
SystemC TLM2.0 Modeling of Network-on-Chip Architecture

by

Jyothi Swaroop Arlagadda Narasimharaju

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved March 2012 by the
Graduate Supervisory Committee:

Karamvir Chatha, Chair

Aviral Shrivastava
Arunabha Sen

ARIZONA STATE UNIVERSITY

May 2012

i

ABSTRACT

Network-on-Chip (NoC) architectures have emerged as the solution to the

on-chip communication challenges of multi-core embedded processor

architectures. Design space exploration and performance evaluation of a NoC

design requires fast simulation infrastructure. Simulation of register transfer

level model of NoC is too slow for any meaningful design space exploration. One

of the solutions to reduce the speed of simulation is to increase the level of

abstraction. SystemC TLM2.0 provides the capability to model hardware design

at higher levels of abstraction with trade-off of simulation speed and accuracy. In

this thesis, SystemC TLM2.0 models of NoC routers are developed at three levels

of abstraction namely loosely-timed, approximately-timed, and cycle accurate.

Simulation speed and accuracy of these three models are evaluated by a case

study of a 4x4 mesh NoC.

ii

To my parents

iii

ACKNOWLEDGMENTS

I would like to take this opportunity to thank Dr. Karamvir Chatha for

providing me an opportunity to work under him and for providing valuable

motivation, suggestions and guidance throughout my research. I would also like

to thank Dr. Aviral Shrivastava and Dr. Arunabha Sen for kindly agreeing to serve

on my dissertation committee.

I am thankful to my lab colleagues, Glenn Leary, Amrit Panda, Weijia Che

and Haeseung Lee for helping me when I was facing difficulties in my work.

I am also very grateful to my parents. Without their encouragement it

would have been impossible for me to finish this work. I am also thankful to my

brother, sister and sister-in-law for all their support.

I would also like to thank my friends, here and in India, and my

roommates, who have made these two years a memorable one.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

1 INTRODUCTION .. 1

1.1 Network-on-Chip .. 2

1.2 Previous Work .. 3

1.3 Contributions of the Thesis .. 5

1.4 Thesis Organization ... 5

2 HARDWARE MODELING USING OSCI SYSTEMC TLM2.0 7

2.1 Transaction Level Modeling ... 9

 2.1.1 Different Coding Styles of TLM2.0 10

 2.1.2 OSCI TLM2.0 Standard .. 12

 2.1.3 Blocking and Non-Blocking Transport interfaces 15

 2.1.4 Basic Protocol .. 17

3 DESIGN OF NETWORK-ON-CHIP ARCHITECTURE IN SYSTEMC

TLM2.0 .. 19

3.1 Router Architecture ... 19

3.2 Functional Level Description .. 20

 3.2.1 Routing table generation .. 20

 3.2.2 Decoder ... 21

 3.2.3 FIFO Implementation ... 22

 3.2.4 Arbiter ... 22

 3.2.5 Additional Phases ... 24

v

CHAPTER Page

3.3 Abstraction levels in modeling NoC 24

3.4 LT router model ... 25

3.5 AT router model .. 27

3.6 Cycle Accurate router model ... 30

3.7 Differences between LT, AT and cycle accurate NoC

platform ... 36

4 EXPERIMENTATION, PERFORMANCE ANALYSIS AND

SIMULATION RESULTS ... 37

4.1 Experimental Setup ... 37

4.2 Performance Analysis .. 40

4.3 Simulation Results ... 42

5 CONCLUSIONS AND FUTURE WORK ... 50

5.1 Conclusions ... 50

5.2 Future Work ... 51

REFERENCES ... 52

APPENDIX

A PERL SCRIPT- AUTOMATED NOC PLATFORM GENERATION 54

vi

LIST OF TABLES

Table Page

1.1. Generic Payload Attributes ... 15

3.1. Differences between LT, AT and cycle accurate NoC platform 36

4.1. Speedup Table for Uniform-random traffic at injection rate = 0.1 44

4.2. Speedup Table for Hot-spot traffic at injection rate = 0.1 46

4.3. Speedup Table for Complement traffic at injection rate = 0.1 48

vii

LIST OF FIGURES

Figure Page

1.1. Different NoC Topologies .. 3

2.1. Comparison of different languages ... 7

2.2. SystemC layered Architecture ... 8

2.3. Comparison of RTL and TLM models .. 10

2.4. Different Abstraction Levels in TLM2.0 10

2.5. TLM2.0 Architecture ... 13

2.6. Producer Consumer Model ... 14

2.7. Blocking Transport Function .. 16

2.8a. Forward Non-Blocking Transport Interface 17

2.8b. Backward Non-Blocking Transport Interface 17

2.9. Basic Protocol Phases .. 18

3.1. NoC Router implementation ... 19

3.2. Different levels of abstraction .. 24

3.3. LT NoC block diagram .. 25

3.4. LT NoC Model ... 26

3.5. AT NoC block Diagram .. 27

3.6. AT NoC flowchart ... 29

3.7. Arbitration in AT router ... 30

3.8. Different types of FIFO .. 32

3.9a. Cycle accurate NoC flow chart- Forward and Backward functions 33

3.9b. Cycle accurate NoC flow chart- Arbitration 34

3.10a. Elements in FIFO at nth cycle ... 35

3.10b. Elements in FIFO at (n+1)th cycle .. 35

viii

Figure Page

4.1. 4x4 Regular Mesh NoC ... 37

4.2. Synthetic Master .. 39

4.3a. Latency Comparison with Uniform-random traffic 43

4.3b. Error rate in latency with Uniform-random traffic 43

4.3c. Transaction Objects per second with Uniform-random traffic 44

4.4a. Latency Comparison with Hot-spot traffic 45

4.4b. Error rate in latency with Hot-spot traffic 45

4.4c. Transaction Objects per second with Hot-spot traffic 46

4.5a. Latency Comparison with Complement traffic 47

4.5b. Error rate in latency with Complement traffic 47

4.5c. Transaction Objects per second with Complement traffic 48

A.1. NoC platform generation ... 55

1

CHAPTER 1

INTRODUCTION

With increasing performance demands of current day applications, multi-

core devices have taken an important place in semiconductor technology. One of

the daunting challenges of these multi-core devices is the challenges posed by the

on-chip communication. When many cores share a bus, global synchronous

communication becomes challenging as the master cores compete over the

control of the bus. Also there are many more signal integrity issues caused by the

increased parasitic effects and cross-coupling. Network-on-Chip (NoC) is fast

replacing the traditional bus architectures for on-chip communications.

The principal component of a NoC is a router and it is responsible for

sending information from one point to another in a NoC. These routers can

operate independently at different frequencies in a NoC. End to end chip

communication can be considered to be pipelined through multiple routers along

a path. There are many factors affecting the NoC performance such as network

topology, flow control, routing, arbitrating algorithm and so on. It is very difficult

to determine the optimum circuit structure based on the register transfer level

(RTL) design flow. To solve this problem, a new level of abstraction at which

designers could explore the design space much faster than RTL has emerged

namely Electronic System Level (ESL) design.

ESL design is a design methodology where a system can be designed at

different abstraction levels. Each abstraction level differs from the other in the

amount of functional details used to describe the system. Iterative redesign

becomes extremely expensive especially at RTL level when the time to market is

less. When designed at a higher abstraction level, the designer has more time to

2

explore the design space and can come up with multiple design alternatives. In

this thesis, OSCI SystemC TLM2.0 standard is used to model the NoC. The design

phase starts with a higher level of abstraction and as it moves down to lower

abstraction levels, different alternatives in design are explored which enables the

designer to make finer grain design changes.

1.1 Network-on-Chip

There are two basic types of on-chip interconnections: buses and NoC.

