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ABSTRACT  
   

Network-on-Chip (NoC) architectures have emerged as the solution to the 

on-chip communication challenges of multi-core embedded processor 

architectures. Design space exploration and performance evaluation of a NoC 

design requires fast simulation infrastructure. Simulation of register transfer 

level model of NoC is too slow for any meaningful design space exploration. One 

of the solutions to reduce the speed of simulation is to increase the level of 

abstraction. SystemC TLM2.0 provides the capability to model hardware design 

at higher levels of abstraction with trade-off of simulation speed and accuracy. In 

this thesis, SystemC TLM2.0 models of NoC routers are developed at three levels 

of abstraction namely loosely-timed, approximately-timed, and cycle accurate. 

Simulation speed and accuracy of these three models are evaluated by a case 

study of a 4x4 mesh NoC. 
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CHAPTER 1 

INTRODUCTION 

With increasing performance demands of current day applications, multi-

core devices have taken an important place in semiconductor technology. One of 

the daunting challenges of these multi-core devices is the challenges posed by the 

on-chip communication. When many cores share a bus, global synchronous 

communication becomes challenging as the master cores compete over the 

control of the bus. Also there are many more signal integrity issues caused by the 

increased parasitic effects and cross-coupling. Network-on-Chip (NoC) is fast 

replacing the traditional bus architectures for on-chip communications.  

The principal component of a NoC is a router and it is responsible for 

sending information from one point to another in a NoC. These routers can 

operate independently at different frequencies in a NoC. End to end chip 

communication can be considered to be pipelined through multiple routers along 

a path. There are many factors affecting the NoC performance such as network 

topology, flow control, routing, arbitrating algorithm and so on. It is very difficult 

to determine the optimum circuit structure based on the register transfer level 

(RTL) design flow. To solve this problem, a new level of abstraction at which 

designers could explore the design space much faster than RTL has emerged 

namely Electronic System Level (ESL) design. 

ESL design is a design methodology where a system can be designed at 

different abstraction levels. Each abstraction level differs from the other in the 

amount of functional details used to describe the system. Iterative redesign 

becomes extremely expensive especially at RTL level when the time to market is 

less. When designed at a higher abstraction level, the designer has more time to 
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explore the design space and can come up with multiple design alternatives. In 

this thesis, OSCI SystemC TLM2.0 standard is used to model the NoC. The design 

phase starts with a higher level of abstraction and as it moves down to lower 

abstraction levels, different alternatives in design are explored which enables the 

designer to make finer grain design changes.  

1.1 Network-on-Chip 

There are two basic types of on-chip interconnections: buses and NoC. 

There are several factors that have led to the advent of NoC. With the continuous 

technology scaling of semiconductor devices, there has been an increase in 

performance efficiency of the cores. The interconnection between the cores is also 

required to deliver high communication speed to meet the performance efficiency 

requirements. Interconnects do not scale at the same rate as devices, and hence 

delay on communication channels is much larger than clock period. The power 

required to drive the interconnections becomes significant part of overall chip 

power thus cutting back the benefit from device scaling. Traditional bus 

architecture is not efficient since long buses increases both delay and power 

consumption. 

Ideally the design should be completely independent of communication 

subsystem. The emergence of Globally Asynchronous Locally Synchronous 

(GALS) design methodology based multi-core devices has also raised the need for 

global asynchronous communication. GALS design methodology is where a set of 

local synchronous modules communicate with each other asynchronously. Thus, 

synchronous on-chip communication as assumed by several bus based 

architectures is no longer desirable. NoC is considered to be the solution for 

communication on future generation multi-core devices replacing bus based 
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architectures. NoC supports asynchronous packet switching based 

communication. Long signal propagation delays are effectively pipelined by 

introducing multiple routers along the path [7]. NoC supports high performance 

concurrent communication as various routers operate in a decentralized manner.  

NoC can be classified into two broad categories based on their topologies. 

Regular topologies such as mesh, torus or hypercube are suitable for processor 

architectures aimed at general purpose computing. Irregular or custom 

topologies are suitable for application specific processors such as media-

processors where the various cores demonstrate fairly well defined on-chip 

communication patterns. Irregular NoC have been demonstrated to be superior 

in router (resource) requirements and power consumption for application 

specific processors in comparison to regular architectures. Figure 1.1 shows some 

of the basic shapes of NoC.  

                         

                                        Mesh                                       Torus 

Figure1.1: Different NoC topologies  

1.2 Previous Work 

Modeling techniques using SystemC TLM (Transaction Level Modeling) 

have been studied widely. Shirner et al. [14] created two TLM models for AMBA 

bus and compared them against synthesizable bus functional model version. 

More abstract TLM models were four orders of magnitude faster with error up to 
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45%, and the more accurate TLM reached two order of magnitude speedup with 

an error of 35% in worst cases. Lehtonen et al. [15] simulated different models of 

2D mesh NoC such as 4x4, 6x6 and 8x8. Frequency of 50MHz was used for the 

NoC and simulations were run for 100ms. When simulated with a 4 word 

payload, TLM AT models speed up ranged from 13x to 15x when compared to 

RTL-VHDL models, with error on average latencies to be less than 10%. More 

abstract TLM LT models were 2x faster than AT models. Hu et al. [12] developed 

approximately-timed and cycle accurate router models and compared them 

against RTL router models. Simulations were performed for 4000 cycles with 

each initiator (two initiators were used) sending 500 transactions, with each 

transaction having 4 beats. TLM AT router model showed a speed up of 11.7 

whereas cycle accurate model showed a speed up of 6.85 compared to RTL 

model. Kohler et al. [16] describes a method to estimate latencies in one process 

using the concept of temporal decoupling. Simulations were performed on 8x8 

mesh network with uniform-random traffic pattern. Multi-hop model achieved a 

speedup by a factor of 20 compared to a cycle-approximate hop-by-hop TLM 

simulation. Estimated error depended linearly on the network utilization. They 

measured 45% deviation in average latencies for saturation load but on lower 

loads the estimated error was in acceptable range. Sgroi et al [17] address the SoC 

communication with a NoC approach. Here the communication is partitioned 

into layers following the OSI(Open System Interconnection) structure. Software 

reuse is promoted with an increase of abstraction from the underlying 

communication. Streubuhr et al. [10] proposes an efficient modeling approach 

that permits simulation-based performance evaluation of MPSOCs at Electronic 

System Level (ESL).  
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All the existing works model the communication architecture at two levels 

of abstraction, either loosely-timed and approximately-timed or approximately-

timed and cycle accurate, and provide a comparison at these abstraction levels. In 

this thesis, a comprehensive case study with 4x4 mesh NoC at three levels of 

abstraction namely loosely-timed, approximately-timed and cycle accurate is 

presented. The loosely-timed and approximately-timed models show better 

speedup when compared to [12] and [15].  

1.3 Contributions of the Thesis 

The primary contributions of the thesis are, 

• Design of a functional level parameterizable NoC router architecture. 

• Implementation of NoC router model at three abstraction levels- Loosely-

timed, Approximately-timed and Cycle Accurate. 

