

A Domain-Specific approach to Verification & Validation of Software

Requirements

by

Rehman Chughtai

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Computing Studies

Approved February 2012 by the

Graduate Supervisory Committee:

Arbi Ghazarian, Chair

Ajay Bansal

Bruce Millard

ARIZONA STATE UNIVERSITY

May 2012

i

ABSTRACT

Gathering and managing software requirements, known as Requirement

Engineering (RE), is a significant and basic step during the Software

Development Life Cycle (SDLC). Any error or defect during the RE step will

propagate to further steps of SDLC and resolving it will be more costly than any

defect in other steps. In order to produce better quality software, the requirements

have to be free of any defects. Verification and Validation (V&V) of requirements

are performed to improve their quality, by performing the V&V process on the

Software Requirement Specification (SRS) document.

V&V of the software requirements focused to a specific domain helps in

improving quality. A large database of software requirements from software

projects of different domains is created. Software requirements from commercial

applications are focus of this project; other domains embedded, mobile, E-

commerce, etc. can be the focus of future efforts. The V&V is done to inspect the

requirements and improve the quality. Inspections are done to detect defects in the

requirements and three approaches for inspection of software requirements are

discussed; ad-hoc techniques, checklists, and scenario-based techniques. A more

systematic domain-specific technique is presented for performing V&V of

requirements.

ii

DEDICATION

This thesis is dedicated to my beloved late parents for their unconditional love.

Also, it is dedicated to all who believe in power of learning. The will to always

learn more and the power you achieve by it help improve your life and

knowledge.

iii

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Arbi Ghazarian, for his support and guidance

in not only this project, but my learning and understanding the domain of RE. I

also want to thank Dr. Kevin Gary for his guidance.

iv

TABLE OF CONTENTS

 Page

List of Tables ... vi

List of Figures ... vii

CHAPTER

1 Introduction ... 1

2 Background and Related Work ... 6

2.1 Basic terminology .. 7

2.2 “Software Verification and Validation” vs. “Requirements Verification

and Validation” ... 10

2.2.1. Software Verification and Validation ... 11

2.2.2. Verification & Validation of software requirements 12

2.3 Techniques for defect detection ... 14

2.3.1. Ad-hoc methods .. 17

2.3.2. Checklists.. 17

2.3.3. Scenario-based approach .. 20

2.4 Conclusion .. 24

3 PROBLEM STATEMENT ... 26

4 PROPOSED SOLUTION .. 29

4.1 Process of solution ... 29

4.1.1 Introduction .. 29

4.2 Proposed algorithm .. 30

4.2.1. Extraction.. 30

v

CHAPTER Page

4.2.2. Process .. 31

4.2.2.1 Classification ... 31

4.2.2.2 Rules .. 32

4.2.3. Output ... 33

4.3 Domain-specific ... 34

4.4 Conclusion .. 34

5 VALIDATION .. 35

5.1 Extraction and requirement statements database 35

5.2 Classification of requirements .. 36

5.3 Application of Rules and output .. 36

6 FORMALIZATION .. 52

6.1. Introduction .. 52

6.2. Formal logic representation .. 52

7 CONCLUSION AND FUTURE WORK .. 54

7.1 Summary .. 54

7.2 Conclusion .. 55

7.2.1. Problems encountered ... 55

7.3 Future work & Recommendation ... 55

REFERENCES ... 57

APPENDIX

A: REQUIREMENT TYPES .. 62

B: DATA OF REQUIREMENT INSPECTION WITH RULES 65

vi

LIST OF TABLES

Table Page

1 Experiments on comparing software requirements inspection techniques..................... 15

2 Analysis checklist items. Table abopted from Kotonya and Sommerville [19] 18

3 Missing functionality checklist. Checklist adopted from Porter and Votta [29] 20

4 Use of checklists in literature ... 20

5 Ambiguities or missing functionality scenario. Scenario adopted from Porter and Votta

[29] ... 22

6 Perspective and Defect based reading ... 23

7 Rules for inspection of software requirements ... 33

8 Rules and example ... 41

9 Defects found against each rule ... 46

11 Total number of defects found with each rule .. 47

12 Ranking of rules.. 50

13 Requirement type representation ... 53

14 Formal representation of rules ... 53

15 Requirement types .. 64

16 Number of requirement of each type .. 64

17 All requirements inspected and rule applied with defects found 103

vii

LIST OF FIGURES

Figure Page

1 The requirements engineering process .. 1

2 RE in layers of V-model .. 4

3 Requirement Review process. ... 10

4 Inspections and Domains ... 28

5 Proposed solution ... 30

6 Proposed algorithm... 30

7 Database of requirements ... 35

8 A bar chart showing defects found .. 48

9 Precision of rules .. 49

1

1 INTRODUCTION

Comprehension of requirements can be one of the major problems faced in

developing large and complex software systems [1,2]. Quality of the whole

software system depends on software requirements as these are compiled at an

early stage of development. Requirements Engineering (RE) is the process of

developing and managing the requirements. Sommerville has defined RE as

“The process of finding out, analyzing, documenting, and checking the

services and constraints is called Requirement Engineering (RE)” [1]

In the above definition “services” refer to the services provided by the

software system, according to the definition of requirement by Sommerville [1].

The activities involved in the RE process and their relationship are illustrated in

Figure 1.

Figure 1 The RE process, adapted from Sommerville [1]

2

Another definition of RE provided by Zave [3] gives more details.

“Requirements engineering is the branch of software engineering concerned

with the real-world goals for, functions of, and constraints on software

systems. It is also concerned with the relationship of these factors to precise

specifications of software behavior, and to their evolution over time and

across software families.”

 Unlike Sommervile, Zave put emphasis on the role of RE in software

engineering and their relationship. Also it shows the importance of RE during the

phases of SDLC, as “…evolution over time and across software families.” Both

Sommerville‟s [1] and Zave‟s [3] definitions show the importance and role of RE

in the broader domain of Software and System Engineering. Nuseibeh and

Easterbrook have also shown in their work that RE is a multidisciplinary, human-

centered process [4]. They argue that the tools and techniques used in RE come

from different disciplines and RE might need to gain some level of expertise from

different domains. Stevens et al. [5] have given reasons and arguments in favor of

knowledge of system theory, practice and its application are relevant to RE.

Requirements and quality have a relationship, as Crosby [6] explicates in his

definition of “Quality”; that quality is conformance to the requirements. Thus

maintaining better quality implies that all the requirements, of users and other

stakeholders, are satisfied [7].

Quality maintained during the RE will reflect in all the future phases of

software development lifecycle (SDLC). Inspection of requirements helps with

3

identification and removal of the errors, thus maintaining a better quality in

requirements. This results in decreased cost, reduced time for development, and a

higher quality end-product. This early detection and removal of defects lowers the

development cost of a software project [8]. Similarly, Boehm and Basili [8] show

the importance and cost-effectiveness of early inspections and removal of defects,

they maintain that“Finding and fixing a software problem after delivery is often

100 times more expensive than finding and fixing it during the requirements and

design phase.” [8]

 It is important to note that RE is only limited to early stages of SDLC. A

mapping between RE and different stages of development is displayed in the

figure 2, which shows the classic V-model of software development. It illustrates

testing of a software system against stakeholder needs and other specifications,

which are Verification and Validation (V&V), defined and explained in section

2.2, during the SDLC.

4

Figure 2 RE in layers of V-model, adapted from Hull et al. [7]

Chapter 2 presents the background and related work; specifically current

practices and work done in software requirements inspection. I also go through

different inspection techniques currently performed for software and requirements

inspection. I discuss, compare and present related work done on the three

techniques; ad-hoc techniques, check lists, and scenario-based techniques. Also

presented are the types of techniques, i.e., systematic and non-systematic

approaches.

In Chapter 3, the discussion continues to the problem of efficient inspection of

requirements relative to a domain and how this can affect the quality of not only

the requirements but the whole project.

5

A proposed algorithmic solution for domain-specific verification and

validation of requirements is given in chapter 4. Details of the solution are

presented in this chapter.

Chapter 5 has the validation of proposed algorithm for the project, by

experiments, tests, and their results. This chapter also gives examples of

requirements statements, proposed rules for inspecting requirements and results

founds after inspection.

In chapter 6, the formalization of the project is presented. The proposed

solution is presented in a formal language. Formal language will present the

algorithm in a non-ambiguous manner.

Chapter 7 has the conclusion and future work details. I present some ideas for

future work and problems based on the results of my project.

There are two appendices in this thesis, which present the supporting data for

the proposed solution.

6

2 BACKGROUND AND RELATED WORK

A successful software system has to satisfy the requirements of its users and

environment [9,4]. One way of conforming to user requirements is by performing

an inspection of captured requirements, e.g. software requirements specification

(SRS) document. Defective requirements can lead to defects in the final software

product, which is not desired by either the end user or developer of the software

product. Fixing such defects in later stages of the development process or after the

delivery of the software system can be difficult and costly [1]. All this makes the

software requirements inspection an important process. Inspecting software

requirements can also be an important phase in improving quality of software.

One of the factors in measuring software quality is the degree to which the

delivered software represents the customer requirements [10]. Defect-free

requirements can be a correct representation of a customer‟s requirements;

inspections help in detecting defects, more specifically, requirement validation

helps in ensuring that the requirements represent the customer needs. Cost-

effectiveness is another benefit of having requirement documents inspected [11].

Requirements inspection helps in identifying and removing defects which

prevents defects from spreading into developed software. This means lesser

defects the final software product. Also handling defects in the requirements

phase is less costly than in later stages or after development of software.

This paper is a review of the current work on different techniques and approaches

used for software requirements inspection. This review takes its base from Cheng

and Atlee‟s review paper [9] of requirements engineering, specifically the

7

sections where they review inspections, verification, and validation of software

requirements; but this paper provides a more in-depth review of software

requirements inspection techniques and related terms which can be helpful in

future efforts for developing a more efficient technique. Inspection is often done

by a team of inspectors, who review requirement statements in the requirement

document in order to identify as many defects as possible.

2.1 Basic terminology

The process of checking software requirements for detecting defects, in order to

improve the quality of the resulting software system, is presented in the literature

using different terms. These terms include requirement inspection, requirement

validation, and requirement review.

Requirement inspection is one of the most commonly used terms in the literature

to refer to the process of identifying and removing defects from requirements. The

general technique of inspection in software systems was first introduced by Fagan

[12] in 1976. The original technique was for code and design inspection, but

many domains have now adopted it with domain-specific changes, including

requirements engineering (RE). Braude [13] refers to inspection of software as a

process to ensure quality, performed by a team of inspectors. For inspection of

software requirements, Porter and Votta [14], have referred to this process as the

usual method to validate SRS. Runeson et al. [15] have recommended inspections

as a defect detection technique for requirements inspections.

The inspection process used in many organizations is composed of three steps

[16,17]: (a) defect detection, (b) collection, and (c) repair. Humphrey [16] has

8

termed these three steps as i. Preparation, ii. Inspection meeting, and iii.Repair

and report. Each of these steps is briefly explained below:

i. Preparation. This step starts with a meeting, where the product to be

inspected is introduced; so that every inspector understands it. Here roles

are defined and assigned to inspectors, making sure that every inspector

knows his or her role and how to perform it.

ii. Inspection meeting. After preparation a meeting is held, where findings

of each inspector is discussed with the author of requirements and each

other. After the defects are noted the responsibility to resolve them is

assigned, usually to the author of requirements.

iii. Repair and report. In this step the defects collected are repaired and an

inspection report is prepared and produced as final output of the inspection

process.

Among the three steps, preparation is the most important one because the output

of this step, detected defects, affects the total outcome of the inspection process.

Requirements inspection is performed either individually and independently or by

a team of inspectors who collaborate in the inspection process.

Quality is related to or can be achieved through some characteristics. For a better

quality software requirement, there are some characteristics, which can be found

in the literature [13,4,18]. The list of characteristics, which should be checked

during an inspection, include: completeness, consistency, feasibility, ambiguity,

clarity, preciseness, testability and traceability. Ambiguity is one of the important

characteristics; removing any ambiguity from software requirement makes sure

9

that development follows the correct path. Inspection of informal requirement

documents can be performed for detecting ambiguities in requirements before any

formal requirement specification is generated [18].

