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ABSTRACT  

   

This study investigated the role of broad cognitive processes in the development 

of mathematics skills among children and adolescents. The participants for this 

study were a subsample of a nationally representative sample used in the 

standardization of the Woodcock-Johnson III Tests of Cognitive Abilities and the 

Woodcock-Johnson III Tests of Achievement, Normative Update (Woodcock, 

McGrew, & Mather, 2007). Participants were between 5 years old and 18 years 

old (N = 4721; mean of 10.98 years, median of 10.00 years, standard deviation of 

3.48 years), and were 50.7% male and 49.3% female. Structural equation models 

supported the theoretical suggestion that broad cognitive processes play 

significant and specific roles in the development of mathematical skills among 

children and adolescents. Implications for school psychology researchers and 

practitioners are discussed. 
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Chapter 1 

Introduction 

 Mathematics is a system for representing and thinking about quantitative 

information. The foundations of mathematics are the concepts of number and 

arithmetic operations (Gallistel & Gelman, 2005). Indeed, the importance of 

mathematics in human life cannot be overstated. It is one of the most formalized 

human systems, serving as the basis for many activities ranging from simple daily 

living skills, such as counting and trading, to highly specialized activities, such as 

scientific research and technology development.  

 It is reasonable to speculate that the origins of the skills necessary for 

human mathematics are embedded in our evolutionary history, biologically and 

culturally, along with the development of language and abstract thought. Basic 

mathematical abilities are shared by a number of mammals, particularly primates 

(Gallistel & Gelman, 2005). Human mathematical abilities emerge during 

infancy, and continue to develop throughout childhood (Gallistel & Gelman, 

2005). Some aspects of mathematical conventions are nearly universal among 

modern civilizations, such as the use of Arabic numerals and the decimal system, 

but other aspects are more culture-specific, such as the names of numerals (e.g., 

the numeral 80 in French is called “quatre-vingts,” literally four-twenties) and 

geometric figures (e.g., the Chinese name for triangle is literally “three corner 

shape”). Cultural affordances (as defined by Kitayama and Markus, 1999) may 

present learning opportunities that may impact the development of mathematical 
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skills. Thus, the development of mathematical skills is probably deeply 

interconnected with both ontogenetic factors, as well as cultural ones. 

 The study of mathematical development is a relatively new area of 

scientific research.  However, the importance of this subject will only increase, as 

human societies are increasingly dependent on information and mathematics-

based technologies. It is in the best interest of societies to prepare all students 

with foundational mathematics skills and to serve the needs of a widely diverse 

student body. On the one hand, educators need to provide opportunities for 

exceptionally talented students (e.g., mathematically gifted students) to pursue 

advanced, fast paced studies in mathematics. On other hand, educators need to 

provide opportunities for students with disabilities to overcome or compensate 

specific deficits in order to achieve their potential in mathematics and other areas. 

In the United States, there are approximately 50 million children and adolescents 

enrolled in public schools, with 44 million of them attending school on any given 

day (National Center for Education Statistics, 2005). These figures do not include 

youth enrolled in private schools. According to the National Institute of Mental 

Health (2004), approximately 10% of students in the United States will suffer 

from a psychological disorder affecting their learning experiences at some point 

during their school years. The cumulative incidence of mathematics learning 

disabilities in children up to 19 years is as high as 9.8% using aptitude-

achievement discrepancy definitions, with a male-female ratio of 2:1 (Shalev, 

2007). Thus, the study of mathematical development is relevant both as a 

normative issue, as well as a special case of psychoeducational disorders.
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 Chapter 2 

Background Literature 

Genetic Factors 

 Mathematical developmental trajectories and mathematical achievement 

are related to genetic, neuropsychological, and cognitive factors (Geary, 1993; 

Fuchs et al., 2010). Possible hereditary influences on mathematics achievement 

were documented as early as the 1950s. However, the first empirical studies on 

genetic influences on mathematics achievement were not conducted until the mid 

1990s (Gersten, Clarke, & Mazzocco, 2007). Quantitative genetic analysis allows 

researchers to examine the magnitude of genetic and environmental influences on 

individual differences in mathematics performance. This method assumes that 

mathematics ability influences can be divided into genetic and environmental 

variance components by comparing family members who vary in their 

“relatedness” degree, as well as their environment (Hart, Petrill, Thompson, & 

Plomin, 2009). For example, monozygotic twins are genetically identical (i.e., 

they share 100% of their genetic variance), whereas dizygotic twins share 

approximately 50% of their genetic variance. If monozygotic twins are more 

similar in mathematics performance, relative to dizygotic twins, then a genetic 

factor may be supported as an explanation for the difference. Interestingly, even 

monozygotic twins sharing 100% of their genetic variance, as well as very similar 

environments, will not share 100% of their achievement variance, supporting a 

“non-shared” environmental role explanation.  
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 Geneticists abbreviate “heritability” as h
2
, which is a term that denotes the 

magnitude of a genetic influence on a phenotypic outcome. “Shared environment” 

is abbreviated as c
2
, which is a term that denotes the proportion of variance in an 

outcome that is due to shared environments. These shared environments can 

include similar experiences at home, school, or even in the womb. “Non-shared 

environment” is abbreviated as e
2
, which refers to different environmental factors 

that result in differential effects on family members. For example, siblings may 

grow up experiencing different family environments (e.g., one sibling grows up 

with both parents, while another sibling grows up with only one parent). In the 

case of mathematics achievement, the extant empirical literature suggests that 

heritability and environmental influences are approximately the same for the 

general population and for special subpopulations at either end of the normal 

distribution (Kovas, Haworth, Petrill, & Plomin, 2007).  In essence, mathematics 

difficulties and disabilities fall on the far-left end point of the normal distribution, 

while exceptionally high mathematical abilities fall on the far-right end point of 

the normal distribution. The proportion of genetic influences (h
2
), following this 

quantitative methodology, has been estimated to range from .4 to .7 

approximately (Kovas et al., 2007).  

 It is important to note that the literature does not imply that there will be a 

single gene found to “cause” mathematics abilities or disabilities. Rather, 

mathematical development, like other complex developmental phenomena, is 

probably the result of polygenic influences, multiple environmental influences, 

and interactions among these variables. 
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Neuropsychological Factors 

 The study of neuroanatomy and its relation to cognition emerged from 

brain-behavior studies in the early ninetieth century (Hallahan & Mercer, 2001). 

In 1802, Gall explained relationships between brain injuries and mental 

impairments in living patients (Hallahan & Mercer, 2001). He hypothesized that 

the brain consisted of three independent parts, which controlled, respectively, 

movement and sensation, morality (what modern psychologists may call 

executive functions such as self-control), and intellect. The notion of specific 

cognitive disabilities emerged from physicians documenting cases of patients with 

normal intellectual abilities, but with difficulties in specific cognitive tasks. For 

example, in the 1860s, Broca concluded that a section in the inferior left frontal 

lobe was responsible for speech abilities (Hallahan & Mercer, 2001). This section 

became known as Broca’s area. Damage to Broca’s area often results in slow, 

laborious, dysfluent speech, a condition termed Broca’s aphasia. However, 

research on the neuropsychology of mathematics had to wait until the twentieth 

century (Gersten, Clarke, & Mazzocco, 2007). 

 Mathematics disabilities (named “acalculia” by Henschen in 1919, 

particularly in the context of “acquired” mathematics disabilities) is often the 

result of disruptions within several brain regions, including the frontal, temporal, 

and parietal lobes in the left, as well as the right hemisphere (Kahn & Whitaker, 

1991). Henschen’s studies demonstrated that some patients’ mathematics 

disabilities were independent of their linguistic abilities, while other patients’ 

mathematics disabilities seemed to be related to their linguistic abilities. 
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Henschen’s neuropsychological studies paved the way for theoretical debates 

regarding the functional independence/interdependence between language and 

mathematics abilities at the neuroanatomical level (Gersten et al., 2007). 

Cognitive and neuropsychological research is converging on the conclusion that 

both developmental and acquired acalculia stem from similar neurological 

disruptions, which impair mathematical cognitive processes (Geary, 1993). 

Domain Specific Cognitive Processes 

 Mathematical development is related to domain specific cognitive 

processes (cognitive processes that are specific to mathematics), as well as broad 

cognitive processes such as working memory, language, and reasoning (Fuchs et 

al., 2010). Domain specific cognitive processes include: Subitizing or numerosity 

(i.e., the ability to automatically and accurately determine the quantity of sets of 

up to three or four items; Wynn, Bloom, & Chiang, 2002); magnitude estimation 

(i.e., the inexact, but quick estimation of quantities larger than 3 or 4; Pica et al., 

2004); ordinality (i.e., understanding of the concepts “more than” and “less than”; 

Feigenson, Carey, & Hauser, 2002); counting (i.e., understanding of counting 

principles such as one to one correspondence; Gelman & Gallistel, 1978); 

arithmetic sensitivity (i.e., sensitivity to increases and decreases in the quantity of 

small sets of items; Kobayashi, Hiraki, Mugitani, & Hasegawa, 2004); and 

geometry (i.e., basic understanding of spatial relations; Dehaene, Izard, Pica, & 

Spelke, 2006).  

 These domain specific processes (and perhaps others currently unknown) 

are the foundation for early aspects of mathematical learning in school (Von Aster 
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& Shalev, 2007). Children transition from these automatic, basic quantitative 

competencies (biological evolution-based; Geary, 2007) to formal, complex 

mathematical competencies (culturally-based), such as counting words 

(vocabulary), Arabic numerals, the decimal system, and the rest of mathematical 

theory through broad, domain-general cognitive processes, including reasoning, 

language, memory, visual and auditory processes, among others (Geary, Hoard, 

Nugent, & Byrd-Craven, 2008). However, the specific contribution of broad 

cognitive processes on mathematics achievement is not clearly understood, 

particularly from a developmental perspective (Fuchs et al., 2010). 

