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ABSTRACT

The non-quasi-static (NQS) description of device behavior is useful in fast

switching and high frequency circuit applications. Hence, it is necessary to develop

a fast and accurate compact NQS model for both large-signal and small-signal sim-

ulations.

A new relaxation-time-approximation based NQS MOSFET model, consis-

tent between transient and small-signal simulations, has been developed for surface-

potential-based MOSFET compact models. The new model is valid for all regions of

operation and is compatible with, and at low frequencies recovers, the quasi-static

(QS) description of the MOSFET. The model is implemented in two widely used

circuit simulators and tested for speed and convergence. It is verified by compari-

son with technology computer aided design (TCAD) simulations and experimental

data, and by application of a recently developed benchmark test for NQS MOSFET

models. In addition, a new and simple technique to characterize NQS and gate

resistance, Rgate, MOS model parameters from measured data has been presented.

In the process of experimental model verification, the effects of bulk resistance

on MOSFET characteristics is investigated both theoretically and experimentally to

separate it from the NQS effects.

i



TO MY GRANDPARENTS, PARENTS AND WIFE

ii



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Gennady

Gildenblat, for the guidance, financial support, and assistance in the generation of

research topics during my Ph.D. study. The conception, maintenance, and comple-

tion of this research is all attributed to his continuous dedication to research and

education.

Special thanks are also due to Dr. Colin C. McAndrew, whose technical

support and guidance were crucial to the completion of the research. I would also

like to thank Professor Bertan Bakkaloglu, Professor Hugh Barnaby and Professor

Bahar Jalali-Farahani in the electrical engineering department for their constant

encouragements and helpful discussions during the course of this work.

Many of my coworkers have contributed to the completion of this work. In

particular, Dr. Weimin Wu (now with Texas Instruments) and Dr. Qina Zhou

(now with GTC) shared insightful thoughts and discussions, Dr. Xin Li (now with

Global Foundries) provided coding and model extraction support, and Wei Yao

and Gajanan Dessai also joined many technical discussions regarding the compact

MOSFET modeling.

I am also indebted to Dr. James Victory, Dr. Samir Chaudhry, and Juan

Cordovez who have been my supervisors at TowerJazz. Their guidance and support

were essential for me to complete the two summer internships at TowerJazz. I am

also thankful to Dr. Gert-Jan Smit, Dr. Andries J. Scholten, and Dr. Dirk B.

M. Klaassen for their insightful discussions and help on the NQS work and other

collaborating projects. I am particulary grateful to Dr. Geoffrey Coram for numer-

iii



ous support in verilog-A code checking and Dr. Ik-Sung Lim, Dr. Li Dong, Zhixin

Yan, Dr. Jie Zheng, and Dr. David Quon for providing the experimental data of

RF CMOS processes. Additional thanks go to James Laux for numerous technical

support on the EDA tools of Connection One at ASU.

Last but certainly not the least, my deepest thanks are owed to my family

members, especially to my wife, Ying Li who has always loved, trusted, and sup-

ported me. I also would like to thank my parents, Wensheng Zhu and Jufeng Chen,

for love and support.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. NQS Compact MOSFET Models . . . . . . . . . . . . . . . . . . 1

1.2. Existing Large-Signal NQS Models . . . . . . . . . . . . . . . . . 2

1.2.1. BSIM3/BSIM4-NQS . . . . . . . . . . . . . . . . . . . . 2

1.2.2. HiSIM-NQS . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3. Channel Segmentation Method . . . . . . . . . . . . . . 5

1.2.4. SP-NQS and PSP-NQS . . . . . . . . . . . . . . . . . . . 6

1.3. Existing Small-Signal NQS Models . . . . . . . . . . . . . . . . . 6

1.3.1. Small-Signal Model in [1] . . . . . . . . . . . . . . . . . . 7

1.3.2. Small-Signal Models in [2, 3] . . . . . . . . . . . . . . . . 10

1.3.3. Small-Signal Model in [4] . . . . . . . . . . . . . . . . . . 10

1.4. Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . 13

2 THE NEW RTA-BASED NQS MOSFET MODEL . . . . . . . . . . . . 14

2.1. Terminal Charges . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Terminal Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3. Small-Geometry Effects, Parasitics, and Noise . . . . . . . . . . . 19

3 MODEL VALIDATION . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1. Model Validation with TCAD . . . . . . . . . . . . . . . . . . . . 20

v



CHAPTER Page

3.2. Model Validation with Experimental Data . . . . . . . . . . . . . 29

3.3. Parameter Extraction for RTA-Based NQS MOSFET Models . . 54

3.3.1. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2. Extraction Algorithm . . . . . . . . . . . . . . . . . . . . 55

3.3.3. Experimental Results . . . . . . . . . . . . . . . . . . . . 56

4 SMALL-SIGNAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1. Small-Signal RTA-Based NQS Model . . . . . . . . . . . . . . . . 59

4.1.1. Model Formulation and Terminal Charges . . . . . . . . 59

4.1.2. y-Parameters . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3. Lowest-Order Corrections to the QS Small-Signal Model 77

4.2. Benchmark Test for VDS = 0 in Strong Inversion Regime . . . . . 78

5 BULK RESISTANCE EFFECT ON MOSFET GATE CAPACITANCE . 85

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2. TCAD and PSP-RTA-NQS Modeling . . . . . . . . . . . . . . . . 86

5.3. Analytic Expression for Cgg in the Presence of Bulk Resistance . 93

5.4. Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

APPENDIX A ADDITIONAL RESULTS FOR MODEL VALIDATION . . 117

A.1. VDS = 0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2. VDS = −0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



LIST OF TABLES

Table Page

2.1. Summary of Evaluation of Terminal Charges in PSP-RTA-NQS . . . . . 18

4.1. Small-Signal Terminal Charges . . . . . . . . . . . . . . . . . . . . . . . 62

vii



LIST OF FIGURES

Figure Page

1.1. Schematic for channel segmentation method . . . . . . . . . . . . . . . 5

3.1. Drain and source terminal currents for vGS switching from 0 to 3 V at

1010 V/s; VDS=3 V and VBS=0. . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Gate and bulk terminal currents for vGS switching from 0 to 3 V at 1010

V/s, VDS=3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3. Gate and bulk terminal currents for vGS switching from -3 to 3 V at

2 × 1010 V/s; VDS=3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4. Gate and bulk terminal currents for vGS switching from 0 to 5 V at

5 × 1011 V/s; VDS=5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5. Cgg for f=0, 0.5fT, 1.0fT, 1.5fT and 2.0fT (top to bottom), where

fT=1.6 GHz; VDS=0.5 V. The weak frequency dependence in accumu-

lation is completely due to the bulk resistance effect (extracted Rbulk =

116.8 Ω from TCAD data) [5]. . . . . . . . . . . . . . . . . . . . . . . . 25

3.6. Cgs for f=0, 0.5fT, 1.0fT, 1.5fT and 2.0fT (top to bottom), where fT

= 1.6 GHz; VDS=0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7. Cbg for f=0, 3.1fT, 6.3fT, 12.5fT, 18.8fT, 25fT and 31fT (top to bottom

in accumulation region, bottom to top in strong inversion inset), where

fT=1.6 GHz; VDS=0.5 V. The significant decrease in the accumulation

is completely due to the bulk resistance effect (extracted Rbulk = 116.8

Ω from TCAD data) [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8. Cds from partitioning based on (2.1) (solid lines) and (2.2) (dot-dash

lines), fT = 1.6 GHz; VDS=0. . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



Figure Page

3.9. Test device with GSG probe pad configuration. Courtesy of Freescale

semiconductors, presented with permission. . . . . . . . . . . . . . . . 29

3.10. Comparison of model and measured data for a PMOS ggg when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11. Comparison of model and measured data for a PMOS Cgg when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12. Comparison of model and measured data for a PMOS ggd when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.13. Comparison of model and measured data for a PMOS Cgd when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.14. Comparison of model and measured data for a PMOS gdg when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15. Comparison of model and measured data for a PMOS Cdg when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.16. Comparison of model and measured data for a PMOS gdd when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



Figure Page

3.17. Comparison of model and measured data for a PMOS Cdd when VDS =

-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.18. Comparison of model and measured data for a PMOS ggg when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.19. Comparison of model and measured data for a PMOS Cgg when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.20. Comparison of model and measured data for a PMOS ggd when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.21. Comparison of model and measured data for a PMOS Cgd when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.22. Comparison of model and measured data for a PMOS gdg when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.23. Comparison of model and measured data for a PMOS Cdg when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x



Figure Page

3.24. Comparison of model and measured data for a PMOS gdd when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.25. Comparison of model and measured data for a PMOS Cdd when VGS =

-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.26. Comparison of model and measured data for a PMOS ggg when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.27. Comparison of model and measured data for a PMOS Cgg when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.28. Comparison of model and measured data for a PMOS ggd when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.29. Comparison of model and measured data for a PMOS Cgd when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.30. Comparison of model and measured data for a PMOS gdg when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



Figure Page

3.31. Comparison of model and measured data for a PMOS Cdg when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.32. Comparison of model and measured data for a PMOS gdd when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.33. Comparison of model and measured data for a PMOS Cdd when VGS =

-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.34. Extracted and modeled C
(0)
dg /Cdg − 1, pMOS transistor; VDS = 0,

VSG=1.5V, f=0.1, 0.5, 1.0, 2.0GHz. . . . . . . . . . . . . . . . . . . . . 57

3.35. Extracted and modeled effective NQS relaxation times, pMOS transistor;

VDS = 0, VSG=0.6 to 1.5V by 0.1V top right to bottom left. . . . . . . . 58

4.1. Intrinsic MOSFET with dc biases and small-signal voltages. . . . . . . 59

5.1. TCAD and PSP-QS models of normalized Cgg, with Rbulk = 0 for PSP-

QS. W/L = 1.0µm/5.0µm, tox = 2.0nm, Nbulk = 3.0 × 1017cm−3 (p-

type), frequencies are 0, 0.25fT, 0.5fT, 0.75fT, fT, 1.25fT and 1.5fT(top

to bottom). Here fT = 1.6 GHz and substrate thickness tbulk = 30 µm. 87

5.2. Effect of accounting for NQS behavior – TCAD and PSP-RTA-NQS

models of normalized Cgg, with Rbulk = 0 for PSP-RTA-NQS. Same

device parameters and frequencies as Fig. 5.1. . . . . . . . . . . . . . . 88

5.3. C
(0)
gg /Cgg vs. ω2 from TCAD simulations at VGS = −2. . . . . . . . . . 90

xii



Figure Page

5.4. Effect of accounting for both Rbulk and NQS behavior – TCAD and

PSP-RTA-NQS models of Cgg with Rbulk = 2.2 kΩ included for PSP-

RTA-NQS. Same device parameters and frequencies as Fig. 5.1. . . . . 91

5.5. Effect of accounting for Rbulk – TCAD and PSP-QS models of Cgg with

Rbulk = 2.2 kΩ included for PSP-QS. Same device parameters and fre-

quencies as Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6. Effect of variation of bulk thickness, f = fT = 1.6 GHz. PSP-RTA-NQS

model parameter Rbulk = 2/3Rbulk0, Rbulk0 and 4/3Rbulk0 for tbulk =

2/3tbulk0, tbulk0 and 4/3tbulk0, respectively. Here Rbulk0 = 2.2 kΩ and

tbulk0 = 30 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7. TCAD and analytic models, Rbulk effect only (no NQS) in the analytic

model. Same device parameters and frequencies as Fig. 5.1. . . . . . . 97

5.8. Measured PMOS data and PSP-RTA-NQS model with both Rbulk and

Rgate included. W/L = 10.0µm/1.2µm, frequencies are 5, 10, 20, 30,

and 50 GHz (top to bottom). fT = 0.71GHz. . . . . . . . . . . . . . . . 98

5.9. Effect of not accounting for Rgate – measured PMOS data and PSP-

RTA-NQS model with only Rbulk included. Same device and frequencies

as Fig. 5.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10. Effect of not accounting for Rbulk – measured PMOS data and PSP-

RTA-NQS model with only Rgate included. Same device and frequencies

as Fig. 5.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



Figure Page

5.11. Effect of not accounting for NQS effects – measured PMOS data and

PSP-QS model with Rbulk and Rgate included. Same device as Fig. 5.8.