• Implementation of 4x4 mesh NoC using above mentioned router models for 

performance analysis and simulation purposes. 

• Implementation of framework for performance data collection. 

• Comparison of Speed vs Accuracy for NoC models at various abstraction 

levels. 

• Perl Script for automated generation of NoC platform using a set of files 

describing the characteristics of NoC. 

1.4 Thesis Organization 

          The remainder of the thesis is organized as follows. Chapter 2 describes 

design methodologies using SystemC TLM2.0 standards. Design and architecture 

of NoC router in SystemC TLM2.0 is explained in Chapter 3. It also describes the 

design of NoC router models in three abstraction levels of loosely-timed, 
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approximately-timed and cycle accurate. Chapter 4 describes the implementation 

of 4x4 2D mesh topology NoC for experimentation and performance analysis. It 

also describes the simulation results comparing the NoC platform at different 

abstraction levels. Lastly, the concluding remarks and future work is described in 

Chapter 5. 
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CHAPTER 2 

HARDWARE MODELING USING OSCI SYSTEMC TLM2.0 

SystemC is a system design language that has evolved in response to a 

need for a language that improves overall productivity for designers of electronic 

systems. SystemC offers real productivity gains by letting engineers design both 

the hardware and the software components together as they would exist on the 

final system, but at a higher level of abstraction. [4] This means that it is possible 

to concentrate on the actual functionality of the system rather than on its 

implementation details. Moreover, since the detailed implementation is not 

finalized, it is still possible to perform consistent changes to the system, enabling 

an effective evaluation of different architectural alternatives (including the 

partitioning of the functionalities between hardware and software).  

 

Figure2.1: Comparison of different languages [4] 

Figure 2.1 shows a comparison among SystemC and other Hardware Description 

Languages (HDLs). Although SystemC supports modeling at the register transfer 
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level (RTL), it is more often used for the description at higher abstraction levels. 

SystemC is characterized by its higher simulation speed than HDLs; note that this 

high simulation speed is not only due to the SystemC language itself, but it is 

mainly caused by the high level system descriptions enabled by the use of 

SystemC. SystemC is C++ class library which focuses on system level design and 

verification. It defines a customizable base model of computation with a 

generalized model for communication through channels and synchronization 

based on events. SystemC provides different time models such as Untimed, 

Untimed with discrete ordered events and timed with discrete ordered events. 

The models of SystemC communicate with each other through channels which 

can be either SystemC standard channels or customized ones. The following 

Figure 2.2 shows the architecture of SystemC language.      

 

Figure2.2: SystemC layered Architecture [4] 
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The basic layer of SystemC provides an event-driven simulation kernel. This 

kernel works with events and processes in an abstract manner, coordinating 

events and switching between processes, thereby allowing SystemC to simulate 

the implicitly parallel hardware features. Modules and processes describe the 

abstraction of structural information, while interfaces and channels represent the 

abstraction for communications. Data is transferred between modules through 

interfaces and channels. Since SystemC is implemented on top of C++, all the 

C++ features can be used to speed up modeling and increase code reusability. [4] 

2.1 Transaction level Modeling (TLM) 

TLMs are higher level abstraction models compared to RTL models. They 

separate the communication details from the implementation details of the 

functional units. In TLM, communication occurs through function calls and more 

emphasis is given to functionality of transfer than the actual implementation of 

communication protocol. TLM models consist only of details needed in the 

earlier stages of design development. By not including pin accurate details like 

the RTL models, much higher simulation speeds are achieved compared to RTL 

models. The input and output signals involved are abstracted into transaction 

objects, which will be discussed in detail later. TLM models can be set up much 

faster, as they are much simpler when compared to RTL models and also TLM 

models run much faster than RTL models. TLM models can be used for design as 

well as functional verification. The following Figure 2.3 illustrates the difference 

between RTL and TLM models. 
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Register Transfer Level Model                  Transaction Level Model 

Figure2.3: Comparison of RTL and TLM models [2] 

2.1.1 Different Coding Styles of TLM                      

 

Figure2.4: Different abstraction levels in TLM2.0 [2] 

TLM data transfers are modeled as transactions through function calls. These 

abstraction levels are distinguished by the timing accuracy in which 
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communication takes place. Design models can be divided into three different 

categories (or abstraction levels) according to the timing model style: loosely-

timed, approximately-timed, and cycle-accurate. Figure 2.4 shows the 

applications of TLMs with different coding styles. It is clear that for hardware 

applications, approximately-timed (AT) style is preferred and loosely timed (LT) 

models are used for software development. 

There are two basic coding styles of TLM specified by IEEE standard: 

Loosely-timed: The loosely timed models contain less timing details when 

compared to approximately-timed models and cycle-accurate models. The exact 

communication details does not greatly influence design decisions at its initial 

phases, so it can be safely ignored. In loosely-timed models, every 

communication transfer whether it read transfer from memory or a write transfer 

to memory can be modeled as a single transaction. The communication in loosely 

timed models can thus be considered to have exactly two timing points: Begin 

and End. The loosely-timed coding style is appropriate for software development 

in an MPSoC environment. This coding style supports modeling of timers and 

coarse-grained process scheduling, sufficient to boot and run an operating 

system. The most important aspect of this abstraction level is temporal 

decoupling, where processes can run ahead of simulation time. This means that 

the different SystemC models of the architecture do not synchronize with each 

other at every clock cycle. With Loosely-Timed interfaces, the synchronization 

mechanisms among the components of a system introduce a continuous trade-off 

between the amount of temporal decoupling and the simulation speed. It does 

not make much sense to require an accuracy of 100% at the interface of models 



12 

described at this modeling style since, anyway, the timing accuracy of the whole 

system will be compromised by the temporal decoupling. 

Approximately-timed: This coding style has more timing points in a 

transaction. At this level the number of bus cycles is important: the information 

that the bus transfers for each clock cycle is grouped in one transaction; this 

coding style is appropriate for the use case of architectural exploration and 

performance analysis. At this level a transaction is broken down into multiple 

phases (corresponding to bus transfer phases), with an explicit synchronization 

point marking the transition between phases. This coding style does not use 

temporal decoupling. The processes in this level of abstraction run in lock-step 

with simulation time. Despite its name, this coding style can accurately model the 

timing of the communication. This abstraction level does not mean that the 

model will be described at an RTL level, only that the timing obtained at the 

interface is correct. 

Cycle-accurate style is not listed (in Figure 2.4), since there is no standard for 

this kind of coding style. In this thesis, the model is built based on 

approximately-timed style and cycle-accurate features are added. The cycle-

accurate model captures the behavior in each clock cycle. There is no need to 

predict the delay before sending a transaction since a cycle-accurate, clock-

triggered module could calculate the delay itself. This is useful when simulating a 

complex system. However, this kind of model needs more work on modeling and 

runs slower than the loosely-timed and approximately-timed models.   