Broad Cognitive Processes 

 General, fluid, and crystallized intelligence. Psychologists have 

documented the predictive utility of general intelligence (commonly known today 

as IQ – intellectual quotient) for over a hundred years (see Spearman, 1904). 

General intelligence has been correlated to academic achievement (including 

mathematics), level of education attained, socio-economic status, income, 

longevity, health-related behaviors, among other life outcomes (e.g., Brody, 

1997). Empirical evidence suggests that general intelligence is related to both 

genetic, as well as environmental factors (i.e., the answer to the “nature versus 

nurture” question appears to be “both”; Sternberg, Grigorenko, & Kidd, 2005). 

General intelligence or IQ is a complex psychological construct described as an 

“incomplete definition of intelligence” by leading intelligence researchers, 

including those who accept its predictive utility (Carroll, 1993; Sternberg, 

Grigorenko, & Kidd, 2005). However, intelligence tests are widely accepted as an 



  8 

important technological achievement and as a powerful tool because of their 

utility (Carroll, 1993), despite a history of misuse (see Cooper, 2005 in the 

American Psychologist special issue on genetics, race, and psychology), and 

despite the enormous philosophical and empirical difficulty of defining 

intelligence and cognition. 

 Indeed, cognition may be one of three fundamentally unsolvable 

philosophical problems. The first unsolvable problem is the existence of matter 

(i.e., “why does the universe go to all the bother of existing,” in the words of 

Hawking, 1988), although recently, Krauss (2012) has argued that the problem of 

“something out of nothing” is a solvable empirical problem. The second 

unsolvable problem is the existence of universal properties or constants. For 

example, why is the speed of light approximately 300,000,000 meters per second 

(under specific circumstances), and not twice, or half, that amount (under the 

same circumstances). The third unsolvable problem is cognition: How does 

cognition occur (i.e., how is matter-energy transformed into sensory information, 

consciousness, the experience of qualia, etc.)? Thus, cognition will be practically 

defined here as brain-based functions that allow animals (in this case, humans) to 

solve problems relevant to their environment (in this case, mathematics). 

 General intelligence is usually conceptualized today as a higher order 

construct related to subordinate, specific cognitive processes (Carroll, 1993). 

Spearman argued that IQ is a unitary construct, which he termed g for general 

intelligence. Subsequently, Cattell and Horn argued that Spearman’s g should be 

divided into two equally important, but distinct cognitive abilities (Cattell, 1963; 
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Horn, 1968; Horn & Cattell, 1966). The first ability is called crystallized 

intelligence (Gc) and it deals with information that is the result of repeated 

experiences, such as schooling and acculturation. Gc manifests itself primarily 

through over-learned skills such as vocabulary and knowledge. The second ability 

is called fluid intelligence (Gf), and it deals with information that is the result of 

novel experiences, which require inductive reasoning (finding patterns and 

creating concepts) and deductive reasoning (solving problems through logical, 

sequential steps). 

 The ability to solve mathematics problems involving verbal and general 

information (e.g., solving the problem, “If Joe has twice as much money as Jane, 

and Jane has three times as much money as Pedro, how many books can Joe buy, 

if Pedro has $1.00, and each book costs $2.50?) has been consistently associated 

with Gc and Gf (McGrew & Wendling, 2010). This is not surprising given that Gc 

is a measure of crystallized knowledge (i.e., verbal and general information), and 

Gf is a measure of analytical and logical skills (i.e., reasoning), which allow for 

solving problems involving relatively novel information (a “word problem” as 

opposed to a given equation). Interestingly, the association between problem 

solving and Gc has been observed to increase with age, while the association 

between problem solving and Gf has been observed to decrease with age 

(McGrew & Wendling, 2010). This may be due to the fact that, as children and 

adolescents are exposed to formerly “novel” problems, with time they develop 

strategies and procedures (mathematical schemas) to solve logically similar word 

problems, which become readily accessible via Gc, requiring less use of Gf 
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abilities. Conversely, younger children (children who have less experiential 

knowledge to draw from, less vocabulary, and less acculturation in general) will 

resort to reasoning abilities relatively more. This differential Gf-Gc trend may be 

explained by Cattell’s investment hypothesis (Cattell, 1987): Individual 

differences in acquisition of knowledge and skills are partly the result of 

investment of fluid intelligence (Gf) in learning situations requiring insights in 

complex relations. 

 Working memory, auditory, and visual processing. Working memory is 

the ability to hold information in immediate awareness, manipulate it, and retrieve 

a product (e.g., hold two quantities in immediate awareness, add them, and 

produce a result). Baddeley and Hitch (1974) conceptualized working memory as 

a multicomponent cognitive device comprised of three systems: the central 

executive (the “central processor,” which carries out the operations), the 

phonological loop (the “auditory processor,” which organizes verbal information 

and feeds it to the central processor), and the visual-spatial sketchpad (the “visual 

processor,” which organizes visual information and feeds it to the central 

processor). Calculation skills and problem solving have been theorized to depend, 

in part, on the working memory central executive, the phonological loop, and the 

visual-spatial sketchpad (Geary & Widaman, 1992; Hitch, 1978; Swanson, 

Cooney, & Brock, 1993). It is reasonable to hypothesize that the working memory 

central executive is engaged during translation of word problem sentences into 

equations, and in executing arithmetic steps. 
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 Empirically, working memory has been consistently associated with 

calculation skills (arithmetic and equation problem solving) and problem solving 

at all ages (McGrew & Wendling, 2010). Phonological processing has been 

conceptualized as an independent cognitive process (parallel to working memory; 

Carroll, 1993), and it has been associated with calculation skills at ages 6-13, and 

with problem solving at ages 6-19. However, this latter association becomes less 

consistent as age increases (McGrew & Wendling, 2010). The decrease of 

phonological processing in problem solving may be due to a process similar to the 

one described earlier, where Gc skills are increasingly used to solve cognitive 

problems that required other cognitive processes at younger ages (e.g., as 

vocabulary develops, processing individual phonemes accurately and efficiently 

may become less important; if true, this phenomenon may be related to the 

empirical finding that people lose the ability to distinguish sounds not used in 

their first language as they age).  

 Visual-spatial processing (as a component of working memory, or as an 

independent cognitive process) remains a factor theorized to support basic 

calculation skills, as well as advanced mathematics and geometry; however, 

empirical evidence is lacking or contradictory (Geary, 1993; Fuchs et al., 2010; 

McGrew & Wendling, 2010). From an evolutionary perspective, visual-spatial 

cognitive processes probably precede auditory cognitive processes, and they are 

most likely highly elaborated and robust given the importance of visual 

information for primates. Sophisticated linguistic abilities are a relatively new 
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phenomenon, and therefore, it may be easier, statistically speaking, to encounter 

auditory cognitive disruptions than visual cognitive disruptions among humans. 

 Learning and long-term retrieval. The ability to integrate new 

information with previously learned information, and store it in long-term 

memory (associative memory), as well as to retrieve previously learned 

information efficiently to solve problems (retrieval fluency) has been associated 

with calculation and equation problem solving among children and adolescents 

(Floyd, Evans, & McGrew, 2003). In order to solve calculations, from basic 

arithmetic and fractions, to algebra and calculus, students must learn new 

mathematical concepts and procedures, integrate new information with the rest of 

their knowledge, and retrieve that knowledge to solve subsequent problems. 

Furthermore, children with associative memory and/or long-term retrieval 

dysfunctions may have difficulty performing the transition described by Geary 

(2007), from basic quantitative skills (e.g., subitizing) to formalized mathematics 

skills taught in school, resulting in a profound learning developmental disability. 

For example, whereas deficits in working memory may be supported with 

memory aids during calculation operations, and deficits in reasoning abilities may 

be circumvented by memorizing procedural “cheat sheets,” it is reasonable to 

speculate that a dysfunction in associative memory and/or long-term retrieval may 

result in comorbid learning disabilities in mathematics, reading, and other 

academic skills, which may require comprehensive, intensive interventions and 

supports. 
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 Processing speed. Processing speed is defined as the efficiency to fluently 

perform cognitive tasks (Geary, 1993). Commonly used indicators of processing 

speed include perceptual processing speed (e.g., asking subjects to look at a series 

of digits and circle the two digits that are identical as quickly as they can), and 

semantic processing speed (e.g., asking subjects to look at a series of object 

drawings and circle the two drawings that “go together,” which requires the 

identification of common semantic categories such as “food,” “clothes,” “things 

in the sky,” etc.). Processing speed has been empirically linked to domain specific 

quantitative skills related to counting (Geary, 1993), the amount of time required 

to solve calculations, and problem solving (Fuchs et al., 2010; McGrew & 

Hessler, 1995; McGrew & Wendling, 2010).  