In addition to the same frequencies as in Fig. 5.8, the curve for f ≪ fT

is included as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1. Comparison of model and measured data for a PMOS ggg when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2. Comparison of model and measured data for a PMOS Cgg when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3. Comparison of model and measured data for a PMOS ggd when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.4. Comparison of model and measured data for a PMOS Cgd when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.5. Comparison of model and measured data for a PMOS gdg when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.6. Comparison of model and measured data for a PMOS Cdg when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiv



Figure Page

A.7. Comparison of model and measured data for a PMOS gdd when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.8. Comparison of model and measured data for a PMOS Cdd when VDS =

0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L =

1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.9. Comparison of model and measured data for a PMOS ggg when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.10. Comparison of model and measured data for a PMOS Cgg when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.11. Comparison of model and measured data for a PMOS ggd when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.12. Comparison of model and measured data for a PMOS Cgd when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.13. Comparison of model and measured data for a PMOS gdg when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xv



Figure Page

A.14. Comparison of model and measured data for a PMOS Cdg when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.15. Comparison of model and measured data for a PMOS gdd when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.16. Comparison of model and measured data for a PMOS Cdd when VDS =

-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L

= 1.2 µm, W = 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xvi



CHAPTER 1

Introduction

1.1. NQS Compact MOSFET Models

The state-of-the-art design of RF and mixed-signal CMOS circuits can require

inclusion of the non-quasi-static (NQS) effects, such as the finite channel transit time

[1]. Various compact formulations of NQS models have been reported [3, 4, 6–51].

Among them, [25, 29, 30] are threshold-voltage-based (VT-based) models, [3, 44, 50]

are inversion-charge-based (qI-based) models, and [4,31–34,47] are surface-potential-

based (ψS-based) models. To be useful in a generic circuit simulator, NQS models

need to be large-signal and not rely on the small-signal approximation. Inclusion of

NQS effects in a large-signal formulation is a difficult task which when performed

rigorously, and increases both the model complexity and the execution time. For

example, two accurate large-signal NQS ψs-based compact models are based on

the channel segmentation [31] and spline-collocation-method [32, 33] and are both

significantly more complex than the corresponding QS models [52, 53]. A popular

simplification of the NQS model is the use of the relaxation-time-approximation

(RTA) which reduces the simulation time and improves convergence at the price of

the reduced accuracy, especially at high frequencies. These models are described

in [29, 34, 54–56] with some additional insights found in [57]. In a different form,

RTA also appears in a comprehensive varactor model where it is used to describe

the inertia in the formulation of the inversion layer [58–61]. In the development of

RTA NQS models, it is common to assume that RTA applies to all terminal charges,

including the bulk charge. As shown in [62], this assumption makes RTA models
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fail a benchmark test specific for NQS models. The shortcomings of this assumption

from the experimental point of view are discussed in [5].

1.2. Existing Large-Signal NQS Models

1.2.1. BSIM3/BSIM4-NQS

BSIM3 and BSIM4 are VT-based models [57, 63–66]. Berkeley’s LEVEL1,

LEVEL2, and LEVEL3; BSIM1, BSIM2, BSIM3, and BSIM4; and NXP’s MM9 all

belong to this category. The models of this type are formulated directly in terms of

figures of merits in mainstream circuit design theory (e.g., VT, subthreshold slope,

etc). The VT-based model is essentially a regional model that relies on a piece-wise

description of the strong and weak inversion regimes of the device operation.

In the BSIM3 and BSIM4 NQS models, the MOSFET is divided into a few sub-

MOSFETs of smaller channel length. The RC network representing the distributed

channel is now replaced by an Elmore lumped equivalent circuit that preserves the

lowest frequency pole of the distributed channel [29]. The Elmore resistance is given

by:

RELM =
L2

PELM · µ · q(0)I

(1.1)

where µ is effective channel mobility, L is channel length, PELM is a fitting parameter,

the total inversion qI = Cox (VGS − VT) is adopted in the VT-based model which is

only valid for the strong inversion region, and Cox is the oxide capacitance. The

superscript “(0)” denotes the QS value of the corresponding variable and SI units

and physical signs are used throughout. The value of PELM is extracted by matching

the time response of the fast switching device operation.
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The RTA models in BSIM3 and BSIM4 are essentially the same [29,65,66] 1:

dqT
dt

= FT · q
(0)
I − qI
τ

, T ∈ {D,G,S} (1.2)

where FD, FG, and FS are the NQS channel charge partitioning factors for terminals

D, G, and S, respectively:

FS + FD = 1 (1.3)

FG = −1 (1.4)

Both BSIM3 and BSIM4 large signal NQS models use the quasi-static value for the

bulk charge [65,66].

The relaxation time, τ , is slightly different for BSIM3 and BSIM4. In BSIM3,

for a unified expression valid for both strong and weak inversion modes of operation,

τ is given as a combination of the diffusion and drift mechanisms:

1

τ
=

1

τdiff
+

1

τdr
(1.5)

where

τdiff =
L2

16 · µ · φt
(1.6)

φt is the thermal voltage, and

τdr = RELM · Cox =
L2 · Cox

PELM · µ · q(0)I

(1.7)

In BSIM4, τ is given by

1

τ
=

1

RiiCox
(1.8)

1cf. Eq. (8.1.4b) of [66]
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where the inverse of the intrinsic input resistance

1

Rii
= XRCRG1 ·

(

IDS

Vdeff
+ XRCRG2 · µφtCox

L2

)

(1.9)

Here, XRCRG1 and XRCRG2 are model parameters and Vdeff is the effective drain

voltage.

1.2.2. HiSIM-NQS

HiSIM [56,67,68] is a ψS-based model. In fact, HiSIM NQS uses [34]

qI(tn) = qI(tn−1) +
∆t

τ

[

q
(0)
I (tn) − qI(tn−1)

]

(1.10)

qB(tn) = qB(tn−1) +
∆t

τB

[

q
(0)
B (tn) − qB(tn−1)

]

(1.11)

where τ and τB are the relaxation time for inversion and bulk charges, respectively.

After the inversion charge is known, source and drain charges are evaluated by

qD = F
(0)
D · qI (1.12)

qS =
[

1 − F
(0)
D

]

· qI (1.13)

where F
(0)
D is the QS partitioning factor for drain charge.

The relaxation time, τ , is evaluated in the same way as (1.5) but with slightly

different parameterization of the components for diffusion and drift currents (Pdiff

and Pdr are model parameters) [34]

τdiff =
L2

Pdiff · µ · φt
(1.14)

τdr =
L2 · Cox

Pdr · µ · q(0)I

(1.15)
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Fig. 1.1. Schematic for channel segmentation method

Similarly,

1

τB
=

1

τdiff
+

1

τdr,B
(1.16)

and

τdr,B =
L2 · Cox

Pdr,B · µ · q(0)I

(1.17)

where Pdr,B is an additional model parameter.

The use of RTA (1.11) for qB is unphysical as explained in [5]. In particular,

it introduces inertia in the response of qB to ψS which is not present in real devices.

1.2.3. Channel Segmentation Method

A powerful but computationally expensive method to model a MOS transistor

operating under NQS condition is to view its channel as a series connection of

segments, each segment being short enough to be modeled quasi-statically [1, 31,

69–78]. The NQS model in MM11 [47, 79, 80] is based on this approach. This idea

is illustrated in Fig. 1.1 with each segment modeled by a “subtransistor.” These

subtransistors are assumed to consist only of intrinsic parts. In other words, no

extrinsic source and drain regions at intermediate points are included. Also, it can

be tricky to model short-channel effects.
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1.2.4. SP-NQS and PSP-NQS

SP-NQS and PSP-NQS are ψS-based MOSFET models which are based on

SP [81–85] and PSP [52,53,86–88], respectively. Both models are based on the cubic

spine-collocation method which is a weighted residues method. The restraining

equations and boundary condition are enforced on the continuity equation at each

collocation point to construct a number of (the same number as the user specified

collocation points) coupled ordinary differential equations. Detailed descriptions of

the model can be found in [32,33].

The cubic spline-collocation-method gives physically meaningful approxima-

tions and transforms the partial differential continuity equations into a system of

ordinary differential equations. Another advantage of this method is that users

can choose the number of collocation points to balance simulation speed and ac-

curacy depending on their applications. Still, the spine-collocation NQS model is

significantly slower than the QS model (but faster than the channel segmentation

method.)

1.3. Existing Small-Signal NQS Models

During small-signal simulations, complex quantities such as the voltage phase

and amplitude are used to reduce the complexity of computation [1, 89–91]; thus,

the system matrix becomes complex with a real and imaginary part for each ele-

ment. In the analysis of high-frequency MOSFET characteristics, the so-called “y-

parameters” are often used. In this section, we developed the y-parameter models

for the RTA-based NQS MOSFET model to perform the benchmark test suggested
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in [62]. The standard definition of y-matrix in circuit theory is as follows

yjk = ij
∣

∣

vm=δmk
(1.18)

For a linear 4-port network, it is assumed that the small-signal terminal currents id,

ig, is, and ib are linear functions of the applied small-signal terminal voltages vd,

vg, vs, and vb. Superposition principle may be applied to find a terminal current ij

when all four of the small-signal voltages are nonzero:

ij = yjdvd + yjgvg + yjsvs + yjbvb, j ∈ {d, g, s,b} (1.19)

The y-matrix satisfies certain conditions which follow from the following observa-

tions:

(1) There is no current flowing if all four small-signal potentials are identical.

(2) The sum of the total 4 small-signal currents have to be zero for a 4-port network.

Consequently, the relations between the y-parameters are as follows

∑

k

yjk = 0 (1.20)

∑

j

yjk = 0 (1.21)

1.3.1. Small-Signal Model in [1]

Physically formulating the yjk terms is non-trivial, as it requires the solution to

the coupled continuity and drift-diffusion equations. Sometimes, numerical results

might be practically obtained and used. Analytical solutions are available with

simplifying approximations. Presented in [1, 35, 92] is a four-terminal small-signal

dc-to-high-frequency model, valid in weak, moderate, and strong inversion regimes.
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This model is advantageous in the following aspects. First, it is formulated

in a single continuous expression valid for weak, moderate, and strong inversion

regimes which is free of discontinuities across the boundaries of different regimes.

Second, it is for a 4-terminal MOSFET device which is capable of modeling various

substrate effects. Third, it reduces to the QS version of the model at sufficiently

low frequencies which contains the nonreciprocal capacitive effects [93].

Various approximations have been made to arrive at the analytic expressions

for yjk in [1, 35]. The first assumption is since ψS only changes slightly as the gate

to bulk voltage, vGB, increases in strong inversion, ψS is assumed to be pinned at

ψS ≈ φ0 + VCB (1.22)

where VCB is the channel to bulk voltage,

φ0 ≈ 2φF + ∆φ (1.23)

with ∆φ equal to several φt.

Another assumption made is that, in strong inversion, the negative of the

normalized inversion charge uI (for the source referenced model)

uI = vGS − VFB − φ0 − γ
√

φ0 + VSB − α0VCS (1.24)

where VFB is the flatband voltage, γ is the body effect coefficient, and

α0 = 1 +
γ

2
√
φ0 + VSB

(1.25)

. Here, the bulk charge is linearized at its dc biasing point.
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The results are

yjk =

2
∑

l=0

(iω)lNjk,l

2
∑

l=0

(jω)lDl

(1.26a)

where

D0 = 1 (1.27a)

D1 =
4

15ωo

1 + 3η0 + η2
0

(1 + η0)3
(1.27b)

D2 =
1

45ω2
o

1 + 4η0 + η2
0

(1 + η0)4
(1.27c)

and (we consider ygg) [1]

Ngg0 = 0 (1.28a)

Ngg1 = Cox

[

2

3α0

1 + 4η0 + η2
0

(1 + η0)2
+
α0 − 1

α0

]

(1.28b)

Ngg2 =
Cox

ωo

[

2

45α0

2 + 11η0 + 2η2
0

(1 + η0)3
+

4

15

α0 − 1

α0

1 + 3η0 + η2
0

(1 + η0)3

]

(1.28c)

Here

η0 =











1 − VDS

V
′

DS

, VDS ≤ V
′

DS (1.29a)

0. VDS > V
′

DS (1.29b)

V
′

DS =
VGS − VT

α0
(1.30)

ωo =
µ(VGS − VT)

L2
(1.31)

Naturally, these equations are only valid for strong inversion and do not cover all re-

gions of MOSFET operation; in addition they do not account for any small geometry

effects and assume constant mobility.
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1.3.2. Small-Signal Models in [2, 3]

A set of analytic expressions is presented in [2] for the small-signal analysis

of NQS operation of the MOS transistor. This model is derived from the qI-based

EKV compact model [94–98]. Expressions for the figures of merit for small-signal

analysis are formulated which are valid from weak to strong inversion regimes. The

model is derived from the continuity equation and drift-diffusion equation, and relies

on the assumptions that underlie qI-based compact models. The results are written

in the form of a normalized y-matrix, which is expressed in terms of normalized

variables including currents and frequency, so that they are independent of the

process parameters such as mobility and substrate doping. From this approach,

first and second order approximations to the detailed analytical expressions have

been obtained.

The results are expressed in terms of Bessel functions of fractional orders

and of complex arguments. Such functions are not available in most programming

environments, and their numerical evaluation tends to be slow and have poor conver-

gence. Therefore, the results require simplifications in order to become practically

useful. In [3], it is proposed that a simple equivalent small-signal circuit is sufficient

to express the terms of the transadmittances in [2]. [3] further shows that these

functions can be represented in two simple forms, which are valid for all operating

regions. Approximate analytical expressions are also proposed in [3].

