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ABSTRACT

This dissertation is intended to tie together a body of work which utilizes a va-

riety of methods to study applied mathematical models involving heterogeneity often

omitted with classical modeling techniques. I posit three cogent classifications of het-

erogeneity: physiological, behavioral, and local (specifically connectivity in this work).

I consider physiological heterogeneity using the method of transport equations to study

heterogeneous susceptibility to diseases in open populations (those with births and

deaths). I then present three separate models of behavioral heterogeneity. An SIS/SAS

model of gonorrhea transmission in a population of highly active men-who-have-sex-

with-men (MSM) is presented to study the impact of safe behavior (prevention and

self-awareness) on the prevalence of this endemic disease. Behavior is modeled in this

examples via static parameters describing consistent condom use and frequency of STD

testing.

In an example of behavioral heterogeneity, in the absence of underlying dynam-

ics, I present a generalization to “test theory without an answer key” (also known as

cultural consensus modeling or CCM). CCM is commonly used to study the distribu-

tion of cultural knowledge within a population. The generalized framework presented

allows for selecting the best model among various extensions of CCM: multiple sub-

cultures, estimating the degree to which individuals guess yes, and making competence

homogenous in the population. This permits model selection based on the principle of

information criteria. The third behaviorally heterogeneous model studies adaptive be-

havioral response based on epidemiological-economic theory within an SIR epidemic

setting. Theorems used to analyze the stability of such models with a generalized, non-

linear incidence structure are adapted and applied to the case of standard incidence and

adaptive incidence.
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As an example of study in spatial heterogeneity I provide an explicit solution to

a generalization of the continuous time approximation of the Albert-Barabási scale-free

network algorithm. The solution is found by recursively solving the differential equa-

tions via integrating factors, identifying a pattern for the coefficients and then proving

this observed pattern is consistent using induction. An application to disease dynamics

on such evolving structures is then studied.
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Chapter 1

Introduction

One of the most commonly used tools in the mathematical modeling of natural

phenomena is the differential equation system. Differential equations (i.e., ordinary,

partial, delay, integro-, etc...) have been applied to many applied problems: ecological

persistence, birth/death processes, and disease transmission to name a few. Critical to

the success of these models is the intuitive construction and proliferation of

quantitative and qualitative techniques for their analysis.

The applicability of differential models to the natural sciences may be summarized

with two criteria: estimability of model parameters and correctness of underlying

mechanism. The former will not be discussed at any length in this work, but proper

treatments for various models may be found [23, 45, 62, 79, 80, 118, 121, 122]. The

underlying mechanism of a process is often where particular differential models are

weakest (e.g., assumptions of large numbers, non-explicit treatments of space, and,

most relevantly to this study, homogeneity). Heterogeneity within differential models

may be included a number of ways: increasing the number of states/compartments,

stochastic modeling, or distributed parameterization.

This work does not aim at being a comprehensive overview of heterogeneity in

models. Rather, I pose 3 meaningful classifications of heterogeneity and then outline

examples of how such heterogeneity may be included in a model. I posit that there are

two classifications of heterogeneity concerned with properties specific to an individual

unit: physiological and behavioral. The third heterogeneity is a local measure which

involves the individual’s placement within its environment. Any of these

heterogeneities may also be static (unchanging) or dynamic.
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Not all individuals respond to biological stimuli in the same way. Individuals who

differ physiologically may have very different, or surprisingly similar, reactions to

phenomena (such as exposure to a disease). In the biological sense this heterogeneity

is akin to the physiological characteristics of the individual in question which give rise

to differential response to stimuli (age, gender, etc...). With all else equal, a model

characterized by physiological heterogeneity draws a distinction in how individual

responses are influenced by factors omitting behavior.

Similarly, all individuals do not proceed through their day, or respond to social

stimuli, in the same way. An activity regime for an individual may be broken up into

two parts: the type of activity and the frequency of the activity. For instance an

individual may be at work and participate in a few contacts a day with a large number

of people and then return home to make a large number of contacts with very few

people (e.g., spending on average 20 minutes a day with each of 10 coworkers but

spending 3 hours a day with 2 friends).

In compartmental epidemic models, behavioral heterogeneity is often

indistinguishable from physiological heterogeneity. For example, if there is a

population with two different forces of infections it could be due to 1) one of the

groups being naturally more susceptible to the disease, 2) a group comprising a

population where a co-infection decreases, or decreases, the body’s ability to resist

similar infection, or 3) one group participating in many more contacts than the others.

When modeled simply via parameterization (e.g., c1β1 + c2β2 where ci is a contact

number and βi is the probability of infection for individuals in group i) the effect of

the heterogeneity is obfuscated in an estimability sense. An increase in the number of

compartments may increase the ability to observe the effect of the heterogeneity, but

may lead to less tractable models (i.e., multiple sex, pair forming, core-group models).

Individuals who make the same number of contacts per unit-time may make these

contacts over very different structures (sex workers versus a highly sexually active,
2



monogamous couple). In this formulation of local heterogeneity it is important to

study the “neighborhood” structure of individuals and to investigate the effects this

has on the course of dynamics. The heterogeneity here may often be a result of the

demographics of individuals and activity type modeled, as opposed to a fundamental

property of the individuals. Additionally, the spatial location of an individual on their

landscape can have a large impact on the possible dynamics that individuals may

participate in (i.e., Are you standing in or near the fire?).

For a particular model it is important to determine what type(s) of heterogeneity is

essentially considered1. It may be the case that more than one type of heterogeneity is

present in a model, or that a single type manifests itself through more than one

mechanism. Sociophysiology is a study on the concomitant relationship between

physiology and social behavior; i.e. group dynamics influenced by physiological

metrics. In these situations it may be most straightforward to consider

Physiological-Behavioral Heterogeneity. Should activity type also dictate the structure

of contact networks (e.g. the connectivity heterogeneity is a secondary effect) then a

Behavioral-Local Heterogeneous model using techniques such as “meta-networks”,

with differential node type and connectivity, may be applicable.

This dissertation is divided into three Parts. In the first, Physiological Heterogeneity, I

review some results on the application of distributed parameters to disease models

while utilizing a representation theorem to reduce the effective dimensionality of the

problem to that of a transport system2. The result is not an approximation and thus the

dimensionality is not truly reduced, but a significant ability to perform

computation/analysis of the model is gained. The qualitative equivalence between the
1Even in the event that the effects of physiological and behavioral heterogeneity are indistinguish-

able, it is important to make the type heterogeneity explicitly known so that the mechanisms are clearly
understood.

2The work presented in this chapter follows from a previous collaboration with Georgy Karev and
Irina Kareva (on avoiding the tragedy of the commons through taxing overconsumers and subsidizing
underconsumers) and discussions with Artem Novozhilov and Carlos Castillo-Chavez.
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transport system and the undistributed formulation of the model is demonstrated for

the basic SIR model and an SIR model with distributed susceptibility. Using a

monotonicity argument I make a worst case scenario assertion with regards to the final

epidemic sizes for the models. The weakness of the representation theorem in working

with more complicated models (models with demographics, recovery without

immunity, etc...) is highlighted with respect to “blue-sky” births. In these examples

the nature of the non-autonomous parameter specification cannot be tractably

investigated and thus 1) the nature of the transient behavior cannot be confidently

studied and 2) the asymptotic equivalence cannot be guaranteed. Two situations of

open population SIR models (with inheritance of disease state and sterility brought on

by infection) where the theory works are discussed and analyzed.

Part 2, Behavioral Heterogeneity, contains three separate models. The selection of

these models is done to cogently distinguish between static and adaptive (dynamic)

behavioral heterogeneity. Chapter 3 is a paper3 analyzing the impacts of static

behavioral effects on the dynamics of gonorrhea transmission in a single-sex

population. Chapter 4 is another example of static behavioral heterogeneity where

there is no underlying dynamic process. The question of model selection in test theory

without an answer key is discussed in relation to its application to a population with

distinct cultures4. Chapter 5 presents a prototype of incorporating positive, adaptive

behavior into a standard epidemiological model using concepts from the economics of

risk aversion5. Adaptive behavior is a subset of more general dynamic behavior.

Local heterogeneity is covered in Part 3. Explicit spatial models (e.g., PDE’s) are

omitted in favor for connectivity (network) models. Chapter 6 presents a new explicit

solution to a generalization of the scale-free paradigm popularized by Albert and
3Authorship of this paper, published in the Journal of Theoretical Biology, is B.R. Morin, L. Medina-

Rios (an undergraduate student at the time of research), E.T. Camacho, and C. Castillo-Chavez.
4Authorship of this manuscript is Benjamin R. Morin and Daniel Hruschka.
5Authorship of this submitted manuscript is Benjamin R. Morin, Eli P. Fenichel and Carlos Castillo-

Chavez.
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Barabási, and uses this model to calculate the epidemic threshold for an SIR model.

This calculation demonstrates that with reasonable biological parameters the basic

reproduction number of such a disease on a scale-free-like network is always greater

than one.
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Part I

Physiological Heterogeneity
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Chapter 2

A Transport Equation Approach to Variable Susceptibility

Epidemic/compartmental models typically have the population broken up into a

number of compartments that describe the individual disease state of its members.

Along with the compartments describing the states of individuals, there are a set of

biologically motivated parameters describing the transitionary flow between

compartments. It is commonly the case that these parameters are described as the

average quantity for a given population (e.g., the average duration of infection). The

SIR model is one such example that has had a great deal of intellectual effort put forth

to its understanding

( [5, 6, 8, 9, 11, 19, 21, 29, 31, 35, 36, 38, 40, 41, 50, 58, 68, 71, 75, 78, 86, 98, 113, 134] to

name but a few). Individuals in this model are either susceptible to a disease, S,

infected/infectious, I, or have recovered and are now immune to reinfection, R. This

formulation involves the rate that a contact between a susceptible and an infectious

individual results in a new infection, β , and a recovery rate, γ . Furthermore, a

standard assumption to the contact structure is that individuals make contacts at

random with the entire population. This results in the system

˙S(t) =−βS(t)
I(t)
N

,

˙I(t) = βS(t)
I(t)
N
− γI(t),

˙R(t) = γI(t),

(2.1)

where ˙X(t) = dX(t)
dt . While the explicit solution is not available, there are two

quantities often calculated with respect to the behavior of this model: the basic

reproduction number R0 and the final epidemic size relation. For this simple model

we have R0 =
β

γ
and the final epidemic size relation of S∞ = S(0)e−

β

γ (1− S∞
N ).
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The goal of this chapter is to invoke the supposition that the population is not

homogenous in its parameters (i.e., individuals may be further stratified by differential

susceptibility, infectivity, and/or recovery). General theory on the use of transport

equations/variables for models of the form

Ẋ(t,w) = X(t,w)F(X(t,w;~θ), ~Y (t), t;~θ),

~̇Y (t) = G(X(t,w), ~Y (t), t;~θ),
(2.2)

has been done by Karev [81, 82], and was used by Novozhilov, [109], on the dynamics

within a closed population SIR setting. Novozhilov’s results are somewhat replicated

here in Section 2.1 as a means to warm up to the method. While the equivalence of

asymptotic behavior for distributed models of the form given in System (2.2) and their

undistributed counter parts was proven by Karev, Subsection 2.1 demonstrates the

technique for proving it for this specific case1. The representation theory explained

in [81,82] excludes models that exhibit blue-sky births (i.e., entries into the distributed

class at a rate not proportional to the class itself). I demonstrate that the representation

may be carried through in some open population models, and the final outcome is a

finite dimensional, non-autonomous system. The difficulty in applying the equivalence

theory arrises in studying the non-autonomous parameter’s evolution over time.

2.1 Differential Susceptibility SIR With a Closed Population

I start here with an introduction of variability in susceptibility2 modeled via a

parameter w and a resultant value of β (w). Assume that β (w)≥ 0 (for biological

feasibility) and is finite (in order to ensure all populations are finite in finite time), and

denote the susceptible individuals with a particular susceptibility of w via S(t,w). The

resulting system takes on the form

˙S(t,w) =−β (w)S(t,w)
I(t)
N

,

˙I(t) =
∫

β (w)S(t,w)dw
I(t)
N
− γI(t),

(2.3)

1This dynamic equivalence is similar to that of the age structured model, see [29].
2The full derivation of this model may be found in [109].

8



with R(t) omitted due to the constant population size. Based on the representation

theory of Karev [81–83], one introduces a transport variable ˙q(t) =− I(t)
N and arrives

at the solution

S(t,w) = S(0,w)eβ (w)q(t)

through separation of variables for the susceptible class. Note that S(t) =
∫

S(t,w)dw

is the total susceptible population which satisfies

˙S(t) =−β (t)S(t)
I(t)
N

,

where

β (t) =

∫
β (w)S(t,w)dw∫

S(t,w)dw
,

=

∫
β (w)S(0,w)eβ (w)q(t)dw∫

S(0,w)eβ (w)q(t)dw

=
d

dλ

[
ln
(
Mβ (0,λ )

)∣∣
λ=q(t) .

Mβ (t,λ ) is the moment-generating function of the time t density of property w within

the susceptible population. The system in (2.3) may be of arbitrarily large dimension,

since w may take on values along a continuum, and is now reduced to two

non-autonomous differential equations and an integral expression3, or a transport

system given by:

˙S(t) =−β (t)S(t)
I(t)
N

,

˙I(t) =β (t)S(t)
I(t)
N
− γI(t),

˙q(t) =− I(t)
N

,

β (t) =
∫

β (w)S(0,w)eβ (w)q(t)dw∫
S(0,w)eβ (w)q(t)dw

.

(2.4)

3What is interesting about this method is that it constructs non-autonomous differential equations
which implies that one is still searching an extremely large solution space. This has shifted the continuum
of state variables onto an autonomous transport variable ODE and a time dependent parameter. However,
with the introduction of this transport variable, coupled with the ability to solve S(t,w) in terms of it and
initial data, the integral expressions are “solvable” numerically and may be represented via moment-
generating functions of the initial data.
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It may be assumed that the initial condition for the distribution of S(0,w) and the

values for β (w) are known. The system (2.4) may be recast where the incidence is a

nonlinear function. Denote the moment-generating function for the distribution

describing the selection of an arbitrary susceptible individual with susceptibility β (w)

via

Mβ (0,q(t)) =
∫ S(0,w)

S(0)
eβ (w)q(t)dw.

We may use this to further alter the representation of (2.3) by finding

1
S(t)

d
dt

S(t) = β (t)
d
dt

q(t),

=
d

dλ

[
ln
(
Mβ (0,λ )

)∣∣
λ=q(t)

d
dt

q(t),

d ln(S(t))
dt

=
d
dt

ln(Mβ (0,q(t))),

S(t)
S(0)

= Mβ (0,q(t)),

q(t) = M−1
β

(0,S(t)/S(0)).

This allows one to write

˙S(t) =− d
dλ

Mβ (0,λ )|λ=M−1
β

(0,S(t)/S(0))S(0)
I(t)
N

, (2.5)

and by the inverse function theorem (i.e., ( f−1)′(b) = 1
f ′(a) where b = f (a)) results in

˙S(t) =−
[

d
dλ

M−1
β

(0,λ )|λ=S(t)/S(0)

]−1

S(0)
I(t)
N

=−h(S(t))
I(t)
N

, (2.6)

where h(S(t)) is a non-linear function of S(t).
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This formulation is particularly useful for the calculation of final epidemic size

relation. Calculating dS(t)
dR(t) results in

dS(t) =−S(0)
Nγ

[
d

dλ
M−1

β
(0,λ )|λ=S(t)/S(0)

]−1

dR(t),

− 1
Nγ

dR(t) =
d

dλ
M−1

β
(0,λ )|λ=S(t)/S(0)

dS(t)
S(0)

,

−R∞−R(0)
Nγ

=
∫ S∞/S(0)

1
dM−1

β
(0,λ ),

−N−S∞

Nγ
= M−1

β
(0,S∞/S(0)),

S∞ = S(0)Mβ

(
0,

S∞−N
Nγ

)
.

Furthermore, as a straightforward application of the results in [25], SIR models with

this nonlinear form have a basic reproduction number4 R0 =
β (0)

γ
. With these

threshold quantities (final epidemic size and basic reproduction number) one may

address several questions: when is the beginning of the epidemic in the distributed

case identical to the non distributed case, when is the final size relationships between

the two models the same, and when is the qualitative behavior between the two models

identical.

Equating the two basic reproduction numbers results in β = β (0). Thus, if the

traditional β is chosen to be the initial mean of the distribution of S(t,w) then the

initial behavior of the two models is identical. Supposing that the solution to

S∞ = S(0)e−
β

γ (1− S∞
N ) is identical to that of the distributed problem implies this

solution must satisfy

e
β

γ

R∞
N = Mβ

(
0,

1
γ

R∞

N

)
,

where R∞ is the limiting recovered population, supposed identical on either side of the

expression. Note that the β on the left hand side is the particular value (from the

classical model) while that on the right is a distributed variable. Since distributions are
4The limitations of such a quantity should be apparent in such a case where the infectivity is a

function of time. Nevertheless, it is presented as a standard threshold computation.
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uniquely identified by their Moment-generating function, we may conclude the initial

distribution of w in the susceptible population must be delta, i.e.,

Mβ

(
0,

1
γ

R∞

)
=

∫ S(0,w)
S(0)

e
β (w)

γ

R∞
N dw,

=
∫

δβ (w)−β e
β (w)

γ

R∞
N dw,

= e
β

γ

R∞
N .

We may then conclude that if the final size is identical between the two models

(distributed and undistributed) then the initial epidemic behavior is identical; however,

the converse is not true. One may choose any number of initial distributions such that

the mean at time zero is equivalent to β . This is particularly important when

estimating parameters from initial epidemic data (the initial phase of exponential

growth). These estimations typically assume a delta distribution of infectivity and

therefore may be used to incorrectly project final epidemic size (whether the

estimation based on homogeneity considerations is over or under that of a particular

distributed case is discussed later). Furthermore, Novozhilov demonstrated that if the

same distribution were supposed with equilvalent mean and different variance, then

there are some situations (e.g., Gamma) where the more variable population may be

proven to result in a greater final epidemic size.

