute and let Una denotes its value

associated with transaction Tn. Similarly, let Yn denote the variable that measures

the supply chain performance metric at the transaction level. For example, one

possible definition of Yn could be the turn around time for the shipment or we could
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use an indicator for whether the shipment was on time or late. Thus, the complete

set of variables that characterizes a transaction is represented by {Xi j,U,Y}

Stage 1 
Procurement 

Stage 2 
Manufacturing 

Stage 3 
Trans-shipment 

Stage 4 
Manufacturing 

Stage 5 
Distribution 

Direction of material flow 

Figure 4.1: Example of a supply chain network with five stages : Stage 1 (pro-
curement) with five facilities, Stage 2 (manufacturing) with two facilities, Stage 3
(trans-shipment) with four facilities, Stage 4 (manufacturing) followed by a distri-
bution stage with four locations

A sample representative data table for the network transformation with re-

gards to Figure 4.1 is shown in Table 4.1. Notice that the indicator vectors weather

(U1) and power outage (U2) denote the presence (1) or absence (0) of disruptive

events on the path that the shipment traversed and therefore represent network-level

attributes. The column vectors weight (U3) and volume (U4) represent transaction-

level attributes. For each shipment the node through which it passed (Xi j) is recorded

in the appropriate stage that contains the node. The response vector (Yn) denotes

whether the transaction arrived on time or not.
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Network Feature Extraction

Given this set up, we are interested in identifying a compact, non-redundant set of

variables - stages (Xi) and network/transactional attributes( Ua) - that have a statis-

tically significant impact on he supply chain performance measure of interest (Y).

The current data table format enables us to address this problem through the use

of a wide range of feature selection techniques [Kohavi and John (1997); Breiman

(2001); Tuv et al. (2009); Guyon et al. (2002)]. Feature selection techniques will

enable us to identify which stages in the supply chain process provide us with in-

formation regarding the response variable. However, to provide more visibility, we

need to drill this problem down to the node level (Xi j) and identify the exact set of

nodes that interact to produce the observed effects. To do this, we use the feature

value selection technique described in section 4.3. Because the feature value selec-

tion method is applied to extract network features, we call this solution the network

feature extraction (NFE) method.

Since the NFE method is based on the ACE algorithm, it generates p-values

for each variable (U,V,Xi j) by comparing the its importance score with that of arti-

ficially generated noise variables. This provides us with a strong statistical basis for

segregating variables that have a statistically significant impact on the output mea-

sure (Y ) from insignificant variables. Also, the p-value threshold can be adjusted

to balance the true and false positive rates. The usual rejection rule of (p ≤ 0.05)

often leads to a higher false positive rate when multiple hypotheses are compared.

It is easy to incorporate a simple Bonferroni adjustment for the p-value threshold in

the NFE method to counter this problem of multiple hypothesis testing (Hochberg

and Tamhane (1987)).
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Table 4.1: Example of a network transformation into a data table

Id Stage
1

Stage
2

Stage
3

Stage
4

Stage
5

Weather
Dis-
rup-
tions

Power
Out-
ages

Weight Volume On-
time?

X1 X2 X3 X4 X5 U1 U2 U3 U4 Y
1 Part-

0001
Stage1-
Manuf-
0001

Trans-
0001

Stage2-
Manuf-
0003

Dist-
0002

No No 3.1 05 Yes

2 Part-
0002

Stage1-
Manuf-
0002

Trans-
0004

Stage2-
Manuf-
0004

Dist-
0004

No No 2.8 10 Yes

3 Part-
0002

Stage1-
Manuf-
0002

Trans-
0004

Dist-
0001

Yes No 3.8 20 No

4 Part-
0005

Trans-
0003

Stage2-
Manuf-
0004

Dist-
0003

Yes Yes 3.5 35 Yes

Feature visualization using partial dependency plots

After important variables and their associated variable levels have been identified,

an important step is to understand the nature of the dependency of the output on

these the relevant covariates [Friedman et al. (2001)]. Visualization of the predicted

function f (x) over the input space defined by the sub-network and its attributes

is a powerful tool to interpret the model. However, direct visualization is limited

by the number of input variables that can be handled successfully. Instead, we

apply the graphical summary referred to as partial dependence plots to add inter-

pretability to our model [Friedman (2001)]. Partial dependence functions represent

the effect of the covariate on the output after accounting for the average effects of

other covariates. Plotting the partial dependence of f (x) can help us gain a deeper

understanding of the nature of the interaction between the problem nodes and the

attributes associated with them.
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4.5 Simulation studies and results

In this section, we present simulation studies to demonstrate how the network fea-

ture extraction method can be used to detect problems in the supply chain and local-

ize it to the source nodes (Section 4.5). We also present an example of how partial

dependency plots can be combined with NFE to visualize the interaction between

network nodes (Xi j’s) and transactional attributes (Ua’s) (4.5). We end this section

with an illustration of how the NFE method can potentially be used to provide a

minimalistic summary of the network when entire routes are affected (4.5).

Problem localization through network feature extraction

Consider the network shown in Figure 4.2. This network consists of 60 nodes

spread across four stages and is unique in that any downstream node (successor)

can be reached by any of its upstream (predecessor) nodes. For this study our

learning objective is to identify nodes in this network that result in some form of

deteriorated supply chain performance (say, shipment delays).

Simulation setup

We simulated data to represent the flow of a product over this network in accordance

to the flow relationships defined by the nodes and directed arcs of the network. To

begin, we randomly choose k nodes out of 60. A binary response variables Y is

defined such that if the shipment passes through any of these k selected nodes,

then it is flagged as delayed (denoted as class 1). If the shipment bypasses these

nodes, then it arrives on time (denoted as class 0). To make the experiments more

realistic, we introduce another parameter, probability of delay (pd), that defines the

probability that a shipment passing over any of the k active nodes gets delayed. A

value of pd = 1 would imply that all shipments passing through an active node are

delayed. A value of pd = 0.1 indicates that there is only a 10 % chance that the
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Figure 4.2: Simulated network design for experimentation

shipment will get delayed at each active node. For our experiments, we used three

levels for k : 1, 6 and 12 and two levels for pd : 0.25 and 0.10. Since the flow of

shipments over this network is stochastic in nature, we ran five replicates at each

experimental setting. Note that at each replicate, we start by randomly selecting k

new nodes.

Metrics for measuring accuracy

We used the following metrics to gage the performance of the network feature ex-

traction method.

Sensitivity =
Number of correctly detected problem nodes

Total number of nodes
(4.5)

Specificity = 1− Number of nodes detected in excess
Total number of nodes

(4.6)
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We expect successful methods to have large sensitivity and specificity. The values

for sensitivity and specificity are computed for each replicate separately and are

then averaged over the five replicates.

Results

The result of applying NFE on the simulated experimental data is summarized in

Table 4.2. In addition to reporting the experimental setting and the corresponding

accuracy metrics, we also report the average proportion (over five replicates) of the

data set that was classified as delayed (class 1). This metric is a measure of the

unbalance in the data set (class 1 versus class 0) and indicates the rarity of delays

(problems) in the network. Also note that we used a simple Bonferroni adjustment

for the p-value threshold in the NFE method i.e. pad j = p/n, where n is the number

of nodes in the network.

With just one active node, the proposed method has a perfect score for sen-

sitivity (true positive rate) and specificity (false positive rate). This is important for

surveillance and monitoring models since a lot of time and effort is often wasted

in investigating false alarms. This is encouraging, especially since the data set is

highly unbalanced i.e. only a very rare fraction of the data set contains delayed

shipments (class 1).