2.1.2 OSCI TLM2.0 Standard 

           OSCI (Open SystemC Initiative) have released a new TLM standard in June 

2008. It provides a standardized approach for creating models and transaction-
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level simulations. Figure 2.5 shows the architecture of TLM-2.0. One 

contribution of TLM-2.0 is the standard transaction type (generic payload) and 

related interfaces and socket. To maintain interoperability, TLM-2.0 defines a 

unified communication mechanism that uses core interfaces, sockets and a basic 

protocol. An important advantage of TLM2.0 is Interoperability. To maintain 

interoperability, TLM-2.0 defines a unified communication mechanism that uses 

sockets, standard transaction type (generic payload), a basic protocol and core 

interfaces. 

 

Figure2.5: TLM2.0 Architecture [2] 

In TLM-2.0, an initiator is a module that initiates new transactions, and a target 

is a module that responds to transactions initiated by other modules. A 

transaction is a data structure (a C++ object) passed between initiators and 

targets using function calls. The same module can act both as an initiator and as a 

target, and this would typically be the case for a model of an arbiter, a router, or a 
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bus.  In order to pass transactions between initiators and targets, TLM2.0 uses 

sockets. An initiator sends transactions out through an initiator socket, and a 

target receives incoming transactions through a target socket. A module that 

merely forwards transactions without modifying their content is known as an 

interconnect component. An interconnect component has both target socket and 

initiator socket.  Figure 2.6 shows the producer consumer model, where the 

producer is the initiator and consumer is the target. The transaction object shown 

as a square feature inside initiator block can be sent from initiator to target 

through interconnect by forward path and the target can respond back by sending 

the transaction object through backward path. 

 

 

Figure2.6: Producer Consumer model [2] 

The generic payload serves two closely-related purposes. It can be used as a 

general-purpose transaction type for abstract memory-mapped bus modeling 

when you are not concerned with the exact details of any particular bus protocol, 

offering immediate interoperability between models off-the-shelf. Alternatively, 

the generic payload can be used as the basis for modeling a wide range of specific 
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protocols at a more detailed level. The beauty of this approach being that it is 

relatively easy to bridge between different protocols when both are built on top of 

the same generic payload type [15]. Table 2.1 shows the attributes that are 

generally associated with a generic payload. 

Table2.1: Generic Payload attributes 

 
Attributes 

 
Descriptions 

 
Command 

 
read or write type of the transaction 

 
Address 

 
read or write address 

 
Data pointer 

 
the pointer pointed to the data array 

 
Data array 

 
A data array, each member is one byte data. 

 
Data length 

 
Number of bytes of the data in a transaction  

 
Byte enable array 

 
Identify which byte lanes are used in data array 

 
Streaming width 

Number of bytes transferred on each beat 
in a transaction 

 
Response status 

 
Status for the response transaction 

 
Extension pointer 

 
Pointer to an user defined extension class 

 

2.1.3 Blocking and Non-Blocking transport interfaces 

Blocking and Non-Blocking interfaces are the two basic interfaces of TLM2.0 

transport interfaces. The blocking interface uses blocking transport function for 

communication. This function is called by the initiator thread, received by the 

target thread, which processes the request and then returns the result. Until the 



16 

transaction has been processed and released the initiator thread is blocked. The 

blocking transport functions and its arguments are shown in below figure. 

 

Figure2.7: Blocking transport function 

The principal argument of a blocking transport function is the transaction object 

handle which is the pointer to the data structure that has different attributes as 

mentioned above while explaining generic payload. The b_transport call also 

carries a timing annotation represented by sc_time argument in the Figure2.7, 

which should be added to the current simulation time to determine the time at 

which the transaction is to be processed. The timing annotation is active on both 

the call to and the return from the b_transport method. This kind of interface is 

usually used in loosely-timed coding style. 

The non-blocking transport functions are called by the initiator thread, received 

by the target thread, which immediately returns, before processing the request. 

Subsequently the target, having processed the request makes a transport call 

backwards to the initiator to return the result.  In the non-blocking case there are 

actually two types of transport used. The forwards transport path is used by the 

initiator to pass the request to the target and the backward transport path is used 

by the target to return the response. The advantage of the non-blocking transport 

interface is that the initiator can carry on processing, while the target is 

processing the request originally made. 
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Figure2.8a: Forward non-blocking transport interface 

 

Figure2.8b: Backward non-blocking transport interface 

These functions have timing annotation as well as phase as arguments along with 

the transaction object handle. The timing annotation has the same significance as 

explained above in blocking transport interfaces. The phase can take any value 

mentioned below in the basic protocol phases. 

2.1.4 Basic Protocol 

TLM-2.0 defines basic transaction phases to maintain a basic communication 

protocol. The basic protocol is accurate enough for simple transactions. Users can 

extend the payload with extra attributes and define new phases to implement a 

certain protocol. The four important phases of a base protocol are:  

BEGIN_REQ (Begin Request) 

 Initiator acquires bus 

 Connections becomes “busy” and blocks further requests 

 Payload becomes “busy” 

END_REQ (End Request) 

 Target “accepts” request and completes the handshake 

 Bus freed to start additional requests 
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BEGIN_RESP (Begin Response) 

 Target acquires bus to provide a response 

 Bus becomes “busy” 

END_RESP (End Response) 

 Initiator acknowledges response to complete it. 

 Bus and Payload reference freed up 

The following Figure 2.9 shows the phases involved in a base protocol. 

                                                                                     

 

Figure 2.9: Basic Protocol Phases 

The return types used for non-blocking function calls are: 

TLM_ACCEPTED 

 Transaction, phase and timing arguments unmodified (ignored) on return 

 Target may respond later (depending on protocol) 

TLM_UPDATED 

 Transaction, phase and timing arguments updated (used) on return 

 Target has advanced the protocol state machine to the next state 

TLM_COMPLETED 

 Transaction, phase and timing arguments updated (used) on return 

 Target has advanced the protocol state machine straight to the final phase

Target Initiator 
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CHAPTER 3 

DESIGN OF NETWORK ON CHIP ARCHITECTURE IN SYSTEMC TLM2.0 

3.1 Router Architecture  

          The most important component of a NoC interconnect fabric is a router. 

The router is responsible for transmitting the packets from one point in the 

network to another. Multiple routers are connected together in a NoC 

interconnect fabric. The router may have a variable number of input and output 

ports. A packet arriving at an input port will be forwarded to one of the output 

ports. A destination address in the packet header and a routing table will be used 

to make the output port selection.  

 

Figure3.1: NOC Router Implementation 

The basic components of NoC router are following: 

 FIFOs 

 Decoder 

 Crossbar 

 Arbiter 
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In a NoC, when a packet is being transmitted, few control signals are also used to 

control point to point transmission on the on chip network. Different functions 

used to model NoC router are explained in detail in Section 3.2. 

3.2 Functional level description 

There are various functions used in modeling router at different abstraction level. 

Different models use few or all of these functions. Detailed description of these 

functions is explained in this section. 