1.3.3. Small-Signal Model in [4]

In [4], a small-signal MOSFET model is described, which takes the local ef-

fects of both velocity saturation and transverse mobility reduction into account.
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The model is based on the PSP model and is valid for both QS and NQS opera-

tion. Recently, it has been found that, in the presence of velocity saturation, the

low-frequency capacitances cannot be determined from the Ward-Dutton charge-

partitioning scheme [99, 100]. By use of the small-signal model developed in [4], it

is demonstrated that, in the presence of velocity saturation, no terminal drain and

source charges exist, from which the capacitances can be derived. The small-signal

model enables the determination of the correct capacitive behavior in the presence

of velocity saturation. Furthermore, it is demonstrated how the small-signal model

can be used to determine the number of collocation points needed in the large-signal

NQS PSP model. Finally, inclusion of the local variation of mobility reduction due

to the vertical electrical fields provides insight into the approach commonly applied

in compact modeling, where these fields are replaced by global ones depending upon

the terminal voltages only.

1.4. Present Work

In the present work, we develop a new version of the NQS model based on

RTA for the inversion charge (and some other approximations detailed below.) No

RTA is used for the bulk charge or (to be consistent with the neutrality condition)

for the gate charge. This leads to increased accuracy while retaining the simplicity

and speed of the model. Most importantly, the description of the NQS effects in the

new formulation becomes reliable in the frequency range up to 1.5-2fT (in this work

fT is a shorthand for fT,max for a single transistor as described in [101,102].) Since

practical MOSFET applications for f > 2fT are rare, this makes the new approach

to NQS modeling suitable for most RF applications [59,103–119].
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We note in passing that if for some reason large-signal formulation is not re-

quired, then a variety of analytic small-signal models become available even without

RTA [3,4,25,35,41,44,49,50]. These are theoretically significant and in some cases

may be practically useful. However, the emphasis in this work is on the complete

large-signal formulation required by SPICE-like simulators. The small-signal ver-

sion of the new model is derived entirely for the purpose of applying the benchmark

test of [62].

While the work described in this thesis is based on PSP [52,53] as the under-

lying QS model, the approach is quite general and with suitable modifications can

be used with any advanced ψs-based model.

In summary, the main objective of the new RTA-based NQS model are as

follows:

(1) To formulate an accurate and efficient approach for RF and mixed-signal circuit

simulations,

(1-1) To achieve consistency between large-signal and small-signal simulations,

(1-2) To accurately model all terminal currents under NQS conditions up to 2fT,max,

(1-3) To include all regions of MOSFET operation,

(1-4) To include short-channel-effects (SCEs),

(1-5) To achieve the consistency with QS simulation results for slow transients and

low frequencies,

(2) To verify the new NQS model using PSP-NQS, TCAD results and measured

data,

(3) To develop a new small-signal y-parameter model based on the new RTA-based

12



NQS model to perform the benchmark test of [62], and

(4) To implement the model into commonly used circuit simulators and demonstrate

the applicability of the new NQS model using circuit simulations.

1.5. Organization of This Thesis

This thesis proceeds as follows. In chapter 2, we formulate the new version

of RTA, which is verified by comparison with TCAD simulations and experimental

data in chapter 3 while chapter 4 contains results based on the small-signal version

of the model. After the modeling of the bulk resistance effect on the high frequency

gate capacitances in chapter 5, the conclusions are presented in chapter 6.
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CHAPTER 2

The New RTA-Based NQS MOSFET Model

2.1. Terminal Charges

To formulate the RTA, we introduce terminal charges at the source qS and at

the drain qD and the total inversion charge qI = qS + qD. It is assumed that the

equation

dqT
dt

= −qT − q
(0)
T

τ
(2.1)

(τ is the relaxation time) is valid for T = S, D and hence, for T = I. Applying (2.1)

to the source and drain charges directly differs from the approach in [34] where (2.1)

was used for qI and qB after which the QS partition of the total inversion charge

was adopted to compute qD and qS,

qD =
q
(0)
D

q
(0)
I

· qI (2.2)

Strictly speaking, the relaxation time approximation (2.1) is not valid for qB

since the bulk charge has no inertia to follow the variation of surface potential, hence

it doesn’t have a characteristic relaxation time associated with it [5]. This aspect of

the new NQS model is further detailed in section 5.2.

The inverse of the relaxation time entering (2.1) is modeled as in [29,34]:

1

τ
=

12µ

L2

[

Kdrift ·Q(0)
i +Kdiff · φt

]

(2.3)

where Kdrift and Kdiff are model parameters corresponding to the drift and diffusion

current components, respectively, Q
(0)
i = −q(0)I /Cox, and φt = kBT/q where kB is

Boltzmann’s constant, T is the absolute temperature, and q is the magnitude of the
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electronic charge. The form (2.3) is similar to the models of [29,34] but includes the

physical factor 12, which follows from detailed analysis of inversion charge inertia

with contacts to both source and drain [1].

The gate charge is

qG = W

L
∫

0

q
′

Gdy (2.4)

where W is channel width and

q
′

G = (Cox/WL) [vGB − VFB − ψS(y)] (2.5)

where ψS(y) is the surface potential at a point y along the channel (from y = 0 at

the source to y = L at the drain). Hence,

qG = Cox

(

vGB − VFB − ψS

)

(2.6)

where the average value of the surface potential along the channel is

ψS =
1

L

L
∫

0

ψS(y)dy . (2.7)

The bulk charge is

qB = W

L
∫

0

q
′

Bdy (2.8)

where q
′

B is the bulk charge density per unit area which, unlike the inversion charge,

responds practically instantaneously to changes in the surface potential. The func-

tional form of the qB(ψS) dependence is not affected by NQS effects so

q
′

B = −sgn(ψS)Cox γ β
−1/2

√

e−βψS + βψS − 1

WL
(2.9)
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where β = 1/φt, thus

qB = −sgn(ψS)Cox γ β
−1/2

L

L
∫

0

√

e−βψS + βψS − 1 dy . (2.10)

From the first mean-value theorem of integral calculus, there exists a point y∗ ∈

(0, L) such that

qB = −sgn(ψ∗

S)Cox γ β
−1/2

√

e−βψ
∗

S + βψ∗

S − 1 (2.11)

where ψ∗

S = ψS(y
∗).

Generally speaking, ψ∗

S is not known, varies with bias, and differs from ψS as

defined in (2.7). In the QS case the symmetric linearization method [53,120] gives

ψ∗

S ≈ ψM − (∆ψ)2

12H
≈ ψS (2.12)

where

ψM = (ψS0 + ψSL)/2 (2.13)

∆ψ = ψSL − ψS0 (2.14)

ψS0 and ψSL denote the surface potentials at the source and drain ends of the

channel, respectively, and H is a bias-dependent but position-independent variable

whose precise value depends on the details of the velocity-field relation implemented

in the compact model. Here, we use H in the form given in [53].

The additional approximation we make is that

ψ∗

S ≈ ψS (2.15)

is valid in the more general NQS case. Note that we do not assume that the ψ∗

S

dependence on ψM and ∆ψ remains unchanged in the NQS case, which means that

(2.15) is a weaker condition than (2.12).
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We believe that (2.15) is preferable to assuming that (2.1) applies to the bulk

charge. Indeed, (2.15) produces some numerical error in the evaluation of qB while

using RTA for qB introduces an unphysical inertia in the response of qB to the surface

potential variation. The approximate validity of the NQS model based on (2.1) and

(2.15) is justified by comparison with TCAD simulations, experimental data, and a

benchmark test in subsequent sections.

The charge neutrality condition

qG + qI + qB = 0 (2.16)

with (2.6) and (2.15) gives

Cox

(

vGB − VFB − ψS

)

+ qI + qB(ψS) = 0 (2.17)

where qB(ψS) is given by (2.11) with ψ∗

S replaced by ψS. Note that while the corre-

sponding equation for the charge densities per unit area, q
′

I and q
′

B,

(Cox/WL) (vGB − VFB − ψS) + q
′

I + q
′

B(ψS) = 0 (2.18)

is exact, the equation (2.17) for the charges is approximate and is based on (2.15).

The terminal charges are computed as follows: the RTA equations (2.1) are solved

for qI and qD; with qI known, ψS is determined from (2.17) using an accurate ana-

lytical approximation originally developed for varactor modeling [59]; with ψS thus

determined qG is evaluated from (2.6); and, finally, qB is calculated from (2.16).

All small-geometry and secondary effects are inherited from the QS model used to

compute µ, q
(0)
I , and q

(0)
B . The resulting NQS model is coded in Verilog-A to make

it portable across circuit simulators. While the simulations presented below were
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performed using the Verilog-A compilers of two widely used simulators: Spectre

and ADS, we have also used automatically generated C-code [121] with identical

results. Typical execution time increases by about 40% relative to the QS PSP

model [52, 53] which is acceptable for NQS simulations; the exact computational

overhead compared to QS modeling depends on details of the circuit, analysis per-

formed, computing platform, compiler, and similar factors.

In this section, we have obtained large-signal NQS terminal charges. This is

summarized in Table 2.1.

TABLE 2.1
Summary of Evaluation of Terminal Charges in PSP-RTA-NQS

Sequence Terminal Charge Equation(s) Comments

1 qD (2.1) qD satisfies (2.1)
2 qS Equivalently by (2.1) qS satisfies (2.1)
3 qG (2.6) and (2.17) (2.11) and (2.15)
4 qB (2.16) NA

2.2. Terminal Currents

Terminal currents are given by

iD = ID +
dqD
dt

(2.19)

iG = IG +
dqG
dt

(2.20)

iS = IS +
dqS
dt

(2.21)

iB = IB +
dqB
dt

(2.22)

where ID, IG, IS, and IB are convection currents which are computed by the PSP-QS

model.
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2.3. Small-Geometry Effects, Parasitics, and Noise

Model equations for the small-geometry effects (such as the polysilicon de-

pletion effect [122–125], quantum mechanical corrections [126–129], etc.) are in-

herited from the PSP-QS model and their description is not affected by the RTA

approach. Parasitics [130–132] are also modeled automatically. An NQS noise

model [110, 133–148] is not included in the present work. More precisely, small-

geometry effects, parasitics, and noise models are included in i
(0)
D , i

(0)
G , i

(0)
S , i

(0)
B , q

(0)
D ,

q
(0)
G , q

(0)
S , and q

(0)
B . The geometry dependance of τ is given by (2.3).
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CHAPTER 3

Model Validation

3.1. Model Validation with TCAD

The new RTA-based NQS model has been implemented in PSP103 [53] and

is called PSP-RTA-NQS. Comparisons with two-dimensional (2-D) TCAD [149] re-

sults for large-signal simulations are shown in Figs. 3.1-3.4 and for small-signal

simulations in Figs. 3.5-3.8. In all cases, W=1 µm, L=5 µm, VSB =0, tox=2 nm,

µ=0.104 m2/V-s, Nsub=3 × 1023 m−3, and T=300 K. The relatively large L was

selected to emphasize the NQS effects.

Figs. 3.1 and 3.2 show the terminal currents during switching from depletion

to strong inversion operation for dVG/dt = 1010 V/s; results from the QS version of

PSP are also shown for comparison. There is good agreement between PSP-RTA-

NQS and TCAD simulations, and the improvement over PSP-QS is apparent. Fig.

3.3 shows transient gate and bulk current during switching from accumulation to

strong inversion for a ramp rate of 2 × 1010 V/s. As expected, NQS effects appear

only when the inversion charge becomes significant. This further illustrates the fact

that there is no inertia involved in the formation of the bulk charge (at least until

the Maxwell relaxation becomes relevant) [5].

RTA-based models are approximations and become less accurate as voltage

ramp rates increase, see Fig. 3.4 for gate and bulk currents for a ramp rate of

5 × 1011V/s. Even in this extreme case, the qualitative behavior of the PSP-RTA-

NQS model remains reasonable.

While an ability to model the large-signal response to a fast transient is im-
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Fig. 3.1. Drain and source terminal currents for vGS switching from 0 to 3 V at
1010 V/s; VDS=3 V and VBS=0.

portant for NQS models, RF circuit design requires small-signal modeling, including

transcapacitances, at high frequencies. Figs. 3.5 and 3.6 show Cgg and Cgs, respec-

tively, for f from 0 to 2fT; the new model fits the TCAD results well, with some

inaccuracy at the onset of strong inversion at the highest frequency. Fig. 3.7 shows

Cbg over a significantly extended frequency range; although neither the gate nor the

bulk charge are affected by the inertia in the inversion charge, if the partitioning

of the NQS inversion charge into source and drain components is done incorrectly,

then this induces errors in modeling Cbg at high frequencies; the inset in Fig. 3.7

shows that this is not the case for PSP-RTA-NQS.