For six active factors, the dataset is again unbalanced with approximately 6

% (at pd = 0.1) and 14 % (at pd = 0.25) of the entire shipments data being flagged

as delayed. In spite of such rare proportions, the NFE method provides ideal results

by exhibiting perfect scores for sensitivity and specificity. In other words, none of

the significant signals from the network are missed, and again, no false signals are

detected. As we increase the number of active factors, the problem becomes much

more difficult to handle as more signals need to be detected. The sensitivity drops
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Table 4.2: Mean accuracy metrics for NFE method after five replicates

k Pd Sensitivity Specificity % of ship-
ments with
delays

1 0.25 1 1 2.87 %
6 0.25 1 1 14.30 %
12 0.25 0.96 1 20.23 %
1 0.1 1 1 1.16%
6 0.1 1 1 6.1 %
12 0.1 0.83 1 9.2 %

to 0.83 when the probability of delay is further reduced to 0.1. At pd = 0.25, we see

only a slight deterioration in performance. Sensitivity at this setting is fairly high at

0.96 with perfect specificity scores.

Figure 4.3 graphically illustrates how the method is used to summarize the

network from one of the replicates (12 active nodes, pd = 0.25 from this method.

The active nodes identified by the proposed method are highlighted in bold along

with the paths that join them. It is evident from the figure that the NFE method

can be used to extract a sub-network of nodes and arcs that contain the maximum

information regarding the performance measures for the entire chain. This is clearly

an advantage since further investigations can be focused on this sub-network rather

than the entire network of 60 nodes.

Detecting interactions between nodes and transactional attributes

Localizing supply chain problems to a subset of nodes is only a starting point to-

wards network improvements. Many a times, performance deterioration at a node

can be further explained by the attributes of the shipments that flow through those

nodes. For example, a large proportion of delays may be linked to certain types of

shipments such as bulkier items. Similarly, performance of the supply chain can be

linked to node or route specific attributes such as blackouts, extreme weather con-
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Figure 4.3: Nodes identified using NFE as being important in predicting shipment
delays.

ditions etc. Thus drilling down the problem from a node level to a shipment/node

attribute level can often provide critical improvement insights. One advantage of

our proposed method is its ability to assimilate a wide variety of shipment and/or

network related information.

We modify our previous experiment to incorporate shipment level data to

illustrate the usefulness of our method in detecting node-shipment attribute interac-

tions. Two new factors, shipment weight (pounds) and volume (m3) are recorded

for each shipment. The response variable is defined such that at the active nodes,
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shipments over 70 pounds get delayed. The probability of delay (pd) at the active

nodes is held at 0.25 and we used 6 active nodes in the network.

Results of the experiments are summarized in Table 4.3. As in the previous

experiment, the NFE method does an excellent job of identifying the problem nodes

in the network. Additionally, weight is correctly identified as an important variable

in predicting delays. Partial dependency plots between weight and each stage of the

network for one of the replicates (replicate 5) are shown in Figure 4.4. Visually, it

is evident that for each stage, the behavior of the partial dependency function is dis-

tinctly different for the active nodes as compared to the inactive nodes. Also, there

is a marked difference for shipment weight more than 70 pounds. Thus, combining

partial dependency plots with the NFE method can significantly help in understand-

ing the nature of the interaction by allowing analysts to localize and visualize fault

patterns in the network.

Figure 4.4: Partial dependency plot illustrating node-weight interaction for replicate
5.
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Table 4.3: Accuracy metrics for NFE method with extraneous attributes

Replicate Active
Factors

Factors
Detected

Sensitivity Specificity % of ship-
ments with
delays

1 {A6, B2,
C2, C4,
D4, D21},
Weight

{A6, B2,
C2, C4,
D4, D21},
Weight

1 1 4.13%

2 {A4,
B1, C10,
C13, D28,
D30},
Weight

{A4, B1,
C10, C13,
D28, D27,
D30},
Weight

1 0.983 4.33%

3 {A2,
B2, C10,
C16, D14,
D28},
Weight

{A2,
B2, C10,
C16, D14,
D28},
Weight

1 1 4.01%

4 {A4,
B1, C11,
C15, D12,
D20},
Weight

{A4,
B1, C11,
C15, D12,
D20},
Weight

1 1 4.05%

5 {A7,
B3, C10,
C13, D11,
D22},
Weight

{A7,
B3, C10,
C13, D11,
D22},
Weight

1 1 3.76%

Flow over structured real-world networks

The previous example demonstrated the usefulness of our proposed method over a

densely connected network. However, geographical feasibility, delivery and man-

ufacturing costs, risk strategies and other such factors influence the design of the

network. Most real-world networks therefore, exhibit local structures. For exam-

ple, a manufacturing plant may use only a subset of suppliers and in turn may only

deliver products to a few distribution centres. In this section, we demonstrate the

70



applicability of our method to one such supply chain network. The chain described

in this section is an actual supply chain model that has been implemented in prac-

tice and therefore exhibits complexities that are associated with real-world supply

chains. For a complete description of this model, please refer Willems (2008).

Figure 4.5 is an example of a supply chain used in the delivery of com-

puter peripheral equipment. The network allows for three possible shipment rout-

ings: 1) Procurement → Stage 1 - Manufacturing → Transshipment → Stage2

- Manufacturing → Distribution, 2) Procurement → Transshipment → Stage2 -

Manufacturing→ Distribution and 3) Procurement→ Stage 1 - Manufacturing→

Transshipment→ Distribution.

Consider the route Part-0001 → Stage 1 - Manuf-0001 → Trans-0001 →

Stage2 - Manuf-0003 → Dist-0002. It is evident from the figure that the entire

information content of the route is contained in a single node - Part-0001. Put

another way, in the context of this study, Part-0001 represents the minimal node

set that contains all necessary information regarding the route. Similarly, the route

Part-0005→ Trans-0003→ Stage2 - Manuf-0004→ Dist-0003 only requires one

of two pairs - {Part-0005, Dist-0003} or {Trans-0003, Dist-0003} - to uniquely

identify it.

We used the NFE method on data simulated over this chain. The response

variable was created such that all shipment that are routed through either of the

above two routes were reported as delayed. It can be seen from Table 4.4 that the

NFE with it’s redundant feature elimination algorithm, is correctly able to detect

unique route identifiers. Therefore, for networks with local structures, the NFE

method can potentially provide a minimalistic set of nodes for monitoring and fur-

ther investigation.
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Figure 4.5: A supply chain network for computer peripheral equipment. Willems
(2008)

Table 4.4: NFE on computer peripheral equipment chain

Path Unique path identi-
fiers

Nodes identified using NFE

{Part-0005→ Trans-
0003 → Stage2 -
Manuf-0004 → Dist-
0003}

{Part-0005, Dist-
0003} or {Trans-
0003, Dist-0003}

{Part-0005, Dist-0003}

{Part-0001 → Stage
1 - Manuf-0001
→ Trans-0001 →
Stage2 - Manuf-0003
→ Dist-0002}

{Part-0001} {Part-0001}
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Figure 4.6: Network feature extraction applied to a supply chain network for com-
puter peripheral equipment. Willems (2008)

4.6 Conclusion

With supply chains exhibiting increasing levels of complexity in design and infor-

mation sources, traditional methods for surveillance are no longer sufficient. Using

this paper, we showed how modern, state of the art machine learning algorithms

can be used to provide a robust solution to the surveillance problem. We started by

showing how a network surveillance problem can be converted into a feature value

selection problem using a simple, yet efficient transformation of the network to a

transactional data format. Applying feature selection methods for tracing supply

chain problems to their root nodes needed an extension : a mapping from feature
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selection to feature value selection. We recommended an extension of the tree-

based feature selection method (Tuv et al. (2009)) that allowed us to investigate

each stage of the supply chain so as to localize the problem at the node level. This

solution that we call network feature extraction along with the transactional view

of the supply chain network, enables us to assimilate a wide variety of information

sources. Also, given that it is based on the ACE algorithm, it inherits all the prop-

erties that are necessary of good learners - robustness to outliers, ability to handle

missing values, and detect strong nonlinear interactions.