3.2.1 Routing table generation 

The router uses a router-table to determine which output socket to send an 

incoming transaction object. The router-tables are specified to the router at 

compile-time via routing table file where a table is specified for each router. Each 

entry in the table contains a 32-bit start address, a 32-bit end address and the 

output socket number (0, 1, 2, etc). Each entry specifies a range of output 

addresses to be routed to a specific output socket. As an example, a destination 

address in the range is 0x00000000 – 0x000000FF should be routed to output 

socket #2. The corresponding entry in the routing table would be (16#00000000, 

16#000000FF, 2). The example below shows three entries in a routing table. The 

first entry is explained in the example above and the second entry is for address 

range of 0x00000100-0x000001FF routed to output scoket #1. The third is for a 

destination address of 0x00000200 routed to output socket #3. 

( (16#00000000, 16#000000FF, 2), 

(16#00000100, 16#000001FF, 1), 

  (16#00000200, 16#00000200, 3) ) 

Example: Routing table 
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While the router has output sockets numbered #0, #1, #2, #3, etc., when the 

address attribute in the transaction object does not matches to a Router Table 

entry, the transaction object will be dropped. It will be processed normally, but 

will never leave the router. The router creates the routing table during compile 

time by reading the router table specific to it (distinguished from other router 

tables by the router ID), by opening and reading the file named 

“routing_tables_pkg.vhd”. A C++ vector type is declared to store the routing 

table entries. Each entry in the vector is a struct composed of three elements: 

• 32 bit start address 

• 32 bit end address 

• Output socket (natural) number 

3.2.2 Decoder 

The decoder uses the X-Y based routing to decide the route of the transaction 

object. The decoder uses the routing table to determine which output socket the 

transaction object is to be sent to, for the next level of router. When a transaction 

objects enters a router, the first function which handles it is the decoder function. 

The address attribute of the transaction object is used to compare against each 

entry in the routing table of the corresponding router to check for a match. If a 

match occurs the corresponding output socket number is returned. If the address 

is not found in any of the entries of the routing table, a negative one (-1) is 

returned, which means that the transaction object is illegal or invalid. In such a 

situation, the transaction object doesn’t leave the router and is deleted. Once the 

output socket number is decided, transaction object is sent to the next router in 

case of loosely timed. But in case of approximately timed and router cycle 
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accurate router model, once the address is decoded, it is sent into the 

corresponding output FIFO associated with the particular output socket. 

3.2.3 FIFO implementation 

The FIFOs are used in approximately-timed and cycle accurate router models. 

These are implemented using C++ vector. Each element in the FIFO has two 

components: 

• Socket ID through which transaction object entered the router 

• Transaction object handle 

 Value which stores the socket ID is searched against each entry and when a 

match occurs, it returns the corresponding transaction handle, which will be used 

by the arbiter for a particular arbitration scheme. The depth of FIFO is decided 

by the parameter FIFO_DEPTH which is declared as a macro in the router. 

3.2.4 Arbiter 

The arbiter is located before every output socket of the router. The basic function 

of the arbiter is that, it takes in multiple requests and generates grant to a 

particular request. The arbiter utilizes round robin mechanism arbitration. A fair 

priority arbiter is made by changing the priority from cycle to cycle. This is used 

in approximately-timed and cycle accurate models of the router. The arbitration 

takes place in both the directions i.e output FIFO for processing the requests and 

input FIFO for processing the responses. The implementation of round robin 

arbitration is discussed below. The FIFOs contain two elements, the socket ID 

through which transaction object entered the router and the transaction object 

handle. Two arrays of integer, with size equal to the number of input and output 

ports has each element storing the socket ID which has the highest priority in 
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that clock cycle for the particular input/output port. If the FIFO is empty, 

arbitration is not performed for that clock cycle and the priority changes by 

incrementing the ID of the particular socket. When the FIFO is not empty, the 

FIFO is searched for the ID stored by the priority array. If a match occurs, the 

corresponding transaction object is selected to be sent through socket. If the 

FIFO is not empty and match does not occur, the priority ID is incremented until 

a match occurs and the corresponding transaction object is sent through the 

socket. This pseudo code for the arbitration scheme used at the FIFOs 

corresponding to output socket for one clock cycle is shown below. 

for i=0:Num_outputs-1 do 

     if (FIFO_i = empty) then 

         current_m(i) = current_m(i) + 1 

     elseif (FIFO_i = !empty) then 

          for k=0:FIFO_i.size()-1 do 

               if (current_m(i) in FIFO_i(k)) then 

                    nb_transport_fw (corresponding transaction object) 

                    current_m(i) = current_m(i) + 1 

               elseif (current_m(i) is not found in FIFO_i(k)) then 

                    current_m(i) = current_m(i) + 1 until match occurs 

                    nb_transport_fw (corresponding transaction object) 

               end if 

          end for 

     end if 

end for 
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3.2.5 Additional phases to the base protocol 

To make router model cycle and register accurate, two more phases are added to 

the base protocol. The additional phases are FIFO_FULL and 

FIFO_AVAILABLE. When a transaction object with BEGIN_REQ phase enters a 

router, the size of FIFO is checked, if the size is equal to FIFO_DEPTH, the phase 

FIFO_FULL is sent to all the adjacent routers. If a FIFO_FULL is received by a 

router, no more transactions are sent through that particular socket until it 

receives the FIFO_AVAILABLE phase. The router checks for the depth of the 

FIFO every clock cycle and once it reduces to FIFO_DEPTH- 1, it sends the phase 

FIFO_AVAILABLE to all the routers to which FIFO_FULL was sent i.e all the 

adjacent routers. 

3.3 Abstraction levels  in modeling NoC 

                Abstraction is a powerful technique for design and implementation of 

complex System-on-Chips. It allows the designer to tackle complex systems by 

hiding the low level implementation details. Different amounts of details are 

visible at different levels of abstraction.  

 

Figure3.2: Different levels of abstraction 
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In this thesis, three electronic system levels of abstractions are considered for 

modeling the NoC in SystemC TLM2.0. 

 Loosely-timed or LT modeling level 

 Approximately-timed or AT modeling level 

 Cycle Accurate modeling level  

     In general, TLMs pose a trade-off between an improvement in simulation 

speed and a loss in accuracy. The tradeoff essentially allows models at different 

degrees of accuracy and speed. High simulation speed is traded in for low 

accuracy, and a high degree of accuracy comes at the price of low speed. [14] 

3.4 LT router model 

Loosely-timed model uses blocking transport function (explained in Section 

2.1.3) for communication. Communication in loosely-timed models allows for 

exactly two timing points associated with each transaction, call and return of the 

blocking transport function, respectively. In loosely-timed communication, the 

transaction is processed within the context of the initiator of the transaction 

solely; context switches due to multi-hop communication are avoided. In Figure 

3.3, this is indicated by a solid arrow for each transaction. 

 

Figure3.3: LT NoC block diagram 
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The blocking transport function, as the name suggests, blocks other transaction 

until the current function call is completed. Since all transactions take place 

sequentially, no congestion takes place in any of the router.  Hence there is no 

need of an arbiter in loosely-timed router model. The LT router model is kept 

untimed as the interest is in faster simulation at this level of abstraction. The 

important components of LT router model are: 

 Routing table 

 Decoder 

The detailed functional descriptions of these components are given in Section 

2.2.1 and 2.2.2. In case of the loosely timed NoC model, b_transport function in a 

router decodes the incoming transaction object’s address attribute and once the 

output socket number is decided, it calls the b_transport function in the next 

router to which transaction object is transmitted to. This serial effect is shown 

below in Figure 3.4. 