Requirement validation is another term used by some authors for the same process

of requirements inspection. This is defined as checking the requirement document

for a set of characteristics; i.e., consistency, completeness, omissions, ambiguity,

and accuracy [19,2]. Requirements validation is performed to confirm that

requirements define customer needs [1] . Similar to inspections, the purpose of

validation is examining requirements and thus improving the overall quality by

checking the requirements against given criteria: i.e. validity checks, consistency,

completeness, realism, and verifiability. Verifiability is same as testability; that is

a set of tests can be done to show that the final system meets the requirements [1].

Another term found in the requirements literature is requirement review. This is a

manual process in which, reviewers from both client and contractor organizations

physically review the requirements [1]. This combination of client and contractor

makes the review process more efficient.

The group of reviewers identifies problems in the requirements by analyzing

them, discussing the identified problems and agreeing upon some measures to

resolve the problems [19] . Kotonya and Sommerville [19] have presented a

complete description of the requirement review process. This is briefly described

in Figure 3.

10

Figure 3 Requirement Review process. Figure adopted from Kotonya and

Sommerville [19]

In Figure 3, the steps shown as blocks are similar to the three steps discussed

previously for inspection; i.e. preparation, inspection meeting, and repair and

report. As the requirement review process is explained by Kotonya and

Sommerville [19], the first three blocks, Plan review, Distribute documents, and

Prepare for review, perform the same action as the first step of inspection i.e.

preparation. The next two blocks in Figure 1, hold review meeting and Follow-up

actions, has the same purpose as the second step i.e. inspection meeting. The last

block of Figure 1, Revise documents, performs the repair and report step of

inspection.

2.2 “Software Verification and Validation” vs. “Requirements

Verification and Validation”

Verification and Validation (V&V) are pivotal steps in any project. The

concept of verification and validation in the domain of software requirements

is slightly different than in software systems and. Verification and validation

in software systems and in software requirements is briefly described in

subsection 3.1 and 3.2, respectively. These subsections also give the

11

definitions found in the literature. Boehm [20] has presented that the purpose

of doing V&V of software requirements is to identify and resolve problems

and high-risk issues early in the software life cycle, which saves in costs and

time.

2.2.1. Software Verification and Validation

Verification of software is, according to Boehm [20], “The process of

determining whether or not the products of a given phase of the software

development cycle fulfill the requirements established during the previous phase”.

Pressman [2] defines it as “a set of tasks that ensure that software correctly

implements a specific function”, whereas validation is a process which ensures

that the software system performs the functions set by stakeholders‟ requirements.

That is to say that validation ensures that the end product, the software system, is

according to the requirements set by customer. Boehm [20] defines validation as,

“The process of evaluating software at the end of the software development

process to ensure compliance with software requirements”. The definition of

software validation by Pressman [2]is “Validation refers to a set of tasks that

ensure that the software that has been built is traceable to customer

requirements.”

V&V play an important role in software quality, which is clear from the above

definitions. According to Boehm [20], validation deals with the question “Are we

building the right product?”, whereas verification deals with the question of “Are

we building the product right?” The purpose of verification is quality, whereas

user satisfaction is the goal of validation [21].

12

2.2.2. Verification & Validation of software requirements

The concept of V&V in requirements is a little different than V&V of software

systems. Bahill and Henderson [22] have defined validation of requirements as

making sure that three rules are followed: “

1. the set of requirements is correct, complete, and consistent,

2. a model can be created that satisfies the requirements, and

3. a real-world solution can be built and tested to prove that it satisfies the

requirements.”

From these three points it is clear that validation ensures that requirements are

free of any defect and represent the user needs. The first point talks especially

about correctness, completeness, and consistency criteria, which can be used as a

checklist during the validation of requirements. Bahill and Henderson [22] state

that “each requirement must be verified by logical argument, inspection,

modeling, simulation, analysis, expert review, test, or demonstration”. While this

definition of requirements verification is in terms of tools for verification,

Pfleeger and Atlee [23] define verification of software requirements as “checking

requirements specification document corresponds to requirements definition

document”. Here authors have given two different requirement documents,

defined as “requirement definition document that is aimed at business audience

such as clients, customers, and users, and a requirement specification document

that is aimed at technical audience such as designers, testers, and project

managers” [23]. This shows that requirements verification is ensuring that

requirements are correctly transformed from the definition of requirement given

13

by customer to the requirement specification. Requirements verification

techniques can be used to show that software specification conforms to its

requirements [9]. At a broader level, verification of requirements determines that

a work product conforms to requirements, which were initially defined [24].

Another approach of verification is presented by Jeffords and Heitmeyer [25].

They have given a compositional proof strategy for verifying invariant properties

of requirements specification. This work uses a Software Cost Reduction (SCR)

[26] specification of a system as an example. SCR is a set of techniques for

designing software systems. They have given two proof rules: a standard

incremental proof rule and a compositional proof rule. Application of the

compositional rule is useful because it decomposes a large verification problem

into smaller problems. Smaller problems can be then solved more efficiently than

the larger problem.

It has been shown that requirements errors not found until later stages of

Software Development Life Cycle (SDLC) or after implementation of a software

system are many times more expensive to fix than if they were found during

requirements stage or before requirements stage is complete [27]. This shows the

importance of performing V&V during the requirements stage. This importance

of performing both verification and validation of software requirements is

discussed in detail by Hull et al. [7]. A vital objective of performing V&V

processes is developing confidence that the software system is according to its

intended use [1]. This shows that the system must be according to the user‟s

14

requirements, thus not only V&V is an important process for software system as a

whole but also for software requirements too.

2.3 Techniques for defect detection

Requirement inspection techniques described in the software engineering

literature can be categorized in three broad categories, namely the ad-hoc

methods, checklists, and the scenario based approach.

Table 1 presents a list of different experiments performed for comparing software

requirements inspection techniques. In Table 1, except item 5, all experiments

compare the three inspection techniques, i.e. ad-hoc, checklists, and scenario-base

approaches; whereas the experiment in item 5 was performed only using

checklists and scenario-based techniques. A similar table is given by Regnell et al.

[28], which shows different studies performed by institutions in industry and

academia for comparing inspection techniques for software requirements.

ID Authors Year Techniques Result

1. Porter and Votta [14]

An Experiment to Assess Different

Defect Detection Methods For

Software Requirements

Inspections

1994 Ad-hoc

methods,

Checklists,

Scenario-

based

techniques

Scenarios

improve

defect

detection rate

2. Porter, Votta, and Basili. [29]

Comparing detection methods for

software requirements inspections:

a replicated experiment.

1995

.

Ad-hoc

methods,

Checklists,

Scenario-

based

techniques

Scenarios

improve

defect

detection rate

3. Cheng and Jeffery [30]

Comparing Inspection Strategies

for Software Requirement

Specifications

1996 Ad-hoc

methods,

Checklists,

Scenario-

based

techniques

Scenarios

improve

defect

detection rate

Commercial

systems

15

4. Fusaro, Lanubile, and Visaggio

[31]

A replicated experiment to Assess

Requirement inspection techniques

1997 Ad-hoc

methods,

Checklists,

Scenario-

based

techniques

Scenarios do

not improve

defect

detection rate

Replication

5. Sandahl et al. [32]

An Extended Replication of an

Experiment for Assessing Methods

for Software Requirements

Inspections

1998 Checklists,

Scenario-

based

techniques

Only

compares

checklist and

scenario-based

techniques

Scenarios do

not improve

defect

detection rate

6. Lanubile and Visaggio [33]

Evaluating defect detection

techniques for software

requirements inspections

2000 Ad-hoc

methods,

Checklists,

Scenario-

based

techniques

Focus on PBR

technique-

scenario-based

technique

Replication

Table 1 Experiments on comparing software requirements inspection techniques

All experiments in Table 1 from item 2 to the last item are replication of

experiment performed by Porter and Votta [14]. They [14] performed the

experiment to show that the defect detecting rate is different for detection

techniques. They applied each of the three detection techniques on the software

requirement document of engineering based embedded systems. Their work was

partly supported by National Aeronautics and Space Administration (NASA), so

the focus was embedded systems. According to their experiment result scenario-

based technique found the most defects and is more helpful in the defect detection

process.

Cheng and Jeffery [30] performed the experiment to compare the requirements

inspection technique for software requirements of commercial systems. Their

16

focus was on commercial application because it has more data input and output,

file manipulation, user queries, and mathematical computation is basic compared

to embedded systems.

Fusaro, Lanubile, and Visaggio [31] replicated the original experiment with

embedded system software requirements. Their results from the replication

showthat scenario-based techniques do not improve the defect detection rate. This

difference in result can be due to some differences and constraints in the

experiment. Firstly, the subjects who performed the reviewers were undergraduate

students and most of them had little or no professional expereince. Secondly,

native language of reviers was not english and extensive trainnig was required

prior to experiment. Another reason can be that one of the SRS used in

experiment was of cruise control system used in automobile. This replication was

performed in Italy, the cruise system is not very familiar in europe and thus more

extensive pre-experiment training was required in this regard.

Sandahl et al. [32] performed an extended replication of the experiment done by

Porter et al. [29]. They only compared Checklists and scenario-based techniques

for inspecting software requirements. Also this experiment manipulated three

independent variables: detection method, requirements specification, and the

order of the inspections. The paper [32] also provides details of experiment

performed and statistical data from all the repititions of experiment.

Lanubile and Visaggio [33] replicated the experiment to compare the techniques.

They have focused on Perspective Based Reading (PBR), a systematic scenario-

based technique.

17

Basili et al. [34] has a website that is available with title “Lab Package for the

Empirical Investigation of Perspective-Based Reading”. This website has the

details of exeperiment performed for comparing different defect detection

techniques for software requirements. The requirements used by them was of two

embedded systems; Automated Teller Machine (ATM), Parking Garage control

system.

Next three sub-sections provide a brief description of each of three requirements

inspection technique.

2.3.1. Ad-hoc methods

Ad-hoc techniques are one of the most basic and commonly used techniques

by inspectors [14,31]. In this type of technique, every inspector is assigned

with general responsibility of finding defects within the Software

Requirements Specification (SRS) document, without any specific guidelines.

In ad-hoc detection methods, all inspectors are given the same general

responsibility and no formal method or algorithm is used. Instead, the

inspectors use their experience and skill in detecting requirement defects,

which make this technique a non-systematic approach. Also, the number of

defects found and efficiency of this technique is very much based on the

experience and skill level of the inspectors.

2.3.2. Checklists

Checklists are another commonly used technique for defect detection [29].

Using them to detect faults in a work product, including SRS, can be helpful

to reviewers [2,35] as they may enlist the most common errors, questions

18

assisting in the detection process or even prioritize the listing. An inspector

can use a list of questions to validate each requirement. Kotonya and

Sommerville [19] have given examples of such a checklist. Here a listing of

criteria to check for faults is used. Such lists can prove helpful during the fault

detection process.

Table 2 is an example of analysis checklist given by Kotonya and

Sommerville [19]. This is a list of questions which should be checked for each

requirement by the analyst.

Checklist item Description

Premature design Does the requirement include premature design or

implementation information?

Combined

requirements

Does the description of a requirement describe a

single requirement or could it be broken down into

several different requirements?

Unnecessary

requirements

Is the requirement „gold plating‟? That is, is the

requirement a cosmetic addition to the system which

is not really necessary?

Use of non-standard

hardware

Does the requirement mean that non-standard

hardware or software must be used? To make this

decision, you need to know the computer platform

requirements.

Conformance with

business goals

Is the requirement consistent with business goals

defined in the introduction to the requirement

document?

Requirements

ambiguity

Is the requirement ambiguous? What are the possible

interpretations of requirement? Ambiguity is not

always harmful; it gives system designers little

degree of freedom. But, in later stages of

development it has to be removed.

Requirements

realism

According to the technology to develop the system, is

the requirement realistic?

Requirements

testability

Is the requirement written in such a way that test

engineers can develop test to prove that the system

meets the given requirement? Simply, Is it testable?