There are several factors that have led to the advent of NoC. With the continuous

technology scaling of semiconductor devices, there has been an increase in

performance efficiency of the cores. The interconnection between the cores is also

required to deliver high communication speed to meet the performance efficiency

requirements. Interconnects do not scale at the same rate as devices, and hence

delay on communication channels is much larger than clock period. The power

required to drive the interconnections becomes significant part of overall chip

power thus cutting back the benefit from device scaling. Traditional bus

architecture is not efficient since long buses increases both delay and power

consumption.

Ideally the design should be completely independent of communication

subsystem. The emergence of Globally Asynchronous Locally Synchronous

(GALS) design methodology based multi-core devices has also raised the need for

global asynchronous communication. GALS design methodology is where a set of

local synchronous modules communicate with each other asynchronously. Thus,

synchronous on-chip communication as assumed by several bus based

architectures is no longer desirable. NoC is considered to be the solution for

communication on future generation multi-core devices replacing bus based

3

architectures. NoC supports asynchronous packet switching based

communication. Long signal propagation delays are effectively pipelined by

introducing multiple routers along the path [7]. NoC supports high performance

concurrent communication as various routers operate in a decentralized manner.

NoC can be classified into two broad categories based on their topologies.

Regular topologies such as mesh, torus or hypercube are suitable for processor

architectures aimed at general purpose computing. Irregular or custom

topologies are suitable for application specific processors such as media-

processors where the various cores demonstrate fairly well defined on-chip

communication patterns. Irregular NoC have been demonstrated to be superior

in router (resource) requirements and power consumption for application

specific processors in comparison to regular architectures. Figure 1.1 shows some

of the basic shapes of NoC.

 Mesh Torus

Figure1.1: Different NoC topologies

1.2 Previous Work

Modeling techniques using SystemC TLM (Transaction Level Modeling)

have been studied widely. Shirner et al. [14] created two TLM models for AMBA

bus and compared them against synthesizable bus functional model version.

More abstract TLM models were four orders of magnitude faster with error up to

4

45%, and the more accurate TLM reached two order of magnitude speedup with

an error of 35% in worst cases. Lehtonen et al. [15] simulated different models of

2D mesh NoC such as 4x4, 6x6 and 8x8. Frequency of 50MHz was used for the

NoC and simulations were run for 100ms. When simulated with a 4 word

payload, TLM AT models speed up ranged from 13x to 15x when compared to

RTL-VHDL models, with error on average latencies to be less than 10%. More

abstract TLM LT models were 2x faster than AT models. Hu et al. [12] developed

approximately-timed and cycle accurate router models and compared them

against RTL router models. Simulations were performed for 4000 cycles with

each initiator (two initiators were used) sending 500 transactions, with each

transaction having 4 beats. TLM AT router model showed a speed up of 11.7

whereas cycle accurate model showed a speed up of 6.85 compared to RTL

model. Kohler et al. [16] describes a method to estimate latencies in one process

using the concept of temporal decoupling. Simulations were performed on 8x8

mesh network with uniform-random traffic pattern. Multi-hop model achieved a

speedup by a factor of 20 compared to a cycle-approximate hop-by-hop TLM

simulation. Estimated error depended linearly on the network utilization. They

measured 45% deviation in average latencies for saturation load but on lower

loads the estimated error was in acceptable range. Sgroi et al [17] address the SoC

communication with a NoC approach. Here the communication is partitioned

into layers following the OSI(Open System Interconnection) structure. Software

reuse is promoted with an increase of abstraction from the underlying

communication. Streubuhr et al. [10] proposes an efficient modeling approach

that permits simulation-based performance evaluation of MPSOCs at Electronic

System Level (ESL).

5

All the existing works model the communication architecture at two levels

of abstraction, either loosely-timed and approximately-timed or approximately-

timed and cycle accurate, and provide a comparison at these abstraction levels. In

this thesis, a comprehensive case study with 4x4 mesh NoC at three levels of

abstraction namely loosely-timed, approximately-timed and cycle accurate is

presented. The loosely-timed and approximately-timed models show better

speedup when compared to [12] and [15].

1.3 Contributions of the Thesis

The primary contributions of the thesis are,

• Design of a functional level parameterizable NoC router architecture.

• Implementation of NoC router model at three abstraction levels- Loosely-

timed, Approximately-timed and Cycle Accurate.

• Implementation of 4x4 mesh NoC using above mentioned router models for

performance analysis and simulation purposes.

• Implementation of framework for performance data collection.

• Comparison of Speed vs Accuracy for NoC models at various abstraction

levels.

• Perl Script for automated generation of NoC platform using a set of files

describing the characteristics of NoC.

1.4 Thesis Organization

 The remainder of the thesis is organized as follows. Chapter 2 describes

design methodologies using SystemC TLM2.0 standards. Design and architecture

of NoC router in SystemC TLM2.0 is explained in Chapter 3. It also describes the

design of NoC router models in three abstraction levels of loosely-timed,

6

approximately-timed and cycle accurate. Chapter 4 describes the implementation

of 4x4 2D mesh topology NoC for experimentation and performance analysis. It

also describes the simulation results comparing the NoC platform at different

abstraction levels. Lastly, the concluding remarks and future work is described in

Chapter 5.

7

CHAPTER 2

HARDWARE MODELING USING OSCI SYSTEMC TLM2.0

SystemC is a system design language that has evolved in response to a

need for a language that improves overall productivity for designers of electronic

systems. SystemC offers real productivity gains by letting engineers design both

the hardware and the software components together as they would exist on the

final system, but at a higher level of abstraction. [4] This means that it is possible

to concentrate on the actual functionality of the system rather than on its

implementation details. Moreover, since the detailed implementation is not

finalized, it is still possible to perform consistent changes to the system, enabling

an effective evaluation of different architectural alternatives (including the

partitioning of the functionalities between hardware and software).

Figure2.1: Comparison of different languages [4]

Figure 2.1 shows a comparison among SystemC and other Hardware Description

Languages (HDLs). Although SystemC supports modeling at the register transfer

8

level (RTL), it is more often used for the description at higher abstraction levels.

SystemC is characterized by its higher simulation speed than HDLs; note that this

high simulation speed is not only due to the SystemC language itself, but it is

mainly caused by the high level system descriptions enabled by the use of

SystemC. SystemC is C++ class library which focuses on system level design and

verification. It defines a customizable base model of computation with a

generalized model for communication through channels and synchronization

based on events. SystemC provides different time models such as Untimed,

Untimed with discrete ordered events and timed with discrete ordered events.

The models of SystemC communicate with each other through channels which

can be either SystemC standard channels or customized ones. The following

Figure 2.2 shows the architecture of SystemC language.

Figure2.2: SystemC layered Architecture [4]

9

The basic layer of SystemC provides an event-driven simulation kernel. This

kernel works with events and processes in an abstract manner, coordinating

events and switching between processes, thereby allowing SystemC to simulate

the implicitly parallel hardware features. Modules and processes describe the

abstraction of structural information, while interfaces and channels represent the

abstraction for communications. Data is transferred between modules through

interfaces and channels. Since SystemC is implemented on top of C++, all the

C++ features can be used to speed up modeling and increase code reusability. [4]

2.1 Transaction level Modeling (TLM)

TLMs are higher level abstraction models compared to RTL models. They

separate the communication details from the implementation details of the

functional units. In TLM, communication occurs through function calls and more

emphasis is given to functionality of transfer than the actual implementation of

communication protocol. TLM models consist only of details needed in the

earlier stages of design development. By not including pin accurate details like

the RTL models, much higher simulation speeds are achieved compared to RTL

models. The input and output signals involved are abstracted into transaction

objects, which will be discussed in detail later. TLM models can be set up much

faster, as they are much simpler when compared to RTL models and also TLM

models run much faster than RTL models. TLM models can be used for design as

well as functional verification. The following Figure 2.3 illustrates the difference

between RTL and TLM models.