 The Cattell-Horn-Carroll model of cognitive processes. One of the 

most comprehensive and empirically supported models of cognitive processes is 

the Cattell-Horn-Carroll (CHC) model. The CHC model integrates the Cattell-

Horn fluid intelligence/crystallized intelligence (Gf-Gc) model of cognitive 

abilities (Cattell, 1963; Horn, 1968; Horn & Cattell, 1966) and the Carroll three-

stratum model of cognitive abilities (Carroll, 1993). Carroll expanded on the 

Cattell-Horn Gf-Gc model and proposed a three-stratum model, which contains 

more than 70 narrow cognitive abilities in the first stratum (e.g., inductive 

reasoning, deductive reasoning, associative memory, etc.), at least seven second-

order broad factors in the second stratum (e.g., Gf, Gc, etc.), and one general 

intelligence third-order factor (i.e., G). Although the number of accepted broad 

second-order factors varies from 7 to 10, depending on slightly different 
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conceptualizations (see Carroll, 1993; McGrew, 2005; McGrew, 2009; McGrew 

& Wendling, 2010), the following seven broad cognitive factors (and their 

corresponding narrow abilities in parentheses) are usually measured in the context 

of cognitive evaluations: Fluid reasoning (Gf; inductive and deductive reasoning), 

crystallized knowledge (Gc; lexical and general knowledge), short-term memory 

(Gsm; working memory and memory span), auditory processing (Ga; phonetic 

coding synthesis and speech-noise discrimination), visual-spatial processing (Gv; 

spatial operations and visual memory), long-term retrieval (Glr; associative 

memory and retrieval fluency), and processing speed (Gs; perceptual processing 

speed and semantic processing speed). Additional CHC broad factors (Woodcock, 

Mather, & McGrew, 2001) include reading and writing ability (Grw) and 

quantitative knowledge (Gq). However, these two factors are usually considered 

achievement outcomes in the context of cognitive-academic assessment and 

research, rather than cognitive factors (McGrew & Wendling, 2010). Lastly, an 

additional factor termed reaction time (Gt) refers to an individual’s reaction time 

to the onset of a visual or auditory stimulus (Carroll, 1993). Reaction time is not 

widely used in clinical assessment, but it is commonly used in certain basic 

research areas, such as social psychology (e.g., Schmidt & Nosek, 2010). 

Additional CHC factors have been recently postulated by McGrew (see McGrew, 

2009). 

The CHC Model and Mathematics Achievement 

 To date, some of the most comprehensive exploratory studies to assess the 

relationships between CHC factors and mathematics achievement across the 
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school-age years include Floyd, Evans, and McGrew (2003); McGrew and 

Hessler (1995); and Taub, Floyd, Evans, and McGrew (2008). Floyd et al. found 

that, in a nationally representative sample of students of ages 6 to 19, crystallized 

knowledge (Gc) demonstrated moderate relations with calculation skills, and 

moderate to strong relations with mathematics reasoning (increasing with age). 

Fluid reasoning (Gf ) demonstrated moderate relations with calculation skills and 

mathematics reasoning (increasing with age, then decreasing in latter age groups). 

Short-term memory (Gsm), and more specifically, working memory, generally 

demonstrated moderate relations with calculation skills and mathematics 

reasoning (constant across age groups). Processing speed (Gs) demonstrated 

moderate to strong relations with calculation skills (generally constant across age 

groups), and moderate relations with mathematics reasoning during the 

elementary school years only. Long-term retrieval (Glr) demonstrated moderate 

relations with calculation skills and mathematics reasoning during the early 

school years. Auditory processing (Ga) demonstrated moderate relations with 

calculation skills during the early school years. Visual processing (Gv) generally 

demonstrated nonsignificant relations with calculation skills and mathematics 

reasoning.  

 This is an important, landmark study. However, the study utilized cluster 

scores (e.g., calculation skills) as dependent variables rather than individually 

observed variables (e.g., calculation complexity and calculation fluency). It is 

possible that this may have obscured some variable associations in the analyses. 

Similarly, CHC factor cluster scores were used as independent variables in the 
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regression equations. Structural equation modeling may be employed in future 

studies to estimate each CHC factor as a latent variable derived from individually 

observed cognitive variables (e.g., a latent variable of Gc can be estimated from 

the observed variables of lexical knowledge and general knowledge). Such an 

analytic approach (using structural equation modeling) was conducted by Taub, 

Floyd, Evans, and McGrew (2008). These researchers utilized more than the two 

commonly measured narrow cognitive abilities to estimate each CHC broad 

factor. For example, Gc was estimated using measures of lexical knowledge, 

general knowledge, academic knowledge, oral comprehension, picture 

vocabulary, and story recall. However, the dependent variable, mathematics 

achievement, consisted of a single latent variable estimated from one measure of 

calculation complexity and one measure of problem solving. This approach mixes 

basic calculation skills with mathematics reasoning skills. Future studies should 

distinguish basic calculation skills and mathematics reasoning skills in order to 

better understand the associations between cognitive processes and mathematics 

development. 

 Last, a study by Proctor, Floyd, and Shaver (2005) examined the CHC 

cognitive profiles of students with low mathematics achievement. The study 

found that approximately half of the children with normative delays in 

mathematics reasoning exhibited commensurate normative delays in one or more 

cognitive abilities, most often including fluid reasoning and crystallized 

knowledge. This is a seminal study in the CHC-based mathematics learning 

disability diagnosis literature. 
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Mathematical Development and Cognitive Development 

 One of the best established theories of cognitive development is Piaget’s 

theory of genetic epistemology (Piaget, 1961). Piaget’s theoretical perspective 

provides a useful framework for the study of mathematical development (Ojose, 

2008). Piaget postulated four primary stages of cognitive development: 

Sensorimotor (birth to 2 years old), preoperational (2 to 7 years old), concrete 

operational (7 to 11 years old), and formal operational (11 years old and older). 

Regarding mathematics, during the sensorimotor stage, infants start to display 

domain-specific mathematical abilities, such as displaying some understanding of 

the concept of number and counting. In the preoperational stage, children’s 

language abilities allow them to make concept associations (with over-

generalizations) and to begin to engage in symbolic thought. However, there is a 

lack of reversibility at this stage (e.g., children can add two plus three, but they 

cannot subtract three from five). Further, preoperational children can consider one 

dimension at a time only (e.g., in a classical experiment consisting of transferring 

a certain amount of liquid from a short, wide container into a long, thin container, 

preoperational children concluded that the amount of the liquid increased, given 

that the height of the liquid increased in the long, thin container, relative to the 

short, wide container). During the concrete operational stage, children’s reasoning 

and language skills increase dramatically. Reversibility is achieved, and more 

than one dimension can be considered simultaneously. Children in this stage rely 

on their senses in order to know (i.e., they engage in concrete reasoning). Lastly, 

during the formal operational stage, adolescents achieve the capacity for abstract 
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reasoning (e.g., they do not need concrete examples in order to solve problems, 

they can make logical inferences, they can evaluate and apply information, etc.).  

 Thus, in general, children in the sensorimotor stage will probably display 

mostly domain-specific mathematics skills. Children in the preoperational stage 

can be expected to rely on associative memory and long-term retrieval skills (Glr) 

in order to associate concepts and learn basic calculation skills. There probably is 

a significant increase in Gc (mostly due to language development) and Gf skills 

(including qualitative changes in reasoning described by Piaget, such as 

reversibility) among concrete operational children. Because their reasoning is 

mostly concrete, concrete operational children will rely on their visual and 

auditory processing skills during calculation tasks. Last, adolescents in the formal 

operational stage will continue to rely on Gc and Gf skills, but Gf skills may 

become less significant as Gc skills (i.e., over-learned skills) start to take over Gf 

skills (i.e., skills related to reasoning with novel information or situations). This 

hypothesis is consistent with the observations of Floyd, Evans, and McGrew 

(2003), who documented relatively weaker associations between Gf and 

mathematics reasoning among late formal operational adolescents (ages 17 to 19), 

relative to early formal operational adolescents (ages 12 to 16). 

 Recent developmental models of mathematics learning (Fuchs et al., 2010; 

Geary, 2007; Geary, Hoard, Nugent, & Bailey, 2012) emphasize the role of Gf, 

Gc, Gsm (working memory central executive in particular), Gs, Glr, and Gv (as a 

subcomponent of working memory) in mathematics achievement. Geary (2007) 

made the distinction between primary (biological) mathematical competencies 
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and secondary (cultural) mathematical competencies learned through 

acculturation and schooling. Geary et al. (2012) provided empirical evidence 

suggesting that differences between low mathematics achievers and students 

diagnosed with mathematics learning disabilities are mediated by Glr (retrieval 

fluency in particular) and Gsm (central executive in particular). Last, Fuchs et al. 

(2008) provided empirical evidence suggesting that both mathematics-specific 

and broad cognitive factors are related to mathematics developmental trajectories.  

Proposed Model of Broad Mathematical Cognition 

General Model Hypotheses 

 Given the extant empirical and theoretical literature, the following model 

of mathematical cognition was proposed (Figure 1). The development of basic 

calculation skills in general was hypothesized to be related to associative memory 

and retrieval fluency (Glr as a broad cognitive factor), processing speed 

(specifically, perceptual processing speed), short-term memory (specifically, 

working memory), auditory processing (specifically, phonetic coding synthesis), 

and visual-spatial processing (specifically, spatial operations; Geary, 1993; Fuchs 

et al., 2010 ; McGrew & Wendling, 2010). More specifically, the complexity of 

calculations one is able to solve was hypothesized to be related to associative 

memory and retrieval fluency (Glr), and working memory. Associative memory 

was hypothesized to be related to the level of learning achieved (simple 

arithmetic, fractions, algebra, calculus), while retrieval fluency and working 

memory were hypothesized to be related to calculation performance (correct 

responses). The fluency or speed with which one is able to solve calculations was 
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hypothesized to be related to perceptual processing speed, as well as phonetic 

coding synthesis and spatial operations, which support the ability to carry out 

operations by working memory (Fuchs et al., 2010). Calculation complexity and 

calculation fluency were hypothesized to be intercorrelated given that working 

memory and perceptual processing speed tend to be associated (Fuchs et al., 

2010), as well as the fact that calculation fluency is based, in part, on basic 

calculation facts mastery. The development of problem solving skills was 

hypothesized to be related to fluid reasoning (Gf) and crystallized knowledge 

(Gc) as broad cognitive factors, as well as working memory and perceptual 

processing speed (Geary 2007; McGrew & Wendling, 2010). Problem solving 

was hypothesized to be correlated with calculation complexity and calculation 

fluency due to their shared dependency on working memory processes, as well as 

the fact that mathematics problem solving is based, in part, on basic calculation 

skills (Fuchs et al., 2010). 
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Figure 1. Model of broad mathematical cognitive processes. L1: associative 

memory. L2: retrieval fluency. S1: working memory. S2: memory span. C1: 

lexical knowledge. C2: general knowledge. F1: inductive reasoning. F2: deductive 

reasoning. P1: perceptual processing speed. P2: semantic processing speed. V1: 

spatial operations. V2: visual memory. A1: phonetic coding synthesis. A2: 

speech-noise discrimination.  