Using simulated data, we showed that the NFE method possesses good sen-

sitivity and low false alarm rates even when applied to networks that exhibit in-

frequent problems. Not only does the NFE method enable us to identify problem

nodes in the network, but also allows us to detect complex interactions between

problem nodes and their corresponding transactional attributes. We showed how

partial dependency plots combined with the NFE method can be used to gain sig-

nificant insights and creating rich visualizations into such interactions.

Finally, we illustrated how the NFE method can potentially be used to pro-

vide a minimalistic summary of the network when entire routes are affected (4.5).

Initial results are encouraging and we plan to investigate this property further in

subsequent research.
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Chapter 5

SCENARIO ANALYSIS OF TECHNOLOGY PRODUCTS WITH AN

AGENT-BASED SIMULATION AND DATA MINING FRAMEWORK

5.1 Introduction

The revolution of digital technology, coupled with competitive pressures has dras-

tically reduced the life cycle of technology products. The semiconductor processor

market is a fitting example. The pursuit of Moore’s law has resulted in consider-

able advances in silicon-based technology. Processing power, measured in millions

of instructions per second (MIPS), has steadily risen because of increased transis-

tor counts. Simultaneous advances in process technology have resulted in higher

yields, thus making it possible to produce less expensive, more powerful proces-

sors. With each technological breakthrough, chip manufacturers are able to intro-

duce newer, better processors at a faster rate.

In this highly competitive market, multiple products with moderate differ-

ences in performance and price are often introduced simultaneously, and therefore,

compete for the same unit of demand. As a consequence, the adoption success of a

newly launched product is dependent on its value proposition compared to that of

its competitors. It is also important to be cognizant of the fact that most business

decisions pertaining to specific products can have overreaching and often counter

productive effects on other internally competing products. For example, when a

higher-technology product is made available to consumers at a lower price, it has

the potential to cannibalize the market demand for the products already competing

at that lower price point. Because product life cycles are short, changes in demand

structure for products have serious implications on scheduling of supply, manufac-

turing and distribution capacity. Along with simultaneous price change decisions,

the occurrences of additional business scenarios (competitor strategies, discounts,
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product switching costs, etc.) make it very difficult to predict effects using sim-

ple intuition. As a result, models are required to capture the interaction effects of

scenarios thereby aiding in quantifying their impact on the market share of certain

price groups.

Econometric models such as the regression based elasticity models pro-

posed by Deaton and Muellbauer (1980) have been incorporated in many tactical

decision support systems. The theory of diffusion of innovations has been an area

of ongoing research since the seminal work of Bass (1969). Over the years there

has been a proliferation of mathematical models that are extensions of the Bass

diffusion model. Often, these studies have focused on building market response

models that explain the aggregate dynamics of new product entries, from their in-

troduction to their complete penetration into their potential markets. Concurrently,

considerable work has been done on identifying the characteristics of individual

consumers and their motivation to adopt new products [Rogers (1995)]. In their

review of diffusion research, Gatignon and Robertson (1985) refer to the mathe-

matical modeling type of diffusion research as diffusion modeling research, and the

behavioral studies as consumer diffusion research, and suggest that ”an integration

of the behavioral and modeling literatures on diffusion could be beneficial to both

constituencies”. However the complexities of the technology substitution and dif-

fusion mechanism for high-technology products requires modeling approaches that

substantially extend these traditional models.
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Data sets are sparse due to short life cycles (and aggravated as the substi-

tution of products at different points in time results in considerable missing data)

and the simultaneous effects of multiple scenarios. The weaknesses of classical

models to simulate and predict simultaneous interactions of adaptive components

in complex systems has led to a great interest in agent-based simulation (ABM) ap-

proaches. Complex adaptive systems provide another avenue for studying emergent

phenomenon such as product diffusion. Emergent phenomena, non-linear dynam-

ics, and path-dependent behavior are some illustrations in which ABMs are used

to study and analyze systems instead of traditional modeling methods. ABMs en-

able us study interrelationships among autonomous agents and interactions between

agents and their environments in evolutionary settings. In ABM we can show inter-

action of agents systematically by defining decision-makers (agents), set of interac-

tion rules and processes of changing states.

In this study, our aim is to create a framework that allows us to simulate and

analyze the effect of multiple business scenarios on the adoption behavior of a group

of technology products. We view diffusion as an emergent phenomenon that results

from the interaction of consumers. To this end, we present the use of an ABM

in which potential adopters of technology product are allowed to be influenced by

their local interactions within the social network. Along with social influence, the

effect of product features is an important consideration for technology products.

In this research, we incorporate feature sensing attributes to the consumer agents

along with sensitivities to social influence. The model encompasses utility theory

and discrete choice models in the decision making process for the consumers.

Models of high fidelity such as ABMs necessitate a strategy to analyze and

interpret the possible non-linear relationships amongst the various parameters of the

simulation model. Increased fidelity in the model is attenuated if the quantitative

77



summaries used for decision making are not sufficiently expressive. To that end,

one contribution of this paper is the use of modern data mining approaches to de-

rive actionable knowledge from the agent-based simulation models. These methods

allow us to summarize models outputs in order to quantitatively evaluate the effects

of scenario decisions (such as prices). One important task is to identify inputs that

are important contributors to the model results and another task is to graphically

summarize the effects of such contributors. We employ decision tree based feature

selection methods to identify contributors. Such methods have been shown to han-

dle numerical and categorical inputs, complex, interactive, and non-linear models,

as well as provide robustness to input-space outliers [Tuv et al. (2009)].

Finally, we present a realistic case study that demonstrates the ability of this

framework to model changes in market shares for a group of products in response to

business scenarios such as new product introduction, product discontinuation under

pricing strategies. The models and other tools developed here are envisioned to be

a part of a recommender system that provides insights into the effects of various

business scenarios on shaping market shares of different product groups.

Section 5.2 provides a literature review. Sections 5.3, 5.4, and 5.5 describe

our agent-based simulation model. Section 5.6 describes our use of an expres-

sive machine learning model to identify important factors and graphically describe

effects. Section 5.7 presents a representation of a high-technology example and

Section 5.8 provides conclusions.

5.2 Literature Review

Different analytical and empirical models have been proposed to address specific

business scenarios that impact product demand. Empirical models such as the Cross

Price Elasticity models [Deaton and Muellbauer (1980),Green and Alston (1990)]

have traditionally focused on modeling price demand relationships. These regres-
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sion based approaches are suitable for products with longer life cycles. However,

the technology substitution process poses unique challenges for modeling. Data

sets are sparse due to short life cycles; a problem that is further aggravated as the

substitution of products at different points in time results in considerable missing

data.