Dynamic Equivalence

For the undistributed model, all points of the form (S∗,0) are equilibria. Qualitatively,

all values S∗ > γ

β
N are unstable fixed points and all S∗ < γ

β
N are stable. The fixed

points for the transport system (2.4) may pose a particular challenge because the

system is now non-autonomous. However, assuming a non-degenerate situation (i.e.,

β (t) 6= 0), the equilibria are still of the form (S∗,0). The linearization of the

distributed system gives the condition for stability as

S(t)<
γ

β (t)
N.

12



For general distributions, the stability threshold may create a complicated phase space

where β (t) forms an implicit (in time) boundary which may induce oscillations

(necessarily damped) in the phase space (e.g., there may exist some times τ1, τ2, and

τ3 such that for t ∈ [0,τ1) and t ∈ (τ2,τ3) the stability condition is not satisfied and for

t ∈ (τ1,τ2) and t ∈ (τ3,∞) the stability condition is satisfied, causing a second peak),

but one may prove that this will not occur. Define the threshold T (t) = γN
β (t)

and

consider

dT (t)
dt

=− γN(
β (t)

)2
dβ (t)

dt
,

=
γVar(β (t))I(t)(

β (t)
)2 .

(2.7)

By Equation (2.7) it is clear that T (t) is monotonically increasing (furthermore, its

slope approaches 0 as Var(β (t)) approaches 0, i.e., as S(t,w)
S(t) approaches a delta

distribution). Since T (t) is monotonically increasing, the amount of the S(t)-axis in

the phase space for which the points are stable is also increasing (non-decreasing in

the event that γ

β (t)
> 1 for some t < ∞). Since I(t) begins to decrease once it crosses

T (t), and because T (t) is monotonically increasing, there is no way to induce an

oscillation on I(t) regardless of the distribution on w (i.e., once I(t) decreases it may

not increase). Similarly, there will be no oscillations in either S(t) or S(t,w).

Lemma 2.1.1 (Closed SIR Equivalence/Worst Case Distribution). Due to the

monotonicity of β (t) ,the transient and asymptotic qualitative behaviors of the

distributed and non-distributed SIR models are identical. Additionally, the initial

behavior and final epidemic size of the two models are identical if

S(0,w) = δβ (w)−β S(0). Finally, the initial behavior of the two models is identical if

and only if β (0) = β . Also due to the monotonic decrease in β (t), over all

distributions chosen with equivalent initial mean, the one that produces the most

infection is the delta (undistributed) distribution.

13



Proof. The equivalence claims are all proven in the text preceding this Lemma. To

prove the worst case scenario claim observe that since q(0) = 0, and I(t)→ 0, we have

that q(t) monotonically decreases to some value η ∈ (−∞,0). The derivative of β (t)

with respect to q(t) is Var(β (t))> 0, implying β (t) decreases monotonically to

ε ∈ (0,β (0)). Note the final epidemic size calculation

S∞ = S(0)e−
∫

∞

0 β (u)I(u)du, (2.8)

and the inequality

∫
∞

0
β (u)I(u)du≤ β (0)

∫
∞

0
I(u)du =−β (0)

γ

(S∞−N)

N
. (2.9)

This implies that the final epidemic size for the undistributed case is minimal, given

that the distribution has an equivalent initial mean susceptibility, i.e.,

S(0)e−
∫

∞

0 β (u)I(u)du ≥ S(0)e−
β (0)
Nγ

(N−S∞).

2.2 “Blue-Sky” Births & Open Populations

The most straightforward manner to “open” the population of the aforementioned SIR

model is to suppose newborns are susceptible and each class experiences

proportionate removal from the system. This results in the distributed system

˙S(t,w) = ΛN(t,w)−β (w)S(t,w)
∫ I(t,w)

N(t)
dw−µS(t,w),

˙I(t,w) = β (w)S(t,w)
∫ I(t,w)

N(t)
dw− (γ +µ)I(t,w),

N(t,w) = N(0,w)e(Λ−µ)t .

(2.10)

However, both I(t,w) and R(t,w) produce members of S(t,w) (and thus the ODE for

S(t,w) cannot be solved via separation of variables). Nevertheless, continuing as
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before, let q̇(t) =− I(t)
N(t) to get

˙S(t,w)+
(

β (w)
I(t)
N(t)

+µ

)
S(t,w) = ΛN(t,w),

dS(t,w)e−β (w)q(t)+µt

dt
= ΛN(0,w)eΛt−β (w)q(t),

S(t,w)e−β (w)q(t)+µt−S(0,w) = ΛN(0,w)
∫ t

0
eΛr−β (w)q(r)dr,

and thus

S(t,w) =
(

ΛN(0,w)
∫ t

0
eΛr−β (w)q(r)dr+S(0,w)

)
eβ (w)q(t)−µt . (2.11)

The method for solving this equation was via the integrating factor e−β (w)q(t)+µt as

opposed to separation of variables, as in the closed population case. We may now

consider the transport system

˙S(t) = ΛN(t)−β (t)S(t)
I(t)
N(t)

−µS(t),

˙I(t) = β (t)S(t)
I(t)
N(t)

− (γ +µ)I(t),

N(t) = N(0)e(Λ−µ)t ,

β (t) =
Λ
∫

β (w)P(w)eβ (w)q(t) ∫ t
0 eΛr−β (w)q(r)drdw+

∫
β (w)PS(w)eβ (w)q(t)dw∫ (

ΛP(w)
∫ t

0 eΛr−β (w)q(r)dr+PS(w)
)

eβ (w)q(t)dw
,

=
Λ
∫ t

0 eΛr d
dλ

Mβ (0,λ )|λ=q(t)−q(r)dr+ d
dλ

Mβ |S(0,λ )|λ=q(t)

Λ
∫ t

0 eΛrMβ (0,q(t)−q(r))dr+Mβ |S(0,q(t))
,

˙q(t) =− I(t)
N(t)

,

where P(w) = N(0,w)
N(0) ,PS(w) =

S(0,w)
N(0) ≈ P(w), and Mβ |S is the conditional moment

generating function based on PS(w). It should be clear that the set of possible

qualitative behaviors from the undistributed case5 are the only options for the

evolution of this transport system. However, the nature of β (t) (whether it is
5The undistributed system is a homogeneous system and thus, by rescaling to proportionate vari-

ables we may equate stability analysis of fixed points of the rescaled system to stability analysis of the
exponential trajectories of the original, undistributed system. The disease free equilibrium (trajectory)
is attracting if and only if β < γ +Λ. When the disease free state is not attracting there is an endemic
equilibrium (trajectory) in the relevant phase space which is stable.
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increasing, decreasing, or both) is intractable. The derivative of β (t) with respect to t

reduces to

− I(t)
N(t)

Var
(

β (t)
)
+

Λ

(
β (t)−βN(t)

)
S(t)

(
µN(t)−βN(t)

)
, (2.12)

where βN(t) =
∫

β (w)N(0,w)dw
N(t) . Note that β (0)≈ βN(0) = βN(t). Thus at time t = 0 it is

true that β (t) is decreasing. For t > 0 the sign of
Λ(β (t)−βN(t))

S(t)

(
µN(t)−βN(t)

)
is

equivalent to that of
(

β (t)−βN(t)
)(

µe(Λ−µ)t (
∫

N(0,w)dw)2−
∫

β (w)N(0,w)dw
)

.

Given this information it is feasible that the exponential trajectory for the transport

system oscillates between being attracted to the disease free trajectory and the

endemic trajectory. Furthermore, if β (w)≥ 1 for all w then the derivative of β (t) with

respect to q(t) is always positive:

dβ (t)
dq(t)

=Var(β (t))+
Λ

S(t)

∫
N(t,w)

(
β (t)−1

)
dw > 0. (2.13)

Since q(t) is monotonically decreasing we may infer in this case that there exists a

time τ < ∞ such that for all t ≥ τ , β (t)< γ +Λ. This implies that the disease will

eventually “burn itself out” and the disease free trajectory will be stable.

This does not seem to have opened many analytical pathways as in the closed case,

however this should be seen as a boon for numerical computation. The original system

involved (in general) an infinite number of ordinary differential equations to integrate

numerically, a task not easily undertaken by any computer. However, in the above

system there are three ODE’s to solve numerically and a quantity involving numerical

integration based on initial conditions (S(0,w),N(0,w), and β (w)) and the solution

trajectory of ˙q(t) up to and including the current time. A careful coding of any

forward-backward numerical solver can handle this system.

Pure Inheritance

A method to circumvent the “blue-sky” births into S(t,w) is to assume the malady, and

immunity to it, is transferred to new borns. This inheritance mechanism is weak at
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best because 1) the additions and removals to the system are not solely births and

deaths in general but could be immigration and emmigration from the area in question

and 2) we have to further assume the father’s status confers nothing onto new-borns.

With these caveats in mind, one may formulate:

˙S(t,w) = ΛS(t,w)−β (w)S(t,w)
I(t)
N(t)

−µS(t,w),

˙I(t,w) = ΛI(t,w)+β (w)S(t,w)
I(t)
N(t)

− (γ +µ)I(t,w),

˙R(t,w) = ΛR(t,w)+ γI(t,w)−µR(t,w),

N(t,w) = N(0,w)e(Λ−µ)t .

(2.14)

The solution to S(t,w) may then be found via separation of variables as

S(t,w) = S(0,w)e(Λ−µ)t+β (w)q(t),

with ˙q(t) =− I(t)
N(t) . Integrating each ODE over w gives the transport system

˙S(t) = ΛS(t)−β (t)S(t)
I(t)
N(t)

−µS(t),

˙I(t) = ΛI(t)+β (t)S(t)
I(t)
N(t)

− (γ +µ)I(t),

˙R(t) = ΛR(t)+ γI(t)−µR(t),

N(t) = N(0)e(Λ−µ)t ,

β (t) =
∫

β (w)S(0,w)eβ (w)q(t)dw∫
S(0,w)eβ (w)q(t)dw

,

˙q(t) =− I(t)
N(t)

.

(2.15)

We may recast System (2.15) into a system with proportionate variables s(t) = S(t)
N(t) ,

i(t) = I(t)
N(t) and r(t) = R(t)

N(t) , each trapped within the interval [0,1]. The resulting

autonomous system is given by

˙s(t) =−β (t)s(t)i(t),

˙i(t) = β (t)s(t)i(t)− γi(t),

˙r(t) = γi(t),

˙q(t) =−i(t),

(2.16)
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with the definition of β (t) left unchanged. This system exhibits the same dynamics as

the closed SIR population transport equations in System (2.4). This implies that

opening the population as in System (2.15) may not induce oscillations, where in the

original open system given by (2.10) we were not able to definitively rule out

oscillatory behavior (it could not be shown that β (t) was monotonic).

Sterilization

It is conceivable that particular infections can infer sterility on the individual. The

zoonoses Trichomoniasis, Salmonellosis, and Leptospirosis are such infections in

cows [132]. Once a heifer has been infected with these diseases the next pregnancy

will result in abortion. With Salmonellosis and Leptospirosis it is unclear if future

pregnancies result in abortions even if the cow shows no signs of infectiousness, but it

is true that upon true recovery, after a short time spent immune to the disease, the

heifer is again susceptible to infection but may conceive and calf normally until

reinfected. This dynamic, similar to an SIS model (the immunity is so short that the

rate from R to S will be disproportionately large), can be shown to be completely

incompatible with the transport equation technique6.

Papillomaviruses in sheep have both an acute and chronic stage. During the acute

stage the sheep is infectious and any pregnancy during which the sheep is in the acute

phase will result in abortion [111]. The passing to the chronic phase causes

scarification of the fallopian tubes, as it does in humans. This scarring causes

infertility in addition to making the sheep more susceptible to other STDs and STIs.

While in the chronic phase the sheep is still infectious, but at a much lower level than

when in the acute phase [111]. I simplify this by supposing the infections caused by
6I’ve omitted showing the calculations for SIS and SIRS models but the reentry into the suscep-

tible class causes the distributed equations to be completely unsolvable in any meaningful way. The
solution for I(t) in the distributed susceptibility SIS model looks very similar to the solution of the non-
autonomous SIS model [94], but it can be easily shown that the solution is both implicit (the parameters
“depend” on I(t)) and incomplete (the parameters require that I(t,w) be solved, which cannot be done).
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sheep in the chronic phase is negligible and cast the dynamics into an SIR setting with

variable susceptibility. The following model will suppose a population whose growth

is naturally limited, modeled via logistic growth, and is single sex (females only). I

will introduce papillomavirus into the population noting that it 1) causes no death due

to infection and 2)causes permanent infertility in infectious (acute) and

recovered/immune individuals (chronic). The variable susceptibility serves an

amalgamation of effects that contribute to susceptibility: nutrition, infection history,

cleanliness of environment, etc.... Suppose a logistic growth for the population given

by

˙N(t) = λN(t)− λ

K
N2(t), (2.17)

and rationalize the terms mechanistically as a birth process λN(t) and a density

dependent death process λN(t)N(t)
K . By introducing a sterilizing disease, and

imparting differential susceptibility, one arrives at

˙S(t,w) = λS(t,w)
(

1− N(t)
K

)
−β (w)S(t,w)

I(t)
N(t)

,

˙I(t) =
∫

β (w)S(t,w)dw
I(t)
N(t)

−
(

γ +λ
N(t)

K

)
I(t),

˙R(t) = γI(t)−λR(t)
N(t)

K
,

˙N(t) = λ

∫
S(t,w)dw−λN(t)

N(t)
K

.

(2.18)

Introduce the transport variables ˙u(t) =−N(t)
K and ˙v(t) =− I(t)

N(t) to arrive at

S(t,w) = S(0,w)eλ t+u(t)+β (w)v(t),

and thus

S(t) = eλ t+u(t)
∫

S(0,w)eβ (w)v(t)dw.

Defining

β (t) =
∫

β (w)S(0,w)eβ (w)v(t)dw∫
S(0,w)eβ (w)v(t)dw

,
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gives the transport system

˙S(t) = λS(t)
(

1− N(t)
K

)
−β (t)S(t)

I(t)
N(t)

,

˙I(t) = β (t)S(t)
I(t)
N(t)

−
(

γ +λ
N(t)

K

)
I(t),

˙u(t) =−N(t)
K

,

˙v(t) =− I(t)
N(t)

,

˙N(t) = λS(t)−λN(t)
N(t)

K
.

(2.19)

Supposing the total population is less than K, one may rescale to state variables in

[0,1] and define the biologically valid domain via

T = {(s, i,n)|s≥ 0, i≥ 0,n ∈ [0,1],s+ i≤ 1}:

ṡ(t) = λ s(t)(1−n(t))−β (t)s(t)
i(t)
n(t)

,

i̇(t) = β (t)s(t)
i(t)
n(t)
− (γ +λn(t))i(t),

u̇(t) =−n(t),

v̇(t) =− i(t)
n(t)

,

ṅ(t) = λ s(t)−λn2(t),

β (t) =
∫

β (w)s(0,w)eβ (w)v(t)dw∫
s(0,w)eβ (w)v(t)dw

.

(2.20)

The qualitative behavior of the undistributed case forms the bifurcation diagram that

this non-autonomous transport system now moves through (the bifurcation parameter

is a function of time). I will discuss a fixed point whose coordinates involve β (t). This

“fixed curve” is a trajectory in R3 and should the trajectory of the state variables, s, i,

and r, come in contact with it, in the space-time sense, then their dynamics will cease

for a moment. However, if i(t) 6= 0 then ˙v(t) 6= 0 and β (t) may change. The

state-dynamics will then not be at equilibrium and continue. Effectively this trajectory

corresponds to turning points (local minimums, maximums or inflection points) that
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occur for all three states simultaneously. There are two simple fixed points for the

undistributed system:

(s∗, i∗,r∗) = (0,0,0),(1,0,0). (2.21)

The trivial fixed point, all states 0, is a saddle-type node (i.e., attracting down the i(t)

and r(t) axes and repelling down the s(t)-axis). The disease free equilibrium, DFE,

(1,0,0) has eigenvalues −λ ,−λ , and β (t)−λ − γ . Thus when β (t)< λ + γ then the

disease free equilibrium is a stable node, at other times it is a saddle-type node.

Looking at the nullclines of the s(t) and i(t) variables reveals an intersection at(
(γ+λn(t))n(t)

β (t)
, λn(t)(1−n(t))

β (t)

)
. Treating this as a point one may find the r-coordinate via

˙r(t) = γi(t)−λ r(t)n(t) = 0 which implies

r(t) =
γ(1−n(t))

β (t)
. (2.22)

These expressions for s(t), i(t), and r(t), together with s(t)+ i(t)+ r(t) = n(t), gives

that n(t) = γ

β (t)−λ
along this fixed curve. This gives a final form for the time t

coordinates of the “fixed point” in terms of β (t) as

(s(t), i(t),r(t)) =

 γ2(
β (t)−λ

)2 ,
λγ

(
β (t)−λ − γ

)
[
β (t)(β (t)−λ )

]2 ,
γ

(
β (t)−λ − γ

)
β (t)

(
β (t)−λ

)
 . (2.23)

This “point”, call it the endemic equilibrium trajectory, is valid biologically only when

β (t)−λ − γ > 0 (when both the trivial and disease free equilibria are saddle nodes).

Eigenvalues about this “point” are − γλ

β (t)−λ
and

1

2β (t)(β (t)−λ )2

[
b±
√

b2−4β (t)
2
γλ (β (t)−λ )2(β (t)− γ−λ )

]
,

where b = λ (β (t)−λ )(β (t)− γ−λ )(β (t)−1). When the endemic equilibrium

trajectory is inside T , the sign of the real part of the two complicated eigenvalues is

determined by the sign of β (t)−1 (the simple eigenvalue is negative). The real part of

these eigenvalues are positive if and only if β (t)> 1. If the endemic equilibrium

21



trajectory is not in T , β (t)< γ +λ , then there is always a positive eigenvalue for the

endemic equilibrium trajectory, causing it to be unstable.

I will demonstrate that limt→∞ β (t) = ε ∈ [0,β (0) and that T is a proper bounding set

for the dynamics. These two facts will give a complete understanding of the transient

and asymptotic dynamics of this system.

Supposing i∞ = limt→∞ i(t)> 0 immediately gives that n∞ > 0 and for all t, ˙v(t)< 0

(implying that v(t)→−∞). To study the limiting behavior of β (t), suppose s∞ > 0.