 

Developmental Hypotheses 

1. The association between crystallized knowledge (Gc) and problem solving 

increases as age increases.  

2. The association between fluid reasoning (Gf) and problem solving 

decreases as age increases. 

3. The association between working memory and problem solving remains 

constant across the age span. 
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4. The association between perceptual processing speed and problem solving 

remains constant across the age span. 

5. The association between long-term retrieval (Glr) and calculation 

complexity remains constant across the age span, or slightly decreases as 

age increases. 

6. The association between working memory and calculation complexity 

remains constant across the age span. 

7. The association between perceptual processing speed and calculation 

fluency remains constant across the age span. 

8. The association between phonetic coding synthesis and calculation fluency 

decreases as age increases. 

9. The association between spatial operations and calculation fluency 

remains constant across the age span, or slightly decreases as age 

increases. 
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Chapter 3 

Method 

Participants 

 The participants for this study were a subsample of a nationally 

representative sample used in the standardization of the Woodcock-Johnson III 

Tests of Cognitive Abilities and the Woodcock-Johnson III Tests of Achievement, 

Normative Update (Woodcock, McGrew, & Mather, 2007). The standardization 

sample was stratified according to race, ethnicity, gender, geographic region, 

education, and age to ensure that the sample mirrored the population 

characteristics of children, adolescents, and adults in the United States, as 

described by the United States Census projections for the year 2000. Participants 

in the current study consisted of that portion of the standardization sample 

between 5 years old and 18 years old (N = 4721; mean of 10.98 years, median of 

10.00 years, standard deviation of 3.48 years), and were 50.7% male and 49.3% 

female. The racial composition of the sample was: 78.3% European American, 

14.4% African American, 5.1% Asian American, and 2.0% Native American. The 

ethnic composition of the sample was: 87.9% Non-Hispanic, and 12.1% Hispanic, 

who can be of any race. 

Procedure 

 Selected subtests from the Woodcock-Johnson Tests of Cognitive Ability - 

Third Edition (WJ-III COG; Woodcock, Mather, & McGrew, 2001) and the 

Woodcock-Johnson Tests of Academic Achievement - Third Edition (WJ-III 

ACH; McGrew & Woodcock, 2001) were used in this study. The hypothesized 
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model of mathematics cognitive processes was tested through structural equation 

modeling (SEM). 

Measures 

 Woodcock-Johnson Tests of Cognitive Ability. The WJ-III COG is an 

individually administered test of intelligence that was developed for individuals 

aged 2 years to 90 years (Woodcock, Mather, & McGrew, 2001). The measure 

contains 7 standard and 14 supplemental subtests with a mean of 100 and a 

standard deviation of 15. The measure produces a global IQ score, 7 broad 

cognitive scores, 14 narrow cognitive scores, and 7 clinical cluster scores. The 7 

broad cognitive areas are each comprised of two qualitatively different narrow 

cognitive processes described in the CHC model. The 7 broad areas and their 

corresponding narrow areas are: 

1. Fluid reasoning (Gf) – the ability to reason, form concepts, and solve 

problems with novel tasks. Narrow areas: Inductive reasoning and 

deductive reasoning. 

2. Crystallized knowledge (Gc) – the ability to use previously learned 

procedures (breadth and depth of a person’s knowledge of a culture), 

particularly verbally. Narrow areas: Lexical knowledge and general 

knowledge. 

3. Short-term memory (Gsm) – the ability to hold information in immediate 

awareness and use it within a few seconds. Narrow areas: Working 

memory and memory span. 
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4. Visual-spatial processing (Gv) – the ability to analyze, synthesize, and 

manipulate visual information. Narrow areas: Spatial operations and visual 

memory. 

5. Auditory processing (Ga) – the ability to analyze, synthesize, and 

manipulate auditory information. Narrow areas: Phonetic coding synthesis 

and speech-noise discrimination. 

6. Long-term retrieval (Glr) – the ability to store information in long-term 

memory, and to retrieve it later. Narrow areas: Associative memory and 

retrieval fluency. 

7. Processing speed (Gs) – the speed and efficiency to perform cognitive 

tasks. Narrow areas: Perceptual processing speed and semantic processing 

speed. 

 The complete set of 14 narrow cognitive processes was used in order to 

estimate the 7 broad cognitive latent variables and test the broad mathematical 

cognition model through structural equation modeling.  

 Woodcock-Johnson Tests of Academic Achievement. The WJ-III ACH 

is an individually administered achievement test co-normed with the WJ-III COG 

(McGrew & Woodcock, 2001). The WJ-III ACH measures reading, mathematics 

and written language achievement. Three mathematics achievement tests were 

used to test the proposed model: 

1. Calculation complexity was measured with the WJ-III ACH Calculation 

subtest: Calculation measures the ability to perform mathematical 

computations of increasing complexity. It starts with requiring the subject 
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to write individual numerals. The test progresses to addition, subtraction, 

multiplication, division, combinations of these operations, decimals, 

fractions, algebra, logarithms, and calculus. 

2. Calculation fluency was measured with the WJ-III ACH Mathematics 

Fluency subtest: Mathematics Fluency measures the ability to solve simple 

addition, subtraction, and multiplication quickly. The test has a 3-minute 

time limit. 

3. Problem solving was measured with the WJ-III ACH Applied Problems 

subtest: Applied Problems measures the ability to solve mathematics 

problems involving language, general information, and hypothetical 

scenarios.  
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Chapter 4 

Results 

Preliminary Analyses 

 Descriptive analyses were conducted on all of the observed variables to 

assess their distribution. All of the observed variables had normal distributions, 

with skewness values between -.324 and .285, and kurtosis values between .242 

and 1.632 (see Table 1). Skewness values between -1.0 and 1.0, and kurtosis 

values of less than 3.0 are considered to be within normal parameters.  

 

Table 1 

Descriptive Statistics of Observed Variables 

Variable Min. Max. Mean S.D. Skew. Kurt. 

Inductive Reasoning (Gf) 35 

 

149 100.1

2 

 

15.5 -.252 .331 

Deductive Reasoning (Gf) 19 158 100.4 15.3 -.251 .820 

Lexical Knowledge (Gc) 44 158 100.9 14.7 -.203 .242 

General Knowledge (Gc) 36 166 100.7 14.8 -.308 .745 

Associative Memory (Glr) 50 173 99.9 15.3 .075 .392 

Retrieval Fluency (Glr) 14 149 100.4 14.5 -.290 .710 

Spatial Operations (Gv) 36 161 100.1

1 

15.0 .006 .482 

Visual Memory (Gv) 33 157 100.3 14.8 -.091 .467 

Phonetic Coding Synthesis (Ga) 38 153 99.5 14.6 .098 .365 

Speech-Noise Discrimination (Ga) 11 166 99.5 16.1 -.324 1.632 

Working Memory (Gsm) 34 154 99.9 15.5 -.230 .575 

Memory Span (Gsm) 45 154 100.8 15.4 -.117 .414 

Perceptual Processing Speed (Gs) 13 153 99.7 14.8 -.270 1.466 

Semantic Processing Speed (Gs) 37 159 99.8 15.4 -.039 .513 

Calculation Complexity 36 169 100.1 16.1 -.201 .690 

Calculation Fluency 48 166 99.8 14.9 .285 .556 

Problem Solving 47 150 100.8 14.7 -.121 .351 
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Main Analyses 

 The hypothesized model of mathematics cognitive processes was tested 

through SEM using Mplus 3.0 (Muthén & Muthén, 2004) with maximum 

likelihood estimation for missing data as recommended by Baraldi and Enders 

(2010). Model fit was assessed considering the following standards (Hu & 

Bentler, 1999; Kline, 1998; Weston & Gore, 2006): The Comparative Fit Index 

(CFI) is greater than or equal to .95 (or .90 for adequate fit), the Root Mean 

Square Error of Approximation (RMSEA) is less than or equal to .06 (or .08 for 

adequate fit), and the Standardized Root Mean Square Residual (SRMR) is less 

than or equal to .08 (or .10 for adequate fit). The model obtained adequate fit 

indices: χ² (103) = 1509.665, p > .00, CFI=.933; RMSEA=.054; SRMR=.049. 

Modification indices indicated that the following modifications would improve 

the fit of the model significantly: a) replacing the path from the observed variable 

of visual operations (V1) to calculation fluency with a path from the latent 

variable of visual processing (Gv) to calculation fluency; b) adding a correlation 

path between calculation complexity and perceptual processing speed (P1); and c) 

adding a correlation path between calculation fluency and working memory (S1). 

After implementing these modifications, the model obtained better fit indices: χ² 

(101) = 803.391, p > .00, CFI=.949; RMSEA=.047; SRMR=.039. Because these 

model modifications represented minor and reasonable conceptual modifications 

consistent with the theorized model, this modified version was utilized in 

subsequent analyses. The structural equation model of broad mathematical 

cognition is presented in Figure 2. 
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Figure 2. Structural equation model of broad mathematical cognitive processes 

with standardized path coefficients. L1: associative memory. L2: retrieval 

fluency. S1: working memory. S2: memory span. C1: lexical knowledge. C2: 

general knowledge. F1: inductive reasoning. F2: deductive reasoning. P1: 

perceptual processing speed. P2: semantic processing speed. V1: spatial 

operations. V2: visual memory. A1: phonetic coding synthesis. A2: speech-noise 

discrimination. *p < .05, **p < .01, ***p < .001, ****p < .0001.  