A further interesting detail that demonstrates how NQS inversion charge par-
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Fig. 3.2. Gate and bulk terminal currents for vGS switching from 0 to 3 V at 1010

V/s, VDS=3 V.

titioning qualitatively affects capacitance modeling is shown in Fig. 3.8. In our

model formulation, as described in the previous section, the issue of partitioning

does not arise since both qD and qI are individually computed from (2.1) and q
(0)
D

and q
(0)
I are directly provided by the underlying QS model. This results in the

physical monotonic behavior of Cds as a function of the dc bias VGS in Fig. 3.8. In

contrast, if the ratio qD/qI is assumed to be its QS value, as is done in previous RTA

NQS models, then Cds acquires an unphysical peak which becomes more pronounced

as frequency increases.
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Fig. 3.3. Gate and bulk terminal currents for vGS switching from -3 to 3 V at
2 × 1010 V/s; VDS=3 V.
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Fig. 3.4. Gate and bulk terminal currents for vGS switching from 0 to 5 V at
5 × 1011 V/s; VDS=5 V.
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Fig. 3.5. Cgg for f=0, 0.5fT, 1.0fT, 1.5fT and 2.0fT (top to bottom), where fT=1.6
GHz; VDS=0.5 V. The weak frequency dependence in accumulation is completely
due to the bulk resistance effect (extracted Rbulk = 116.8 Ω from TCAD data) [5].
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Fig. 3.6. Cgs for f=0, 0.5fT, 1.0fT, 1.5fT and 2.0fT (top to bottom), where fT =
1.6 GHz; VDS=0.5 V.
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Fig. 3.7. Cbg for f=0, 3.1fT, 6.3fT, 12.5fT, 18.8fT, 25fT and 31fT (top to bottom
in accumulation region, bottom to top in strong inversion inset), where fT=1.6 GHz;
VDS=0.5 V. The significant decrease in the accumulation is completely due to the
bulk resistance effect (extracted Rbulk = 116.8 Ω from TCAD data) [5].
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3.2. Model Validation with Experimental Data

To further validate the accuracy of the new model, we measured s-parameters,

over a range of gate and drain biases and frequency with VBS=0, for a PMOS

transistor in a 90nm RF CMOS process. Fig. 3.9 shows the layout view of the

device.

Fig. 3.9. Test device with GSG probe pad configuration. Courtesy of Freescale
semiconductors, presented with permission.
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The device was laid out in a 2-port ground-signal-ground (GSG) probe con-

figuration, with the gate configured as port 1 and the drain as port 2; the structure

included 6 gate fingers and a surrounding bulk contact ring, with two devices con-

nected in parallel. De-embedding was done using a 2-step open-short technique [150].
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Fig. 3.10. Comparison of model and measured data for a PMOS ggg when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.

Figs. 3.10 through 3.33 show measured data from the device (cf. Fig. 3.9),

along with simulation results from both the PSP-RTA-NQS model and, for com-

parison, PSP-NQS with the spine collocation points N = 9 which is the maximum

allowed number. The y-parameters are shown over frequency both vs. VGS, for fixed

VDS, and vs. VDS, for fixed VGS, with the fixed voltage value chosen to be that for
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Fig. 3.11. Comparison of model and measured data for a PMOS Cgg when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.

which there was the maximum change in qualitative behavior over both frequency

and the swept bias. Cjk was calculated as (2δjk − 1) Im(yjk)/ω, with yjk computed

from transformation of the de-embedded s-parameters; fT for the device is 0.71

GHz. Rbulk and Rgate were adjusted to provide a least squares fit to the data. The

frequency and bias dependence of the measured data are fitted well, both qualita-

tively and quantitatively, by PSP-RTA-NQS, and in many of the plots it fits the

data better than PSP-NQS, even though the latter is a significantly more complex

model. For example, the peak in ggg(VGS) in Fig. 3.10 near threshold is able to be

modeled by PSP-RTA-NQS.
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In particular, Figs. 3.10 through 3.17 are the fitted frequency and gate bias

dependance of conductances and normalized capacitances when VDS = −0.6V.
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Fig. 3.12. Comparison of model and measured data for a PMOS ggd when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.13. Comparison of model and measured data for a PMOS Cgd when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.14. Comparison of model and measured data for a PMOS gdg when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.15. Comparison of model and measured data for a PMOS Cdg when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.16. Comparison of model and measured data for a PMOS gdd when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.17. Comparison of model and measured data for a PMOS Cdd when VDS =
-0.6 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Figs. 3.18 through 3.25 are the fitted frequency and drain bias dependance of

conductances and normalized capacitances when VGS = −0.8V.
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Fig. 3.18. Comparison of model and measured data for a PMOS ggg when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.19. Comparison of model and measured data for a PMOS Cgg when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.20. Comparison of model and measured data for a PMOS ggd when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.21. Comparison of model and measured data for a PMOS Cgd when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.22. Comparison of model and measured data for a PMOS gdg when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.23. Comparison of model and measured data for a PMOS Cdg when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.24. Comparison of model and measured data for a PMOS gdd when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.25. Comparison of model and measured data for a PMOS Cdd when VGS =
-0.8 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Figs. 3.26 through 3.33 are the fitted frequency and drain bias dependance of

conductances and normalized capacitances when VGS = −0.9V.
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Fig. 3.26. Comparison of model and measured data for a PMOS ggg when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.27. Comparison of model and measured data for a PMOS Cgg when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.28. Comparison of model and measured data for a PMOS ggd when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.29. Comparison of model and measured data for a PMOS Cgd when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.30. Comparison of model and measured data for a PMOS gdg when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.31. Comparison of model and measured data for a PMOS Cdg when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.32. Comparison of model and measured data for a PMOS gdd when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. 3.33. Comparison of model and measured data for a PMOS Cdd when VGS =
-0.9 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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3.3. Parameter Extraction for RTA-Based NQS MOSFET Models

It is interesting to mention that the fitting results in Sec. 3.2 not only complete

the model validation but also suggest a physical extraction methodology for an

advanced RTA-based NQS model. In fact, high frequency MOS transistor behavior

is also affected by the gate resistance Rgate [5]. In this section, we present a technique

to self-consistently determine both Kdrift in (2.3) and Rgate from measured data; the

approach uses bias dependent Q
(0)
i and effective mobility µ as computed by the PSP

model.

3.3.1. Analysis

The RTA-based model introduces a relaxation time that in strong inversion is

τnqs =
τ0

Kdrift
, τ0 =

L2

12µQ
(0)
i

(3.1)

For a MOSFET in strong inversion with VBS = 0 the y-parameter matrix accounting

for NQS effects in the relaxation time approximation to first order is









ygg ygd

ydg ydd









=
1

p1









jω[C
(0)
gs p2 + C

(0)
gd p3 + C

(0)
gb p1] −jωC(0)

gd p3

g
(0)
m − jωC

(0)
gd p3 g

(0)
sd + jω(C

(0)
gd + C

(0)
bd )p3









(3.2)

where p1 = 1 + jωτ1, p2 = 1 + jωτ2, and p3 = 1 + jωτ3; the symbols have their

usual meaning, the superscript (0) denotes the quasi-equilibrium value, and the

time constants τ[123], defined in [1], are VDS dependent factors multiplied by τ0.

The simplest terms in (3.2) to analyze are clearly ydg and ygd. The latter is small

in saturation, so is not reliably measurable there, however C
(0)
dg is large and easily

measurable for all drain biases. In particular, it has a maximum at VDS = 0 and at
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that bias g
(0)
m = 0. Extraction of NQS effects from measured data is therefore most

easily and directly done by analyzing ydg for VDS = 0.

Both real and imaginary parts of ydg as a function of ω could be used for NQS

behavior characterization (although Re(y
(0)
dg ) = 0 for VDS = 0, at higher frequencies

capacitive currents “bleed over” into the real components of all y-parameters, giving

them a characteristic ω2 dependence). From measurement, the imaginary compo-

nent has the cleanest behavior, and it is also the easiest to analyze. Including the

effect of Rgate gives

Cdg = − Im(ydg)

ω
=

C
(0)
dg

1 + τ2
effω

2
+O(ω4) (3.3)

where τeff = τnqs +RgateCgg is a function of VGS (through both µ and Q
(0)
i in (3.1)).

Rearranging gives

C
(0)
dg

Cdg
− 1 = τ2

effω
2 (3.4)

and this is the basic relationship we use to determine the NQS and Rgate parameters.

3.3.2. Extraction Algorithm

From Cdg at VDS = 0 over VGS and ω, at each VGS, extrapolation of 1/Cdg vs.

ω2 to ω = 0 gives 1/C
(0)
dg . VGS should be where the device is reasonably into strong

inversion and ω should be from well below fT (so extrapolation to determine C
(0)
dg is

accurate) to roughly 2fT (for higher frequencies higher order terms make (3.3) and

(3.4) inaccurate). Knowing C
(0)
dg , from (3.4) regression of C

(0)
dg /Cdg − 1 on ω2 gives

τeff as a function of VGS (cf. Fig. 3.34).

In modern technologies with low supply voltages MOS transistors never reach

very strong inversion operation, so the assumption that Q
(0)
i = VGS − VT is not
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accurate, and mobility µ is not constant but depends on VGS. In addition, the RTA

NQS model (3.1) is applied to PSP [53] and not to an approximate, simple analytical

model; NQS parameters should therefore be extracted to be consistent with µQ
(0)
i

as modeled by PSP. By calculating µQ
(0)
i from PSP, with parameters extracted to

fit dc and low frequency capacitance data, τ0 in (3.1) can be computed and then

from

τeff = RgateC
(0)
gg +

τ0(VGS)

Kdrift
(3.5)

Rgate and Kdrift can be determined from the intercept and reciprocal of the slope of

τeff vs. τ0 (with C
(0)
gg extrapolated from the measured data at the highest VGS; as

VGS increases Cgg approaches C
(0)
gg irrespective of frequency).

3.3.3. Experimental Results

Fig. 3.35 shows a plot of τeff vs. τ0 for aW/L = 10µm/1.2µm pMOS transistor

in a 90nm RFCMOS technology; the extracted parameter values are Rgate = 5.9Ω

andKdrift = 0.959 (which indicates that the underlying NQS model is quite accurate,

if it were perfect then Kdrift should equal 1 exactly). It is apparent that our analysis

leads to a highly linear relationship, and the extracted value of Rgate is close to the

value of 5.54Ω determined from brute force nonlinear least-squares optimization [5]

to gate capacitance at VDS = 0 over VGS and frequency. If a constant mobility

and Q
(0)
i = VGS − VT are assumed the extracted value of Rgate is 10.3Ω, which is

significantly in error.

In this section, we have presented a new and simple technique to characterize

NQS and Rgate MOS model parameters from measured data. µQ
(0)
i from PSP is used
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Fig. 3.34. Extracted and modeled C
(0)
dg /Cdg − 1, pMOS transistor; VDS = 0,

VSG=1.5V, f=0.1, 0.5, 1.0, 2.0GHz.

both to ensure consistency between the extracted parameters and the model they

will be used for and to avoid the assumptions that mobility is constant and Q
(0)
i =

VGS − VT, which are inaccurate for modern devices. As far as we are aware, this is

the first procedure reported for self-consistent direct extraction of NQS relaxation

time and Rgate parameters.
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CHAPTER 4

Small-Signal Model

4.1. Small-Signal RTA-Based NQS Model

Practical applications of NQS models rely on the large-signal formulation,

which is the one implemented directly in circuit simulators. The small-signal model

is provided directly by the circuit simulator by linearization of the large-signal model.

Nevertheless, there are some situations where it is advantageous to have an analytical

small-signal model. The small-signal model derived in this chapter is particularly

useful to perform an RF benchmark test on NQS MOSFET models.

4.1.1. Model Formulation and Terminal Charges

Fig. 4.1. Intrinsic MOSFET with dc biases and small-signal voltages.

Let us consider a MOSFET driven by a dc bias and small-signal excitation
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at each terminal, as shown in Fig. 4.1. One could assume that the small-signal

voltages are sinusoids and consider the corresponding small-signal terminal currents.

However, the algebra turns out to be unnecessarily complicated. We will thus follow,

instead, a standard practice and consider a fictitious complex exponential excitation

[1,89–91,151]. Thus, the small signal voltages, charges, and currents are given by (j

∈ { d, g, s, b}):

vj(t) = Re
(

∆vje
iωt

)

(4.1a)

qj(t) = Re
(

∆qje
iωt

)

(4.1b)

ij(t) = Re
(

∆ije
iωt

)

(4.1c)

where ∆vj denotes the complex amplitude and ω is the angular frequency. Similarly,

∆qj and ∆ij = iω∆qj denote the complex amplitudes of the corresponding charges

and terminal currents. We also use

qi = qs + qd = Re
(

∆qie
iωt

)

(4.2)

where

∆qi = ∆qs + ∆qd (4.3)

From (2.1)

∆qj =
∆q

(0)
j

1 + iωτ
; j ∈ {s, d, i} (4.4)

where ∆q
(0)
J denotes the QS value of ∆qj. Just as (2.1), (4.4) does not apply for

j = g or j = b. Instead, we use the linearized form of (2.6)

∆qg = Cox · (∆vgb − ∆ψS) (4.5)
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where ∆ψS is the surface potential phasor and the linearized form of (2.17)

Cox ·
(

∆vgb − ∆ψS

)

+ ∆qi + ∆qb = 0 (4.6)

Here, according to (2.11) and (2.15)

∆qb/Cox = −ξ · ∆ψS (4.7)

where

ξ =
sgn(ψS) γ β1/2

[

1 − exp(−βψS)
]

2
√

exp(−βψS) + βψS − 1
(4.8)

The validity of (4.7) is based on the fact that the response of the majority carriers

(and hence of qB) to the surface potential is, essentially, instantaneous.