10

Register Transfer Level Model Transaction Level Model

Figure2.3: Comparison of RTL and TLM models [2]

2.1.1 Different Coding Styles of TLM

Figure2.4: Different abstraction levels in TLM2.0 [2]

TLM data transfers are modeled as transactions through function calls. These

abstraction levels are distinguished by the timing accuracy in which

11

communication takes place. Design models can be divided into three different

categories (or abstraction levels) according to the timing model style: loosely-

timed, approximately-timed, and cycle-accurate. Figure 2.4 shows the

applications of TLMs with different coding styles. It is clear that for hardware

applications, approximately-timed (AT) style is preferred and loosely timed (LT)

models are used for software development.

There are two basic coding styles of TLM specified by IEEE standard:

Loosely-timed: The loosely timed models contain less timing details when

compared to approximately-timed models and cycle-accurate models. The exact

communication details does not greatly influence design decisions at its initial

phases, so it can be safely ignored. In loosely-timed models, every

communication transfer whether it read transfer from memory or a write transfer

to memory can be modeled as a single transaction. The communication in loosely

timed models can thus be considered to have exactly two timing points: Begin

and End. The loosely-timed coding style is appropriate for software development

in an MPSoC environment. This coding style supports modeling of timers and

coarse-grained process scheduling, sufficient to boot and run an operating

system. The most important aspect of this abstraction level is temporal

decoupling, where processes can run ahead of simulation time. This means that

the different SystemC models of the architecture do not synchronize with each

other at every clock cycle. With Loosely-Timed interfaces, the synchronization

mechanisms among the components of a system introduce a continuous trade-off

between the amount of temporal decoupling and the simulation speed. It does

not make much sense to require an accuracy of 100% at the interface of models

12

described at this modeling style since, anyway, the timing accuracy of the whole

system will be compromised by the temporal decoupling.

Approximately-timed: This coding style has more timing points in a

transaction. At this level the number of bus cycles is important: the information

that the bus transfers for each clock cycle is grouped in one transaction; this

coding style is appropriate for the use case of architectural exploration and

performance analysis. At this level a transaction is broken down into multiple

phases (corresponding to bus transfer phases), with an explicit synchronization

point marking the transition between phases. This coding style does not use

temporal decoupling. The processes in this level of abstraction run in lock-step

with simulation time. Despite its name, this coding style can accurately model the

timing of the communication. This abstraction level does not mean that the

model will be described at an RTL level, only that the timing obtained at the

interface is correct.

Cycle-accurate style is not listed (in Figure 2.4), since there is no standard for

this kind of coding style. In this thesis, the model is built based on

approximately-timed style and cycle-accurate features are added. The cycle-

accurate model captures the behavior in each clock cycle. There is no need to

predict the delay before sending a transaction since a cycle-accurate, clock-

triggered module could calculate the delay itself. This is useful when simulating a

complex system. However, this kind of model needs more work on modeling and

runs slower than the loosely-timed and approximately-timed models.

2.1.2 OSCI TLM2.0 Standard

 OSCI (Open SystemC Initiative) have released a new TLM standard in June

2008. It provides a standardized approach for creating models and transaction-

13

level simulations. Figure 2.5 shows the architecture of TLM-2.0. One

contribution of TLM-2.0 is the standard transaction type (generic payload) and

related interfaces and socket. To maintain interoperability, TLM-2.0 defines a

unified communication mechanism that uses core interfaces, sockets and a basic

protocol. An important advantage of TLM2.0 is Interoperability. To maintain

interoperability, TLM-2.0 defines a unified communication mechanism that uses

sockets, standard transaction type (generic payload), a basic protocol and core

interfaces.

Figure2.5: TLM2.0 Architecture [2]

In TLM-2.0, an initiator is a module that initiates new transactions, and a target

is a module that responds to transactions initiated by other modules. A

transaction is a data structure (a C++ object) passed between initiators and

targets using function calls. The same module can act both as an initiator and as a

target, and this would typically be the case for a model of an arbiter, a router, or a

14

bus. In order to pass transactions between initiators and targets, TLM2.0 uses

sockets. An initiator sends transactions out through an initiator socket, and a

target receives incoming transactions through a target socket. A module that

merely forwards transactions without modifying their content is known as an

interconnect component. An interconnect component has both target socket and

initiator socket. Figure 2.6 shows the producer consumer model, where the

producer is the initiator and consumer is the target. The transaction object shown

as a square feature inside initiator block can be sent from initiator to target

through interconnect by forward path and the target can respond back by sending

the transaction object through backward path.

Figure2.6: Producer Consumer model [2]

The generic payload serves two closely-related purposes. It can be used as a

general-purpose transaction type for abstract memory-mapped bus modeling

when you are not concerned with the exact details of any particular bus protocol,

offering immediate interoperability between models off-the-shelf. Alternatively,

the generic payload can be used as the basis for modeling a wide range of specific

15

protocols at a more detailed level. The beauty of this approach being that it is

relatively easy to bridge between different protocols when both are built on top of

the same generic payload type [15]. Table 2.1 shows the attributes that are

generally associated with a generic payload.

Table2.1: Generic Payload attributes

Attributes

Descriptions

Command

read or write type of the transaction

Address

read or write address

Data pointer

the pointer pointed to the data array

Data array

A data array, each member is one byte data.

Data length

Number of bytes of the data in a transaction

Byte enable array

Identify which byte lanes are used in data array

Streaming width

Number of bytes transferred on each beat
in a transaction

Response status

Status for the response transaction

Extension pointer

Pointer to an user defined extension class

2.1.3 Blocking and Non-Blocking transport interfaces

Blocking and Non-Blocking interfaces are the two basic interfaces of TLM2.0

transport interfaces. The blocking interface uses blocking transport function for

communication. This function is called by the initiator thread, received by the

target thread, which processes the request and then returns the result. Until the

16

transaction has been processed and released the initiator thread is blocked. The

blocking transport functions and its arguments are shown in below figure.

Figure2.7: Blocking transport function

The principal argument of a blocking transport function is the transaction object

handle which is the pointer to the data structure that has different attributes as

mentioned above while explaining generic payload. The b_transport call also

carries a timing annotation represented by sc_time argument in the Figure2.7,

which should be added to the current simulation time to determine the time at

which the transaction is to be processed. The timing annotation is active on both

the call to and the return from the b_transport method. This kind of interface is

usually used in loosely-timed coding style.

The non-blocking transport functions are called by the initiator thread, received

by the target thread, which immediately returns, before processing the request.

Subsequently the target, having processed the request makes a transport call

backwards to the initiator to return the result. In the non-blocking case there are

actually two types of transport used. The forwards transport path is used by the

initiator to pass the request to the target and the backward transport path is used

by the target to return the response. The advantage of the non-blocking transport

interface is that the initiator can carry on processing, while the target is

processing the request originally made.

17

Figure2.8a: Forward non-blocking transport interface

Figure2.8b: Backward non-blocking transport interface

These functions have timing annotation as well as phase as arguments along with

the transaction object handle. The timing annotation has the same significance as

explained above in blocking transport interfaces. The phase can take any value

mentioned below in the basic protocol phases.

2.1.4 Basic Protocol

TLM-2.0 defines basic transaction phases to maintain a basic communication

protocol. The basic protocol is accurate enough for simple transactions. Users can

extend the payload with extra attributes and define new phases to implement a

certain protocol. The four important phases of a base protocol are:

BEGIN_REQ (Begin Request)

 Initiator acquires bus

 Connections becomes “busy” and blocks further requests

 Payload becomes “busy”

END_REQ (End Request)

 Target “accepts” request and completes the handshake

 Bus freed to start additional requests

18

BEGIN_RESP (Begin Response)

 Target acquires bus to provide a response

 Bus becomes “busy”

END_RESP (End Response)

 Initiator acknowledges response to complete it.