 

 As hypothesized, calculation complexity was predicted by long-term 

retrieval (Glr), and working memory (S1). Calculation complexity was correlated 

with perceptual processing speed (P1) and calculation fluency. Calculation 

fluency was predicted by perceptual processing speed (P1), phonetic coding 

synthesis (A1), and visual processing (Gv). Calculation fluency was correlated 

with working memory (S1). Problem solving was predicted by fluid reasoning 

(Gf), crystallized knowledge (Gc), working memory (S1), and perceptual 
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processing speed (P1). Problem solving was correlated with calculation 

complexity and calculation fluency. All indirect effects in the model (i.e., all 

single mediator and multiple mediator pathways implied in the model) were 

statistically significant at the p < .05 or lower level. General intelligence had 

indirect effects on calculation complexity, calculation fluency, and problem 

solving via the broad and narrow cognitive processes specified in the model. 

Table 2 presents all indirect effect standardized path coefficients tested in the 

model. 

 

Table 2. Indirect and total effects of broad cognitive processes on calculation 

complexity, calculation fluency, and problem solving.  

 

         Complexity            Fluency          Problem solving  

 

General Intelligence 

     

 Indirect Effects 

 Via Long-Term Retrieval .486* 

 Via Short-Term Memory .035* 

  Total Effect:  .521* 

 

 Via Processing Speed    .225* 

 Via Visual Processing    .177* 

 Via Auditory Processing   .021* 

  Total Effect:    .423* 

 

 Via Fluid Reasoning      .297* 

 Via Crystallized Knowledge     .237* 

 Via Short-Term Memory     .063* 

 Via Processing Speed      .045* 

  Total Effect:      .642* 

   

*p < .05  
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Moderation by Age 

 In order to test the developmental hypotheses, a series of multi-group 

structural equation models were computed (Calderón-Tena, Knight, & Carlo, 

2011 provide examples of this procedure). Four age groups were created by 

splitting the sample according to developmental stages, considering Piaget’s 

theory of cognitive development (Piaget, 1961): preoperational (ages 5-6 years, N 

= 493); concrete operational (ages 7-10 years, N = 1878); early formal operational 

(ages 11-15 years, N = 1693); and late formal operational (ages 16-18 years, N = 

657). A chi-square difference test was used to determine whether the model fit the 

data differently for different age groups, and path coefficient value changes were 

used to support or reject each alternative hypothesis. The first multi-group model 

constrained the path coefficients to be equal across all four age groups and 

yielded the following fit indices: χ
²
 (473) = 1929.742, p > .00, CFI = .891, 

RMSEA = .077, SRMR = .071. The second model allowed the path coefficients to 

vary across age groups (i.e., was unconstrained) and yielded the following fit 

indices: χ
²
 (425) = 1201.565, p > .00, CFI = .942, RMSEA = .059, SRMR = .051. 

A significant chi-square difference test [Δχ
²
 (48) = 728.177, p < .0001] and the 

better fit indices of the unconstrained model indicates that age tended to moderate 

the path coefficients, and that the model tended to fit the data differently for each 

age group. Figures 3 to 6 present the standardized path coefficients for students in 

the preoperational, concrete operational, early formal operational, and late formal 

operational age groups, respectively. 
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Figure 3. Preoperational group (ages 5-6) in the multi-group structural equation 

model of broad mathematical cognitive processes with standardized path 

coefficients. L1: associative memory. L2: retrieval fluency. S1: working memory. 

S2: memory span. C1: lexical knowledge. C2: general knowledge. F1: inductive 

reasoning. F2: deductive reasoning. P1: perceptual processing speed. P2: semantic 

processing speed. V1: spatial operations. V2: visual memory. A1: phonetic coding 

synthesis. A2: speech-noise discrimination. *p < .05, **p < .01, ***p < .001, 

****p < .0001.  

 

 In the preoperational group, calculation complexity was predicted by long-

term retrieval (Glr); calculation complexity was correlated with perceptual 

processing speed (P1) and calculation fluency. Calculation fluency was predicted 

by perceptual processing speed (P1), and visual processing (Gv). Problem solving 

was predicted by working memory (S1), and perceptual processing speed (P1); 
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problem solving was correlated with calculation complexity and calculation 

fluency. 
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Figure 4. Concrete operational group (ages 7-10) in the multi-group structural 

equation model of broad mathematical cognitive processes with standardized path 

coefficients. L1: associative memory. L2: retrieval fluency. S1: working memory. 

S2: memory span. C1: lexical knowledge. C2: general knowledge. F1: inductive 

reasoning. F2: deductive reasoning. P1: perceptual processing speed. P2: semantic 

processing speed. V1: spatial operations. V2: visual memory. A1: phonetic coding 

synthesis. A2: speech-noise discrimination. *p < .05, **p < .01, ***p < .001, 

****p < .0001.  

 

 In the concrete operational group, calculation complexity was predicted by 

long-term retrieval (Glr); calculation complexity was correlated with perceptual 

processing speed (P1) and calculation fluency. Calculation fluency was predicted 

by perceptual processing speed (P1), and visual processing (Gv). Problem solving 
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was predicted by fluid reasoning (Gf), crystallized knowledge (Gc), working 

memory (S1), and perceptual processing speed (P1). Problem solving was 

correlated with calculation complexity and calculation fluency. 
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Figure 5. Early formal operational group (ages 11-15) in the multi-group 

structural equation model of broad mathematical cognitive processes with 

standardized path coefficients. L1: associative memory. L2: retrieval fluency. S1: 

working memory. S2: memory span. C1: lexical knowledge. C2: general 

knowledge. F1: inductive reasoning. F2: deductive reasoning. P1: perceptual 

processing speed. P2: semantic processing speed. V1: spatial operations. V2: 

visual memory. A1: phonetic coding synthesis. A2: speech-noise discrimination. 

*p < .05, **p < .01, ***p < .001, ****p < .0001.  

 

 In the early formal operational group, calculation complexity was 

predicted by long-term retrieval (Glr), and working memory (S1); calculation 

complexity was correlated with perceptual processing speed (P1) and calculation 
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fluency. Calculation fluency was predicted by perceptual processing speed (P1), 

phonetic coding synthesis (A1), and visual processing (Gv). Calculation fluency 

was correlated with working memory (S1). Problem solving was predicted by 

fluid reasoning (Gf), crystallized knowledge (Gc), working memory (S1), and 

perceptual processing speed (P1). Problem solving was correlated with calculation 

complexity and calculation fluency. 
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Figure 6. Late formal operational group (ages 16-18) in the multi-group structural 

equation model of broad mathematical cognitive processes with standardized path 

coefficients. L1: associative memory. L2: retrieval fluency. S1: working memory. 

S2: memory span. C1: lexical knowledge. C2: general knowledge. F1: inductive 

reasoning. F2: deductive reasoning. P1: perceptual processing speed. P2: semantic 

processing speed. V1: spatial operations. V2: visual memory. A1: phonetic coding 

synthesis. A2: speech-noise discrimination. *p < .05, **p < .01, ***p < .001, 

****p < .0001.  
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 In the late formal operational group, calculation complexity was predicted 

by long-term retrieval (Glr); calculation complexity was correlated with 

calculation fluency. Calculation fluency was predicted by perceptual processing 

speed (P1), and visual processing (Gv). Problem solving was predicted by fluid 

reasoning (Gf), and crystallized knowledge (Gc). Problem solving was correlated 

with calculation complexity and calculation fluency. 

 Together, these results provide evidence to assess the developmental 

hypotheses proposed. In general, the path coefficient from Gc to problem solving 

tended to increase with age, from a non-significant standardized path coefficient 

of .128 among preoperational students, to a significant standardized path 

coefficient of .391 among late formal operational students, supporting hypothesis 

1. Similarly, the path coefficient from Gf to problem solving tended to increase 

with age, from a non-significant standardized path coefficient of .196 among 

preoperational students, to a significant standardized path coefficient of .391 

among late formal operational students, disconfirming hypothesis 2. In general, 

the path coefficient from working memory to problem solving indicated a modest 

association across all age groups, except in the late formal operational students, 

partially supporting hypothesis 3. The path from perceptual processing speed to 

problem solving tended to decrease with age, from a significant standardized path 

coefficient of .269 among preoperational students, to a non-significant 

standardized path coefficient of .010 among late formal operational students, 

disconfirming hypothesis 4. 
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 The path coefficient from Glr to calculation complexity indicated a 

significant association across all age groups, partially supporting hypothesis 5. 

The path coefficient from working memory to calculation complexity was 

inconsistent (fluctuated) across age groups, disconfirming hypothesis 6. The path 

coefficient from perceptual processing speed to calculation fluency was 

significant across all age groups, but it tended to increase (rather than remain 

constant), partially supporting hypothesis 7. The path coefficient from phonetic 

coding synthesis to calculation fluency remained constant (non-significant) across 

age groups, except among early formal operational students, disconfirming 

hypothesis 8. Last, the path coefficient from Gv to calculation fluency was 

significant across all age groups, but it tended to increase (rather than remain 

constant), partially supporting hypothesis 9. 

 Subsequently, the developmental hypotheses were tested using a more 

rigorous method than the one described earlier: A new set of multi-group 

structural equation models were computed in which one model is partially 

unconstrained and the other model is fully constrained. The partially 

unconstrained model allows only one path to vary across age groups, according to 

the hypothesis being tested (e.g., in order to test hypothesis 1, a partially 

unconstrained model allows the path from Gc to problem solving to vary across 

groups), then this model is compared against the fully constrained model using a 

chi-square difference test. 
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 The fully constrained model obtained the following fit indices: χ² (473) = 

1929.742, p > .00, CFI = .891, RMSEA = .077, SRMR = .071. The partially 

unconstrained models obtained the following fit indices:  

Hypothesis 1 (Gc to problem solving): χ² (469) = 1806.243, p > .00, CFI =  

 .900, RMSEA = .074, SRMR = .069. 