From (4.6) and (4.7)

∆ψS =
∆vgb + ∆qi/Cox

1 + ξ
(4.9)

and

∆qg = (1 − η) · ∆vgb · Cox − η · ∆qi (4.10)

where

η =
1

1 + ξ
(4.11)

With reference to (4.4)

∆qg = (1 − η) · ∆vgb · Cox −
η · ∆q(0)i

1 + iωτ
(4.12)

while from the neutrality condition ∆qb = −∆qi − ∆qg or

∆qb = −(1 − η) ·
[

∆vgb · Cox +
∆q

(0)
i

1 + iωτ

]

(4.13)

So far, we have formulated the small-signal RTA-based NQS MOSFET model.

The terminal charges are summarized in Table 4.1.
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TABLE 4.1
Small-Signal Terminal Charges

Terminal Charge Equation

∆qd (4.4)
∆qs (4.4)
∆qg (4.12)
∆qb (4.13)

4.1.2. y-Parameters

Denoting

gjk = Re(yjk) (4.14)

and

cjk =
Im(yjk)

ω · Cox
(4.15)

we have

yjk = gjk + iωCoxcjk (4.16)

with these notations, the traditionally defined transcapacitances become

Cjk = (2δjk − 1) · cjk · Cox (4.17)

In terms of complex amplitudes,

yjk = g
(0)
jk + iω∆qj

∣

∣

∆vm=δmk
(4.18)

whereas

gjk = g
(0)
jk − ωIm

(

∆qj
∣

∣

∆vm=δmk

)

(4.19)

cjk =
1

Cox
Re(∆qj

∣

∣

∆vm=δmk
) (4.20)
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In what follows, we present detailed derivation of ygg and ybb. The remaining

elements of the y-matrix will be discussed in a more condensed manner.

Starting with (4.16)

ygg = ggg + iωCoxcgg (4.21)

where from (4.19) and (4.20)

ggg = g(0)
gg − ω · Im

(

∆qg
∣

∣

∆vm=δmg

)

(4.22)

cgg =
1

Cox
Re

(

∆qg
∣

∣

∆vm=δmg

)

(4.23)

Substituting ∆qg from (4.12)

ggg = g(0)
gg − η · ∆q(0)i · ω2τ

1 + (ωτ)2
(4.24)

cgg = (1 − η) − η

Cox
· ∆q(0)i · 1

1 + (ωτ)2
(4.25)

Substituting

∆q
(0)
i = c

(0)
ig Cox∆vg = c

(0)
ig Cox (4.26)

and assuming the steady-state gate tunneling current is negligible

g(0)
gg =

∂IG
∂VG

= 0 (4.27)

yield

ggg = −η · c(0)ig · Cox ·
ω2τ

1 + (ωτ)2
(4.28)

cgg = (1 − η) − η · c(0)ig · 1

1 + (ωτ)2
(4.29)
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To evaluate ybb, we start with

ybb = gbb + iωCoxcbb (4.30)

where

gbb = g
(0)
bb − ω · Im

(

∆qb
∣

∣

∆vm=δmb

)

(4.31)

cbb =
1

Cox
Re

(

∆qb
∣

∣

∆vm=δmb

)

(4.32)

Substituting the expression for ∆qb from (4.13)

gbb = ω · (1 − η) · ∆q(0)i · Im
(

1

1 + iωτ

)

(4.33)

cbb = −1 − η

Cox
·
[

−Cox + ∆q
(0)
i Re

(

1

1 + iωτ

)]

(4.34)

Substituting

∆q
(0)
i = c

(0)
ig Cox∆vb = c

(0)
ib Cox (4.35)

and assuming the steady-state bulk tunneling current is negligible

g
(0)
bb =

∂IB
∂VB

= 0 (4.36)

yield

gbb = −(1 − η) · c(0)ib · ω2τCox

1 + (ωτ)2
(4.37)

cbb = (1 − η) ·
[

1 − c
(0)
ib

1 + (ωτ)2

]

(4.38)

To evaluate ydd, from (4.16)

ydd = gdd + iωCoxcdd (4.39)
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where from (4.19)

gdd = g
(0)
dd − ω · Im

(

∆qd
∣

∣

∆vm=δmd

)

= g
(0)
dd − ω · ∆q(0)d

∣

∣

∆vm=δmd
· Im

(

1

1 + iωτ

)

= g
(0)
dd + ∆q

(0)
d

∣

∣

∆vm=δmd
· ω2τ

1 + (ωτ)2

= g
(0)
dd + c

(0)
dd · ω2τCox

1 + (ωτ)2
(4.40)

Here,

g
(0)
dd =

∂ID
∂VD

(4.41)

From (4.20)

cdd =
1

Cox
Re

(

∆qd
∣

∣

∆vm=δmd

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δmd
Re

(

1

1 + iωτ

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δmd
· 1

1 + (ωτ)2

=
c
(0)
dd

1 + (ωτ)2
(4.42)

Then, we evaluate ygd from (4.16)

ygd = ggd + iωCoxcgd (4.43)
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where from (4.12) and (4.19)

ggd = g
(0)
gd − ω · Im

(

∆qg
∣

∣

∆vm=δmd

)

(4.44)

= g
(0)
gd − ω · Im

[

(1 − η) · ∆vgb · Cox − η · ∆qi
∆vd

]

= g
(0)
gd + ω · η · Im

(

∆qi
∣

∣

∆vm=δmd

)

= g
(0)
gd + ω · η · ∆q(0)i

∣

∣

∆vm=δmd
· Im

(

1

1 + iωτ

)

= g
(0)
gd − η · ∆q(0)i

∣

∣

∆vm=δmd
· ω2τ

1 + (ωτ)2

= g
(0)
gd − η · c(0)id · ω2τCox

1 + (ωτ)2
(4.45)

Recalling that

g
(0)
gd =

∂IG
∂VD

= 0 (4.46)

we find

ggd = −η · c(0)id · ω2τCox

1 + (ωτ)2
(4.47)

From (4.12) and (4.20)

cgd =
1

Cox
Re

(

∆qg
∣

∣

∆vm=δmd

)

=
1

Cox
Re

[

(1 − η) · ∆vgb · Cox − η · ∆qi
∆vd

]

= − η

Cox
· Re

(

∆qi
∣

∣

∆vm=δmd

)

= − η

Cox
· ∆q(0)i

∣

∣

∆vm=δmd
· 1

1 + (ωτ)2

= − η · c(0)id

1 + (ωτ)2
(4.48)

Next, we evaluate ysd from (4.16)

ysd = gsd + iωCoxcsd (4.49)
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where from (4.4) and (4.19)

gsd = g
(0)
sd − ω · Im

(

∆qs
∣

∣

∆vm=δmd

)

= g
(0)
sd − ω · ∆q(0)s

∣

∣

∆vm=δmd
· Im

(

1

1 + iωτ

)

= g
(0)
sd + ∆q(0)s

∣

∣

∆vm=δmd
· ω2τ

1 + (ωτ)2

= g
(0)
sd + c

(0)
sd · ω2τCox

1 + (ωτ)2
(4.50)

From (4.4) and (4.20)

Csd = Re
(

∆qs
∣

∣

∆vm=δmd

)

= ∆q(0)s

∣

∣

∆vm=δmd
Re

(

1

1 + iωτ

)

= ∆q(0)s

∣

∣

∆vm=δmd
· 1

1 + (ωτ)2

= c
(0)
sd · Cox

1 + (ωτ)2
(4.51)

It is followed by the evaluation of ybd. From (4.16)

ybd = gbd + iωCoxcbd (4.52)

where from (4.13) and (4.19)

gbd = g
(0)
bd − ω · Im

(

∆qb
∣

∣

∆vm=δmd

)

(4.53)

= g
(0)
bd − ω · Im

[−(1 − η) · (∆vgb · Cox + ∆qi)

∆vd

]

= g
(0)
bd + ω · (1 − η) · Im

(

∆qi
∣

∣

∆vm=δmd

)

= g
(0)
bd + ω · (1 − η) · ∆q(0)i

∣

∣

∆vm=δmd
· Im

[(

1

1 + iωτ

)]

= g
(0)
bd − (1 − η) · ∆q(0)i

∣

∣

∆vm=δmd
· ω2τ

1 + (ωτ)2

= g
(0)
bd − (1 − η) · c(0)id · ω2τCox

1 + (ωτ)2
(4.54)
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Recalling that

g
(0)
bd =

∂IB
∂VD

= 0 (4.55)

we find

gbd = −(1 − η) · c(0)id · ω2τCox

1 + (ωτ)2
(4.56)

Also from (4.20)

cbd =
1

Cox
Re

(

∆qb
∣

∣

∆vm=δmd

)

=
1

Cox
Re

[−(1 − η) · (∆vgb · Cox + ∆qi)

∆vd

]

= −1 − η

Cox
· Re

(

∆qi
∣

∣

∆vm=δmd

)

= −1 − η

Cox
· ∆q(0)i

∣

∣

∆vm=δmd
· 1

1 + (ωτ)2

= −(1 − η) · c(0)id

1 + (ωτ)2
(4.57)

To evaluate ydg from (4.16)

ydg = gdg + iωCoxcdg (4.58)

where from (4.4) and (4.19)

gdg = g
(0)
dg − ω · Im

(

∆qd
∣

∣

∆vm=δmg

)

= g
(0)
dg − ω · ∆q(0)d

∣

∣

∆vm=δmg
· Im

(

1

1 + iωτ

)

= g
(0)
dg + ∆q

(0)
d

∣

∣

∆vm=δmg
· ω2τ

1 + (ωτ)2

= g
(0)
dg + c

(0)
dg · ω2τCox

1 + (ωτ)2
(4.59)
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From (4.4) and (4.20)

cdg =
1

Cox
Re

(

∆qd
∣

∣

∆vm=δmg

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δmg
Re

(

1

1 + iωτ

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δmg
· 1

1 + (ωτ)2

=
c
(0)
dg

1 + (ωτ)2
(4.60)

Similarly, we evaluate ysg from (4.16)

ysg = gsg + iωCoxcsg (4.61)

where from (4.4) and (4.19)

gsg = g(0)
sg − ω · Im

(

∆qs
∣

∣

∆vm=δmg

)

= g(0)
sg − ω · ∆q(0)s

∣

∣

∆vm=δmg
· Im

(

1

1 + iωτ

)

= g(0)
sg + ∆q(0)s

∣

∣

∆vm=δmg
· ω2τ

1 + (ωτ)2

= g(0)
sg + c(0)sg · ω2τCox

1 + (ωτ)2
(4.62)

From (4.4) and (4.20)

csg =
1

Cox
Re

(

∆qs
∣

∣

∆vm=δmg

)

=
1

Cox
∆q(0)s

∣

∣

∆vm=δmg
Re

(

1

1 + iωτ

)

=
1

Cox
∆q(0)s

∣

∣

∆vm=δmg
· 1

1 + (ωτ)2

=
c
(0)
sg

1 + (ωτ)2
(4.63)

It is followed by the evaluation of ybg from (4.16)

ybg = gbg + iωCoxcbg (4.64)
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where from (4.13) and (4.19)

gbg = g
(0)
bg − ω · Im

(

∆qb
∣

∣

∆vm=δmg

)

(4.65)

= g
(0)
bg − ω · Im

[−(1 − η) · (∆vgb · Cox + ∆qi)

∆vg

]

= g
(0)
bg + ω · (1 − η) · Im

(

∆qi
∣

∣

∆vm=δmg

)

= g
(0)
bg + ω · (1 − η) · ∆q(0)i

∣

∣

∆vm=δmg
· Im

(

1

1 + iωτ

)

= g
(0)
bg − (1 − η) · ∆q(0)i

∣

∣

∆vm=δmg
· ω2τ

1 + (ωτ)2

= g
(0)
bg − (1 − η) · c(0)ig · ω2τCox

1 + (ωτ)2
(4.66)

From (4.4) and (4.20)

cbg =
1

Cox
Re

(

∆qb
∣

∣

∆vm=δmg

)

=
1

Cox
Re

[−(1 − η) · (∆vgb · Cox + ∆qi)

∆vg

]

= −1 − η

Cox
·
[

Cox + Re
(

∆qi
∣

∣

∆vm=δmg

)]

= −1 − η

Cox
·
[

Cox + ∆q
(0)
i

∣

∣

∆vm=δmg
· 1

1 + (ωτ)2

]

= −(1 − η) ·
[

1 +
c
(0)
ig

1 + (ωτ)2

]

(4.67)

In the next we evaluate yds from (4.16)

yds = gds + iωCoxcds (4.68)
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where from (4.4) and (4.19)

gds = g
(0)
ds − ω · Im

(

∆qd
∣

∣

∆vm=δms

)