Rewriting β (t) as

β (t) =
∫

β (w)s(0,w)eβ (w)v(t)+u(t)+λ tdw
s(t)

, (2.24)

one would need to consider limt→∞ [β (w)v(t)+u(t)+λ t]�−∞+∞, an improper

form. From this we may not determine what β (t) limits to other than (with the

knowledge that it is monotonically decreasing) some value ε ∈ [0,β (0)).

To show that T is a proper bounding region we must show that on the boundary of T

all flow is inwards. This can be seen by studying the case s(t)+ i(t) = 1 (the positivity

conditions are straightforward). ˙s(t) is always negative along this line because

˙s(t) =−β (t)s(t)(1− s(t))≤ 0.

The ˙i(t) equation simplifies to (1− s(t))(β (t)− γ), and thus ˙i(t)> 0 for s(t)> γ

β (t)
.

This could be problematic; if the magnitude of flow in the i(t) direction is greater than

that in the s(t) direction then the flow would escape T . Assuming that n(t) = 1 and

s(t)≤ n(t), we have that n(t) is decreasing. Thus s(t) is decreasing more than i(t)

increases and the flow remains within the region T ! Therefore T is a proper bounding

region for the dynamics should (s(0), i(0),n(0)) ∈ T .

We are left with several possible transient/asymptotic dynamic situations for the fixed

points (s∗, i∗,r∗) = (0,0,0),(1,0,0),
(

γ2

(ε−λ )2 ,
λγ(ε−λ−γ)

[ε(ε−λ )]2
, γ(ε−λ−γ)

ε(ε−λ )

)
, the trivial, disease

free, and the limit of the endemic equilibrium trajectory:
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1. The limit ε is both greater than γ +λ and 1: The trivial equilibrium and the DFE

are saddles. The trivial equilibrium attracts along the i(t) and r(t) axes and

repels along the s(t) axis. The DFE attracts along the s(t) axis and the line

s(t)+ r(t) = n(t) and repels in the direction of s(t)+ i(t)≤ n(t). The endemic

equilibrium (EE) is also a saddle with two eigenvalues with positive real part

and one negative eigenvalue. Solutions will oscillate about the current value of

(2.23) and asymptotically approach oscillation about the limit of (2.23).

2. The limit ε is in (γ +λ ,1): The trivial equilibrium and the DFE are saddles.

The EE is now an attractor for all trajectories in the interior of T .

3. The limit ε is less than γ +λ : The DFE is the attractor for all trajectories in the

interior of T , and the EE is outside of T repelling trajectories into T .

4. β (t)> γ +λ for t ∈ [0,τ) and β (t)< γ +λ for t ∈ (τ,∞): Until time τ the

system will appear as in Case 1, Case 2, or Case 1 and then Case 2 (depending

on the sign of β (t)−1). After time τ the behavior will be as in Case 3.

2.3 Discussion

Albeit in a narrow context, this section has focused on one way to handle biological

heterogeneity, via transport equations akin to the reduction theory of Karev. Lemma

2.1.1 follows from the monotonicity of β (t). This property proves qualitative

equivalence (not a new result, but a new way to show it) as well as demonstrating that

the undistributed case infects the most individuals. This latter result in closed

populations is intuitive but was shown to hold for the pure inheritance model as well.
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The simple, open SIR model was reduced to a non-autonomous, finite dimensional

system of ODEs, but due to the resulting nature of β (t) (involving the solution

trajectory of the transport variable) it challenging to analyze. Without the ability to

demonstrate monotonicity (at least after some time τ) we are not afforded with the

ability to rule out, or construct conditions for, sustained oscillatory behavior.

The pure inheritance model, System (2.15), is perhaps a biologically unrealistic

work-around for the “blue-sky” births found in the simple, open SIR case, but it was in

a form receptive to the transport system representation. The reduction of the

homogeneous system to one with states in [0,1] allowed for the fixed point analysis of

the closed SIR to be applicable to stability analysis of exponential trajectories.

Interestingly, despite being an SIR model with demographic dynamics, the births

being split into the three classes prevents the presence of oscillatory solutions. This

splitting of births possibly is perhaps what confers monotonicity on β (t).

The sterilization model, a simplification of papillomavirus dynamics in sheep given by

System (2.18), exhibits a wide range of transient dynamics due to the stability of the

DFE being dependent on the relationship between β (t) and the other vital rates λ and

γ as well as its own magnitude related to unit. Motivation for splitting up the

population into variable susceptibility is in the spirit of black boxing several cofactors:

nutrition, cleanliness of environment, genetic variability, and epidemiological history

of the individual sheep. Furthermore, the model does not incorporate the probable

culling/removal of infected sheep, the partial infectivity of those sheep in the chronic

phase, and I assumed that chronic infected (recovery) necessarily led to sterility (early

detection and treatment can prevent the scarification from occurring although the

sheep would probably be removed from the breeding population to prevent more

infection).
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I demonstrated that for particular values of the mean distribution of infectivity that the

disease free equilibrium is asymptotically stable, Cases 3 and 4, and that in the latter

situation there is an interesting transient behavior of the solution curve “chasing” an

equilibrium which vanishes from the biologically meaningful space. I’ve also given

conditions for oscillatory behavior should the mean susceptibility not limit to zero,

Case 1. In this situation the dynamics are quite complex; because there is not a fixed

limit cycle for finite time, there is a “moving” oscillation through the phase space (the

trajectory is oscillating and where the oscillation occurs is moving). Finally in Case 2,

I was able to show that the endemic state is a “global” attractor within T .

Extensions to the work of this chapter may include a more general theoretic version of

the transport system theory of Karev as applied to models requiring separation of

variables to be “solved”, as in the case of the simple, open SIR. Additionally,

heterogeneity may be introduced to infectivity and recovery rate as Novozhilov did for

closed populations [109]. These heterogeneities were not introduced here because

they induce further transport equations, and was beyond the scope of an explanation of

the method through novel examples. The question of parameter estimation was raised

in Section 2.1. While the robustness of estimators of parameters in epidemiological

compartmental models has been demonstrated, [62], for all but behavioral effects, it is

of interest to investigate if the distribution, or the parameters of an assumed

distribution, of an epidemiological parameter may be estimated from collected data.
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Part II

Behavioral Heterogeneity
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Chapter 3

Static Behavior Effects on Gonorrhea Transmission Dynamics in a MSM

Population [102].

The task of disease eradication and prevention, while of interest to a society as a

whole, is in the hands of “active” individuals. Active can be taken to mean any

behavior or circumstance that puts that individual in the process of the disease

spreading. Of interest here is the spread of sexually transmitted diseases (STDs), more

specifically gonorrhea, and thus active is taken to mean highly-sexually active. The

study of so-called core groups has been used, to some success, in modeling the

prevalence of an STD [35, 49, 51, 72, 73].

In classical models controls are viewed as amalgamations of several effects that are

treated via a single parameter (i.e. β as a “force of infection”) [6, 8, 10, 66, 72]. The

behavior of individuals in a population can limit the spread of disease and we place

them into two categories–prevention and self awareness. Prevention is specific to the

characteristics of each disease. With STDs such as gonorrhea, prevention education

advocates safe sex practices, condom use for a larger proportion of the time and

reduction in the number of sexual partners. Self awareness is simply possessing a

knowledge of symptoms, the presence of asymptomatic dynamics, and getting tested

and treated. Self awareness leads to frequent STD screening as a disease control

method since individuals may be infected but have no knowledge of their own status.

In particular, infected individuals may have asymptomatic gonorrhea but still as

infectious as those that show symptoms [1, 73]. If an infected individual is

asymptomatic, but relatively uneducated about the disease, they will not seek medical

attention and their average infectious period is potentially much greater than that of a

symptomatically infected individual. Typically, symptomatically infected individuals
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recover 14 days after the start of treatment which, due to the pain associated with the

symptoms, begins once symptoms show a few days after gonorrhea is contracted [1].

Seminal mathematical work was done by Hethcote and York on heterosexual

gonorrhea transmission [73]. There, a two-sex model of symptomatically infected,

asymptomatically infected, and susceptible populations with different activity levels

was used. The focus of this study was the effect that contact tracing and increased

STD testing would have on the dynamics of the disease. It was found that contact

tracing of infectees was less effective than that of infectors. Here the infectors were

identified as a core group, or highly sexually active subpopulation. Hethcote

concluded that focusing on the core group’s activities was key to controlling the

spread of gonorrhea.

Li et al. specifically modeled STDs like gonorrhea using an SIS model with multiple

strains and varied reaction to infection [92]. It was found that sufficient heterogeneity

of the female in the form of contact structure, immune response or activity level was

necessary in order to have coexistence of the multiple strains. The conditions for the

existence and stability of an endemic equilibrium with two strains were found.

Coexistence required that one strain be better at infecting one subpopulation while the

other be better at infecting another. It was concluded that each strain creates reservoirs

in the population that it is less able to infect.

Although not specifically looking at gonorrhea, previous mathematical

epidemiological studies by Kemper et al. have developed a general model for curable

diseases with symptomatic or asymptomatic infection [85]. There an SIS/SAS model

was developed to consider the impact of asymptomatic attacks. However, this model

does not treat the different recovery time of asymptomatic infected individuals, nor

does it account for the different proportion of contacts with symptomatically infected

individuals that lead to symptomatic versus asymptomatic infection and vice-versa.
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As a case study in the effects of behavior change in the spread of a curable disease that

confers no permanent immunity, we present an SIS/SAS model of gonorrhea

transmission in a men-who-have-sex-with-men (MSM) population that incorporates

the effects of education previously mentioned. The choice of the MSM population was

because it is a population that is typically high risk and very active [73] and can make

occasional contacts with the highly susceptible female population. Thus focusing on

the eradication of STD in this high risk and active population can shed light on STD

control measures in the population as a whole. In this work we assume that the

occasional male-female contacts in the MSM population is negligible from the point

of view of spread within the MSM population but has the potential to cause gonorrhea

to spread in the larger population not modeled here. The influence of safe sex will be

modeled exogenously with a weighted average on the effective contact rate that

accounts for changing behavior with respect to condom use, both of which are fixed

parameter values. Self awareness will be modeled via an increase in infectious period

for asymptomatic versus symptomatic individuals with the asymptomatic individuals

exhibiting either high or low levels of awareness (frequent or rare testing). Analysis is

done describing the disease free and endemic dynamics as well as quantifying the

changes necessary to eradicate gonorrhea in this population.

3.1 Mathematical Homosexual Gonorrhea Transmission Model

The population modeled is single sex with three homogeneous compartmental states

available: susceptible individuals, S, symptomatically infected, I, and

asymptomatically infected individuals, A. The model equations are:

dS
dt

= µ(N−S)− (λ1 + ελ2)βS
I +A

N
+αI +(ρλ3 +σλ4)αA,

dI
dt

= (λ1 + ελ2)βS
(

q1
I
N
+(1−q2)

A
N

)
− (µ +α)I, (3.1)

dA
dt

= (λ1 + ελ2)βS
(
(1−q1)

I
N
+q2

A
N

)
− (µ +(ρλ3 +σλ4)α)A.
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The rate at which the susceptible population is lost to infection is βS I+A
N , where β is

the effective contact rate. We introduce control into the system via λ1, λ2, and ε . The

proportion of the population participating in non-safe sex, or equivalently the

proportion of time an individual participates in non-safe sex, is λ1 and the proportion

of the population participating in safe sex is λ2. The proportion of time safe sex

prevents the transmission of gonorrhea is (1− ε). Thus for the proportion of the time

an individual participates in safe sex, λ2 is multiplied by the reduction factor, ε . These

parameters combine to become a total reduction factor on the force of infection, i.e.

(λ1 + ελ2)β . Individuals are recruited into the I class from the S class at a rate

(λ1 + ελ2)βS
(
q1

I
N +(1−q2)

A
N

)
, where q1 and (1−q2) are the proportion of

individuals that become symptomatically infected from contact with symptomatically

infected individuals and asymptomatically infected individuals, respectively. Similarly

individuals are recruited into the A class from the S class at a rate

(λ1 + ελ2)βS
(
(1−q1)

I
N +q2

A
N

)
. Individuals from the I class reenter the susceptible

class due to treatment at a rate α . Since individuals in the A class do not know they

have gonorrhea the average duration of infection of an asymptomatic person is

assumed to be longer than that of a symptomatic individual. We represent this increase

in infectious period via ρλ3 +σλ4 ∈ [0,1]. The proportion of people who engage in

low levels of self awareness, do not get tested often, is denoted by λ3 while the

population of those who have a high level of self awareness are represented by λ4. The

parameters ρ and σ are extensions to the symptomatic treatment rate α caused by low

and high levels of self awareness respectively, and by the nature of their meanings

ρ < σ . Thus reentry into the susceptible population from the asymptomatic class

occurs at the rate (ρλ3 +σλ4)αA.

The model assumes a constant population size, N, with constant recruitment and

removal, µ . This limits our ability to extend the time scale of this work but allows for

analysis to be carried out that would not be possible. For this reason we are choosing
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college bound (a time of high-sexual activity and educational influence) as a further

narrowing of the population. The reasonable time scale for the model is thus over 4

years, where it is assumed that model parameters cannot change and population will

hold relatively constant. We also do not have memory in our population. Therefore,

once diagnosed with asymptomatic gonorrhea an individual is not more likely to get

frequent testing [73]. Here, new individuals will enter the system as old ones leave

making the absence of memory an acceptable assumption. We present control here as

a meaningful separation of the more classical parameters, but these are still averaged

measures of behavior. Thus, we cannot make any tracking of how often a specific

individual has been diagnosed asymptomatic or has become infected at all. We also do

not look at dynamic changes in sexual mixing through the use of evolving contact

structures. A few proposed generalizations will be made in the end of the paper as

veins of future work but the thought governing this work is to start with as little detail

as seems relevant.

Parameter Estimation

The system we model is a college attending (18-22 years old), MSM population thus

µ is taken to equal 1
4yr . This group was chosen due to the prevalence of both highly

sexually active individuals and the ability for policy changes to potentially reach the

entire population. The behavioral parameters desired for the model were not found

from a single source or over a single demographic across many sources and thus we

have put together several sources’ worth of parameter estimates as an approximation

to the potential behavior of the study group. The effective contact rate is the product

of the number of risky contacts per year and the proportion these that lead to infection.

Based on the information given by [110], roughly 50% of MSM contacts with an

infected individual leads to a new infection in the susceptible partner. Making an

estimate of 100 risky contacts per year we arrive at β = 50 infectious contacts per
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year. To determine the amount of time spent practicing safe versus risky behavior, we

consider a study of an MSM population by Shlay et al. [125] where 25.6% of

participants report consistent condom usage, thus λ2 = .256 and λ1 = 1−λ2 = .744.

To determine ε we take into account that although condoms are 97% effective at

preventing gonorrhea infection with perfect use, many uses are imperfect due to

slippage, breaking, etc. According to Shlay et al. and Stone et al. [129], there is a 16.6

- 17.3% usage failure of condoms in a MSM population. We chose to let ε ≈ .173.

According to [110] symptoms typically appear for men within 4-6 days, 4
365 −

6
365

years, following infection, and treatment duration is 7 days, 7
365 years. Thus we take

α ≈ 365
12yr . A study by Fortenberry et al. showed that roughly 50% of men got tested

for STD’s, including gonorrhea, annually [60]. This study was done without

differentiating between hetero- or homo- sexual males and the age range was larger

than that of your typical college bound of 18 to 22, (about 50% of their sample was in

our age range). This therefore serves as a poor estimate, an estimate none the less, and

is probably an overestimate of safe behavior. Using this information we let

λ3 = λ4 = .5. For the values of ρ and σ we will use testing once every year and once

every 3 months, the CDC recommendation for highly-active MSM [1]. Thus we have

ρ ∗α = 365
372yr and σ ∗α = 365

99yr , or ρ = 12
372 = 1

31 and σ = 12
99 = 4

33 . Making ρ represent

a year as asymptomatic is probably an underestimate for this group, but it is our hope

that this models some form of “college” pressure: student health efforts, peer pressure,

partner desire. The probabilities q1 and q2 are two difficult parameters to estimate. If

data were collected that found the probability of exhibiting a certain type of infection

given a successfully infectious contact with an infectious individual (not necessarily of

the same type) then we’d immediately have the values. However, what we generally

have is some presence proportion (i.e., a percentage of the infected population who is

of a particular type). Thus, the probabilities would solve the necessary relationship in

assumed endemic populations. According to [28] 29.9% of infected individuals are
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asymptomatic. Thus we would have to solve .299I∞ = .701A∞ for q1 and q2. This is

daunting since the expression for the endemic equilibrium is very large and the result

would not necessarily be an invertible function (i.e., more than one pair of the

probabilities would give the same relation). A numerical investigation, using the

nominal values for every other parameter and varying q1 and q2, provides a few values

for the respective probabilities that are near the 29.9% estimate. Choosing q1 = .965

and q2 = .034 we get an endemic percentage of asymptomatic individuals of 29.85%.

3.2 Global Stability Analysis

With the model constructed we wish to do a full analysis on the qualitative behavior of

the system. To that end the main focus of this section is to prove Theorem 3.2.1. The

discussion proving this will involve a treatment of the stability of the disease free

equilibrium, conditions on the number of endemic equilibria that may exist, and a

preclusion of closed orbits which will make all stability arguments global.

Theorem 3.2.1 (Global Stability). System 3.1 has 2 fixed points: a disease free and an

endemic equilibrium. The disease free equilibrium is globally stable when the control

reproductive number is less than one and unstable when the control reproductive

number is greater than one. The endemic equilibrium does not exist biologically when

the control reproductive number is less than one and is globally stable when the

control reproductive number is greater than one.

To start we wish to formulate System 3.1 into a slightly easier form. Since

S(t)+ I(t)+A(t) = N we may eliminate one state variable for the purpose of analysis.