The Bass diffusion model and its variants have been used for market analysis

and demand forecasting of new products [Bass (1969)]. The model assumes that

potential adopters of an innovation are influenced by two means of communication

- mass media and word-of-mouth. Innovators tend to adopt a new technology as a

consequence of external influences, whereas imitators are influenced by those who

have already adopted. This model describes the process of how a new product gets

adopted as an interaction between users and potential users. Fisher and Pry (1972)

extended this single product model to a two product framework that represents the

process by which a new technology product replaces or substitutes an older one in

the market. A drawback of these models lies in the underlying assumption of a

homogeneous population and perfect mixing amongst individuals of the population

[Tanny and Derzko (1988)]. However, it has been shown that many real world

social networks represents a set of individuals with some pattern of interaction or

ties between them.

Diffusion models have also been integrated with other learning algorithms to

capture and analyze scenario information. For example, Yelland et al. (2010) used

a combination of the Fisher and Pry models and Dynamic Linear Models [West and

Harrison (1997)] to capture the diffusion process as well as time series and sea-

sonal components of product demand. Meixell and Wu (2002) and Wu et al. (2006)

proposed an approach to analyze demand scenarios in technology-driven markets

where product demands are volatile, but follow a few identifiable life-cycle patterns.
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They demonstrated that products could be clustered by life-cycle patterns, and sub-

sequently, within each cluster, identified leading indicator products that provided

advanced indication of changes in demand trends. Using the Bass growth model

and a Bayesian update structure, their proposed method provided a framework for

scenario analysis by focusing on parametric changes of the demand growth model

over time.

Several studies can be found on the use of ABM for technology diffusion.

Jager (2006) presented a comprehensive survey of ABM applications for study-

ing consumer behavior. Garcia (2005) provided a simple ABM to demonstrate its

usefulness in a competitive environment. Ma and Nakamori (2005) built a multi-

agent model to simulate the process of technological innovation as an evolutionary

process with two types of agents : producers and consumers. Using their model

agent-based model, they showed how consumers incomplete information and diver-

sity of consumers demand could prevent producers from monopolizing the market

by means of technological innovation. Delre et al. (2007) modeled diffusion dy-

namics of consumer agents under the effect of social influences. They showed the

effects of heterogeneity and degree of network randomness on the speed of diffu-

sion. An agent-based model was presented by Delre et al. (2007) to study the effects

of different timing and targeting strategies for promoting new products. North et al.

(2010) presented a multi-scale agent-based consumer market model and a structure

to calibrate, verify, and validate the it.

Recently, agent-based models have been used to study the potential behavior

of new electricity technologies. Hamilton et al. (2009) used an agent-based model

of technology diffusion where bounded rational agents are faced with uncertainty

about the performance of the new technology versus the old technology as well as

spatial externalities such as fashion effects. Athanasiadis et al. (2005) used agent-
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based models to control consumer demand by supporting interaction between con-

sumers in a diffusion mechanism. In another paper, Ma and Nakamori (2009) com-

pared the advantages and disadvantages of optimization models and agent-based

modeling for modeling technological change in different energy systems.

The impact of the structure of a social network on the spread of innovations

has been an actively researched issue. Montanari and Saberi (2010) demonstrated

a model where under competing alternatives agents have the ability to adopts a

new behavior based on its neighbors. Also, in their model the pay off for agents

increases as more neighbors adopt the same choice. Guardiola et al. (2002) consid-

ered upgrade costs in modeling diffusion of innovations on a social network. Speed

and other properties of diffusion are affected by network structure. Bohlmann et al.

(2010) analyzed network topologies and communication links between innovator

and follower market segments. Rahmandad and Sterman (2007) compared agent-

based and differential equation models and analyzed the effect of individual hetero-

geneity and different network topologies.

5.3 An Agent-based model of processor markets
Purpose

Technology products are characterized by short life cycles and as a consequence,

the adoption success of one product is correlated to that of its competitors. The

purpose of this model is to study the adoption behavior of one or more technology

products under different introductory market scenarios. We plan to use the agent-

based framework to launch products with varied technological capabilities and pric-

ing levels in an artificial society of technology consumer and study the conditions

that can lead to successful adoption for target products. Subsequently, the model

will also be used as an experimental test bed and outputs of the simulation will be

analyzed using data mining models to map out optimal penetration strategies.
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Environment

In order to model and investigate the adoption characteristics of a system involv-

ing multiple competing technology products within an agent-based framework, we

consider a social network populated with technology consumers. The social net-

work is represented using a scale-free network [Barabási and Bonabeau (2003)].

The nodes of the network represent individual consumers while the links between

them symbolize communication channels. We adopt a single fixed network struc-

ture because we are not interested in quantifying the effect of network structure on

adoption characteristics. The size of the social network can be defined by the user

using the population variable. A representative social network is shown in Figure

5.1 while state variables are defined in Table 5.1

Figure 5.1: Example of a scale-free network. Each node represents a consumer that
owns product A (red), product B (green) or product C (blue)
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Table 5.1: State variables for modeling environment

Variable Range of parameter Units
population 2000 No. of consumers
B-initial and C-initial 0 to 1 Percentage of population

Table 5.2: State variables for technology products

Variable Range of parameter Units

price 80-110 $
speed 2.33-3.33 Ghz
cache {2,4,6} M
switching cost 0-100 $

Agents

Technology products are characterized by n attributes (n = 1,2,..). For semicon-

ductor processors, features could include speed (Ghz), cache (MB) etc. Agents

adopting newer product may need to bear additional upgrade costs in addition to

the price of the processor. For example, newer processors may require a new socket

type, and therefore, a new motherboard. Such upgrade costs are set by the variable

switching cost. At initialization, the proportion of innovators that adopt the second

generation of products can be controlled using the variables B-initial and C-initial.

A summary of the state variables for technology products is given in Table 5.2.

Each agent in our model represents an autonomous decision making en-

tity and hence, its correct definition plays a key role in defining the model. Since

agents represent adopters of products, we use the theory of diffusion to as a guide

for designing their characteristics Rogers (1995). The theory of diffusion classifies

consumer groups into five categories : innovators, early adopters, early majority,

late majority and laggards [Rogers (1995)]. A summary of the attributes and char-

acteristics possessed by different consumer groups is provided in Table 5.3. To
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Table 5.3: Characteristics of adopters

Adopter
cate-
gories

% of
popula-
tion

Order
of adop-
tion

Risk
Thresh-
old

Financial
Lucidity

Social
interac-
tions

Opinion
leader-
ship

Innovators 2.5 % First Highest Highest Closest
contact
with
other in-
novators

Low

Early
adopters

13.5 % Second Less
than in-
novators

Lower
than in-
novators

Close
contact
with
innova-
tors and
early
majority

Highest

Early
majority

34 % Third Less
than
early
adopters

Lower
than
early
adopters

Contact
with
early
adopters

Low

Late
majority

34 % Fourth Low Low Contact
with
others
in late
majority
and
early
majority

Low

Laggards 16 % Last Lowest Lowest Contact
with
only
family
and
close
friends

Negligible

provide more concrete tractability in the model, the agents in our model can be

operationalized with these categories and their corresponding attributes.

The preference structure of the agents defines their minimum (Ln) and de-

sired (Un) levels of each product attribute. Based on their preference structure,
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Table 5.4: State variables for Agents

Variable Distribution Units

utility threshold ∼Normal(µ1, σ1) Ratio
γn ∼Normal (µ2, σ2) -
Wn ∼Normal ((µ3, σ3) -
change event ∼Poisson(λ ) Time

agents have the ability to score how attractive a product attribute is using desirability

functions [Derringer and Suich (1980)]. The coefficients for the desirability func-

tions for each attribute(γn) are also included in the preference structure of the agents.