 

Figure3.4: LT NoC model 
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The return types used for blocking function calls are: 

 TLM_OK_RESPONSE- This is returned when the transaction is complete 

without any error. 

 TLM_INCOMPLETE_RESPONSE- This type is returned when the transaction 

is yet to be completed. 

 TLM_ERROR_RESPONSE- This is returned when the operation of a 

transaction fails. It can be error due to address or the operation meant to be 

performed. 

3.5 AT router model 

          For more timing accurate simulation of multi-hop communication, several 

timing points are needed per transaction. Approximately-timed communication 

provides more accuracy, and is implemented using non-blocking transport 

functions. In Figure 3.5, this is indicated by discontinuous lines for a single 

transaction. This level is needed to simulate congestion on buses, and to 

experiment with different arbitration strategies. Approximately-timed model 

uses nb_transport_fw and nb_transport_bw functions (explained in Section 

2.1.3) for communication. 

 

Figure3.5: AT NoC block diagram 
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At this level of abstraction, while modeling the NoC router, round robin 

arbitration scheme is used. This is mainly performed to manage congestion when 

multiple transactions are started simultaneously.  

The important components of AT router model are: 

 Routing table 

 Decoder 

 Arbiter 

 FIFOs 

The transaction object in this abstraction level is first processed by decoder 

function. Once decoded and output port is selected, it is sent to the output FIFO 

located at the corresponding output socket. The FIFO consists of mainly two 

elements, socket ID through which transaction object entered the router and the 

transaction object handle. The arbiter performs variable priority round robin 

arbitration based on the IDs stored in the FIFO. Once a match occurs the 

corresponding transaction object is sent to next router. For faster simulation 

purposes, depth of the FIFO is not fixed and all the transactions in the FIFO are 

processed and the FIFO is emptied every clock cycle.  
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nb_transport_fw

nb_fw(BEGIN_REQ)

TLM_ACCEPTED

Decode and 
push into FIFO

Send_trans_next_stage

nb_fw(BEGIN_REQ)

TLM_ACCEPTED

nb_bw(BEGIN_RESP)

TLM_ACCEPTED

nb_transport_bw

nb_bw(END_REQ)

TLM_ACCEPTED

nb_bw(END_REQ)

TLM_ACCEPTED

nb_bw(BEGIN_RESP)

TLM_ACCEPTED

nb_fw(END_RESP)

TLM_ACCEPTED

nb_fw(END_RESP)

TLM_ACCEPTED

for i=0:Num_outputs-1
while (FIFO_i = !empty)

if (current_m(i) in FIFO_i)

current_m(i)=current_m(i)+1

elseif (current_m(i) is not in FIFO_i)

current_m(i)=current_m(i)+1

Decode and 
push into FIFO

for i=0:Num_inputs-1
while (FIFO_i = !empty)
if (current_s(i) in FIFO)

current_s(i)=current_s(i)+1

elseif (current_s(i) is not in FIFO)

current_s(i)=current_s(i)+1

 

Figure3.6: AT NoC flow chart  

Figure 3.6 shows the flowchart while processing a transaction in AT router. 

During a clock cycle when multiple transactions enters the FIFO, all the 

transaction are sent through output socket during that clock cycle but the 

sequence of the transactions being sent follows round robin arbitration policy. 

The priority is incremented every clock cycle. Since multiple transactions are 

being sent every clock cycle, latency has to be characterized for each transaction. 

The latency in approximately timed model is characterized by additional 

attributes (start time and end time) in addition to the generic payload of a 

transaction. When a transaction is sent into the NoC, both these attributes record 

the value of current simulation time. In the router, the ith transaction sent out a 
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FIFO adds a delay of i times the clock period to the end time attribute of 

transaction. The difference between the start time and end time attributes of a 

transaction object are used to calculate the latency of each transaction. 

               

4 1 5 2

Initiatior 

socket  

Figure 3.7: Arbitration in AT router 

For example say at a particular clock cycle, transactions inside a FIFO are as 

shown in the above Figure 3.7. The circular features represent the transaction 

object and the number within it represents the socket ID through which the 

transaction entered the router. If the current priority for the particular output 

socket is 2, transaction with ID-2 is sent first through the socket and a delay of 

one clock cycle is added to the end time attribute and the next transaction that is 

selected is with ID-4 and a delay of two clock cycles is added. This process 

continues till the last transaction, which in above example is transaction with ID-

1 is sent with a delay of 4 clock cycles.  

3.6 Cycle Accurate model 

          The cycle accurate model differs from approximately timed router model in 

the following ways: 

 Only one transaction object is sent through an output socket every clock cycle 

 The model is both cycle accurate and register accurate 

 Additional phases to introduce back-pressure   
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The important components of cycle accurate router model are: 

 Routing table 

 Decoder 

 Arbiter 

 FIFOs  

 Additional phases: FIFO_FULL, FIFO_AVAILABLE 

The operation of decode followed by sending the transaction into the FIFO at the 

output socket is the same as mentioned in the approximately timed router model. 

In this model, variable priority round robin arbitration mechanism selects only 

one transaction object from every FIFO to be sent to the next router or target. 

Here the depth of the FIFO is limited by the generic FIFO_DEPTH declared as a 

macro in the cycle accurate router code. The additional phases FIFO_FULL and 

FIFO_AVAILABLE are used to introduce back-pressure in order to avoid 

deadlock occurrence as the FIFO depth is limited. Once the FIFO depth increases 

to its full capacity, FIFO_FULL phase is sent to all adjacent routers since a 

transaction coming from any of the adjacent router can affect the operation of the 

FIFO. Once the depth reduces by FIFO_DEPTH-1, FIFO_AVAILABLE phase is 

sent to all adjacent routers. In this thesis, for analysis and simulation purposes, 

FIFO_DEPTH is 8. 

 



32 

FIFO_skt_pair

FIFO_targ_skt

FIFO_init_skt

PE

PE

PE

Router

 

Figure 3.8: Different types of FIFOs 

In cases where two adjacent routers or router-processing element are connected 

by a pair of sockets in either direction, interaction between forward and 

backward paths in the same direction needs to be considered. In order to 

maintain cycle accuracy with transactions going through forward and backward 

paths in same direction so as to allow only one transaction, either a request or a 

response per clock cycle, three types of FIFOs are used 

 FIFO_skt_pair- This types of FIFO is used when there is a pair of initiator and 

target sockets connected between two routers or between router and 

processing element. It can store either request or response transactions. 

 FIFO_init_skt- This is used only when an initiator socket is connected to a 

router or processing element. It stores only request type transactions. 