We may also rescale in both state and time to reduce the overall system. Using

x(τ) = I
N , y(τ) = A

N , and τ = tωβ (1− x− y), with ω = λ1 + ελ2 and p = ρλ3 +σλ4,
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we arrive at:

dx
dτ

= q1x+(1−q2)y−
q1x

RII(1− x− y)
,

dy
dτ

= (1−q1)x+q2y− q2y
RAA(1− x− y)

, (3.2)

where RII =
βωq1
µ+α

and RAA = βωq2
µ+pα

. Since each state variable S, I and A are positive

we have that x+ y≤ 1. Thus the rescaling is positive invariant. There is a disease free

equilibrium that always exists, DFE := (x∗,y∗) = (0,0), implying S∗ = N, I∗ = 0 and

A∗ = 0. To determine the local stability of the DFE the system is linearized about

(x∗,y∗) resulting in the following:

J(x∗,y∗) =

 q1− q1
RII

(1−q2)

(1−q1) q2− q2
RAA

 . (3.3)

The characteristic polynomial of the above Jacobian is:

λ
2−
[

q1 +q2−
q1

RII
− q2

RAA

]
λ +

(
q1−

q1

RII

)(
q2−

q2

RAA

)
− (1−q1)(1−q2),

which is in the form λ 2−bλ + c. It may be shown that conditions for the determinant

of the jacobian to be positive, c > 0, are identical to RE , the basic control number,

being less than one. First, we use the next generation operator to compute the number

of secondary infections a typical infectious individual creates in a completely

susceptible population [134]. This method essentially creates two vectors F and V .

The vector F contains any rates in the infected classes’ ODEs that constitute

recruitment from a non-infected class. The vector V contains the negative of all other

rates except for the rates in non-infected classes that represent recruitment into the

infected classes. This is more easily done with Equations 3.1 than the rescaled system
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in Equations 3.2. This gives us

F =


0

ωβS
(
q1

I
N +(1−q2)

A
N

)
ωβS

(
(1−q1)

I
N +q2

A
N

)
 , (3.4)

V =


−µ(N−S)−αI− pαA

(µ +α)I

(µ + pα)A

 . (3.5)

We then define F and V as the Jacobians of F and V respectively. Specifically these

are matrices where the (i, j)th element is the partial derivative of the ith term of the

vector with respect to the jth state variable. The spectral radius, or dominant

eigenvalue, of FV −1 is then our basic reproductive number. The numerator of each

term in Equation 3.6 is from F and each denominator is from V −1.

FV −1 =


βωq1
α+µ

βω(1−q2)
µ+pα

βω(1−q1)
α+µ

βωq2
µ+pα

=

 RII RAI

RIA RAA

 . (3.6)

Interestingly, the terms in Equation 3.6 are each control reproductive numbers in and

of themselves. The term Ri j is the average number of individuals recruited into class j

from a typical member in class i per unit time. Thus the control reproductive number

of the entire system is a function of each of these individual recruitment thresholds.

The spectral radius of Equation 3.6 is

RE =
RII +RAA +

√
(RII−RAA)2 +4RIARAI

2
. (3.7)

Corollary 3.2.1. The condition RE < 1 is identical to c > 0 for the characteristic

polynomial λ 2−bλ + c for system 3.2.
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Proof. We begin with the condition for RE < 1:

RII +RAA +
√

(RII−RAA)2 +4RIARAI

2
< 1,

(RII−RAA)
2 +4RIARAI < (2− (RII +RAA))

2 ,

R2
II−2RIIRAA +R2

AA +4RIARAI < 4−4(RII +RAA)+(RII +RAA)
2,

−4RIIRAA +4RIARAI +4(RII +RAA) < 4,

RII +RAA +RIIRAA

(
1−q1−q2

q1q2

)
< 1.

If we then consider the condition for c > 0:(
q1−

q1

RII

)(
q2−

q2

RAA

)
− (1−q1)(1−q2) > 0,

q1q2(1−RII−RAA)−RIIRAA(1−q1−q2) > 0,

1−RII−RAA > RIIRAA
1−q1−q2

q1q2
,

RII +RAA +RIIRAA

(
1−q1−q2

q1q2

)
< 1, (3.8)

we see Equation 3.8 is identical to the condition for RE < 1.

Thus we have a new condition for stability and may define

R̂E = RII +RAA +RIIRAA

(
1−q1−q2

q1q2

)
.

This quantity is somewhat easier to understand and its relationship to 1 is identical to

RE’s.

If RE > 1 then the DFE is unstable, but we haven’t discussed how many equilibria

may exist. Consider z = x+ y and the fact that if dz
dτ

= 0 and dy
dτ

= 0 then we would be

at a fixed point for System 3.2. Solving dz
dτ

= 0 we get an expression for y in terms of z

by noting x = z− y. Plugging this expression into dy
dτ

and solving the new expression

for zero we get z f (z) = 0, where f (z) = z2−Bz+C,

B = 2+
q1q2

(
1

RAA
+ 1

RII

)
1−q1−q2

,

36



and

C =
(1−q1)(1−q2)−q1q2

(
1− 1

RII

)(
1− 1

RAA

)
1−q1−q2

=
c

−(1−q1−q1)
,

where c is from the characteristic polynomial. If z = 0 then x = y = 0, the DFE. The

interest thus lies in where f (z) = 0. A relationship between C and RE can be made

using the existing relationship found in Corollary 3.2.1.

Corollary 3.2.2. If q1 +q2 < 1 then RE < 1⇔C < 0 and RE > 1⇔C > 0. If

q1 +q2 > 1 then RE < 1⇔C > 0 and RE > 1⇔C < 0.

Proof. If q1 +q2 < 1 then C and c have differing sign and thus if c > 0 then C < 0 and

their relationships to RE are the opposite of one another. If q1 +q2 > 1 then C and c

have the same sign and their relationships to RE are identical.

The equation f (z) is a quadratic and thus may have 0, 1, or 2 roots in (0,1). The

relative signs of f (0) and f (1) will allow us to determine under what conditions f (z)

has a particular number of roots in the unit interval. Consider f (0) =C and

f (1) = 1+C−B. We already have that the sign of C may be viewed as being

dependent on the magnitude of RE . We also have that

1+C−B =− q1q2

1−q1−q2

1
RIIRAA

,

whose sign depends on 1−q1−q2. Thus in order to study the zeros of

f (z) = z2−Bz+C we must consider all 4 combinations of the sum of q1 and q2 with

the magnitude of the control reproductive number.

1. RE < 1 & q1 +q2 < 1

In this situation f (0) =C < 0 and f (1) = 1+C−B < 0. Thus there are no

zeros of f (z) ∈ (0,1).

2. RE > 1 & q1 +q2 < 1 Here we have that f (0)> 0 and f (1)< 0. Thus there is a

single root for f (z) ∈ (0,1).
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3. RE < 1 & q1 +q2 > 1 In the most difficult situation we have that f (0)> 0 and

f (1)> 0. The quadratic having exactly two roots occurs when

a) B
2 ∈ (0,1), and

b) B2−4C > 0.

In order for B > 0 we require that

RII +RAA

RIIRAA
<

2(q1 +q2−1)
q1q2

.

The second condition yields

(RII +RAA)
2

RIIRAA
>

4(q1 +q2−1)
q1q2

. (3.9)

These two conditions are contradictory. To illustrate the contradiction we invoke

Equation 3.7 to get that RE < 1→ RII +RAA < 2. Rearranging Equation 3.9

results in
RII +RAA

RIIRAA
>

4
RII +RAA

(q1 +q2−1)
q1q2

, (3.10)

but 4
RII+RAA

> 2 which gives the contradiction. Thus there are no zeros of

f (z) ∈ (0,1).

4. RE > 1 & q1 +q2 > 1 In this situation f (0)> 0 and f (1)< 0. Thus there is a

single root for f (z) ∈ (0,1).

Combining the arguments gives us that if RE < 1 then the only solution that is

biologically relevant for our system is the DFE. When RE > 1 the two solutions,

which are biologically relevant, the unstable DFE and a single endemic equilibrium,

EE. The entire above argument is valid only if 1−q1−q2 6= 0. When 1−q1−q2 = 0,

the system exhibits a single EE,

(x,y) =
(

RII(RII +RAA−1)
(RII +RAA)2 ,

RAA(RII +RAA−1)
(RII +RAA)2

)
,
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which is only valid if RII +RAA−1≥ 0. We wish to make assertions about the

stability of the EE without having to do a linearization around the fixed point which is

very term intensive. We may now disprove the existence of closed orbits in the plane

and thus assert that when the EE exists, RE > 1, it is globally stable.

Corollary 3.2.3. System 3.1 has no closed orbits.

Proof. By Dulac’s criterion, if there exists a function ϕ ∈C1 such that
∂ (ϕ ẋ)

∂x + ∂ (ϕ ẏ)
∂y 6= 0, then the planar system ẋ, ẏ has no closed orbits. Let ϕ = 1

xy . Then:

∂ (ϕ ẋ)
∂x

=
∂

∂x

[
q1

y
+

(1−q2)

x
− q1

RII(1− x− y)y

]
= −(1−q2)

x2 − q1

RII(1− x− y)2y
∂ (ϕ ẏ)

∂y
=

∂

∂y

[
(1−q1)

y
+

q2

x
− q2

RAA(1− x− y)x

]
=
−(1−q1)

y2 − q2

RAA(1− x− y)2x
.

Since q1,q2 ∈ [0,1] and RAA,RII > 0 the sum ∂ (ϕ ẋ)
∂x + ∂ (ϕ ẏ)

∂y is always negative. Thus

there are no closed orbits for system 3.2. Since the dynamics are identical for system

3.1 we have precluded limit cycles in it and have shown what was intended.
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3.3 Sensitivity Calculations for the Gonorrhea Transmission Model

In a perfect world, public health initiatives would be simple, multifaceted, and have

great effects on the dynamics of a disease. However, this is not always the case and

moreover, economic costs have to be considered in determining which interventions to

support. Another important question is whether the size of the population is important

to the dynamics of the disease and intervention. In order to address these concerns, in

this section we examine the sensitivity of the system to changes in the parameter

values. We take two approaches, first the time-dependent sensitivity of the original

system to changes in parameter values is calculated via elasticity and secondly we

compute what changes to the parameters would be necessary to bring the control

reproductive number to a value less than 1.

In order to discuss the importance of individual parameters one must investigate how

their value affects the state variables over time. We will consider the concept of

elasticity. Formally, one may define elasticity of a function X(t;θ) with respect to a

parameter θi ∈ θ as

Eθi(t) =
θi

X(t;θ)

∂X(t;θ)

∂θi
.

This measures the ratio of a percent change in a parameter to that of the function. The

elasticity is a unit-less and scaled method with which to compare each parameter’s

affect on the solution J(t) := I(t)+A(t). However, we do not have a closed form for

J(t) and thus we must make an approximation to both its value and its partial

derivative.

In general, consider dX
dt = f (t,X ;θ) where θ is a parameter vector. Now consider the

vector of nominal parameter values, θ̂ , and a small perturbation, ∆i, of the ith element,

θ̂i, and call this new parameter vector θ̂ i. If what we are interested in is ∂X
∂θ i near the

nominal value then we could do the following. Numerically find the solutions X(t; θ̂)
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Figure 3.1: Sensitivity of the susceptible population with respect to each
model parameter using the nominal values (µ,λ1,λ3,β ,α,ρ,σ ,q1,q2,ε) =
(1/4, .744, .5,50,365/12,1/31,4/33, .965, .034, .173) and N = 10000 with
S(0) = 99999, I(0) = 0, and A(0) = 1.

and X(t; θ̂ i) then take the difference quotient to arrive at

∂X
∂θi

(t) ≈ X(t; θ̂ i)−X(t; θ̂)

∆i
. (3.11)

We may use this approximation in our computation of the elasticity of J(t) with

respect to each parameter.

The sensitivity of the total infected population with respect to the nominal parameters

is presented in Figure 3.1 with ∆i = .001θi used in each of the approximations. Not

surprisingly β acts as a large control on the infected population. Small increases in β

will result in the largest changes to J(t) and increase the number of individuals

infected. The parameter modeling non-condom use, λ1, intuitively is also very large.

The remaining four control parameters, λ3,ρ,σ , and ε are all near zero and thus each

will require large changes to impact the infected population’s size.
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3.4 Reducing RE

Holding all but one parameter constant we varied a free parameter until RE < 1. Each

parameter was varied by 0.1% in the correct direction to reduce the infected

population, analogous to reducing RE . Of these only two single effort campaigns

resulted in a control reproductive number less than one, λ1 and β . Reducing λ1 to

roughly .392, condom use increases to 61% of the time, or β to 28.239, 56.5 risky

contacts per year, will result in RE < 1. Each represents a fairly significant change in

behavior. Even with the entire population following the CDC recommended testing

frequency of once every 3 months the disease will remain prevalent.

Instead if one considers a multifaceted campaign to disease reduction we may vary

each parameter an once, by 1/10%, until RE < 1. This will represent smaller changes

to each parameter. However, we fixed σ at the CDC recommendation to measure its

effectiveness. If the control parameter vector reads

(λ1,λ3,β ,ρ,ε)≈ (.5605, .3767,37.67, .0428, .1303)

then the disease free equilibrium becomes stable. This translates to 43.95 % of the

population using a condom, up from 25.6 %, 62.3 % of the population using the

CDC’s testing frequency recommendation, reduce the number of risky a contacts per

year from 100 to 75.34, even if you do not follow the CDC recommendation for

testing get tested once every 9 months and finally reduce condom failure rate from

17.3 % to 13 %.

3.5 Discussion

There are a few shortcomings in this model that may be able to be addressed. The

removal of a constant population size could potentially remove the monotonicity of

the system and thus would remove the hope for any kind of qualitative global stability

analysis via criteria as supplied herein. It would fall upon the modeler to do a more
42



complex stability analysis where cycles may develop. It is unclear to the authors here

if gonorrhea prevalence in this type of population merits the need for cyclic dynamics.

In this chapter we considered the average, safe and risky behavior of the population.

While this has given insights into how education affects disease transmission, it does

not explicitly treat the heterogeneity present in such populations. This is a step

forward from more classical models where the individual effects were not treated

explicitly, but more work may be done for, if not analytical then numerical, results to

suggest policy. Several treatments could simply increase the number of compartments

while still not dealing with individual level concerns. Specifically, we may take each

of the S, I, and A classes and divide them into those who are “safe” and those that are

“risky” with respect to each behavior resulting in a system of 12 equations (i.e.

susceptible population who are risky with respect to protection and self awareness,

risky with only one behavior or risky with neither) with flow between like-state groups

of different “risk” types. Work done in [22, 24, 35, 101] has also shown the importance

of affinity-based mixing while others have turned to simulation to look at prevention

strategies on networks (see [85]). Here we have proportionate mixing which should

not be accurate given the pain of symptoms and the mixing assumed between risky

and not risky individuals. Furthermore, there is this intuitive desire to model

stubbornness in a system such as this. Two difficulties with educational measures is

how broad of outreach one should invest in, how many people get to see the

information, and how intense the education should be. The trade offs between should

we remind everyone a little or remind a few constantly can be addressed with more

game theoretic or individual based approaches [117, 123].

In this chapter, a simple model of homosexual gonorrhea transmission between men is

analyzed and the parameter sensitivities are determined. In section 3.3, it is shown that

disease education is useful in disease control, however education should be

multifaceted in order to reduce the need of changing any one parameter by too much.
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In detail, the system is most sensitive to β (the number of risky contacts per year), and

this parameter may be changed all on its own enough to eradicate gonorrhea. As

shown in Section 3.3, the sensitivities are time dependent. Although gonorrhea is best

viewed as an endemic disease there are four-year residence systems, like a high

school, where the introduction of a single infected individual is feasible.

We have shown that some single methods of education, within realistic bounds, are not

effective at reducing disease prevalence. Testing may be too costly and inconvenient

for some individuals while from a public health perspective frequent testing is best.
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Chapter 4

Model Selection in Test Theory Without an Answer Key with Multiple, Fixed a priori

Cultures [100].

Since their development in the 1980s, Cultural Consensus Models (CCM) have been

widely used by social scientists to model the distribution of cultural knowledge in

populations [17, 120, 136]. Derived from Test Theory Without an Answer Key, CCM

is based on the assumption that people independently draw their responses from a

common cultural answer key, with some individuals having better knowledge of the

answer key than others. Researchers have used these models for a number of purposes:

(1) to decide if there is a single cultural answer key, (2) to estimate such an answer

key, (3) and to estimate individuals’ relative knowledge of the answer key [136].

The standard implementation of the model involves estimating two sets of free

parameters: the ‘culturally correct’ response to each of M dichotomous questions and

a ‘competence’ for each of N individuals indicating the probability that he or she

knows the correct answer. To provide some approximation to the maximum likelihood

estimate for these parameters, the standard implementation uses a factor analysis of a

person-by-person matrix of response agreement. A researcher then assesses the fit of

the estimated model using two decision criteria derived from the factor analysis. First,

the ratio of the first-to-second eigenvalues should be greater than three. Second, the

elements of the first factor vector should be positive. If these criteria are met, then an

investigator usually infers a single cultural answer key, reports the answer key, and

may analyze individual differences in competence [17, 119, 120, 136].

In this chapter, we argue that this standard approach to fitting and assessing the

cultural consensus model can lead to a number of inferential errors. For example, it

can lead researchers to incorrectly infer that estimated competences reflect true
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individual differences, a possibility first raised and examined using bootstrapping

techniques by Weller [135], or that there is a single answer key, a possibility raised

recently by Hruschka et al. [76]. We also describe a solution to these problems by

applying a model selection framework grounded in the use of information criteria.

The framework provides a statistically principled way to infer the existence of

between-individual differences in competence and provides a foundation for assessing

the existence of a single answer key. It also provides a flexible way to compare

competing models for the distribution of cultural knowledge in populations. For

example, applying the framework to one set of data, we show that between-individual

differences in guessing yes (something not normally considered in the standard

approach) is clearly supported, whereas between-individual differences in

competences have only equivocal support support from the data depending on the

specific model selection criteria used. We also show that a model in which people can

draw from one of three related answer keys fits better than a single answer key.

Publicly available code written for MATLAB provides tools for fitting and selecting

among these models.