Table 2 Analysis checklist items. Table abopted from Kotonya and

Sommerville [19]

19

In addition to checklist items mentioned in Table 1, Kotonya and Sommerville

[19] have also provided some quality attribute that can be used as a review

checklist. These quality attributes include understandability, redundancy,

completeness, ambiguity, consistency, organization, and traceability. These

attributes are applied during the inspection to the requirements documents as a

whole instead of applying on each individual requirement. Other examples of

checklists can be found in the literature for requirements inspections, e.g.

checklist given by Hull et al. [7]. Such lists can be used to create a checklist of

criteria to identify defects and missing requirements. Porter and Votta [14]

have also provided a list of questions, which is part of a checklist. They have

categorized the defects into three categories: General, Commission, and

Omission. Omission means missing functionality, performance, or

environment. Commission means insertion of incorrect or extra data or a

requirement which is not listed in the correct place. The third category, i.e.

General, represents all the other types of defects that are not Commission or

Omission. This categorization is based on the work of Schneider, Martin, and

Tsai [36].

Table 3 gives a list of examples from literature where checklists are used for

inspection of software requirements.

An example of a checklist of inspecting for missing functionality is given in

Table 4. This checklist is adopted from Porter and Votta‟s [29] experiment.

Missing Functionality Checklist.

20

 Are the described functions sufficient to meet the system objectives?

 Are all inputs to a function sufficient to perform the required function?

 Are undesired events considered and their required responses

specified?

 Are the initial and special states considered (e.g., system initiation,

abnormal termination)?

Table 3 Missing functionality checklist. Checklist adopted from Porter and Votta

[29]

Table 5 provides a list of inspections performed using checklists that are

found in literature.

I

D

Authors Year Inspection

Techniques

1. Martin and Tsai [37]

NFold Inspection: A Requirements Analysis

Technique

1990 Checklist

(N-fold)

2. Lutz [38]

“Targeting Safety-Related Errors During

Software Requirements Analysis”

1993 Checklists

3. Halling et al. [39]

“Tailoring a COTS Group Support System for

Software Requirements Inspection”

2001 Checklists

Table 4 Use of checklists in literature

In Table 5, Martin and Tsai used a traditional inspection of requirements using

checklist but replicated the experiment with N independent teams. Lutz [38]

focused on the use of checklists for software requirements inspection of

spacecrafts and other safety critical systems and embedded systems.

Although checklists do help in finding out defects, generality of items in the

list and the less systematic approach in this technique results in a less number

of defects detected; this is shown in experiments found in the literature

[14,29,30,31].

2.3.3. Scenario-based approach

Jarke et al. [40] have defined the term scenario as "description of a possible

set of events that might reasonably take place". A scenario, with respect to

21

requirements inspection, represents a script or procedure that the inspector

should follow [28]. In the two techniques given previously in section 4.1 and

4.2, ad-hoc technique is non-systematic and general whereas checklists are

less systematic and mostly general. A general responsibility means finding as

many defects as possible without assigning special role or responsibility to the

inspector. An inspector may completely ignore a defect, repeatedly ignore

similar defects, or misidentify a statement as a defect. This is because of the

non-systematic and general nature of the inspection techniques being used.

Another definition of scenario is given as “a collection of procedures that

operationalize strategies for detecting particular classes of defects” [14].

Requirement inspection scenarios are related to a set of events or procedures

relevant to a specific action, actor, or class of defects.

In the scenario-based defect detection approach, a team of inspectors is

required to perform only one scenario at a time and to inspect all requirements

with coverage of every scenario is ensured by the team. A scenario-based

approach not only uses specific responsibilities, but also classifies defects.

Table 6 presents an example of a scenario from Porter and Votta‟s [29]

experiment. This experiment was done for software requirements of an

embedded system so the scenario talks about terms like precision, response

time, and monitored event; a similar scenario can be developed for other

domains with domain-specific terms and requirements. Also this scenario was

for the perspective based reading, although this looks like another checklist

but this scenario is only related to detecting ambiguities in requirements.

22

Requirement inspector can use this scenario and inspect the requirements

accordingly.

Ambiguities or missing functionality scenario.

1. Identify the required precision, response time, etc. for each functional

requirement.

 Are all required precisions indicated?

2. For each requirement, identify all monitored events.

 Does a sequence of events exist for which multiple output values can

be computed?

 Does a sequence of events exist for which no output value will be

computed?

Table 5 Ambiguities or missing functionality scenario. Scenario adopted

from Porter and Votta [29]

Two variants of scenario-based techniques have been proposed: Defect-Based

reading (DBR) [29] and Perspective-Based Reading (PBR) [41].Regnell et al.

[28] have described Perspective-based reading (PBR) as an inspection

technique for requirement document that “… focuses on the points of view of

the users of a document". A set of procedures is provided by PBR to inspect

software products for defects [42].

The defect-based technique concentrates on specific defect classes, while

perspective-based focuses on the points of view of the users of a document. In

previous related work, there are examples of experiments performed

[14,31,43,44], where scenarios are used. Work of Porter and Votta [14] in

1998 is an early example of scenario-based approach being used for defect

detection, many other replications of the experiment [29,31] with little

alteration were performed. Conclusion of all the experiments shows that

scenario-based approach is better in defect detection from other two

23

approaches. Table 7 enlists some of the work from literature for PBR and

DBR.

ID Authors Year Techniques

1 . Basili, V.R. et al. [41]

The empirical investigation of perspective-

based reading

1996 Perspective-

Based reading

(PBR)

2 . Forrest Shull et al. [42]

How Perspective-Based Reading Can Improve

Requirements Inspections

2000 Perspective-

Based reading

(PBR)

3 . Björn Regnell et al. [28]

Are the Perspectives Really Different__

Further Experimentation on ScenarioBased

Reading of Requirements

2000 Perspective-

Based reading

(PBR)

4 . Fusaro et al. [31]

A Replicated Experiment to Assess

Requirements Inspections Techniques

1997 Defect based

reading

Table 6 Perspective and Defect based reading

Parnas and Weiss [45] argue that higher efficiency can be achieved through

more systematic detection approach with selective responsibility assigned to

inspectors. Their work on the active design review, where individual

reviewers work on a specific purpose using specialized questionnaire [45],

motivated Porter and Votta‟s scenario based approach [14] for defect

detection in requirements. This results in more efficiency, higher rate of defect

identification and removal. Mostly this is done using a modification of

checklist technique. In this way each inspector is assigned a unique set of

responsibilities and guidelines for how to achieve more efficient result. Thus

each inspector has a scenario to inspect the requirements.

Although the experiments have shown that scenario-based approaches

produce better results in defect detection, there is still debate on which method

is better, this is clear from next discussion.

24

Porter and Votta [14] have reported on their experiment-based work on

comparison of three defect detection techniques, namely the ad-hoc

techniques, checklist, and the scenario-based techniques. From the results of

their experiment, and replicated experiments by Porter, Votta and Basili [29],

and Cheng and Jeffery [30], the scenario-based technique has shown to detect

more defects than other non-systematic approaches. However, in contrast to

these studies Fusaro et al. [31] have also replicated the experiment, but they

argue that using the scenarios based technique did not result in significant

improvement in defect detection..

2.4 Conclusion

Mostly, software code has been the focus of inspection, but literature and

experiences in the domain of software requirements implies that inspections

should be carried out in earlier stages of the software development life cycle

(SDLC) [30]. Performing inspections of software requirements are very

helpful in improving the quality of not only the requirements but also the

complete software system. Performing inspection of software requirements

help in identifying and resolving problems early in SDLC [20]. This makes

the process of handling defects easier and also requirements defects are more

expensive to fix later in SDLC [4,27]. Therefore requirements inspection can

result in reduced development costs.

Non-systematic techniques are commonly used for inspecting software

requirements. Software requirements inspection literature has shown that such

techniques are less efficient. Thus a systematic technique for software

25

requirements inspection needs to be developed. A technique which is based on

an algorithm for inspecting software requirements and detecting defects can

be developed and defect detection rate of this new technique can be compared

with current techniques.

Also the commonly used techniques are generally used in software projects of

every domain. Domain-specific is mentioned as a research strategy by Cheng

and Atlee [9], so a change in focus from generic to domain-specific can

potentially yield significant improvements in the field of requirements

inspection.

26

3 PROBLEM STATEMENT

Given a specific domain, like software for mobile device, commercial

software, E-commerce, etc., how to efficiently perform V&V of the software

requirements i.e. Domain-specific Verification and Validation (V&V) of software

requirements. As shown in Chapter 2 and many works in the literature

[1,22,24,11] , V&V of software requirements, but the literature also shows that

V&V are performed in a systematic manner resulting in in-efficiency.

Incomplete and defective software requirements are one of principal basis of

software project failure [24]. Defect removal, handling incompleteness, and

improving quality by handling other criteria is done by performing Verification

and Validation (V&V). Inspection is the most common technique for reviewing

software requirements. Experiments and other work on software requirement

inspection have been performed, but a Domain-specific approach to do

Verification and Validation (V&V) is not under much focus of researchers.

Definition of V&V, its importance, and application of this in the software

requirements are discussed previously in section 2.2 and its subsections. One of

the problems, mentioned in the sub section 2.5.1, is absence or improper V&V of

software requirements. Some of work available in this field is general and non-

systematic inspection performed on software requirements.

Validation of requirements is performed by checking the requirement

statements in the SRS document for any incompleteness, inconsistency,

ambiguities and making sure that they follow a quality standard [11]. Verification

27

is a process to ensure that each phase in SDLC accomplishes the requirements set

by last stage [20]. This can be applied to software requirements for performing the

verification. This way V&V of software requirements can be performed.

Performing V&V with precise information of a specific domain can be more

efficient in defect detection and removal. Developing of domain-specific

strategies for a project can also help in future projects of same domain. Also the

domain-specific information can help in developing better inspection technique;

like developing checklist criteria.

Inspections are the process of choice used for V&V of software requirements.

Section 2.3 and its subsections give three techniques for defect detection

techniques found in the literature. As found by many researchers that the most

common techniques use for inspection i.e. Ad-hoc and checklist are not very

efficient [14,46,30,31].

Figure 5 shows a layered view of General inspections, software inspections,

software requirements inspections (applied to every domain without any

particular consideration to a specific domain, also most commonly used

techniques are non-systematic), then there are software requirements inspection

specific for a domain with a systematic approach for inspection.

28

Figure 4 Inspections and Domains

29

4 PROPOSED SOLUTION

The vital importance of requirements inspection and then performing

Verification and Validation (V&V) process is obvious from chapter 2. Also from

the literature it is shown that scenario-based techniques, which are systematic or

algorithmic in nature, are more efficient [14,46,30,31].This shows that an

algorithmic technique for inspection yields better results in defect identification.

Literature also shows the importance of focusing on a specific domain [47].

After studying the literature, an algorithmic approach for performing

validation of software requirement is presented, with domain-specific focus.

4.1 Process of solution

The process of my proposed solution for domain-specific validation of

software requirements is presented here and the in the sub-sections.

4.1.1 Introduction

After studying the literature, it is obvious that most of the inspection

techniques are non-systematic and a systematic way to performing

software requirement inspection is more efficient, improves quality, and

reduces cost. This importance and benefits of a systematic approach are

shown by experiments performed by researchers [14,46,31] to compare

systematic and non-systematic approaches. One of the benefits of

efficiently finding defects is reduction of cost. Boehm and Basili [8] have

argued that defect removal during the early stages of requirements can be

100 times less expensive than finding defects after delivery.

30

An algorithmic way of doing inspection of SRS document is

presented, which outputs a report of potential defects in SRS. This report

is then used to create a checklist; this is a checklist of possible defects

based on an algorithm, so it is a systematic method for inspecting software

requirements. My proposed algorithm for performing V&V consists of

three steps, briefly presented in the figure 6.

Figure 5 Proposed solution

Next sub-section describes my algorithm in more detail.

4.2 Proposed algorithm

The steps of proposed algorithm are given in figure 7.

Figure 6 Proposed algorithm

 These steps are explained in following sub-sections.