 FIFO_targ_skt- This is used only when a target socket is connected to a     

router or processing element. It stores only response type transactions. 
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nb_transport_fw

nb_fw(BEGIN_REQ)

nb_transport_bw

nb_bw(FIFO_FULL)

TLM_ACCEPTED

Decode

if FIFO_skt_pair.size() = FULL

 

if FIFO_init_skt.size() = FULL

else send trans into FIFOTLM_ACCEPTED

nb_bw(FIFO_FULL)

TLM_ACCEPTED

nb_bw(END_REQ)

TLM_ACCEPTED

Decode

if FIFO_skt_pair.size() = FULL

 

if FIFO_targ_skt.size() = FULL

else send trans into FIFO TLM_ACCEPTED

nb_fw(END_RESP)

TLM_ACCEPTED

nb_bw(FIFO_FULL)

TLM_ACCEPTED

nb_bw(BEGIN_RESP)

nb_fw(FIFO_FULL)

TLM_ACCEPTED

nb_fw(FIFO_FULL)

TLM_ACCEPTED

nb_fw(FIFO_FULL)

TLM_ACCEPTED

  

Figure 3.9a: Cycle accurate NoC flow chart- Forward and Backward functions 

Once the address is decoded, the type of FIFO is known. If it is of the type 

FIFO_skt_pair and if it is full all the input ports and output ports are sent with 

the phase FIFO_FULL through backward and forward paths respectively. This is 

because both request and responses type transactions can enter this FIFO and all 

the sockets through which these transactions can enter the router need to be 

blocked. If FIFO_init_skt or FIFO_targ_skt are full, FIFO_FULL phase is sent 

through backward and forward paths respectively. If a router receives a 

FIFO_FULL, it stops from sending transactions through that particular socket 

until it receives a FIFO_AVAILABLE phase. 
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Send_trans_next_stage

nb_bw(BEGIN_RESP)

Wait 1 clk cycle

for i=1:Num_FIFO_skt_pair
Arbitrate

If(trans is a REQ)

elseIf(trans is a RESP)

nb_fw(BEGIN_REQ)

TLM_ACCEPTED

TLM_ACCEPTED

for i=1:Num_FIFO_init_skt
Arbitrate nb_fw(BEGIN_REQ)

TLM_ACCEPTED

for i=1:Num_FIFO_targ_skt
Arbitratenb_bw(BEGIN_RESP)

TLM_ACCEPTED

If FIFO_skt_pair.size() <= DEPTH-1

If FIFO_init_skt.size() <= DEPTH-1

If FIFO_targ_skt.size() <= DEPTH-1

nb_bw(FIFO_AVAILABLE)

TLM_ACCEPTED

nb_bw(FIFO_AVAILABLE)

TLM_ACCEPTED

nb_fw(FIFO_AVAILABLE)

TLM_ACCEPTED

 

Figure 3.9b: Cycle accurate NoC flow chart- Arbitration 

Figure 3.9b shows a part of flowchart of a cycle accurate model. Every clock cycle, 

depending on the current priority of the FIFO, all the transactions are searched 

and once a match occurs, it is forwarded to the next stage of router or target. 

Following this, the priority value is incremented. The size of the FIFOs is checked 

every clock cycle, and if a FIFO_FULL had been sent by that FIFO and its size 

reduces to DEPTH-1, depending on the kind of FIFO, FIFO_AVAILABLE phase is 

sent to the adjacent routers. If it is FIFO_skt_pair, FIFO_AVAILABLE is sent to 

all input and output ports through backward and forward paths respectively. In 

case of FIFO_init_skt and FIFO_targ_skt, FIFO_AVAILABLE is sent through all 

input and output sockets respectively.    
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There is no need to predict latency before sending transaction out of the router as 

cycle accurate NoC platform will calculate the delay itself. For example say the 

elements in FIFO are as shown in Figure 3.10a at the beginning of nth cycle and 

the current priority for arbitration at the corresponding socket is 2, the 

transaction with ID-2 is sent through and the priority for next cycle is 

incremented to 3, and transaction with ID-3 will be sent during (n+1)th cycle. 

4 1 5 2

 

Figure 3.10a: Elements in FIFO at nth cycle 

4 1 55 2 1

 

Figure 3.10b: Elements in FIFO at (n+1)th cycle 

If transactions have entered the FIFO through sockets 5, 2 and 1, the elements in 

FIFO appear as shown in Figure 3.10b at the beginning of (n+1)th cycle. Since the 

priority for the current cycle is 3 and there is no transaction with ID-3, priority is 

incremented to 4 and transaction with ID-4 is sent through the socket at (n+1)th 

cycle. This model differs from approximately timed model as only one transaction 

is sent through a socket every clock cycle and latency is not predicted as the 

platform can calculate the delay. 

 

 

 

 

 



36 

3.7 Differences between LT, AT and cycle accurate NoC platform 

The differences between different NoC platforms are tabulated below. 

Table 3.1: Differences between LT, AT and cycle accurate router models 

 
Feature 

 
LT 

 
AT 

 
Cycle-accurate 

 
Blocking transport 

 
Used 

 
Not used 

 
Not used 

 
Non-blocking transport 

 
Not used 

 
Used 

 
Used 

 
Number of phases used 

 
None 

 
4 

 
6 

 
Synthetic master 

 
Functional 

 
Cycle accurate 

 
Cycle accurate 

 
Synthetic slave 

 
Functional 

 
Functional 

 
Cycle accurate 

 
Arbitration 

 
Not used 

 
Round-robin 

 
Round-robin 

 
Latency modeling 

 
Transaction 

based 

 
Transaction 

based 

 
Simulation based 
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CHAPTER 4 

EXPERIMENTATION, PERFORMANCE ANALYSIS AND SIMULATION 

RESULTS 

4.1 Experimental Setup 

The NoC architecture provides the communication infrastructure for the cores. In 

the design, a dead-lock free routing algorithm (X-Y routing) is used. The utilized 

topology for implementation is a 4×4 regular two dimensional mesh. This 

topology is shown in Figure 4.1.    

 

         Figure4.1: 4x4 regular mesh NoC 
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In the above Figure4.1, pentagons represent NoC routers and circles represent 

the processing elements of this network. It contains 16 routers, and routers are 

named based on their position in coordinate system. Each router is named as 

RouterX where X is the ID of the router and the ID is in increasing  order from 

left to right, top to bottom starting from top-left most router. The value of X 

ranges from 0-15. The processing elements can be either master or slave. The 

processing elements named as Mi are synthetic masters where i stand for the ID 

associated with the processing element. And the processing elements named as Si 

are synthetic slaves where i stand for the ID associated with the processing 

element. The value of i in both masters and slaves range from 0-7. Each router 

contains both initiator and target sockets in the direction where a router is 

connected. And it contains a target socket if connected to a synthetic master core 

and an initiator socket if connected to a synthetic slave core. 