= g
(0)
ds − ω · ∆q(0)d

∣

∣

∆vm=δms
· Im

(

1

1 + iωτ

)

= g
(0)
ds + ∆q

(0)
d

∣

∣

∆vm=δms
· ω2τ

1 + (ωτ)2

= g
(0)
ds + c

(0)
ds · ω2τCox

1 + (ωτ)2
(4.69)

From (4.4) and (4.20)

cds = Re
(

∆qd
∣

∣

∆vm=δms

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δms
Re

(

1

1 + iωτ

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δms
· 1

1 + (ωτ)2

=
c
(0)
ds

1 + (ωτ)2
(4.70)

Then, we evaluate ygs from (4.16)

ygs = ggs + iωCoxcgs (4.71)

where from (4.4) and (4.19)

ggs = g(0)
gs − ω · Im

(

∆qg
∣

∣

∆vm=δms

)

(4.72)

= g(0)
gs − ω · Im

[

(1 − η) · ∆vgb · Cox − η · ∆qi
∆vs

]

= g(0)
gs + ω · η · Im

(

∆qi
∣

∣

∆vm=δms

)

= g(0)
gs + ω · η · ∆q(0)i

∣

∣

∆vm=δms
· Im

(

1

1 + iωτ

)

= g(0)
gs − η · ∆q(0)i

∣

∣

∆vm=δms
· ω2τ

1 + (ωτ)2

= g(0)
gs − η · c(0)is · ω2τCox

1 + (ωτ)2
(4.73)
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Recalling that

g(0)
gs =

∂IG
∂VS

= 0 (4.74)

we find

ggs = −η · c(0)is · ω2τCox

1 + (ωτ)2
(4.75)

From (4.4) and (4.20)

cgs =
1

Cox
Re

(

∆qg
∣

∣

∆vm=δms

)

=
1

Cox
Re

[

(1 − η) · ∆vgb · Cox − η · ∆qi
∆vs

]

= − η

Cox
· Re

(

∆qi
∣

∣

∆vm=δms

)

= − η

Cox
· ∆q(0)i

∣

∣

∆vm=δms
· 1

1 + (ωτ)2

= − η · c(0)is

1 + (ωτ)2
(4.76)

Similarly, we evaluate yss from (4.16)

yss = gss + iωCoxcss (4.77)

where from (4.4) and (4.19)

gss = g(0)
ss − ω · Im

(

∆qs
∣

∣

∆vm=δms

)

= g(0)
ss − ω · ∆q(0)s

∣

∣

∆vm=δms
· Im

(

1

1 + iωτ

)

= g(0)
ss + ∆q(0)s

∣

∣

∆vm=δms
· ω2τ

1 + (ωτ)2

= g(0)
ss + c(0)ss · ω2τCox

1 + (ωτ)2
(4.78)
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From (4.4) and (4.20)

css =
1

Cox
Re

(

∆qs
∣

∣

∆vm=δms

)

=
1

Cox
∆q(0)s

∣

∣

∆vm=δms
Re

(

1

1 + iωτ

)

=
1

Cox
∆q(0)s

∣

∣

∆vm=δms
· 1

1 + (ωτ)2

=
c
(0)
ss

1 + (ωτ)2
(4.79)

It is followed by the evaluation of ybs from (4.16)

ybs = gbs + iωCoxcbs (4.80)

where from (4.13) and (4.19)

gbs = g
(0)
bs − ω · Im

(

∆qb
∣

∣

∆vm=δms

)

(4.81)

= g
(0)
bs − ω · Im

[−(1 − η) · (∆vgb · Cox + ∆qi)

∆vs

]

= g
(0)
bs + ω · (1 − η) · Im

(

∆qi
∣

∣

∆vm=δms

)

= g
(0)
bs + ω · (1 − η) · ∆q(0)i

∣

∣

∆vm=δms
· Im

(

1

1 + iωτ

)

= g
(0)
bs − (1 − η) · ∆q(0)i

∣

∣

∆vm=δms
· ω2τ

1 + (ωτ)2

= g
(0)
bs − (1 − η) · c(0)is · ω2τCox

1 + (ωτ)2
(4.82)

Recalling that

g
(0)
bs =

∂IB
∂VS

= 0 (4.83)

we find

gbs = −(1 − η) · c(0)is · ω2τCox

1 + (ωτ)2
(4.84)
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From (4.4) and (4.20)

cbs =
1

Cox
Re

(

∆qb
∣

∣

∆vm=δms

)

=
1

Cox
Re

−(1 − η) · (∆vgb · Cox + ∆qi)

∆vs

= −1 − η

Cox
· Re

(

∆qi
∣

∣

∆vm=δms

)

= −1 − η

Cox
· ∆q(0)i

∣

∣

∆vm=δms
· 1

1 + (ωτ)2

= −(1 − η) · c(0)is

1 + (ωτ)2
(4.85)

Then, we evaluate ydb from (4.16)

ydb = gdb + iωCoxcdb (4.86)

where from (4.4) and (4.19)

gdb = g
(0)
db − ω · Im

(

∆qd
∣

∣

∆vm=δmb

)

= g
(0)
db − ω · ∆q(0)d

∣

∣

∆vm=δmb
· Im

(

1

1 + iωτ

)

= g
(0)
db + ∆q

(0)
d

∣

∣

∆vm=δmb
· ω2τ

1 + (ωτ)2

= g
(0)
db + c

(0)
db · ω2τCox

1 + (ωτ)2
(4.87)

From (4.4) and (4.20)

cdb =
1

Cox
Re

(

∆qd
∣

∣

∆vm=δmb

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δmb
Re

(

1

1 + iωτ

)

=
1

Cox
∆q

(0)
d

∣

∣

∆vm=δmb
· 1

1 + (ωτ)2

=
c
(0)
db

1 + (ωτ)2
(4.88)
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After that, we evaluate ygb from (4.16)

ygb = ggb + iωCoxcgb (4.89)

where from (4.13) and (4.19)

ggb = g
(0)
gb − ω · Im

(

∆qg
∣

∣

∆vm=δmb

)

(4.90)

= g
(0)
gb − ω · Im

[

(1 − η) · ∆vgb · Cox − η · ∆qi
∆vb

]

= g
(0)
gb + ω · η · Im

(

∆qi
∣

∣

∆vm=δmb

)

= g
(0)
gb + ω · η · ∆q(0)i

∣

∣

∆vm=δmb
· Im

(

1

1 + iωτ

)

= g
(0)
gb − η · ∆q(0)i

∣

∣

∆vm=δmb
· ω2τ

1 + (ωτ)2

= g
(0)
gb − η · c(0)ib · ω2τCox

1 + (ωτ)2
(4.91)

Recalling that

g
(0)
gb =

∂IG
∂VB

= 0 (4.92)

we find

ggb = −η · c(0)ib · ω2τCox

1 + (ωτ)2
(4.93)

From (4.4) and (4.20)

cgb =
1

Cox
Re

(

∆qg
∆vb

)

=
1

Cox
Re

[

(1 − η) · ∆vgb · Cox − η
Cox

· ∆qi
∆vb

]

= −(1 − η) − η

Cox
· Re

(

∆qi
∣

∣

∆vm=δmb

)

= −(1 − η) − η

Cox
· ∆q(0)i

∣

∣

∆vm=δmb
· 1

1 + (ωτ)2

= −(1 − η) − η · c(0)ib

1 + (ωτ)2
(4.94)
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Similarly, we evaluate ysb from (4.16)

ysb = gsb + iωCoxcsb (4.95)

where from (4.4) and (4.19)

gsb = g
(0)
sb − ω · Im

(

∆qs
∆vb

)

= g
(0)
sb − ω · ∆q(0)s

∣

∣

∆vm=δmb
· Im

(

1

1 + iωτ

)

= g
(0)
sb + ∆q(0)s

∣

∣

∆vm=δmb
· ω2τ

1 + (ωτ)2

= g
(0)
sb + c

(0)
sb · ω2τCox

1 + (ωτ)2
(4.96)

From (4.4) and (4.20)

csb =
1

Cox
Re

(

∆qs
∣

∣

∆vm=δmb

)

=
1

Cox
∆q(0)s

∣

∣

∆vm=δmb
Re

(

1

1 + iωτ

)

=
1

Cox
∆q(0)s

∣

∣

∆vm=δmb
· 1

1 + (ωτ)2

=
c
(0)
sb

1 + (ωτ)2
(4.97)

The evaluated conductances and capacitances can be presented as

[gjk] =

























g
(0)
dd g

(0)
dg g

(0)
ds g

(0)
db

0 0 0 0

g
(0)
sd g

(0)
sg g

(0)
ss g

(0)
sb

0 0 0 0

























− k0Fω

























−c(0)dd −c(0)dg −c(0)ds −c(0)db

ηc
(0)
id ηc

(0)
ig ηc

(0)
is ηc

(0)
ib

−c(0)sd −c(0)sg −c(0)ss −c(0)sb

ζc
(0)
id ζc

(0)
ig ζc

(0)
is ζc

(0)
ib

























(4.98)
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where k0 = ω2τCox, ζ = 1 − η, Fω =
[

1 + (ωτ)2
]

−1
and

[cjk] = −Fω

























−c(0)dd −c(0)dg −c(0)ds −c(0)db

ηc
(0)
id ηc

(0)
ig − ζ

′

ηc
(0)
is ηc

(0)
ib + ζ

′

−c(0)sd −c(0)sg −c(0)ss −c(0)sb

ζc
(0)
id ζc

(0)
ig + ζ

′

ζc
(0)
is ζc

(0)
ib − ζ

′

























(4.99)

Here, ζ
′

= ζ/Fω. Note that we assumed negligible steady-state gate and bulk

currents which lead to the vanishing elements g
(0)
gk and g

(0)
bk .

4.1.3. Lowest-Order Corrections to the QS Small-Signal Model

To obtain the lowest-order corrections to the QS model needed for the bench-

mark analysis, we substitute

Fω = 1 − (ωτ)2 +O(ω4) (4.100)

in (4.98) and (4.99). This results in

[gjk] =
[

g
(0)
jk

]

+
[

g
(1)
jk

]

+O(ω4) (4.101)

and

[cjk] =
[

c
(0)
jk

]

+
[

c
(1)
jk

]

+O(ω4) (4.102)

where

[

g
(0)
jk

]

=

























g
(0)
dd g

(0)
dg g

(0)
ds g

(0)
db

0 0 0 0

g
(0)
sd g

(0)
sg g

(0)
ss g

(0)
sb

0 0 0 0

























(4.103)
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[

c
(0)
jk

]

=

























c
(0)
dd c

(0)
dg c

(0)
ds c

(0)
db

−η · c(0)id ζ − η · c(0)ig −η · c(0)is −ζ − η · c(0)ib

c
(0)
sd c

(0)
sg c

(0)
ss c

(0)
sb

−ζ · c(0)id −ζ ·
[

1 + c
(0)
ig

]

−ζ · c(0)is ζ ·
[

1 − c
(0)
ib

]

























(4.104)

[

g
(1)
jk

]

= k0

























c
(0)
dd c

(0)
dg c

(0)
ds c

(0)
db

−η · c(0)id −η · c(0)ig −η · c(0)is −η · c(0)ib

c
(0)
sd c

(0)
sg c

(0)
ss c

(0)
sb

−ζ · c(0)id −ζ · c(0)ig −ζ · c(0)is −ζ · c(0)ib

























(4.105)

and

[

c
(1)
jk

]

= −k0τ

Cox

























c
(0)
dd c

(0)
dg c

(0)
ds c

(0)
db

−η · c(0)id −η · c(0)ig −η · c(0)is −η · c(0)ib

c
(0)
sd c

(0)
sg c

(0)
ss c

(0)
sb

−ζ · c(0)id −ζ · c(0)ig −ζ · c(0)is −ζ · c(0)ib

























(4.106)

Note that

[

c
(1)
jk

]

= − τ

Cox
·
[

g
(1)
jk

]

(4.107)

Physically,
[

g
(0)
jk

]

and
[

c
(0)
jk

]

are the QS conductances and capacitances matrices and

[

g
(1)
jk

]

and
[

c
(1)
jk

]

are the lowest-order corrections predicted by the new RTA model.

4.2. Benchmark Test for VDS = 0 in Strong Inversion Regime

Smit et al. [62] suggested a benchmark for NQS models based on the double

transmission line representation of the MOSFET for VDS = 0 in the strong inversion
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regime (when the diffusion current may be neglected.) Here, we apply their test to

the new RTA model developed.

For VDS = 0 we have

g
(0)
dg = 0 (4.108)

g
(0)
bg = 0 (4.109)

g
(0)
ds = g

(0)
sd = −g(0)

dd (4.110)

and

g(0)
ss = g

(0)
dd (4.111)

Hence, from (4.103)

[

g
(0)
jk

]

= g
(0)
dd

























1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

























(4.112)

while
[

c
(0)
jk

]

,
[

g
(1)
jk

]

, and [cjk] are the same as (4.104), (4.105), and (4.106), respec-

tively.