Hypothesis 2 (Gf to problem solving): χ² (469) = 1815.054, p > .00, CFI = .899, 

 RMSEA = .074, SRMR = .068. 

Hypothesis 3 (Gsm1 to problem solving): χ² (469) = 1920.347, p > .00, CFI = 

 .892, RMSEA = .077, SRMR = .070. 

Hypothesis 4 (Gs1 to problem solving): χ² (469) = 1813.024, p > .00, CFI = .900, 

 RMSEA = .074, SRMR = .069. 

Hypothesis 5 (Glr to calculation complexity): χ² (469) = 1801.232, p > .00, CFI = 

 .900, RMSEA = .074, SRMR = .062. 

Hypothesis 6 (Gsm1 to calculation complexity): χ² (469) = 1799.854, p > .00, CFI 

 = .901, RMSEA = .074, SRMR = .063. 

Hypothesis 7 (Gs1 to calculation fluency): χ² (469) = 1596.889, p > .00, CFI = 

 .916, RMSEA = .068, SRMR = .070. 

Hypothesis 8 (Ga1 to calculation fluency): χ² (469) = 1616.163, p > .00, CFI = 

 .914, RMSEA = .069, SRMR = .065. 

Hypothesis 9 (Gv to calculation fluency): χ² (469) = 1919.909, p > .00, CFI = 

 .892, RMSEA = .077, SRMR = .072. 

 The chi-square difference tests yielded the following results: 

Hypothesis 1 (Gc to problem solving): Δχ² (4) = 123.499, p < .0001. 
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Hypothesis 2 (Gf to problem solving): Δχ² (4) = 114.688, p < .0001. 

Hypothesis 3 (Gsm1 to problem solving): Δχ² (4) = 9.395, p < .0520. 

Hypothesis 4 (Gs1 to problem solving): Δχ² (4) = 116.718, p < .0001. 

Hypothesis 5 (Glr to calculation complexity): Δχ² (4) = 128.51, p < .0001. 

Hypothesis 6 (Gsm1 to calculation complexity): Δχ² (4) = 129.888, p < .0001. 

Hypothesis 7 (Gs1 to calculation fluency): Δχ² (4) = 332.853, p < .0001. 

Hypothesis 8 (Ga1 to calculation fluency): Δχ² (4) = 313.579, p < .0001. 

Hypothesis 9 (Gv to calculation fluency): Δχ² (4) = 9.833, p < .0433. 

 The chi-square difference tests based on partially unconstrained models 

supported hypotheses 1 (the association between Gc and problem solving is 

significantly different across age groups; in general it increases); and 3 (the 

association between working memory and problem solving is not significantly 

different across age groups). 

 The chi-square difference tests based on partially unconstrained models 

did not support hypotheses 2 (the association between Gf and problem solving is 

significantly different across age groups; in general it decreases); 4 (the 

association between perceptual processing speed and problem solving is not 

significantly different across age groups); 5 (the association between Glr and 

calculation complexity is not significantly different across age groups); 6 (the 

association between working memory and calculation complexity is not 

significantly different across age groups); 7 (the association between perceptual 

processing speed and calculation fluency is not significantly different across age 

groups); 8 (the association between phonetic coding synthesis and calculation 
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fluency is significantly different across age groups; in general it decreases); and 9 

(the association between Gv and calculation fluency is not significantly different 

across age groups). 

 These chi-square difference tests based on partially unconstrained models 

corroborated the initial results regarding the relationships between Gc, Gf, 

working memory, and perceptual processing speed, with problem solving; the 

relationship between Glr and calculation complexity; and the relationships 

between perceptual processing speed, and Gv, with calculation fluency. However, 

no clear patterns emerged (i.e., increasing with age, decreasing with age, or 

remaining constant) regarding the relationships between working memory and 

calculation complexity, and phonetic coding synthesis and calculation fluency. 

 A final, partially unconstrained model was estimated in which the paths 

corresponding to hypotheses 1, 2, and 8 were unconstrained, and the paths 

corresponding to hypotheses 3, 4, 5, 6, 7, and 9 were constrained to be equal 

across groups. This model obtained the following fit indices: χ² (446) = 1447.883, 

p > .00, CFI = .925, RMSEA = .066, SRMR = .062. The chi-square difference test 

(against the fully constrained model) yielded the following result: Δχ² (27) = 

481.859, p < .0001. 

Moderation by Gender 

 Given that the incidence of mathematics learning disabilities in children 

and adolescents has exhibited a male-female ratio of approximately 2:1 (Shalev, 

2007), it is reasonable to expect gender differences in mathematics development. 

In order to examine whether gender may moderate the relationships between 
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variables, a series of exploratory multi-group structural equation models were 

computed by splitting the sample according to gender (male N = 2394; female N 

= 2327). The first multi-group model constrained the path coefficients to be equal 

across gender groups and yielded the following fit indices: χ
²
 (229) = 1506.355, p 

> .00, CFI = .903, RMSEA = .073, SRMR = .063. The second model allowed the 

path coefficients to vary across groups (i.e., was unconstrained) and yielded the 

following fit indices: χ
²
 (209) = 880.945, p > .00, CFI = .949, RMSEA = .059, 

SRMR = .044. A significant chi-square difference test [Δχ
²
 (20) = 625.41, p < 

.0001] and the better fit indices of the unconstrained model indicates that gender 

tended to moderate the path coefficients, and that the model tended to fit the data 

differently for each gender group. Therefore, a new series of structural equation 

models were computed by splitting the sample according to gender at each age 

group level (i.e., preoperational: 271 male, 222 female; concrete operational: 912 

male, 966 female; early formal operational: 884 male, 809 female; late formal 

operational: 327 male, 330 female). 

Interaction of Age and Gender 

 Preoperational Male Group. The preoperational male model obtained 

the following fit indices: χ² (101) = 141.587, p > .0048, CFI=.963; RMSEA=.039; 

SRMR=.052. Calculation complexity was predicted by long-term retrieval (Glr). 

Calculation complexity was correlated with calculation fluency. Calculation 

fluency was predicted by perceptual processing speed (P1). Problem solving was 

predicted by fluid reasoning (Gf), working memory (S1), and perceptual 

processing speed (P1). Problem solving was correlated with calculation 
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complexity and calculation fluency. Tables 3 to 5 indicate the statistical 

significance of variable relationships by age and gender group. 

 Preoperational Female Group. The preoperational female model 

obtained the following fit indices: χ² (101) = 182.998, p > .00, CFI=.908; 

RMSEA=.060; SRMR=.061. Calculation complexity was predicted by long-term 

retrieval (Glr). Calculation complexity was correlated with perceptual processing 

speed (P1) and calculation fluency. Calculation fluency was predicted by 

perceptual processing speed (P1), and visual processing (Gv). Problem solving 

was predicted by crystallized knowledge (Gc). Problem solving was correlated 

with calculation complexity. 

 Concrete Operational Male Group. The concrete operational male 

model obtained the following fit indices: χ² (101) = 310.447, p > .00, CFI=.940; 

RMSEA=.047; SRMR=.051. Calculation complexity was predicted by long-term 

retrieval (Glr), and working memory (S1). Calculation complexity was correlated 

with perceptual processing speed (P1) and calculation fluency. Calculation 

fluency was predicted by perceptual processing speed (P1), and phonetic coding 

synthesis (A1). Calculation fluency was correlated with working memory (S1). 

Problem solving was predicted by fluid reasoning (Gf), crystallized knowledge 

(Gc), and perceptual processing speed (P1). Problem solving was correlated with 

calculation complexity and calculation fluency. 

 Concrete Operational Female Group. The concrete operational female 

model obtained the following fit indices: χ² (101) = 285.015, p > .00, CFI=.950; 

RMSEA=.043; SRMR=.045. Calculation complexity was predicted by long-term 
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retrieval (Glr). Calculation complexity was correlated with perceptual processing 

speed (P1) and calculation fluency. Calculation fluency was predicted by 

perceptual processing speed (P1), and visual processing (Gv). Calculation fluency 

was correlated with working memory (S1). Problem solving was predicted by 

fluid reasoning (Gf), crystallized knowledge (Gc), working memory (S1), and 

perceptual processing speed (P1). Problem solving was correlated with calculation 

complexity and calculation fluency. 

 Early Formal Operational Male Group. The early formal operational 

male model obtained the following fit indices: χ² (101) = 312.276, p > .00, 

CFI=.955; RMSEA=.049; SRMR=.040. Calculation complexity was predicted by 

long-term retrieval (Glr), and working memory (S1). Calculation complexity was 

correlated with perceptual processing speed (P1) and calculation fluency. 

Calculation fluency was predicted by perceptual processing speed (P1), and 

phonetic coding synthesis (A1). Calculation fluency was correlated with working 

memory (S1). Problem solving was predicted by fluid reasoning (Gf), crystallized 

knowledge (Gc), working memory (S1), and perceptual processing speed (P1). 

Problem solving was correlated with calculation complexity and calculation 

fluency. 

 Early Formal Operational Female Group. The early formal operational 

female model obtained the following fit indices: χ² (101) = 287.255, p > .00, 

CFI=.953; RMSEA=.048; SRMR=.040. Calculation complexity was predicted by 

long-term retrieval (Glr). Calculation complexity was correlated with perceptual 

processing speed (P1) and calculation fluency. Calculation fluency was predicted 
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by perceptual processing speed (P1), and visual processing (Gv). Calculation 

fluency was correlated with working memory (S1). Problem solving was 

predicted by fluid reasoning (Gf), crystallized knowledge (Gc), working memory 

(S1), and perceptual processing speed (P1). Problem solving was correlated with 

calculation complexity and calculation fluency. 