Additionally, it also defines how much weight (Wn)the agent associates with indi-

vidual product attributes as well as social influence. For instance, some agents may

consider price as being the most important decision making factor, whereas, oth-

ers may base their decisions entirely on the number of neighbors that have adopted

the product. Assigning different weights to these agents results in a heterogeneous

population of consumers.

Each agent has the ability to gather and assimilate information about product

attributes as well as the extent of proliferation of a product in its neighborhood.

Agents are given behavioral rules that gives them the ability to generate a utility

score for each product.The higher the utility score, the more probable the agent is

of choosing that product. Since agents are connected on a virtual social network,

they continuously communicate their utility scores to their network neighbors. This

mimics a feedback mechanism which allows agents to persuade other agents to

adopt a product other than the one they bought. Agent i adopts the new product the

utility score of product k is higher than its pre-assigned threshold (utility threshold)

and if it has sufficient budget to buy the product.
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Timescale

For this study, we are interested in technology switching from a first generation

product to a second generation product. As such, we assume that the agents only

switch once during this time window. Furthermore, we assume that the rate at which

customers consider switching to the second generation of products is constant over

the time window under consideration. This assumption lets us define change events

using a Poisson distribution with a user defined parameter (change event). Agents

evaluate products and compute utility scores on a continuous, asynchronous basis.

5.4 Process overview and scheduling

A brief outline of the process is given below. Specific sub-processes are explained

in more detail later:

1. At initialization, we assume that a majority of the population owns product

A. A small proportion of the population can be seeded with products B and C.

These products are assigned to those agents with the lowest utility threshold.

2. At each time increment agents compute utility scores for each product B and

C.

3. A change event is generated for agents according to the internal time clock

operationalized by the Poisson distribution.

4. If the ratio of utility for a product to current technology is greater than the

agents threshold and the new product fits the agents budget, the agent adopts

the new product with probability proportional to the utility score of the prod-

uct.
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5. At each time interval, each agent’s budget increases by a random amount

if the agent does not buy a new technology. Once the agent buys the new

technology, its budget is set to zero.

5.5 Decision Engine

Here, we discuss three sub-processes in more detail. Specifically, we will focus

on the elements of the model that allow the agents to gauge social influence, eval-

uate products using utility scores and finally the adopt a product. Together, these

processes make up the decision making engine of the agents.

1. Computing social influence: The decision to buy a particular technology

product can be influenced by the agent’s neighbors. Here, neighbors are de-

fined as directly connected agents. We assume that agents are more likely to

buy a particular technology if a large proportion of their neighbors have al-

ready adopted it. We allow all agents to update their valuation of all products

even though they may have adopted a particular product. This is important

since pricing decisions and other external stimuli can make certain products

more attractive at a later point in time. Hence, even though an agent may

have adopted one product, it may in fact recommend some other product to

its neighbor. Social influence index, defined for each agent, is computed as

the average utility for technology K in its neighborhood times the proportion

of neighbors that have already adopted technology K.

2. Utility score: The process of computing product utility scores starts with eval-

uating the desirability of each product attribute with regards to the agent’s

preference structure. Then, the utility score of the product is computed by

taking the weighted average of each desirability index and the social influ-

ence index. Desirability indices are computed as follows: Agents score each
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Figure 5.2: Desirability functions showing (left) risk-averse agents (γ < 1) and risk-
seeking agents (γ > 1) for targeting maximum, (right) risk-averse agents (γ > 1)
and risk-seeking agents (γ < 1) for targeting minimum

product attribute between 0 - 1 using non-linear desirability functions. For at-

tributes where higher value makes the product more desirable (speed, cache),

agents use a function of the form given in Equation 5.1, whereas when lower

values of an attribute makes the product more desirable to the agent, Equation

5.2 is used.

Dk
n = (

Y k
n −Ln

Un−Ln
)γn

, (5.1)

Dk
n = (

Un−Y k
n

Un−Ln
)γn

, (5.2)

where, Dk
n is the desirability index for attribute n of product k, Y k

n is the cur-

rent value of attribute n of product k and Un and Ln define the upper and lower

preference values for attribute n. The γ parameter, also known as the desir-

ability coefficient defines the profile of the function. Figure 5.2 shows the

influence of the γ parameter on the shape of the desirability function.

For each agent, the utility of technology K is computed as the weighted aver-

age of the desirabilities of the product attributes and its local-attractiveness as

shown in Equation 5.3. In addition to having different desirability functions,
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Table 5.5: Discrete choice element of the decision engine. Cells represent adoption
probability for technologies (B,C).

UB
UA

>threshold UC
UA

>threshold UB
UA

>threshold
& UC

UA
<threshold & UB

UA
<threshold & UC

UA
>threshold

Budget>Price-B
& Budget<Price-C eβUB

eβUB+eβUC
, 0 0,0 0,0

Budget>Price-C
& Budget<Price-B 0,0 0, eβUC

eβUB+eβUC
0,0

Budget>Price-B
& Budget > Price-C 0,0 0,0 eβUB

eβUB+eβUC
,1 −

ProbB

agents can assign different importance (weight, Wn) to different attributes that

make up the utility function. Thus, we assume an additive utility function.

UK =
∑nWnDkn

∑nWn
, (5.3)

3. Technology switching: Each agent is assigned a different value for its utility

threshold. The utility threshold is a measure of how much better the newer

technology should be compared to its existing technology for the agent to

consider switching. After a change event is triggered, the agent checks its

ratio of utility for technology K to that of its currently adopted technology.

If this ratio exceeds the utility threshold, and the agent has enough money to

buy the new technology, then it considers buying the new technology. For

illustrative purposes, let us consider that all agents currently own technology

A and they have a choice to switch to either technology B or C. A set of

different decision environments arise at this point. Each cell of Table 5.5

shows the probability with which an agent will adopt technology (B,C).

In general, the probability of adopting a technology K is given by

Probk =
eβUk

eβUk + eβUk′
, (5.4)
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where,k′ represents the set of competing products except product k and beta

represents how sensitive the agents are to differences in the product utility

scores. The higher the β , the more sensitive agents to the dynamics of tech-

nology attributes.

5.6 Data Mining Framework

An advantage of ABMs is the capability to explore complex scenarios that may

consist of a large number of attributes. Furthermore, many attributes of mixed type

(numerical and categorical), with potentially different distributions, units and/or

scales of measurements can be expected. The relationships between model outputs

and inputs might be nonlinear, with interaction effects, and inputs may differ sub-

stantially in their impact on outputs. In addition, models developed from actual data

may need to handle outliers and missing values in the inputs. Consequently, these

characteristics are challenges to an analysis method used to summarize the results

of an ABM. Although an analysis method might be selected for a specific ABM

and application, we use an analysis framework that can handle the complexity of

the ABM scenarios more generally and produce important summaries to interpret

the ABM.

In our framework, summaries are generated from predictive models that

learn the relationship between an output and inputs from the data generated by the

ABM. Therefore, good predictive performance, in spite of the challenging char-

acteristics of the data, is important. For this role we use decision-tree ensembles

[Breiman (2001), Tuv et al. (2009)]. A decision tree applies a recursive partition-

ing to the rows of data in order to obtain subsets in which the outputs for the rows

in a subset are similar [Quinlan (1993)]. Similarity (referred to as purity) can be

measured with a Gini score [Breiman et al. (1984)] for categorical outputs or with

squared error for numerical outputs. The subset models are expressive and handle
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nonlinearities and interactive effects. The partitioning can easily handle numeri-

cal or categorical inputs, the model is invariant to attribute scales or units and it

is insensitive to outliers and missing values. Furthermore, the purity improvement

from an attribute used to create a partition provides an intrinsic measure of attribute

importance to the output [Breiman et al. (1984)].