For n-dimensional mesh topologies in NoCs, dimension order routing produces 

deadlock-free routing algorithms. The X-Y routing is one of the most commonly 

used algorithms of this kind. The routing algorithm which is used in this design is 

a version of X-Y algorithm. This algorithm is deterministic algorithm where a 

transaction object takes routing in one dimension and it continues till this 

transaction object attains the desired coordinate in that dimension. After that, 

routing is continued to do the same procedure in the other dimension. This 

routing algorithm prevents deadlock. According to the position of each router 

and destination address, routing takes place first in X direction and then in Y 

direction.  
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An important characteristic of NoC is Injection rate, which can be defined as 

number of transaction objects injected by a master core per clock cycle per socket 

into the network. The injection rate can vary from 0 to 1. 

LT master’s injection rate is characterized by number of transaction objects sent 

by a single master within a quantum period. In case of AT NoC model and cycle 

accurate models, same synthetic master is connected. The block diagram of such 

a synthetic master is shown in the figure3.2.  

                 

Transaction 

generation thread

Synthetic Master

Buffer for storage Initiatior 

socket
 

Figure4.2: Synthetic master 

 
The synthetic master contains an infinite sized buffer, which stores the 

transactions generated by the transaction generation thread. Since at high 

injection rate, the number of transaction that queue increases due to congestion, 

an infinite sized buffer is used. The transaction generation thread depending on 

the injection rate sends transaction objects into the buffer. For example if the 

injection rate is 0.1, a transaction object is sent into the buffer every 10 clock 

cycles. And if the injection rate is 0.5 a transaction object is sent into the buffer 

every two clock cycles. At a particular injection rate, the clock cycle within the 

injection period, at which the transaction object is sent into the buffer is 

randomized using uniform random distribution. On the other hand, if the buffer 

is not empty it sends the transaction object into the network every clock cycle. 
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The LT and AT slave simply performs memory operation depending on the 

address attribute of the transaction object and the type of transaction, either read 

or write. It takes one clock cycle to perform every operation. 

Cycle accurate master and slave are similar to approximately timed models but 

they can also handle additional phases of FIFO_FULL and FIFO_AVAILABLE. 

When cycle accurate models receive a FIFO_FULL, they do not send a 

transaction into the platform until it receives a FIFO_AVAILABLE phase. 

4.2 Performance Analysis 

All measurements were executed on a workstation with INTEL(R) Q9400 

2.66GHz quad core processor, 3GB RAM and 32-bit RedHat linux. The platform 

modeled at the three abstraction levels are connected to synthetic masters and 

slaves. Synthetic masters generate synthetic traffic load based on following 

spatial distributions: 

 Uniform-random: A master sends traffic to all the slaves with equal 

probability. 

 Hot-Spot: In this distribution, few slaves are selected as hot spots and a 

certain amount of traffic is sent to these nodes, rest of the traffic is distributed 

uniformly among all other slaves. 

 Complement- A complementary distribution is where destination address is 1’s 

complement of source address. It creates a scenario where master-slave pairs 

are created. For example, a network has 4 masters and slaves, and they are 

numbered as 0,1,2,3. Master with ID-0 sends transactions to slave with ID-4 

and Master with ID-1 sends transactions to slave with ID-3 and so on. 
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The performance of SystemC TLM2.0 NoC models are characterized by many 

metrics. The most important metrics are: 

 Latency 

 Error rate 

 Transaction objects per second 

 Simulation speed 

One of the most significant metrics being measured is the latency, which 

represents the delay between the initiation of a transaction object by a master 

and the receipt of that transaction object by a slave. In practice, this latency is 

mainly affected by queuing and processing delays. Queuing delay occurs when a 

router receives multiple transaction objects from different sources heading 

towards the same destination and needs to queue the transaction objects for 

transmission. Processing delays are incurred while a router determines what to 

do with a newly received transaction object. For simulation purposes, the LT 

slave is modeled with no processing time and merely sending a response back 

when it receives a transaction object, but the slaves are modeled with one clock 

cycle latency to process a single operation.  

The trade-off between speed and accuracy is studied by comparing the error rate 

in latency, taking the cycle accurate model as the reference. The error rate is 

calculated as: 

Error rate =  
|                   –                                           |
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The other metric used to compare the performance of NoC at different 

abstraction levels is transaction objects per second, which is defined as number of 

transactions completed by the NoC platform at a particular injection rate for a 

running time of 100 seconds. It compares the speed of the models at different 

abstraction levels. In case of LT NoC platform, a transaction is considered to be 

complete only when the function is returned to the initiator, whereas in 

approximately timed and cycle accurate model, the count is incremented only 

when all the phases of a transaction are completed. 

The fourth metric used to characterize the NoC models is the simulation speed. 

This parameter also shows the comparison in terms of speed of operation to 

execute a particular number of transaction objects. The figures below in the 

section of simulation results show the execution time to finish 106 transactions 

completely. Speed up of each model is calculated with RTL-VHDL model as 

reference. 

4.3 Simulation Results 

In this section the characteristics of SystemC TLM2.0 NoC models at different 

abstraction levels will be discussed. Simulation results of these abstraction levels 

are compared against that of a generic synthesizable RTL-VHDL 4x4 mesh NoC. 

Different synthetic traffic patterns have been used for evaluating interconnection 

networks. Uniform-random, Hot-spot and complement are the most widely used 

traffic models for the analysis of interconnection networks. The 4x4 mesh NoC 

platform is injected with above mentioned traffic patterns and simulation results 

are shown below. In case of hotpsot, slaves S0 and S7 are sent traffic with a 

probability of 30% each and the rest of traffic is uniformly distributed among 

other slaves. 
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Figure 4.3a: Latency Comparison with Uniform-random traffic 
 

 
 

Figure 4.3b: Error rate in Latency with Uniform-random Traffic 
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Figure 4.3c: Transaction objects per second with Uniform-random traffic 

 

Table 4.1: Speedup Table for Uniform-random Traffic at injection rate = 0.1 

 
Abstraction Level 

 
Execution time 

(to finish 106 trans) 

 
Speedup 

 

 
Loosely timed 

 
0.5 sec 

 
2278.7 

 
Approx. timed 

 
5 sec 

 
227.9 

 
Cycle Accurate 

 
22 sec 

 
51.8 

 
RTL-VHDL 

 
1139.37 

 
1 
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Figure 4.4a: Latency Comparison with Hot-Spot traffic  

 

Figure 4.4b: Error rate in Latency with Hot-Spot Traffic 
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Figure 4.4c: Transaction objects per second with Hot-Spot traffic 

 

Table 4.2: Speedup Table for Hot-spot Traffic at injection rate = 0.1 

 
Abstraction Level 

 
Execution time 

(to finish 106 trans) 

 
Speedup 

 

 
Loosely timed 

 
0.5 sec 

 
2349.5 

 
Approx. timed 

 
5 sec 

 
235 

 
Cycle Accurate 

 
22 sec 

 
53.4 

 
RTL-VHDL 

 
1174.75 

 
1 
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Figure 4.5a: Latency Comparison with Complement traffic  

 

Figure 4.5b: Error rate in Latency with Complement Traffic 
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Figure 4.5c: Transaction objects per second with Complement traffic 

 

Table 4.3: Speedup Table for Complement Traffic at injection rate = 0.1 

 
Abstraction Level 

 
Execution time 

(to finish 106 trans) 

 
Speedup 

 

 
Loosely timed 

 
0.5 sec 

 
2416.9 

 
Approx. timed 

 
5.5 sec 

 
219.7 

 
Cycle Accurate 

 
23 sec 

 
52.5 

 
RTL-VHDL 

 
1208.47 

 
1 
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In above plots, it is clear that latency increases with increasing injection rate, this 

is because of higher congestion taking place at those injection rates. In case of 

cycle accurate model, it increases exponentially after congestion since the 

masters are suspended (when FIFO_FULL is sent to master) for many clock 

cycles as a result of which the transaction are queued in the buffer for many 

cycles. 