 Bus and Payload reference freed up

The following Figure 2.9 shows the phases involved in a base protocol.

Figure 2.9: Basic Protocol Phases

The return types used for non-blocking function calls are:

TLM_ACCEPTED

 Transaction, phase and timing arguments unmodified (ignored) on return

 Target may respond later (depending on protocol)

TLM_UPDATED

 Transaction, phase and timing arguments updated (used) on return

 Target has advanced the protocol state machine to the next state

TLM_COMPLETED

 Transaction, phase and timing arguments updated (used) on return

 Target has advanced the protocol state machine straight to the final phase

Target Initiator

19

CHAPTER 3

DESIGN OF NETWORK ON CHIP ARCHITECTURE IN SYSTEMC TLM2.0

3.1 Router Architecture

 The most important component of a NoC interconnect fabric is a router.

The router is responsible for transmitting the packets from one point in the

network to another. Multiple routers are connected together in a NoC

interconnect fabric. The router may have a variable number of input and output

ports. A packet arriving at an input port will be forwarded to one of the output

ports. A destination address in the packet header and a routing table will be used

to make the output port selection.

Figure3.1: NOC Router Implementation

The basic components of NoC router are following:

 FIFOs

 Decoder

 Crossbar

 Arbiter

20

In a NoC, when a packet is being transmitted, few control signals are also used to

control point to point transmission on the on chip network. Different functions

used to model NoC router are explained in detail in Section 3.2.

3.2 Functional level description

There are various functions used in modeling router at different abstraction level.

Different models use few or all of these functions. Detailed description of these

functions is explained in this section.

3.2.1 Routing table generation

The router uses a router-table to determine which output socket to send an

incoming transaction object. The router-tables are specified to the router at

compile-time via routing table file where a table is specified for each router. Each

entry in the table contains a 32-bit start address, a 32-bit end address and the

output socket number (0, 1, 2, etc). Each entry specifies a range of output

addresses to be routed to a specific output socket. As an example, a destination

address in the range is 0x00000000 – 0x000000FF should be routed to output

socket #2. The corresponding entry in the routing table would be (16#00000000,

16#000000FF, 2). The example below shows three entries in a routing table. The

first entry is explained in the example above and the second entry is for address

range of 0x00000100-0x000001FF routed to output scoket #1. The third is for a

destination address of 0x00000200 routed to output socket #3.

((16#00000000, 16#000000FF, 2),

(16#00000100, 16#000001FF, 1),

 (16#00000200, 16#00000200, 3))

Example: Routing table

21

While the router has output sockets numbered #0, #1, #2, #3, etc., when the

address attribute in the transaction object does not matches to a Router Table

entry, the transaction object will be dropped. It will be processed normally, but

will never leave the router. The router creates the routing table during compile

time by reading the router table specific to it (distinguished from other router

tables by the router ID), by opening and reading the file named

“routing_tables_pkg.vhd”. A C++ vector type is declared to store the routing

table entries. Each entry in the vector is a struct composed of three elements:

• 32 bit start address

• 32 bit end address

• Output socket (natural) number

3.2.2 Decoder

The decoder uses the X-Y based routing to decide the route of the transaction

object. The decoder uses the routing table to determine which output socket the

transaction object is to be sent to, for the next level of router. When a transaction

objects enters a router, the first function which handles it is the decoder function.

The address attribute of the transaction object is used to compare against each

entry in the routing table of the corresponding router to check for a match. If a

match occurs the corresponding output socket number is returned. If the address

is not found in any of the entries of the routing table, a negative one (-1) is

returned, which means that the transaction object is illegal or invalid. In such a

situation, the transaction object doesn’t leave the router and is deleted. Once the

output socket number is decided, transaction object is sent to the next router in

case of loosely timed. But in case of approximately timed and router cycle

22

accurate router model, once the address is decoded, it is sent into the

corresponding output FIFO associated with the particular output socket.

3.2.3 FIFO implementation

The FIFOs are used in approximately-timed and cycle accurate router models.

These are implemented using C++ vector. Each element in the FIFO has two

components:

• Socket ID through which transaction object entered the router

• Transaction object handle

 Value which stores the socket ID is searched against each entry and when a

match occurs, it returns the corresponding transaction handle, which will be used

by the arbiter for a particular arbitration scheme. The depth of FIFO is decided

by the parameter FIFO_DEPTH which is declared as a macro in the router.

3.2.4 Arbiter

The arbiter is located before every output socket of the router. The basic function

of the arbiter is that, it takes in multiple requests and generates grant to a

particular request. The arbiter utilizes round robin mechanism arbitration. A fair

priority arbiter is made by changing the priority from cycle to cycle. This is used

in approximately-timed and cycle accurate models of the router. The arbitration

takes place in both the directions i.e output FIFO for processing the requests and

input FIFO for processing the responses. The implementation of round robin

arbitration is discussed below. The FIFOs contain two elements, the socket ID

through which transaction object entered the router and the transaction object

handle. Two arrays of integer, with size equal to the number of input and output

ports has each element storing the socket ID which has the highest priority in

23

that clock cycle for the particular input/output port. If the FIFO is empty,

arbitration is not performed for that clock cycle and the priority changes by

incrementing the ID of the particular socket. When the FIFO is not empty, the

FIFO is searched for the ID stored by the priority array. If a match occurs, the

corresponding transaction object is selected to be sent through socket. If the

FIFO is not empty and match does not occur, the priority ID is incremented until

a match occurs and the corresponding transaction object is sent through the

socket. This pseudo code for the arbitration scheme used at the FIFOs

corresponding to output socket for one clock cycle is shown below.

for i=0:Num_outputs-1 do

 if (FIFO_i = empty) then

 current_m(i) = current_m(i) + 1

 elseif (FIFO_i = !empty) then

 for k=0:FIFO_i.size()-1 do

 if (current_m(i) in FIFO_i(k)) then

 nb_transport_fw (corresponding transaction object)

 current_m(i) = current_m(i) + 1

 elseif (current_m(i) is not found in FIFO_i(k)) then

 current_m(i) = current_m(i) + 1 until match occurs

 nb_transport_fw (corresponding transaction object)

 end if

 end for

 end if

end for

24

3.2.5 Additional phases to the base protocol

To make router model cycle and register accurate, two more phases are added to

the base protocol. The additional phases are FIFO_FULL and

FIFO_AVAILABLE. When a transaction object with BEGIN_REQ phase enters a

router, the size of FIFO is checked, if the size is equal to FIFO_DEPTH, the phase

FIFO_FULL is sent to all the adjacent routers. If a FIFO_FULL is received by a

router, no more transactions are sent through that particular socket until it

receives the FIFO_AVAILABLE phase. The router checks for the depth of the

FIFO every clock cycle and once it reduces to FIFO_DEPTH- 1, it sends the phase

FIFO_AVAILABLE to all the routers to which FIFO_FULL was sent i.e all the

adjacent routers.

3.3 Abstraction levels in modeling NoC

 Abstraction is a powerful technique for design and implementation of

complex System-on-Chips. It allows the designer to tackle complex systems by

hiding the low level implementation details. Different amounts of details are

visible at different levels of abstraction.

Figure3.2: Different levels of abstraction

Approx. timed

Cycle Accurate

Loosely timed

A
b

st
ra

ct
io

n

25

In this thesis, three electronic system levels of abstractions are considered for

modeling the NoC in SystemC TLM2.0.