However, a single tree is constructed with a greedy algorithm that can lead

to an unstable model (small changes to the data can alter the model substantially).

Also, predictions can change abruptly with small changes to the input (as an in-

put changes from one subset to another). Ensembles generate a large number of

trees (our results use hundreds) and average the predictions to provide more stable,

smoother predictions. Different types of tree-based ensembles can be generated, but

we use a simple method known as random forest (RF) [Breiman (2001)]. The trees

are grown from random samples (with replacement) from the original training data.

Also, to reduce the correlation between trees (and thereby decrease the variance

of the model) only a random subset of attributes is considered for each partition

in each tree. The size of this subset is really the only parameter in a RF model

and we used the common default setting equal to the square root of the total num-

ber of attributes. The ensemble average can substantially improve the predictive

performance and many more partitions from numerous trees improve the attribute

importance measures.

Because random samples in RF are selected with replacement, some data

rows are typically omitted from each sample. These rows are referred to as out-of-

bag (OOB) data and such data is useful to evaluate the performance of a model. An

estimate of model error from OOB data approximates how the model will perform

on new data that is not used for training [Breiman (2001)]. A model for analysis

that can handle the challenging characteristics of data from an ABM is not ex-
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pected to be directly interpretable. However, the tree ensembles provide a number

of tools that are particularly useful for an ABM study. With a large number of in-

puts, critical tasks are to identify inputs that are important contributors to the model

output and to graphically summarize the effects of such contributors. The general

problem to identify important contributors to a model is called feature selection

and an overview was provided by Guyon and Elisseeff (2003). For our application

regarding the adoption behavior of new technologies under different competitive

environments, an important goal of the ABM is to learn what input attributes are

most important to product success in the market. Consequently, we want to sum-

marize and quantify the impact of input attributes. Feature selection techniques are

based on the idea that information content in high-dimensional data is often con-

tained in a small subset of relevant attributes. Modern learners such as tree-based

ensembles have proven to be very successful in filtering out irrelevant attributes

while preserving the relevant ones [Tuv et al. (2009)]. Consequently, the tree-based

ensembles provide robust framework with few parameters, and with useful tools

(such as feature selection, intrinsic error estimates) that can handle the complexity

of data generated from ABMs.

After important attributes are identified, an important step is to understand

the nature of the dependence of the output on these the relevant attributes [Friedman

et al. (2001)]. Here, our goal is to identify the values (or range) of the important

attributes that drive the most significant changes in the output. For example, we

are interested in attribute values that are associated with a higher adoption of a

particular product. Visualization of the predicted function f (x) over the input space

is a powerful tool to interpret the model as it provides a summary of the dependency

of the output on the values of the inputs. However, direct visualization is limited

by the number of attributes that can be handled successfully. Instead, we apply the
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graphical summary referred to as partial dependence plots to add interpretability to

our model [Friedman (2001)]. Partial dependence functions represent the effect of

the attribute on the output after accounting for the average effects of other attributes.

Plotting the partial dependence of f (x) on its most relevant attributes can reveal how

the output behaves in different regions. We use such plots to interpret the results

from our tree ensembles.

5.7 Scenario Analysis Examples

Product substitutions are fairly frequent in technology markets. Since the life cycle

of these products are relatively short (6 - 18 months), substitution decisions need to

be made every quarter. In making product substitution decisions, it is important for

analyst to understand how various product attributes such as price, switching cost,

speed, cache, etc. influence the adoption success of each product in the market. In

the following sections we demonstrate how the ABM and data mining framework

can be utilized to gain insight into the adoption process by using some representa-

tive scenarios.

Effect of Price

Consider the following representative product substitution scenario: A semicon-

ductor chip manufacturer currently has two technology products in the 80 $ - 110 $

price range. Product A, which is the older of the two products, currently dominates

the market share in this price group. At the beginning of the simulation, a small

percentage of innovators and early adopters own product B. The company now de-

cides to terminate the production of product A and launch a new product - product

C. Furthermore, products A and B are compatible with the same socket type, i.e.,

they can be interchanged on the same motherboard. However, product C requires

a different socket type. Hence, a switching cost, is associated with buying product
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Table 5.6: Simulated market conditions

Factor Levels
Speed-A 2.66 Ghz
Speed-B 2.93 Ghz
Speed-C 3.13 Ghz
Cache-A 2 M
Cache-B 2 M
Cache-C 4 M

Table 5.7: Parameter setting for analyzing the effect of product pricing

Category Variable Value
Environment Population 1500
Environment B-initial 20 %
Environment C-initial 5 %
Agent utility threshold ∼Normal(1.3, 0.26)
Agent γn ∼Normal (1, 0.2)
Agent Wn ∼Normal (1, 0.2)
Agent change event ∼Poisson(50)
Agents Initial budget 60 $

C. Customers who currently own product A, are now faced with three options: Stay

with product A, switch to product B or switch to product C.

Since price is one of the most important drivers of product demand, there is

strong interest in understanding its effect on the adoption of product C. To analyze

the effect of introductory prices, we assumed that the technological attributes of the

three products were fixed. The speed and cache of the products were fixed as per

the settings summarized in Table 5.6. Other simulation parameters that were held

constant during the runs are summarized in Table 5.7. The price for each product

was varied starting from 80 $ to 110 $ in increments of 5 $. A total of five replicates

were run at each combination of the prices. After each run, we noted the maximum

share of the market (as a proportion) captured by product C. This was the output of

interest. A RF model was built to analyze the effects of pricing.

The RF model reduced the prediction error from a base error (that used the

mean output as the model) from 0.219 to 0.029. We note that this estimate is based
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on OOB data, and as discussed previously, this generally provides a good estimate

of generalization error. To interpret the results, we discuss the dependency plots of

the price attributes. Figure 5.3 shows the dependency of the adoption success of

product C as a function of the prices on two products, after accounting for the price

of the third product. The top row shows surface plots and the vertical axis is the

proportion of the market share captured by product C. The bottom row of figures

show the corresponding contour plots.

The figures on the left shows the price effects of A and C on the market share

of C. Note that the share of C is relatively insensitive to the price of A, especially

over the range from approximately $ 85 to $ 100. Instead, the price of C itself has

a much greater impact on its share. Although the effect of the price of C might be

expected, the limited sensitivity to As price over a wide range is interesting.

The middle figures show the price effects of B and C on the market share

of C. Here Bs price modifies the effect of Cs price. With a low price for B of $ 85,

C cannot obtain a market share greater than approximately 20%. However, when

B is at a higher price, say $ 100, the effect of Cs price is much more pronounced.

At this price for B, the surface plot for C raises quickly as Cs price is reduced.

This allows for some interesting demand shaping. For example, with B priced at $

100 the company can substantially change the market share of C through its price,

possibly to meet sales targets or adjust to inventory status.

The figures on the right show the price effects of A and B on the market

share of C. Similar to the middle figure, when the price of B is low, say $ 85, it is

difficult for C to obtain substantial market share. When B’s price is higher A’s price

has a much greater effect. From the contour plot, even for B as high as $ 90 the

effect of A’s price on C’s share is small. It is only when B’s price is approximately

$ 100 that we notice a strong effect of A’s price on C’s share. Otherwise the effect
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of A’s price is modest. As expected, with both A and B priced high, a substantial

increase in C’s share is observed.