4.2.1. Extraction

This is the first, input, step of the process. Here the requirement statements are

pulled out of SRS document and input into a database of requirement statement,

simply reffered to as the database onwards in this thesis. In the extraction we

made sure that each single entity of the requirement statement table in the

31

database is an atomic requirement. Atomic requirement and atomicity is defined

by many authors [7,48,49]. Hull et al. [7] have defined atomic as “each statement

carries a single traceable element” [7]. Salzer [49] has defined atomic

requirement as “indivisible well-formed requirements that enable control over

software design, test planning, and work management with an ease and accuracy

not previously attainable” [49]. Each requirement statement is manually checked

with the definitions of the term atomic, atomic requirement and atomicity. If a

requirement statement is non-atomic and is to be broken into two or more than

two atomic requirement statements. It is made sure that no redundant requirement

or words in statements are added. Also it is to be made sure that while breaking a

non-atomic requirement, meaning of the original requirement is not destroyed.

4.2.2. Process

The second step, Process, is composed of two sub steps: Classification and

Rules.

4.2.2.1 Classification

First the requirement statements are classified into different requirement

types; termed as Classification. This is done according to a classification scheme;

after manually studying each statement, each requirement statement is classified

according to the action performed in it. For example if a statement is like “user

inputs name and password.” Then it is clear that an input to the system is done

here, so such requirement is of type Data input. The requirement types we found

in our project are in appendix A; where Table 14 gives the requirement types and

their description. This classification and descriptions can be used in further

32

studies and classification of requirements. If the action in the statement is not one

of the types in table then a new type is defined. For example, in the study while

extraction of an SRS of web project many requirement statements were

encountered which defined user interface, which were not in my current

requirement types at that time. One example statement is “Pricing is shown on

each day on the widget screen below the calendar”, a new type User Interface is

assigned to this and new statement with same action.

4.2.2.2 Rules

Second sub-step in the Process is development of rules. The database of

software requirements was studied, and a pattern of recurring relationship

between requirement types was found. Also some pattern is obvious from a

software engineering perspective. One example can be that any data input from

user must be validated for input requirements, which can be string format, alpha-

numeric character check, or many others. For example, after studying the

database developed from requirements in SRS document of commercial projects,

repeating patterns in it, and missing parts in pattern we have developed a set of

rules; these rules can be an example for future work on other domains and

development of rules for that domain. Also these rules are developed for one

domain and might not applicable in other domains; but some similar rules might

come out. Table 7 gives the set of rules that we discovered, for a project related to

domain of commercial, by studying the database. These are 11 rules relevant to

the requirements database that were studied.

33

ID Rule

1. For every item of type Data Input, there exists at least one item of

type Data Validation

2. For every item of type Data Input, there exists at least one item of

type Data Persistence

3. For every item of type Data Validation, there exists at least one item

of type Data Output

4. For every item of type Event trigger, there exists at least one item of

type other requirement

5. For every requirement of type Data input, all the input data items for

the requirement should be explicitly described

6. For every requirement of type Data output, all the output data items

for the requirement should be explicitly described

7. For every use-case/feature There exists at least one requirement of

type data validation requirement.

8. For every use-case/feature There exists at least one requirement of

type data input requirement.

9. For every use-case/feature There exists at least one requirement of

type data output requirement.

10. For every use-case/feature There exists at least one requirement of

type Business Logic requirement.

11. For every use-case/feature There exists at least one requirement of

type data persistence requirement.

Table 7 Rules for inspection of software requirements

4.2.3. Output

This is the final step of the algorithm. In this step, after going through the

previous steps, a report mentioning possible defects in the SRS is generated as

output of the algorithm. The requirement statements are inspected while

considering the rules; rules which are generated in second sub-step of

classification. With this inspection defects are detected, and these defects are

produced as a report.

With this output report now a checklist of defects can be created. Inspector

can use this checklist for inspection, but this is not a generic checklist, which is

generally applicable on any software requirements document. This is a

34

systematically generated checklist, based on an algorithm, and specific to the

domain of current project.

4.3 Domain-specific

During the three steps, especially during the rules development step,

requirements related to a specific domain were focused. This helps in developing

rules for that specific domain, and thus finding defects related to that domain. The

benefits being domain-specific are previously discussed in chapter 2.

4.4 Conclusion

This algorithmic domain-specific validation of software requirements can be

performed on different domains. For any given domain some of the rules may be

different, but the output will be specific to that domain and the checklist

developed with it will be helpful in finding defects related to that domain.

35

5 VALIDATION

This chapter gives the validation of proposed solution, given in chapter 4.

For the purpose of validation we use a database of requirements. This

database is populated with requirement statements from SRS documents of real

life projects. Following sub-sections describe how the three steps of algorithm are

applied; three steps are extraction, classification, and output of the algorithm

presented in chapter 4.

5.1 Extraction and requirement statements database

Figure 7 Database of requirements

We used SRS documents of projects from industry; for confidentiality we cannot

disclose the name of projects or companies. In the first step of extraction we

extracted requirements statements from requirement documents and populated a

36

database of requirements. Figure 8 shows the developed database; with tables and

relationship among them

5.2 Classification of requirements

We studied the requirements in database and as step 2.1 of proposed algorithm

classified the requirements. The classified requirements types for selected

database are described in Table 12 in appendix A. In appendix A, there is a

requirement type called High Level Requirement; this is not a requirement type

but those requirement statements which were not atomic and not properly defined

in SRS were assigned this type.

5.3 Application of Rules and output

We studied requirement statements from real life projects. For our project the

rules, discussed previously in section 4.2.2.2 and rules given in Table 7 were

applied to these requirements. Following is an example of requirement statements

from SRS and how a rule is violated, thus the output of inspection with the rule in

consideration is detection of a defect. This example uses rule 1 of Table 7.

Rule1: “For every item of type Data Input, there exists at least one item

of type Data Validation”

Req.: “user enters email address in the page.”

Assuming that the related data validation is not specified in the

requirements document, then the following output is resulted by applying

rule 1.

37

Output: This data input requirement is missing the related data validation

requirement.

Problem: Missing requirement

Rule 1, of our discovered rules, says that every data inputted into the system must

be validated. In this example requirement 1 (Req.) is a data input, where the user

inputs the email address. After manually inspecting the database of requirements,

there is no data validation requirement which validates the input email address.

This violation of rule 1 shows the defect of a missing requirement, in this case

missing requirement of type data validation. That is according to Rule1 a data

inputted to system has to be validated in a requirement statement of type data

validation, but there is no validation found for this input in the example. This

defect is recorded and presented in a meeting with other inspectors and author of

requirements, so that the defects are discussed for further processing and are

removed or corrected.

In similar way, as above the requirements are checked with rule 1, all the

requirements were subjected to all the rules in Table 7. Following table shows

examples for next 10 rules. In the examples in Table 8, whenever there are two

requirement statements mentioned they are given arbitrary numbers. The

numbering R1 and R2 do not mean that the two requirements are consecutive

Rule

ID

Example

2. Rule2: “For every item of type Data Input, there exists at least one

38

Rule

ID

Example

item of type Data Persistence”

Req. statement: “User should input first name in the registration

page.”

Assumption: the related data persistence is not specified.

Problem: Missing requirement

Output: For this data input requirement there is no data persistence

requirement. The data input requirement inputs a data item into the

page which is not stored into or communicated to database that is no

data persistence. This shows a missing requirement of type data

persistence.

3. Rule3: “For every item of type Data Validation, there exists at least

one item of type Data Output”

Req. statement: “The system verifies that all fields of registration page

are filled.”

Assumption: the related data output is not specified.

Output: For the given example data validation requirement there is not

related data output in the requirement document. Thus according to

rule 3, this validation statement is missing an output requirement

statement.

Problem: Missing requirement

4. Rule4: “For every item of type Event trigger, there exists at least one

39

Rule

ID

Example

item of type other requirement”

Req. statement: “The user can click on "Content Management" on the

page.”

Assumption: there is no related requirement specified.

Output: The requirement document has no other requirement statement

which describes any action that happens related to this event trigger.

There is no related requirement to this trigger. This shows a missing

requirement.

Problem: Missing requirement

5. Rule5: “For every requirement of type data input, all the data items

for the requirement should be explicitly described”

Req. statement: “The user enters his login credentials into the system.”

Assumption: the related data input items are not explicitly specified.

Output: the requirement statement should explicitly define the login

credentials, like credential can be username and password. So this is a

vague and incomplete requirement statement.

Problem: Incomplete requirement

6. Rule 6: “For every requirement of type Data output, all the output

data items for the requirement should be explicitly described”

Req. statement: “A menu is displayed on the page with several

options.”

40

Rule

ID

Example

Assumption: the related data output items are not explicitly specified.

Output: the requirement statement should explicitly define that what

several options are? So this is a vague and incomplete requirement

statement.

Problem: Incomplete requirement

7. Rule6: “For every use-case/feature There exists at least one item of

type data validation requirement.”

Use case ID: “42”

Assumption: there is no data validation requirement specified in this

usecase.

Problem: Incomplete use case

Output: There is no requirement of type data validation in this use

case.

8. Rule7: “For every use-case/feature There exists at least one item of

type data input requirement.”

Use case ID: “43”

Assumption: there is no data input requirement specified in this

usecase.

Problem: Incomplete use case

Output: There is no requirement of type data input in this use case.

9. Rule8: “For every use-case/feature There exists at least one item of

41

Rule

ID

Example

type data output requirement.”

Use case ID: “44”

Assumption: there is no data output requirement specified in this

usecase.

Problem: Incomplete use case

Output: There is no requirement of type data output in this use case.

10. Rule9: “For every use-case/feature There exists at least one item of

type Business Logic requirement.”

Use case ID: “51”

Assumption: there is no business logic requirement specified in this

usecase.

Problem: Incomplete use case

Output: There is no requirement of type business logic in this use case.

11. Rule10: “For every use-case/feature There exists at least one item of

type Data persistence requirement.”

Use case ID: “50”

Assumption: there is no data persistence requirement specified in this

usecase.

Problem: Incomplete use case

Output: There is no requirement of type data persistence in this use

case.

Table 8 Rules and example

42

Another example of defective requirement statement is given below. There are

some defects in the requirement statement and also some violation of rules.

Req.: The user should be able to view item details that have been added

previously (stored in local database).

First problem with above requirement statement (R6) is that it is the only

requirement in the use case, given in the SRS. This violates the last five rules of

Table 7; which require that every use case must have at least one data input, data

output, data validation, business rule, and data persistence. Another problem with

this statement is that it is not atomic and can be broken into distinct atomic

requirements.

Each rule applied to relevant requirement type and its result is shown in Table

16 in Appendix B; which shows all the statistics of the inspection.

For example in all of the requirements inspected by the experiment, the total

number of data input items in system 1 are 11. Among the 11 data inputs there

are only 4 data inputs which have relevant data validation requirements, and 7

data inputs were missing data validations. From this precision of defect detection

is calculated with following formula

 R
Total number of efects found by rule R

Total number of cases where rule is applied

 R efect etection Rate

43

In the above formula, precision is in terms of number of defects found by a

rule. For this example percentage of defects found by rule 1 in system 1 is as

follow

 R

 3. 3

The first number 1 as subscript in denotes defect detection rate

calculated by rule 1 and second is for system 1. In the above calculation

 shows

that out of total 11 cases in requirement statements subjected to this rule, 7 defects

were found in system 1. Here it is important mention the found false-positives.

Table 9 shows the detected defects after inspecting the requirements with rules in

Table 7. This table shows the defects found in each system, after applying the

rule. First two columns in the table give the rule id and description of rule. Next

four columns are divided into two rows; each row gives the information relative

to a system. The third column in Table 9 gives the total number of rule application

in requirements. Precision of each rule application is also calculated and shown in

Table 9 in last column. Precision is calculated as below

Precision
 umber of real defects

 umber of warnings

In table below, title of column 1 and 2 are as “A Rule I ” and “B System

I ” respectively.

44

A B Total

number of

rule

application

of

warnings

generated

of

false

positi

ves

of real

defects

found

DDR Precision

1.

1 15 9 2 7 46.67

%

77.78%

2 8 8 2 6 75.00

%

75.00%

3 23 23 23 0 0.00% 0.00%

4 10 10 6 4 40.00

%

40.00%

5 16 16 10 6 37.50

%

37.50%

2.