4.1 The Cultural Consensus Model and its Implementation

In Test Theory Without an Answer Key, Batchelder and Romney proposed a model for

how people respond to questions about a domain of knowledge based on several

assumptions [17, 120]. First, there is a single answer key from which people draw

when formulating a response (Zk). Second, people answer test questions based on

conditional hit or miss probabilities (high threshold model (HTM)). These are defined

by the probability of knowing the answer (e.g., competency, D) and a bias to guessing

yes, g, if the answer is not known. These parameters can be specific to each individual

and to each question, and define a probability that person i responds yes to the kth

question.
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More formally, let X = (Xik)N×M be the dichotomous response profile for N

individuals to M questions and let Z = (Zk)1×M be the proposed answer key.

Following Batchelder and Romney [17], we write the probability of the responses

profile given an answer key as

P[(Xik) = (xik)|(Zk) = (zk)] =
M

∏
k=1

N

∏
i=1

P(Xik = xik|Zk = zk). (4.1)

Based on the High Threshold Model, HTM, (also known as the General Concordant

Model, GCM) we can specify the likelihood in terms of competences, D = (Di)N×1

(in [0,1]), and a bias toward guessing “yes”, g (in [0,1]). This formulation assumes,

among other things, a local independence condition. That is, students’ answers to

questions are independent from one another conditional on the answer key. Each

individual conditional probability in Equation (4.1) is a Bernoulli random variable

which can be expressed as

P(Xik = xik|Zk = zk) =

 (Dizk +(1−Di)gi) , xik = 1

(Di(1− zk)+(1−Di)(1−gi)) , xik = 0
. (4.2)

This term may be understood by assuming values of xik and zk and reducing the

expression to either a single term or a sum of two simple terms. Di is the probability

that the individual knew the answer, and gi is the probability that the individual

guessed “yes” if she did not know the answer.

This requires specification and estimation of a parameter vector in the form of

Θ = [(Di),(gi),(Zk)
T ]. To make approximation viable, the standard factor analytic

implementation of the CCM was limited in several ways. First, answer key bias, the

probability that a given question on the answer key is “yes”, πk = π , is assumed to be

homogenous across questions. Second, bias to guessing “yes” is assumed to be fixed

and homogeneous, gi =
1
2 , across individuals. Third, a single answer key from which
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all respondents draw is assumed. The estimation method then involved an

unconstrained least squares that had some undesirable properties, including

estimations of probabilities lying outside of [0,1] and an unknown degree of

approximation to the maximum likelihood estimate [17].

In the following work we examine several modifications of this standard

implementation. First, in lieu of the standard factor analytic approach, we search for

model estimates that maximize the likelihood of the data given the model. Second, we

extend and restrict the model so that g can vary as a population-level or

individual-level parameter and D can be fixed as uniform across individuals. Thus

person i’s parameter set could take on the forms (D,g),(Di,g),(D,gi), or (Di,gi),

where the second is a more general case of the classical approach of (Di, .5). Should

(Di,g) prove to be the best model given selection criteria then the classical approach

would be strongly validated. For simplicity, we do not permit item difficulty to vary,

but this is a straightforward extension implemented in Karabotsas and Batchelder [80].

4.2 Models of Subcultural Variation

We also explore the possibility that people draw from “subcultural” models, which in

turn are drawn from a single “supercultural” model. The original idea presented by

Batchelder and Romney for a multicultural approach was to estimate each culture’s

answer key [18]. This led to a large number of parameters having to be estimated and

only permitted post-hoc comparison of answer keys. We present an alternative of a

filtered higher truth model. Here, we assume a single supercultural answer key

ZH = (ZH
k )1×M, and C subcultural groups each with their own answer keys Zc = (Zc

k)

for c ∈ {1, ...,C}. Then it is assumed that each subculture has some probability of

drawing an answer identically from the supercultural answer key

P(Zc
k = ZH

k ) = φ
c, (4.3)
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where the superscript c is not a power but an index. To reduce the number of

parameters, we do not estimate each subculture’s answer key. Rather, we only

estimate a single measure of agreement with the higher truth, φ c, for each subcultural

answer key. This gives a likelihood function in the form

L(Θ|X) =
C

∏
c=1

M

∏
k=1

∑
A∈{0,1}

[
P(Zc

k = A|ZH
k = zk) ∏

i∈Gc

P(Xik = xik|Zc
k = A)

]
, (4.4)

where Gc is the index set of all individuals in culture c with the constraint that no

individual may be in more than one group, Gci ∩Gc j = /0 for i 6= j. Additionally, the

conditional probability of a subculture’s answer for item k given the supercultural

answer key is given by

P(Zc
k = A|ZH

k = zk) = (φ c)yk(1−φ
c)1−yk

where yk = 1 if A = zk and 0 otherwise. To get the classical construction of a single

culture one may let C = 1 and φ c = 1.

With the introduction of multiple cultures we may introduce a new generalization to

the response profile parameters, that of subcultural homogeneity. A parameter is

subculturally homogeneous if for everyone within a subcultural group the parameter is

the same, but that parameter can vary across cultures. Thus an individual now may

have parameter tuples in the forms (D,g), (Dc,g), (Di,g), (D,gc), (D,gi), (Dc,gc),

(Di,gc), (Dc,gi), or (Di,gi). Thus we redefine our parameter vector as

Θ = [D,g,φ ,ZT ] to include the multi-cultural parameterization (φ ).

Model Selection using Information Criteria

Model selection using maximum likelihood-based information criteria provides a

statistical framework for selecting among these alternative models. Information

criteria, such as the Akaike Information Criteria and Bayesian Information Criteria

49



used here, are measures that balance a model’s goodness-of-fit with its complexity.

This avoids the pitfalls of overfitting, i.e. adding more parameters will almost surely

result in a better fit. The Akaike Information Criteria, or AIC, is defined as

AIC = 2k−2ln(L) (4.5)

where k is the number of parameters and L is the maximized value of the likelihood

function. Since L ∈ [0,1] we can see that ln(L)≤ 0, and thus while each parameter

increases the AIC this can be balanced by increases in the likelihood, L. The Bayesian

Information Criteria, or BIC, is defined as

BIC = k ln(n)−2ln(L) (4.6)

where n is the number of data points. In most cases, BIC penalizes model complexity

more than the AIC.

Estimation Procedures

To find the MLE estimate, Θ̂, we start with 1000 randomly chosen parameter vectors

Θ̃ for a given response matrix (model). For each of the parameter vectors, the

algorithm makes a small additive perturbation to a single parameter at a time

(ε =±0.001) or reverses the response for a single question in the answer key. If the

perturbation increases the likelihood, then it is kept, otherwise the value

pre-perturbation is kept. This is done iteratively first for Z, then φ , D and finally g.

The algorithm proceeds until the increase in likelihood over 100 iterations is less than

0.001, and is effectively a simple “hill-climber”/ “greedy” algorithm.

4.3 Description of Data

As an example, we use data presented in Sibley et. al. on cultural theories of

postpartum hemorrhage in Matlab, Bangladesh [76, 126]. This data covered 235

yes/no questions about the signs, causes, treatment and conditions of postpartum
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hemorrhage. The study population may be broken up into three groups based on

training and experience in assisting childbirth: lay women (LAY), traditional birth

attendants (TBAs) and biomedically skilled birth attendants (SBAs). Hruschka et. al.

showed that criteria traditionally used to infer the existence of a single answer key

(i.e., the eigenvalue ratio criteria) indicated the existence of a single answer key.

However, further investigation indicated distinct cultural models related to these

meaningful subgroups in the population [76].

4.4 Comparison of Models

We fit the above models using the postpartum hemorrhage data. For the subcultural

model, we specified three a priori subcultural groupings based on training and

experience in assisting childbirth (TBAs, SBAs, and laywomen). For each of the nine

models described in Sections 4.1 and 4.2, we chose the parameter estimates which

provided the highest likelihood. The distribution of likelihoods across the 1000

starting points shows a clear compression at the maximum, suggesting the maximum

of this distribution is at least close to the true maximum, as seen in Figure 4.1. One

can see at least two pronounced peaks, possibly indicative of more than one

supercultural answer key. The coloration indicates whether the estimated answer key

is close to one of the two supercultural answer keys. Answer keys were clustered as

follows. First, answer keys, Z̃, that have a reflexive symmetry (flipping all the answers

on a given key,
{

1− Z̃k
}

k) are considered to be isomorphic. Thus, the distance

between answer keys (A1 and A2) was judged as the minimum of the hamming

distance between A1 and A2 and between A1 and “flipped” A2. Then, we considered

that two answer keys that varied from one another by no more than 7 (this was found

for this model to be the minimal hamming difference that created two mutually

exclusive groups) should be grouped together as deviations from the same answer key.

Answer keys from opposite groups always differed by more than 40 responses,

indicating two clearly different answer key clusters. Note the marked drop offs to the
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Figure 4.1: Shown here is a histogram of the Log-Likelihood of fits for the multicultural
(Di,gi) model.

right of each group, especially of the darker group. The second cluster of answer keys

leaves open the possibility that the data support at least two distinct answer keys.

We then calculated the information criteria (i.e., AIC and BIC) using the maximum

likelihood estimate for each model. For the parameter count, we omit the answer key

since it is the same number of parameters for each model, and thus it contributes

nothing to the comparative analysis. The results of this are summarized in Table 4.1

and Figures 4.2 and 4.3.

The model selected by AIC was the full subcultural model where each individual has
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Model # of Observations # of Parameters log-likelihood AIC BIC
C = 1
(D,g) 3515 2 -19247.976 38500 38517
(D,gi) 3515 150 -18496.2674 37293 38562
(Di,g) 3515 150 -18669.5880 37639 38908
(Di,gi) 3515 298 -17660.3813 35917 38439
UCINet 3515 150 -18774.9725 37848 39109
C = 3
(D,g) 3515 5 -18879.644 37769 37812
(D,gc) 3515 7 -18844.8708 37704 37763
(D,gi) 3515 153 -18113.7009 36533 37828
(Dc,g) 3515 7 -18800.3179 37615 37674
(Dc,gc) 3515 9 -18784.0910 37586 37662
(Dc,gi) 3515 155 -17551.8450 35414 36726
(Di,g) 3515 153 -18246.2754 36799 38093
(Di,gc) 3515 155 -18216.5735 36743 38077
(Di,gi) 3515 301 -17183.4269 34969 37516

Table 4.1: Data for model comparison for both AIC and BIC. The bold values are the
models selected based on each criteria. In either case multicultural models were chosen
and the fit provided by UCINet was the worst according to BIC and the second worst
based on AIC.

her own competency and bias to how she guesses, (Di,gi). BIC chooses the

subcultural model where the competencies are culture specific and the guess biases are

individualized, (Dc,gi). Thus, regardless of criteria used, there is justification for

individual bias in guessing yes, something that is not included in standard

implementations of the model. Moreover, depending on the criteria used for model

selection, there may or may not be justification for between-individual differences in

competence in this case.

To compare the maximum likelihood estimates described here with the estimates from

the standard implementation, here calculated in UCINET, we also estimated the

likelihood of the data given the model estimate from UCINET [27]. It fares worse than

all models when using BIC and nearly worse than all models according to the AIC.

With this data, the model with three related answer keys was selected over the model

with only one answer key, corroborating past findings. Moreover, several pieces of
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Figure 4.2: Comparison of AIC values for 13 models. The left figure is for a single
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Figure 4.3: Comparison of BIC values for 13 models. The left figure is for a single
culture model and the right is for multicultural model.

evidence suggest that there is insufficient data to support a single supercultural answer

key. First, in the ensemble of estimates for the (Di,gi), and the (Dc,gi), model, we

could delineate two classes of answer keys. Answer keys within these two sets all had

fewer than 7 differences, 9 for the (Dc,gi), among themselves. Meanwhile, answer

keys from different sets had at least 41, or 43 for (Dc,gi), different answers. Further

investigation indicated that these two classes of answer keys correspond to different

sets of φ c parameters for the three subcultures. In the first case, SBAs had nearly
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perfect filtering from the supercultural answer key (while TBAs and Laywomen did

not), henceforth the SBA model. In the second case, TBAs and Laywomen had nearly

perfect filtering from the supercultural answer key (while SBAs did not), henceforth

the TBA model. The maximum likelihood for the SBA model (-17273) was

substantially lower than the maximum likelihood for the TBA model (-17183).

However, the presence of what appears to be a second local maximum suggests that

further study may indicate good posterior support for two answer keys, rather than

one. A future analysis using Markov Chain Monte Carlo estimation of the posterior

distribution will hopefully determine whether both of these answer keys lie within the

95% credibility interval thus indicating that a single answer key cannot be supported

given the data.

4.5 Discussion

The standard implementation of the Cultural Consensus Model and common ways of

interpreting its outputs pose several problems. They can lead to incorrect inferences

about the existence of between individual variation in competence and of the existence

of a single answer key. Moreover, the standard approach does not permit estimation of

other parameters, such as guessing bias, or the possibility of multiple, related

subcultural answer keys.

The model selection approach and publicly available programs described here

provides a framework to address these problems. When applied to a dataset on beliefs

about birth complications, we find support for between-individual variation in

guessing bias (a parameter not normally considered in the model), we find equivocal

support for between-individual variation in competence, and we find strong support

for subcultural variation in responses. We show that the results are a dramatic

improvement (in terms of likelihood) over the estimates derived from the standard

factor-analytic implementation. Also, the inference of multiple, related answer keys
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confirms earlier analyses that there is likely more than a single answer key responsible

for respondent’s answers [76]. And finally, the existence of a second local likelihood

maxima with a fundamentally different answer key, suggests that the data might not

support a single supercultural answer key. Of course, these results are specific to this

population and domain of knowledge, and we expect data from other domains and

populations will provide differing support for between-individual variation in model

parameters and the existence of a single answer key.
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Chapter 5

The Mathematics of Adaptive Behavior in an Economic-Epidemiological Model [99].

Adaptive behavioral changes that affect interactions and mixing rates among

individuals play a crucial role in determining the level of incidence, rate of spread, and

the overall dynamic path of an epidemic. Individuals likely alter their behaviors in

response to current epidemic conditions in order to prevent themselves from getting

sick, but these behavioral changes are mediated by the individual’s assessment of the

role of factors that contribute to infection risk (e.g. activity, vaccination status, contact

networks). Certain behavioral modifications such as total individual isolation or

celibacy, in the case of sexually-transmitted diseases, would eliminate the risk of

individual infection. However, such behavior is likely to be excessively costly to

individuals. In general, individuals value health as an input to generating utility, an

index of satisfaction or wellbeing. Most mathematical models of disease transmission

do not explicitly incorporate utility, or goal-seeking behavior, which leads to adaptive

behavioral changes [7, 30, 43, 48, 67, 86, 102]. By focusing on goal seeking models, we

are able to capture truly endogenous adaptive behavioral responses. This level of

analysis, within the contact structure of a population, is only beginning to emerge in

epidemiological models [39, 58, 123].

The “co-evolutionary” dynamic between disease prevalence and behavioral response

is a quintessential complex adaptive system, systems with non-linear interactions at

multiple scales [97]. In models without the behavioral adaptive dynamic approach,

one considers dynamics on a static landscape - the phase dynamics can be completely

characterized irrespective of the initial condition of the system- where the future

course of the dynamic flow can be well described without precise knowledge of the

initial conditions. Acknowledging adaptive behaviors means acknowledging a
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feedback where the landscape affects the evolution of the epidemic and the evolution

of the epidemic affects the topological landscape and phase dynamics (see [59, 74] for

more discussion of these types of feedbacks). The implications of this feedback can be

profound for empirical work in addition to theory. Geoffard and Philipson note that

while estimates of parameters in nonadaptive epidemiological models are quite robust,

even with the proliferation of compartments, once adaptive behavior is introduced the

robustness of estimation, and identification of mechanism, is lost [62].

Recent experiences with epidemics such as SARS [42, 43], avian influenza [124], and

ebola [44] demonstrate the role of behavior in both the spread and control of the

epidemics. Policy response to these outbreaks, aimed at altering pathogen dynamics,

resulted in public interventions that had large impacts on the socio-economic

landscape (i.e. the collection of individual social and economic statuses within the

population). A rigorous theoretical epidemiological framework for modeling how

human decisions, related to intentional and adaptive goal-seeking behavior, shape

disease dynamics is needed to capture the influence of the protective behaviors

induced by the fear of emergent or re-emergent infectious pathogens (e.g.

HIV) [7, 21, 30, 32, 64, 65, 67, 69, 84, 90, 112] or from the potential deliberate release of

biological agents [12, 48].

Recently, public health officials have systematically employed travel restrictions and

social distancing measures to reduce disease spread [16, 40, 42, 43, 47, 56]. Policies

quarantining or restricting contact among individuals may lead to the greatest

reduction in cases but the implementation (particularly over sustained periods in time)

of such extreme policies may induce other unforeseen private and social costs [128].

Enactment of contact related policies may close schools, restrict social and cultural

activity, and even shut down major metropolitan areas. These heavy handed policies

had serious impact on local and global economies specifically during the H1N1

pandemic [47, 124].
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Related literature [9, 39, 58, 61, 63, 115, 117] posits that forward looking individuals

aim to maximize an objective function that includes, but is not limited to, health over a

planning horizon. A utility function is specified that includes health status and other

goods. Maximization of this utility function induces individuals to make tradeoffs

between long term health and the short term costs of avoiding infection. In these

studies optimization is used as a way of modeling the goal seeking adaptive decisions

of members of society (important to the understanding of behaviorally driven disease

dynamics) and not for engineered public health interventions. Such understanding can

ultimately help develop better normative (policy driven) disease intervention strategies

(e.g. [61]). Fenichel et al. [58] simulate the effects of an individual decision making

model and illustrate the implications of adaptive behavior for reproductive number

theory and disease dynamics within the compartmental framework. Moreover, they

show the potential for policy changes that alter the benefits and cost of disease

avoidance lead to oscillatory dynamics (sometimes called waves in the

epidemiological literature [40, 96]).

We provide a general mathematical foundation for including adaptive human behavior

in epidemiological models by incorporating work by Blythe, Castillo-Chavez and

Cooke [25] into a behavioral framework where individuals have a short-term payoff

from making contacts with others. Individuals trade off between the increase in utility

that results from increased contacts with the risk that additional contacts could lead to

future utility loss through infection. Forgoing contacts in the present is similar to

investing in future health capital as found in Fenichel et. al. [58]. We aim to combine

the analyses of the general, nonlinear interactions between individuals during the

course of an epidemic with the individual based optimization framework to construct

an approach to modeling that is mechanistic with respect to social and economic

considerations, economic epidemiology.