 Late Formal Operational Male Group. The late formal operational male 

model obtained the following fit indices: χ² (101) = 185.977, p > .00, CFI=.955; 

RMSEA=.051; SRMR=.045. Calculation complexity was predicted by long-term 

retrieval (Glr). Calculation complexity was correlated with calculation fluency. 

Calculation fluency was predicted by perceptual processing speed (P1), and visual 

processing (Gv). Problem solving was predicted by fluid reasoning (Gf), and 

crystallized knowledge (Gc). Problem solving was correlated with calculation 

complexity and calculation fluency. 

 Late Formal Operational Female Group. The late formal operational 

female model obtained the following fit indices: χ² (101) = 228.414, p > .00, 

CFI=.936; RMSEA=.062; SRMR=.055. Calculation complexity was predicted by 

long-term retrieval (Glr). Calculation complexity was correlated with perceptual 

processing speed (P1) and calculation fluency. Calculation fluency was predicted 

by perceptual processing speed (P1), and visual processing (Gv). Problem solving 

was predicted by fluid reasoning (Gf), and crystallized knowledge (Gc). Problem 

solving was correlated with calculation complexity and calculation fluency.  
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Table 3 

Statistical Significance of the Relationships between Latent and Observed 

Cognitive Variables and Calculation Complexity at the .05 or Lower Level 

Long-Term Retrieval and Calculation Complexity,  

Controlling for Working Memory 

 Male Female 

Preoperational Significant Significant 

Concrete Operational Significant Significant 

Early Formal Operational Significant Significant 

Late Formal Operational Significant Significant 

Working Memory and Calculation Complexity,  

Controlling for Long-Term Retrieval 

 Male Female 

Preoperational Non-significant Non-significant 

Concrete Operational Significant Non-significant 

Early Formal Operational Significant Non-significant 

Late Formal Operational Non-significant Non-significant 

 

 Long-term retrieval (a latent variable predicting associative memory and 

retrieval fluency) was consistently associated with calculation complexity among 

male and female students at all age levels, when controlling for working memory 

(controlling for working memory as specified in the a priori model; see figure 2). 

Working memory was associated with calculation complexity among male 

students in the concrete operational and early formal operational age groups, 

when controlling for Glr as specified in the model (Table 3). 

 



  46 

Table 4 

Statistical Significance of the Relationships between Latent and Observed 

Cognitive Variables and Calculation Fluency at the .05 or Lower Level  

Perceptual Processing Speed and Calculation Fluency,  

Controlling for Visual Processing and Phonetic Coding Synthesis 

 Male Female 

Preoperational Significant Significant 

Concrete Operational Significant Significant 

Early Formal Operational Significant Significant 

Late Formal Operational Significant Significant 

Visual Processing and Calculation Fluency,  

Controlling for Phonetic Coding Synthesis and Perceptual Processing Speed 

 Male Female 

Preoperational Non-significant Significant 

Concrete Operational Non-significant Significant 

Early Formal Operational Non-significant Significant 

Late Formal Operational Significant Significant 

Phonetic Coding Synthesis and Calculation Fluency, 

Controlling for Visual Processing and Perceptual Processing Speed 

 Male Female 

Preoperational Non-significant Non-significant 

Concrete Operational Significant Non-significant 

Early Formal Operational Significant Non-significant 

Late Formal Operational Non-significant Non-significant 

 

 Perceptual processing speed was consistently associated with calculation 

fluency among male and female students at all age levels, controlling for phonetic 

coding synthesis and Gv. Visual processing (a latent variable predicting spatial 

operations and visual memory) was associated with calculation fluency among 

female students at all age levels, and among male students in the late formal 

operational group, controlling for phonetic coding synthesis and perceptual 

processing speed. Last, phonetic coding synthesis was associated with calculation 

fluency among male students in the concrete operational and early formal 
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operational age groups, when controlling for Gv and perceptual processing speed 

(Table 4). 

 

Table 5 

Statistical Significance of the Relationships between Latent and Observed 

Cognitive Variables and Problem Solving at the .05 or Lower Level  

 

Fluid Reasoning and Problem Solving, controlling for Crystallized 

Knowledge, Working Memory, and Perceptual Processing Speed 

 Male Female 

Preoperational Significant Non-significant 

Concrete Operational Significant Significant 

Early Formal Operational Significant Significant 

Late Formal Operational Significant Significant 

Crystallized Knowledge and Problem Solving, controlling for Fluid 

Reasoning, Working Memory, and Perceptual Processing Speed 

 Male Female 

Preoperational Non-significant Significant 

Concrete Operational Significant Significant 

Early Formal Operational Significant Significant 

Late Formal Operational Significant Significant 

Working Memory and Problem Solving, controlling for Fluid Reasoning, 

Crystallized Knowledge, and Perceptual Processing Speed 

 Male Female 

Preoperational Significant Non-significant 

Concrete Operational Non-significant Significant 

Early Formal Operational Significant Significant 

Late Formal Operational Non-significant Non-significant 

Perceptual Processing Speed and Problem Solving, controlling for Fluid 

Reasoning, Crystallized Knowledge, and Working Memory 

 Male Female 

Preoperational Significant Non-significant 

Concrete Operational Significant Significant 

Early Formal Operational Significant Significant 

Late Formal Operational Non-significant Non-significant 
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 Fluid reasoning (a latent variable predicting inductive and deductive 

reasoning) was consistently associated with problem solving among male students 

at all age levels, and among female students at all age levels except 

preoperational, controlling for Gc, working memory, and perceptual processing 

speed. Crystallized knowledge (a latent variable predicting lexical and general 

knowledge) was consistently associated with problem solving among female 

students at all age levels, and among male students at all age levels except 

preoperational, controlling for Gf, working memory, and perceptual processing 

speed. No clear patterns regarding the associations between working memory and 

perceptual processing speed with problem solving emerged (Table 5).  
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Chapter 5 

Discussion 

 This study set out to examine the role of broad cognitive processes in the 

development of mathematics skills among child and adolescent students. This is 

an important, yet understudied topic. This study represents an attempt to unify 

basic cognitive developmental research literature (e.g., Geary, 1993; Fuchs et al., 

2010) with applied research literature from school psychology (e.g., McGrew & 

Wendling, 2010).  

 Cognitive psychologists have identified a number of domain-specific 

cognitive processes involved in mathematical development. These include 

abilities such as subitizing, which consists of spontaneously identifying quantities 

of 1, 2, or 3 objects without counting, among various others. Children transition 

from these automatic, basic competencies (evolution based; Geary, 2007) to 

formal, complex mathematical competencies (acculturation based), including 

mathematical vocabulary and theory through broad (i.e., domain general) 

cognitive processes (Geary, Hoard, Nugent, & Byrd-Craven, 2008). 

 A comprehensive exploratory study of CHC factors and mathematics 

achievement was conducted by Floyd, Evans, and McGrew (2003) using a 

nationally representative sample. Subsequently, a preliminary study of the 

associations between broad cognitive processes and mathematics achievement 

was made by Bacal, Caterino, Dial, and Kube (2008), using a clinical sample and 

the CHC framework. Taub, Floyd, Keith, and McGrew (2008) expanded on Floyd 

et al. (2003), and published an exploratory study using structural equation 
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modeling. Subsequently, Calderón-Tena, Caterino, and Felicetta (2012) replicated 

Taub et al.’s results using a clinical sample. Recently, Calderón-Tena (2011) 

presented a confirmatory study (a model proposed a priori) using a clinical sample 

and multi-group structural equation modeling looking at age differences. To this 

author’s knowledge, this is the first study to test a hypothesized model of broad 

mathematical cognition through multi-group structural equation modeling using a 

normative sample, looking at age and gender differences. This a priori model was 

primarily based on Floyd et al. (2003) empirical study, and the theoretical 

framework of Geary (1993, 2007). 

 The general model of mathematical cognition (complete sample, single 

group analysis) fit the data adequately, and all of the hypothesized paths between 

cognitive processes and mathematics achievement were statistically significant. A 

series of multi-group structural equation models were used to test the 

developmental hypotheses. The results indicated that Gf and Gc became stronger 

predictors of mathematics problem solving as age increased; working memory 

remained a constant, weak predictor of problem solving skills (when controlling 

for Gf and Gc); and perceptual processing speed became a weaker predictor of 

mathematics problem solving as age increased (when controlling for Gf and Gc). 

Glr became a stronger predictor of calculation complexity as age increased; and 

working memory was an inconsistent, weak predictor of calculation complexity 

(when controlling for Glr). Perceptual processing speed became a stronger 

predictor of calculation fluency as age increased (when controlling for phonetic 

coding synthesis and Gv); phonetic coding synthesis was an inconsistent, weak 
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predictor of calculation fluency (when controlling for perceptual processing speed 

and Gv); and Gv became a stronger predictor of calculation fluency as age 

increased (when controlling for perceptual processing speed and phonetic coding 

synthesis). It is also important to note that the most meaningful changes (i.e., path 

coefficient changes that were not only statistically significant, but meaningfully 

large) across age groups occurred among the relationships involving Gf, Gc, Glr, 

and Gs. 

 A series of exploratory multi-group structural equation models 

simultaneously assessed the impact of age and gender as moderators for each of 

the variable relationships proposed in the model. Final structural equation models 

of each gender group at each age group level supported the notion that the relation 

between broad cognitive processes and mathematics achievement is better 

understood within a developmental framework that considers gender differences. 

In other words, mathematical development is a function of a three way interaction 

between broad cognitive factors, developmental status, and gender. The results of 

these analyses are summarized next. 