1 15 9 2 7 46.67

%

77.78%

2 8 2 0 2 25.00

%

100.00%

3 23 23 23 0 0.00% 0.00%

4 10 10 6 4 40.00

%

40.00%

5 16 9 4 5 31.25

%

55.56%

3.

1 2 1 0 1 50.00

%

100.00%

2 0 0 0 0 0.00% 0.00%

3 0 0 0 0 0.00% 0.00%

4 0 0 0 0 0.00% 0.00%

5 0 0 0 0 0.00% 0.00%

4.

1 3 2 0 2 66.67

%

100.00%

2 0 0 0 0 0.00% 0.00%

3 6 0 0 0 0.00% 0.00%

4 9 1 0 1 11.11

%

100.00%

5 19 0 0 0 0.00% 0.00%

5.

1 5 0 0 0 0.00% 0.00%

2 2 0 0 0 0.00% 0.00%

3 23 2 0 2 8.70% 100.00%

4 10 8 0 8 80.00

%

100.00%

5 16 2 0 2 12.50

%

100.00%

6. 1 4 2 0 2 50.00 100.00%

45

A B Total

number of

rule

application

of

warnings

generated

of

false

positi

ves

of real

defects

found

DDR Precision

%

2 2 1 0 1 50.00

%

100.00%

3 23 0 0 0 0.00% 0.00%

4 9 9 0 9 100.00

%

100.00%

5 19 5 0 5 26.32

%

100.00%

7.

1 8 5 0 5 62.50

%

100.00%

2 6 6 0 6 100.00

%

100.00%

3 8 8 0 8 100.00

%

100.00%

4 9 9 0 9 100.00

%

100.00%

5 20 20 0 20 100.00

%

100.00%

8.

1 8 5 0 5 62.50

%

100.00%

2 6 4 0 4 66.67

%

100.00%

3 8 2 2 0 0.00% 0.00%

4 9 4 0 4 44.44

%

100.00%

5 20 6 1 5 25.00

%

83.33%

9.

1 8 5 0 5 62.50

%

100.00%

2 6 4 0 4 66.67

%

100.00%

3 8 2 2 0 0.00% 0.00%

4 9 3 0 3 33.33

%

100.00%

5 20 5 1 4 20.00

%

80.00%

10.

1 8 7 0 7 87.50

%

100.00%

2 6 5 0 5 83.33

%

100.00%

46

A B Total

number of

rule

application

of

warnings

generated

of

false

positi

ves

of real

defects

found

DDR Precision

3 8 2 2 0 0.00% 0.00%

4 9 4 0 4 44.44

%

100.00%

5 20 2 1 1 5.00% 50.00%

11.

1 8 4 0 4 50.00

%

100.00%

2 6 2 0 2 33.33

%

100.00%

3 8 1 1 0 0.00% 0.00%

4 9 7 0 7 77.78

%

100.00%

5 20 11 1 10 50.00

%

90.91%

Totals

551

Table 9 Defects found against each rule

Following Table 12 shows total number of defects found with each rule per

system and the total of all the defects found in the complete set of requirements

used during the experiment.

Rule ID System ID Defects per system Total defects found

1 1 7 24

2 7

3 0

4 6

5 4

2 1 7 18

2 2

3 0

4 4

5 5

3 1 1 1

2 0

3 0

4 0

5 0

47

4 1 2 3

2 0

3 0

4 0

5 1

5 1 0 12

2 0

3 2

4 8

5 2

6 1 2 17

2 1

3 0

4 9

5 5

7 1 5 48

2 6

3 8

4 9

5 20

8 1 5 18

2 4

3 0

4 4

5 5

9 1 5 16

2 4

3 0

4 3

5 4

10 1 7 17

2 5

3 0

4 4

5 1

11 1 4 23

2 2

3 0

4 7

5 10

Total

defects

 197

Table 10 Total number of defects found with each rule

48

The Figure 10 shows a bar chart based on table 12. This chart shows the

defects found in all the requirement statements used in the project and the number

of defects founds in each system. Figure 10 also provides a simple comparison of

all the rules and performance of each rule.

Figure 8 A bar chart showing defects found

The above figure also shows that the rule 7 has found the most number of

defects in the database, whereas rule 1 is the next most successful rule. As

obvious from Figure 10, rule 3 only found one defect. This has more to do with

the bad practices used during the requirements phase i.e., writing of requirements.

Rule 3 checks that every data validation has a related data output requirement

statement, but the requirement documents used in the project did not had many

data validations and were missing related data outputs. If the requirements

49

document has more data validations and is missing data output then Rule 3 will

detect the missing requirements. Similar is the case in rule 7. Rule 7 checks that

every usecase has a requirement of type data validation, but most of the usecases

had no data validation requirement.

Figure 9 Precision of rules

Figure 9 shows a bar chart of precision of each rule. The precision is

calculated according to precision formula given on page 43.

Table 11 shows ranking of rules, the ranking is based on defect detection rate

of each rule and then on Precision of that rule. Table 11 shows that rule 7 has the

highest defect detection rate and 100% precision. This makes rule 7 the highest

ranking rule in the rules found.

Rank
Rule

ID

of rule

application

of

warnings

of

false

positives

Defects

found
DDR Precision

1. 7 51 48 0 48 94.11% 100.00%

50

Rank
Rule

ID

of rule

application

of

warnings

of

false

positives

Defects

found
DDR Precision

2. 3 2 1 0 1 50% 100.00%

3. 11 51 25 2 23 43.13% 92.00%

4. 8 51 21 3 18 35.29% 85.71%

5. 10 51 20 3 16 33.33% 80.00%

6. 1 72 66 43 23 31.94% 34.84%

7. 6 57 17 0 17 29.82% 100.00%

8. 9 51 19 3 16 29.41% 84.21%

9. 2 72 53 35 18 25.00% 33.96%

10. 5 56 12 0 12 21.42% 100.00%

11. 4 37 3 0 3 8.10% 100.00%

Total 551 283 89 194 --- ---

Table 11 Ranking of rules

The above statistical data including Table 9, 10, 11, and Figure 10 can be used

to create a report and can be used to develop a checklist, which then can be given

to inspector. Inspectors can looks specifically into the found defects. After the

inspection has been done then the final report of defects can be given back to

authors of requirements, so that they can remove and repair defects and also

validate the defects with customers.

After performing a complete validation on the database of 309 software

requirement statements, I different set of 500 requirement statements from a new

system was also validated. This was done to find out if the discovered rules are

51

complete? This is confirmed by finding out if the currently found requirement

types are complete for enterprise domain. From the validation of new system, it is

found that only one new requirement type is found. The new found requirement

type is “post condition”; “A statement which describes the post condition of a

usecase”. This can be a task for future efforts, i.e. to replicate experiments on

requirement statements of enterprise software systems and thus improve

requirement types set and rules.

52

6 FORMALIZATION

In this chapter all the software requirement inspection rules are represented in

a formal logic.

6.1. Introduction

Natural languages (like, English) are ambiguous. A word, clause, or sentence

can have multiple meanings in a natural language. In order to have the rule free of

ambiguity, rules are converted to a formal language; Sentential Logic (SL) and

Quantifier Logic (QL). SL is also known as propositional logic and QL is also

known as predicate logic. Thus the rules shown in Table 13 are concise and free

of ambiguity.

6.2. Formal logic representation

Table 12 gives the definition of symbols used in formal representation of

software requirements inspection rules.

ID Definitions

1. set of atomic software requirements of a project

2. set of software requirements of t pe ata nput

3. set of items in ata nput software requirements

4. set of software requirements of t pe ata Validation

5. secase feature

6. set of data items of a software requirements

7. validates

8. descri es data persistence requirement of

53

9. gives the output of

10. triggers

11. is complete

Table 12 Requirement type representation

Table 13 shows the software requirement inspection rules from Table 7

represented into a formal language. Table 13 uses the formal language from

predicate logic.

There is an important assumption about the 11th definition in Table 12. The

function “ ” means the x is a complete requirement statement.

Completeness cannot be validated algorithmically without human inspection.

Rule

ID

Formal representation

1

2

3

4

5

6

7

8

9

10

11

Table 13 Formal representation of rules

54

7 CONCLUSION AND FUTURE WORK

Software requirements inspection can be beneficial in different stages of

Software Development Life Cycle (SDLC). This thesis provided a review of three

commonly used techniques for software requirements inspection and suggests an

algorithmic technique with rules.

7.1 Summary

Chapter 1 presented an introduction of this thesis. It also discussed the

importance of software requirements phase in SDLC.

Chapter 2 provided the background and literature review for software

requirements inspection techniques. Three commonly used techniques are: Ad-

hoc techniques, Checklist based technique, and scenario-based techniques. These

techniques were discussed and empirical experiments performed by different

researchers for comparing the three techniques were also presented.

The problem of efficiently inspecting software requirements is presented in

Chapter 3. Chapter 4 described the proposed solution of the problem discussed in

Chapter 3. An algorithmic technique for software requirements inspection is

presented in Chapter 4. This chapter described the complete algorithm developed

during the research project. This algorithm can provide better result in efficiently

discovering defects in the software requirements.

Chapter 5 presented the validation of the algorithm. In the chapter, the details

and results of the experiment performed are given; the algorithm was applied to a

55

set of software requirements. Tables and charts are given in the chapter showing

the output data of the experiment.

Chapter 6 presented the 11 rules from chapter 4 in a formal language. This

presentation in a formal language removes any ambiguity from the rules.

7.2 Conclusion

In a summarized list, the contributions by this thesis are:

 Comparison of currently practiced software requirements inspection

techniques.

 Proposal of a systematic software requirements inspection technique.

 The formalization of rules of proposed algorithm.

7.2.1. Problems encountered

There were no major impediments faced during the project.

One issue during the requirements collection phase was that some requirement

statements were not atomic, whereas some were not completely defined. Non-

atomic statements were more of concern as such statements became difficult to

categorize during the classification step of our algorithm.

7.3 Future work & Recommendation

We found that a domain-specific systematic technique can be better and

efficient for performing software requirements inspection. This thesis focused on

the software requirements of commercial enterprise domain. Future works can be

56

focused towards other domains, e.g. web development, embedded, real-time,

medical, mobile, etc.

The set of rules for software requirement inspection developed during this

project can be improved and new rules can be added to the set.

57

REFERENCES

[1] Ian Sommerville, Software engineering, 8th ed. Essex, UK: Pearson Education

Ltd., 2007.

[2] Roger S. Pressman, Software engineering A practitioner's approach, 7th ed. New

york, USA: Mc Graw-Hill, 2010.

[3] Pamela Zave, "Classification of research efforts in requirements engineering,"

ACM Computing Surveys (CSUR), vol. 29, no. 4, pp. 315-321, Dec 1997.

[4] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," in ICSE

'00 Proceedings of the Conference on The Future of Software Engineering, New

York, 2000, pp. 35-46.

[5] R. Stevens, P. Brook, K. Jackson, and S. Arnold, Systems engineering: coping

with complexity.: Prentice Hall, 1998.

[6] Philip B Crosby, Quality Without Tears: The Art of Hassle-Free Management, 1st

ed. New York, USA: McGraw-Hill, 1995.

[7] E. Hull, K. Jackson, and J. Dick, Requirements engineering, 2nd ed. london, UK:

Springer Verlag, 2005.

[8] B. Boehm and V.R. Basili, "Top 10 list [software development]," IEEE

Computer, vol. 34, no. 1, pp. 135-137, 2001.

[9] Betty H. C. Cheng and Joanne M. Atlee., "Research directions in requirements

engineering," Future of Software Engineering, 2007.FOSE'07, pp. 285-303, May

2007.

[10] M. Sagheb-Tehrani and A. Ghazarian, "Software development process: strategies

for handling business rules and requirements," ACM SIGSOFT Software

Engineering Notes, vol. 27, no. 2, pp. 58-62, March 2002.

[11] Ian Sommerville and Pete Sawyer, Requirements Engineering: A good practice

guide. West Sussex, UK: John Wiley & sons Ltd., 1997.

[12] M.E. Fagan, "Design and code inspections to reduce errors in program

development," IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

58

[13] Eric J. Braude, Software engineering: an Object-Oriented perspective. New York,

USA: John Wiley & sons, Inc., 2001.