In Section 5.1 we develop a traditional, and general, model for the transmission of an
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influenza like disease with nonlinear incidence. The economic considerations are

described in detail and introduced into the model to serve as the new adaptive

behavior model. The major difference between the two models lies in the individual’s

ability to adjust behavior in the economic model while all contact rates (i.e. behaviors)

are fixed in the classical formulation. This serves to highlight the mathematical

differences induced by the changing behavioral landscape as well as the possible

richness of behavior that may arise when explicitly considering behavior. Section 5.2

compares outcomes between the two models and details the application of the

theorems contained in [25] to the adaptive behavior model. Section 5.3 raises new

questions about the implementation of the individual behavior regime and discusses

the results of this paper.

5.1 Mathematical Formulations

Incorporating adaptive human behavior into mathematical models introduces a

number of nonlinearities thereby drastically increasing the model’s complexity. Here

we investigate one of the simplest models describing influenza like dynamics in order

to outline a basic technique of incorporating adaptive behavior. We divide the

population into three compartments based on disease state to describe classic SIR

disease dynamics [86]: susceptible to the disease, S; infected and infectious, I;

recovered and permanently immune, R. Individuals are added to the susceptible class

at the constant rate Λ and are removed from each health class at the per-capita rate µ .

Disease recovery is modeled via a constant per capita rate γ (with 1/γ being the

average length of infectiousness). Infection incidence within a population can be

described as the product of four terms: the per-capita average number of contacts, c;

the probability that a contact between a susceptible and infectious individual results in

a new infection, β ; the number of susceptible individuals who may become infected,

S; and a nonlinear function F(S, I,R) describing how the presence of a disease affects

incidence. We assume that all system parameters are strictly positive, and that the
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population mixes proportionately resulting in an incidence function given by

B = cβF(S, I,R)S
I
N
, (5.1)

where N = S+ I +R as in [25]. This results in a model given by

Ṡ = Λ− cβSF(S, I,R)
I
N
−µS,

İ = cβSF(S, I,R)
I
N
− γI−µI, (5.2)

Ṙ = γI−µR.

The number and stability of equilibrium points and whether oscillatory solutions exist

follow from the basic reproductive number paradigm often applied to compartmental

disease models [29].

Nonadaptive, Nonlinear Theorems

First we characterize the stability of the disease free equilibrium (DFE). Common

practice is to characterize the stability of the DFE through an appeal to the concept of

the basic reproductive number R0 . This quantity is interpreted as the average number

of secondary infections a typical infectious individual causes in a fully susceptible

population. It is known that the biological interpretation of this typical threshold

quantity breaks down in more complicated models [70, 118]. If R0 is less than unity,

then the disease dies out, and the DFE is locally stable. If R0 exceeds unity, in

systems with recruitment of new susceptibles, then the rate of infection results in an

endemic equilibrium level of infection, and the DFE is locally unstable. For the

purpose of our analysis we assume that asymptotically the entire population reaches

an equilibrium value1 of Λ

µ
.

Theorem 5.1.1 ( [25]). If

0≤ F(S, I,R)≤ F
(

Λ

µ
,0,0

)
≤ F(∞,0,0) = 1 (5.3)

1A result easily arrived at when solving the ordinary differential equation for Ṅ = Ṡ+ İ + Ṙ.
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and

R0 :=
βc

γ +µ
F
(

Λ

µ
,0,0

)
< 1, (5.4)

then the disease free equilibrium of System (5.2) attracts all local solutions, that is,

lim
t→∞

(S(t), I(t),R(t)) =
(

Λ

µ
,0,0

)
.

If R0 > 1, then the disease free equilibrium is locally unstable.

The interesting case is when the DFE is unstable. The existence of oscillations of the

susceptible and infected populations is possible due to the recruitment mechanism of

new susceptible individuals into the population. We can extend previous local stability

claims to global ones by ruling out oscillatory behavior. To facilitate analysis of

oscillatory solutions, assume that the total population has stabilized2, e.g.

S(t)+ I(t)+R(t) = Λ/µ . Applying Dulac’s Criteria (e.g. see [33] for some examples

and an extension) to the resulting planar system results in

Theorem 5.1.2. [25] If ∂F
∂S > ∂F

∂ I for S > 0, I > 0, then System (5.2) has no limit cycles

(e.g. oscillatory solutions) in the positive cone.

The disease may persist at several endemic levels even if limit cycles have been ruled

out due to the nonlinearities in F . An additional theorem supplies sufficient conditions

for unique equilibria.

Theorem 5.1.3. [25] Given System (5.2) if ∂F
∂S ≥ 0, ∂F

∂ I ≤ 0, ∂F
∂R ≤ 0, and R0 > 1

then System (5.2) has a unique endemic equilibrium.

The condition on ∂F
∂R in Theorem 5.1.3 implies that the existence of recovered

individuals does not result in increased transmission [25]. These theorems may be

used to illustrate the effects adaptive behavior can have on the course of an epidemic.
2The assumption that the demographically limited dynamics match those of the original model is

made valid in [38]. This does not imply that for the remainder of the paper we assume the demographic
limit. Indeed, other than when discussing limiting behavior, N is varying with time.
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Incidence Functions and the Adaptive Behavior Model

In epidemiological models frequency dependent mixing, or standard incidence, occurs

when contact rates are assumed independent of population density. Classical standard

incidence can be expressed as F(S, I,R) = 1, yielding an incidence function of

B = cβS I
N .

Individuals may alter contact behavior over time with respect to the amount of

infectious individuals within the population, I. Adaptive behavior implies that the

rates c or β are not constant, but functions of I and potentially other state variables. If

people behave adaptively, then the observed population level dynamics of an epidemic

emerge from individual decision making. We abstract the measure of wellbeing, or

benefit, an individual gains in the process of interacting with others (money,

enjoyment, etc...) as utility. Individuals aim to minimize the loss of utility, that comes

from becoming infected, during the course of an epidemic. Forgoing contacts reduces

the probability of infection, but results in a loss of otherwise beneficial social contacts

that may lead to infection. An individual may possibly reduce the intensity or alter the

nature of activities during an epidemic to reduce the risk of infection, but in this work

we only suppose social distancing, i.e. β is left constant.

The tradeoff between gaining utility through current period contacts and gaining

utility through avoiding future infection implies an optimal individual strategy that

adapts as the state of the epidemic changes. We adopt the phrase utility maximization

to describe the strategies used by purposeful goal-seeking individuals to adaptively

manage the benefit-risk tradeoffs tied to contact activities, a phrase that is commonly

used in economics literature (e.g. Mas-Colell et. al.; Dixit and Pindyck; Adda and

Cooper) [3, 52, 95].

Individuals experience a marginal increase in utility up to some point as a result of
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making contacts within a unit time. We let ft := f (ct) denote the utility function

associated with the time interval [t, t +1] so that ft models the utility realized from a

certain number of contacts over the unit time interval at t where ct models the number

of contacts made within this interval. Assume that ∂ ft
∂ct

> 0 (monotonically increasing)

and ∂ 2 ft
∂ (ct)2 < 0 (concave) up to point c∗t , where c∗t denotes the optimal number of

contacts within the selected time window [t, t +1] when the disease is absent from the

population. It is further assumed that ∂ ft
∂ct

< 0 for any number of contacts greater than

those achieved at c∗t . The cost of making contacts in excess of c∗t is prohibitive. We set

ft(0) = 0 and impose no further functional restrictions on ft .

We assume the health status of an individual influences his utility function directly in

situations where the population faces an epidemic outbreak. An individual’s status is

indicated via the subscript m ∈ {s, i,r} (susceptible, infected and recovered) and it is

assumed that individuals with different statuses benefit from contacts differentially.

We allow the status of individuals to be an argument in the utility function, ft(ct|m,m),

and assert that for a given number of contacts, ct|m, that

ft(ct|i, i)< ft(ct|s,s)≤ ft(ct|r,r) where f is strictly a measure of the net benefit one

receives from contacts during a given time period.

In this framework all individuals are perfectly informed about the current state of the

epidemic and seek to maximize their individual utility. Moreover, we assume that

individuals do not care about the health of others and take the behavior of others as

given; there is an absence of strategic behavior among individuals who are not

susceptible to infection. Utility maximization provides a parsimonious model of

goal-seeking behavior3. Infected or recovered individuals do not have incentives to

modify behavior away from the behavior under disease free conditions as recovered

individuals are immune to the disease, and we assume contacts do not affect recovery
3We are not making normative judgements about what that goal should be or what the individual

should do to maximize his utility. Rather we are asserting that optimization provides a positive model of
individuals making trade-offs.
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from infection. Individuals in classes i and r choose the number of contacts per day

that maximizes individual utilities, c∗t|i and c∗t|r, respectively. Only susceptible

individuals modify their behavior in response to changes in disease prevalence. In

summary, a susceptible individual is made better off by increasing contacts over a time

interval [t, t +T ] all else equal, where T is an arbitrary planning horizon (e.g., the

upper limit of the long-term thinking associated with the individuals in the

population). However, susceptible individuals face incentives to reduce contacts below

the optimal disease free contact level in order to mitigate infection risk. To analyze the

intertemporal tradeoff, we construct the expected utility function over the time horizon

T . The expected utility function is a measure of the present and the future value of

these contacts to the individual. The contacts that a user makes in the current time

period have the utility (value) described above, ft(ct|s,s), but also impact the expected

future utility value over the remaining time horizon. As the number of infected

individuals increases the expected future-utility value decreases since the probability

that a susceptible individual becomes infected increases and ft(ct|i, i)< ft(ct|s,s).

Future utility is discounted by a factor δ ∈ [0,1] to account for the rate of time

preference, an individual’s relative preference for goods today relative to tomorrow.

The discount factor serves as weight to make future utility units equal to present utility

units. Thus over a planning horizon [0,T ] the expected utility for a susceptible,

conditioned on the individual’s future state, is

E(U) = f0(c0|s,s)+
T

∑
t=1

δ
tEm( ft(ct|m,mt)).

In order to arrive at an expression for the expected utility for an infected individual,

we let v denote the time of infection and ρ := d1/γe be the expected length of

infection in the relevant time units rounded to the nearest integer above 1/γ . Thus the

expected utility for an infected individual is E(U) = ∑
v+ρ

t=v ft(c∗t|i, i). Note, we use c∗t|i

because the infected individual aims to maximize his utility , but infection does not

create incentives to decrease contacts. Furthermore, for a recovered individual the
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utility for every time interval after recovery is ft(c∗t|r,r).

The differentiated contact structure induced by the adaptive behavior grants a more

complicated form to the standard incidence. Over the time interval [t, t +1] the

incidence is

B = ct|sβS
c∗t|iI

c∗t|sS+ c∗t|iI + c∗t|rR
. (5.5)

where ct|s denotes the number of contacts susceptible individuals make; β is defined

as before; and
c∗t|iI

c∗t|sS+c∗t|iI+c∗t|rR is the proportion of these contacts with an infected

individual in randomly mixing population. Consequently, we may define the

state-dependent function F as

F(S, I,R) =
ct|sc∗t|i

c∗0

S+ I +R
c∗t|sS+ c∗t|iI + c∗t|rR

, (5.6)

where c and c∗0 have contextually analogous definitions (i.e. the average number of

contacts at time zero of the epidemic). We therefore have two examples of the model

described in System (5.2): one where F(S, I,R) = 1 and a second where F is defined

by Equation (5.6). Noting that c = c∗0 we may rewrite System (5.2) to reflect the

inclusion of adaptive behavior via

Ṡ = Λ− c∗0βF(S, I,R)S
I
N
−µS,

İ = c∗0βF(S, I,R)S
I
N
− (γ +µ)I, (5.7)

Ṙ = γI−µR.

5.2 Results

Theorem 5.1.1 implies

R0 :=
βc∗0F(N,0,0)

γ +µ
=

βc0|i
γ +µ

where time t = 0 is the time of introduction of the first primary case. A problem with

this basic reproductive number is that it does not account for the behavioral adaptation

of the susceptible population. If the risk of infection, β , and/or the period of infection,
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1
γ
, were large enough, then a single infected individual may cause all susceptibles to

reduce contacts to 0. In this situation of extreme behavioral change the epidemic

threshold of R0 is not reflective of the system dynamics. In order to rule out

oscillatory solutions in a system with adaptive behavior through application of

Theorem 5.1.2 we must show that ∂F
∂S > ∂F

∂ I . Let D := ct|sS+ ct|iI + ct|rR and compute

the difference

∂F
∂S
− ∂F

∂ I
=

c∗t|i
c∗0D2

{[
∂ct|s
∂S
−

∂ct|s
∂ I

]
(c∗t|iI + c∗t|rR)N + ct|s(ct|s− c∗t|i)(S− I−R)

}
.

The first term in brackets is positive by the properties of ct|s, the number of susceptible

contacts increase with S and decrease with I. The sign of the second term,

(ct|s− ct|i)(S− I−R), is ambiguous and requires further specification of the utility

functions. A sufficient condition for ∂F
∂S −

∂F
∂ I > 0 is that S < I +R if and only if

ct|s < c∗t|i. That is, in order to rule out oscillatory dynamics, it is sufficient to note that

when the total population that is infected, or has been infected, exceeds the susceptible

population then the susceptible individuals must each make fewer contacts than

infected individuals. This condition may be easily violated heuristically. It requires

that in the presence of a large recovered population, very small infection levels would

induce susceptible individuals to make few contacts. This contradicts intuition

associated with the utility maximization problem. The preceding description of

individual behavioral does not allow for the presence of recovered individuals to have

a negative impact on susceptible behavior. Alternatively, let F̂(S, I,R) =
ct|s
c∗0

, and apply

Dulac’s Criteria directly to the planar system

Ṡ = Λ− c∗0β F̂(S, I,R)Sc∗t|i
I
G
−µS, (5.8)

İ = c∗0β F̂(S, I,R)Sc∗t|i
I
G
− (µ + γ)I,

where G = ct|sS+ c∗t|iI + c∗t|r
(

Λ

µ
−S− I

)
. This calculation gives the sufficient

conditions that limit cycles do not exist provided that for all t greater than a finite t∗,

ct|s < c∗t|i and ∂ F̂
∂S > 0 and ∂ F̂

∂ I < 0 . To better understand this condition consider two
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cases: a large endemic population and a small endemic population. If the steady state

for the infected class, I∞, were large then requiring ct|s < c∗t|i for all t larger than some

t∗ is reasonable, because the susceptible individuals would be actively trying to avoid

becoming infected. However, for a small I∞ this requirement would imply some

memory (a non-Markov behavioral model) linked to the infection that involves the

susceptible population avoiding a second epidemiological peak (i.e. dI
dt > 0 after a

period where dI
dt < 0). Theorem 2 does not rule out oscillatory behavior for the

adaptive system in general, particularly at low endemic infected levels. This result

provides a more mechanistic insight to Brauer et al.’s [21] result that information may

destabilize a system (induce oscillatory behavior) when dynamics would otherwise be

stable in the absence of information.

To illustrate adaptive behavior’s effect on the epidemiological system we numerically

solved System (5.2). This was done with F(S, I,R) = 1 to illustrate results from a

traditional epidemiological model and with F as defined in Equation (5.6) to compute

solution curves Se(t), Ie(t), and Re(t) (Figure 5.1). The utility functions are defined by

the expressions ft(ct|s,s) = ft(ct|r,r) = (bct|m− c2
t|m)

ν with b = 24 and ν = .2. We let

ft(ct|i, i) = 0 and δ = .9986. The epidemic parameters used are Λ = 10,µ = Λ/10000

and β = γ = 0.2; and the initial conditions are set at (S(0), I(0),R(0)) = (9999,1,0).
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We may summarize the effect of adaptive behavior in terms of its impact on the

epidemic peak, the endemic state, and how its structure filters to system incidence.

The epidemic peak, the largest number of infected individuals at a given time over the

course of the epidemic, is 31% lower with adaptive behavior than in the standard

epidemiological model. This reduces the immediate impact on healthcare services

who may only have a few days to prepare from first reported case to peak infection

level. The model with adaptive behavior results in both a slightly larger susceptible

and infected endemic population than the standard model. This immediately appears

counterintuitive, because the adaptive behavior returns to its pre-epidemic level by day

35 and thus the course of the adaptive epidemic should match that of non adaptive

one. However, as we’ve shown earlier we cannot guarantee the uniqueness of the

endemic equilibria for the adaptive model (of which the standard model is really a

special case) and thus we may take this example as evidence of nonuniqueness (for

other examples see [25, 35, 37, 55, 57, 67, 77]).

Finally, in terms of contacts per day, the susceptible behavior mirrors the infection

level curve. There are a few features to note in this example: the behavior strongly

influences only a finite period of time (day 8 to day 35) and that the length of periods

of identical behavior (consecutive days with identical number of contacts chosen) are

not monotonically increasing with Ie(t)’s decrease, a possibly very complex/

nonmonotonic behavioral response. If one changes Λ to 1000, by the definition of µ

this does not affect the total population size and simply increases rate of the

recruitment/removal in the system, a behavior structure that exhibits sustained

oscillations in incidence, see Figure 2, may be observed. Interestingly in this

oscillating example we have a sustained susceptible population that is large enough to

support both a recovered and infectious population that are below the standard

model’s levels; thus, endemic prevalence in the adaptive behavior model is necessarily

less than in the standard case.
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5.3 Discussion

Public policy has focused on prevention and containment. However, public health

officials must carry out these tasks in the context of challenges that include the use of

reported data (biased towards severe cases and of highly variable quality, particularly

at the scales of interest), the lack of “real-time” surveillance systems [19], and the

absence of theoretical frameworks that assess the role of individual decisions.