 Loosely-timed or LT modeling level

 Approximately-timed or AT modeling level

 Cycle Accurate modeling level

 In general, TLMs pose a trade-off between an improvement in simulation

speed and a loss in accuracy. The tradeoff essentially allows models at different

degrees of accuracy and speed. High simulation speed is traded in for low

accuracy, and a high degree of accuracy comes at the price of low speed. [14]

3.4 LT router model

Loosely-timed model uses blocking transport function (explained in Section

2.1.3) for communication. Communication in loosely-timed models allows for

exactly two timing points associated with each transaction, call and return of the

blocking transport function, respectively. In loosely-timed communication, the

transaction is processed within the context of the initiator of the transaction

solely; context switches due to multi-hop communication are avoided. In Figure

3.3, this is indicated by a solid arrow for each transaction.

Figure3.3: LT NoC block diagram

26

The blocking transport function, as the name suggests, blocks other transaction

until the current function call is completed. Since all transactions take place

sequentially, no congestion takes place in any of the router. Hence there is no

need of an arbiter in loosely-timed router model. The LT router model is kept

untimed as the interest is in faster simulation at this level of abstraction. The

important components of LT router model are:

 Routing table

 Decoder

The detailed functional descriptions of these components are given in Section

2.2.1 and 2.2.2. In case of the loosely timed NoC model, b_transport function in a

router decodes the incoming transaction object’s address attribute and once the

output socket number is decided, it calls the b_transport function in the next

router to which transaction object is transmitted to. This serial effect is shown

below in Figure 3.4.

Figure3.4: LT NoC model

27

The return types used for blocking function calls are:

 TLM_OK_RESPONSE- This is returned when the transaction is complete

without any error.

 TLM_INCOMPLETE_RESPONSE- This type is returned when the transaction

is yet to be completed.

 TLM_ERROR_RESPONSE- This is returned when the operation of a

transaction fails. It can be error due to address or the operation meant to be

performed.

3.5 AT router model

 For more timing accurate simulation of multi-hop communication, several

timing points are needed per transaction. Approximately-timed communication

provides more accuracy, and is implemented using non-blocking transport

functions. In Figure 3.5, this is indicated by discontinuous lines for a single

transaction. This level is needed to simulate congestion on buses, and to

experiment with different arbitration strategies. Approximately-timed model

uses nb_transport_fw and nb_transport_bw functions (explained in Section

2.1.3) for communication.

Figure3.5: AT NoC block diagram

28

At this level of abstraction, while modeling the NoC router, round robin

arbitration scheme is used. This is mainly performed to manage congestion when

multiple transactions are started simultaneously.

The important components of AT router model are:

 Routing table

 Decoder

 Arbiter

 FIFOs

The transaction object in this abstraction level is first processed by decoder

function. Once decoded and output port is selected, it is sent to the output FIFO

located at the corresponding output socket. The FIFO consists of mainly two

elements, socket ID through which transaction object entered the router and the

transaction object handle. The arbiter performs variable priority round robin

arbitration based on the IDs stored in the FIFO. Once a match occurs the

corresponding transaction object is sent to next router. For faster simulation

purposes, depth of the FIFO is not fixed and all the transactions in the FIFO are

processed and the FIFO is emptied every clock cycle.

29

nb_transport_fw

nb_fw(BEGIN_REQ)

TLM_ACCEPTED

Decode and
push into FIFO

Send_trans_next_stage

nb_fw(BEGIN_REQ)

TLM_ACCEPTED

nb_bw(BEGIN_RESP)

TLM_ACCEPTED

nb_transport_bw

nb_bw(END_REQ)

TLM_ACCEPTED

nb_bw(END_REQ)

TLM_ACCEPTED

nb_bw(BEGIN_RESP)

TLM_ACCEPTED

nb_fw(END_RESP)

TLM_ACCEPTED

nb_fw(END_RESP)

TLM_ACCEPTED

for i=0:Num_outputs-1
while (FIFO_i = !empty)

if (current_m(i) in FIFO_i)

current_m(i)=current_m(i)+1

elseif (current_m(i) is not in FIFO_i)

current_m(i)=current_m(i)+1

Decode and
push into FIFO

for i=0:Num_inputs-1
while (FIFO_i = !empty)
if (current_s(i) in FIFO)

current_s(i)=current_s(i)+1

elseif (current_s(i) is not in FIFO)

current_s(i)=current_s(i)+1

Figure3.6: AT NoC flow chart

Figure 3.6 shows the flowchart while processing a transaction in AT router.

During a clock cycle when multiple transactions enters the FIFO, all the

transaction are sent through output socket during that clock cycle but the

sequence of the transactions being sent follows round robin arbitration policy.

The priority is incremented every clock cycle. Since multiple transactions are

being sent every clock cycle, latency has to be characterized for each transaction.

The latency in approximately timed model is characterized by additional

attributes (start time and end time) in addition to the generic payload of a

transaction. When a transaction is sent into the NoC, both these attributes record

the value of current simulation time. In the router, the ith transaction sent out a

30

FIFO adds a delay of i times the clock period to the end time attribute of

transaction. The difference between the start time and end time attributes of a

transaction object are used to calculate the latency of each transaction.

4 1 5 2

Initiatior

socket

Figure 3.7: Arbitration in AT router

For example say at a particular clock cycle, transactions inside a FIFO are as

shown in the above Figure 3.7. The circular features represent the transaction

object and the number within it represents the socket ID through which the

transaction entered the router. If the current priority for the particular output

socket is 2, transaction with ID-2 is sent first through the socket and a delay of

one clock cycle is added to the end time attribute and the next transaction that is

selected is with ID-4 and a delay of two clock cycles is added. This process

continues till the last transaction, which in above example is transaction with ID-

1 is sent with a delay of 4 clock cycles.

3.6 Cycle Accurate model

 The cycle accurate model differs from approximately timed router model in

the following ways:

 Only one transaction object is sent through an output socket every clock cycle

 The model is both cycle accurate and register accurate

 Additional phases to introduce back-pressure

31

The important components of cycle accurate router model are:

 Routing table

 Decoder

 Arbiter

 FIFOs

 Additional phases: FIFO_FULL, FIFO_AVAILABLE

The operation of decode followed by sending the transaction into the FIFO at the

output socket is the same as mentioned in the approximately timed router model.

In this model, variable priority round robin arbitration mechanism selects only

one transaction object from every FIFO to be sent to the next router or target.

Here the depth of the FIFO is limited by the generic FIFO_DEPTH declared as a

macro in the cycle accurate router code. The additional phases FIFO_FULL and

FIFO_AVAILABLE are used to introduce back-pressure in order to avoid

deadlock occurrence as the FIFO depth is limited. Once the FIFO depth increases

to its full capacity, FIFO_FULL phase is sent to all adjacent routers since a

transaction coming from any of the adjacent router can affect the operation of the

FIFO. Once the depth reduces by FIFO_DEPTH-1, FIFO_AVAILABLE phase is

sent to all adjacent routers. In this thesis, for analysis and simulation purposes,

FIFO_DEPTH is 8.

32

FIFO_skt_pair

FIFO_targ_skt

FIFO_init_skt

PE

PE

PE

Router

Figure 3.8: Different types of FIFOs

In cases where two adjacent routers or router-processing element are connected

by a pair of sockets in either direction, interaction between forward and

backward paths in the same direction needs to be considered. In order to

maintain cycle accuracy with transactions going through forward and backward

paths in same direction so as to allow only one transaction, either a request or a

response per clock cycle, three types of FIFOs are used

 FIFO_skt_pair- This types of FIFO is used when there is a pair of initiator and

target sockets connected between two routers or between router and

processing element. It can store either request or response transactions.

 FIFO_init_skt- This is used only when an initiator socket is connected to a

router or processing element. It stores only request type transactions.

 FIFO_targ_skt- This is used only when a target socket is connected to a

router or processing element. It stores only response type transactions.