[14] A.A. Porter and L.G. Votta, "An experiment to assess different defect detection

methods for software requirements inspections," in ICSE '94 Proceedings of the

16th international conference on Software engineering, Los Alamitos, CA, USA,

1994, pp. 103-112.

[15] P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling, "What do we

know about defect detection methods?," Software, IEEE, vol. 23, no. 3, pp. 82-90,

May-June 2006.

[16] Watts S. Humphrey, A discipline for software engineering. Reading, Mass., USA:

Addison-Wesley, 1995.

[17] L.G. Votta Jr, "Does every inspection need a meeting?," ACM SIGSOFT Software

Engineering Notes, vol. 18, no. 5, pp. 107-114, December 1993.

[18] E. Kamsties, D.M. Berry, and B. Paech, "Detecting ambiguities in requirements

documents using inspections," in Workshop on Inspection in Software

Engineering (WISE'01), Paris, France, 2001, pp. 68-80.

[19] G. Kotonya and I. Sommerville, Requirements engineering. West sussex, UK:

Wiley Chichester, 1998.

[20] B.W. Boehm, "Verifying and validating software requirements and design

specifications," IEEE Software, vol. 1, no. 1, pp. 75-88, January 1984.

[21] David A. Cook. (2002, May) Software Technology Conference (STC 2002).

[Online]. http://sstc-online.org/2002/SpkrPDFS/ThrTracs/p961.pdf

[22] A. Terry Bahill and Steven J. Henderson, "Requirements development,

verification, and validation exhibited in famous failures," Systems engineering,

vol. 8, no. 1, pp. 1-14, 2005.

[23] Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering: Theory and

Practice, 4th ed. New Jersey, USA: Pearson Higher Education, 2010.

[24] H.F. Hofmann and F. Lehner, "Requirements engineering as a success factor in

software projects," IEEE Software, vol. 18, no. 4, pp. 58-66, July/August 2001.

http://sstc-online.org/2002/SpkrPDFS/ThrTracs/p961.pdf

59

[25] Ralph D. Jeffords and Constance L. Heitmeyer, "A Strategy for Efficiently

Verifying Requirements Specifications Using Composition and Invariants," 11th

ACM SIGSOFT international symposium on Foundations of Software

Engineering, vol. 28, no. 5, pp. 28-37, September 2003.

[26] C.L. Heitmeyer, "Software cost reduction," Encyclopedia of Software

Engineering, January 2002.

[27] B.W. Boehm, "Software engineering economics," Software Engineering, IEEE

Transactions on, vol. SE-10, no. 1, pp. 200-217, January 1984.

[28] B. Regnell, P. Runeson, and T. Thelin, "Are the perspectives really different?–

Further experimentation on scenario-based reading of requirements," Empirical

Software Engineering, vol. 5, no. 4, pp. 331-356, 2000.

[29] A.A. Porter, L.G. Votta Jr, and V.R. Basili, "Comparing detection methods for

software requirements inspections: a replicated experiment," Software

Engineering, IEEE Transactions on , vol. 21, no. 6, pp. 563-575, 1995.

[30] B. Cheng and R. Jeffery, "Comparing inspection strategies for software

requirement specifications," in Software Engineering Conference, 1996.

Proceedings of 1996 Australian, Melbourne, Vic. , Australia, 1996, pp. 203-211.

[31] P. Fusaro, F. Lanubile, and G. Visaggio, "A replicated experiment to assess

requirements inspection techniques," Empirical Software Engineering, vol. 2, no.

1, pp. 39-57, 1997.

[32] Kristian Sandahl et al., "An Extended Replication of an Experiment for Assessing

Methods for Software Requirements Inspections," Empirical Software

Engineering, vol. 3, no. 4, pp. 327-354, December 1998.

[33] F. Lanubile and G. Visaggio, Evaluating defect detection techniques for software

requirements inspections, 2000, citeseer.

[34] Victor Basili et al. Lab Package for the Empirical Investigation of Perspective-

Based Reading. [Online].

http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html

[35] B. Brykczynski, "A survey of software inspection checklists," ACM SIGSOFT

Software Engineering Notes, vol. 24, no. 1, p. 82, January 1999.

http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html

60

[36] G. Michael Schneider, Johnny Martin, and W. T. Tsai, "An experimental study of

fault detection in user requirements documents," ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 1, no. 2, pp. 189-204, April 1992.

[37] J. Martin and W.T. Tsai, "NFold Inspection: A Requirements Analysis

Technique," Communications of the ACM, vol. 33, no. 2, pp. 225-232, February

1990.

[38] Robyn R. Lutz, "Targeting Safety-Related Errors During Software Requirements

Analysis," in Proceeding SIGSOFT '93 Proceedings of the 1st ACM SIGSOFT

symposium on Foundations of software engineering, Los Angeles, 1993, pp. 99-

106.

[39] M. Halling, P. Grunbacher, and S. Biffl, "Tailoring a COTS Group Support

System for Software Requirements Inspection ," in Automated Software

Engineering, 2001. (ASE 2001). Proceedings. 16th Annual International

Conference on , San Diego,CA, 2001, pp. 201-208.

[40] M. Jarke, X.T. Bui, and J.M. Carroll, "Scenario management: An interdisciplinary

approach," Requirements Engineering, vol. 3, no. 3, pp. 155-173, 1998.

[41] V.R. Basili et al., "The empirical investigation of perspective-based reading,"

Empirical Software Engineering, vol. 1, no. 2, pp. 133-164, 1996.

[42] F. Shull, I. Rus, and V. Basili, "How perspective-based reading can improve

requirements inspections," IEEE Computer, vol. 33, no. 7, pp. 73-79, August

2000.

[43] Annie I. Antón and Colin Potts, "The Use of Goals to Surface Requirements for

Evolving Systems," in Proceedings of the 20th international conference on

Software engineering (ICSE '98), Kyoto, Japan, 1998, pp. 157-166.

[44] M. Mannio and Uolevi Nikula, "Requirements Elicitation Using a Combination of

Prototypes and scenarios," in Workshop on Requirements Engineering, Buenos

Aires, Argentina, 2001, pp. 283-297.

[45] David L. Parnas and David M. Weiss, "Active design reviews: principles and

practices," in Proceedings of the 8th international conference on Software

engineering, London, United Kingdom, 1985, pp. 132-136.

61

[46] A.A. Porter, L.G. Votta Jr, and V.R. Basili, "Comparing detection methods for

software requirements inspections: A replicated experiment," Software

Engineering, IEEE Transactions on, vol. 21, no. 6, pp. 563-575, June 1995.

[47] Barrett R. Bryant, Jeff Gray, and Marjan Mernik, "Domain-specific software

engineering," in FoSER '10 Proceedings of the FSE/SDP workshop on Future of

software engineering research, Santa Fe, New Mexico, USA, 2010, p. 65.

[48] A. Eberlein, and M. Moussavi M. Galster, "Atomic Requirements for Software

Architecting," in SEA '07 Proceedings of the 11th IASTED International

Conference on Software Engineering and Applications, Anaheim, CA, 2007, pp.

143-147.

[49] H Salzer, "ATRs (Atomic Requirements) Used Throughout Development

Lifecycle," in 12th INTERNATIONAL SOFTWARE QUALITY WEEK (QW'99),

San Jose, CA, USA , 1999.

62

APPENDIX A

 REQUIREMENT TYPES

63

Table 14 gives the requirement types discovered in requirements database.

ID Requirement type Description

1 Data Input Data entered into the system by the actor of the use

case

2 Data Output The intermediate or final result of the use case

outputted by the system on the screen/printer. The

content of the screens and the rules for displaying

those contents.

3 Data Validation validation of data items inputted by the actors of the

use cases

4 Business Logic Application or business logic including calculations

5 Data Persistence All database related operations including reading,

updating, inserting and deleting from/to a database

6 Messaging Sending an email to a party or a message sent from

one system/component of system to another. Also

describes the content of Email.

7 Event Trigger Actor clicks on a menu item or link or button - a

command

8 User Interface

Navigation

Flow of application's screen. (Transition between

screens). The rules for the transitions between

screens.

9 User Interface The layout of the page and screen e.g. an input form

64

ID Requirement type Description

10 External Call Calls/messages between different

systems./Parameters used to make a call to system

and values received from system.

11 High Level

Requirement

A feature/capability/high level requirement that

should be broken down into atomic requirements.

12 User Interface

Logic

User interface/interaction behavior

13 External Behavior Explains the behavior of an external 3rd party

system.

Table 14 Requirement types

Table 16 shows the total number of each requirement type found in the database

used in our experiment.

Req. ID Number of requirements

1. 60

2. 61

3. 2

4. 40

5. 51

6. 0

7. 38

8. 24

9. 15

10. 4

11. 4

12. 8

13. 2

Total

requirements

309

Table 15 Number of requirement of each type

65

APPENDIX B

DATA OF REQUIREMENT INSPECTION WITH RULES

66

All the requirements in the database were inspected against the rules, given in

Table 9 in section 4.2.2.2 Following table shows each requirement statement with

applied rule and the defect found or in some cases, the requirement qualified the

rule and there was not defect.

The titles of each column in below table are defined as: Rule ID = Rule ID,

Req. ID = Requirement ID, Sys. ID = System ID, related req. = related

requirement, d? = defect found or not (1 shows that defect is found), Comment =

comment if the defect found is a false positive and not an actual defect, name of

last column “ efect type” is self explanatory.