Infection within a population creates economic incentives that result in adaptive

decisions at multiple levels of social organization and over various temporal

scales [58]. Individuals gain utility from making contacts with others, but each contact

incurs additional risk or exposure to disease. Tradeoffs between increased utility in the

present and the risk that such contact could lead to future utility loss through infection

occur on the individual level. These decisions manifest as missed work time, reduced

productivity and health care expenses that add to the social cost of disease. In a sense

individuals are involved in a dynamic game choosing strategies comprised of current

and future contacts with payouts described by expected utility [117]. The actual

strategies employed may involve a degree of commitment (i.e. open-looped in the

short-term) or may involve regularly updated reaction function (i.e. closed looped,

Markov perfect strategies) [130]. This perspective is different than viewing the control

process as an effort to reduce the total number of infected.

Central to the difficulties with implementing the decision making process into the

epidemic model, and thus applying the theory of nonlinear incidence, is that we lose a

consistency of mixing, an important assumption in most analyses. However, the

assumption that individuals of different health statuses behave identically seems overly

strong. Furthermore, within the utility maximization framework the expected utility

E(U∗) = max
ct|?

{
f0(c0|s,s)+

T

∑
t=1

δ
tEm( ft(ct|m,mt))

}
must be maximized over some time horizon T , which may be infinite in principle.
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This is typically reconciled via dynamic programming [3], solving backwards along

an “optimal” path to arrive at the decision to be made in the now. Implementing this

idea into epidemic systems is difficult because there are at least three time scales to

consider: the epidemic scale, the decision scale, and the information arrival rate. As

was shown in the contact plot within Figure 5.1 the period over which strategies

changed were not necessarily days and did not adhere to rates of change of the system

in directly identifiable ways. An appropriate and realistic time scale may be a time

period of τ (that may be random) that models how long it takes to disperse

information as a function of factors such as disease prevalence and severity. In this

paper, we set the planning horizon to T = 1, and time step to 1. Then while

numerically solving the ODE system (5.2) we stop at each integer time value and

recalculate the expected utility over the next unit time interval. Simulating in this

fashion has shown that the economic behavior can induce oscillation, in both the

behavior and the epidemic trajectory, and may maintain a susceptible population at a

much higher level than without the behavioral adjustment (with appropriate parameter

values our simulation models have generated infection level a whole order of

magnitude less). Longer time scales, likely the case with the proposed random interval

model, are expected to induce similar behavior over a broader parameter range.

Over any planning horizon greater than 1, indicative of the time period over and the

frequency with which decisions are made, the probabilities of being in particular states

become very complicated to compute, and thus the expected utility function becomes

impractical to even formulate numerically. For example if we try to compute the

probability an individual remains infectious throughout the third day there are many

ways he could have come to be infectious at some point in the third day and for each

path, the path of another individual’s infection changes (e.g. sick on day one and

remain as such, be well on day one, sick on day two and remain sick or well on day

one and two and become sick on day three). A time step with biological significance
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that removes some of this path difficulty, but is not natural for decision making, is that

of event times. The process then has stochastic time steps and the susceptible

individuals would update their behavior as events (new infection, new recovery, new

individual enters the system or an individual leaves the system) occur. Without

exploring this method here it should be clear that this would produce far fewer

infections than the methods in this paper because there would be a more rapid

dissemination of information implied. This illustrates a critical new frontier yet to be

resolved in epidemiology or the study of complex systems more generally - the need

for a general way to address temporal scaling issues.

The complex adaptive system generated by the introduction of the economic behavior

described here may reduce an epidemic’s forecasted size and alters forecasts to

suggest a spreading out of the peak of the epidemic over time while lessening its

severity. This implies that individual pathogens may actually be more biologically

infectious than currently believed. To strengthen the results, in order to make policy

decisions using the ideas of utility maximization, a great deal of work should be put

into estimating the form of ft(ct|m,m) as the numerical results are sensitive to its

shape. The introduction of differential contact qualities with different payouts and

risks would add a level of realism and applicability (e.g. family contacts versus work

contacts or monogamous versus polygamous). In addition, population wide policy

decisions, such as closing public transportation, may also affect the tradeoffs with

respect to ct|s. Such policies could have unintended consequences (i.e. forming

reservoir susceptible populations that may produce second epidemic peaks) if we do

not explicitly consider the adaptive nature of human behavior. Despite all the

challenges involved in such a complicated model we have been able to use previous

techniques to prove stability and complexity of fixed points for the system, and proofs

of qualitative behavior under a delay in information is underway again using theory

from [25]; for completeness we have outlined the relevant theory here in the
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appendices. Numerically we’ve been able to show that the entry and removal in the

system may be used as a control, with the economic behavior structure, to destabilize

and induce oscillatory behavior. To advance the applicability of epidemiological

models it is imperative that we move from thinking of individuals as passive particles

to beings that actively attempt to shape their own futures. In so doing, the mathematics

becomes more challenging, but we enhance our chance of explaining complex disease

dynamics with parsimonious models.
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5.5 Proof of Theorem 5.1.1

Suppose the conditions of the theorem hold (e.g. Equations (5.3) and (5.4)). If

I(0) = 0, the solution has I(t) = 0 for all t ≥ 0 as we see from (5.8), and therefore
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R(t)→ 0,N(t)→ Λ/µ , and S(t)→ Λ/µ . If I(0)> 0 then S(t)≤ N(t) and

1
γ +µ

dI
dt

=

[
βc

γ +µ
F(S, I,R)

S
N
−1
]

I

≤
[

βc
γ +µ

F(S, I,R)−1
]

I ≤
[

βc
γ +µ

F
(

Λ

µ
,0,0

)
−1
]

I

= (R0−1) I < 0.

Since I(t) is decreasing, lim
t→∞

I(t) = 0. Then the variation of parametric formula gives

R(t) = R(0)e−(δ+µ)t + γ

∫ t

0
I(s)e−(δ+µ)(t−s)ds,

and it follows that R(t)→ 0 as t→ 0. And since N(t) tends to Λ/µ , we deduce that

S(t)→ Λ/µ .

The Jacobian matrix of (5.8), with derivatives evaluated at I = R = 0,S = N = Λ/µ , is
−µ −βcF0 0

0 βcF0− (γ +µ) 0

0 γ −µ

 .
The eigenvalues are the diagonal entries. Hence, the disease-free equilibrium is

unstable if βcF0 > (γ +µ) or equivalently when R0 > 1. This completes the proof of

Theorem 1.
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5.6 Proof of Theorem 5.1.2

Let g1(S, I) and g2(S, I) be the functions in the right members of (5.8) with N = Λ

µ
(i.e.

the autonomous version), that is

dS
dt

= g1(S, I),
dI
dt

= g2(S, I).

Then

∂

∂S

{
g1(S, I)

SI

}
+

∂

∂ I

{
g2(S, I)

SI

}
= − Λµ

µS2I
− βcµ

Λ
(FS−FR)+

βcµ

Λ
(FI−FR)

= − Λ

IS2 +
βcµ

Λ
(FI−FS).

Clearly, the first term is negative. The second term is negative by hypothesis. Thus the

expression is of fixed sign in the region S > 0, I > 0,S+ I ≤ Λ/µ , and it follows from

Dulac’s Criterion test that (5.8) has no limit cycles in the region.
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5.7 Proof of Theorem 5.1.3

Define

G(η) :=R0F(h1(η),h2(η),h3(η))−F0η , (5.9)

where F is the nonlinear incidence function, R0 =
βc

γ+µ
F
(

Λ

µ
,0,0

)
is the basic

reproduction number, F0 = F
(

Λ

µ
,0,0

)
, η =R0

F(S∗,I∗,R∗)

F
(

Λ

µ
,0,0
) , and hi(η) are expressions

of the equilibrium in terms of η . More specifically consider the equilibria of (5.2)

which satisfy

Λ−µS∗ = cβF∗S∗
I∗

N∗
,

cβF∗S∗
I∗

N∗
= (γ +µ)I∗,

γI∗ = µR∗,

where F∗ = F(S∗, I∗,R∗) and N∗ = Λ

µ
. Supposing that I∗ 6= 0 we have S∗

N∗ =
γ+µ

cβF∗ =
1
η

.

Letting q = γ

µ
it also follows that I∗

N∗ =
1

1+q

(
1− 1

η

)
and R∗

N∗ =
q

1+q

(
1− 1

η

)
.

We therefore may write that

G(η) =R0F
(

N∗

η
,

N∗

1+q

(
1− 1

η

)
,

N∗q
1+q

(
1− 1

η

))
−F0η .

As η → 1 it is easy to see that F → F0 and thus G(η) = F0(R0−1)> 0. Similarly,

given the conditions of F given in Theorem 5.1.1 we have that for η >R0 that

G(η)< 0. Thus by continuity there is at least one equilibrium. For uniqueness we

may assume that R0 > 1 and look for conditions for which dG
dη

< 0. Straightforwardly

one may show that

dG
dη

=R0
N∗

η2

(
−
(

∂F
∂S

)∗
+

1
1+q

(
∂F
∂ I

)∗
+

q
1+q

(
∂F
∂R

)∗)
−F0, (5.10)

which clearly illustrates the sufficient conditions

∂F
∂S
≥ 0,

∂F
∂ I
≤ 0,

∂F
∂R
≤ 0,

for uniqueness.
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Chapter 6

Scale-Free Networks at time t: Degree Distribution & Epidemic Threshold.

The Albert-Barabási scale-free network model has received a great deal of attention

for over a decade since preliminary work focused on determining the mechanism that

produced power-law degree distributions of certain real-world networks emerged in

1999 [13]. Work rapidly ensued to apply this network structure to phenomena such as

personal preferences, language structure, statistical physics (Bose-Einstein

condensation), epidemics, and many biological

examples [20, 34, 41, 46, 91, 93, 103, 104, 113, 127]. The intrinsic concept of

preferential attachment (previously known as cumulative advantage) was first

proposed by Price as an application to citation networks with a slightly more general

model [116]. Despite the decades this concept has persisted, an appropriately general,

explicit solution to the degree distribution of such a network has been absent.

Exact solutions for robust metrics (e.g., degree distribution, mean path length,

eigenvalue structure, etc...) are important in the analysis of the structure of the

networks and phenomena spreading on them. Dorogovtsev et al. explicitly calculated

the path length of a small world network structure from the discrete model [53], and

Newman et al. did the same for the mean field model [107]. Wang et al. addressed

epidemic spread on complex networks without an explicit treatment of the specific

network archetype [133]. Instead, they analyzed the epidemic threshold produced via

the eigenvalue structure of complex topologies. Valente proposed a technique for

investigating thresholds of spreading on social networks (either established or as they

form) based on the type of adoption employed in the diffusion of innovation by

individuals [131]. While he does not explicitly address the network topology itself, it

is clear that a need for the distribution on the number of connections, as well as their

80



“quality”, at any time during the spread is important to understanding the resultant

diffusion.

One method used to model the dynamic evolution of scale-free networks is the doubly

indexed, by degree and time, difference equation (partial difference equation) [106]

pk,t(ti) =
k−1

2(t−1)
pk−1,t−1(ti)+

(
1− k

2(t−1)

)
pk,t−1(ti).

In this model new nodes are introduced at unit times with a single edge to connect

preferentially to highly connected existing nodes. The solution to this model was

found asymptotically, i.e. as t→ ∞, by Dorogovtsev et al. [54]. The continuous time

analog was simultaneously solved by Krapivsky et al., again in the “most interesting

asymptotic regime (t→ ∞)” [89]. It is unclear if Krapivsky and his co-authors found

the explicit time t solution for this paper specifically. Later work by Krapivsky and

Redner contains the explicit solution at any time t (for any finite network size) of the

degree distribution for a model where rewiring of connections, and a more general

preferential connection structure, is modeled [88]. In this, and a previous paper, the

authors investigate various correlations (e.g., between age of nodes and their

connectivity) in addition to utilizing rate equations (differential equations) and the

generating function (partial differential equations) to compute the form and various

moments of the degree distribution [87].

Presented here is something of a side-generalization of the scale-free model that was

previously solved asymptotically by Krapivsky et al., again explicitly by Krapivsky

and Redner and in other approximate forms by Barabási, Albert, and Jeong [14]. The

model in this chapter allows new nodes to enter the network at constant rate Λ. The

probability that a new node is of degree k is given by ρk, and naturally 〈ρ〉 is the

expected value of the degree of a new node. The only requirements put on the new

node distribution is that it is a discrete distribution defined on nonnegative integers,

has finite expected value1, and is chosen to not induce multiple connections to the
1As will be shown later, for the nth moment of the degree distribution to exist then 〈ρ j〉< ∞ for all
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same node2. The last condition is a technical one arising from the desire to not have

the distribution, ρk, time or state dependent (i.e., if there are only 2 nodes in the

network and a new node enters with degree 3 making all of its connections

immediately, then there would be a problem). Thus the third restriction, along with

assuming the distribution is constant, implies that ρk is only non-zero for k from 1 to

N(0). A new node connects to k existing nodes with density dependent preferential

attachement rate πk(t) = k+w
D(t) , where D(t) is the correct normalizer which will be

derived later. The w term (identical to the λ term in Krapivsky and Redner) is an

additive shift on linear preferential attachment that allows for scaling the importance

of popularity in attachment rate (when w = 0 the attachment is identical to the

Albert-Barabási model and as w→ ∞ the attachment becomes more random [88]).

The derivation of the so-called rate equation(s) for degree k nodes is well handled in a

number of review papers [4, 26, 105], and is given for this model by

Ṅk(t) = Λρk +Λ〈ρ〉
[
πk−1(t)Nk−1(t)(1−δk,0)−πk(t)Nk(t)

]
, (6.1)

for k ∈ N. The model considered here is dynamically less-rich (the process of rewiring

is excluded), but considers a more general “introduction regime” (the newly

introduced nodes are sampled from a general distribution) compared to the model

studied by Krapivsky and Redner.

While scale-free networks match the form of many established structures, such as the

World Wide Web ( [15]), they do not properly match the evolution of such

structures [2]. A goal here is to produce explicit, time t solutions which may be used

in addressing questions which take place during the evolution of such network (e.g.,

synchronicity or “worst-case” spread of disease on networks as considered in [108]

and [41] respectively). The ability to compare these time t solutions with specific

application data may allow for researchers to more accurately propose better models

j ≤ n.
2Loops and paths between two nodes of length two are not allowed by the algorithm.
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for the phenomena in question.

Analysis of the mean field approximation of a simple epidemic model, where

individuals are either susceptible, infectious or immune to the disease, on a network

(heterogeneous) topology involves computation of the moments of the degree

distribution. Such a model has a so-called effective reproductive number, R, which,

when less than one for all time, implies that an epidemic outbreak will not occur

within the population and the infectious population will exponentially decay to 0 [71].

If β is the rate of infection given a contact between a susceptible and an infectious

individual, 1
γ

is the average period of infectiousness, and the population exhibits

heterogeneous connectivity, a non-regular graph/network structure, this quantity has

the form

R =
β

γ
〈K〉〈K

2〉S
〈K〉2

(6.2)

where 〈Kn〉 is the nth moment of the degree distribution and 〈Kn〉S is the same but

conditioned on the individuals being susceptible. The quantity β

γ
〈K〉 is the traditional

R0, basic reproductive number, calculation for homogeneous topologies but the new

term
〈K2〉S
〈K〉2

involves the structure of the network, implicitly considered at time t (at the beginning

of the epidemic this is approximately 〈K
2〉

〈K〉2 in the absence of previously implemented

controls like vaccination, quarantine, etc...).
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When considering computation on complex networks the scale-free model of Albert

and Barabasi is an attractive option because it has a solidly derived form (see [4] and

references therein) and may serve as a “simple” starting point in the analysis of more

complex structures. Also, it has been shown that R is infinite for A-B scale-free

networks that have achieved their limiting degree distribution, due to 〈K
2〉
〈K〉 → ∞. I wish

to investigate if the structure of the network as it evolves affords a second moment

small enough so that R < ∞, and possibly less than one. This would indicate that on

newly forming, or otherwise small, scale-free networks an epidemic peak may not

occur so long as it is introduced before some critical time.

In Section 6.1 I go over the general recursive form of the solution found via

integrating factors. Solving the generalized system presented here for base cases

(k = 0,1, and 2) is straightforward and omitted for brevity. Induction is used to

demonstrate that the observed pattern is consistent across all k and is in Section 6.1.

The moments are directly calculated from a set of ODEs where the state variables are

the moments themselves. This procedure is described in Section 6.2. In Section 6.3 I

show that the solution to the more classical Albert-Barabási model may be found as

well as a special case of Krapivsky and Redner’s. I conclude the paper with a

discussion of the results and future work.

6.1 General Solution Form

For the sake of space I define

Rk(t) := πk(t)Λ〈ρ〉=
(k+w)Λ〈ρ〉

D(t)
.

One may derive the expression for D(t) both intuitively and somewhat more

rigorously. Intuitively, it is true that D(t) = ∑ j jN j(t)+w∑ j N j(t), or in words D(t) is

the sum of the “double-count” of all edges in the network with w times the total
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number of nodes. Since a new node enters the system at rate Λ this gives

w∑
j

N j = w(Λt +N0),

with an initial number of nodes N0 = N(0). This may be more rigorously shown with

a straightforward application of uniform convergence to the partial sums to conclude

the final summation by solving the ODE for N(t), Ṅ(t) = Λ. A proportion of these

new nodes, ρk will enter with degree k and thus add 2k to the double-count of edges.

Thus, with an initial double count of E0, one may write

∑
j

jN j(t) = 2Λ〈ρ〉t +E0,

again we consider the expression d ∑ j jN j(t)
dt and reduce the telescoping sum assuming

mπmNm(t)→ 0 as m→ ∞. This gives D(t) = (2Λ〈ρ〉+wΛ)t +(E0 +wN0).

Further let

e
∫

Rk(t)dt = D(t)
〈ρ〉(k+w)
2〈ρ〉+w =: H〈ρ〉(k+w)(t).