We next transform the lowest-order corrections
[

g
(1)
jk

]

and
[

c
(1)
jk

]

to facilitate

the comparison of the new RTA model with the “exact” results in [62]. For VDS = 0

in a strong inversion regime, the
[

c
(0)
jk

]

term in (4.104) should be equivalent to the
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corresponding
[

c
(0)
jk,TLM

]

term of (7) in [62] which is given below 1

[

c
(0)
jk,TLM

]

=
1

6

























2α −3 α 3 − 3α

−3 6 −3 0

α −3 2α 3 − 3α

3 − 3α 0 3 − 3α 6α − 6

























(4.113)

where α = 1 + ξ.

By equating elements of (4.104) and (4.113), one finds

c
(0)
dd = c(0)ss =

α

3
(4.114)

c
(0)
dg = c(0)sg = −1

2
(4.115)

c
(0)
ds = c

(0)
sd =

α

6
(4.116)

c
(0)
db =

1 − α

2
(4.117)

c
(0)
gd = −η · c(0)id = −1

2
(4.118)

c(0)gg = 1 − η − η · c(0)ig = 1 (4.119)

c(0)gs = −η · c(0)is = −1

2
(4.120)

c
(0)
gb = −ζ − η · c(0)ib = 0 (4.121)

c
(0)
sb =

1 − α

2
(4.122)

1The c
(0)
jk,TLM of (7) in [62] is a 3x3 matrix. The fourth column and fourth row in

this thesis are evaluated by applying the rule that the sum of the matrix elements
in each column or row should be zero.
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which yields

c
(0)
dd =

α

3
(4.123)

c
(0)
dg = −1

2
(4.124)

c
(0)
ds =

α

6
(4.125)

c
(0)
db =

1 − α

2
(4.126)

c
(0)
id =

1

2η
=
α

2
(4.127)

c
(0)
ig = −1 (4.128)

c
(0)
is =

1

2η
=
α

2
(4.129)

c
(0)
ib = 1 − α (4.130)

c
(0)
sd =

α

6
(4.131)

c(0)sg = −1

2
(4.132)

c(0)ss =
α

3
(4.133)

c
(0)
sb =

1 − α

2
(4.134)

Inserting (4.123)-(4.134) into (4.105) and (4.106), one finds that, when VDS =

0 in a strong inversion regime

[

g
(1)
jk

]

= k0

























α/3 −1/2 α/6 (1 − α)/2

−1/2 1/α −1/2 (α− 1)/α

α/3 −1/2 α/6 (1 − α)/2

(1 − α)/2 (α− 1)/α (1 − α)/2 (α− 1)2/α

























(4.135)
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and

[

c
(1)
jk

]

= −k0 · τ
Cox

























α/3 −1/2 α/6 (1 − α)/2

−1/2 1/α −1/2 (α− 1)/α

α/3 −1/2 α/6 (1 − α)/2

(1 − α)/2 (α− 1)/α (1 − α)/2 (α− 1)2/α

























(4.136)

The lowest order NQS corrections to the QS y-matrix are given by

[

g
(1)
jk,TLM

]

= k1

























8α2 −15α 7α2 −15αξ

−15α 30 −15α 30ξ

7α2 −15α 8α2 −15αξ

−15αξ 30ξ −15αξ 30ξ2

























(4.137)

and

[

c
(1)
jk,TLM

]

= k2

























−32α 63 −31α 63ξ

63 −126
α 63 −126 ξα

−31α 63 −32α 63ξ

63ξ −126 ξα 63ξ 126 ξ
2

α

























(4.138)

where

k1 = ω2C2
ox/

[

360g
(0)
dd

]

(4.139)

and

k2 = ω2C2
oxα

2/

{

15120
[

g
(0)
dd

]2
}

(4.140)

To obtain the lowest order NQS corrections to the y-matrix for the present

model, we use expansions (4.101) and (4.102) for the small-signal version of the
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model developed in (4.98) and (4.99). In the strong inversion regime for VDS = 0

[

g
(1)
jk

]

= kτk1

























10α2 −15α 5α2 −15αξ

−15α 30 −15α 30ξ

5α2 −15α 10α2 −15αξ

−15αξ 30ξ −15αξ 30ξ2

























(4.141)

and

[

c
(1)
jk

]

=
5k2
τk2

6

























−42α 63 −21α 63ξ

63 −126
α 63 −126 ξα

−21α 63 −42α 63ξ

63ξ −126 ξα 63ξ 126 ξ
2

α

























(4.142)

where

kτ =
12τg

(0)
dd

αCox
(4.143)

is a dimensionless coefficient close to 1. For the purpose of this study, we select

τ =

√
30αCox

60τg
(0)
dd

(4.144)

which is equivalent to setting kτ =
√

30/5 ≈ 1.095. This choice makes
[

c
(1)
jk

]

close to

the ideal value
[

c
(1)
jk,TLM

]

given by (4.138). To facilitate the comparison of (4.141),

(4.142) with (4.137), (4.138), we introduce the “ratio matrices” R
(g)
jk = g

(1)
jk /g

(1)
jk,TLM

and R
(c)
jk = c

(1)
jk /c

(1)
jk,TLM. From (4.137), (4.138), (4.141), and (4.142),

[

R
(g)
jk

]

=

























1.37 1.10 0.78 1.10

1.10 1.10 1.10 1.10

0.78 1.10 1.37 1.10

1.10 1.10 1.10 1.10

























(4.145)
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[

R
(c)
jk

]

=

























1.31 1 0.68 1

1 1 1 1

0.68 1 1.35 1

1 1 1 1

























(4.146)

Since ideally all elements of these matrices are equal to one, the new RTA model

satisfies the benchmark test only approximately. This inherent limitation of the RTA

approach can be regarded as the price that is paid for model speed and simplicity.

84



CHAPTER 5

Bulk Resistance Effect on MOSFET Gate Capacitance

5.1. Introduction

The gate capacitance, Cgg, of MOS transistors and capacitors is frequency de-

pendent in all regions of operation. However, different physical mechanisms control

the frequency dependence in different regions of operation.

In strong inversion, the electron concentration (here, we assume a p-bulk struc-

ture) in the channel can lag in time (i.e. have inertia) with respect to changes in

gate voltage; for rapidly changing gate bias, the channel charge does not have time

to equilibrate to a value consistent with the instantaneous values of the terminal

biases. The delay in establishment of the channel charge is in MOS transistors due

to the finite transit time of electrons from the source and drain into the channel, and

in MOS capacitors due to finite recombination and generation lifetimes for electrons.

In both cases, the qualitative effect, but not details of the frequency dependence, is

similar: as frequency increases Cgg in inversion decreases. This is the so-called NQS

behavior.

In accumulation operation, Cgg also decreases as frequency increases. In at

least one compact MOS transistor model, this has been attributed to inertia in the

formation of bulk charge. Actually, the physical cause of this behavior is different;

for the p-bulk MOS structure in accumulation, there is a plethora of holes available

in the bulk immediately adjacent to the surface, so there should be negligible delay

in the re-equilibration of the accumulation charge following a change in gate voltage

and therefore, no inertia effect on MOS capacitance in accumulation.
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In this chapter, we present TCAD simulations and derive a new analytic model

for the frequency dependence of Cgg in accumulation and depletion that accounts for

the series resistance Rbulk of the bulk, to show that the variation of MOS device Cgg

with frequency in accumulation does not arise from charge inertia effects but rather,

is due to the influence of Rbulk. We then show that the frequency dependence of Cgg

for MOS transistors for all biases can be accurately modeled using the PSP-RTA-

NQS MOSFET compact model and present measured data, along with simulations

from PSP-RTA-NQS, to show that the series resistance Rgate of the gate needs to be

included to accurately model the frequency dependence of Cgg from accumulation

through strong inversion.

The gate capacitance normalized by the oxide capacitance Cox will be denoted

in lower case, i.e. cgg = Cgg/Cox (see (4.17)). In this work, it was not found

necessary to include the effect of gate leakage current on the frequency dependence

of Cgg. Generally speaking, this is another source of dispersion in advanced MOS

structures [112].

5.2. TCAD and PSP-RTA-NQS Modeling

Fig. 5.1 shows TCAD simulations [149] of MOSFET gate capacitance, for

VDS = VBS = 0 over gate voltage VGS and frequency f , along with simulations from

the QS version of the PSP model [53] with no Rbulk. The TCAD simulations were

performed with an ideal contact at the top of the gate dielectric and so include no

parasitic gate resistance; Rgate was therefore set to zero in PSP for all comparisons

to TCAD simulations.
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Fig. 5.1. TCAD and PSP-QS models of normalized Cgg, with Rbulk = 0 for
PSP-QS. W/L = 1.0µm/5.0µm, tox = 2.0nm, Nbulk = 3.0 × 1017cm−3 (p-type),
frequencies are 0, 0.25fT, 0.5fT, 0.75fT, fT, 1.25fT and 1.5fT(top to bottom). Here
fT = 1.6 GHz and substrate thickness tbulk = 30 µm.

The TCAD simulations clearly show the decrease in Cgg with increasing fre-

quency, both in accumulation and inversion regions of operation. (The decrease is

also apparent in depletion, but is less pronounced.) The PSP-QS model show ideal

MOS transistor capacitance behavior irrespective of frequency. Note the qualitative

difference in the shape of the Cgg(VGS) curves over frequency between accumula-

tion and strong inversion. In accumulation, the curves are almost horizontal and

move down by approximately the same amount as frequency increases. In strong

inversion, the amount of reduction in Cgg decreases as VGS increases for a given

frequency, i.e. there is a slope introduced into the Cgg(VGS) characteristics.

If the frequency dependence of Cgg is due to the inertia in formation of the in-
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Fig. 5.2. Effect of accounting for NQS behavior – TCAD and PSP-RTA-NQS mod-
els of normalized Cgg, with Rbulk = 0 for PSP-RTA-NQS. Same device parameters
and frequencies as Fig. 5.1.

version layer, then this should be able to be modeled by the PSP-RTA-NQS model;

Fig. 5.2 shows the results of such simulations. The improvement in accuracy of the

compact model, which is based on RTA and depends on two adjustable model para-

meters, is apparent in strong inversion, but there is no improvement in accumulation

or depletion where the inversion charge is negligible.

Due to the fact that in accumulation and depletion there is, from the bulk

p-type doping, an excess of mobile holes (i.e. majority carriers) readily available,

there should be negligible inertia in the change in bulk charge with respect to a

change in terminal voltages. The frequency dependence of Cgg out of inversion,

therefore, should not be due to an NQS effect; most likely, it could be from series re-
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sistance. Given that Rgate = 0 in the TCAD simulations, the cause of the frequency

dependence of Cgg in accumulation and depletion in Fig. 5.2 should be Rbulk, which

should appear in series with the intrinsic MOS capacitance.

To provide an explanation of the difference in qualitative behavior of the

TCAD simulations between accumulation and strong inversion, and support for the

statements in the two preceding paragraphs, we will use simplified models that are

applicable only to each of these individual regions of operation; neither is a general

model that is appropriate for all operating regions.

First, in strong inversion, the effective gate capacitance of a MOS transistor,

at an angular frequency ω for VDS = 0, using a first order expansion in iω of an

NQS analysis based on the continuity equation in the channel [1], is

Cgg(ω) =
C

(0)
gg

1 +

[

ωL2

12µ(VGS − VT)

]2 (5.1)

where VT is the threshold voltage. This indicates that at a given frequency, as VGS

increases in strong inversion, Cgg(ω) should increase and asymptotically approach

C
(0)
gg for large VGS − VT. This is precisely the qualitative behavior seen in strong

inversion in Fig. 5.2, both for the TCAD simulations and for the PSP-RTA-NQS

model.

Second, consider operation in accumulation. If the device is modeled as Rbulk

in series with C
(0)
gg , then

Cgg(ω) =
C

(0)
gg

1 +
[

ωRbulkC
(0)
gg

]2 . (5.2)

If the frequency dependence in accumulation in Fig. 5.2 is due to series resistance,

then from (5.2) a plot of C
(0)
gg /Cgg vs. ω2 should be a straight line with slope
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Fig. 5.3. C
(0)
gg /Cgg vs. ω2 from TCAD simulations at VGS = −2.

[

RbulkC
(0)
gg

]2
. Fig. 5.3 shows this plot from the TCAD simulations for frequencies

up to 1.25fT (at fT there is some deviation from the linear trend predicted by (5.2),

which is only a first-order approximation.) This supports the hypothesis that the

frequency dependence of Cgg in accumulation is from series resistance. Further,

(5.2) indicates that the decrease in Cgg with frequency should, for a fixed series

resistance, be smaller if the low frequency capacitance is smaller; the simple series

RbulkC
(0)
gg model (5.2), therefore, also explains the reduced frequency dependence

in depletion, where the low frequency capacitance is significantly smaller than in

accumulation, but Rbulk is essentially unchanged. The rapid increase in C
(0)
gg as VGS

decreases is the cause of the peak in Cgg around flatband at high frequencies.