33

nb_transport_fw

nb_fw(BEGIN_REQ)

nb_transport_bw

nb_bw(FIFO_FULL)

TLM_ACCEPTED

Decode

if FIFO_skt_pair.size() = FULL

if FIFO_init_skt.size() = FULL

else send trans into FIFOTLM_ACCEPTED

nb_bw(FIFO_FULL)

TLM_ACCEPTED

nb_bw(END_REQ)

TLM_ACCEPTED

Decode

if FIFO_skt_pair.size() = FULL

if FIFO_targ_skt.size() = FULL

else send trans into FIFO TLM_ACCEPTED

nb_fw(END_RESP)

TLM_ACCEPTED

nb_bw(FIFO_FULL)

TLM_ACCEPTED

nb_bw(BEGIN_RESP)

nb_fw(FIFO_FULL)

TLM_ACCEPTED

nb_fw(FIFO_FULL)

TLM_ACCEPTED

nb_fw(FIFO_FULL)

TLM_ACCEPTED

Figure 3.9a: Cycle accurate NoC flow chart- Forward and Backward functions

Once the address is decoded, the type of FIFO is known. If it is of the type

FIFO_skt_pair and if it is full all the input ports and output ports are sent with

the phase FIFO_FULL through backward and forward paths respectively. This is

because both request and responses type transactions can enter this FIFO and all

the sockets through which these transactions can enter the router need to be

blocked. If FIFO_init_skt or FIFO_targ_skt are full, FIFO_FULL phase is sent

through backward and forward paths respectively. If a router receives a

FIFO_FULL, it stops from sending transactions through that particular socket

until it receives a FIFO_AVAILABLE phase.

34

Send_trans_next_stage

nb_bw(BEGIN_RESP)

Wait 1 clk cycle

for i=1:Num_FIFO_skt_pair
Arbitrate

If(trans is a REQ)

elseIf(trans is a RESP)

nb_fw(BEGIN_REQ)

TLM_ACCEPTED

TLM_ACCEPTED

for i=1:Num_FIFO_init_skt
Arbitrate nb_fw(BEGIN_REQ)

TLM_ACCEPTED

for i=1:Num_FIFO_targ_skt
Arbitratenb_bw(BEGIN_RESP)

TLM_ACCEPTED

If FIFO_skt_pair.size() <= DEPTH-1

If FIFO_init_skt.size() <= DEPTH-1

If FIFO_targ_skt.size() <= DEPTH-1

nb_bw(FIFO_AVAILABLE)

TLM_ACCEPTED

nb_bw(FIFO_AVAILABLE)

TLM_ACCEPTED

nb_fw(FIFO_AVAILABLE)

TLM_ACCEPTED

Figure 3.9b: Cycle accurate NoC flow chart- Arbitration

Figure 3.9b shows a part of flowchart of a cycle accurate model. Every clock cycle,

depending on the current priority of the FIFO, all the transactions are searched

and once a match occurs, it is forwarded to the next stage of router or target.

Following this, the priority value is incremented. The size of the FIFOs is checked

every clock cycle, and if a FIFO_FULL had been sent by that FIFO and its size

reduces to DEPTH-1, depending on the kind of FIFO, FIFO_AVAILABLE phase is

sent to the adjacent routers. If it is FIFO_skt_pair, FIFO_AVAILABLE is sent to

all input and output ports through backward and forward paths respectively. In

case of FIFO_init_skt and FIFO_targ_skt, FIFO_AVAILABLE is sent through all

input and output sockets respectively.

35

There is no need to predict latency before sending transaction out of the router as

cycle accurate NoC platform will calculate the delay itself. For example say the

elements in FIFO are as shown in Figure 3.10a at the beginning of nth cycle and

the current priority for arbitration at the corresponding socket is 2, the

transaction with ID-2 is sent through and the priority for next cycle is

incremented to 3, and transaction with ID-3 will be sent during (n+1)th cycle.

4 1 5 2

Figure 3.10a: Elements in FIFO at nth cycle

4 1 55 2 1

Figure 3.10b: Elements in FIFO at (n+1)th cycle

If transactions have entered the FIFO through sockets 5, 2 and 1, the elements in

FIFO appear as shown in Figure 3.10b at the beginning of (n+1)th cycle. Since the

priority for the current cycle is 3 and there is no transaction with ID-3, priority is

incremented to 4 and transaction with ID-4 is sent through the socket at (n+1)th

cycle. This model differs from approximately timed model as only one transaction

is sent through a socket every clock cycle and latency is not predicted as the

platform can calculate the delay.

36

3.7 Differences between LT, AT and cycle accurate NoC platform

The differences between different NoC platforms are tabulated below.

Table 3.1: Differences between LT, AT and cycle accurate router models

Feature

LT

AT

Cycle-accurate

Blocking transport

Used

Not used

Not used

Non-blocking transport

Not used

Used

Used

Number of phases used

None

4

6

Synthetic master

Functional

Cycle accurate

Cycle accurate

Synthetic slave

Functional

Functional

Cycle accurate

Arbitration

Not used

Round-robin

Round-robin

Latency modeling

Transaction

based

Transaction

based

Simulation based

37

CHAPTER 4

EXPERIMENTATION, PERFORMANCE ANALYSIS AND SIMULATION

RESULTS

4.1 Experimental Setup

The NoC architecture provides the communication infrastructure for the cores. In

the design, a dead-lock free routing algorithm (X-Y routing) is used. The utilized

topology for implementation is a 4×4 regular two dimensional mesh. This

topology is shown in Figure 4.1.

 Figure4.1: 4x4 regular mesh NoC

38

In the above Figure4.1, pentagons represent NoC routers and circles represent

the processing elements of this network. It contains 16 routers, and routers are

named based on their position in coordinate system. Each router is named as

RouterX where X is the ID of the router and the ID is in increasing order from

left to right, top to bottom starting from top-left most router. The value of X

ranges from 0-15. The processing elements can be either master or slave. The

processing elements named as Mi are synthetic masters where i stand for the ID

associated with the processing element. And the processing elements named as Si

are synthetic slaves where i stand for the ID associated with the processing

element. The value of i in both masters and slaves range from 0-7. Each router

contains both initiator and target sockets in the direction where a router is

connected. And it contains a target socket if connected to a synthetic master core

and an initiator socket if connected to a synthetic slave core.

For n-dimensional mesh topologies in NoCs, dimension order routing produces

deadlock-free routing algorithms. The X-Y routing is one of the most commonly

used algorithms of this kind. The routing algorithm which is used in this design is

a version of X-Y algorithm. This algorithm is deterministic algorithm where a

transaction object takes routing in one dimension and it continues till this

transaction object attains the desired coordinate in that dimension. After that,

routing is continued to do the same procedure in the other dimension. This

routing algorithm prevents deadlock. According to the position of each router

and destination address, routing takes place first in X direction and then in Y

direction.

39

An important characteristic of NoC is Injection rate, which can be defined as

number of transaction objects injected by a master core per clock cycle per socket

into the network. The injection rate can vary from 0 to 1.

LT master’s injection rate is characterized by number of transaction objects sent

by a single master within a quantum period. In case of AT NoC model and cycle

accurate models, same synthetic master is connected. The block diagram of such

a synthetic master is shown in the figure3.2.

Transaction

generation thread

Synthetic Master

Buffer for storage Initiatior

socket

Figure4.2: Synthetic master

The synthetic master contains an infinite sized buffer, which stores the

transactions generated by the transaction generation thread. Since at high

injection rate, the number of transaction that queue increases due to congestion,

an infinite sized buffer is used. The transaction generation thread depending on

the injection rate sends transaction objects into the buffer. For example if the

injection rate is 0.1, a transaction object is sent into the buffer every 10 clock

cycles. And if the injection rate is 0.5 a transaction object is sent into the buffer

every two clock cycles. At a particular injection rate, the clock cycle within the

injection period, at which the transaction object is sent into the buffer is

randomized using uniform random distribution. On the other hand, if the buffer

is not empty it sends the transaction object into the network every clock cycle.