The general solution to Nk(t) can be given recursively as

Ṅk(t)+Rk(t)Nk(t) = Λρk +Rk−1(t)Nk−1(t)(1−δk,0),

d
[
Nk(t)H〈ρ〉(k+w)(t)

]
dt

=
(
Λρk +Rk−1(t)Nk−1(t)(1−δk,0)

)
H〈ρ〉(k+w)(t),

(6.3)

and finally

Nk(t) =

∫ [
ΛH〈ρ〉(k+w)(t)ρk +Rk−1(t)Nk−1(t)H〈ρ〉(k+w)(t)(1−δk,0)

]
dt +Ck

H〈ρ〉(k+w)(t)
,

=
(1−δk,0)Λ〈ρ〉(k−1+w)

H〈ρ〉(k+w)(t)

∫
Nk−1(t)H〈ρ〉(k+w−2)−w(t)dt

+
ρkH2〈ρ〉+w(t)

〈ρ〉(k+w+2)+w
+

Ck

H〈ρ〉(k+w)(t)
,

(6.4)

where the final step follows from the two observations (when k+w 6=−2)∫
Hα(t)dt =

∫
((2Λ〈ρ〉+Λw)t +(E0 +wN0))

α

2〈ρ〉+w dt,

=
((2Λ〈ρ〉+Λw)t +(E0 +wN0))

α+2〈ρ〉+w
2〈ρ〉+w

Λ(α +2〈ρ〉+w)
=

Hα+2〈ρ〉+w(t)
Λ(α +2〈ρ〉+w)

,

(6.5)
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and

Hα+n(t)
Hα(t)

= Hn(t). (6.6)

The constants of integration, Ck, are defined recursively via

Ck = −(1−δk,0)Λ〈ρ〉(k−1+w)
(∫

Nk−1(t)H〈ρ〉(k+w−2)−w(t)dt
∣∣∣∣
t=0

+Nk(0)H〈ρ〉(k+w)(0)−
ρkH〈ρ〉(k+w+2)+w(0)
〈ρ〉(k+w+2)+w

. (6.7)

The expression for Nk(t) has the general form (proven consistent for all k by induction)

Nk(t) =
k

∑
j=0

 ρ j

〈ρ〉

Γ

(
w
〈ρ〉 +w+ j+2

)
Γ(w+ k)

Γ

(
w
〈ρ〉 +w+ k+3

)
Γ(w+ j)

H2〈ρ〉+w(t)

+
C j

H〈ρ〉(w+ j)(t)
Γ(w+ k)

Γ(w+ j)(k− j)!

)
,

(6.8)

with the constants of integration

C j = H〈ρ〉(w+ j)(0)
j

∑
i=0

(−1) j−iΓ(w+ j)
( j− i)!Γ(w+ i)

Ni(0)−
ρi

〈ρ〉
H2〈ρ〉+w(0)

Γ

(
w
〈ρ〉 +w+ j+2

)
 . (6.9)

Inductive Step

To prove the general solution is consistent for all k I invoke induction, assuming that

the solution is verified for cases such as k = 0,1,2. Suppose that for some k > 2 the

solution given by Equations (6.8) and (6.9) hold. Utilizing Equation (6.4) we may

construct the solution of Nk+1(t). Addressing just the integral term we have

k

∑
j=0

∫  ρ jΓ
(

w
〈ρ〉 +w+ j+2

)
Γ(w+ k)

〈ρ〉Γ
(

w
〈ρ〉 +w+ k+3

)
Γ(w+ j)

H〈ρ〉(k+w+1)(t)

+
C jΓ(w+ k)

Γ(w+ j)(k− j)!
H〈ρ〉(k− j−1)−w(t)

)
dt
]
, (6.10)
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which reduces, using Equation (6.5), to

k

∑
j=0

 ρ jΓ
(

w
〈ρ〉 +w+ j+2

)
Γ(w+ k)

〈ρ〉Γ
(

w
〈ρ〉 +w+ k+3

)
Γ(w+ j)

H〈ρ〉(k+w+3)+w(t)
Λ(〈ρ〉(k+w+3)+w)

+
C jΓ(w+ k)

Γ(w+ j)(k− j)!
H〈ρ〉(k− j)(t)

Λ〈ρ〉(k− j+1)

]
.

Plugging this value in for the integral gives a solution of the form

Nk+1(t) =
ρk+1H2〈ρ〉+w(t)

〈ρ〉
(

w
〈ρ〉 +w+ k+3

) +
k

∑
j=0

ρ jΓ
(

w
〈ρ〉 +w+ j+2

)
Γ(w+ k+1)

〈ρ〉Γ
(

w
〈ρ〉 +w+ k+4

)
Γ(w+ j)

H2〈ρ〉+w(t)

+
C jΓ(w+ k+1)

Γ(w+ j)(k− j+1)!H〈ρ〉(w+ j+1)(t)

]
+

Ck+1

H〈ρ〉(k+1+w)(t)
,

where each term outside of the summation follow the form of the summand when

j = k+1. Thus for all k Equation (6.8) is indeed the solution for Nk(t). The validity of

Equation (6.9) follows in the exact same manner.

6.2 Moment Calculations From the Density Rate Equations

Working directly with the solutions of Nk(t) to find the moments is undesirable. The

size and generality of the expression proves a direct method to be a daunting task. The

method employed here is relatively straightforward, but is not simply applying the

definition

〈Kn(t)〉= ∑
k

knPk(t).

I derive and solve the ODEs

d〈Kn(t)〉
dt

= ∑
k

kn dPk(t)
dt

,

for k = 1,2. The formalism of swapping summation and differentiation (i.e., uniform

convergence of the resulting right hand side and the actual moment existing) is

omitted and when convergence is a problem special cases are considered (e.g., for

moments higher than one). Solving the ODEs for the first and second moments

87



involve a rearranging of terms and a simple application of integrating factors. To

construct these differential equations first note that

˙Pk(t) =
˙Nk(t)

N(t)
−Pk(t) ˙ln(N(t)),

=
Λ

N(t)
(ρk−Pk(t))+Λ〈ρ〉

(
πk−1(t)Pk−1(t)(1−δk,0)−πk(t)Pk(t)

)
.

By a simple process of elimination, this results in

d〈K(t)〉
dt

=

(
Λ

N(t)
+

Λw
D(t)

)
〈ρ〉+

(
Λ〈ρ〉
D(t)

− Λ

N(t)

)
〈K(t)〉.

The solution 〈K(t)〉 is given, using the integrating factor N(t)H−〈ρ〉(t), by

〈K(t)〉=
D(t)−wN(t)+H〈ρ〉(t)C1

N(t)
,

where C1 =
N(0)

H〈ρ〉(0)

(
〈K(0)〉+w− D(0)

N(0)

)
.

The equation for the second moment is

d〈K2(t)〉
dt

= 〈K2(t)〉
[

2Λ〈ρ〉
D(t)

− Λ

N(t)

]
+ 〈K(t)〉(2w+1)Λ〈ρ〉

D(t)
+

wΛ〈ρ〉
D(t)

+
Λ〈ρ2〉
N(t)

.

Through the integrating factor N(t)H−2〈ρ〉(t), the solution is

〈K2(t)〉=
D(t)(2〈ρ2〉+2(2w+1)〈ρ〉−Λw(2w+1)+w)+2w3N(t)+2w(H2〈ρ〉(t)C2−H〈ρ〉(t)C1(2w+1)

2wN(t)
,

with C2 =
N(0)

H2〈ρ〉(0)

(
−〈K2(0)〉+ 2w+1

2w 〈K(0)〉+w2 + (2w+1)w
2w − (2w+1)(2〈ρ〉−Λw+1)+2〈ρ2〉+w

2w
D(0)
N(0)

)
.

6.3 Specific Cases

The solutions above all have very complex forms mostly due to the undefined nature

of the new-node entry distribution ρk. In the classic A-B scale free model it is

assumed that the initial conditions are described by a complete graph of m+1 nodes

(each with degree m). Dynamically, new nodes enter at rate 1 with m edges, and each

of these edges are attached with degree-preferential attachment. This implies that

N(0) = Nm(0) = m+1, Λ = 1, ρk = δk,m, 〈ρ〉= m, and w = 0. The expressions for

Nk(t) and Ck reduce to

Nk(t) =
(m+1)Γ(k)

Γ(3+ k)
H2m(t)+

k

∑
j=m

(
k−1
j−1

)
C j

Hm j(t)
, (6.11)
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C j = (−1) j−mHm j(0)
(

j−1
m−1

)[
(m+1)− H2m(0)

m( j+2)

]
, (6.12)

with

Hα(t) = (2mt +E0)
α

2m . (6.13)

Evoking that E0 = 2m the solution collapses to

Nk(t) =
(m+1)Γ(k)

Γ(k+3)
H2m(t) +

(
k−1
m−1

)[
(2m)

m
2 (m+1)((1+ t)

1
2 −1)k−m

(1+ t)
k
2

− 2
2F1

(
m+2,m− k;m+3; 1

(1+t)
1
2

)
(m+2)(1+ t)

m
2

 . (6.14)

The moments of the distribution also collapse somewhat:

〈K(t)〉= 2m(t +1)+m(m−1)(t +1)
1
2

m+ t +1
,

〈K2(t)〉= (m3 +2m2 +m+m(m+1) ln(t +1))(t +1)
m+ t +1

−〈K(t)〉,

Ψ(t) :=
〈K2(t)〉
〈K(t)〉

=
(m3 +2m2 +m+m(m+1) ln(t +1))(t +1)

1
2

2m(t +1)
1
2 +m(m−1)

−1.

(6.15)

Note that it is straightforward to show that dΨ(t)
dt > 0 (for the most general case here).

Thus, the minimum is at time t = 0, 〈K
2(0)〉
〈K(0)〉 . For R < 1 we require that β

γ
< 〈K(0)〉
〈K2(0)〉 . In

the case of the A-B model this means β

γ
< 1

m ≤ 1. In the case of a random network

(i.e., w→ ∞) the parameters would have to be outside of biological feasibility (i.e.,

one would have to be negative).

6.4 Conclusion/ Discussion

The value of Nk(t) is dependent on initial conditions, N j(0) from j = 0,1, ...,k. The

dependence of Nk(t) on N j(0) decays on the order of t−
〈ρ〉(w+ j)
2〈ρ〉+w (e.g., for A-B

attachment t−
j
2 and for random attachment t−〈ρ〉). Thus the dependence of Nk(t) on

the system’s initial conditions, as a whole, decay on the order t−
〈ρ〉(w+k)
2〈ρ〉+w . This

interestingly implies that the larger the degree considered the less the initial conditions

impact the count of nodes of that degree.
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We may consider Nk(t)
N(t) , the proportion of nodes that have degree k, and find that this

both asymptotically agrees with previous findings of the degree distribution which do

not consider transitory behavior, and with those found by Krapivsky and Redner under

appropriate restrictions. Specifically for the general model presented here

Pk = lim
t→∞

Nk(t)
Λt +N(0)

=
k

∑
j=0

ρ j

〈ρ〉

Γ

(
w
〈ρ〉 +w+ j+2

)
Γ(w+ k)

Γ

(
w
〈ρ〉 +w+ k+3

)
Γ(w+ j)

(2〈ρ〉+w). (6.16)

The driving force to this investigation was to answer the question “Does the evolving

structure of an A-B scale-free network allow for a second moment small enough such

that R < ∞, and possibly less than one?” The method that has definitively answered

my question with a resounding “probably not,” is very straightforward. By

considering ODEs in the form

dE([K(t)]n)
dt

= ∑
k

kn dPk(t)
dt

,

I was able to construct the desired quantity Ψ(t), the ratio of the second moment to the

first. Noting that often Ψ(0)> 1 and Ψ̇(t)> 0 we may conclude that there is little

hope of having a control reproductive number less than one without most of the

susceptible nodes being depleted (at the end of an epidemic).

Direct application of this time t solution is useful for two reasons: formation of, and

dynamics on complex networks. While the exact rules that particular real-world

networks follow during their formation is an intractable key to their structure, one may

compare such structures (data) with the solution given here to justify if this node

introduction/attachment mechanism is applicable. For dynamics on non-limiting case

networks (e.g., diseases through a smaller population, spread of computer viruses on

local networks, ideas spreading through forming social cliques, etc...) this solution

may also be employed to describe the topology of the relevant environment. Results

such as those found by Zhao et. al, on the fragility of scale-free networks to attacks on

hubs, should be extended to include networks that are evolving over time [137]. It is
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possible, that since at time t there is a smaller probability of hubs than in the limiting

network (i.e., the tail is not fat enough yet), the network is more resilient to cascading

failures than the seemingly more robust limiting network.

There are a few flaws with considering these rate equations as a model for the A-B

network growth. In an arbitrarily small time interval from t = 0 there has been mass

shifted into compartments, Nk(t), with arbitrarily large degree. Indeed, the process

description only allows for b2Λmtc+E0 edges to exist at any time t, and thus there

should be a maximum degree at any time. Pastor-Satorras and Vespignani do this to

some extent for general scale-free networks with the introduction of exponentially

decaying tails induced on the degree distribution [114]. This was done in the interest

of investigating the epidemic threshold for finite sized networks to find structures with

noncritical spread despite the scale-free property. This method however would be

inadequate for an investigation into the structure of the networks as they evolve since

in their work the networks were taken to be static. Instead the “cut-off” may be

modeled implicitly with some sort of modified system that permits the correct number

of ODEs to be acting at any time t. A delay type differential equation system

containing delays similar to t−bk−N0
Λ
c and initial conditions like Nk(t) = 0 for

t ∈
[
−bk−N0

Λ
c,0
)

would perhaps do a better job at modeling the transitory dynamics

of this system as they possess this sort of activation switch (i.e., they only start to

accept “mass” once the delay exits the initial data). This would force a finiteness that

is otherwise lost in the traditional rate equation techniques.

For any time t the continuum approximation admits that Λt new nodes have entered

the network. Supposing a particular initial node η is selected once by each new node,

then the degree of η at time t is at most dm+Λte. Thus at times where Λt ∈ Z+ the

number of ODEs required would increase by one and the system size itself would be
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growing. Indeed, one may define

Qk(t) =
Pk(t)

∑
dm+Λte
k=m Pk(t)

,

in order to be defining actual densities, in fact conditional probabilities with respect to

the original Pk(t) terms. The ODEs would then take on a peculiar form of

Q̇k(t) =
Ṗk(t)(

∑
dm+Λte
`=m P̀ (t)

)2 −Qk(t)
dm+Λte

∑
`=m

Q`(t).

Further work is also open in the gross generalization of this process. The concept of

rewiring may be reintroduced to the model in addition to a suite of more general

attachment kernels. Under these generalizations it is very likely that the network may

not retain an asymptotic distribution of P(k) ∝ k−γ , especially if the attachment kernel

differs from proportional. However, the true power of the A-B model should be seen

in its flexibility to allow for generalizations that produces richer behavior and thus,

farther reaching applications.
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[12] H.T. Banks and C. Castillo-Chávez, Bioterrorism: mathematical modeling
applications in homeland security, Society for Industrial Mathematics, 2003.

[13] A.L. Barabási and R. Albert, Emergence of scaling in random networks,
Science 286 (1999), no. 5439, 509.

94



[14] A.L. Barabási, R. Albert, and H. Jeong, Mean-field theory for scale-free
random networks, Physica A: Statistical Mechanics and its Applications 272
(1999), no. 1-2, 173–187.

[15] , Scale-free characteristics of random networks: the topology of the
world-wide web, Physica A: Statistical Mechanics and its Applications 281
(2000), no. 1-4, 69–77.

[16] R. Barrett and P.J. Brown, Stigma in the time of influenza: social and
institutional responses to pandemic emergencies, Journal of Infectious Diseases
197 (2008), no. Supplement 1, S34.

[17] W.H. Batchelder and A.K. Romney, Test theory without an answer key,
Psychometrika 53 (1988), no. 1, 71–92.

[18] , New results in test theory without an answer key, Mathematical
psychology in progress (1989), 229–248.

[19] L. Bettencourt, R.M. Ribeiro, G. Chowell, T. Lant, and C. Castillo-Chavez,
Towards real time epidemiology: data assimilation, modeling and anomaly
detection of health surveillance data streams, Proceedings of the 2nd NSF
conference on Intelligence and security informatics: BioSurveillance,
Springer-Verlag, 2007, pp. 79–90.

[20] G. Bianconi and A.L. Barabási, Bose-Einstein condensation in complex
networks, Physical Review Letters 86 (2001), no. 24, 5632–5635.

[21] SP Blythe, F. Brauer, and C. Castillo-Chavez, Demographic recruitment in
sexually transmitted disease models, Biometrics Unit Technical Report
BU-1154-M, Cornell University (1992).

[22] S.P. Blythe and C. Castillo-Chavez, Like-with-like preference and sexual mixing
models, Mathematical biosciences 96 (1989), no. 2, 221–238.

[23] S.P. Blythe, C. Castillo-Chavez, and G. Casella, Empirical methods for the
estimation of the mixing probabilities for socially structured populations from a
single survey sample, Mathematical Population Studies 3 (1992), no. 3,
199–225.

[24] SP Blythe, C. Castillo-Chavez, and M. Palmer, Toward a unified theory of
sexual mixing and pair formation, Mathematical Biosciences 107 (1991), no. 2,
379–405.

95



[25] SP Blythe, KL Cooke, and C. Castillo-Chavez, Autonomous risk-behavior
change, and non-linear incidence rate, in models of sexually transmitted
diseases, Biometrics Unit Technical Report B-1048-M (1992).

[26] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang, Complex
networks: Structure and dynamics, Physics Reports 424 (2006), no. 4-5,
175–308.

[27] S.P. Borgatti, M.G. Everett, and L.C. Freeman, Ucinet for windows: Software
for social network analysis, Harvard Analytic Technologies 2006 (2002).

[28] I. Bozicevic, K.A. Fenton, I. Martin, E.A. Rudd, C.A. Ison, K. Nanchahal, and
K. Wellings, Epidemiological correlates of asymptomatic gonorrhea, Sexually
transmitted diseases 33 (2006), no. 5, 289.

[29] F. Brauer and C. Castillo-Chavez, Mathematical models in population biology
and epidemiology, vol. 40, Springer Verlag, 2001.

[30] F. Brauer, C. Castillo-Chavez, and J.X. Velasco-Hernandez, Recruitment into a
core group and its effect on the spread of a sexually transmitted disease,
Biometrics Unit Technical Report BU-1320-M, Cornell University, Ithaca, NY
(1996).

[31] S. Busenberg and C. Castillo-Chavez, Interaction, pair formation and force of
infection terms in sexually transmitted diseases, Mathematical and statistical
approaches to AIDS epidemiology, Springer-Verlag New York, Inc., 1990,
pp. 289–300.
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