Figure 5.3: Dependency plot showing the relative price effects on the adoption of
product C. (Left) Price-C vs Price A, (Middle) Price-C vs Price-A, (Right) Price-B
vs Price A.

Effect of simultaneous new product introductions

In the first scenario we focused on the price of the three products. While price is

a primary driver of demand, other attributes such as the speed and cache of the

processor can influence the adoption success of competing products. For a more

comprehensive analysis, we expand the scope of the first scenario by varying the

technological attributes along with product prices. The objective here is to not

only quantify how price influences buying decisions, but also to include product

attributes in the decision domain.

Consider a scenario where product A is already in the market priced at $

95, with 3.0 Ghz speed and 4 M cache. Using the agent based model, we simulate

situations in which two new products, B and C, are simultaneously introduced in the

market. Each run of the simulation corresponds to a unique product mix obtained by

changing product attributes of products B and C (Table 5.8). A full factorial design

of these different product settings leads to 1458 runs per replicate. We ran five
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Table 5.8: Experimental conditions under which new products were introduced

Factor Levels
Price-B and Price-C $ {80, 95, 110}
Speed-B and Speed-C {2.6,3.0,3.4} Ghz
Cache-B and Cache-C {3,4,5}M
Switching cost-C $ {10,30}

replicates of this experiment and recorded the maximum market share that products

A, B and C achieved at steady state.

Given the results from the experiment, an RF model is built for the market

share of each product separately. The models are used to interpret what-if scenarios.

We discuss some of the common questions related to product introduction and how

they can be answered using partial dependency plots.

The first question relates to the incumbent product. Getting a better under-

standing of how much of the market will be retained by the incumbent product under

different mixes of the new products is critical because it drives inventory decisions.

Companies usually struggle with product phase-outs since it is not always clear how

much stock to hold for the incumbent product during its transitional phase. There-

fore, we would like to understand scenarios under which product A continues to

hold a sizeable share of the market even after the introduction of the new products.

On the flip side, we would also like to understand what situations lead to a near

complete take over of the market by the new products. These insights are important

to improve inventory management and demand shaping point of view.

The RF model built for product A yields a 78% reduction in base error

(OOB). The variable importance scores obtained from the feature selection algo-

rithm are shown in Table 5.9. From this, it is evident that over the range of exper-

imentation, different factors affect the predictive power of the model with varying

scales of importance. For example, speed of C is much more of a defining factor
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Table 5.9: Variable importance scores for Product A

Factor Importance (% of highest)
Speed-B 100 %
Price-B 77.54 %
Speed-C 39.50 %
Cache-B 36.73 %
Price-C 32.19 %
Cache-C 18.77 %
Cache-C 9.42 %

compared to its switching cost. Consequently, over the range of interest studied,

switching cost is very much a secondary factor and models can effectively focus of

the other attributes.

The partial dependency plots generated using this model are shown in Fig-

ure 5.4. The plot on the left is for a situation where products B and C have the most

advantage over product A. That is, for the new products B and C, price and switch-

ing cost are at the lowest setting, and speed and cache are at the highest setting,

respectively. The figure provides the market share of product A as a function of the

prices of B and C. Since pricing decisions are often the last product related deci-

sions to be made, we display these price variables for the two new products on the

two axes of the plot. The first observation is that B’s price has a more pronounced

effect than that of C’s. For example, if the price of C is $100 the effect of a change

of B;s price is greater than the the other case (when the price of B is $100 and C’s

price is changed . This is consistent with the inference drawn from the variable

importance scores above and is possibly because C has an additional switching cost

associated with it. When either new product is priced at its lowest setting ($80), we

see that product A retains only a small portion of the market (17%). That is, either

new product is capable of capturing substantial market at $80. Interestingly, when

one product is priced at $ 110 and the other is at $ 80, we can see that product A

retains a relatively low percentage of the market (less than 25%). Only when both
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new products are priced at the highest setting ($ 110), can A retain a majority of the

market (approximately 68%).

The plot on the right of Figure 5.4 represents yet another product mix where

the technological advantage of the new products is not as lopsided. For product

B, the speed and cache are held at 3.4 Ghz and 4 M, respectively, That is, B has

higher speed, but the same cache as product A. For product C, the speed, cache

and switching cost are held at 3.0 Ghz, 5 M and $10, respectively, That is, it has

the same speed as product A, but higher cache. It can be seen that for the two new

products to occupy more than 30 % of the market, it is necessary to price product B

lower than $ 85. Interestingly, product A is relatively insensitive to the price of C

once the price of B is set. That is, little interaction between the prices of B and C are

observed. Any other point on these graphs represent an alternative pricing solution,

and thus a way to effectively shape demand according to production schedules and

build plans.

Figure 5.4: Dependency plot showing the effect of new product introduction on the
adoption of product A.

We can use the same strategy to gain more insight into the adoption of each

of the two new products. To do this, we can build a separate RF model for product

C and draw inferences from the variable importance scores and partial dependency
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Table 5.10: Variable importance scores for Product C

Factor Importance (% of highest)
Price-C 100 %
Speed-C 70.50 %
Cache-C 30.17 %
Price-B 22.27 %
Switching cost-C 22.13 %
Speed-B 8.18 %
Cache-B 2.93 %

plots for fixed settings of product B. To demonstrate, let us fix the price, speed and

cache of product B at $ 90, 3.4 Ghz and 4 M respectively. For product C, we fix its

switching cost at $ 10 and cache at 5 M. The RF model reduces the base error by

76 % (OOB). We can see from the variable importance scores that speed and price

of product C are the two most important variables (Table 5.10). Hence, in Figure

5.5 we show the dependency plot with these two variables as the axes. It is evident

that above $ 95, product C achieves very little penetration in the market. Similarly,

irrespectively of its cost, a product with less than 2.8 Ghz captures very little market

share. The lower right corner of the plot, represented by high speed and low price

for C, is the region of high penetration. When C is priced at 80 $ and has a speed of

3.4 Ghz, we see that it can potentially dominate the market with greater than 60% of

the share. Thus, by using Figures 5.4 and 5.5 in tandem, one can explore different

product mix strategies that are consistent with inventory and sales targets.

5.8 Conclusion

Analyzing the effect of price and product attributes for technology products with

empirical models has been a challenge due to their short life cycles. The limited

amount of time that each product remains relevant in the market reduces the avail-

able data. But it is still important to gain a deeper understanding of what compet-

itive scenarios lead to the success or failure of product diffusion. The interplay of
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Figure 5.5: Effect of price and speed of product C on its adoption success

a number of different design attributes of existing and new products, along with

prices, determine the adoption success (or failure) within a short time horizon.

Here we present an agent-based model of product diffusion as an evolu-

tionary process. The simulation model was built to study how interactions between

consumers and competition from other products can lead to different adoption char-

acteristics. Due to the flexibility offered by ABMs, we were able to combine and

integrate the theory of diffusion, utility theory and discrete choice models into the

behavioral engine of the agents. Furthermore, we demonstrated how the agent-

based models can be used as a test bed for simulating different market situations

and therefore form the core of a scenario analysis platform.
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We used modern data mining methods to extract the information hidden in

the data collected from multiple runs and replicates of the simulation engine for

specific scenario settings. The data obtained from ABMs in usually non-linear in

nature and we showed how decision-tree ensemble models can be used to success-

fully capture these complex relationships. Furthermore, we were able to score the

impact of each product attribute on the adoption behavior of the competing products

using feature selection methods from the ensemble methods. Through partial de-

pendency plots, we demonstrated how alternate pricing and product attribute strate-

gies could be explored to achieve market share targets for each product. This is a

valuable tool since it summarizes a complex framework of ABM and data mining

models through simple, intuitive and visual graphs that analysts can interpret.