40

The LT and AT slave simply performs memory operation depending on the

address attribute of the transaction object and the type of transaction, either read

or write. It takes one clock cycle to perform every operation.

Cycle accurate master and slave are similar to approximately timed models but

they can also handle additional phases of FIFO_FULL and FIFO_AVAILABLE.

When cycle accurate models receive a FIFO_FULL, they do not send a

transaction into the platform until it receives a FIFO_AVAILABLE phase.

4.2 Performance Analysis

All measurements were executed on a workstation with INTEL(R) Q9400

2.66GHz quad core processor, 3GB RAM and 32-bit RedHat linux. The platform

modeled at the three abstraction levels are connected to synthetic masters and

slaves. Synthetic masters generate synthetic traffic load based on following

spatial distributions:

 Uniform-random: A master sends traffic to all the slaves with equal

probability.

 Hot-Spot: In this distribution, few slaves are selected as hot spots and a

certain amount of traffic is sent to these nodes, rest of the traffic is distributed

uniformly among all other slaves.

 Complement- A complementary distribution is where destination address is 1’s

complement of source address. It creates a scenario where master-slave pairs

are created. For example, a network has 4 masters and slaves, and they are

numbered as 0,1,2,3. Master with ID-0 sends transactions to slave with ID-4

and Master with ID-1 sends transactions to slave with ID-3 and so on.

41

The performance of SystemC TLM2.0 NoC models are characterized by many

metrics. The most important metrics are:

 Latency

 Error rate

 Transaction objects per second

 Simulation speed

One of the most significant metrics being measured is the latency, which

represents the delay between the initiation of a transaction object by a master

and the receipt of that transaction object by a slave. In practice, this latency is

mainly affected by queuing and processing delays. Queuing delay occurs when a

router receives multiple transaction objects from different sources heading

towards the same destination and needs to queue the transaction objects for

transmission. Processing delays are incurred while a router determines what to

do with a newly received transaction object. For simulation purposes, the LT

slave is modeled with no processing time and merely sending a response back

when it receives a transaction object, but the slaves are modeled with one clock

cycle latency to process a single operation.

The trade-off between speed and accuracy is studied by comparing the error rate

in latency, taking the cycle accurate model as the reference. The error rate is

calculated as:

Error rate =
| – |

42

The other metric used to compare the performance of NoC at different

abstraction levels is transaction objects per second, which is defined as number of

transactions completed by the NoC platform at a particular injection rate for a

running time of 100 seconds. It compares the speed of the models at different

abstraction levels. In case of LT NoC platform, a transaction is considered to be

complete only when the function is returned to the initiator, whereas in

approximately timed and cycle accurate model, the count is incremented only

when all the phases of a transaction are completed.

The fourth metric used to characterize the NoC models is the simulation speed.

This parameter also shows the comparison in terms of speed of operation to

execute a particular number of transaction objects. The figures below in the

section of simulation results show the execution time to finish 106 transactions

completely. Speed up of each model is calculated with RTL-VHDL model as

reference.

4.3 Simulation Results

In this section the characteristics of SystemC TLM2.0 NoC models at different

abstraction levels will be discussed. Simulation results of these abstraction levels

are compared against that of a generic synthesizable RTL-VHDL 4x4 mesh NoC.

Different synthetic traffic patterns have been used for evaluating interconnection

networks. Uniform-random, Hot-spot and complement are the most widely used

traffic models for the analysis of interconnection networks. The 4x4 mesh NoC

platform is injected with above mentioned traffic patterns and simulation results

are shown below. In case of hotpsot, slaves S0 and S7 are sent traffic with a

probability of 30% each and the rest of traffic is uniformly distributed among

other slaves.

43

Figure 4.3a: Latency Comparison with Uniform-random traffic

Figure 4.3b: Error rate in Latency with Uniform-random Traffic

44

Figure 4.3c: Transaction objects per second with Uniform-random traffic

Table 4.1: Speedup Table for Uniform-random Traffic at injection rate = 0.1

Abstraction Level

Execution time

(to finish 106 trans)

Speedup

Loosely timed

0.5 sec

2278.7

Approx. timed

5 sec

227.9

Cycle Accurate

22 sec

51.8

RTL-VHDL

1139.37

1

45

Figure 4.4a: Latency Comparison with Hot-Spot traffic

Figure 4.4b: Error rate in Latency with Hot-Spot Traffic

46

Figure 4.4c: Transaction objects per second with Hot-Spot traffic

Table 4.2: Speedup Table for Hot-spot Traffic at injection rate = 0.1

Abstraction Level

Execution time

(to finish 106 trans)

Speedup

Loosely timed

0.5 sec

2349.5

Approx. timed

5 sec

235

Cycle Accurate

22 sec

53.4

RTL-VHDL

1174.75

1

47

Figure 4.5a: Latency Comparison with Complement traffic

Figure 4.5b: Error rate in Latency with Complement Traffic

48

Figure 4.5c: Transaction objects per second with Complement traffic

Table 4.3: Speedup Table for Complement Traffic at injection rate = 0.1

Abstraction Level

Execution time

(to finish 106 trans)

Speedup

Loosely timed

0.5 sec

2416.9

Approx. timed

5.5 sec

219.7

Cycle Accurate

23 sec

52.5

RTL-VHDL

1208.47

1

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0.01 0.02 0.04 0.05 0.1 0.2 0.25 0.33

Tr
an

sa
ct

io
n

 O
b

je
ct

s
p

er
 S

ec
o

n
d

Injection rate

Injection rate vs Transaction Object per Second -
Complement Traffic

LT NoC

AT NoC

CA NoC

RTL-VHDL

49

In above plots, it is clear that latency increases with increasing injection rate, this

is because of higher congestion taking place at those injection rates. In case of

cycle accurate model, it increases exponentially after congestion since the

masters are suspended (when FIFO_FULL is sent to master) for many clock

cycles as a result of which the transaction are queued in the buffer for many

cycles.

The error rate in latency is calculated with cycle accurate model as the reference.

Since LT doesn’t witness congestion, error rate increases with increasing

injection rate, as the latency remains a constant in case of LT-NoC. Since AT

model is not cycle accurate and can send multiple transactions in same cycle,

error rate is high in case of AT NoC as well, as shown in Figure 3.3b, 3.4b and

3.5b.

The LT-NoC is the fastest as there is very less context switching happening

whereas cycle accurate is the slowest among the different models as it involves

with huge amount of context switching and also masters are suspended due to

back pressure from routers as FIFO depth is limited. Approximately timed

models are faster than cycle accurate models since they involve less timing

(accuracy) points as the communication protocol in approximately timed is basic

protocol and cycle accurate models use two additional phases. Also there is no

back pressure in these models.

50

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

 In this thesis, OSCI SystemC Transaction-Level models for a NoC

interconnect are presented. It describes loosely-timed, approximately-timed and

cycle accurate router structures. A simulation performance of 2D 4x4 mesh

topology NoC modeled at three abstraction levels was compared against each

other. Based on TLM-2.0 standard, these models offer good interoperability.

The models were simulated with synthetic traffic based on uniform-random, hot-

spot and complement distribution. Since the LT model doesn’t handle multiple

transactions on fly, and hence doesn’t experience congestion, so the latency of LT

models is constant irrespective of the traffic and injection rate. AT model latency

is higher than LT model but doesn’t increase exponentially after congestion

because it’s not cycle accurate. Cycle accurate models are closer to RTL level and

their results are similar to RTL results. The speed-up of LT model when

compared to RTL-VHDL model is around 2200-2450x. But on average the error

rate in latency is around 15-18%. AT-models are around 200-250 times faster

than RTL-VHDL models with an average error rate of around 5-6%. Depending

on the application, the system is modeled at a particular abstraction level. With

higher abstraction level a considerable speedup is achieved, although it comes

with the trade-off of lower accuracy.