Fluid Reasoning and Crystallized Knowledge (Gf and Gc) 

 Fluid reasoning is the ability to solve novel problems, using inductive and 

deductive reasoning processes. This ability was consistently associated with 

problem solving skills among male and female students at all age levels 

(preoperational, concrete operational, early formal operational, and late formal 

operational), except for female students in the preoperational group. On the other 

hand, crystallized knowledge, the ability to solve problems using over-learned 



  52 

skills, mainly language and general knowledge, was consistently associated with 

problem solving skills among male and female students at all age levels, except 

for male students in the preoperational group. This suggests an interesting gender 

difference, which may be related to different socialization experiences. It is 

reasonable to speculate that preoperational girls are given more opportunities to 

practice language skills, relative to preoperational boys. A meta-analysis on 

gender differences in verbal abilities by Hyde and Linn (1988) provides some 

support for this notion. Although the authors conclude that the magnitude of 

gender differences across the life span is so small that it can be considered 

negligible in general, the largest positive effect size reported in their study (d = 

.31) was for girls of age 5 and younger (preoperational) in reading 

comprehension. Last, the results of this study suggest that fluid reasoning and 

crystallized knowledge tend become stronger predictors of problem solving skills 

among both male and female students as age increases. 

Long-Term Retrieval (Glr) 

 Long-term retrieval is the broad cognitive process associated with learning 

and information retrieval from long-term memory. This broad cognitive process 

was significantly associated with calculation complexity among male and female 

students across all age levels. Long-term retrieval should be studied in more depth 

in future studies, both at the broad level (Glr) and at the narrow cognitive level 

(associative memory and retrieval fluency). Given the magnitudes of the 

standardized path coefficients obtained in this study, it appears that Glr may be a 

key broad cognitive factor in the development of mathematical skills, along with 



  53 

Gf and Gc (perhaps the two most well established broad cognitive processes). It is 

also reasonable to postulate that Glr deficits may be associated with learning 

problems in other academic areas besides mathematics, given the broad nature of 

Glr processes. In fact, McGrew (1993) has documented a significant relationship 

between Glr, and basic reading skills and reading comprehension.  

Processing Speed (Gs) 

 Processing speed was examined in the present study through its narrow 

ability of perceptual processing speed. This narrow ability was significantly 

associated with calculation fluency among male and female students across all 

age levels. The results indicated that perceptual processing speed was the single 

best indicator of calculation fluency, relative to visual processing and phonetic 

coding synthesis. The association between perceptual processing speed and 

problem solving was less clear (it varied across age and gender groups without a 

clear pattern) and its standardized path coefficients were much smaller, relative to 

calculation fluency. The results indicated that perceptual processing speed is not a 

strong indicator of problem solving skills when Gf and Gc data is considered. 

Visual-Spatial Processing and Auditory Processing (Gv and Ga) 

 The association between visual-spatial processing and calculation fluency 

across gender groups was interesting: Gv was significantly related to calculation 

fluency among female students at all age levels, but it was significantly related to 

calculation fluency among male students in the late formal operational age group 

only. In contrast, the association between phonetic coding synthesis (a narrow 

indicator of auditory processing) was significantly related to calculation fluency 
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among male students in the concrete operational and early formal operational age 

groups, but not among any of the female age groups. It is reasonable to speculate 

that, to the extent that visual-spatial processes are related to simultaneous 

processing (i.e., perceiving several visual components at once), and auditory 

processes are related to sequential processing (i.e., processing individual 

phonemes in a sequential fashion), this Gv/Ga gender difference may indicate a 

subtle, but statistically significant difference in the way male and female students 

process information. That is, it may be that visual (simultaneous) processing is 

more important for female calculation processing, while auditory (sequential) 

processing is more important for male calculation processing. Stated differently, 

female students with significant visual (simultaneous) processing deficits will 

tend to exhibit lower calculation fluency, while female students with significant 

visual (simultaneous) processing abilities will tend to exhibit higher calculation 

fluency, and likewise for male students and auditory (sequential) processing. 

Short-Term Memory (Gsm) 

 Short-term memory was examined in the present study through its narrow 

ability of working memory. This narrow ability did not emerge as having a clear 

developmental pattern among male and female students across age levels, except 

that is was not significant among female students at any age group level when 

predicting calculation complexity, controlling for long-term retrieval. It is 

possible that the broad cognitive processes of Gf, Gc, and Glr actually involve 

working memory processes (e.g., the narrow ability of associative memory, a 

component of Glr, requires that the individual maintain a piece of information in 
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the immediate awareness, while a second piece of information is presented as a 

related component or piece of information; the narrow ability of deductive 

reasoning, a component of Gf, requires that the individual maintain a rule or set of 

rules in the immediate awareness, while solving a problem; etc.) Thus, it is 

possible that the lack of associations between working memory and calculation 

complexity and problem solving is due to the fact that other broad cognitive 

processes accounted for its effects. In fact, Baddeley and Bristol (2001) have 

suggested that working memory can be understood as an executive processor 

directly linked to fluid cognitive systems (Gv, Ga, Gs, Gf) and mediately linked to 

crystallized cognitive systems (Gc and Glr) via fluid systems. In other words, 

working memory supports fluid systems directly, and crystallized systems 

indirectly. 

Indirect and Total Effects of Broad Cognition 

 General intelligence (IQ) had indirect effects on calculation complexity, 

calculation fluency, and problem solving via the broad and narrow cognitive 

processes specified in the model. The total effects of IQ were greatest for problem 

solving, followed by calculation complexity, followed by calculation fluency. 

Indirect effects of broad cognitive factors via narrow processes specified in the 

model were very small in general, suggesting that broad cognitive factors tend to 

have more explanatory power than their individual narrow indicators.  

Conclusion  

 The results of this study supported the theoretical suggestion that domain-

general cognitive processes play significant and specific roles in the development 
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of mathematical skills among children and adolescents. Consistent with McArdle, 

Ferrer-Caja, Hamagami, and Woodcock (2002), most broad cognitive processes 

examined in this study became increasingly associated with mathematical 

development with age. McArdle et al. documented that broad cognitive processes 

do not reach a developmental peak until at least age 18. Specifically, Gf peaks at 

age 22; Gc at age 35; Glr at age 18; Gsm at age 24; Gs at age 25; Ga at age 22; 

and Gv at age 24. Therefore, it is not surprising that most broad cognitive 

processes become better predictors of mathematics achievement through the 

school age years. 

 These results will contribute, not only to the empirical literature, but will 

have the potential to support practitioners in the development of cognitive-based 

mathematics disability diagnoses and interventions. For example, interventions 

targeting long-term retrieval may emphasize repetition and over-learning; 

interventions targeting short-term memory may emphasize practice re-telling 

stories; and so on with the rest of broad cognitive factors. This cognitive-based 

approach is not meant to replace prevention, universal screening, or response to 

intervention monitoring. Rather, cognitive research-based screening, assessment, 

diagnosis, and intervention represents one of the key components of a multi-

tiered, prevention and intervention-focused model of school psychology practice 

(screening and intervention based on information related to specific cognitive 

processes involved in specific academic needs), which is in line with ethical 

standards and best practices of the National Association of School Psychologists, 

and the American Psychological Association. In particular, cognitive research-
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based assessment and intervention is a timely (and urgently needed) response to 

unsupported practices, such as ability-achievement discrepancy analysis, which 

has weak theoretical validity, and limited empirical support (see Flanagan, 

Fiorello, & Ortiz, 2010, for a discussion on the application of cognitive research 

in school psychology practice, particularly in the context of specific learning 

disabilities). Additionally, these results support the notion of “intelligent testing” 

(McGrew & Wendling, 2010), which suggests that psychologists should design 

assessment plans that include specific narrow and/or broad cognitive factors, 

rather than “one size fits all” approaches (i.e., administering the same whole 

battery of tests for all evaluations). 

 Although the present study represents an important contribution to the 

school psychology literature, future studies should address at least three important 

limitations. First, the concurrent validity of the model should be assessed using 

different cognitive and achievement instruments. Second, future studies should 

integrate both broad and domain-specific cognitive processes, in order to test the 

broader theoretical model proposed by Geary (1993; 2007). Third, future studies 

should cross-validate the model by using a split-sample model approach similar to 

the one described by Taub, Floyd, Evans, and McGrew (2008). However, 

independent corroboration of this model is available from Calderón-Tena (2011) 

study on mathematical development among students who had been referred for a 

psychoeducational evaluation. That study found similar results with an 

independent, clinical sample from an elementary school district. 
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 Despite the limitations noted, the present study provides a number of 

significant contributions. First, this is one of the first studies to test a mathematics 

developmental model using a nationally representative sample. Second, the size of 

the sample allowed for the examination, not only a general model, but it allowed 

for comparisons between age and gender groups in detail. Third, various 

researchers have investigated the role of a limited number of cognitive processes 

(e.g., working memory, processing speed, fluid reasoning). However, this study 

investigated the role of all broad cognitive processes within the CHC framework, 

all of which have been identified in the mathematics developmental literature by 

researchers conducting studies independently from CHC research.  

 The theoretical and empirical basis of school psychology is becoming 

increasingly multi-disciplinary (i.e., school psychology is becoming informed and 

influenced by other areas of psychology), and this will serve to enhance the 

validity and applicability of school psychologists’ tools (e.g., school psychology 

tools and methods will be more relevant in areas such as pediatric 

neuropsychology, to the extent that school psychology is informed by basic 

cognitive and developmental science). This empirical study is a direct attempt to 

take a step in that direction by integrating research by cognitive, developmental, 

and school psychologists.  

 The present findings have the potential to inform regular and special 

education teachers’ curricula by taking into consideration the developmental 

nature of cognition and mathematics learning. School psychologists working with 

students with developmentally-based learning disabilities in mathematics (and 
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perhaps, with acquired acalculia if this model is tested among students with 

traumatic brain injuries, for example) will have a theoretical framework that is 

completely approachable with current major diagnostic instruments. Last, this 

study represents a timely contribution for school psychology scientist-

practitioners. The ultimate goal of this study is to strengthen the scientific 

research foundation of school psychology. 
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