With short life cycles, many products may be introduced into a complex

mix of existing products within a single quarter. Furthermore, rapid technology

changes can change the product attributes substantially. Consequently, it is diffi-

cult to use traditional models with historical data to select attributes and prices of

new products (or adjust the prices of the existing products). The essentially new

product environment encountered for most new product introductions challenges

the fidelity of previously built models, and limits the generalization of previously

learned guidelines for attributes or pricing. Consequently, rather than a traditional

model, it is useful to have a methodology that is based on consumer tendencies, but

allows for the current (possibly complex) product environment. We showed how

an ABM provides the capability to handle such complexities, and that our analysis

framework can be a valuable addition for decision makers to interpret and act upon

the results from the ABM.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Analytical tools have become an integral part of modern supply chain management

practices. With advances in measurement, tracking and storage technologies, large,

complex data sets are becoming the norm in modern supply chain operations. Tra-

ditional supply chain health metrics are supplemented with detailed transactional

information (such as product life cycle, pricing, rebates, shipment route, sales pat-

terns etc.) as well as information on economic, regulatory, environmental and com-

petitive scenarios. Additionally, decision events such as those pertaining to product

pricing, new product introduction, discontinuation etc., are also captured in these

extensive data sets. Given such rich history, it is prudent to look for patterns and

relationships hidden in these data sets to enable better decisions.

Traditional methods for scenario analysis that were designed for data sets

with modest dimensions struggle in the new ”messy” data environment. Modern

data sets are fraught with missing values, outliers and exhibit strong nonlinear re-

lationships. Additionally, the product diffusion and substitution processes result

in incomplete, non-homogeneous data sets. As a result, analytical toolkits should

be capable of comprehending the complexities of disparate data sets and providing

accurate qualitative as well as quantitative feedback on the impact of business sce-

narios. In this research, we emphasize the need for end-to-end modeling systems

that capture the entire life-cycle of the analytical process; from knowledge represen-

tation to model summaries. Towards that end, we explored, extended and improved

modeling techniques that are more tuned for modern supply chain analytics.

We proposed a new scenario analysis framework, labelled as Scenario Trees.

This framework included a data shaping element that enables us to represent dis-
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crete scenario information and past decision events as well as continuous predictors

in a form that is amenable for modern machine learning algorithms. Delayed effects

were captured using lagged variables. Relationships between multiple responses

(such as the requirements that market shares sums to one) was incorporated through

a structure analogous to logisitic regression. With hundreds of predictors, we used

a modern feature selection strategy that enables us to extract a non-redundant, com-

pact subset of features from the data. This is of great practical importance as it

allows decision makers to focus attention on a smaller scenario set. We used robust

tree-based, supervised learners to characterize the relationship between the predic-

tors and the supply chain response (demand / market share in this case). These

methods provide excellent prediction accuracy and are capable of comprehending

mixed variables without needing extensive scaling. Also, tree-based ensemble mod-

els are robust to outliers and have built in mechanisms to handle missing data. All

of these characteristics make them well suited to handle the complexities presented

by modern supply chain data. Finally, to aid model understanding and create ac-

tionable insights, we summarized the models using partial dependency plots.

While the feature selection methods used in the Scenario Trees approach

are successful at limiting the decision domain by extracting important predictors,

further model simplifications can be achieved by investigating each variable and

identifying the actual settings / levels / values for the variable that contribute to

importance. Beneficial insights into the model can be gained by grouping variable

levels that are insignificant and highlighting important ones. We approached this

problem from a feature extraction point of view. One proposed strategy used a sim-

ple transformation of the dataset into a binary incidence matrix. This transformation

allowed us to leverage existing feature selection methods to extract important fea-

ture values from the data. This method was shown to be effective in a simulated ex-
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perimental setting. However, it does require additional data storage capacity for the

incidence matrix. To alleviate this problem, we used an embedded feature value im-

portance metric within the tree induction algorithm. This new method also showed

promising results in a simulated environment, and since it is based on the tree-based

ensembles method, it inherits all of its desirable properties.

While the primary motivation behind developing the feature value selection

algorithms was to simplify complex models, it is more generally useful for supply

chain analysis. High-dimensional supply chain surveillance has traditionally been

restricted to a series of control charts that monitor network segments (nodes) us-

ing multiple health metrics. In our research, we proposed an approach to identify

problems nodes in the network by transforming the surveillance problem to a fea-

ture value selection problem, a solution we called Network Feature Extraction. We

demonstrated how a rich set of transactional and network related attributes could

be represented using a case-event view of the supply chain. We then applied the

embedded feature value selection method to extract important nodes and important

attributes from the network. Furthermore, partial dependency plots were combined

with the network feature extraction method to create graphical summaries of these

complex interactions.

Empirical scenario analysis works well in situations where there is an abun-

dance of historical data from which patterns can be learnt. However, scenarios such

as those related to new product introduction have little to no historical information

to learn from. For such situations, we presented an agent-based model to simulate

multiple product diffusion scenarios. Given its flexibility, we demonstrated how

various different theories such as the theory of diffusion, utility theory and discrete

choice models could be integrated into the simulation model. Additionally, we

used expressive machine learning algorithms to handle complex, non-linear, and
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interactive effects to identify important inputs that contribute to the model and to

graphically summarize their effects. Finally, using realistic case studies, we illus-

trated how our analysis framework can be a valuable addition for decision makers

to interpret and act upon the results from the agent-based models.

Future Work

Expert-based systems for scenario analysis tend to rely almost entirely on experts to

generate decision rules. Future work should focus on developing a hybrid approach

that integrates empirical learners such as the tree models with expert generated

rules. For successful implementation of any scenario analysis method, it is impor-

tant to incorporate expert judgement into the framework. Expert inputs, especially

for scenarios that are hard to quantify and measure, often add value to the analysis.

A sensitivity analysis for the Scenario Trees is required to demonstrate its

efficacy in modeling effects of varying magnitude. This should ideally be done in

a simulated environment where the scenario effects can be constructed and built

into the simulation design. We can then assess the performance of the analysis

framework against known ground truth. Furthermore, this simulation setup can

be used to compare the proposed method with existing alternatives for empirical

scenario analysis.

Chapter 3 provides a preliminary sensitivity analysis for the three feature

value selection strategies. This work could benefit from a more extensive sensitivity

analysis by varying the simulation parameters over a wider range.

Supply chain surveillance is another rich area for research. This work has

primarily focused on converting the surveillance problem into a feature value selec-

tion problem. For this approach to gain acceptance, it is important to compare its

106



performance with existing monitoring approaches such as those from the process

control literature.

Identification and localization of faults in the network using an approach

such as the one presented in Chapter 4 is just one component of a larger monitoring

system. We envision a monitoring system that comprises of a rich set of monitoring

rules that can be learnt by integrating the NFE approach with rule-based classifiers.

The rules can act as probes that can be used to examine the status of the network and

furthermore signal the occurrence of specific scenario events. A scenario playbook

which documents what steps should be taken given certain signals from the moni-

toring system can then be developed to help practitioners take appropriate actions.
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