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

1 1 431 1 1 False positive

2 1 431 1 1 False positive

3 1 434 1 436

4 1 434 1 436

5 1 434 1 436

6 1 434 1 436

7 1 434 1 436

8 1 435 1 1 Missing

requirement

9 1 439 1 442

10 1 447 1 1 Missing

requirement

11 1 447 1 1 Missing

requirement

12 1 447 1 1 Missing

67

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

requirement

13 1 447 1 1 Missing

requirement

14 1 447 1 1 Missing

requirement

15 1 447 1 1 Missing

requirement

16 1 461 2 1 False positive

17 1 461 2 1 False positive

18 1 473 2 1 Missing

requirement

19 1 473 2 1 Missing

requirement

20 1 473 2 1 Missing

requirement

21 1 473 2 1 Missing

requirement

22 1 473 2 1 Missing

requirement

23 1 473 2 1 Missing

requirement

24 1 589 3 1 False positive

25 1 592 3 1 False positive

26 1 597 3 1 False positive

27 1 604 3 1 False positive

28 1 607 3 1 False positive

29 1 611 3 1 False positive

30 1 615 3 1 False positive

68

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

31 1 618 3 1 False positive

32 1 621 3 1 False positive

33 1 628 3 1 False positive

34 1 631 3 1 False positive

35 1 634 3 1 False positive

36 1 637 3 1 False positive

37 1 641 3 1 False positive

38 1 644 3 1 False positive

39 1 647 3 1 False positive

40 1 651 3 1 False positive

41 1 654 3 1 False positive

42 1 658 3 1 False positive

43 1 664 3 1 False positive

44 1 667 3 1 False positive

45 1 670 3 1 False positive

46 1 672 3 1 False positive

47 1 1016 4 1 False positive

48 1 1021 4 1 Missing

requirement

49 1 1025 4 1 False positive

50 1 1032 4 1 False positive

51 1 1037 4 1 Missing

requirement

52 1 1039 4 1 False positive

53 1 1043 4 1 Missing

requirement

54 1 1046 4 1 False positive

55 1 1052 4 1 Missing

69

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

requirement

56 1 1056 4 1 False positive

57 1 1092 5 1 Missing

requirement

58 1 1098 5 1 False positive

59 1 1103 5 1 Missing

requirement

60 1 1112 5 1 False positive

61 1 1120 5 1 False positive

62 1 1129 5 1 False positive

63 1 1141 5 1 False positive

64 1 1150 5 1 Missing

requirement

65 1 1156 5 1 False positive

66 1 1162 5 1 False positive

67 1 1170 5 1 Missing

requirement

68 1 1171 5 1 Missing

requirement

69 1 1178 5 1 False positive

70 1 1199 5 1 False positive

71 1 1204 5 1 Missing

requirement

72 1 1210 5 1 False positive

73 2 431 1 1 Missing

requirement

74 2 431 1 1 Missing

requirement

70

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

75 2 434 1 1 Missing

requirement

76 2 434 1 1 Missing

requirement

77 2 434 1 1 Missing

requirement

78 2 434 1 1 Missing

requirement

79 2 434 1 1 Missing

requirement

80 2 435 1 1 False positive

81 2 439 1 1 False positive

82 2 447 1 448

83 2 447 1 448

84 2 447 1 448

85 2 447 1 448

86 2 447 1 448

87 2 447 1 448

88 2 461 2 1 Missing

requirement

89 2 461 2 1 Missing

requirement

90 2 473 2 474

91 2 473 2 474

92 2 473 2 474

93 2 473 2 474

94 2 473 2 474

95 2 473 2 474

71

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

96 2 589 3 1 False positive

97 2 592 3 1 False positive

98 2 597 3 1 False positive

99 2 604 3 1 False positive

10

0

2 607 3 1 False positive

10

1

2 611 3 1 False positive

10

2

2 615 3 1 False positive

10

3

2 618 3 1 False positive

10

4

2 621 3 1 False positive

10

5

2 628 3 1 False positive

10

6

2 631 3 1 False positive

10

7

2 634 3 1 False positive

10

8

2 637 3 1 False positive

10

9

2 641 3 1 False positive

11

0

2 644 3 1 False positive

11

1

2 647 3 1 False positive

72

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

11

2

2 651 3 1 False positive

11

3

2 654 3 1 False positive

11

4

2 658 3 1 False positive

11

5

2 664 3 1 False positive

11

6

2 667 3 1 False positive

11

7

2 670 3 1 False positive

11

8

2 672 3 1 False positive

11

9

2 1016 4 1 False positive

12

0

2 1021 4 1 Missing

requirement

12

1

2 1025 4 1 False positive

12

2

2 1032 4 1 False positive

12

3

2 1037 4 1 Missing

requirement

12

4

2 1039 4 1 False positive

12

5

2 1043 4 1 Missing

requirement

73

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

12

6

2 1046 4 1 False positive

12

7

2 1052 4 1 Missing

requirement

12

8

2 1056 4 1 False positive

12

9

2 1092 5 1 Missing

requirement

13

0

2 1098 5 1 Missing

requirement

13

1

2 1103 5 1108

13

2

2 1112 5 1115

13

3

2 1120 5 1123

13

4

2 1129 5 1132

13

5

2 1141 5 1 Missing

requirement

13

6

2 1150 5 1 False positive

13

7

2 1156 5 1157

13

8

2 1162 5 1164

13

9

2 1170 5 1 Missing

requirement

74

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

14

0

2 1171 5 1 Missing

requirement

14

1

2 1178 5 1181

14

2

2 1199 5 1 False positive

14

3

2 1204 5 1 False positive

14

4

2 1210 5 1 False positive

14

5

3 436 1 1 Missing

requirement

14

6

3 442 1 442

14

7

4 444 1 445

14

8

4 459 1 1 Missing

requirement

14

9

4 460 1 1 Missing

requirement

15

0

4 598 3 599

15

1

4 612 3 613

15

2

4 625 3 626

15

3

4 638 3 639

75

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

15

4

4 655 3 656

15

5

4 673 3 674

15

6

4 1018 4 1019

15

7

4 1030 4 1031

15

8

4 1034 4 1035

15

9

4 1036 4 1 Missing

requirement

16

0

4 1041 4 1042

16

1

4 1044 4 1045

16

2

4 1048 4 1049

16

3

4 1050 4 1051

16

4

4 1060 4 1061

16

5

4 1095 5 1096

16

6

4 1101 5 1102

16

7

4 1104 5 1105

76

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

16

8

4 1113 5 1114

16

9

4 1121 5 1122

17

0

4 1130 5 1131

17

1

4 1137 5 1138

17

2

4 1144 5 1145

17

3

4 1148 5 1149

17

4

4 1151 5 1152

17

5

4 1169 5 1170

17

6

4 1176 5 1177

17

7

4 1179 5 1180

17

8

4 1186 5 1187

17

9

4 1190 5 1191

18

0

4 1196 5 1197

18

1

4 1202 5 1203

77

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

18

2

4 1205 5 1206

18

3

4 1209 5 1210

18

4

5 431 1

18

5

5 434 1

18

6

5 435 1

18

7

5 439 1

18

8

5 447 1

18

9

5 461 2

19

0

5 473 2

19

1

5 589 3 1 underspecified Incomplete

Req.

19

2

5 592 3

19

3

5 597 3

19

4

5 604 3

19

5

5 607 3

78

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

19

6

5 611 3

19

7

5 615 3 1 underspecified Incomplete

Req.

19

8

5 618 3

19

9

5 621 3

20

0

5 628 3

20

1

5 631 3

20

2

5 634 3

20

3

5 637 3

20

4

5 641 3

20

5

5 644 3

20

6

5 647 3

20

7

5 651 3

20

8

5 654 3

20

9

5 658 3

79

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

21

0

5 664 3

21

1

5 667 3

21

2

5 670 3

21

3

5 672 3

21

4

5 1016 4 1 underspecified Incomplete

Req.

21

5

5 1021 4 1 underspecified Incomplete

Req.

21

6

5 1025 4 1 underspecified Incomplete

Req.

21

7

5 1032 4 1 underspecified Incomplete

Req.

21

8

5 1037 4 1 underspecified Incomplete

Req.

21

9

5 1039 4 1 underspecified Incomplete

Req.

22

0

5 1043 4

22

1

5 1046 4 1 underspecified Incomplete

Req.

22

2

5 1052 4

22

3

5 1056 4 1 underspecified Incomplete

Req.

80

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

22

4

5 1092 5 1 underspecified Incomplete

Req.

22

5

5 1098 5 1 underspecified Incomplete

Req.

22

6

5 1103 5

22

7

5 1112 5

22

8

5 1120 5

22

9

5 1129 5

23

0

5 1141 5

23

1

5 1150 5

23

2

5 1156 5

23

3

5 1162 5

23

4

5 1170 5

23

5

5 1171 5

23

6

5 1178 5

23

7

5 1199 5

81

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

23

8

5 1204 5

23

9

5 1210 5

24

0

6 432 1 1 underspecified Incomplete

24

1

6 441 1 1 underspecified Incomplete

24

2

6 443 1

24

3

6 450 1

24

4

6 462 2 1 underspecified Incomplete

24

5

6 476 2

24

6

6 591 3

24

7

6 594 3

24

8

6 603 3

24

9

6 606 3

25

0

6 610 3

25

1

6 617 3

82

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

25

2

6 620 3

25

3

6 623 3

25

4

6 626 3

25

5

6 630 3

25

6

6 633 3

25

7

6 636 3

25

8

6 639 3

25

9

6 643 3

26

0

6 646 3

26

1

6 650 3

26

2

6 653 3

26

3

6 656 3

26

4

6 660 3

26

5

6 663 3

83

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

26

6

6 666 3

26

7

6 669 3

26

8

6 674 3

26

9

6 1017 4 1 underspecified Incomplete

27

0

6 1019 4 1 underspecified Incomplete

27

1

6 1023 4 1 underspecified Incomplete

27

2

6 1031 4 1 underspecified Incomplete

27

3

6 1035 4 1 underspecified Incomplete

27

4

6 1040 4 1 underspecified Incomplete

27

5

6 1049 4 1 underspecified Incomplete

27

6

6 1057 4 1 underspecified Incomplete

27

7

6 1061 4 1 underspecified Incomplete

27

8

6 1093 5 1 underspecified Incomplete

27

9

6 1097 5

84

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

28

0

6 1106 5 1 underspecified Incomplete

28

1

6 1111 5

28

2

6 1114 5

28

3

6 1119 5

28

4

6 1125 5

28

5

6 1134 5

28

6

6 1138 5

28

7

6 1142 5

28

8

6 1155 5

28

9

6 1158 5

29

0

6 1159 5

29

1

6 1165 5

29

2

6 1177 5

29

3

6 1192 5

85

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

29

4

6 1193 5 1 underspecified Incomplete

29

5

6 1197 5 1 underspecified Incomplete

29

6

6 1206 5 1 underspecified Incomplete

29

7

7 39(Feature

ID)

1 1 Missing

requirement

29

8

7 40(Feature

ID)

1 444

29

9

7 41(Feature

ID)

1 1 Missing

requirement

30

0

7 42(Feature

ID)

1 1 Missing

requirement

30

1

7 43(Feature

ID)

1 1 Missing

requirement

30

2

7 44(Feature

ID)

1 1 Missing

requirement

30

3

7 45(Feature

ID)

1 459

30

4

7 46(Feature

ID)

1 460

30

5

7 47(Feature

ID)

2 1 Missing

requirement

30

6

7 48(Feature

ID)

2 1 Missing

requirement

30

7

7 49(Feature

ID)

2 1 Missing

requirement

86

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

30

8

7 50(Feature

ID)

2 1 Missing

requirement

30

9

7 51(Feature

ID)

2 1 Missing

requirement

31

0

7 52(Feature

ID)

2 1 Missing

requirement

31

1

7 72(Feature

ID)

3 1 Missing

requirement

31

2

7 73(Feature

ID)

3 1 Missing

requirement

31

3

7 74(Feature

ID)

3 1 Missing

requirement

31

4

7 75(Feature

ID)

3 1 Missing

requirement

31

5

7 76(Feature

ID)

3 1 Missing

requirement

31

6

7 77(Feature

ID)

3 1 Missing

requirement

31

7

7 78(Feature

ID)

3 1 Missing

requirement

31

8

7 79(Feature

ID)

3 1 Missing

requirement

31

9

7 129(Featur

e ID)

4 1 Missing

requirement

32

0

7 130(Featur

e ID)

4 1 Missing

requirement

32

1

7 131(Featur

e ID)

4 1 Missing

requirement

87

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

32

2

7 132(Featur

e ID)

4 1 Missing

requirement

32

3

7 133(Featur

e ID)

4 1 Missing

requirement

32

4

7 134(Featur

e ID)

4 1 Missing

requirement

32

5

7 135(Featur

e ID)

4 1 Missing

requirement

32

6

7 136(Featur

e ID)

4 1 Missing

requirement

32

7

7 137(Featur

e ID)

4 1 Missing

requirement

32

8

7 145(Featur

e ID)

5 1 Missing

requirement

32

9

7 146(Featur

e ID)

5 1 Missing

requirement

33

0

7 147(Featur

e ID)

5 1 Missing

requirement

33

1

7 148(Featur

e ID)

5 1 Missing

requirement

33

2

7 149(Featur

e ID)

5 1 Missing

requirement

33

3

7 150(Featur

e ID)

5 1 Missing

requirement

33

4

7 151(Featur

e ID)

5 1 Missing

requirement

33

5

7 152(Featur

e ID)

5 1 Missing

requirement

88

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

33

6

7 153(Featur

e ID)

5 1 Missing

requirement

33

7

7 154(Featur

e ID)

5 1 Missing

requirement

33

8

7 155(Featur

e ID)

5 1 Missing

requirement

33

9

7 156(Featur

e ID)

5 1 Missing

requirement

34

0

7 157(Featur

e ID)

5 1 Missing

requirement

34

1

7 158(Featur

e ID)

5 1 Missing

requirement

34

2

7 159(Featur

e ID)

5 1 Missing

requirement

34

3

7 160(Featur

e ID)

5 1 Missing

requirement

34

4

7 161(Featur

e ID)

5 1 Missing

requirement

34

5

7 162(Featur

e ID)

5 1 Missing

requirement

34

6

7 163(Featur

e ID)

5 1 Missing

requirement

34

7

7 164(Featur

e ID)

5 1 Missing

requirement

34

8

8 39(Feature

ID)

1 431

34

9

8 40(Feature

ID)

1 434

89

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

35

0

8 41(Feature

ID)

1 447

35

1

8 42(Feature

ID)

1 1 Missing

requirement

35

2

8 43(Feature

ID)

1 1 Missing

requirement

35

3

8 44(Feature

ID)

1 1 Missing

requirement

35

4

8 45(Feature

ID)

1 1 Missing

requirement

35

5

8 46(Feature

ID)