51

5.2 Future Work

One goal of these models is to provide an approach to explore the design space of

NoCs at system level. With these models, designers could develop NoC with

different structures and analyze the performance. This model also provides a

basic framework for transaction-level model of NoCs. For exploring the design

space, these models can used to implement different arbitration schemes

(example with QoS), topologies and routing algorithms. Virtual channels can also

be used in the NoC to optimize their performance.

52

REFERENCES

[1] The Open SystemC Initiative (OSCI), “SystemC v2.2 User’s Guide,”
2007. Available: http://www.accelera.org

[2] The Open SystemC Initiative (OSCI), “Transaction Level Model Standard”
v2.0, 2009. Available: http://www.accellera.org

[3] Thorsten Grötker, Stan Liao, Grant Martin, Stuart Swan, “System Design
with SystemC”, Kluwer Academic Publisher, 2002

[4] David C. Black, Jack Donovan, Bill Bunton, Anna Keist. SystemC: From the
Ground Up. S1: Kluwer Academic Publisher, 2004

[5] Qualcomm Network on Chip Library, Release 1.6.2

[6] William James Dally and Brian Towles, “Principles and Practices of
Interconnection Networks”, Morgan Kaufmann Publishers, 2004

[7] Glenn Leary, Krishna Mehta and Karam S. Chatha, “Performance and
Resource Optimization of NoC Router Architecture for Master and Slave IP
Cores”, Proceedings of International Conference on Hardware/Software Co-
design and System Synthesis (CODES-ISSS), September30-October5, Salzburg,
Austria, 2007

[8] Nilanjan Banerjee, Praveen Vellanki, and Karam S. Chatha, “A Power and
Performance Model for Network-on-Chip Architectures”, Proceedings of Design
Automation and Test in Europe Conference, Paris, France, February 16-20, 2004.

 [9] Hye-On Jang et al., “High-Level System Modeling and Architecture
Exploration with SystemC on a Network SoC: S3C2510 Case Study”,
Proceedings of Design, Automation and Test in Europe, vol. 1, pp. 538-543, Feb.
2004.

[10] Martin Streub¨uhr, Jens Gladigau, Christian Haubelt, and J¨urgen Teich,
“Efficient Approximately-Timed Performance Modeling for Architectural
Exploration of MPSoCs”, Forum on specification and Design Languages (FDL
2009), Sophia Antipolis, France, September 22-24, 2009

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Thorsten+Gr%C3%B6tker%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Stan+Liao%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Grant+Martin%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Stuart+Swan%22

53

[11] Seyyed Amir Asghari, Hossein Pedram, Mohammad Khademi, and Pooria
Yaghini, “Designing and Implementation of a Network on Chip Router Based on
Handshaking Communication Mechanism”, World Applied Sciences Journal 6
(1): 88-93, 2009. ISSN 1818-4952

[12] Jianchen Hu, “Transaction-level Modeling for a Network-on-chip Router in
Multiprocessor System”, Master’s thesis, Computer Engineering, North Carolina
State University, Raleigh, 2009

[13] Luca Fossati, “Development of the SystemC model of the LEON2/3
Processor”, Contract carried out by Luca Fossati, Politecnico di Milano (Italy)

[14] Gunar Schirner and Rainer D¨omer, “Quantitative Analysis of the
Speed/Accuracy Trade-off in Transaction Level Modeling”, Transactions on
Embedded Computing Systems, 8(1):1 29, 2008.

[15] Lasse Lehtonen, Erno Salminen, and D Ha ma la inen, “Analysis of Modeling
Styles on Network-on-Chip Simulation”, in the proceedings of NORCHIP, 2010

[16] Adan Kohler, Martin Raetzki, “A SystemC TLM2 Model of Communication in
Wormhole Switched Netwroks-on-Chip”, in the proceedings of Forum on
Specification Design Languages, 2009. FDL 2009, pp. 1-4, sep. 2009

[17] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.
Sangiovanni-Vincentelli, “Addressing the System-on-a-Chip Interconnect Woes
Through Communication-Based Design”, in the proceedings of Design
Automation Conference 2001, June 18-22, 2001

[18] www.doulos.com/systemc

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5661642

54

APPENDIX A

PERL SCRIPT- GENERATION OF NOC PLATFORM

55

As a part of automated generation of Network on Chip platform, a perl script

takes few files characterizing the NoC as input and generates the network on chip

platform, provided the SystemC TLM2.0 models of router and processing

elements are available. The Figure below shows the files that are read as input

and what each file contains and how it is used to generate the platform. The

following paragraphs describe each file and its characteristics in detail.

Figure A.1: NoC platform generation

56

test_soc_routing_tables_pkg.vhd:

In the this thesis, the NoC uses X-Y routing algorithm where a transaction object

depending on the present coordinate and destination address keeps transversing

in the X direction. Once it reaches the x coordinate of the destination router,

transaction object travels in the Y direction till it reaches the destination router.

The file test_soc_routing_tables_pkg.vhd contains the routing table information

for each router. The heading of each routing table is of the form

CONSTANT Rn_ROUTER_TABLE: NOC_ROUTER_TABLE_ARRAY :=

 Where n represents the ID of the corresponding router. The following figure

shows the routing table of router with ID 0.

CONSTANT R0_ROUTER_TABLE: NOC_ROUTER_TABLE_ARRAY :=
 (

((16#00000000, 16#FFFF0000, 2) ,
(16#00000100, 16#FFFFFFFF, 1),
(16#00000200, 16#FFFFFFFF, 3))

);

Format of contents in test_soc_routing_tables_pkg.vhd

The perl script opens the file during compile time and depending on the router

being constructed, the corresponding routing table is read which distinguishes

from other routing tables depending on the ID of the router. The routing table is

C++ vector. Each entry in the vector is a structure with three components: Start

Address, Mask and output socket number. For example when the routing table in

the above figure is read, first entry would have start address to be 00000000,

mask to be FFFF0000 and output socket number as 2.

57

test_soc.labeling:

This file contains the information of ID associated with the processing elements.

The format of the each line in the file is ID followed by the processing element’s

name. The master cores are named as Mi and the slave cores are named as Si,

where i is in the range of IDs given to master and slave cores respectively. This ID

depends on number of master cores and slave cores. This information is used

while creating instances of the Synthetic Processing elements during the creation

of NoC platform. The following figure shows a part of test_soc.labeling file.

 0 S0
1 M0
2 M1
3 M2

Format of contents in test_soc.labeling

device_descriptions_template.txt:

This file contains the number of the input and output ports of each router. The

format of each entry is router name, number of input ports, and number of

output ports. The following figure shows a part of

device_descriptions_template.txt file. This information of number of input ports

and output ports is used for the creation of target sockets and initiator sockets for

each router respectively.

R39, 9, 9
 R0, 3, 3

R23, 3, 3

Format of contents in device_descriptions_template.txt

58

Connectivity.txt:

This file contains the details of connection between routers and routers to

processing elements. The format of this file is destination core/router, port

number followed by semicolon has the source core/router, port number

information. The following figure shows a part of the file connectivity.txt. The

first entry in the following figure means the output port#1 of router R0 is

connected to input port#1 of router R2.

R2,P1;R0,P1

R0,P2;R2,P1

R0,P1;R39,P1

R39,P1;R0,P1

Format of contents in Connectivity.txt

test_soc.floorplan:

This file contains the details of frequency of operation of the processing elements.

The format of the contents of this file is ID of the processing element followed by

the frequency of operation of the corresponding core. The following figure shows

a part of the file test_soc.floorplan. This information is used while creating the

platform using approximately timed and cycle accurate models. The unit of

frequency is MHz. The first entry in the following figure means the frequency of

operation with ID 0 is 266MHz.

0 266

2 133

4 133

Contents of test_soc.floorplan