The error rate in latency is calculated with cycle accurate model as the reference. 

Since LT doesn’t witness congestion, error rate increases with increasing 

injection rate, as the latency remains a constant in case of LT-NoC. Since AT 

model is not cycle accurate and can send multiple transactions in same cycle, 

error rate is high in case of AT NoC as well, as shown in Figure 3.3b, 3.4b and 

3.5b. 

The LT-NoC is the fastest as there is very less context switching happening 

whereas cycle accurate is the slowest among the different models as it involves 

with huge amount of context switching and also masters are suspended due to 

back pressure from routers as FIFO depth is limited. Approximately timed 

models are faster than cycle accurate models since they involve less timing 

(accuracy) points as the communication protocol in approximately timed is basic 

protocol and cycle accurate models use two additional phases. Also there is no 

back pressure in these models. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion  

          In this thesis, OSCI SystemC Transaction-Level models for a NoC 

interconnect are presented. It describes loosely-timed, approximately-timed and 

cycle accurate router structures. A simulation performance of 2D 4x4 mesh 

topology NoC modeled at three abstraction levels was compared against each 

other. Based on TLM-2.0 standard, these models offer good interoperability.  

The models were simulated with synthetic traffic based on uniform-random, hot-

spot and complement distribution. Since the LT model doesn’t handle multiple 

transactions on fly, and hence doesn’t experience congestion, so the latency of LT 

models is constant irrespective of the traffic and injection rate. AT model latency 

is higher than LT model but doesn’t increase exponentially after congestion 

because it’s not cycle accurate. Cycle accurate models are closer to RTL level and 

their results are similar to RTL results. The speed-up of LT model when 

compared to RTL-VHDL model is around 2200-2450x. But on average the error 

rate in latency is around 15-18%. AT-models are around 200-250 times faster 

than RTL-VHDL models with an average error rate of around 5-6%. Depending 

on the application, the system is modeled at a particular abstraction level. With 

higher abstraction level a considerable speedup is achieved, although it comes 

with the trade-off of lower accuracy. 
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5.2 Future Work  

One goal of these models is to provide an approach to explore the design space of 

NoCs at system level. With these models, designers could develop NoC with 

different structures and analyze the performance. This model also provides a 

basic framework for transaction-level model of NoCs. For exploring the design 

space, these models can used to implement different arbitration schemes 

(example with QoS), topologies and routing algorithms. Virtual channels can also 

be used in the NoC to optimize their performance.  
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APPENDIX A  

PERL SCRIPT- GENERATION OF NOC PLATFORM 
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As a part of automated generation of Network on Chip platform, a perl script 

takes few files characterizing the NoC as input and generates the network on chip 

platform, provided the SystemC TLM2.0 models of router and processing 

elements are available. The Figure below shows the files that are read as input 

and what each file contains and how it is used to generate the platform. The 

following paragraphs describe each file and its characteristics in detail. 

 

 
Figure A.1: NoC platform generation 
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test_soc_routing_tables_pkg.vhd: 

In the this thesis, the NoC uses X-Y routing algorithm where a transaction object 

depending on the present coordinate and destination address keeps transversing 

in the X direction. Once it reaches the x coordinate of the destination router, 

transaction object travels in the Y direction till it reaches the destination router. 

The file test_soc_routing_tables_pkg.vhd contains the routing table information 

for each router. The heading of each routing table is of the form             

CONSTANT Rn_ROUTER_TABLE: NOC_ROUTER_TABLE_ARRAY := 

   Where n represents the ID of the corresponding router. The following figure 

shows the routing table of router with ID 0. 

CONSTANT R0_ROUTER_TABLE: NOC_ROUTER_TABLE_ARRAY := 
                                        ( 

( (16#00000000, 16#FFFF0000, 2) , 
(16#00000100, 16#FFFFFFFF, 1), 
(16#00000200, 16#FFFFFFFF, 3)) 

    ); 
 

Format of contents in test_soc_routing_tables_pkg.vhd 
 

The perl script opens the file during compile time and depending on the router 

being constructed, the corresponding routing table is read which distinguishes 

from other routing tables depending on the ID of the router. The routing table is 

C++ vector. Each entry in the vector is a structure with three components: Start 

Address, Mask and output socket number. For example when the routing table in 

the above figure is read, first entry would have start address to be 00000000, 

mask to be FFFF0000 and output socket number as 2. 
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test_soc.labeling: 

This file contains the information of ID associated with the processing elements. 

The format of the each line in the file is ID followed by the processing element’s 

name. The master cores are named as Mi and the slave cores are named as Si, 

where i is in the range of IDs given to master and slave cores respectively. This ID 

depends on number of master cores and slave cores. This information is used 

while creating instances of the Synthetic Processing elements during the creation 

of NoC platform. The following figure shows a part of test_soc.labeling file. 

                                                                    0    S0 
1 M0 
2 M1 
3 M2 

 
Format of contents in test_soc.labeling 

 
 
device_descriptions_template.txt: 

This file contains the number of the input and output ports of each router. The 

format of each entry is router name, number of input ports, and number of 

output ports. The following figure shows a part of 

device_descriptions_template.txt file. This information of number of input ports 

and output ports is used for the creation of target sockets and initiator sockets for 

each router respectively. 

R39, 9, 9 
                                                                  R0, 3, 3 

R23, 3, 3 
 

Format of contents in device_descriptions_template.txt 
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Connectivity.txt: 

This file contains the details of connection between routers and routers to 

processing elements. The format of this file is destination core/router, port 

number followed by semicolon has the source core/router, port number 

information. The following figure shows a part of the file connectivity.txt. The 

first entry in the following figure means the output port#1 of router R0 is 

connected to input port#1 of router R2.  

 
R2,P1;R0,P1 

R0,P2;R2,P1 

R0,P1;R39,P1 

R39,P1;R0,P1 

Format of contents in Connectivity.txt 

 

test_soc.floorplan: 

This file contains the details of frequency of operation of the processing elements. 

The format of the contents of this file is ID of the processing element followed by 

the frequency of operation of the corresponding core. The following figure shows 

a part of the file test_soc.floorplan. This information is used while creating the 

platform using approximately timed and cycle accurate models. The unit of 

frequency is MHz. The first entry in the following figure means the frequency of 

operation with ID 0 is 266MHz. 

 

0 266 

2 133 

4 133 

Contents of test_soc.floorplan 

 