1 1 Missing

requirement

35

6

8 47(Feature

ID)

2 461

35

7

8 48(Feature

ID)

2 1 Missing

requirement

35

8

8 49(Feature

ID)

2 473

35

9

8 50(Feature

ID)

2 1 Missing

requirement

36

0

8 51(Feature

ID)

2 1 Missing

requirement

36

1

8 52(Feature

ID)

2 1 Missing

requirement

36

2

8 72(Feature

ID)

3 589

36

3

8 73(Feature

ID)

3 601

90

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

36

4

8 74(Feature

ID)

3 615

36

5

8 75(Feature

ID)

3 False positive this feature is

missing in

DB

36

6

8 76(Feature

ID)

3 628

36

7

8 77(Feature

ID)

3 641

36

8

8 78(Feature

ID)

3 658

36

9

8 79(Feature

ID)

3 False positive this feature is

missing in

DB

37

0

8 129(Featur

e ID)

4 1 Missing

requirement

37

1

8 130(Featur

e ID)

4 1016

37

2

8 131(Featur

e ID)

4 1 Missing

requirement

37

3

8 132(Featur

e ID)

4 1 Missing

requirement

37

4

8 133(Featur

e ID)

4 1025

37

5

8 134(Featur

e ID)

4 1032

37

6

8 135(Featur

e ID)

4 1039

91

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

37

7

8 136(Featur

e ID)

4 1 Missing

requirement

37

8

8 137(Featur

e ID)

4 1056

37

9

8 145(Featur

e ID)

5 1092

38

0

8 146(Featur

e ID)

5 1100

38

1

8 147(Featur

e ID)

5 1112

38

2

8 148(Featur

e ID)

5 1120

38

3

8 149(Featur

e ID)

5 1129

38

4

8 150(Featur

e ID)

5 1 Missing

requirement

38

5

8 151(Featur

e ID)

5 1141

38

6

8 152(Featur

e ID)

5 1 Missing

requirement

38

7

8 153(Featur

e ID)

5 1150

38

8

8 154(Featur

e ID)

5 1156

38

9

8 155(Featur

e ID)

5 1162

39

0

8 156(Featur

e ID)

5 1170

92

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

39

1

8 157(Featur

e ID)

5 1178

39

2

8 158(Featur

e ID)

5 False positive this feature is

missing in

DB

39

3

8 159(Featur

e ID)

5 1 Missing

requirement

39

4

8 160(Featur

e ID)

5 1 Missing

requirement

39

5

8 161(Featur

e ID)

5 1 Missing

requirement

39

6

8 162(Featur

e ID)

5 1199

39

7

8 163(Featur

e ID)

5 1204

39

8

8 164(Featur

e ID)

5 1210

39

9

9 39(Feature

ID)

1 432

40

0

9 40(Feature

ID)

1 443

40

1

9 41(Feature

ID)

1 450

40

2

9 42(Feature

ID)

1 1 Missing

requirement

40

3

9 43(Feature

ID)

1 1 Missing

requirement

40 9 44(Feature 1 1 Missing

93

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

4 ID) requirement

40

5

9 45(Feature

ID)

1 1 Missing

requirement

40

6

9 46(Feature

ID)

1 1 Missing

requirement

40

7

9 47(Feature

ID)

2 462

40

8

9 48(Feature

ID)

2 1 Missing

requirement

40

9

9 49(Feature

ID)

2 476

41

0

9 50(Feature

ID)

2 1 Missing

requirement

41

1

9 51(Feature

ID)

2 1 Missing

requirement

41

2

9 52(Feature

ID)

2 1 Missing

requirement

41

3

9 72(Feature

ID)

3 591

41

4

9 73(Feature

ID)

3 603

41

5

9 74(Feature

ID)

3 617

41

6

9 75(Feature

ID)

3 False positive this feature is

missing in

DB

41

7

9 76(Feature

ID)

3 630

94

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

41

8

9 77(Feature

ID)

3 643

41

9

9 78(Feature

ID)

3 660

42

0

9 79(Feature

ID)

3 False positive this feature is

missing in

DB

42

1

9 129(Featur

e ID)

4 1 Missing

requirement

42

2

9 130(Featur

e ID)

4 1017

42

3

9 131(Featur

e ID)

4 1 Missing

requirement

42

4

9 132(Featur

e ID)

4 1023

42

5

9 133(Featur

e ID)

4 1026

42

6

9 134(Featur

e ID)

4 1033

42

7

9 135(Featur

e ID)

4 1040

42

8

9 136(Featur

e ID)

4 1 Missing

requirement

42

9

9 137(Featur

e ID)

4 1057

43

0

9 145(Featur

e ID)

5 1093

43 9 146(Featur 5 1106

95

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

1 e ID)

43

2

9 147(Featur

e ID)

5 1111

43

3

9 148(Featur

e ID)

5 1119

43

4

9 149(Featur

e ID)

5 1134

43

5

9 150(Featur

e ID)

5 1138

43

6

9 151(Featur

e ID)

5 1142

43

7

9 152(Featur

e ID)

5 1 Missing

requirement

43

8

9 153(Featur

e ID)

5 1 Missing

requirement

43

9

9 154(Featur

e ID)

5 1159

44

0

9 155(Featur

e ID)

5 1165

44

1

9 156(Featur

e ID)

5 1 Missing

requirement

44

2

9 157(Featur

e ID)

5 1117

44

3

9 158(Featur

e ID)

5 False positive this feature is

missing in

DB

44

4

9 159(Featur

e ID)

5 1192

96

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

44

5

9 160(Featur

e ID)

5 1193

44

6

9 161(Featur

e ID)

5 1197

44

7

9 162(Featur

e ID)

5 1

44

8

9 163(Featur

e ID)

5 1206

44

9

9 164(Featur

e ID)

5 1 Missing

requirement

45

0

10 39(Feature

ID)

1 1 Missing

requirement

45

1

10 40(Feature

ID)

1 440

45

2

10 41(Feature

ID)

1 1 Missing

requirement

45

3

10 42(Feature

ID)

1 1 Missing

requirement

45

4

10 43(Feature

ID)

1 1 Missing

requirement

45

5

10 44(Feature

ID)

1 1 Missing

requirement

45

6

10 45(Feature

ID)

1 1 Missing

requirement

45

7

10 46(Feature

ID)

1 1 Missing

requirement

45

8

10 47(Feature

ID)

2 1 Missing

requirement

97

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

45

9

10 48(Feature

ID)

2 470

46

0

10 49(Feature

ID)

2 1 Missing

requirement

46

1

10 50(Feature

ID)

2 1 Missing

requirement

46

2

10 51(Feature

ID)

2 1 Missing

requirement

46

3

10 52(Feature

ID)

2 1 Missing

requirement

46

4

10 72(Feature

ID)

3 588

46

5

10 73(Feature

ID)

3 600

46

6

10 74(Feature

ID)

3 614

46

7

10 75(Feature

ID)

3 False positive this feature is

missing in

DB

46

8

10 76(Feature

ID)

3 627

46

9

10 77(Feature

ID)

3 640

47

0

10 78(Feature

ID)

3 657

47

1

10 79(Feature

ID)

3 False positive this feature is

missing in

DB

98

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

47

2

10 129(Featur

e ID)

4 1014

47

3

10 130(Featur

e ID)

4 1015

47

4

10 131(Featur

e ID)

4 1 Missing

requirement

47

5

10 132(Featur

e ID)

4 1024

47

6

10 133(Featur

e ID)

4 1 Missing

requirement

47

7

10 134(Featur

e ID)

4 1 Missing

requirement

47

8

10 135(Featur

e ID)

4 1038

47

9

10 136(Featur

e ID)

4 1055

48

0

10 137(Featur

e ID)

4 1 Missing

requirement

48

1

10 145(Featur

e ID)

5 1 Missing

requirement

48

2

10 146(Featur

e ID)

5 1099

48

3

10 147(Featur

e ID)

5 1109

48

4

10 148(Featur

e ID)

5 1117

48

5

10 149(Featur

e ID)

5 1126

99

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

48

6

10 150(Featur

e ID)

5 1136

48

7

10 151(Featur

e ID)

5 1139

48

8

10 152(Featur

e ID)

5 1143

48

9

10 153(Featur

e ID)

5 1146

49

0

10 154(Featur

e ID)

5 1153

49

1

10 155(Featur

e ID)

5 1162

49

2

10 156(Featur

e ID)

5 1167

49

3

10 157(Featur

e ID)

5 1173

49

4

10 158(Featur

e ID)

5 False positive this feature is

missing in

DB

49

5

10 159(Featur

e ID)

5 1184

49

6

10 160(Featur

e ID)

5 1188

49

7

10 161(Featur

e ID)

5 1194

49

8

10 162(Featur

e ID)

5 1198

49 10 163(Featur 5 1201

100

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

9 e ID)

50

0

10 164(Featur

e ID)

5 1207

50

1

11 39(Feature

ID)

1 1 Missing

requirement

50

2

11 40(Feature

ID)

1 1 Missing

requirement

50

3

11 41(Feature

ID)

1 448

50

4

11 42(Feature

ID)

1 454

50

5

11 43(Feature

ID)

1 455

50

6

11 44(Feature

ID)

1 457

50

7

11 45(Feature

ID)

1 1 Missing

requirement

50

8

11 46(Feature

ID)

1 1 Missing

requirement

50

9

11 47(Feature

ID)

2 1 Missing

requirement

51

0

11 48(Feature

ID)

2 464

51

1

11 49(Feature

ID)

2 474

51

2

11 50(Feature

ID)

2 1 Missing

requirement

51 11 51(Feature 2 482

101

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

3 ID)

51

4

11 52(Feature

ID)

2 483

51

5

11 72(Feature

ID)

3 590

51

6

11 73(Feature

ID)

3 602

51

7

11 74(Feature

ID)

3 616

51

8

11 75(Feature

ID)

3 False positive this feature is

missing in

DB

51

9

11 76(Feature

ID)

3 629

52

0

11 77(Feature

ID)

3 642

52

1

11 78(Feature

ID)

3 659

52

2

11 79(Feature

ID)

3 False positive this feature is

missing in

DB

52

3

11 129(Featur

e ID)

4 1 Missing

requirement

52

4

11 130(Featur

e ID)

4 1 Missing

requirement

52

5

11 131(Featur

e ID)

4 1 Missing

requirement

52 11 132(Featur 4 1 Missing

102

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

6 e ID) requirement

52

7

11 133(Featur

e ID)

4 1028

52

8

11 134(Featur

e ID)

4 1 Missing

requirement

52

9

11 135(Featur

e ID)

4 1045

53

0

11 136(Featur

e ID)

4 1 Missing

requirement

53

1

11 137(Featur

e ID)

4 1 Missing

requirement

53

2

11 145(Featur

e ID)

5 1 Missing

requirement

53

3

11 146(Featur

e ID)

5 1108

53

4

11 147(Featur

e ID)

5 1115

53

5

11 148(Featur

e ID)

5 1123

53

6

11 149(Featur

e ID)

5 1132

53

7

11 150(Featur

e ID)

5 1 Missing

requirement

53

8

11 151(Featur

e ID)

5 1 Missing

requirement

53

9

11 152(Featur

e ID)

5 1 Missing

requirement

54 11 153(Featur 5 1 Missing

103

ID Rule

ID

Req.

ID

Sys.

ID

related

Req.

d? Comment Defect type

0 e ID) requirement

54

1

11 154(Featur

e ID)

5 1157

54

2

11 155(Featur

e ID)

5 1164

54

3

11 156(Featur

e ID)

5 1 Missing

requirement

54

4

11 157(Featur

e ID)

5 1181

54

5

11 158(Featur

e ID)

5 False positive this feature is

missing in

DB

54

6

11 159(Featur

e ID)

5 1187

54

7

11 160(Featur

e ID)

5 1191

54

8

11 161(Featur

e ID)

5 1 Missing

requirement

54

9

11 162(Featur

e ID)

5 1 Missing

requirement

55

0

11 163(Featur

e ID)

5 1 Missing

requirement

55

1

11 164(Featur

e ID)

5 1 Missing

requirement

Table 16 All requirements inspected and rule applied with defects found