We stress that the models (5.1) and (5.2) used for the above analyses are not
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Fig. 5.4. Effect of accounting for both Rbulk and NQS behavior – TCAD and
PSP-RTA-NQS models of Cgg with Rbulk = 2.2 kΩ included for PSP-RTA-NQS.
Same device parameters and frequencies as Fig. 5.1.

general and are only approximate even in the regions of operation they are targeted

to model. We now present further PSP-RTA-NQS and TCAD simulation results

that verify that the frequency dependence of Cgg is due to Rbulk in accumulation

and is due to inversion charge inertia in strong inversion.

Fig. 5.4 shows PSP-RTA-NQS simulations that include Rbulk; there is a sig-

nificant improvement in compact modeling accuracy in accumulation and depletion

cf. Fig. 5.2, and in particular, the peaks in Cgg in the vicinity of flatband at the

higher frequencies are captured. The value of Rbulk determined from optimization

to fit the TCAD simulations is 2.20 kΩ; this compares well with the values of 2.23

and 2.17 kΩ determined from the slope of a linear regression using the first 3 and
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Fig. 5.5. Effect of accounting for Rbulk – TCAD and PSP-QS models of Cgg with
Rbulk = 2.2 kΩ included for PSP-QS. Same device parameters and frequencies as
Fig. 5.1.

the first 5 points of the plot of Fig. 5.3, respectively. As further verification that the

frequency dependence of Cgg in accumulation is a bulk resistance effect, and not an

NQS effect, Fig. 5.5 shows simulations with Rbulk included but using the PSP-QS

model; there is no change in the accuracy of fit of Cgg in accumulation and depletion

cf. Fig. 5.4.

Fig. 5.6 shows results, at f = fT, with the body thickness in the TCAD

simulations varied from 20 µm to 40 µm. Increasing the body thickness should not

alter the inertia of holes at the surface, but increases Rbulk and therefore, decreases

the apparent Cgg at high frequency; this is exactly what is observed in Fig. 5.6.

Rbulk was adjusted in PSP-RTA-NQS for each case for good fitting of the TCAD
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Fig. 5.6. Effect of variation of bulk thickness, f = fT = 1.6 GHz. PSP-RTA-NQS
model parameter Rbulk = 2/3Rbulk0, Rbulk0 and 4/3Rbulk0 for tbulk = 2/3tbulk0, tbulk0

and 4/3tbulk0, respectively. Here Rbulk0 = 2.2 kΩ and tbulk0 = 30 µm.

simulations, and the ratio of Rbulk to the body thickness varied by less than 10%

over the body thickness values that were simulated.

The frequency dependence of Cgg in accumulation and depletion is thus not an

NQS effect for the body charge, but is due to the resistance of the bulk (and, as we

will see below, also depends on gate resistance, although to a lesser extent); inclusion

of series resistance is therefore necessary to model properly Cgg over frequency.

5.3. Analytic Expression for Cgg in the Presence of Bulk Resistance

The simple series RbulkC
(0)
gg analysis result (5.2) does not take into account

details of the operation of MOS devices. In particular, it fails to predict that Rbulk

does not affect Cgg in strong inversion, see Fig. 5.5. Physically, this is due to the

93



fact that in strong inversion, the incremental change in inversion charge with bias

flows from the source and drain regions and not from the bulk of the device. To

make this clear, we now develop an analytic expression for the effect of Rbulk while

neglecting, for simplicity, inertia in the formation of the inversion charge.

We adopt the notation

vG(t) = VG + Re
(

∆vg · eiωt
)

(5.3)

where vG(t) is the instantaneous value of the gate bias, VG is its quiescent value,

and ∆vg is the phasor representing the small harmonic component with the angular

frequency ω. Another example, the phasors for the substrate displacement current

and charge are related by

∆ib = iω∆qb . (5.4)

Inclusion of the voltage drop in the bulk in the surface potential equation gives

vGB(t) − VFB − ψS(t) − ib(t)Rbulk = −qI(t) − qB(t) (5.5)

where ψS, qI, and qB are following the same definitions we used in the previous

chapters. It is also assumed that the quiescent substrate current is negligible

iB = ib (5.6)

With reference to (5.4), the phasor form of this equation becomes

∆vg = [1 + (1 + iωTB)ξ]∆ψs − ∆qi (5.7)
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where TB = RbulkCox and ξ = −dqB/dψS/Cox, see (4.8). In the QS approximation

(neglecting the inertia of the inversion layer formation, cf. [58,60])

∆qg/Cox = F∆ψs (5.8)

∆qi/Cox = (F − ξ)∆ψs (5.9)

and

F = dvG/dψS − 1 . (5.10)

Then, from (5.7)

∆vg = (1 + F + iωTBξ)∆ψs (5.11)

= (1 + F )(1 + iωTBc42)∆ψs (5.12)

where

c42 =
ξ

1 + F
=

1

Cox

dqB
dvG

. (5.13)

Using (5.8) once more yields

∆qg
∆vg

=
∆qg/∆ψs

∆vg/∆ψs
(5.14)

=
1

Cox

F

(1 + F )(1 + iωTBc42)
(5.15)

and including the quasi-equilibrium value

C(0)
gg = F/(1 + F ) (5.16)

of cgg for Rbulk = 0 gives

cgg =
1

Cox
ℜ (∆qg/∆vg) (5.17)

=
C

(0)
gg

1 + (ωTBc42)2
(5.18)
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In non-normalized form, this is

Cgg =
C

(0)
gg

1 + (ωRbulkCbg)2
(5.19)

The non-trivial aspect of this analysis is that different capacitances appear in the

numerator and denominator of (5.18) and (5.19); this does not follow from the

simple RbulkC
(0)
gg analysis of (5.2). In strong inversion, Cbg is negligible and the

effect of Rbulk disappears, as explained above. In accumulation, Cbg = C
(0)
gg , so

(5.19) reduces to (5.2).

Comparison with the results of TCAD simulations, see Fig. 5.7, shows that

(5.18) accurately describes the effects of series resistance, including the peak of

Cgg near flatband. This further confirms that NQS effects are not involved in the

frequency dependence of Cgg in the accumulation and depletion regions.

5.4. Experimental Data

To further investigate the frequency dependence of MOSFET gate capaci-

tance, we measured s-parameters over gate bias and frequency, with VDS = VBS = 0,

of a PMOS transistor in a 90nm RF CMOS process.

Fig. 5.8 shows measured data from the device, along with simulation results

from the PSP-RTA-NQS model. Rbulk and Rgate were adjusted to provide a least

squares fit to the data. The peak in the Cgg(VG) characteristic near flatband seen

in the TCAD simulations and predicted by our analytic expression (5.18) are also

observed in the measured data and are able to be modeled by PSP-RTA-NQS.

Unlike the TCAD simulations, the measured device does not have an ideal gate

contact but includes some nonzero Rgate. Fig. 5.9 shows the measured data along
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model. Same device parameters and frequencies as Fig. 5.1.

with PSP-RTA-NQS simulations with all parameters kept at the same values as

those used for Fig. 5.8 with the exception of Rgate, which was set to zero. The gate

resistance has some effect on the PSP-RTA-NQS simulation results, especially at

higher frequencies in strong inversion. This is where it would be expected to have the

greatest influence: in strong inversion, the gate charging current is predominantly

gate-to-channel. Hence, it should be affected by Rgate but not by Rbulk. There is

some influence of Rgate in accumulation, as well; however, as Fig. 5.10 shows, if Rbulk

is set to zero instead of Rgate, the change in behavior in accumulation is significantly

greater, and there is only a very small change in the modeled characteristics in strong

inversion. This is also expected as, in general, the gate is made from much lower

resistivity material than the bulk, therefore, Rbulk should be greater than Rgate; they
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Fig. 5.8. Measured PMOS data and PSP-RTA-NQS model with both Rbulk and
Rgate included. W/L = 10.0µm/1.2µm, frequencies are 5, 10, 20, 30, and 50 GHz
(top to bottom). fT = 0.71GHz.

essentially appear in series in accumulation, hence, Rbulk should have the dominant

effect on device behavior.

As one final option, Fig. 5.11 shows the measured data along with PSP-RTA-

NQS simulations with all parameters kept at the same values as those used for Fig.

5.8, but with the QS, rather than RTA-NQS, version of PSP selected. Compared

with Fig. 5.8, clearly, the behavior at the lower frequencies in strong inversion is

dominated by NQS effects; however, a comparison of Figs. 5.9 and 5.11 shows that

at higher frequencies, the influence of the gate resistance is more pronounced than

the contribution of NQS effects. To model accurately, the high frequency behavior of

MOS capacitance over all regions of operation, it is, therefore, necessary to account
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Fig. 5.9. Effect of not accounting for Rgate – measured PMOS data and PSP-
RTA-NQS model with only Rbulk included. Same device and frequencies as Fig.
5.8.

for all of Rbulk, Rgate, and NQS effects.

5.5. Summary

In this chapter, we present an analytic solution for and measurements, TCAD

simulations, and PSP-RTA-NQS model simulations of the frequency dependence of

MOSFET gate capacitance. We clearly demonstrate that the frequency dependency

of Cgg in accumulation and depletion is from Rbulk and, to a lesser extent, Rgate and

not, as has been claimed previously, from NQS effects.

In inversion, Rbulk has a significantly smaller effect than in accumulation, but

we show that it is important to account both for Rgate and for NQS effects to be

able to model accurately the frequency dependency of Cgg in strong inversion.

99



−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

V
GS

 (V)

C
g

g
 (

p
F

)

 

 

PSP−RTA−NQS; R
bulk

 = 0 Ω, R
gate

 = 28.8 Ω

measured
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Figs. 5.4 and 5.8 show the capability of PSP-RTA-NQS to fit TCAD simula-

tions and measured data, respectively, when Rbulk, Rgate, and NQS effects are all

taken into account.
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CHAPTER 6

Conclusions

6.1. Conclusion

It is possible to improve on the traditional form of the RTA NQS model by

not using the RTA for the bulk and gate charges. The new formulation retains the

speed and simplicity of the original RTA NQS approach but improves the accuracy

of the model, especially for the gate and bulk currents. The PSP-based formulation

of the improved RTA NQS model is verified by comparison with TCAD simulations

and experimental data. The new model is coded in verilog-A and several circuit

applications are performed to illustrate the new approach and to demonstrate its

convergence properties. In addition, a new and simple technique to characterize

NQS and gate resistance, Rg, MOS model parameters from measured data has been

presented.

The effects of bulk resistance on the MOSFET gate capacitance is investigated

both theoretically and experimentally to separate it from the NQS effects.
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APPENDIX A

ADDITIONAL RESULTS FOR MODEL VALIDATION
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Model validation against the experimental data was done over a wide range of

gate biases, drain biases, and frequencies. These data can be generally categorized

into two groups, i.e. those for VDS = 0 and those for VDS 6= 0. Because of limited

space, only representative part of the validation results were presented in Chapter

3 which are for VDS 6= 0. Here, additional results for model validation including

VDS = 0 are provided in Fig. A.1 - A.16. In these cases, the data are presented for

swept gate biases from -1.5 to 1.5V with multiple frequencies up to roughly 3fT. In

the first section, results for VDS = 0 are presented.

A.1. VDS = 0 V
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Fig. A.1. Comparison of model and measured data for a PMOS ggg when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.2. Comparison of model and measured data for a PMOS Cgg when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.3. Comparison of model and measured data for a PMOS ggd when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.4. Comparison of model and measured data for a PMOS Cgd when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.5. Comparison of model and measured data for a PMOS gdg when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.6. Comparison of model and measured data for a PMOS Cdg when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.7. Comparison of model and measured data for a PMOS gdd when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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Fig. A.8. Comparison of model and measured data for a PMOS Cdd when VDS =
0 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm, W
= 10 µm.
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In the next section, results for VDS = −0.3V are presented.

A.2. VDS = −0.3 V
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Fig. A.9. Comparison of model and measured data for a PMOS ggg when VDS =
-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. A.10. Comparison of model and measured data for a PMOS Cgg when VDS

= -0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. A.11. Comparison of model and measured data for a PMOS ggd when VDS =
-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. A.12. Comparison of model and measured data for a PMOS Cgd when VDS

= -0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. A.13. Comparison of model and measured data for a PMOS gdg when VDS =
-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. A.14. Comparison of model and measured data for a PMOS Cdg when VDS

= -0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.

131



−1.5 −1 −0.5 0 0.5 1 1.5

0

2

4

6

8

10

−V
GS

 (V)

g
d

d
 (

m
S

)

 

 

PSP−RTA−NQS

PSP−NQS

measured

Fig. A.15. Comparison of model and measured data for a PMOS gdd when VDS =
-0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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Fig. A.16. Comparison of model and measured data for a PMOS Cdd when VDS

= -0.3 V. Frequencies are 0.1, 0.5, 1 and 2 GHz where fT = 0.71 GHz. L = 1.2 µm,
W = 10 µm.
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